Felix Haag

Room: WE5/02.053
Telephone: +49 951 863 1996
Email: felix.haag(at)uni-bamberg.de
Consultation hour: by appointment
Career
- 2021 - today: PhD student at the Energy Efficient Systems Group, Otto-Friedrich University of Bamberg
- 2020 - today: Scientific assistant at the Energy Efficient Systems Group, Otto-Friedrich University of Bamberg
- 2018 - 2021: Information Systems (M.Sc.), Otto-Friedrich-University of Bamberg – Degree with distinction
- 2017: Internship at Mercedes-Benz Malaysia in Kuala Lumpur
- 2015 - 2018: Information Systems (B.Sc.), Baden-Württemberg Cooperative State University in cooperation with Mercedes-Benz Tech Innovation
Research Interests
- Explainable AI
- Learning Analytics
- Information Systems and Applications of Energy Informatics
Publications
Haag, F., Günther, S. A., Hopf, K., Handschuh, P., Klose, M., Staake, T. (2023): Addressing Learners' Heterogeneity in Higher Education: An Explainable AI-based Feedback Artifact for Digital Learning Environments. Wirtschaftsinformatik 2023, Paderborn, Germany (forthcoming)
Giacomazzi, E., Haag, F., Hopf, K. (2023): Short-term Electricity Load Forecasting using the Temporal Fusion Transformer: Effect of Grid Hierarchies and Data Sources. International Conference on Future Energy Systems (ACM e-Energy) 2023, Orlando, Florida, USA [preprint]
Günther, S. A., Haag, F., Hopf, K., Handschuh, P., Klose, M., Staake, T. (2022): A feedback component that leverages counterfactual explanations for smart learning support. Digitale Kulturen der Lehre entwickeln – Rahmenbedingungen, Konzepte und Werkzeuge (Springer VS Reihe: Perspektiven der Hochschuldidaktik) (forthcoming)
Haag, F., Hopf, K., Menelau Vasconcelos, P., Staake, T. (2022): Augmented Cross-Selling Through Explainable AI – A Case From Energy Retailing. European Conference on Information Systems (ECIS) 2022, Timișoara, Romania [link]
Wastensteiner, J., Weiss, T., Haag, F., Hopf, K. (2021): Explainable AI for Tailored Electricity Consumption Feedback – An Experimental Evaluation of Visualizations. European Conference on Information Systems (ECIS) 2021, Marrakech, Morocco [link]
Talks and workshops
Haag, F. (2022): Explainable Machine Learning to Augment Human Decision-Making. Doctoral Consortium during the 30th European Conference on Information Systems (ECIS), Timișoara, Romania, June 19
Hopf, K., Haag, F. (2020): Explainable AI for Enhanced Human-AI Interaction. Pre-ICIS Practice Development Workshop “AI Beyond the Hype”, Online, December 13