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Abstract

Current deep learning-based image classification models store their learned knowl-
edge implicitly in deep neural networks. This implicit knowledge can only be ad-
justed by retraining the entire model, which can lead to catastrophic forgetting of
previously learned knowledge and can be challenging for applying personal user data
privacy regulations.

Nakata et al. proposed a kNN-based image classification system that claims to
overcome these challenges. During this thesis, a prototype system was developed
based on their description to evaluate their approach.

Overall, the prototype system almost matches the classification performance of
Nakata et al.’s system, just falling short by 0.006% to 2.8% in accuracy for the
ResNet-50 image encoder and a decrease in accuracy of 4% to 12.5% for the ViT-
B/16 image encoder. Dimensionality reduction with t-SNE can increase the classifi-
cation performance and visualize the model’s decision-making process. Catastrophic
forgetting was mitigated, and it has been shown that it is possible to delete up to 40%
of feature embeddings of a single class before the classification accuracy declines.

Investigating Nakata et al.’s approach by building a prototype system confirmed
their results. The prototype implementation showed that addressing continual learn-
ing and data privacy challenges with an explainable kNN-based image classifier is
possible.
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Übersicht

Aktuelle auf Deep Learning basierende Bildklassifizierungsmodelle speichern ihr er-
lerntes Wissen implizit in tiefen neuronalen Netzen. Dieses implizite Wissen kann
nur angepasst werden, indem das gesamte Modell neu trainiert wird, was zum
so genannten katastrophalen Vergessen des zuvor gelernten Wissens führen kann
und eine Herausforderung für die Anwendung der Datenschutzbestimmungen für
persönliche Nutzerdaten darstellt.

Nakata et al. haben ein kNN-basiertes Bildklassifizierungssystem vorgeschlagen,
das diese Herausforderungen überwinden soll. Im Rahmen dieser Arbeit wurde ein
Prototypsystem auf der Grundlage ihrer Beschreibung entwickelt, um ihren Ansatz
zu evaluieren.

Insgesamt erreicht das Prototypsystem fast die Klassifizierungsgenauigkeit des Sys-
tems von Nakata et al. und liegt nur um 0,006% bis 2,8% in der Genauigkeit für
den ResNet-50-Bildkodierer und um 4% bis 12,5% für den ViT-B/16-Bildkodierer
darunter. Eine Dimensionalitätsreduktion mit t-SNE kann die Klassifikationsleis-
tung erhöhen und den Entscheidungsprozess des Modells visualisieren. Das katas-
trophale Vergessen wurde vermieden, und es hat sich gezeigt, dass bis zu 40% der
Merkmalseinbettungen einer einzelnen Klasse gelöscht werden können, bevor die
Klassifizierungsgenauigkeit abnimmt.

Die Untersuchung des Ansatzes von Nakata et al. durch den Aufbau eines Proto-
typsystems bestätigte ihre Resultate. Die Prototyp-Implementierung zeigte, dass
es möglich ist, die Herausforderungen des kontinuierlichen Lernens und des Daten-
schutzes mit einem erklärbaren kNN-basierten Bildklassifikator zu bewältigen.
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1 INTRODUCTION 1

1 Introduction

1.1 Context and Motivation

Combining the k-nearest neighbors (kNN) algorithm from 1951 with the most recent
advancements in deep learning leads to a new image classi�cation model, which is
privacy-focused, explainable, and cost-e�ective. The kNN classi�er is a machine
learning algorithm that classi�es data points based on their similarity to other data
points.

Kengo Nakata et al. described this approach in the paper \Revisiting a kNN-based
Image Classi�cation System with High-capacity Storage" (Nakata et al., 2022). This
bachelor thesis aims to rebuild a prototype system of Nakata et al.'s approach to
verify their results and perform additional experiments to understand the proposed
system's limits and strengths.

Deep learning has shown its use cases for multiple applications, especially domains
where it is hard for humans to grasp the signi�cant features of data. For example,
deep learning has been used to achieve accurate solutions in the �eld of medical
image analysis (Puttagunta and Subban, 2021) and medical drug discovery (Chen
et al., 2018). Besides the medical �eld, deep learning has proven its accuracy and
reliability in image classi�cation, object detection, and natural language processing
(Pouyanfar et al., 2019).

However, deep learning models have some limitations. One limitation is that train-
ing large models requires high computational power, which results in high costs for
training deep learning models from scratch (Alzubaidi et al., 2021). Another limi-
tation is that they can be challenging to interpret, making it di�cult to trust their
results (Parisi et al., 2019; Goodfellow et al., 2016). Additionally, deep learning
models can be prone to so-called catastrophic forgetting, which is the phenomenon
of losing previously learned knowledge when new information is added to the model
(Xie et al., 2021; Alzubaidi et al., 2021).

1.2 Related Work

To address these limitations, researchers have proposed several techniques for con-
tinual learning, which is the ability of a deep learning model to learn new information
without forgetting the old information. For example, one such technique is incre-
mental learning, which involves updating the model with new data one instance at
a time. This helps to prevent the model from forgetting the old data (Lange et al.,
2022). Besides the advancements in continual learning, in 2022, van de Ven et al.
concluded that current continual learning techniques have multiple limitations, for
example, being computationally expensive or requiring a large amount of memory
(van de Ven et al., 2022).
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The continued development of continual learning techniques is a critical area of
research. These techniques have the potential to overcome catastrophic forgetting
and make deep learning a more powerful tool for a broader range of applications.

The project described in this bachelor thesis aims to investigate a way to enable
architecture-based continual learning for image classi�cation by simultaneously al-
lowing the deletion of data from the system without causing a severe performance
deterioration of the model. This is a challenging problem, but it is important to be
solved, especially for real-world applications using sensitive user data, which must
adhere to privacy protection laws.

To address these issues, Nakata et al. proposed a system that combines an image
encoder from a convolutional neural network (CNN) with the k-nearest neighbor
(kNN) approach (Nakata et al., 2022). A visualization of the proposed system is
provided in �gure 8. The image encoder, which extracts the features from the given
pictures, has already been trained for image classi�cation on publicly available data
such as ImageNet. Various pretrained CNNs are available. Typically, they can
be downloaded and used free of cost from commonly used deep learning Python
libraries, such as torchvision from PyTorch (Paszke et al., 2019) and TensorFlow
(Abadi et al., 2015). Hence, the cost-intensive training phase of a new CNN is not
required.

The image encoder can learn to extract features such as the shape, texture, and
color of depicted objects that are relevant to the speci�c task, such as classi�cation.
The features extracted by the image encoder are then stored as multi-dimensional
vectors in a high-capacity storage system and used by the kNN classi�er to make
predictions. The kNN classi�er predicts the class of a data point based on the
similarity to its surrounding labeled data points. Using kNN in conjunction with
a high-capacity storage system allows for the fast and simple addition and deletion
of features extracted from new images without having to retrain a CNN model.
Especially highlighting the possibilities of deletion of images and their corresponding
extracted features in accordance with privacy measures such as the European GDPR.
(European Parliament and Council of the European Union, 2016) The GDPR states
that at any point in time, individuals are able to request the removal of their personal
data from company databases, including trained machine learning and deep learning
models.

The advantage of Nakata et al.'s approach is that it combines the power of deep
learning with the 
exibility of kNN. Nakata et al. claim that the proposed approach
has the following potential bene�ts:

1. Mitigating catastrophic forgetting: Learning new information is possible with-
out forgetting the old information.

2. Accordance to privacy laws: Data can be deleted from the system without
causing severe performance deterioration of the model.

3. Explainability: The model's decision can be evaluated by visually comparing
the k nearest neighbors with the data sample in question.
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4. Cost-E�ective : The described approach is inexpensive because no training of
a new CNN is needed.

The proposed approach by Nakata et al. is still under development but could po-
tentially contribute to the �eld of continual learning signi�cantly.

1.3 Contribution

Nakata et al. did not publish their source code, which has limited the ability of
other researchers to reproduce their results and build upon their work. This bach-
elor's thesis aims to address this gap by developing a prototype system based on
Nakata et al.'s approach. The prototype system will be used to verify Nakata et
al.'s results and explore the potential bene�ts of their approach. To understand the
proposed system's limits and strengths, additional experiments, such as evaluating
the hyperparameters of the prototype system, assessing the impact of catastrophic
forgetting, and investigating the feasibility of privacy-preserving deletion of support
set feature embeddings, will be performed. The model's decision process will be
visualized using di�erent dimensionality reduction methods. Additionally, the sys-
tem's usefulness for medical image analysis is explored by practical research with
medical datasets.

2 Theoretical Foundations

2.1 Machine Learning Introduction

Machine learning (ML) is a sub�eld of Arti�cial Intelligence (AI) and is closely
related to statistics. The following section shall provide an overview of ML by
starting with the statistical foundations, continuing with a concise de�nition of the
term ML, and �nishing with a detailed look into the kNN algorithm.

From Statistics to Machine Learning Machine learning and statistics are
closely related �elds that in
uence each other. Statistics provides the theoretical
foundation for machine learning, and multiple ML algorithms have been introduced
as applied statistics methods. (James et al., 2013) However, there are some key dif-
ferences between the two. Machine learning is a sub�eld of arti�cial intelligence (AI)
that mainly describes algorithms that enable computers to learn relations in data
without being explicitly programmed (Mitchell, 1997). It does this by using statis-
tical methods to analyze data and identify patterns (Mitchell, 1997). On the other
hand, statistics is the science of collecting, analyzing, interpreting, and presenting
data. It provides tools and techniques for understanding data, making inferences,
and making predictions. (James et al., 2013) For example, the kNN algorithm is a
machine learning algorithm that uses statistics to �nd the k most closely adjacent
data points to a new data point in a multidimensional space. Both �elds use data to
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identify relations of samples in a dataset to generalize and allow inference. (James
et al., 2013) However, the approach to identifying relations is di�erent. Machine
learning algorithms learn from data by identifying patterns, while statistical meth-
ods learn from data by making assumptions about the underlying distribution of
the data (James et al., 2013; Mitchell, 1997).

Despite their di�erences, machine learning and statistics are complementary �elds.
Machine learning can be used to automate tasks that would be di�cult or time-
consuming to do manually, while statistics can also be used to evaluate the perfor-
mance of machine learning models. For example, statistical methods can be used
to calculate a machine learning model's accuracy (proportion of all predictions that
are correct), precision (proportion of positive predictions that are actually correct),
and recall (proportion of actual positives that are correctly predicted) (Sammut and
Webb, 2017). These metrics help determine how well the ML model is performing
and whether it is ready to be used in production.

Machine Learning Tom Mitchell, a computer scientist and AI researcher, coined
the concise de�nition of Machine learning as follows: \A computer program is said to
learn from experience E with respect to some class of tasks T and performance mea-
sure P, if its performance at tasks in T, as measured by P, improves with experience
E." (Mitchell, 1997)

This de�nition highlights the three main aspects of machine learning:

ˆ Experience E: Machine learning algorithms learn from data. The data can be
labeled, which means that each sample is identi�ed with a target value, or it
can be unlabeled.

ˆ Tasks T: Machine learning algorithms are designed to perform speci�c tasks,
such as classi�cation, regression, or clustering.

ˆ Performance measure P: The performance of a machine learning algorithm is
measured by a metric, such as accuracy, precision, or recall. The de�nition
emphasizes that machine learning algorithms shall improve their performance
over time by learning from the given data.

k-Nearest Neighbors (kNN) The k-nearest neighbors (kNN) algorithm is a ma-
chine learning algorithm that can be used for classi�cation and regression tasks. The
kNN algorithm is an instance-based learning algorithm, which means that the gen-
eralization is postponed until a new instance (new data point) is classi�ed (Mitchell,
1997). It works by �nding the k most similar data points to a new data point, called
the query point, and then using the labels of those k points to predict the label of
the query point. The similarity between two data points in vector space is typically
measured using a distance metric, such as cosine similarity (cf. Cosine Similarity
2.1). The k data points that are closest to the query point are called the k-nearest
neighbors. A majority vote on the k-nearest neighbors then predicts the label of the
query point.
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Cosine Similarity Cosine similarity is a measure of similarity between two vec-
tors in a vector space. It is calculated by dividing the dot product of the two vectors
by the product of their magnitudes.

cosine similarity = SC (X; Y ) =
X � Y

kX kkY k
=

P n
i =1 X i Yip P n

i =1 X 2
i �

P n
i =1 Y 2

i

The cosine similarity of two vectors can range from -1 to 1, with -1 indicating perfect
dissimilarity and 1 indicating perfect similarity.

The kNN classi�cation process is visualized in Figure 1.

Figure 1: Visualization of kNN classi�cation process. Adapted from Navlani (2018)

Pseudocode kNN algorithm Algorithm 1 shows a pseudocode representation
of the simple kNN training phase, which essentially stores all training examples in a
data structure (or a database). (Mitchell, 1997) Algorithm 2 shows the classi�cation
phase of kNN, thus the inference. It includes the distance calculation with cosine
distance in line 2 and the inference by majority vote in line 6.

Algorithm 1 k-Nearest Neighbors Training. By (Mitchell, 1997)

Require: Training data X, corresponding labelsy(i )

Ensure: Data structure D which contains all training examples with their labels
1: for x (i ) in X do
2: store tuple hx (i ) ; y(i ) i in data structure D . Could also be a database
3: end for

Nakata et al. state that they used a distance measure based on cosine similarity.
Their given formula is cosine distance, which is the complement of cosine similarity.
Cosine distance = 1� SC (X; Y ) (Chomboon et al., 2015). Cosine distance ranges
from 0 to 2, which makes it more convenient to use due to the embedding in positive
space.

Applying Tom Mitchell's ML de�nition to the kNN algorithm results in the following:

ˆ Experience E: The experience of the kNN algorithm is the training data. The
training data consists of a set of data points, each of which has a label.



2 THEORETICAL FOUNDATIONS 6

Algorithm 2 k-Nearest Neighbors Classi�cation. Adapted from (Mitchell, 1997)

Require: new data point xq, number of neighborsk, D set of tupelshx (i ) ; y(i ) i (cf.
k-Nearest Neighbors Training Algorithm 1)

Ensure: Classi�cation label of xq namedŷq

1: for tuple hx (i ) ; y(i ) i in data structure D do
2: calculate cosine distanced(i ) betweenxq and x (i ) . cf. Cosine Similarity 2.1
3: store tuple hd(i ) ; y(i ) i in list L
4: end for
5: Sort list L by distanced(i ) lowest to highest

6: ŷq = argmaxl2L

kP

n=1
L n :y(i ) . majority vote on k nearest neighbours

ˆ Tasks T: The tasks that kNN can perform are classi�cation and regression. In
classi�cation, the task is to predict the label of a new data point. In regression,
the task is to predict the value of a continuous variable for a new data point.

ˆ Performance measure P: Accuracy is the performance measure for kNN. It is
the percentage of data points that are correctly classi�ed.

ˆ Improves with experience E: The kNN algorithm improves its performance
with experience E by learning from the training data. Thus, this generally
allows the algorithm to make better predictions for new data points.

The kNN algorithm is a simple and intuitive algorithm, but it can be very e�ective
in practice. It is often used for tasks where the data is not linearly separable, such
as text classi�cation (Soucy and Mineau, 2001) and natural language processing
(Mikolov et al., 2013). The kNN algorithm is also a robust algorithm that is not
sensitive to outliers. This makes it a good choice for tasks where the data may
be noisy or contaminated with outliers. According to Tom Mitchell, kNN is a so-
called \lazy learning" ML algorithm. A lazy learning algorithm is a type of machine
learning algorithm that does not build a predictive model during training but instead
stores the training data and makes predictions at inference time by comparing the
new data to the stored data (Mitchell, 1997). The advantages of lazy learning
algorithms include their simplicity and their ability to handle noisy data. Upfront
training of an ML model is not required. Disadvantages of lazy learning algorithms
include their computational complexity upon classi�cation of new data and their
sensitivity to the choice of the hyperparameter k. (Mitchell, 1997)

Hyperparamter k The hyperparameter k needs to be chosen carefully, as it af-
fects the performance of the kNN algorithm. A small value of k will make the
algorithm more sensitive to noise, while a large value of k will make the algorithm
more conservative. The optimal value of k will depend on the speci�c dataset and
the desired trade-o� between accuracy and robustness. (Mitchell, 1997) Chossing a
higher value for k is visualized in �gure 2. For this bachelor thesis, the value of k
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= 10 has been provided by Nakata et al.. However, the choice of k = 10 has been
evaluated through grid search in experiment 2 (cf. 4.5.1).

Figure 2: Visualization of kNN classi�cation process with k=7 (cf. Figure 1).
Adapted from Navlani (2018)

Distance-Weighted kNN Distance-weighted k-nearest neighbors is a modi�ca-
tion of the kNN algorithm that assigns weights to the k-nearest neighbors of a new
data point according to their distance. This means that closer neighbors have more
in
uence on the prediction than farther neighbors. For distance-weighted kNN, it
is only needed to adjust the inference formula (cf. algorithm 2 line 6) by adding
a weight factor wi . The resulting inference formula for distance-weighted kNN is:

ŷq = argmaxl2L

kP

n=1
wi L n :y(i ) with wi = 1

(d( i ) )2 . (Mitchell, 1997)

By using distance-weighted kNN it is theoretically possible to omit the bound of
k and calculate the classi�cation based on all available data points. Using this
approach distance-weighted kNN would be a global instead of a local ML method.
According to Mitchell there is no advantage in using global distance-weighted kNN;
additionally, the classi�er will run more slowly if all available data points are used.
(Mitchell, 1997) The accuracy of the local distance-weighted kNN approach is going
to be compared with the traditional kNN approach in experiment 3 (cf. 4.5.2).

2.2 Deep Learning Introduction

Deep learning is a sub�eld of machine learning that uses arti�cial neural networks to
learn from data (Goodfellow et al., 2016). The following section will provide a broad
overview of deep learning, starting with historical inventions, continuing with the
basic principles, and �nishing with a description of the two deep learning networks,
ResNet and the Vision Transformer architecture, that were used for the prototype
in this bachelor's thesis.

From Machine Learning to Deep Learning The history of deep learning dates
back to the early days of arti�cial intelligence research. In the 1950s, psychologist
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