Ausgewählte Forschungsprojekte

Die aufkommende Verbreitung von intelligenten Stromzählern erzeugt große Datenmengen, die den Energiekonsum von Haushalten beschreibt. Diese Daten enthalten umfangreiche (versteckte) Hinweise auf Haushaltscharakteristika, wie z. B. dem individuellen Einsparpotential aber auch zu Nachhaltigkeitsthemen wie Selbstversorgung und Speicherung.

In diesem Projekt entwickeln und testen wir Methoden zur automatischen Erkennung von individuellen Haushaltscharakteristika basierend auf gewöhnlichen 15-minütigen Smart-Meter-Daten und weiteren externen Daten (geographisch, sozial-ökonomisch, Wetter- und Statistikdaten etc.). Der Fokus der abzuleitenden Haushaltscharakteristika liegt auf Merkmalen mit Bezug zum Interesse an erneuerbaren Energien und grünen Tarifen und auf der Eignung für Eigenstromerzeugung, Speicherung und Selbstversorgung. Außerdem werden wir atypische Verbräuche identifizieren, Grundlast schätzen sowie das individuelle Einspar- und Lastverschiebungspotential von Haushalten untersuchen.

Zusammen mit unserem Implementierungspartner BEN Energy entwickeln wir Methoden, die auf Smart-Meter-Daten von unserem Industriepartner, dem Energieversorger CKW, basieren. Die Projektresultate werden vom Konsortium im Feldversuch bewertet. Die Umsetzung des Projekts erfolgt im Einklang mit den schweizerischen und europäischen Datenschutzbestimmungen.

Als Projektergebnis erwarten wir validierte und skalierbare Methoden, die Energieeinsparpotenziale von Privathaushalten aufdecken und Energieversorgern dabei helfen, den Vertrieb von nachhaltigen Produkten im Einklang mit nationalen Energiezielen zu optimieren.

Kontakt: Andreas Weigert, Samuel Schöb

Laufzeit: 01.06.2017 — 31.03.2020

Gesamtbudget des Projekts: 802'378 € (Förder- und Industriebeitrag)

Projektpartner:

Gefördert durch:

Energy Data Analytics: Steigerung der Servicequalität und der Energieeffizienz im Privatkundenbereich

Energieversorgungsunternehmen haben eine große Kundenbasis, aber ihr Wissen über die Kunden ist gering. Dieser Umstand behindert einerseits die Entwicklung von innovativen, zielgruppenspezifischen Produkten und Dienstleistungen und schmälert andererseits die Gewinne der Versorger. Unsere Softwarelösungen helfen Energieversorgern, ihre Kunden zur Teilnahme an Energieeffizienzkampagnen zu motivieren und entsprechende Dienstleistungen zu vermarkten.

In diesem Projekt entwickeln wir Machine-Learning-Algorithmen weiter, welche Haushaltseigenschaften (Wohnungsgröße, Anzahl der Bewohner oder Geräte, usw. ) oder die Bereitschaft von Kunden für eine Teilnahme an Energieeffizienz- oder Lastverschiebungskampagnen mit Hilfe von Lastkurven, Standortinformationen und anderen Datenquellen vorherzusagen. Unsere Softwarewerkzeuge stellen Einblicke in die Kundenbasis skalierbar und kosteneffizient zur Verfügung und lösen dabei außerdem weitere bedeutende unternehmensrelevente Probleme: Die Effektivität von Energieeffizienzkampagnen, die Steigerung des Kundenwertes und die Adoption damit verbundener Dienstleistungen.

Gefördert durch das Eurostars Programm der EU

Projektlaufzeit: 01.11.2015 - 30.10.2018

Projektmitarbeiter an der Universität Bamberg: Konstantin Hopf

Projektpartner:

Gesamtbudget des Projekts: 818’840 € (Förder- und Industriebeitrag)