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Chair of Explainable Machine Learning
Faculty of Information Systems and Applied Computer Sciences
Otto-Friedrich-University Bamberg



Abstract

Object detection is widely used in computer vision and has important applications
in computer-aided diagnosis for colonoscopy, where missed lesions are clinically rel-
evant and strongly linked to cancer risk. Recent work has addressed this problem
by applying real-time object detection models to curated image datasets or short
video segments. Unfortunately, these evaluation settings simplify the task and pro-
vide limited insight into detector behavior on full-length clinical procedures, where
negative frames dominate and visual conditions vary substantially. Moreover, re-
ported results are often difficult to compare due to missing information on training
strategies, dataset splits, operating thresholds, or the use of non-public training
data.

In contrast, this thesis assesses the applicability of selected object detection algo-
rithms on video recordings of clinical colonoscopy. Using the REAL-Colon dataset,
four representative architectures, Faster R-CNN, YOLOv8, YOLOv11, and RT-
DETR, are evaluated under explicitly defined conditions. This provides a basis for
studying detector behavior under realistic procedural constraints and shows perfor-
mance characteristics that are masked in simplified benchmarks. The analysis re-
veals that, although competitive performance is often reported on curated datasets,
detector effectiveness decreases markedly on complete colonoscopy videos. A di-
rect architectural comparison identifies a clear trade-off: Transformer-based models
(RT-DETR) demonstrate superior temporal consistency and sensitivity, whereas
CNN-based architectures (YOLOv11) offer higher throughput and specificity. How-
ever, all evaluated architectures have limitations in stable early detection, struggling
to identify lesions during the initial seconds of appearance. Regarding data com-
position, the experiments demonstrate that models trained on full-procedure video
learn robust features that transfer effectively to external datasets, whereas models
trained on curated clips fail to generalize to the variability of full procedures. The
results provide a realistic and reproducible assessment of the current capabilities and
limitations of real-time polyp detection systems in clinical colonoscopy and offer a
clear basis for future work targeting clinically applicable detection methods.
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1 INTRODUCTION 1

1 Introduction

Colonoscopy is the most effective tool for the early detection and prevention of
colorectal cancer (CRC), which remains one of the leading causes of cancer-related
mortality worldwide (Morgan et al., 2023). The procedure relies on direct visual
inspection of the colonic mucosa and allows immediate removal of precancerous
lesions during the examination (Bretthauer et al., 2022; Münzer et al., 2018). The
diagnostic outcome, however, depends heavily on human perception during a visually
demanding, real-time procedure. Even under optimal conditions, lesions may be
missed due to subtle appearance, short visibility intervals, or momentary distraction
(Wang et al., 2019). These limitations have motivated computer-aided detection
systems that aim to support endoscopists by automatically highlighting suspicious
regions or frames during the examination.

In recent years, deep learning–based object detectors have been increasingly applied
to automated polyp detection, achieving high accuracy while operating at frame
rates compatible with real-time colonoscopy (Misawa et al., 2021). Many of these
systems are evaluated on curated datasets with still images or short video clips,
where lesions are frequent and visual conditions are comparatively controlled. Full-
length colonoscopy procedures differ from these settings. The majority of frames
contain no lesions, and detector outputs occur in long sequences that have strong
variation in appearance and motion. Under these conditions, detector behavior is de-
termined not only by localization accuracy, but also by false alerts on negative frames
and the temporal consistency of detections when lesions are visible (Biffi et al., 2024).
Systematic evaluations that capture these aspects on complete colonoscopy videos
remain limited, and comparisons across studies are often complicated by insufficient
reporting of dataset composition, training protocols, and operating thresholds. As
a result, it remains unclear how performance gains reported on curated benchmarks
work in realistic clinical use.

This thesis addresses this gap by evaluating the applicability of teal-time object
detection algorithms on video recordings of clinical colonoscopy procedures. The
primary focus lies on the REAL-Colon dataset, which contains full-length examina-
tions annotated at both frame and lesion level (Biffi et al., 2024). Additionally, the
image- and clip-based datasets PICCOLO (Sánchez-Peralta et al., 2020) and SUN
(Misawa et al., 2021) are used as reference points to contrast detector behavior across
levels of dataset complexity. To capture the model performance, the experimental
setup integrates metrics at the detection-, frame-, and lesion-level. This layered
approach assesses not only technical localization accuracy but also clinically rele-
vant factors such as temporal stability, latency to first detection, and false-positive
behavior over time. Beyond establishing a transparent and reproducible baseline
with unmodified detector configurations, this work examines the generalization be-
havior of detectors trained on continuous procedural video versus curated clips or
images. The analysis investigates potential asymmetries in domain transfer, with fo-
cus on the role of full-procedure video data for robust feature learning. Furthermore,
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it characterizes the trade-offs between modern Transformer-based and CNN-based
architectures regarding temporal consistency, latency, and resource efficiency, pro-
viding a reference on which future work can assess architectural adaptations under
procedure-level conditions.

The thesis is structured as follows: Chapter 2 introduces the medical background of
colorectal screening and lesion detection. Chapter 3 provides an overview of object
detection methods and evaluation concepts relevant to this work. Related datasets
and prior studies are discussed in Chapter 4, followed by a detailed description of the
datasets used in Chapter 5. The experimental methodology is outlined in Chapter
6, and results are presented in Chapter 7. The findings are dicsussed in Chapter 8,
followed by the limitations in Chapter 9, and conclusions in Chapter 10.
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2 Medical Background

This chapter introduces the medical foundations necessary to understand the clinical
relevance of colonoscopy and automated polyp detection. It outlines key concepts
related to colorectal lesions, screening procedures, and diagnostic performance mea-
sures and summarizes the clinical factors that motivate the use of computer-aided
detection systems as supportive tools during colonoscopic examinations.

2.1 Colorectal Lesions and Polyps

In colonoscopy, the term lesion is used broadly for any visible abnormality of the
colonic mucosa. Clinically, these are first distinguished by their biological behaviour.
Non-neoplastic lesions, most commonly hyperplastic polyps (HP), carry little to no
potential for malignant transformation (Rex et al., 2017), whereas neoplastic lesions,
in contrast, are precursors that can progress to colorectal cancer if left untreated.
Following Rex et al. (2017), neoplastic lesions fall into two major families: con-
ventional adenomas and serrated neoplastic lesions. Conventional adenomas (AD)
are characterized by dysplasia and represent the established precursor pathway to
colorectal cancer (Bernal et al., 2017; Rex et al., 2017). The serrated spectrum
is more complex: while hyperplastic polyps are generally benign, sessile serrated
polyps (SSP) and traditional serrated adenomas (TSA) are considered precancerous
lesions (Rex et al., 2017). Unlike adenomas, SSPs may lack cytologic dysplasia yet
still carry significant malignant potential (Rex et al., 2017).

Figure 1: Schematic illustration of the Type 0 superficial lesions of the colon.

Participants in the Paris Workshop (2003) provide a complementary morphological
description for Type-0 lesions. They define superficial neoplastic lesions as those
confined to the mucosa or submucosa, a stage associated with a low risk of lymphatic
spread. These are grouped into polypoid (Type 0–I), non-polypoid (Type 0–II) or
non-polypoid and excavated (Type 0–III) morphologies. Polypoid lesions protrude
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above the mucosa and include pedunculated (0-Ip) and sessile (0-Is) forms. Non-
polypoid lesions show little or no protrusion and may appear slightly elevated (0-IIa),
completely flat (0-IIb), depressed (0-IIc) or excavated (0-III), with depressed lesions
carrying a particularly high malignant potential. Figure 1 illustrates these variants.
While mixed subtypes do occur, this overview focuses on the primary classifications
only.

For the purpose of this thesis, the terms lesion and polyp are used interchangeably
to denote a Region of Interest (RoI). Conceptually, every polyp is a lesion, but not
every lesion forms a protruding polypoid structure. The primary objective is the
detection of all mucosal anomalies, from protruding or flat to neoplastic or non-
neoplastic, to ensure no potential precursor is missed by the endoscopist.

2.2 Fundamentals of Colorectal Screening

Morgan et al. (2023) identify colorectal cancer (CRC) as a major global health
concern, ranking as the third most common cancer and the second leading cause of
cancer-related deaths in 2020. Most cases follow the adenoma–carcinoma sequence,
in which benign polyps slowly develop into malignancy over many years, providing
a critical window for early identification and elimination Rex et al. (2017).

Fortunately, there exist prevention techniques, such as screening (Morgan et al.,
2023). These approaches can be grouped by stool-based tests, such as the guaiac-
based fecal occult blood tests (gFOBTs) or the fecal immunochemical test (FIT) and
direct visualization tests (Ladabaum et al., 2020). Stool tests are non-invasive and
scalable, yet colonoscopy remains the gold standard as it allows real-time inspection
of the mucosa and immediate removal of neoplastic tissue (Bretthauer et al., 2022;
Münzer et al., 2018). During the procedure, a flexible endoscope is guided through
the colon, enabling the physician to detect and resect lesions in real-time, contribut-
ing to the reduction of CRC incidence and mortality (Münzer et al., 2018). The
effectiveness of colonoscopy has already been verified about four decades ago with a
trial by (Winawer et al., 1993). For their study they invited 1418 patients with “at
least one histologically documented adenoma” (Winawer et al., 1993), removed all
detected adenomas, and followed them for three to six years. A comparison with a
control group in which adenomas were not resected would not have been ethically
permissible, so the authors compared the observed cancer incidence with several
reference populations instead (Winawer et al., 1993). During follow-up inspections,
only five CRCs occurred, corresponding to a roughly 70–90% lower incidence than
expected from these reference groups, demonstrating the preventive effect of com-
plete resection. The more recently large-scale randomized NordICC study (Bret-
thauer et al., 2022) included approximately 84,000 participants who were divided
into two groups. One group was invited to undergo a single preventive colonoscopy.
After 10 years, it was observed that participants in the selected group who actually
did the procedure had a 31% reduction in the incidence of CRC and a roughly 50%
reduction in CRC-related mortality (Bretthauer et al., 2022).
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Despite these benefits, colonoscopy is not perfect. Its result depends on human per-
ception, and several factors can lead to missed lesions. Wang et al. (2019) describe
hypotheses for this cause such as variation in operator skill and cognitive effects
like inattentional or change blindness, where relevant findings are overlooked due
to distraction or brief disruptions in visual scanning. Technical limitations further
complicate detection. As noted by Münzer et al. (2018), reflections from wet mucosa,
uneven illumination, specular highlights, geometric distortion, and transient tissue
deformation can alter local contrast or obscure detail. Motion blur is also common
with up to a quarter of frames being diagnostically limited due to rapid camera
movement. Some common challenging examples are shown in Figure 2 These issues

Figure 2: Representative colonoscopy frames from the REAL-Colon dataset with
common visual challenges.

are reflected in example colonoscopy studies, where polyp miss rates of up to 27%
have been reported (Mahmud et al., 2015; Zhao et al., 2019a). These missed lesions
are clinically significant, making them a valuable metric for colonoscopy. There is a
strong correlation between the Adenoma Detection Rate (ADR), so the proportion
of screening colonoscopies where at least one adenoma is identified, and the risk of
interval cancer (cancer diagnosed between scheduled screenings). “With each 1.0%
increase in adenoma detection rate (ADR), there is an associated 3.0% decrease in
the risk of interval CRC”(Wang et al., 2019; Corley et al., 2014).

2.3 History of Computer Aided Polyp Detection

The above mentioned limitations have motivated the development of systems that
should act as a real-time “second observer” (Wang et al., 2019), helping to classify
potential cancerous polyps and proposing potential RoIs through bounding boxes
or segmentation masks.

Early approaches rely on integrating hand-crafted features designed to match simple
structure, color or texture of a potential polyp, and classical machine learning clas-
sifiers. Kang and Doraiswami (2003) boost image quality prior to classification. The
first step is contrast enhancement by applying edge detection on R,G and B channels
of the image separately resulting in a thick white outline shape for any potential
polyp. The outputs are then classified to either be a polyp or not by comparing
the features to a set of expected characteristics, such as area, original image color
and elliptical shape Kang and Doraiswami (2003). Hwang et al. (2007) build on the
insight of polyps having an elliptical shape with high or low edge information. The
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authors first group promising edges and segment the image into multiple regions.
Those regions are then formed to an ellipse using the edge infomration. In the last
step only ellipses that resemble a polyp are kept. The criteria spans curve direction,
edge distance and intensity value Hwang et al. (2007). Ameling et al. (2009) compare
multiple texture-based feature extractors. Namely grey-level co-occurrence matrices
(GLCMs), which “describe[s] how often different combinations of pixel values occur
in an image” Ameling et al. (2009) and local binary patterns (LBP), which threshold
each 3×3 neighborhood against the center pixel and creates a single value for this
region. As a classification technique the authors use the Support Vector Machines
(SVM). While these approaches demonstrate proof-of-concept feasibility, they are
not yet suitable for real-time polyp detection due to high false-positive rates or low
real-time performance Nie et al. (2024).

More recent work on polyp detection focuses on adapting state-of-the-art (SOTA)
object detectors like YOLO or transformer-based models, making them suitable for
colonoscopy data. These models integrate candidate generation, feature extraction,
and classification into a single end-to-end system, overcoming many limitations of
handcrafted features or the traditional two-stage CAD pipeline.
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3 Object Detection Background

Within the following sections, the core principles on which modern object detection
systems are built are introduced. Representative architectures and detection funda-
mentals are described and recent methodological developments relevant to real-time
applications are summarized. Established evaluation strategies are then outlined to
provide a common basis for assessing detection performance across different models
and datasets.

3.1 Foundations of Object Detection

The fundamental idea of detection is identifying what is present in an image and de-
termining where it appears. Given an input image I, the detector predicts detections
D = {(bi, ci, pi)}. Here, bi represents the bounding box (bbox) coordinates, ci the
class label and pi the confidence score Liu et al. (2020). Unlike classification, where
a single label is assigned to an image, detection must process a variable number of
instances and resolve spatial ambiguities. The main output of a detector are bound-
ing boxes. These are axis-aligned rectangles that describe the position and size of
an object in the image. They can either be represented by their corner coordinates
(xmin, ymin, xmax, ymax), or by the box center and its spatial dimensions (x, y, w, h),
where (x, y) is the center position and w, h the width and height (Redmon et al.,
2015; Liu et al., 2016).

From Hand-Crafted to Learned Features Before deep learning, object detec-
tors used hand-crafted features processed by standard machine learning classifiers.
Haar-like features, for example, calculate the difference in summed pixel intensities
between adjacent rectangles and are first paired with AdaBoost for real-time face
detection (Viola and Jones, 2001). Histogram of Oriented Gradients (HOG), on the
other hand, first splits images into cells, and then uses the distribution of gradient
orientations to capture local shapes. These are introduced in combination with lin-
ear Support Vector Machines (SVMs) for pedestrian detection (Dalal and Triggs,
2005). The Deformable Part Model (DPM) (Felzenszwalb et al., 2010) further im-
proves flexibility through splitting an object in several parts and determining their
spatial location relative to a root filter. The rise of convolutional neural networks
(CNNs) Lecun et al. (1998) marks an important shift, as architectures originally
developed for image classification now learn hierarchical feature representations di-
rectly from data. That idea can effectively be transferred to different visual domains
Goodfellow et al. (2016). Building on this, the Region-based CNN (R-CNN) Gir-
shick et al. (2014) adapts these deep architectures for object detection by applying
a CNN to region proposals. Replacing hand-crafted descriptors with learned convo-
lutional features led to substantially higher accuracy than Deformable Part-based
Models on the PASCAL VOC benchmark (Everingham et al., 2010; Girshick et al.,
2014).
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3.2 Deep Learning based Object Detection

With the transition to learned features, the field of object detection has advanced to
distinct architectural families. As outlined by Sun et al. (2024) modern deep detec-
tors are broadly categorized into CNN-based models and Transformer-based models.
The CNN-based approaches can further be divided into Region Proposal frameworks
(Two-Stage) and Regression/Classification-based frameworks (One-Stage).

Figure 3: Categorization of selected Object Detection architectures used in this
Thesis.

3.2.1 Two-Stage Detectors

R-CNN The R-CNN architecture, seen in Figure 4, operates by extracting about
2,000 class-independent region proposals of each image using selective search Ui-
jlings et al. (2013). This search algorithm first segments the image into many small
regions. It then iteratively merges adjacent regions based on similarity metrics such
as color, texture, fill and size. The bottom-up approach captures potential objects at
various scales effectively while at the same time reduces the search space compared
to the previous exhaustive sliding-window method Uijlings et al. (2013). These pro-
posals are then warped to a fixed resolution (227 × 227 pixels) to be compatible
with the CNN input requirements, regardless of their original aspect ratio Girshick
et al. (2014). The CNN then extracts a feature vector for each region and multiple
pre-trained, class-specific linear SVMs classify the content of each of the regions.
In this stage, (greedy) Non-Maximum Suppression (NMS) Neubeck and Van Gool
(2006) is applied to filter out redundant, overlapping regions with lower confidence.
Finally, a linear regression model refines the localization of the surviving propos-
als. By mapping learned features to numerical offsets, the model adjusts the coarse
initial guess to match the ground-truth coordinates. Optimization is achieved by
minimizing the difference between these predicted offsets and the targets. In the
case of R-CNN, the model uses Ridge Regression, which adds a regularization term
to the standard L2 loss (Squared Error) to prevent overfitting by penalizing large
errors heavily Girshick et al. (2014).
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Figure 4: The R-CNN architecture by Girshick et al. (2014).

This approach shows promising results yet some limitations remain. One of the most
concerning features is the fixed input size of 227× 227 pixels. Warping proposals to
such size often distorts the shape leading to quality loss and reduced accuracy Sun
et al. (2024).

To mitigate this, He et al. (2014) proposed the SPP-Net, which uses the concept of
Spatial Pyramid Matching (SPM) Lazebnik et al. (2006) into CNN architectures.
SPM works by “separat[ing] the images into several scales from finer to coarser
levels, and then aggregat[ing] local features into higher-level representations” Sun
et al. (2024). Implementing this as a Spatial Pyramid Pooling (SPP) layer allows
the network to pool, so to aggregate multiple feature maps into multi-level spatial
bins (e.g., 1 × 1, 2 × 2, 4 × 4) and generate a fixed-length output vector for each
image He et al. (2014). This eliminates the need for fixed-length input sizes and
warping.

Fast R-CNN The improvements of SPP-Net still do not solve the multi-stage
nature of R-CNN and the feature extraction was not yet fully end-to-end Zhao et al.
(2019b). Fast R-CNN Girshick (2015) refines the SPP concept into a Region of
Interest Pooling layer. The model, seen in Figure 5, takes region proposals from
Selective Search as input and generates a feature map of the entire image using
convolutional layers. The pooling layer extracts a fixed-size feature vector for each
proposal directly from this shared map Zhao et al. (2019b). These vectors are then
forwarded into fully connected layers that split into two output branches. First is
a softmax layer that outputs region probabilities for K + 1 categories (the object
classes and a background class). The other branch consists of a regression layer
that outputs bounding box offset coordinates for each class Girshick (2015). This
architecture enables the entire network to be trained end-to-end using a multi-task
loss L Zhao et al. (2019b). Girshick defines the loss L as the sum of the classification
loss (Lcls) and the localization loss (Lloc):

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v) (1)

Here, the log loss Lcls(p, u) is computed for the true class u based on the predicted
discrete probability distribution p Girshick (2015). The term [u ≥ 1] is an indicator
function that ignores the regression loss for the background (u = 0) Girshick (2015).
The localization loss Lloc formulates a bounding-box regression as a smooth L1 loss
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over the four box parameters. Given a regression target v and a predicted tuple tu,
the localization loss is computed over the four coordinates i ∈ {x, y, w, h}. Girshick
(2015) defines this as:

Lloc(t
u, v) =

∑
i∈{x,y,w,h}

smoothL1(t
u
i − vi) (2)

where the smooth term is defined based on the error x:

smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3)

While R-CNN relies on squared error, this approach uses the L1 loss (Absolute Er-
ror), which offers better robustness by computing the sum of absolute differences
Girshick (2015). The quadratic term ensures differentiable and stable convergence
for small errors, while the linear term limits the gradient magnitude for large er-
rors. This prevents the exploding gradient problem caused by outliers often seen
when using purely squared error (L2) Girshick (2015). This optimization results in
213× increased detection speed in contrast to R-CNN while also resulting in better
accuracy Sun et al. (2024).

Figure 5: The Fast R-CNN architecture by Girshick (2015).

Faster R-CNN Previous models still rely on external algorithms like Selective
Search for generating region proposals. Since these algorithms run as separate mod-
ules outside the convolutional network, the process is computationally intensive.
They effectively become the new bottleneck for fast inference Ren et al. (2016);
Zhao et al. (2019b). Ren et al. (2016) introduces Faster R-CNN to solve this prob-
lem by integrating proposal generation directly into the network architecture. It
introduces the Region Proposal Network (RPN), a fully convolutional network that
shares full-image convolutional features with the detection network, “which has the
ability to predict object bounds and scores at each position simultaneously” Zhao
et al. (2019b). As shown in Figure 6, the RPN uses a sliding window approach to
scan over the feature map.

A key concept introduced by the RPN are anchors. Instead of using an image pyra-
mid to handle scale, the RPN introduces reference boxes (anchors) at each sliding
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window position on the shared feature map. These anchors have fixed, pre-defined
scales (e.g. 128×128, 256×256, 512×512 pixels) and aspect ratios (e.g. 1:1, 1:2 or
2:1), which allows objects of various shapes to be effectively taken into account Ren
et al. (2016). For every anchor, the RPN predicts an objectness score (probability
of an object vs. background) and a set of regression offsets that refine the anchor
relative to its coordinates Ren et al. (2016). A single image produces thousands of
anchors, most of which correspond to the background. Faster R-CNN does not com-
pute the loss over all anchors. Doing so would cause the gradients to be dominated
by negative samples and make optimization unstable Ren et al. (2016). Instead,
the RPN draws a fixed-size mini-batch of anchors (typically 256) with a controlled
foreground–background ratio, ensuring that informative positive anchors contribute
meaningfully to the update Ren et al. (2016).

For each image, the RPN optimizes a multi-task loss function L that combines both
classification and bounding box regression. Ren et al. (2016) define this as:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (4)

The i refers to an index of a single anchor in the mini-batch. The term pi denotes the
predicted objectness probability, while p∗i is the ground-truth label (1 for a positive
anchor, 0 for background) Ren et al. (2016). The vectors ti and t∗i hold the four
parameterized offsets used to refine each anchor towards the assigned ground-truth
box. The classification loss Lcls is the two-class log loss, and the regression loss Lreg

is the Smooth L1 function adopted from Fast R-CNN Ren et al. (2016). The factor
p∗i ensures that box regression is applied only to positive anchors. Both terms are
normalized by Ncls and Nreg, respectively, and weighted by the parameter λ to keep
the objectives on comparable scales Ren et al. (2016).

(a) RPN (b) Architecture

Figure 6: Region Proposal Network (a) within the Faster R-CNN architecture (b).
Source: Ren et al. (2016).

The proposals produced by the RPN are filtered using Non-Maximum Suppression
to remove strong overlaps. Only a small set of top ranked regions is forwarded to the
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Fast R-CNN detection head. The entire system can be trained end-to-end using a
multi-task loss similar to Fast R-CNN, combining classification and regression terms
for both the RPN and the final detector. By sharing the convolutional backbone
between the proposal generation and the detection, the cost of computing proposals
becomes “nearly cost-free” (Ren et al., 2016).

Yet, this is not enough to effectively handle objects with multiscale features or small
objects Sun et al. (2024). To overcome this, the Feature Pyramid Network (FPN)
was introduced Lin et al. (2017). It augments the standard bottom-up feature hier-
archy, where deep layers have high semantic information but low spatial resolution,
with a top-down pathway Sun et al. (2024). This pathway propagates the rich se-
mantic context from the deeper layers to the shallow, high-resolution layers through
lateral connections. This generates a feature pyramid where every level is enhanced
with strong semantics and fine localization details. The FPN can be trained end-
to-end while not relying on a specific backbone and can be used for multiple other
computer vision tasks Zhao et al. (2019b).

3.2.2 One-Stage Detectors

Two-stage methods, despite their gains in accuracy, are always bound to a multi-
component pipeline. They rely on region proposal generation, feature extraction,
classification, and bounding box regression Zhao et al. (2019b). Even the move
toward end-to-end training often required detailed, alternative training steps to
share convolutional parameters between the RPN and the main detection network.
These limitations led to the development of one-step frameworks. These methods do
not have a region proposal stage, but instead treat the entire detection process as a
single global regression or classification task Zhao et al. (2019b) enabling real-time
performance. Mapping is done directly from the input image to the final output of
class probabilities and bounding box coordinates, reducing the computational cost.

You Only Look Once — YOLO(v1) This architecture was first introduced by
Redmon et al. (2015) and quickly gained popularity as an efficient single-stage de-
tector. The original version redefined object detection as a single, unified regression
task performed directly on full images.

An overview of the model is given in Figure 7. It operates by using the full image
directly. This image is first divided into an S ×S grid, where each grid cell is made
responsible for predicting the object whose center falls within its bounds (Redmon
et al., 2015). Every part of the grid then predicts B bounding boxes, defined by the
center coordinates (x, y) and dimensions (w, h), along with a corresponding confi-
dence score. This score is a product of the object probability and the prediction
quality, calculated as Pr(Object) × IOU truth

pred (Redmon et al., 2015). Additionally,
each cell predicts conditional class probabilities (Pr(Classi|Object)). During in-
ference, the final, class-specific confidence for a box is determined by multiplying
the conditional class probability by the confidence score of the box, resulting in:
Pr(Classi) × IOU truth

pred (Redmon et al., 2015).
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Figure 7: The YOLO object detection System by Redmon et al. (2015).

The original YOLO network architecture (Figure 8) is based on a modified version of
GoogLeNet and consists of 24 convolutional layers followed by two fully connected
(FC) layers Redmon et al. (2015). The network replaces Inception modules with
1 × 1 convolutions to reduce channel dimensions and 3 × 3 convolutions to extract
spatial features. After the final convolutional block, the feature map is flattened and
passed through the fully connected layers, which output the final S×S× (B ·5+C)
predictions tensor, where C is the class and each of the B bounding boxes contributes
five numerical values (x,y,w,h,confidence) Redmon et al. (2015).

Figure 8: The YOLO Architecture (Redmon et al., 2015).
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The model is optimized using a multi-part loss function based on the sum-squared
error that minimizes coordinate, dimension, confidence, and classification errors.
Redmon et al. (2015) define this as:

λcoord

S2∑
i=0

B∑
j=0

Iobjij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+ λcoord

S2∑
i=0

B∑
j=0

Iobjij

[
(
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2

]

+
S2∑
i=0

B∑
j=0

Iobjij (Ci − Ĉi)
2

+ λnoobj

S2∑
i=0

B∑
j=0

Inoobjij (Ci − Ĉi)
2

+
S2∑
i=0

Iobji

∑
c∈classes

(pi(c) − p̂i(c))
2

(5)

This function selectively penalizes errors using the indicator function Iobjij . Using
the normalized bounding boxes (x,y,w,h) it ensures that only the bounding box
predictor with the highest IOU (the ’responsible’ one) is penalized for localization
and object confidence errors (Redmon et al., 2015). C and Ĉi represent the predicted
and ground-truth confidence. To counter the imbalance from numerous background
regions, the hyperparameter λnoobj is applied to decrease the loss from boxes without
objects (set to 0.5). In contrast, λcoord amplifies the localization error which tends
towards zero if many grid cells do not contain anything (Redmon et al., 2015). The
final term penalizes classification error (pi(c)) only for the grid cells that contain an
object (Iobji is true) (Redmon et al., 2015).

While this model is quite efficient, there are several limitations that remain. The
main drawback is the difficulty in locating small or adjacent objects, as each grid
cell can only represent one class, resulting in more localization errors than other
detectors Redmon et al. (2015). Furthermore, because the model learns to predict
bounding boxes directly from data, it produces relatively coarse features which is
caused by the multiple downsampling layers in its architecture. This reliance on
coarse features means YOLO “struggles to generalize to objects in new or unusual
aspect ratios or configurations” Redmon et al. (2015).

Single Shot MultiBox Detector — SSD This Detector, introduced by Liu
et al. (2016), is a single-stage model designed to handle the limitations of YOLOv1
while at the same time maintaining its speed. Additionally, its accuracy remains
comparable to, or even surpasses, the slower two-stage methods like Faster R-CNN.
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The SSD architecture begins with a modified version of VGG-16 as the backbone,
truncated before its final classification layers (Liu et al., 2016). This backbone
produces the first set of feature maps. On top of it, several additional convolutional
feature layers are attached which decrease in spatial resolution, giving SSD access
to feature maps that become progressively coarser (Liu et al., 2016). Unlike the
limited, fixed grid of YOLOv1, SSD introduces a predefined set of default boxes
(similar to anchors in the RPN) that have different scales and ratios and tile every
location across these multiple feature maps (Liu et al., 2016). For each box, the
model predicts the shape offsets, determining how the box should shift and resize
to better match an object, and the class scores for all object categories (Liu et al.,
2016). These predictions come from small 3 × 3 convolutional filters applied across
the feature maps.

During training, SSD matches default boxes to ground-truth objects based on IoU
overlap Liu et al. (2016). Boxes that overlap sufficiently become positives, and all
remaining boxes act as negatives. A combined loss then optimizes both bounding-
box regression and classification. To ensure stable training despite a large number of
negative (background) predictions, SSD employs two core strategies: Hard-negative
mining that keeps the ratio between positive and negative examples balanced, and
extensive data augmentation that helps the model handle objects at different scales
(Liu et al., 2016). At inference time, the network generates all predictions in one
shot, and a class-wise non-maximum suppression step produces the final set of de-
tections, filtering out redundant predictions.

3.2.3 Transformer-based Detectors

The dominance of CNN-based models in object detection was reexamined after
the success of the Transformer architecture in natural language processing (NLP)
Vaswani et al. (2017); Sun et al. (2024). Despite efficiency gains from single-stage
detectors, the entire field still relies on complex pre-knowledge elements such as
predefined anchor boxes and a labor-intensive post-processing step, non-maximum
suppression (NMS), to filter redundant bounding boxes.

DEtection TRansformer — DETR Carion et al. introduces an end-to-end
object detector that removes components like anchors or postprocessing steps like
NMS. As stated by the authors, two elements are central to this formulation: a
loss for one-to-one matching between predictions and ground-truth boxes, and an
architecture capable of producing a set of predictions that can model their relations.
For the matching, DETR computes an optimal bipartite assignment between the
N predictions ŷ and the ground-truth set y, where y is padded to size N with the
no-object symbol ∅ (Carion et al., 2020). The optimal assignment σ̂ is obtained by
minimizing a pair-wise matching cost over all permutations SN :

σ̂ = arg min
σ∈SN

N∑
i=1

Lmatch(yi, ŷσ(i)) (6)
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This optimal assignment is computed efficiently with the Hungarian algorithm (Car-
ion et al., 2020). The matching cost accounts for both class prediction and bounding-
box similarity (Carion et al., 2020). Given σ̂, DETR optimizes the Hungarian loss

LHungarian(y, ŷ) =
N∑
i=1

[
− log P̂σ̂(i)(ci) + I{ci ̸=∅}Lbox(bi, b̂σ̂(i))

]
, (7)

where the box loss Lbox combines L1 regression and generalized IoU, and box re-
gression is only applied for matched object slots (ci ̸= ∅) (Carion et al., 2020).
Unmatched slots are trained toward the no-object class through the classification
term (with a reduced weight for the no-object class imbalance in practice) (Carion
et al., 2020).

The architecture, seen in Figure 9, consists of three components. First, a CNN
backbone extracts a spatial feature map. Before the transformer encoder processes
the features, DETR reduces the channel dimension with a 1×1 convolution, flattens
the spatial map into a sequence, and adds fixed position encodings to this input
(Carion et al., 2020). The encoder then applies multi-head self-attention to aggregate
information across all spatial positions. Both encoder and decoder consist of six
identical layers that are cascaded Yao et al. (2021).

Figure 9: DETR Architecture as given in Carion et al. (2020).

The transformer decoder receives a fixed set of learned object queries, each repre-
senting one potential detection (Carion et al., 2020). These queries are distinct by
design and are combined with positional information before entering every decoder
layer. Through repeated self-attention and encoder–decoder attention, the decoder
transforms the queries into N output embeddings, making the model reason about
all objects using pairwise relations and the full image context (Carion et al., 2020).
Each decoder output is passed through a small three-layer feed-forward network that
predicts a class label and normalized box coordinates for all objects independently
at the same time (Carion et al., 2020).

While improving accuracy compared to Faster-RCNN, the initial DETR model has
its own set of limitations. The authors report a slow convergence, requiring about
300–500 epochs for the model to train efficiently on the COCO dataset and point out
its limitation for detecting small objects. Several adaptions have been implemented
improving on the previous drawbacks. Deformable DETR for example, transforms
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its multi-scale attention modules to “only attend to a small set of key sampling
points around a reference” (Zhu et al., 2020). The result is a more efficient training
requiring ten times less epochs for convergence while also improving accuracy on
smaller objects (Zhu et al., 2020). Another variant is Efficient DETR, which reduces
the number of encoder layers to three and the decoder layers to just one, while
maintaining the same accuracy and reducing the epochs for convergence to just 36
(Yao et al., 2021). Real-Time DETR (RT-DETR) further improves the efficiency
Zhao et al. (2024). A more detailed explanation is given in Section 3.3.2.

3.2.4 Improved Concepts

IoU Variants Much of the recent progress in object detection is driven by refine-
ments inside existing architectures rather than entirely new designs. To evaluate
the quality of a prediction, the Intersection-over-Union (IoU) is used. It measures
the geometric overlap between a predicted box Bp and a ground-truth box Bg:

IoU(Bp, Bg) =
|Bp ∩Bg|
|Bp ∪Bg|

(8)

A prediction is considered a True Positive (TP) if the predicted class matches the
ground truth and the IoU exceeds a predefined threshold, typically 0.5 (Liu et al.,
2020). Although IoU provides an intuitive measure of spatial agreement, it is not
well suited as a direct regression loss because the gradients vanish when predicted
and ground-truth boxes do not overlap (Rezatofighi et al., 2019). Various IoU vari-
ants were introduced to solve this problem. Generalized-IoU (GIoU) improves IoU
by adding the smallest enclosing box around the two regions, providing meaningful
gradients even when they do not overlap (Rezatofighi et al., 2019). Distance-IoU
(DIoU) optimizes “the normalized distance between central points of two bound-
ing boxes” (Zheng et al., 2019), so the centers of the predicted and ground-truth
boxes, encouraging faster convergence and smaller regression errors, particularly
when boxes are far apart. Finally, Complete-IoU (CIoU) improves upon DIoU by
adding an aspect-ratio consistency term to penalize differences in box shapes, lead-
ing to more reliable regression when overlap, center distance, and geometry must be
optimized jointly (Zheng et al., 2019).

Feature Refinement In object detection architectures, feature extraction is typi-
cally done within the backbone network and an optional neck module. The backbone
is a convolutional neural network responsible for extracting hierarchical visual fea-
tures from the input image, while the neck aggregates and refines these features
across multiple scales before they are passed to the detection head. A commonly
used neck is the Feature Pyramid Network (FPN) introduced a top-down pathway
with lateral skip-connections, enriching high-resolution layers with strong semantic
context (Lin et al., 2017). Path Aggregation Network (PANet) extends this idea with
an additional bottom-up path, improving information flow toward lower levels used
for small object detection (Liu et al., 2018). More recent search-based variants such
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as Neural Architecture Search - FPN (NAS-FPN) use neural searches to repeatedly
stack and optimize cross-scale fusion blocks, often improving accuracy at significant
computational cost (Ghiasi et al., 2019). By contrast, BiFPN adopts a weighted
bidirectional structure that shares features across scales more efficiently, allowing
models to scale from lightweight real-time variants to high-accuracy configurations
Tan et al. (2020).

Figure 10: Summary of Feature Extractors by Tan et al. (2020).

3.3 Improved Detection Architectures

While the previous section detailed the foundational methods, current state-of-the-
art methods represent optimized and improved versions that achieve better results
on standard benchmarks like COCO compared to their base architectures. This sec-
tion explains some of these advanced detection architectures, specifically the latest
iterations of the You Only Look Once (YOLO) family and the efficient Real-Time
DETR (RT-DETR), which are then evaluated in this thesis for their applicability
to medical image analysis.

3.3.1 YOLOv11

Over the past decade, the YOLO family has undergone continuous development,
with successive revisions improving feature extraction, multi-scale prediction, loss
formulations, and training strategies. An overview of these architectural and method-
ological developments is provided in Appendix A.1. This thesis focuses on recent
Ultralytics implementations of YOLOv8 and YOLOv11, with focus on YOLOv11 as
the most recent iteration evaluated in this work (Jocher and Qiu, 2024).

Similar to earlier variants, YOLOv11 follows a single-stage detection architecture
consisting of a backbone for hierarchical feature extraction, a neck for multi-scale fea-
ture aggregation, and a detection head for prediction of object locations and classes.
Given an input image, the backbone first applies a sequence of convolutional layers,
each performing a two-dimensional convolution followed by batch normalization and
a SiLU activation function (Hidayatullah et al., 2025). These reduce the spatial reso-
lution while increasing the number of feature channels. Early stages extract low-level
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visual patterns such as edges and textures and transform the input into a compact
feature representation. Feature refinement at fixed spatial resolutions is performed

Figure 11: Overview of the YOLOv11 architecture.

using the C3k2 block, which extends the C2f module introduced in YOLOv8. The
C3k2 block first applies a 1× 1 convolution to project the input features into an in-
termediate representation, followed by a channel-wise split into two equal parts. One
part forms a bypass branch that keeps the original information flow, while the other
part is processed sequentially by a stack of feature extraction blocks. In the case of
smaller model variants (n and s), these blocks correspond to standard bottleneck
layers composed of two 3×3 convolutions with optional residual connections, result-
ing in behavior of the original C2f. For larger variants (m, l, and x ), the bottleneck
layers are replaced by C3k blocks, which follow a Cross Stage Partial design for more
precise spatial feature modeling (Hidayatullah et al., 2025). The bypassed features
and all intermediate outputs from the processed branch are concatenated along the
channel dimension and fused by a final 1 × 1 convolution. Deep in the backbone,
YOLOv11 adds the Spatial Pyramid Pooling - Fast (SPPF) module to aggregate
contextual information at multiple scales. SPPF applies repeated max-pooling op-
erations to the same feature map and concatenates the resulting representations,
enabling the network to combine both local and global context without altering the
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Figure 12: Conceptual comparison of the C2f block used in YOLOv8 and the C3k2
block employed in YOLOv11.

spatial resolution. A C2PSA block is followed and used for global reasoning through
self-attention with position information. Like other CSP modules, C2PSA splits the
input features into a bypass- and a processed branch. The processed branch is re-
fined using one or more Attention blocks, each combining multi-head self-attention
with a small feed-forward network and residual connections. Using the attention
mechanism improves detection of occluded or small objects (Sapkota et al., 2025).

The neck of YOLOv11 aggregates features across multiple spatial scales to support
detection of objects with varying sizes. As in YOLOv8, the neck is based on Feature
Pyramid Networks (FPN) and Path Aggregation Networks (PANet). These provide
top-down and bottom-up pathways for combining high-level semantic information
with spatial details (Terven et al., 2023). High-level, low-resolution feature maps are
upsampled using nearest-neighbor interpolation and concatenated with lower-level
backbone features of matching spatial dimensions. Then, additional convolutional
layers refine the fused representations.

The decoupled detection head translates the neck features into final predictions. Re-
cent YOLO versions use fully anchor-free heads that directly predict object centers,
the resulting box dimensions, and class probabilities (Sapkota et al., 2025; Terven
et al., 2023). Outputs are generated at several resolutions, allowing the model to
predict for small, medium, and large objects within a single forward pass.

However, still YOLOv11 has several open challenges. The review by Sapkota et al.
(2025) reports that YOLOv11 still struggles with very small or strongly rotated
objects. The authors also note a tendency toward overfitting when trained on lim-
ited or low-diversity datasets, which may affect generalization. Finally, YOLOv11
maintains the characteristic speed–accuracy trade-off of one-stage detectors: while
highly efficient, its accuracy may degrade in visually complex scenes (Sapkota et al.,
2025).
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3.3.2 RT-DETR

Although DETR offers a good foundation, Zhao et al. point out several issues that
limit its applicability for real-time applications, including slow training convergence,
high computational cost and hard-to-optimize queries. In particular, when DETR
processes long multi-scale feature sequences, the encoder becomes a computational
bottleneck (Zhao et al., 2024).

To address these limitations, Zhao et al. introduce a real-time end-to-end variant of
DETR. Its overall structure, shown in Figure 13, remains consistent with the DETR
family and includes a backbone, an encoder, a decoder and a set of object queries.
The key differences lie in the redesigned encoder and the way queries are initialized.

Figure 13: The adapted RT-DETR Architecture by Zhao et al. (2024).

The original transformer encoder is replaced by an efficient hybrid encoder designed
to process multi-scale features without the heavy computational cost of global at-
tention over long sequences (Zhao et al., 2024). RT-DETR achieves this with two
components. The Attention-Based Intra-Scale Feature Interaction (AIFI) module
performs self-attention only on the highest-level feature map (S5), rather than on
concatenated multi-scale features (Zhao et al., 2024). The authors argue that ap-
plying self-attention on high-level features with richer semantic concepts is suffi-
cient for object-level interactions, while avoiding attention on lower-level features
reduces latency and can even slightly improve accuracy. The Cross-Scale Feature
Fusion (CCFF) module then merges information across scales by fusing {S3, S4, F5}
using convolutional fusion blocks with 1 × 1 channel alignment, RepConv-based
RepBlocks for feature interaction, and element-wise addition (Zhao et al., 2024).
A second modification concerns query initialization. Building on prior DETR vari-
ants that initialize queries from encoder features ranked by classification confidence,
RT-DETR proposes an “uncertainty-minimal query selection” scheme (Zhao et al.,
2024). It considers both classification and localization confidence to rank encoder
features and selects the most certain candidates to initialize the decoder queries.
This provides higher quality initial queries for the decoder and leads to improved
accuracy (Zhao et al., 2024).
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The decoder follows DETR by predicting class labels and bounding boxes for a
fixed set of N object queries (typically N=300) for every input image. Due to
the one-to-one bipartite matching used during training, the model learns to assign
high confidence scores only to the specific queries that successfully localize a target
object. The remaining “junk” queries are actively suppressed to the background
class with confidence scores approaching zero. During testing, this allows for a clean
prediction output. By applying a specific confidence threshold, the many near-zero
background predictions are eliminated, leaving only the usable detections. This
internal negotiation between queries in the decoder’s self-attention layers ensures
that spatial redundancy is handled without the need for Non-Maximum Suppression
(NMS), maintaining an end-to-end pipeline that is both computationally efficient
and highly accurate.

3.4 Benchmarking Datasets

To assess the quality and effectiveness of object detection models, their performance
must be evaluated under standardized and reproducible conditions. In practice, this
is done by benchmarking detectors on large, publicly available datasets, such as
PASCAL VOC, ImageNet or Microsoft COCO. A key advantage of these datasets
is the existence of predefined splits along with clearly specified metrics. This shared
experimental setup allows results from different models to be compared directly,
without the need to reimplement evaluation pipelines or debug incompatible proto-
cols.

PASCAL VOC The PASCAL Visual Object Classes (VOC) benchmark was one
of the earliest widely adopted datasets for object detection and classification. It
contains images of common object categories such as animals, cars, and household
items, annotated with bounding boxes and class labels (Everingham et al., 2010).
Detection performance on PASCAL VOC is evaluated using average precision at a
fixed intersection-over-union threshold of 0.5, averaged across classes (Everingham
et al., 2010). It is not used as much anymore due to its limited size and amount of
classes.

ImageNet This dataset was originally introduced for large-scale image classifi-
cation, but was later extended to include object detection and localization tasks
(Deng et al., 2009). ImageNet detection played an important role in early large-
scale detection research and pretraining on ImageNet classification still remains a
standard practice, as it provides robust visual representations that transfer well to
downstream detection tasks.

Microsoft COCO The Microsoft Common Objects in Context (COCO) dataset
represents the most influential benchmark for modern object detection. It contains
over 200,000 images with more than one million annotated object instances across
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80 categories, many of which appear in complex scenes with clutter, and strong
scale variation (Lin et al., 2014). An official evaluation is given in the pycocotools

library, which provides a reference for computing metrics such as (mean) average
precision. This library takes the top 100 predictions per image (sorted by box
confidence) and performs matching between predicted and ground-truth bounding
boxes across multiple IoU thresholds (Lin et al., 2014). This ensures consistent and
reproducible evaluation across different models and frameworks. COCO is also often
used for pretraining object detection models.

3.5 Evaluation Metrics

Depending on how detector outputs are interpreted, object detection performance
can be evaluated under different formulations. Detection-level metrics assess local-
ization accuracy of individual bounding boxes. Frame-level alert metrics reformulate
detection as a binary classification problem by collapsing detector outputs into a sin-
gle decision per frame and event-level metrics aggregate detections across frames.
Standard benchmarks such as COCO primarily rely on detection-level metrics (e.g.,
AP/mAP). In contrast, medical video analysis additionally requires metrics that
characterize false-alarm behavior on polyp-negative frames, temporal aggregation
across frames, and real-time feasibility.

3.5.1 Detection-Level Metrics

Individual predicted bounding boxes are matched to ground-truth (GT) boxes us-
ing an Intersection over Union (IoU) criterion. A prediction is counted as a true
positive (TP) if it matches a GT object with an IoU exceeding a specified threshold
under a one-to-one matching policy, where each GT object can be matched to at
most one prediction. Predictions that do not match any GT object are counted as
false positives (FP), while GT objects without a matched prediction are counted
as false negatives (FN). True negatives are not defined at the detection level, as
the background does not create a finite, countable set of negative instances (Padilla
et al., 2020).

(Mean Average) Precision and Recall Precision measures the proportion of
predicted detections that are correct, while recall measures the proportion of GT ob-
jects that are successfully detected (Padilla et al., 2020). Both depend on the chosen
confidence threshold. As modern detectors typically produce many low-confidence
predictions, reporting performance at a single threshold is often not informative
(Everingham et al., 2010). Average Precision (AP) addresses this by computing the
area under the precision–recall curve obtained by sweeping the confidence threshold,
while fixing the matching criterion via an IoU threshold (Padilla et al., 2020). Mean
Average Precision (mAP) is then defined as the mean of AP values over all n object
classes k, and depending on the benchmark, over multiple IoU thresholds. COCO
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reports mAP50:95, which averages AP across multiple IoU thresholds from 0.50 to
0.95 in steps of 0.05 (Lin et al., 2014).

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, mAP =

1

n

n∑
k=1

APk (9)

Sensitivity Sensitivity is equivalent to recall and indicates how reliably objects
are detected. Specificity is not defined at detection level for the same reason TN is
undefined.

Sensitivity = Recall =
TP

TP + FN
(10)

F-Scores The F1 score (β = 1) weights precision and recall equally, whereas the
F2 score (β = 2) prioritizes recall. The latter is helpful in polyp detection, as missed
lesions are typically considered more critical than additional false positives.

Fβ = (1 + β2)
Precision · Recall

β2 Precision + Recall
. (11)

Free-response Receiver Operating Characteristic (FROC) The receiver op-
erating characteristic (ROC) assigns a single decision to each image and therefore
does not distinguish between one object or false alarm and multiple objects and false
alarms within the same image (He and Frey, 2009; Chakraborty, 2013). FROC ex-
tends ROC by allowing an arbitrary number of detections per image. Each prediction
is classified as a true positive if it falls within a predefined acceptance region around
a GT box (such as IoU), while predictions that do not match any ground-truth ob-
ject are counted as false positives (Chakraborty and Winter, 1990). Performance is
characterized by the trade-off between detection sensitivity and the average number
of false detections per image (He and Frey, 2009):

FPs per image (FPPI) =
number of false localizations

number of images
. (12)

Since the mean number of false positives per image is an unbounded count, the
FROC x-axis FPPI is not restricted (Chakraborty and Winter, 1990).

Alternative Free-response Receiver Operating Characteristic (AFROC)
AFROC replaces the unbounded FPPI axis with the false positive fraction (FPF),
defined as the fraction of negative images that have at least one false-positive decision
above the operating threshold (Chakraborty and Winter, 1990; He and Frey, 2009):

FPF =
negative images with ≥ 1 FP decision

negative images
∈ [0, 1] (13)

This builds a curve within the unit square and supports ROC-like scalar summaries,
such as the area under the AFROC curve, while retaining sensitivity on the ordinate
(Chakraborty and Winter, 1990; Chakraborty, 2013).
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3.5.2 Frame-Level Metrics

To characterize alert behavior in videos, detector outputs can be reduced to a binary
decision per frame. A frame is predicted positive if it contains at least one detection
exceeding a confidence threshold (while matching an IoU threshold when GT is
present), and negative otherwise (Sokolova and Lapalme, 2009). This creates a
standard confusion matrix at the frame level where TN becomes defined:

• TPframe: GT-positive frame with at least one valid detection,

• FNframe: GT-positive frame without a valid detection,

• FPframe: GT-negative frame with at least one detection,

• TNframe: GT-negative frame without detections.

Frame-level true positive rate (TPR) (sensitivity), false positive rate (FPR) and
specificity are then:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
, Specificity =

TN

TN + FP
. (14)

3.5.3 Runtime Metrics

Runtime is critical for real-time applications. The latency for processing a single
image is commonly reported as the sum of preprocessing, inference, and postpro-
cessing time. The Throughput is expressed in frames per second (FPS). Real-time
operation typically requires at least 30 FPS or less than 33ms for the inference time
(Pacal et al., 2022).

timg = tpre + tinf + tpost, FPS =
1

timg

or FPS =
1000

timg [ms]
. (15)
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4 Related Work

This chapter reviews prior research on automated polyp detection in colonoscopy,
also including on how modern object detection methods have been applied in this
field. It summarizes commonly used colonoscopy datasets and examines how existing
studies adapt detection architectures and evaluation strategies to medical video
data. Recurring design choices and evaluation practices are highlighted that shape
reported performance, providing context for the methodological decisions made in
this thesis.

4.1 Colonoscopy Datasets

Several datasets focus exclusively on still images with segmentation masks or bound-
ing box coordinates. Examples for this are ETIS-Larib, which consists of 196
selected images annotated for segmentation (Silva et al., 2014). Similarly, Kvasir-
SEG provides 1,000 polyp images at varying resolutions with masks (Jha et al.,
2019). CVC-ColonDB has 300 polyp images extracted from multiple colonoscopy
cases, all of which show polyp-positive frames only (Bernal et al., 2012). CVC-
ClinicDB extends this list by providing 612 polyp images extracted from short
video sequences, each annotated with masks (Bernal et al., 2015). PICCOLO in-
cludes a curated set of manually selected polyp images with segmentation masks
with clinical metadata (Sánchez-Peralta et al., 2020). CVC-ClinicVideoDB con-
tains positive and negative colonoscopy video clips with a total of 11,945 frames,
with segmentation masks provided for every frame (Tajbakhsh et al., 2016). The
KUMC dataset further consists of 37,899 manually selected colonoscopy video clips
in which frames with motion blur, defocus or extreme illumination changes are re-
moved (Li et al., 2021). Next, LDPolypVideo (Ma et al., 2021) and the SUN
colonoscopy database (Misawa et al., 2021) provide annotated video clips centered
around individual lesions, enabling limited temporal analysis while still restricting
evaluation to short, curated sequences rather than full-length examinations.

A common characteristic across both frame-based and clip-based datasets is a strong
imbalance toward positive samples. Many datasets either exclude non-polyp frames
entirely or include them only in limited quantities. This design choice simplifies the
problem, but it does not reflect real-world colonoscopy scenarios, where the majority
of frames do not contain polyps Biffi et al. (2024). As a consequence, evaluation
on such datasets tends to overestimate practical performance and provides limited
insight into false positive rates, temporal consistency, and procedure-level behav-
ior. To address these limitations, the REAL-Colon dataset was introduced as a
large-scale, multi-center collection of full-length colonoscopy procedures with many
frame-level bounding-box annotations Biffi et al. (2024). Therefore, REAL-Colon
is adopted as the primary dataset in this thesis, while PICCOLO and SUN are
considered as representative frame-based and clip-based benchmarks. A detailed
description of these is given in Section 5
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4.1.1 Evaluation Protocols

Reported results depend strongly on how datasets define splits, which frames are
considered for evaluation, and how positives and negatives are constructed. In
KUMC, multiple object detectors, including Faster R-CNN, SSD, YOLOv3, and
YOLOv4, are evaluated across three complementary experiments (Li et al., 2021).
First, a frame-based two-class detection task assesses localization and classification
of adenomatous and hyperplastic polyps in individual frames. Second, a frame-
based one-class detection task merges both polyp types into a single foreground
category. Third, a sequence-based two-class classification task aggregates frame-level
predictions across short video sequences using majority voting to produce a single
prediction per lesion. Performance is reported using precision, recall, and F1-score.
For the two-class frame-based task, YOLOv3 achieves the highest precision (74.9%),
but with low recall (19.7%). In the one-class setting, YOLOv3 again achieves the
highest precision (95.9%) while maintaining a recall of 78%, whereas YOLOv4 yields
slightly lower precision but higher recall (47.8%) in the two-class task. All results
are obtained at a fixed confidence threshold of 0.5, with IoU thresholds varying
between 0.45 and 0.5 depending on the detector (Li et al., 2021).

SUN authors developed a YOLOv3-based detector. For training, non-publicly avail-
able images of colonoscopies are taken, consisting mainly of positive images and
a limited number of negative images that are found to improve detection perfor-
mance (Misawa et al., 2021). To mitigate overfitting, horizontal and vertical flip-
ping, brightness adjustment, sharpness modification and L2 regularization during
training is used. Sensitivity and specificity are computed based on binary classifica-
tion of individual frames as polyp-present or polyp-absent. Lesion-level sensitivity is
defined as the proportion of polyps for which more than half of the associated frames
are correctly detected. A prediction is considered correct if the IoU exceeds 0.3, yet
a value for the confidence is not given (Misawa et al., 2021). With their model
they achieved a lesion sensitivity of 98% and per-frame sensitivity and specificity of
90.5% and 93.7%, respectively.

4.1.2 Benchmarks on Full-Length Colonoscopy Procedures

Beyond frame-based and short clip benchmarks, only few studies explicitly evaluate
CADe systems or object detection models on full-length screening colonoscopies
using clinically motivated operating points and procedure-level analyses.

The REAL-Colon paper uses a SSD detector with ImageNet-pretrained weights and
applies random cropping, scaling and horizontal flipping to the image. In the first
experiment, training data are constructed by varying the number of polyp frames
and the proportion of negative frames. Based on validation performance on the test
set, the best-performing configuration (using all positive and all negative images)
is selected for all subsequent analyses. Detection performance is reported using
mAP50:95 (0.216), as well as AP50 (0.338) and AP75 (0.245). In addition, event-
level False Positive Rate (FPR) (0.054) and True Positive Rate (TPR) (0.505) are
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reported, defined as “the percentage of polyp-negative frames in which models er-
roneously detected bounding boxes and the percentage of positive frames in which
models flagged an alert, respectively” (Biffi et al., 2024). Yet, a minimal confidence
threshold or the IoU used for the predictions is not given. Further experiments eval-
uate detection performance across polyp subgroups defined by size, histology, and
anatomical location. An additional analysis focuses on early detection by restricting
evaluation to frames within the first one and three seconds of polyp appearance.

Another example is provided by Fitting et al. and Troya et al., who introduce the
CADe system EndoMind and evaluate it on full-length colonoscopy videos using
a dedicated benchmark dataset. EndoMind is based on a YOLOv5 architecture
with additional post-processing, pretrained on still-image polyp datasets and fur-
ther trained on frames extracted from routine colonoscopies. The evaluation spans
101 screening colonoscopies with frame-level annotations indicating polyp presence.
Only screening procedures with at least one adenomatous polyp and adequate bowel
preparation are included, while frames recorded during polypectomy, narrow-band
imaging, documentation freezes, and rectal inspection are excluded (Troya et al.,
2024). Performance is assessed at the frame level: a prediction is considered correct
if a detected bounding box overlaps any ground-truth annotation (IoU> 0), reflect-
ing the objective of CADe systems to alert the endoscopist to the presence and
approximate location of a lesion (Fitting et al., 2022). Predictions are filtered using
a confidence threshold of 0.2. EndoMind is compared against several commercial
CADe systems, including GI Genius (versions 1 and 2) and two variants of Endo-
AID. While all systems detect nearly all polyps in at least one frame (98.92–100%
sensitivity), substantial differences are observed in frame-level sensitivity and de-
tection latency. EndoMind achieves a mean per-frame sensitivity of 60.22%, and a
median first-detection time of 1083 ms. Inference speed, computational efficiency,
and the impact of post-processing are not reported, and the benchmark relies on
curated frame exclusions rather than unfiltered full-procedure recordings.

Lee et al. develop a real-time CADe system based on a YOLOv2 detector and val-
idate it across multiple independent datasets comprising still images, edited video
clips, and unaltered full-length colonoscopy videos. The detector is first evaluated
on internal and public still-image datasets, followed by clip-based video evaluation
using per-frame and per-polyp sensitivity as well as false-positive rates. To stabi-
lize frame-level predictions, the authors apply temporal post-processing based on
median filtering, aggregating detections over sliding windows of consecutive frames.
Window sizes of 13 and 29 frames are analyzed to study the trade-off between sensi-
tivity and false-positive suppression. Real-world performance is then assessed on 15
unaltered full-length colonoscopy videos, again using temporally aggregated, frame-
based evaluation. With a 13-frame window, the system achieves 89.3% sensitivity
and an 8.3% false-positive rate, while a 29-frame window reduces false positives
to 6.2% at a slightly lower sensitivity of 88.3% (Lee et al., 2020). However, the
computational cost of the temporal post-processing is not given, and key detec-
tion parameters such as the underlying IoU criterion and confidence threshold for
individual frame-level detections are not explicitly reported.
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4.2 Modern Polyp Detection

Liu et al. propose a transformer-based polyp detection framework built on De-
formable DETR. The authors design a data augmentation strategy that combines
image normalization, geometric transformations (rotation, shearing, mirroring, and
scaling), color perturbations, and additive noise. This augmentation pipeline ex-
pands the effective training set and explicitly targets the red background dominance
and limited positional variability typical of endoscopic images (Liu et al., 2023).
The baseline architecture is modified by inserting convolutional layers before each
transformer encoder block to improve local feature extraction. In addition, the
standard bounding-box regression loss is replaced with an improved loss formula-
tion that includes distance and shape values for the IoU. Evaluation is performed on
Kvasir, CVC-ClinicDB, and SUN, where only positive images are selected. Perfor-
mance is reported using COCO-style object-detection metrics, including AP50 and
AP75. However, the paper does not specify the exact train–test split for this dataset.
Across all datasets, the proposed augmented Deformable DETR variant consistently
outperforms CNN-based models (Faster R-CNN, RetinaNet or YOLOv5) and the
unmodified Deformable DETR, with the largest gains observed when extensive data
augmentation is applied (Liu et al., 2023).

CHR-YOLO is single-stage detector is based on YOLOv8, and designed to improve
contextual awareness and multi-scale feature fusion while reducing model complex-
ity (Wan et al., 2024b). The method introduces a contextual receptive field en-
hancement module (CRFEM), a refined spatial pyramid pooling module (RSPPF),
and a high-dimensional feature compensation structure to offset the removal of one
detection head. Evaluation is done on Kvasir-SEG and a gastric polyp dataset with
700 images (Zhang et al., 2019) and only positive images are used for training and
evaluation. Performance is reported using Precision, Recall, mAP50 and mAP50−95,
without specifying values for IoU or confidence. In addition to image-based experi-
ments, the model is evaluated on the LDPolypVideo dataset to assess performance in
video clips. The evaluation remains detection-centric and does not report confidence
thresholds or information in dataset preparation.

Yoo et al. propose YOLOv5-TST, an hybrid architecture that integrates a trans-
former based token-sharing module (TST) into YOLOv5 to increase global context
modeling while preserving real-time performance. The TST layer replaces part of
the convolutional feature fusion in the neck and combines local convolutional fea-
tures with global self-attention tokens. The approach is evaluated on the datasets
SUN, KUMC, and Kvasir (and combinations) using precision, recall, and mAP (Yoo
et al., 2024). The evaluation does not consider negative frames, or a validation set
for training. Also, IoU or confidence are not given.

Wan et al. introduce a polyp detection model based on an enhanced YOLOv5 ar-
chitecture for colonoscopy images, with the goal of improving detection accuracy
over standard detectors. The authors incorporate a novel P-C3 module into both
the backbone and neck of YOLOv5 to strengthen feature representation, and add
a contextual feature augmentation (CFA) module at the base of the backbone to
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expand the receptive field and focus attention on polyp features. Experimental eval-
uation on 1200 polyp-only images shows that the proposed network achieves higher
detection accuracy and especially better recall compared with other architectures
like Faster R-CNN or YOLOv8 (Wan et al., 2024a). While the results indicate im-
proved performance on still-image polyp detection, explicit evaluation settings like
IoU thresholds or confidence are not reported.

4.3 Motivation

Even with lots of progress in automatic polyp detection, the practical relevance
and comparability of reported results remain limited. A central factor across the
literature is the way datasets are constructed and used. Many studies evaluate
detectors exclusively on curated still images or short video clips, rather than on
full-length colonoscopy procedures. Training and evaluation are often restricted to
polyp-positive frames, while negative frames that dominate colonoscopy videos are
heavily underrepresented or excluded entirely. In addition, dataset splits are fre-
quently not stated or inconsistently defined. These choices simplify the experiment
but do not reflect real-world scenarios. A second variability lies in the evaluation
protocols and metrics. Studies differ in whether performance is assessed at the
frame or detection level, and operating points such as confidence thresholds and
IoU criteria vary in their sizes or are often not reported, despite their strong influ-
ence on sensitivity or recall. This thesis is motivated by the need for a systematic
and reproducible evaluation of modern free-to-use real-time object detectors under
realistic clinical conditions. The central goal is to compare representative detec-
tion architectures on full-length colonoscopy videos using fixed, patient-wise dataset
splits, standardized evaluation metrics, and explicitly defined operating thresholds.
By relying on out-of-the-box detector baselines and transparent experimental pro-
tocols, this work establishes a common reference point for assessing the practical
applicability of enhanced polyp detection architectures.
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5 Datasets

5.1 REAL-Colon

The primary dataset used in this thesis is REAL-Colon (Real-world multi-center En-
doscopy Annotated video Library), a large-scale collection of full-length colonoscopy
recordings designed to bridge the gap between academic benchmarks and clinical re-
ality (Biffi et al., 2024).

The dataset has approximately 2.7 million frames extracted from 60 selected com-
plete colonoscopy procedures. All data was sampled across four medical centers in
the United States, Italy, Austria and Japan, thereby mitigating biases related to
operator technique, procedural workflows and preparation standards (Biffi et al.,
2024). Each video captures the entire examination from insertion to withdrawal
without interruptions, preserving the natural variability of real-world colonoscopy
such as rapid camera movement, fluctuating illumination, long periods without vis-
ible pathology or the extraction phase. All visible polyps were annotated by trained

Figure 14: Representative frames extracted from the four distinct Institutions within
the REAL-Colon dataset.

medical image specialists under gastroenterologist supervision. In total, the dataset
contains 351 264 bounding-box annotations corresponding to 132 histologically ver-
ified colorectal polyps. Each frame in which a polyp appears is labeled. Notably,
87.6% of all frames contain no polyp, which reflects the true clinical distribution
of colonoscopy video, where the vast majority of frames are negative (Biffi et al.,
2024). This characteristic is essential for evaluating false positives and for assessing
how detectors behave during long negative sequences. The authors further provide
rich clinical metadata for every video, including patient age and sex, the bowel
cleanliness measured using the Boston Bowel Preparation Scale (BBPS), endoscope
manufacturer, original framerate and number of frames and lesions. At the polyp
level, the dataset provides detailed histopathology (e.g., adenoma, sessile serrated
lesion, hyperplastic), anatomical location, and size in millimetres.

The polyp count and size distribution are shown in Figure 15 whereas the other val-
ues are given in the appendix 21. Procedures were recorded at native (1920× 1080)
resolution using Olympus and Fujifilm endoscope systems. The video stream was
captured in YUV 4:2:2 with 10-bit color depth and then compressed using Apple
ProRes to preserve image quality. Each video frame was then cropped to the endo-
scope’s field of view to remove any on-screen identifiers and ensure full anonymiza-
tion (Biffi et al., 2024). The resulting image sizes across splits and Institutions can



5 DATASETS 32

Figure 15: Dataset-level characteristics of REAL-Colon. Left: Distribution of polyp
counts per procedure, showing that many recordings contain few or no polyps. Right:
Distribution of the polyp sizes (maximum diameter in mm) across all annotated
lesions.

be seen in Table 16 and 17 in the Appendix. For dataset construction, frames were
extracted via ffmpeg and saved as high-quality JPEGs using -qscale:v 1, ensuring
consistent and minimal compression artifacts across centers.

5.2 SUN-database

The Showa University and Nagoya University (SUN) database introduced by Mi-
sawa et al. (2021) is the second largest summary of polyp images containing com-
plete histopathology information. The dataset was constructed from consecutive
routine colonoscopies performed in Japan. All examinations were recorded with
high-definition Olympus colonoscopes (CF-HQ290ZI and CF-H290ECI) and a ded-
icated video recorder (IMH-10), ensuring consistent image quality across cases. Af-
ter applying exclusion criteria (inflammatory bowel disease, polyposis syndromes,
nonepithelial lesions, low-quality or incomplete recordings, extraction proceudres
and non-white-light imaging), the authors identified 1,635 candidate polyps, of which
100 were chosen for the final database, complemented by 13 negative colonoscopy
videos without any polyps. This design aims to approximate an unbiased lesion
spectrum while still providing a manageable benchmark set. Frame-level annota-
tions and bounding boxes were generated by research assistants and refined by ex-
pert endoscopists, with a final quality assurance check performed by an independent
external committee.

The resulting SUN-database consists of 152 560 frames in total, comprising 49 799
polyp-containing frames and 102 761 negative frames distributed across the 100
polyp videos and 13 negative videos. On the lesion level, the 100 polyps have a
median size of 5 mm. Most lesions are protruded (66 protruded versus 34 flat).
Histopathology is dominated by low-grade adenomas (82 lesions), but also includes
hyperplastic polyps (7), sessile serrated lesions (4), traditional serrated adenomas
(2), a small number of high-grade adenomas (4), and one invasive carcinoma.
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5.3 PICCOLO

This is a publicly released dataset designed for training and evaluating supervised
polyp detection, localisation, and segmentation models Sánchez-Peralta et al. (2020).
It has 3 433 manually annotated frames from 76 lesions across 40 patients. In
contrast to many prior datasets, PICCOLO includes both white-light (WL) and
narrow-band imaging (NBI) frames and provides structured clinical metadata for
every lesion (e.g., Paris classification, polyp size, and histopathology). Colonoscopy
procedures were performed at Hospital Universitario Basurto (Bilbao, Spain) using
Olympus CF-H190L and CF-HQ190L endoscopes. More than 145 000 frames were
initially reviewed, of which 80 847 contained a visible polyp. To reduce temporal
redundancy, one positive frame per second (every 25 frames) was sampled. After
discarding uninformative frames (blur, noise, rapid transitions, or frames outside
the patient), the final dataset includes 2 131 WL and 1 302 NBI images. Expert
gastroenterologists produced manual segmentation masks for both the polyp and
the void regions along the circular field of view, followed by post-processing to
ensure mask completeness and consistency (Sánchez-Peralta et al., 2020). Images
and anonymized patient data used in this study were provided by the PICCOLO
database through the Basque Biobank (www.biobancovasco.bioef.eus).
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6 Methods

This chapter explains the experimental methodology used to evaluate the applicabil-
ity of real-time object detection algorithms for polyp detection in clinical colonoscopy
videos. While previous chapters described the theoretical and architectural founda-
tions of modern detectors, the focus here shifts to their practical application and
clinical relevance.

6.1 Dataset Usage and Inclusion Criteria

6.1.1 Primary Dataset: REAL-Colon

By default, the dataset includes extended periods outside the patient where the oper-
ation room is visible. Since these frames hold no diagnostic relevance and risk biasing
detectors towards non-endoscopic patterns, the dataset is restricted to inside-patient
frames only. Frame ranges were selected manually for each recording. This filter-
ing preserved 2,638,023 of 2,757,723 frames (95.7%), while excluding 119,700 frames
(4.3%) containing non-endoscopic content. The frames inside remained untouched.
The ranges of included images per video are in the Appendix in Table 18.

To avoid patient-level information leakage, the dataset was divided into training,
validation, and test sets. Each recording was assigned entirely to one split, ensuring
that evaluation reflects generalization to unseen patients rather than memorization
of appearance patterns. Following the authors’ documented split, the first 10 videos
of each institution form the training set, videos 11 and 12 are assigned to validation,
and the remaining videos 13 to 15 form the test set. The final training set contains
1,706,635 frames whereas validation and test have 359, 303 and 572, 085. Across the
full dataset, 8,062 frames contain multiple annotated lesions. Under the adopted
split, all such multi-lesion frames are moved in the training and validation sets,
whereas the test split contains exactly one annotated lesion per lesion-positive frame.

6.1.2 Supplementary Datasets: SUN and PICCOLO

SUN Dataset This dataset is used for two purposes: as a cross-dataset evalua-
tion source and for additional model training when combined with an independently
constructed split. Unlike REAL-Colon, SUN consists of case-based video snippets
rather than continuous full examinations, with a high proportion of no-polyp (neg-
ative) frames. In total the dataset contains 100 positive and 13 negative cases, with
49,136 images from positive cases and 109,553 images from negative cases (158,689
images overall).

Because the original dataset is intended for testing only and no precise split logic
is given, a new partition was created for this work. Positive cases were divided
sequentially, with the first 70 assigned to training, the following 10 to validation, and
the remaining 20 to the test set. Negative cases were distributed using fixed counts
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per split (7 for training, 2 for validation and 4 for testing) and inserted at random
positions between the positive sequences. This arrangement prevents clustering of
negatives and produces a distribution that more closely resembles practical variation
during deployment. The exact cases per split can be seen in the appendix 19.

PICCOLO Dataset This was included as a contrast to the video-based sources,
since it contains only single-image samples. All original splits provided by the
dataset authors were retained without modification. The material consists of paired
polyp mask files (Corrected.tif), corresponding void masks (Void.tif), and the
original .png images. In total, 2,203 samples belong to the training set, 897 to the
validation set, and 333 to the test set, resulting in 3,433 images overall. The dataset
was also used for pretraining for ablation studies.

Table 1: Dataset distribution including positive/negative frame counts per split and
proportion of negative frames.

Dataset Split POS NEG Total Neg (%)

REAL-Colon Train 230,935 1,475,700 1,706,635 86.47
Val 29,067 330,236 359,303 91.91
Test 82,106 489,979 572,085 85.65
All 342,108 2,295,915 2,638,023 87.03

SUN Train 34,915 58,839 93,754 62.76
Val 5,792 23,845 29,637 80.46
Test 8,429 26,869 35,298 76.12
All 49,136 109,553 158,689 69.03

PICCOLO Train 2,183 20 2,203 0.91
Val 869 28 897 3.12
Test 332 1 333 0.30
All 3,384 49 3,433 1.43

6.1.3 Annotation Conversion

All datasets used in this thesis were unified into COCO style annotation JSON for
Detectron2 and normalized YOLO text files for Ultralytics-based models. The origi-
nal annotation data (e.g., Pascal VOC XML for REAL-Colon, custom TXT for SUN,
and mask files for PICCOLO) was first parsed to extract absolute pixel coordinates
(xmin, ymin, xmax, ymax) and converted into COCO-style axis-aligned bounding boxes
(xmin, ymin, w, h). For REAL-Colon, every polyp was assigned a unique polyp iden-
tifier for further analysis. A COCO-compliant structure was generated containing
image metadata, category definitions and annotation entries.

From these COCO files, YOLO labels were generated in a second conversion stage.
For each bounding box, the coordinates were rescaled relative to image width W
and height H, and expressed in center-normalized form (xc, yc, w, h), where:

xc =
xmin + w/2

W
, yc =

ymin + h/2

H
, w =

w

W
, h =

h

H
,
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and written to one .txt file per image containing the class index (0 for “lesion”). For
images without annotated lesions, an empty label file was created, since Ultralytics-
based YOLO training skips images that lack a corresponding annotation file. During
conversion, filename patterns were formatted using zero-padding to ensure lexico-
graphical frame ordering and mimic real video input for valuation when using batch
1. Final datasets were structured in the standard YOLO directory layout. The
PICCOLO dataset uses masks and void files. The void file was used to remove ex-
ternal non-image artifacts and white borders. Bounding boxes are derived directly
from the Polyp Mask. Lesions that are smaller than 20 pixels in area are removed,
following the preparation in (Delaquintana-Aramendi et al., 2025).

6.2 Model Selection

This thesis evaluates a representative subset of object detection architectures that
show both historical relevance and current technical progress in image analysis. Al-
buquerque et al. (2025) highlights Faster R–CNN, YOLO, and SSD as the most fre-
quently adopted baselines for clinical object detection tasks, motivating the inclusion
of Faster R–CNN as a classical two-stage reference. Since the original YOLO re-
lease, numerous architectural revisions have introduced stronger feature aggregation,
improved bounding-box regression, and substantially faster inference throughput.
In this context, YOLOv8 and YOLOv11 serve as one-stage detectors with strong
real-time characteristics. The survey by Albuquerque et al. does not account for
transformer-based detection, leaving this architectural direction underrepresented.
RT-DETR is therefore selected, maintaining feasible training and inference cost in
comparison to larger DETR variants. All detectors are used in their publicly released
implementations without architectural modification.

6.2.1 Ultralytics Models (YOLOv8, YOLOv11, RT-DETR)

For all Ultralytics models, input processing and optimization are performed accord-
ing to the framework’s default settings, unless otherwise specified.

Image Loading and Preprocessing Input images are loaded using OpenCV
(cv2) which reads them in BGR (Blue, Green, Red) channel order. Image dimensions
are standardized using letterboxing to fit a square target resolution (e.g., 640×640),
preserving the aspect ratio and padding the remainder with a uniform grayscale value
of 114. The image data is represented as an 8-bit integer array (range [0, 255]) in (H,
W, C) format, where H is height, W is width, and C is channels. The image is then
prepared for PyTorch by transposing its dimensions to the (C, H, W) (channel-first)
format. During this transposition, the BGR channel order is reversed to RGB. Final
pixel normalization converts the data from 8-bit integers to floating-point values in
the range [0.0, 1.0] via the scaling operation

Inorm =
Iraw

255.0
.
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No further color standardization (i.e., mean subtraction or standard deviation di-
vision) is applied, as the defaults for mean and std used for the pretrained weights
are (0.0, 0.0, 0.0) and (1.0, 1.0, 1.0), respectively.

Optimization and Training Configuration Optimizer selection is performed
automatically by the Ultralytics framework. In all experiments conducted for this
thesis, this internal logic consistently resulted in stochastic gradient descent (SGD)
with an initial learning rate lr0 = 0.01, a momentum coefficient of 0.937, and
an L2-style regularization term weight decay = 0.0005. Although the optimizer
choice is decided by Ultralytics, it is consistent with the original SGD-based opti-
mization used in the REAL-Colon SSD evaluation and in the Faster R–CNN ref-
erence configuration. The learning rate follows the standard scheduling strategy,
where the final rate is defined as a fraction of the initial value using lrf = 0.01, re-
sulting in a decay from 0.01 down to 0.01×0.01 = 1×10−4 over the training run. A
short linear warm-up phase over the first three epochs stabilizes early optimization.

For the training phase, standard augmentations are applied to enhance model gener-
alization and robustness. The default Ultralytics pipeline was used, which includes
mosaic augmentation (combining four images into one batch element), random affine
transformations (scaling, translation), erasing (removing random regions of the
image), horizontal flipping, and HSV (Hue, Saturation, Value) augmentations with
factors (0.015, 0.7, 0.4).

The number of training epochs was set to 100 for all Ultralytics runs, combined
with an early-stopping mechanism controlled by the patience parameter, which was
chosen between 10 and 35 depending on dataset size and the resulting training time.
Batch sizes were set with the (autobatch) function. It probes the maximum safe
batch size for the given hardware at a specified input resolution. On the workstation
with NVIDIA H100 NVL GPUs, this procedure yielded a stable batch size of 104
images per device for an image size of 640 × 640, so a total effective batch size of
208 was used. On the second workstation with an RTX A5000, the auto-tuning
step resulted in a per-device batch size of 24 at the same resolution, leading to an
effective batch size of 48 when using both GPUs.

Testing During testing, the YOLO’s raw output predictions are filtered using
NMS and an initial confidence threshold (conf) of 0.001 to further discard very low-
confidence detections. RT-DETR produces a fixed set of object-query predictions
per image (300 queries per default). While this design avoids post-hoc suppression,
it leads to a large number of low-confidence predictions at evaluation time. When
applied to large-scale video datasets, such as REAL-Colon, retaining all query out-
puts results in approximately 171 million predictions. To ensure tractable storage,
predictions were post-processed by keeping only the top 100 predictions per image
with a confidence score of at least 0.001.
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6.2.2 Detectron2 (Faster R-CNN)

This framework is released by Facebook AI Research and provides an official Py-
Torch reimplementation of the original Caffe Faster R-CNN with Feature Pyramid
Networks.

Image Loading and Normalization Images are read as RGB using the Python
Imaging Library (PIL) and internally converted to BGR to match the convention
used by the pretrained Detectron2 models. Pixel intensities remain in the [0, 255]
range and are normalized using channel-wise constants (mean = [103.53, 116.28,
123.675], std = [57.375, 57.12, 58.395]) that are fixed by the pretrained Faster R–
CNN weights. All images are resized such that the shorter edge matches the config-
ured minimum size while the longer edge is capped at a maximum value, preserving
aspect ratio without letterboxing or distortion. The default Detectron2 pipeline
applies minimal geometric transforms with RandomHorizontalFlip, which flips the
image and corresponding ground-truth bounding boxes with a probability of 0.5.
Empty annotation files are retained to ensure that negative frames contribute to
the learning, and data loading is parallelized with 16 workers to maintain high I/O
throughput.

Optimization and Training Configuration The base model configuration is
derived from the default faster rcnn R 50 FPN 3x.yaml, modified only to allow a
single lesion class and the custom COCO-style REAL-Colon dataset definitions. Op-
timization follows Detectron2’s default stochastic gradient descent with momentum
(0.9) and weight decay (0.0001). Detectron2 does not provide automatic batch tun-
ing, and memory requirements for Faster R–CNN are significantly higher, making
YOLO-derived batch configurations infeasible. Default batch sizes in Detectron2
typically lie between four and eight images per GPU, which would lengthen training
beyond reasonable limits for the scale of this study. Instead, batch sizes were em-
pirically determined through manual testing to avoid out-of-memory failures while
maintaining acceptable throughput. A batch size of 48 was identified as a stable
compromise resulting in a total batch of 96 used across two GPUs (for a maximum
edge size of 640). Detectron uses iterations instead of epochs, thus the maximum
iteration count is set to 267000, representing approximately 15 epochs for 1,706,635
training images (⌈1,706,635/96⌉ ≈ 17,777 iterations per epoch). A multi-step decay
schedule reduces the learning rate at STEPS = (160000, 213500), corresponding
to roughly 60% and 80% of total training. Automatic mixed precision is enabled to
reduce memory requirements and accelerate training without sacrificing accuracy.
Training is executed through a customized ThesisTrainer subclass of Detectron2’s
DefaultTrainer, which registers the REAL-Colon dataset splits and attaches a
COCOEvaluator for periodic validation and final test evaluation. The final predic-
tions were also filtered using NMS and a confidence value set to 0.001 to match the
Ultralytics setup.
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6.3 System Environment and Hardware Setup

All experiments were executed on two dedicated workstation systems, ensuring
consistent and reproducible computational resources for training and evaluation.
Workstation 1 served as the primary execution environment for all REAL-Colon
experiments and all final evaluations reported, while Workstation 2 was used exclu-
sively for training models on supplementary datasets.

Hardware Configuration

• Workstation 1 (Primary Execution): Equipped with two Intel Xeon Gold
5416S CPUs (64 hardware threads total) and 503 GiB of system memory. It
has two NVIDIA H100 NVL GPUs, each with 95,830 MiB of VRAM. Data was
stored on a local NVMe SSD to ensure high I/O throughput during training.

• Workstation 2 (Supplementary Training): It uses a single Intel Xeon
W-2265 processor (24 logical threads), has 125 GiB of system memory and
includes two NVIDIA RTX A5000 GPUs, each with 24,564 MiB of VRAM.

Software Environment

Both systems run Ubuntu 24.04.3 LTS. The NVIDIA driver version was 575.57.08 on
Workstation 1 and 580.95.05 on Workstation 2, with CUDA version 12.9 driving the
primary execution system. The software environments were managed via Conda:

• Ultralytics (Shared): Python 3.10.19, ultralytics 8.3.232, and PyTorch

2.6.0+cu124. This environment was used for all YOLOv8, YOLOv11, and
RT-DETR training and evaluation runs across both workstations.

• Detectron2 (Workstation 1 Only): Python 3.10.19, pycocotools 2.0.10,
Detectron2 0.6 and PyTorch 2.5.1+cu121.

6.4 Experimental Design

The experiments are structured to answer two central questions: (i) how well basic
modern object detectors perform on full-procedure colonoscopy data under realistic
conditions, and (ii) whether this performance is compatible with real-time clinical
deployment. To address these questions, several complementary experiment types
are defined: a core architectural comparison on REAL-Colon, ablation studies using
YOLOv11 and cross-dataset transfer evaluations. Training configurations for Ultr-
alytics and Detectron2 follow the framework-specific setups detailed in Section 6.2,
and all runs are executed on the hardware described in Section 6.3.
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6.4.1 Baseline Performance on REAL-Colon

The main experiment compares four object detection architectures under a uni-
fied training and evaluation protocol on the REAL-Colon dataset. All models are
trained, validated, and tested on the same splits. The comparison isolates archi-
tectural behavior under realistic, out-of-the-box conditions instead of tuning each
detector independently. To assess result stability and reduce the influence of ran-
dom initialization, each experiment is repeated with three different random seeds
(0, 42, and 123).

All experiments use a single foreground class, lesion, while all negative frames are
kept as background, following the best performing variant of the original REAL-
Colon study. Pretrained weights are used as provided by the respective frameworks,
consistent with the authors’ baseline relying on the NVIDIA SSD detector with
ImageNet pretraining. Input images are resized to a resolution of 640×640 pixels for
all models. This resolution corresponds to the default configuration of the Ultralytics
framework. Although Detectron2 has a default input size of 1333× 800, this setting
would substantially increase the already long training times on REAL-Colon and
was therefore deemed infeasible. Prior experiments indicated no measurable loss in
detection performance when reducing the input size to 640×640, motivating the use
of a unified resolution across all architectures. Training durations, either in epochs
or iterations, follow the configurations defined in Section 6.2. For Ultralytics-based
models, early stopping is enabled to mitigate unnecessary overfitting and excessive
training time. After training, the best-performing model checkpoint determined on
the validation set is selected for each run (based on the mAP50:95). These checkpoints
are then evaluated on the held-out test set.

Evaluation is performed at multiple levels to capture complementary aspects of de-
tector behavior, using the metrics defined in Section 3.5. Detection accuracy is
assessed using comparable COCO-style metrics computed with pycocotools, in-
cluding mean Average Precision and Average Recall at multiple overlap thresholds.
The results for the remaining experiments depend strongly on the choice of the spa-
tial overlap. Following the evaluation protocol of Troya et al. (2024), a permissive
IoU threshold of IoU > 0 is adopted, such that any spatial overlap between a predic-
tion and a ground-truth lesion is considered sufficient. This choice is better aligned
with the objective of assessing whether a lesion is detected at all, rather than how
precisely it is localized. At the same time, predictions that do not overlap with any
annotated lesion are still counted as false positives. Detection operating characteris-
tics are then analyzed using Alternative FROC (AFROC) curves, which plot sensi-
tivity against the false positive fraction (FPF) as the detection confidence threshold
is varied. Frame-level alert behavior is further evaluated by collapsing detections
within each frame into a binary decision and computing sensitivity-, specificity-, and
precision-based metrics at selected IoU and confidence operating points. This aligns
with the evaluations done on other full procedure literature (Troya et al., 2024; Biffi
et al., 2024). In addition, lesion-level event statistics are computed by aggregating
detections across all frames belonging to the same annotated polyp. Detection con-



6 METHODS 41

sistency shows the fraction of frames in which a given polyp is correctly identified,
while early detection is characterized by the temporal distance between the first
ground-truth appearance and the first frame in which it is detected. Some lesions
disappear for over 1,500 frames after a brief initial appearance. To prevent these
artifacts from inflating the results, lesions with a gap of more than 50 frames within
the first 250 frames of appearance were removed from the mean latency calculation.
This affected 2 lesions (12 and 14 in Figure 18). Detection within fixed temporal
window of 1, 3, and 5 seconds is additionally evaluated, where a lesion is considered
detected only if it is detected in at least 15 frames within that interval, corresponding
to a detection at 30 FPS. Finally, real-time suitability is assessed by measuring per-
frame inference latency and the resulting effective frame rate (FPS) at batch size 1.
For Faster R-CNN, timings are taken from Detectron2, which reports inference time
and a combined end-to-end iteration time that includes evaluation overhead. For
Ultralytics models, runtimes are taken from per-image speed breakdown including
preprocessing, inference, and postprocessing. One iteration corresponds to one pro-
cessed image for Faster R-CNN.

6.4.2 Ablation Experiments

To understand the sensitivity of the results to design and training choices, some abla-
tion experiments on YOLOv11 are done. YOLOv11 is selected because it represents
the most recent Ultralytics one-stage design considered in this thesis, offers multi-
ple capacity variants under a consistent implementation, and has higher inference
speed compared to two-stage or transformer-based alternatives. All experiments are
reported for a single random seed (42). Several ablation axes are considered:

Input Resolution To evaluate the trade-off between spatial detail and compu-
tational efficiency, YOLOv11 was trained using multiple square input resolutions,
ranging from lower resolutions (e.g. 224 × 224) to higher resolutions (e.g. 640 × 640
and 1024×1024). In addition, all detector families were trained and evaluated at an
input resolution of 300×300. The resulting performance is compared to the baseline
reported by (Biffi et al., 2024). In their study, the authors evaluated the dataset
using the NVIDIA SSD implementation trained at an input resolution of 300× 300.
Their model was initialized with ImageNet-pretrained weights and trained for 65
epochs using standard SSD preprocessing, including resizing to the target resolution,
random cropping, photometric augmentations (brightness, contrast, saturation, and
hue), horizontal flipping, and ImageNet mean–variance normalization. The reported
training configuration used a batch size of 96. Replicating the SSD training schedule
exactly for all models would require substantially longer training times than feasible
within the scope of this thesis (approximately eight to twelve days per model for 65
epochs). Therefore, the SSD results are included as published. All models evaluated
in this work follow the training and preprocessing pipeline described in the previous
sections. A single technical adjustment was required for the YOLO-based detectors
as the model needs square input dimensions divisible by the model stride (32). The
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300 × 300 configuration was internally mapped to 320 × 320 via letterboxing and
padding, preserving the effective field of view.

Capacity, Sampling, and Optimization The robustness is further evaluated
across model capacity, training negative ratios, and optimizer selection. For Model
Capacity, variants of different scales (S, M, and L) are trained on the same split
at an input resolution of 640 × 640 to determine how detection performance and
inference latency scale with network size. Next, using the same resolution, the effect
of class imbalance in REAL-Colon is analyzed by varying the negative sampling
ratio between 1:0.15, 1:0.5, and a balanced 1:1 ratio of positive to negative frames
per training epoch. This setup differs from the total-frame-based sampling strategy
described in (Biffi et al., 2024), where negative ratios are defined relative to the
full dataset negative pool rather than as a specific positive-to-negative balance.
The ablation evaluates whether a high frequency of background frames is required
for model selectivity or whether lower negative sampling rates suffice to maintain
stable optimization. Finally, Optimizer Selection compares the default SGD against
adaptive methods (Adam and AdamW) at a reduced resolution of 224 × 224 for
faster iterative testing.

6.4.3 Cross-Dataset Transfer

The objective is to evaluate whether detection models trained on full-procedure
recordings (REAL-Colon) maintain applicabile when applied to data from different
institutions, and annotation protocols (SUN, PICCOLO) without further adapta-
tion. First, to establish a baseline for comparison, all four architectures are trained
and evaluated using dataset-internal splits for the SUN and PICCOLO datasets.
These runs provide a reference of the achievable performance under in-domain con-
ditions. Next, the transferability of the models, trained exclusively on the REAL-
Colon dataset, is assessed through evaluation on the test splits of SUN and PIC-
COLO without any fine-tuning. For these cross-dataset evaluations, only frame-level
metrics can be computed, as the other datasets do not provide lesion identifiers for
lesion-level aggregation. Performance is therefore evaluated using mAP50:95 and
mAP50, as well as true positive and false positive rates where applicable. For PIC-
COLO, evaluation based on the FPR is not meaningful because the test split contains
only a single negative frame (out of 333), restricting achievable values to either 0%
or 100%.
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7 Results

This chapter presents the experimental results for real-time lesion detection in
colonoscopy videos and evaluates them with respect to detection performance and
practical deployability. Following the experimental design in Section 6.4, the eval-
uation is organized into three parts: (i) a base architectural comparison on the
full-procedure REAL-Colon dataset under a unified training protocol, (ii) targeted
ablation studies on YOLOv11 to analyze the influence of selected design and train-
ing parameters, and (iii) cross-dataset experiments to assess generalization to SUN
and PICCOLO without adaptation.

7.1 Baseline Performance on REAL-Colon

The evaluation proceeds from generic detection accuracy, over detection-level oper-
ating characteristics, to frame-level alert behavior and finally lesion-level and tempo-
ral performance to present the increasing clinical abstraction from bounding boxes
to actionable assistance. Results are reported as mean ± standard deviation over
three random seeds.

7.1.1 Overall Detection Accuracy

Table 2 reports standard detection metrics where Average Precision is reported at
multiple IoU thresholds, together with Average Recall under increasing limits on
the number of predictions per image.

Table 2: Detection performance on REAL-Colon.

Faster R-CNN YOLOv8 YOLOv11 RT-DETR

mAP50 0.324± 0.032 0.413± 0.002 0.384± 0.009 0.488± 0.019

mAP75 0.216± 0.023 0.299± 0.010 0.263± 0.005 0.359± 0.009

mAP50:95 0.196± 0.021 0.272± 0.005 0.245± 0.005 0.327± 0.009

AR1 0.295± 0.014 0.376± 0.003 0.357± 0.005 0.415± 0.011

AR10 0.387± 0.030 0.466± 0.009 0.453± 0.012 0.585± 0.007

AR100 0.394± 0.035 0.471± 0.012 0.457± 0.013 0.672± 0.008

Absolute mAP50:95 values range from 0.196 (Faster R-CNN) to 0.327 (RT-DETR),
indicating that consistent, high-precision localization remains challenging for all
models on full-procedure colonoscopy data. Even at the more permissive mAP50

level, performance remains moderate, with RT-DETR achieving the highest value
(0.488) and the remaining architectures clustering at lower accuracy. Across all
models, Average Precision decreases as the IoU threshold is increased from 0.5 to
0.75 and further to the mAP50:95 aggregate, reflecting the increasing difficulty of
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precise bounding-box alignment under stricter overlap requirements. The relative
drop between mAP50 and mAP75 is most pronounced for Faster R-CNN, where
mAP75 falls to 0.216, indicating that while coarse lesion localization is frequently
achieved, precise spatial alignment is less reliable. Among the one-stage detectors,
YOLOv8 consistently outperforms YOLOv11 across all reported Average Precision
metrics. The difference is relatively small, with YOLOv8 exceeding YOLOv11 by
0.027 in mAP50:95 but it still indicates that newer models do not automatically
perform better. Faster R-CNN trails all other models across IoU thresholds with
the lowest Average Precision values overall. Average recall generally increases as
the prediction limit is raised from one to ten and further to one hundred. However,
recall for the CNN-based models saturates early, with only marginal gains between
AR10 and AR100. In contrast, RT-DETR has a substantially larger recall increase
by 0.087 between AR10 and AR100 and reaching an AR100 of 0.672, suggesting that
its query-based, NMS-free design preserves a richer set of candidate detections, even
if many are assigned lower confidence scores.

Table 3 further breaks down Average Precision by object size according to the COCO
definition (small: ≤ 322, medium: 322–962, large: ≥ 962 pixels).

Table 3: Average Precision by object size.

Faster R-CNN YOLOv8 YOLOv11 RT-DETR

APsmall 0.000 0.000 0.000 0.002± 0.002

APmedium 0.012± 0.006 0.049± 0.009 0.054± 0.005 0.044± 0.014

APlarge 0.207± 0.021 0.284± 0.005 0.255± 0.005 0.343± 0.010

Detection performance varies a lot across object sizes. At a fixed input resolution
of 640 × 640, the COCO size categories correspond to objects covering at most
0.25% (small), 0.25–2.25% (medium), and more than 2.25% (large) of the image
area (Lin et al., 2014). Average Precision for small objects is effectively zero for all
evaluated models, with RT-DETR reaching only 0.002. Performance for medium-
sized objects remains limited, with APmedium ranging from 0.012 (Faster R-CNN) to
0.054 (YOLOv11). Even for RT-DETR, APmedium reaches only 0.044, showing that
improved global reasoning does not resolve this limitation. Detection performance
is therefore mainly done by objects classified as large. In this range, RT-DETR
achieves the best APlarge with 0.343. Consequently, most successful detections occur
in frames where lesions occupy a relatively large fraction of the image, so when the
camera is zoomed in, while detection of smaller and more distant lesions remains
challenging across all architectures.

7.1.2 Detection Operating Characteristics

While COCO-style metrics summarize localization accuracy at fixed overlap crite-
ria, they do not describe how detection sensitivity and false localizations trade off
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as the confidence threshold is varied. To analyze this operating behavior, detection
performance is evaluated using the alternative free-response receiver operating char-
acteristic (AFROC) curves. Figure 16 shows the detection sensitivity as a function of
the false positive fraction across the full range of confidence thresholds. The AFROC

Figure 16: AFROC curves on REAL-Colon

curves have a steep initial increase, indicating that a significant portion of bound-
ing boxes can be recovered with a low false-positive rate (FPF < 0.1). RT-DETR
demonstrates the highest performance with a distinct sensitivity advantage across
the entire FPF range. The YOLO-based detectors form a clustered intermediate
tier, with YOLOv8 consistently yielding slightly higher sensitivity than YOLOv11
at equivalent FPF levels. This is consistent with the small performance differences
observed in detection-level metrics. Faster R-CNN shows lower sensitivity at com-
parable false positive fractions. Even when higher false positive rates are tolerated,
its sensitivity remains below that of the other detectors.

The operating markers on the curves visualize the performance at the specific con-
fidence thresholds used and explained in the subsequent frame-level analysis. These
markers illustrate the threshold-dependent trade-off: lowering the confidence thresh-
old shifts the operating point to the right along the curve, increasing sensitivity at
the cost of additional false positives, while increasing the threshold moves it to the
left. Notably, the YOLO markers lie on a steep gradient of the curve, implying that
minor threshold adjustments can lead to large shifts in false-positive behavior. In
contrast, RT-DETR maintains the target FPF at a much higher confidence (0.30),
indicating a more robust separation between true detections and background noise.
AFROC is prioritized for this comparison as it provides a bounded false-positive
metric [0,1]. Standard FROC curves are provided in Figure 22 (Appendix) but are
less suitable for combined plotting due to large ranges of False Positives Per Image
(FPPI).
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7.1.3 Frame-Level Alert Performance

To complement detection-level metrics, frame-level performance is evaluated by col-
lapsing all detections within a frame into a single binary decision.

(a) Faster R-CNN (b) YOLOv8

(c) YOLOv11 (d) RT-DETR

Figure 17: TP and FP rate on REAL-Colon at IoU > 0 for varying confidence
thresholds (seed 42).

Confidence Threshold Selection This score directly controls the trade-off be-
tween true and false alerts and is therefore strongly model dependent. A fixed
confidence value can lead to substantially different true- and false-positive rates
across detection architectures. Figure 17 visualizes this trade-off for all four ar-
chitectures at IoU > 0. Two confidence operating points are reported throughout
this experiment. First, a fixed confidence threshold of 0.2 is used for all models to
align with the evaluation protocol of Troya et al. (2024) and to provide a common
reference. Second, a model-specific operating point is selected to get comparable
frame-level false-positive rates across architectures. The threshold is chosen such
that the resulting false-positive rate is approximately 4–5% for each model, match-
ing the FPR given in the original REAL-Colon paper (Biffi et al., 2024). For this,
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a single confidence value is chosen per architecture and applied uniformly across all
three random seeds. Based on this criterion, the confidence thresholds are set to 0.06
for YOLOv8, 0.05 for YOLOv11, and 0.30 for RT-DETR. Faster R-CNN naturally
reaches the targeted FPR at the baseline confidence of 0.20, so no adjustment is
applied. The analysis is not intended to optimize detector predictions, but to define
representative and comparable operating points.

Frame-Level Metrics at Selected Operating Points In this experiment, sen-
sitivity (TPR) is the primary indicator of whether a system successfully raises an
alert on frames that contain at least one visible lesion. A frame is counted as a
TP as soon as the lesion is detected, so sensitivity reflects the probability that a
lesion-present frame triggers an alert. Table 4 summarizes the results.

Table 4: Frame-level performance using multiple confidence thresholds.

Metric Faster R-CNN YOLOv8 YOLOv11 RT-DETR

Confidence 0.20

Sensitivity / TPR 0.463± 0.066 0.508± 0.022 0.453± 0.004 0.720± 0.041

specificity 0.954± 0.017 0.980± 0.002 0.983± 0.001 0.918± 0.030

FPR 0.046± 0.017 0.020± 0.002 0.017± 0.001 0.082± 0.030

Precision 0.637± 0.086 0.811± 0.014 0.816± 0.011 0.606± 0.085

F1 score 0.532± 0.047 0.624± 0.016 0.582± 0.005 0.654± 0.030

F2 score 0.488± 0.057 0.549± 0.020 0.497± 0.004 0.691± 0.011

Confidence Faster R-CNN: 0.20, YOLOv8: 0.06 YOLOv11: 0.05, RT-DETR: 0.30

sensitivity / TPR 0.463± 0.066 0.605± 0.030 0.573± 0.009 0.651± 0.049

specificity 0.954± 0.017 0.956± 0.006 0.957± 0.003 0.957± 0.017

FPR 0.046± 0.017 0.044± 0.006 0.043± 0.003 0.043± 0.017

Precision 0.637± 0.086 0.698± 0.023 0.693± 0.020 0.723± 0.070

F1 score 0.532± 0.047 0.648± 0.015 0.627± 0.013 0.681± 0.001

F2 score 0.488± 0.057 0.621± 0.024 0.594± 0.011 0.662± 0.031

Note: An extended analysis with confidence thresholds selected per seed (to match ≈ 4% FPR per
run) is provided in Appendix 21. Under this setting, frame-level metrics for RT-DETR and

Faster R-CNN vary less across seeds.

At the fixed reference threshold of 0.20, the architectures show fundamentally differ-
ent default behaviors. RT-DETR prioritizes recall, achieving the highest sensitivity
(0.720) but at the cost of significant background noise (FPR ≈ 0.08). In contrast, the
YOLO-based models operate conservatively, maintaining high specificity (> 0.98)
and precision (> 0.81). This results in missed detections, with sensitivity being
lower than those of RT-DETR. This is also seen in the F scores: while the balanced
F1 scores are relatively close, RT-DETR achieves better scores for F2 (0.691 vs.
0.549 for YOLOv8).
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Variance across random seeds differs notably between architectures under fixed-
threshold evaluation. Precision shows higher variability for RT-DETR and Faster
R-CNN (≈ 0.085) than for the YOLO-based detectors (< 0.014). Since threshold-
independent detection metrics (mAP) remain comparatively stable across seeds for
all models, this frame-level difference indicates that the calibration of confidence
scores varies between training runs for the transformer and R-CNN architectures,
whereas YOLO models have more consistent score distributions.

When confidence thresholds are adjusted to achieve comparable false positive rates
across models, sensitivity values converge while remaining distinct. Under these nor-
malized operating points, RT-DETR retains the highest sensitivity (0.651), followed
by YOLOv8 (0.605) and YOLOv11 (0.573). This adjustment reduces the perfor-
mance gap but shifts the precision, which decreases for the YOLO-based detectors
(due to lowering thresholds) and increases for RT-DETR (due to raising thresholds).
Correspondingly, F1 and F2 scores improve notably for the YOLO-based models.
However, even after this optimization, RT-DETR maintains the highest F2 score
(0.662). The relative ordering of the models is consistent with the AFROC analysis,
confirming that frame-level alert behavior mimics the fundamental sensitivity–false-
positive trade-offs observed at the detection level.

7.1.4 Lesion-Level Consistency and Early Detection

The lesion-level analysis evaluates whether a lesion is detected at all, how persis-
tently it is detected across its visible duration, and how quickly the first detection
occurs after the lesion appears. Table 5 reports the number of lesions detected
within 1, 3, and 5-second windows, requiring a minimum of 15 frames of detection
per interval. Across all operating points, every model successfully identifies all 21
lesions at least once (100% lesion-level sensitivity). However, this binary criterion is
insufficient to characterize clinical utility. More informative are the consistency and
early-detection metrics, which better reflect whether a lesion is reliably highlighted
during its visible duration. At the fixed confidence threshold of 0.20, RT-DETR
demonstrates superior stability and speed. It maintains detections for at least 50%
of the visible frames for nearly all lesions (mean 19.7), whereas the YOLO family
and Faster R-CNN average only 12.7 and 11.7, respectively. RT-DETR also acts
significantly faster: it detects 7.7 lesions within the first second of appearance, with
an average latency of just 12.5 frames (≈ 0.5 seconds). In contrast, the other ar-
chitectures have a substantial delay, requiring over 60 frames (≈ 2.5 seconds) on
average.

Adjusting thresholds to normalize the false-positive rate shows that for the YOLO
models, lowering the threshold allows them to capture earlier, lower-confidence fea-
tures. This effectively halves the latency (e.g., YOLOv8 improves from 82.1 to 46.8
frames) and improves consistency scores. In contrast, raising the threshold for RT-
DETR filters out the earliest, most uncertain predictions. This results in a “latency
penalty”, where the mean time to first detection increases from 12.5 to 38.3 frames,
and the number of lesions detected within the first second drops from 7.7 to 4.7.
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Table 5: Lesion-level consistency and latency on REAL-Colon. Values represent
the mean number of unique lesions detected (n=21) and the average latency to first
detection (in frames)

Faster R-CNN YOLOv8 YOLOv11 RT-DETR

Fixed confidence threshold 0.20

Lesions detected (≥ 1 match) 21 21 21 21

Lesions detected (≥ 25% frames) 19 19.3 18.7 21

Lesions detected (≥ 50% frames) 11.7 12.7 12.7 19.7

Detected within 1 s 1 1.7 1 7.7

Detected within 3 s 7 5.3 5.3 12.0

Detected within 5 s 11.0 8.0 7.7 15.3

Latency first frame 63.9± 42.5 82.1± 30.6 103.0± 37.6 12.5± 7.2

Confidence Faster R-CNN: 0.20, YOLOv8: 0.06 YOLOv11: 0.05, RT-DETR: 0.30

Lesions detected (≥ 1 match) 21 21 21 21

Lesions detected (≥ 25% frames) 19 20.7 21 21

Lesions detected (≥ 50% frames) 11.7 16.0 15.7 17.3

Detected within 1 s 1 3.7 3 4.7

Detected within 3 s 7 8.7 7.3 10

Detected within 5 s 11 12.3 10.7 12.7

Latency first frame 63.9± 42.5 46.8± 26.3 57.3± 26.3 38.3± 17.3

Despite this shift, the adapted RT-DETR remains the fastest and most temporally
consistent architecture, followed closely by the adapted YOLOv8. Faster R-CNN
consistently shows the highest latency (63.9 frames) and lowest temporal stability.

To further illustrate lesion-level behavior beyond aggregate metrics, Figure 18 visu-
alizes the fraction of detected frames for each individual lesion across random seeds
at the selected operating points. For each lesion, the mean number of detected and
missed frames is shown, together with the minimum and maximum detection counts
observed across seeds. This visualization highlights lesion-specific differences in de-
tection persistence and variability that are not captured by global averages alone.
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Figure 18: Fraction of frames detected for each lesion using specific confidence values.
Number on top of the bars is the first detected frame
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7.1.5 Runtime and Real-Time Suitability

Finally, Table 6 reports component-wise runtime measurements. Two measures are
reported: FPSinf is computed from inference time only, while FPStotal shows end-to-
end latency based on all reported components.

Table 6: Runtime characteristics on REAL-Colon at batch size 1 on a single NVIDIA
H100 GPU

Detectron2

Model Inf [ms] Eval [ms] Total [ms] FPSinf FPStotal

Faster R-CNN 25.07± 2.72 0.20± 0.00 26.70± 2.52 39.9 37.5

Ultralytics

Model Pre [ms] Inf [ms] Post [ms] Total [ms] FPSinf FPStotal

YOLOv8 0.57± 0.06 4.53± 0.38 0.40± 0.00 5.50± 0.44 220.7 181.8

YOLOv11 0.50± 0.00 5.20± 0.17 0.40± 0.00 6.10± 0.17 192.3 163.9

RT-DETR 0.50± 0.00 18.87± 0.29 0.23± 0.06 19.60± 0.35 53.0 51.0

The YOLO-based architectures achieve the highest throughput among all evaluated
models. YOLOv8 attains the lowest total latency (5.50 ± 0.44 ms per frame), cor-
responding to an end-to-end throughput of 181.8 FPS, followed by YOLOv11 with
163.9 FPS. These rates exceed typical video frame rates (25–60 Hz) by a factor of 3
to 7. RT-DETR has higher latency than the YOLO-based detectors but maintains
an end-to-end throughput of 51.0 FPS. This places RT-DETR above commonly
used real-time frame rates, yet with a smaller margin compared to the YOLO fam-
ily. Faster R-CNN shows the highest total latency among the evaluated models
(26.7± 2.52 ms), resulting in an end-to-end throughput of 37.5 FPS. While this ex-
ceeds 30 FPS on the tested hardware, it provides less margin relative to the one-stage
detectors.

7.2 Ablation Studies on REAL-Colon

To isolate the influence of specific design and training parameters, a series of ablation
experiments were done using YOLOv11. Evaluation is performed at model-specific
confidence thresholds chosen to get comparable frame-level false-positive rates with
the IoU > 0 criterion.

Image Resolution The trade-off between spatial detail and computational cost is
evaluated by training YOLOv11-M at three distinct resolutions. Table 7 summarizes
the results. Increasing the input resolution from 224×224 to 640×640 yields a large
performance gain, improving mAP50 by 0.095 and frame-level sensitivity by 0.14 to
0.584. However, scaling further to 1024 × 1024 offers lower returns in accuracy
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Table 7: Effect of input resolution.

Resolution conf mAP50:95 mAP50 TPR FPR FPSinf FPStotal

224 × 224 0.01 0.184 0.289 0.444 0.044 212.9 183.4
640 × 640 0.05 0.246 0.384 0.584 0.043 192.3 163.9
1024 × 1024 0.03 0.255 0.4 0.576 0.044 184.3 143.8

(mAP50 +0.016) while increasing computational load, identifying 640 × 640 as the
efficient operating point.

A secondary comparison was made at 300×300 resolution to align with the original
REAL-Colon study (Biffi et al., 2024). Frame-level TPR and FPR depend on the
specific IoU and confidence thresholds, which are not specified in the original author
setup, and are therefore reported as an observational comparison only.

Table 8: Comparison at 300 × 300 resolution following the original author setup on
the full REAL-Colon dataset.

Model conf mAP50:95 mAP50 TPR FPR
Faster R-CNN 0.2 0.203 0.33 0.497 0.043
YOLOv8-M 0.013 0.221 0.342 0.524 0.048
YOLOv11-M 0.015 0.194 0.297 0.504 0.046
RT-DETR 0.25 0.29 0.432 0.634 0.05
SSD-300 (author setup) 0.216 0.338 0.505 0.054

RT-DETR maintains the highest results in this constrained regime, followed by
YOLOv8 and the original SSD-300 baseline. YOLOv11-M trails slightly behind
YOLOv8-M at this resolution, mirroring the trend observed in the main experiments.

Capacity, Sampling, and Optimization Table 9 analyzes the robustness of
the architecture across model capacity, negative sampling strategies, and optimizer
selection.

Table 9: Effect of various hyperparameters

Model conf mAP50:95 mAP50 TPR FPR
YOLOv11-S 0.04 0.221 0.353 0.570 0.045
YOLOv11-M 0.05 0.246 0.384 0.584 0.043
YOLOv11-L 0.007 0.276 0.420 0.628 0.044
Negative ratio 0.15 0.27 0.209 0.328 0.482 0.048
Negative ratio 0.50 0.27 0.155 0.254 0.45 0.047
Negative ratio 1.00 0.1 0.253 0.401 0.602 0.048
Adam 0.005 0.181 0.285 0.474 0.05
AdamW 0.07 0.182 0.285 0.5 0.048
SGD 0.05 0.184 0.289 0.444 0.044
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Performance scales positively with network depth and width. The Large variant
(YOLOv11-L) achieves the highest detection sensitivity (0.628), while the S-model
shows a notable drop in mAP50 to 0.353, suggesting that sufficient parameter ca-
pacity is required to capture polyp morphology effectively. Yet larger models come
with an increase in the overall training time (from 15min per epoch for S to 1.5h
to model L). Regarding dataset composition, the balanced setup (Ratio 1:1) yields
the highest detection performance (mAP50 0.401). Reducing the proportion of neg-
ative samples degrades performance. Notably, the more imbalanced configuration
(1 : 0.15 and 1 : 0.50) forces the model to adopt a much higher confidence threshold
(0.27) to control false positives, resulting in lower sensitivity. This indicates that a
sufficient amount of background examples is essential for learning model selectivity.
Finally, at lower resolutions (224 × 224), the architecture demonstrates robustness
to the choice of optimizer, with Adam, AdamW, and SGD achieving nearly identical
mAP values (0.285 to 0.289).

7.3 Cross-Dataset Evaluation

This section evaluates dataset generalization across multiple colonoscopy datasets.
First, in-domain reference performance is established for the SUN and PICCOLO
datasets using dataset-internal train–test splits. Second, cross-dataset transfer is
assessed by evaluating YOLOv11-M models trained on a single source dataset on
unseen target datasets without further fine-tuning. Tables 10 and 11 report results

Table 10: Evaluation on the SUN dataset.

Model conf Train → Test mAP50:95 mAP50 TPR FPR
Faster R-CNN 0.07 SUN → SUN 0.408 0.738 0.739 0.044
YOLOv8 0.07 SUN → SUN 0.396 0.694 0.731 0.046
YOLOv11 0.1 SUN → SUN 0.411 0.724 0.735 0.047
RT-DETR 0.12 SUN → SUN 0.389 0.689 0.725 0.05

Table 11: Evaluation on the PICCOLO dataset.

Model Train → Test mAP50:95 mAP50

Faster R-CNN Piccolo → Piccolo 0.531 0.743
YOLOv8 Piccolo → Piccolo 0.487 0.673
YOLOv11 Piccolo → Piccolo 0.56 0.77
RT-DETR Piccolo → Piccolo 0.186 0.321

when models are trained and evaluated on the same dataset. On the clip-based SUN
dataset, all architectures achieve high and closely clustered detection performance,
with mAP50 values between 0.689 and 0.738 and comparable frame-level sensitivities
(TPR ≈ 0.73). Differences between models are minor. RT-DETR attains slightly
lower mAP values and the highest FPR, but remains competitive overall.
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On the image-based PICCOLO dataset, a clearer separation between architectures
is observed. Faster R-CNN, YOLOv8, and YOLOv11 maintain high accuracy, with
mAP50 values ranging from 0.673 to 0.770, while RT-DETR performs substantially
worse, reaching only 0.321 mAP50. This suggests that the transformer-based archi-
tecture struggles significantly with the specific image characteristics or smaller scale
of the PICCOLO dataset compared to its CNN-based counterparts. Compared to
SUN, larger variations in mAP50:95 are observed across models, reflecting differences
in object scale and annotation characteristics between datasets.

Table 12: Cross-dataset evaluation (Direct Transfer). Comparison across architec-
tures.

Model Train → Test Conf mAP50:95 mAP50 TPR FPR

Faster R-CNN SUN → REAL-Colon 0.2 0.131 0.220 0.29 0.043
YOLOv8 SUN → REAL-Colon 0.25 0.105 0.177 0.261 0.045
YOLOv11 SUN → REAL-Colon 0.040 0.097 0.164 0.240 0.040
RT-DETR SUN → REAL-Colon 0.25 0.132 0.225 0.310 0.040

Faster R-CNN Piccolo → REAL-Colon 0.99 0.08 0.154 0.271 0.06
YOLOv8 Piccolo → REAL-Colon 0.8 0.024 0.051 0.175 0.046
YOLOv11 Piccolo → REAL-Colon 0.7 0.031 0.059 0.134 0.041
RT-DETR Piccolo → REAL-Colon 0.8 0.005 0.012 0.007 0.003

Faster R-CNN REAL-Colon → SUN 0.12 0.251 0.503 0.514 0.049
YOLOv8 REAL-Colon → SUN 0.006 0.365 0.714 0.767 0.048
YOLOv11 REAL-Colon → SUN 0.06 0.361 0.705 0.765 0.043
RT-DETR REAL-Colon → SUN 0.08 0.379 0.717 0.728 0.043

Faster R-CNN REAL-Colon → Piccolo - 0.379 0.645 - -
YOLOv8 REAL-Colon → Piccolo - 0.314 0.558 - -
YOLOv11 REAL-Colon → Piccolo - 0.304 0.554 - -
RT-DETR REAL-Colon → Piccolo - 0.336 0.602 - -

Table 12 details the direct transfer performance across all architectures. The results
reveal a consistent asymmetric transfer effect independent of the model family. Mod-
els trained on the curated datasets (SUN, PICCOLO) have a big performance decline
when applied to the full-procedure REAL-Colon dataset. For the SUN-trained mod-
els, mAP50 values drop to between 0.16 and 0.22. Transfer from the image-based
PICCOLO dataset is even less effective, with mAP50 values falling below 0.16 for
all architectures. Notably, Faster R-CNN demonstrates slightly higher robustness in
this direction compared to the YOLO family and RT-DETR. In the reverse direc-
tion, models trained on REAL-Colon generalize effectively to external domains. On
the SUN dataset, YOLOv8, YOLOv11, and RT-DETR achieve mAP50 scores ex-
ceeding 0.7, closely matching the in-domain baselines established in Table 10. Faster
R-CNN shows weaker transfer in this specific case (mAP50 = 0.503). On the PIC-
COLO dataset, generalization remains strong across all models, with Faster R-CNN
achieving the highest transfer accuracy (mAP50 = 0.645), followed by RT-DETR
(0.602).
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8 Discussion

This discussion interprets the experimental findings with respect to the central
motivation of this thesis: establishing a transparent and realistic baseline for real-
time polyp detection under full-procedure colonoscopy conditions. The results are
discussed in terms of their combined implications for detector behavior, robustness,
and clinical applicability.

8.1 Architectural Trade-offs: Bias and Calibration

Sensitivity vs. Selectivity (Baseline Behavior) The comparative analysis re-
veals a fundamental difference in how CNN-based (YOLO) and Transformer-based
(RT-DETR) architectures approach the polyp detection task. RT-DETR demon-
strates a strong recall bias, consistently achieving the highest frame-level sensitivity
(0.720) at the baseline confidence threshold of 0.20. This suggests that the global
attention mechanism effectively captures lesion context even in challenging frames,
such as those with blur or partial occlusion. However, this sensitivity comes at
the cost of reduced specificity, resulting in the highest False Positive Rate (≈ 8%),
often triggered by non-pathological structures such as folds, bubbles, or specular
highlights. In contrast, the YOLO family has a more conservative operating behav-
ior. Both YOLOv8 and YOLOv11 maintain a very high specificity (> 0.98) and
precision (> 0.81), but at the cost of lower sensitivity (0.508 and 0.453).

From a clinical screening perspective, where missed polyps (false negatives) generally
carry greater risk than additional false alarms, RT-DETR’s dominance in the recall-
weighted F2 score (0.691 compared to 0.549 for YOLOv8) highlights its suitability
for safety-critical applications, provided that the elevated false-positive rate can be
controlled through appropriate threshold selection.

Confidence Stability Beyond absolute performance, the experiments reveal dif-
ferences in confidence stability across architectures. While detection-level metrics
such as mAP remain more stable across random seeds for all models, as they do not
rely on such thresholds, larger variation is observed at the frame level under fixed-
threshold evaluation, especially for Faster R-CNN and RT-DETR (≈ ±0.085). In
contrast, the YOLO-based models show consistently lower variance in frame-level
precision (< 0.014), indicating more stable confidence score distributions. When
confidence thresholds are adjusted per seed to achieve comparable false-positive
rates, performance differences across architectures narrow (see Table 21). RT-DETR
retains the highest recall-oriented scores, including the F2 metric. This implies that
while RT-DETR is the most powerful detector, it requires dynamic threshold tun-
ing (per-model or per-seed) to guarantee a specific operating point, whereas YOLO
models offer a more “plug-and-play” deployment where fixed thresholds yield pre-
dictable behavior.
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8.2 Clinical Applicability and Benchmarking

To place these findings into a broader context, Table 13 reproduces metrics reported
for several commercial CADe systems and the alternative EndoMind by Troya et al.
(2024). The table is included to illustrate the range of sensitivities and false-positive
rates reported for colonoscopy CADe systems under frame-level evaluation at IoU >
0 and a fixed confidence threshold of 0.2.

Table 13: Results of commercial CADe systems reported in (Troya et al., 2024).

Metric GI Genius v1 GI Genius v2 EndoAID A EndoAID B EndoMind

Sensitivity / TPR 0.5063 0.6785 0.6560 0.5295 0.6022

Specificity 0.9694 0.9577 0.9719 0.9930 0.9589

FPR 0.0275 0.0380 0.0252 0.0063 0.0369

Precision 0.5966 0.5701 0.6658 0.8720 0.5499

F1 score 0.5915 0.6391 0.6943 0.7177 0.5960

First detection (in ms) 1510 607 659 1316 1083

The open-source detectors evaluated here achieve comparable sensitivity levels (0.60-
0.72) but at slightly higher false positive rates (0.045 vs. 0.03 commercial). Regard-
ing latency, the commercial systems report first detection times between 600 and
1500 ms. In comparison, the raw latency of the evaluated open-source models is
slightly higher, ranging from 1.2 s (RT-DETR) to 2.1 s (Faster R-CNN) at the
specific confidence.

While the evaluation was made on a different dataset and under a distinct pipeline,
this comparison suggests that modern, openly available detection architectures can
reach frame-level performance similar to commercial systems, even without some
post-processing or data-specific tuning that is done in the study. At the same time,
differences in datasets, image selection criteria, annotation protocols, and evaluation
process limit the interpretability of such comparisons and highlight the shortcomings
of frame-level metrics as the only indicator of clinical performance.

Temporal Dynamics and Latency Artifacts To assess clinical reliability be-
yond raw speed, detection consistency is evaluated using a strict persistence crite-
rion (≥ 15 frames) to distinguish robust alerts from flickering (Table 5). Immediate,
reliable detection within the first second is rare. Under this setting, reliable detec-
tion within the first second of lesion appearance is uncommon across all evaluated
architectures. At specific operating points, the YOLO-based models detect approx-
imately 3 to 4 out of 21 lesions within this window, while RT-DETR detects fewer
than 5 lesions. Even within the first 3 seconds, fewer than half of the lesions are
reliably detected by most models. This indicates that while modern detectors even-
tually identify all lesions, they require a longer period to get enough visual evidence,
potentially delaying clinically actionable warnings during rapid camera movements.
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Real-Time Feasibility and Hardware All models met the real-time thresh-
old (> 30 FPS) on an NVIDIA H100. However, throughput of the YOLO mod-
els (e.g. > 180 FPS for YOLOv8) provide a massive safety margin that allows
deployment on edge devices (e.g., directly on the endoscope processor) or leaves
computational headroom for concurrent tasks (e.g., depth estimation, pathology
classification, post-negative filtering). From a practical perspective, the large gap
between inference-only and end-to-end FPS is small for all models, indicating that
preprocessing, postprocessing, and evaluation overhead contribute only marginally
to overall latency under the tested conditions.

8.3 Data-Centric Insights and Generalization

The experiments demonstrate that dataset composition is as critical as architectural
choice for robust polyp detection.

Universal Generalization Asymmetry The experiments reveal a consistent
generalization asymmetry across all evaluated model families. Models trained on
the full-procedure videos of REAL-Colon transfer robustly to external benchmarks.
For instance, all but Faster R-CNN match their respective in-domain baselines when
evaluated on the SUN dataset, indicating that the feature representations learned
from full-procedure data are sufficiently diverse to encompass the visual distributions
of curated clip-based datasets. In contrast, the transfer in the reverse direction fails
universally. Regardless of the architecture, models trained on curated clips or static
images degrade to unusable performance levels when exposed to the REAL-Colon
test set. While Faster R-CNN shows slightly higher robustness in this direction, it
still fails to bridge the domain gap. This confirms that curated datasets represent a
limited subset of the endoscopic domain, lacking the required diversity of lighting,
angles, and negative samples found in continuous procedures.

Training Efficiency and Redundancy Ablation studies further highlighted that
a balanced (1:1) negative sampling ratio yielded detection performance (mAP50 =
0.401) competitive with, and even slightly exceeding, the baseline trained on the full
set of negative frames (mAP50 = 0.384). Which contrasts the findings of the origi-
nal authors (Biffi et al., 2024). This suggests that the vast majority of background
frames in full procedures do not contribute unique information to the decision bound-
ary. For future development, this implies that training efficiency can be drastically
improved by aggressive subsampling of background frames without compromising
model selectivity.

8.4 Qualitative Error Analysis

Lesion Consistency The variance observed in the lesion consistency metric (Ta-
ble 5, ≥ 50% frames) is driven by specific challenging lesions rather than uniform



8 DISCUSSION 58

stochastic noise. As visualized in Figure 18, while robust lesions (e.g., indices 2 and
3) are detected consistently across all models, a subset of “borderline” lesions (e.g.,
4, 11, or 14) are detected in only about 50% of their visible frames. For these cases,
the detection density lies close to the threshold. Thus, minor stochastic differences
in training initialization determine whether a specific lesion effectively passes or fails
this criterion. The Histology Split analysis further reveals that Sessile Serrated Le-
sions (SSL, indices 7 and 14) and the Traditional Serrated Adenoma (TSA, index 21)
are exclusively present in the test set, meaning the models are performing zero-shot
detection on these subtypes. The TSA (Lesion 21) is detected with high consistency
across all architectures, suggesting its visual features share strong similarities with
the common Adenomas (AD) seen during training. In contrast, the SSLs (Lesions 7
and 14) have much higher miss rates and variance, often falling into the borderline
category. This suggests that SSLs have distinct visual characteristics that do not
fully transfer from an AD/HP-only training distribution. Visual samples of these
zero-shot targets are provided in Appendix in Figure 23.

Visualizing Failure Modes Figure 19 presents a qualitative comparison of model
predictions (red) versus ground truth (green) to illustrate some behavioral patterns.
In ideal conditions with clearly visible polyps, all architectures produce accurate de-
tections (Row 1). However, specific instabilities emerge in more complex scenarios.
For relatively large lesions (Row 2), YOLOv8 and RT-DETR occasionally generate
fragmented predictions, placing multiple bounding boxes on a single object. While
the lesion is successfully retrieved, these duplicate detections penalize precision met-
rics. Sensitivity differences are highlighted in Rows 3 and 6: Faster R-CNN fails
to detect a small lesion distracted by specular reflections (Row 3), and both Faster
R-CNN and YOLOv11 miss a lesion due to specific endoscopic lighting (Row 4).
Severe visual degradation defeats all evaluated models. Lesions heavily masked by
specular highlights (Row 5) or significant motion blur (Row 6) result in universal
false negatives. Finally, Row 7 shows the trade-off between sensitivity and semantic
understanding: while Faster R-CNN correctly ignores an operating instrument, the
YOLO variants and RT-DETR misclassify the instrument as a lesion.
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Faster R-CNN YOLOv8 YOLOv11 RT-DETR

Figure 19: Comparison of detection results on REAL-Colon. Ground-truth annota-
tions are shown in green, predictions in red.
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9 Limitations and Future Work

Limitations Several limitations of this study should be considered when interpret-
ing the reported results. First, regarding experimental design, confidence thresholds
were selected either globally or adjusted to match false-positive rates, rather than
being optimized for each specific architecture. Similarly, hyperparameter tuning
was intentionally kept consistent based on the used framework to ensure compara-
bility. While this isolates the “out-of-the-box” behavior of the architectures, it may
disadvantage models that rely on extensive, architecture-specific tuning to reach
peak performance. Second, the temporal analysis identified discontinuities in the
ground truth annotations. To address this, lesions were excluded if an annotation
gap exceeding 50 frames occurred within the first 250 frames of their initial appear-
ance. However, shorter interruptions were not explicitly filtered and may persist
in the evaluation set. Finally, evaluations were performed on a high-end NVIDIA
H100 GPU. The absolute inference speeds on this hardware do not necessarily re-
flect the constraints of embedded clinical systems. Moreover, as all experiments
were conducted offline on pre-recorded video, the study cannot assess the “human-
in-the-loop” dynamics, such as how endoscopists react to false positives or whether
algorithmic alerts actually improve polyp retrieval rates in live procedures.

Future Work From a modeling perspective, broader architectural coverage and
more extensive hyperparameter optimization could be explored. Future benchmarks
should evaluate emerging architectures that increase the accuracy-latency trade-off.
RF-DETR (Receptive Field-based Detection Transformer) (Robinson et al., 2025)
has recently achieved SOTA results (> 0.60 mAP50:95 on COCO), outperforming
current YOLO and RT-DETR variants by using Neural Architecture Search (NAS)
to optimize receptive fields. Additionally, newer iterations of the RT-DETR fam-
ily, such as RT-DETRv4 (Liao et al., 2025), which uses vision foundation model
distillation, can be assessed to determine if their architectural refinements trans-
late to improved robustness in the endoscopic domain. The integration of Foun-
dation Models in general shows promising results. Recent work by Delaquintana-
Aramendi et al. (2025) demonstrated that while zero-shot application of models like
YOLO-World failed (< 0.001 AP), fine-tuning foundation models such as Ground-
ing DINO (Liu et al., 2024) yielded best detection performance on the PICCOLO
dataset (mAP50:950.805). However, this validation was limited to curated image
datasets (PICCOLO). Given the finding that training on REAL-Colon results in
better results, a next step would be to train these foundation models directly on
full-procedure video data. Finally, future work should address deployment-oriented
considerations. Evaluating performance on a wider range of hardware platforms,
including resource-constrained edge devices, would improve the practical relevance
of runtime analyses. Integration with real-time endoscopy systems and user-facing
interfaces would be necessary steps toward translating algorithmic performance into
clinical use.
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10 Conclusion

This thesis addresses the gap between academic polyp-detection benchmarks and
the complex conditions of clinical colonoscopy. Prior work often relies on curated
images or short clips, loosely defined operating points, and differently reported met-
rics, limiting comparability and clinical relevance. To counter this, a transparent and
reproducible evaluation framework was established, integrating detection-, frame-,
and lesion-level metrics on full-procedure colonoscopy videos.

The results show that modern general-purpose object detectors approach the per-
formance of specialized medical CADe systems under realistic conditions. A clear
architectural trade-off emerges. RT-DETR achieves the highest sensitivity and tem-
poral consistency, favoring safety-critical screening, but at higher computational cost
and reduced confidence stability. In contrast, YOLO-based models provide highly ef-
ficient and predictable behavior, combining very high throughput with strong speci-
ficity, making them well suited for resource-constrained deployment.

Beyond architecture, data composition proves to be the dominant factor for gen-
eralization. Models trained on full-procedure video generalize robustly to external
datasets, whereas models trained on curated clips fail under procedural variability.
Further, detector performance is highly dependent on the chosen evaluation abstrac-
tion. Models that appear competitive under detection-level metrics can behave very
differently once predictions are aggregated temporally or constrained by fixed false-
positive budgets. As a result, conclusions drawn from still-image or frame-isolated
evaluations do not necessarily translate to full-procedure deployment. Future re-
search and benchmarking efforts must therefore explicitly define operating points,
aggregation rules, and dataset composition to enable meaningful comparison and to
better reflect clinical requirements.

However, various challenges remain for clinical translation. The analysis of temporal
dynamics shows that all evaluated architectures struggle to reliably detect lesions
across several frames during the initial seconds of appearance, particularly when
polyps are small or distant. This latency, often masked by aggregate metrics, points
to a limitation in current single-frame detection paradigms.

In summary, this thesis shows that progress toward robust, clinically applicable
polyp detection depends not only on architectural advances, but more fundamen-
tally on realistic data, transparent evaluation protocols, and metrics that capture
temporal behavior under true procedural conditions.
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A Appendix

A.1 Evolution of YOLO Architectures

Table 15 summarizes the key architectural and methodological advancements intro-
duced across major YOLO versions, highlighting how design choices have progres-
sively shifted toward improved efficiency, training stability, and deployment flexibil-
ity.

Table 14 indicates that recent progress is focused more in reducing parameter counts
and computational complexity while maintaining comparable detection accuracy,
enabling deployment on smaller or resource-constrained devices. Given the rapid
release cycle of approximately two YOLO versions per year, older models remain
relevant when robustness or deployment constraints are more important than minor
performance gains.

Table 14: Evolution of YOLO architectures and performance on the COCO (2017)
benchmark.

Model mAP50:95 mAP50 Params [M] FLOPs [G]

YOLOv2 (COCO 2015) 21.6 44.0 – –

YOLOv3 (COCO 2015) 33.0 57.9 – –

YOLOv4 38.9 60.7 12.0 –

YOLOv5m 45.4 64.1 21.2 49.0

YOLOXm 46.4 65.4 25.3 73.8

YOLOv6m 49.5 66.8 34.3 82.2

YOLOv7m 51.4 69.7 36.9 104.7

YOLOv8m 50.2 67.2 25.9 78.9

YOLOv9m 51.4 68.1 20.0 76.3

YOLOv10m 51.1 68.1 15.4 59.1

YOLOv11m 51.5 68.5 20.1 68.0
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Table 15: Key architectural and methodological advancements across successive
YOLO versions.

Model Main Advancements

YOLOv2 (Redmon and Farhadi, 2016) introduces the DarkNet-19 CNN back-
bone, batch normalization, anchor boxes via K-means clustering,
multi-scale training and ImageNet-pretrained classifier for improved
feature extraction and convergence.

YOLOv3 (Redmon and Farhadi, 2018) uses the DarkNet-53 backbone with
residual connections creating three output layers of different spatial
resolutions, Feature Pyramid Network-style multi-scale prediction,
multi-label classification with cross-entropy loss and improved small-
object detection.

YOLOv4 (Bochkovskiy et al., 2020) adapts the CSPDarknet53 backbone based
on CSPNet, improving gradient flow by splitting feature maps into
parallel learning and propagation paths (Sapkota et al., 2025), inte-
grates Spatial Pyramid Pooling (SPP) and Path Aggregation Net-
work (PANet) for cross-level feature fusion, and introduces mosaic
data augmentation combining four images into different contexts to
enable more stable training.

YOLOv5 (Jocher, 2020) transitions from the Darknet framework to PyTorch,
improving modularity and deployment, and introduces SPPF (fast
SPP) for efficient multi-scale context aggregation.

YOLOX (Ge et al., 2021) introduces anchor-free detection, decoupled clas-
sification and regression heads, and simplified label assignment to
improve generalization and reduce anchor-related heuristics.

YOLOv6 (Li et al., 2023) is designed for edge and mobile deployment and in-
troduces the EfficientRep backbone derived from RepVGG, enabling
parallel computation and efficient structural reparameterization.

YOLOv7 (Wang et al., 2022) proposes the Efficient Layer Aggregation Network
(ELAN) and Efficient-ELAN to improve gradient flow under model
scaling, together with a unified scaling strategy across depth, width,
and resolution.

YOLOv8 (Jocher et al., 2023) employs C2f (Cross-Stage Partial with two convo-
lutions) backbone modules, optimizes bounding-box regression using
CIoU loss, and adopts a simplified detection head with binary cross-
entropy classification.

YOLOv9 (Wang and Liao, 2024) uses Programmable Gradient Information
(PGI) as an additional supervision mechanism to mitigate infor-
mation loss during deep feature transformations, and proposes the
GELAN backbone combining ELAN and CSPNet principles to im-
prove parameter efficiency.

YOLOv10 (Wang et al., 2024) removes non-maximum suppression at inference
via a consistent dual-label assignment strategy that combines one-to-
many supervision during training with one-to-one matching at infer-
ence time.
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A.2 Dataset Supplementary Information

Table 16: Total and per Split frame resolution distribution in REAL-Colon.

Resolution Train Val Test Total
1352×1080 1,133,606 183,814 344,318 1,661,738
1350×1080 247,807 0 56,272 304,079
1248×959 115,788 72,938 45,347 234,073
1162×1007 147,058 0 36,869 183,927
1244×1080 74,584 0 54,167 128,751
1246×1080 24,491 42,420 0 66,911
1164×1034 0 0 54,674 54,674
1164×1010 0 48,470 0 48,470
1158×1008 29,108 0 0 29,108
1160×1052 0 23,527 0 23,527
1158×1024 22,465 0 0 22,465

Table 17: Frame resolution per Institution (001-004) in REAL-Colon.

Resolution 001 002 003 004 Total
1352×1080 504,894 0 1,156,844 0 1,661,738
1350×1080 0 304,079 0 0 304,079
1248×959 0 234,073 0 0 234,073
1162×1007 0 0 0 183,927 183,927
1244×1080 0 0 0 128,751 128,751
1246×1080 42,420 0 0 24,491 66,911
1164×1034 0 0 0 54,674 54,674
1164×1010 0 0 0 48,470 48,470
1158×1008 0 0 0 29,108 29,108
1160×1052 0 0 0 23,527 23,527
1158×1024 0 0 0 22,465 22,465
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Table 18: REAL-Colon inside-patient frame ranges per video. Only frames with
image IDs within the listed interval were retained

Video Range Video Range Video Range

1 1 920–45137 1 2 1620–25974 1 3 1967–39372

1 4 850–45385 1 5 360–28544 1 6 786–48217

1 7 1050–37920 1 8 1165–34891 1 9 2031–39884

1 10 2075–46215 1 11 380–23390 1 12 530–40842

1 13 1996–22417 1 14 347–28711 1 15 910–30831

2 1 1–25421 2 2 414–24916 2 3 1–47191

2 4 1–30537 2 5 70–40342 2 6 670–52180

2 7 989–49622 2 8 568–32638 2 9 1447–28957

2 10 312–25540 2 11 420–37747 2 12 1–33739

2 13 330–22515 2 14 785–55308 2 15 583–20772

3 1 415–51456 3 2 990–49874 3 3 12240–105451

3 4 6342–75787 3 5 4980–122040 3 6 4478–102060

3 7 6932–58000 3 8 1702–50387 3 9 1071–58101

3 10 452–55736 3 11 1617–62313 3 12 1041–96306

3 13 773–73379 3 14 2427–75752 3 15 2757–110858

4 1 699–25264 4 2 687–34245 4 3 1491–33222

4 4 583–33629 4 5 298–21781 4 6 326–40377

4 7 593–28828 4 8 1145–22604 4 9 1600–30189

4 10 925–23927 4 11 786–48100 4 12 1338–22971

4 13 1300–54128 4 14 459–36698 4 15 327–53698
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Figure 20: Lesion-level and preparation characteristics in the REAL-Colon dataset
summarized.
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Figure 21: Lesion-level and preparation characteristics in the REAL-Colon dataset
per split.
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Table 19: SUN dataset: Case-level image counts and assigned data split. Positive
cases have IDs 0-100 and negative cases 101-113.

Cases 1–57 Cases 58–113

Case ID Type Split #Images Case ID Type Split #Images

1 POS train 527 58 POS train 267

2 POS train 1313 59 POS train 646

3 POS train 292 60 POS train 146

4 POS train 80 61 POS train 679

5 POS train 930 62 POS train 351

6 POS train 491 63 POS train 632

7 POS train 315 64 POS train 81

8 POS train 256 65 POS train 222

9 POS train 136 66 POS train 1685

10 POS train 436 67 POS train 191

11 POS train 113 68 POS train 1319

12 POS train 538 69 POS train 130

13 POS train 479 70 POS train 264

14 POS train 1183 71 POS val 1021

15 POS train 487 72 POS val 774

16 POS train 199 73 POS val 1285

17 POS train 304 74 POS val 276

18 POS train 243 75 POS val 343

19 POS train 96 76 POS val 343

20 POS train 3159 77 POS val 215

21 POS train 100 78 POS val 267

22 POS train 314 79 POS val 76

23 POS train 182 80 POS val 1192

24 POS train 973 81 POS test 427

25 POS train 338 82 POS test 111

26 POS train 370 83 POS test 795

27 POS train 249 84 POS test 218

28 POS train 195 85 POS test 1393

29 POS train 377 86 POS test 257

30 POS train 224 87 POS test 454

31 POS train 183 88 POS test 249

32 POS train 981 89 POS test 149

33 POS train 594 90 POS test 479

34 POS train 245 91 POS test 1061

35 POS train 1212 92 POS test 391

36 POS train 815 93 POS test 452

37 POS train 448 94 POS test 136

38 POS train 509 95 POS test 606

39 POS train 713 96 POS test 301

40 POS train 159 97 POS test 431

41 POS train 108 98 POS test 170

42 POS train 268 99 POS test 161

43 POS train 260 100 POS test 188

44 POS train 745 101 NEG train 9960

45 POS train 383 102 NEG test 10073

46 POS train 170 103 NEG train 7152

47 POS train 705 104 NEG train 14635

48 POS train 176 105 NEG train 7916

49 POS train 181 106 NEG val 17046

50 POS train 740 107 NEG test 5636

51 POS train 1737 108 NEG train 2568

52 POS train 207 109 NEG train 9522

53 POS train 245 110 NEG train 7086

54 POS train 345 111 NEG test 4832

55 POS train 700 112 NEG val 6799

56 POS train 248 113 NEG test 6328

57 POS train 326

Total positive images 49,136 Total negative images 109,553

Total images 158,689
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A.3 Discussion

A.3.1 Baseline Experiment

Additional detection metrics and frame metrics calculated at a confidence per seed.
For each seed (0, 42, 123), confidences for Faster R-CNN (0.10, 0.20, 0.26), and
RT-DETR (0.32, 0.20, 0.32) are selected. The YOLO model confidences remain the
earlier specified ones (0.06 for YOLOv8 and 0.05 for YOLOv11) across all seeds.

Table 20: Detection-level performance using multiple confidence thresholds.

Metric Faster R-CNN YOLOv8 YOLOv11 RT-DETR

Confidence 0.20

precision 0.524± 0.086 0.701± 0.022 0.715± 0.011 0.398± 0.095

recall 0.463± 0.066 0.508± 0.022 0.453± 0.004 0.720± 0.041

Confidence Faster R-CNN: 0.20, YOLOv8: 0.06 YOLOv11: 0.05, RT-DETR: 0.30

precision 0.524± 0.086 0.523± 0.029 0.516± 0.017 0.577± 0.094

recall 0.463± 0.066 0.605± 0.030 0.573± 0.009 0.651± 0.049

Confidence per seed

precision 0.505± 0.012 0.523± 0.029 0.516± 0.017 0.537± 0.027

recall 0.470± 0.055 0.605± 0.030 0.573± 0.009 0.669± 0.006

Table 21: Frame-level performance using confidence thresholds per seed.

Metric Faster R-CNN YOLOv8 YOLOv11 RT-DETR

Confidence Faster R-CNN: 0.20, YOLOv8: 0.06 YOLOv11: 0.05, RT-DETR: 0.30

sensitivity / TPR 0.463± 0.066 0.605± 0.030 0.573± 0.009 0.651± 0.049

specificity 0.954± 0.017 0.956± 0.006 0.957± 0.003 0.957± 0.017

FPR 0.046± 0.017 0.044± 0.006 0.043± 0.003 0.043± 0.017

Precision 0.637± 0.086 0.698± 0.023 0.693± 0.020 0.723± 0.070

F1 score 0.532± 0.047 0.648± 0.015 0.627± 0.013 0.681± 0.001

F2 score 0.488± 0.057 0.621± 0.024 0.594± 0.011 0.662± 0.031

Confidence per seed

sensitivity 0.470± 0.055 0.605± 0.030 0.573± 0.009 0.669± 0.006

specificity 0.953± 0.003 0.956± 0.006 0.957± 0.003 0.952± 0.001

fpr 0.047± 0.003 0.044± 0.006 0.043± 0.003 0.048± 0.001

precision 0.625± 0.039 0.698± 0.023 0.693± 0.020 0.702± 0.005

F1 score 0.536± 0.050 0.648± 0.015 0.627± 0.013 0.685± 0.003

F2 score 0.494± 0.054 0.621± 0.024 0.594± 0.011 0.675± 0.005
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Figure 22: FROC curves for the evaluated detectors. From left to right: YOLO-
based models (YOLOv8 and YOLOv11), RT-DETR, and Faster R-CNN.

The FROC curves are shown separately because the achievable false positives per
image (FPPI) range differs substantially between models. Some detectors reach
FPPI values that other models never attain, making a single combined plot mis-
leading due to axis compression and loss of detail in the relevant operating regions.
The 100 detections per frame match the restricted maximal detections for the RT-
DETR output. The architecture always returns this fixed set, and typically only a
small subset of predictions contains high confidence scores meaningful for analysis.
For the other models the values are lower as predictions are pre-filtered using NMS.
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A.3.2 Lesion Analysis

Lesion 7 (SSL)

Lesion 14 (SSL)

Lesion 21 (TSA)

Figure 23: Visual examples of histological subtypes in the test set (including both
sessile serrated lesions (SSL), and a traditional serrated adenoma (TSA))
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Alexander Meining, and Alexander Hann. A video based benchmark data set (en-
dotest) to evaluate computer-aided polyp detection systems. Scandinavian Jour-
nal of Gastroenterology, 57(11):1397–1403, 2022. doi: 10.1080/00365521.2022.
2085059. URL https://doi.org/10.1080/00365521.2022.2085059. PMID:
35701020.

Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding
yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021. URL https://arxiv.

org/abs/2107.08430.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable fea-
ture pyramid architecture for object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 7036–7045, 2019.

Ross Girshick. Fast r-cnn. In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1440–1448, 2015. doi: 10.1109/ICCV.2015.169.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In 2014
IEEE Conference on Computer Vision and Pattern Recognition, pages 580–587,
2014. doi: 10.1109/CVPR.2014.81.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial Pyramid
Pooling in Deep Convolutional Networks for Visual Recognition, page 346–361.
Springer International Publishing, 2014. ISBN 9783319105789. doi: 10.1007/
978-3-319-10578-9 23.

Xin He and Eric C. Frey. ROC, LROC, FROC, AFROC: An Alphabet Soup. Journal
of the American College of Radiology, 6(9):652–655, sep 2009. ISSN 1546-1440.
doi: 10.1016/j.jacr.2009.06.001.

Priyanto Hidayatullah, Nurjannah Syakrani, Muhammad Rizqi Sholahuddin, Trisna
Gelar, and Refdinal Tubagus. Yolov8 to yolo11: A comprehensive architecture
in-depth comparative review, 2025. URL https://arxiv.org/abs/2501.13400.

Sae Hwang, JungHwan Oh, Wallapak Tavanapong, Johnny Wong, and Piet C.
de Groen. Polyp detection in colonoscopy video using elliptical shape feature.
In 2007 IEEE International Conference on Image Processing, volume 2, pages II
– 465–II – 468, 2007. doi: 10.1109/ICIP.2007.4379193.

https://doi.org/10.1080/00365521.2022.2085059
https://arxiv.org/abs/2107.08430
https://arxiv.org/abs/2107.08430
http://www.deeplearningbook.org
https://arxiv.org/abs/2501.13400


BIBLIOGRAPHY 75

Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, P̊al Halvorsen, Thomas de Lange,
Dag Johansen, and H̊avard D. Johansen. Kvasir-seg: A segmented polyp dataset,
2019. URL https://arxiv.org/abs/1911.07069.

Glenn Jocher. Ultralytics yolov5, 2020. URL https://github.com/ultralytics/

yolov5. Version 5.0.0, AGPL-3.0 license, accessed 15 Nov 2025.

Glenn Jocher and Jing Qiu. Ultralytics yolo11, 2024. URL https://github.com/

ultralytics/ultralytics. Version 11.0.0, AGPL-3.0 license, accessed 15 Nov
2025.

Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolov8, 2023. URL
https://github.com/ultralytics/ultralytics. Version 8.0.0, AGPL-3.0 li-
cense, accessed 15 Nov 2025.

J. Kang and R. Doraiswami. Real-time image processing system for endoscopic
applications. In CCECE 2003 - Canadian Conference on Electrical and Computer
Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436),
volume 3, pages 1469–1472 vol.3, 2003. doi: 10.1109/CCECE.2003.1226181.

Uri Ladabaum, Jason A. Dominitz, Charles Kahi, and Robert E. Schoen. Strategies
for colorectal cancer screening. Gastroenterology, 158(2):418–432, 01 2020. doi:
10.1053/j.gastro.2019.06.043.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2,
pages 2169–2178, 2006. doi: 10.1109/CVPR.2006.68.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

Ji Young Lee, Jinhoon Jeong, Eun Mi Song, Chang Ha, Hye-Jeong Lee, Ja-Eun Koo,
Dong-Hoon Yang, Nam Kim, and Jeong-Sik Byeon. Real-time detection of colon
polyps during colonoscopy using deep learning: systematic validation with four
independent datasets. Scientific Reports, 10(1):8379, May 2020. doi: 10.1038/
s41598-020-65387-1. URL https://doi.org/10.1038/s41598-020-65387-1.
PMID: 32433506; PMCID: PMC7239848.

Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng Cheng, Bo Zhang, Zaidan
Ke, Xiaoming Xu, and Xiangxiang Chu. Yolov6 v3.0: A full-scale reloading, 2023.
URL https://arxiv.org/abs/2301.05586.

Kaidong Li, Mohammad I Fathan, Krushi Patel, Tianxiao Zhang, Cuncong Zhong,
Ajay Bansal, Amit Rastogi, Jean S Wang, and Guanghui Wang. Colonoscopy
polyp detection and classification: Dataset creation and comparative evaluations.
Plos one, 16(8):e0255809, 2021.

https://arxiv.org/abs/1911.07069
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.1038/s41598-020-65387-1
https://arxiv.org/abs/2301.05586


BIBLIOGRAPHY 76

Zijun Liao, Yian Zhao, Xin Shan, Yu Yan, Chang Liu, Lei Lu, Xiangyang Ji, and
Jie Chen. Rt-detrv4: Painlessly furthering real-time object detection with vision
foundation models, 2025. URL https://arxiv.org/abs/2510.25257.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects
in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, ed-
itors, Computer Vision – ECCV 2014, pages 740–755, Cham, 2014. Springer Inter-
national Publishing. ISBN 978-3-319-10602-1. URL https://cocodataset.org/.

Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and
Serge J. Belongie. Feature pyramid networks for object detection. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 936–
944, 2017. URL https://api.semanticscholar.org/CorpusID:10716717.

Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu,
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Ich erkläre hiermit gemäß §9 Abs. 12 APO, dass ich die vorstehende Abschlussarbeit
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tel benutzt habe. Des Weiteren erkläre ich, dass die digitale Fassung der gedruckten
Ausfertigung der Abschlussarbeit ausnahmslos in Inhalt und Wortlaut entspricht
und zur Kenntnis genommen wurde, dass diese digitale Fassung einer durch Soft-
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