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Abstract

Despite advances in computational pathology, a critical limitation persists: the
lack of comprehensive, multi-scanner datasets for gastric histopathology that en-
able robust evaluation of model generalizability. This master’s thesis addresses
this gap by developing the Gastric Slide Database (GSDB), a meticulously anno-
tated dataset comprising 360 whole slide images from 274 patients from two scanner
generations (Pannoramic MIDI I/II). Expert pathologists provided annotations for
anatomical regions (corpus/antrum/intermediate) and inflammation status (non-
inflamed/inflamed), with rigorous quality control protocols leading to 252 patients
with validly annotated slides. Our systematic preprocessing pipeline converts pro-
prietary MRXS files into 59,612 analysis-ready 256×256 pixel tiles within a hierar-
chical organization (slides → clusters → particles → tiles), yielding 3,803 particles
(44.8% corpus, 46.8% antrum, 8.4% other) from 338 slides after validation (58.6%
inflamed, 38.2% non-inflamed, 3.2% other). We implement and evaluate twelve
deep learning models, demonstrating that they achieve within-scanner AUC test
performances ranging from 91.15% to 93.61% particle-level AUC for tissue classifi-
cation and 95.18% to 99.56% slide-level AUC for inflammation classification. Our
comprehensive analyses demonstrate that combining pathology-specific corruptions
with stain color jittering achieves the most balanced performance across classifica-
tion tasks and scanner environments while revealing that tissue morphology features
transfer effectively across scanners. In contrast, inflammation detection suffers sig-
nificant degradation on new scanners. A key methodological contribution is our
systematic evaluation of aggregation strategies, demonstrating that optimizing tile-
to-particle and tile-to-slide prediction aggregation can substantially improve per-
formance and cross-scanner robustness. The GSDB’s multi-scanner design enables
critical investigations into generalizability challenges, enabling scanner-agnostic di-
agnostics for clinical deployment.
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1 INTRODUCTION 1

1 Introduction

1.1 Motivation of the Thesis

In recent years, computational pathology has gained significant traction, especially
with the advent of AI-based models for medical image classification (Cui and Zhang,
2021). While much progress has been made in cancer diagnostics, a gap in the auto-
mated classification of other diseases such as gastric conditions, remains. Gastritis,
potentially affecting over half of the world’s population (Sipponen and Maaroos,
2015), poses a considerable challenge in pathology, in terms of diagnosis and treat-
ment decisions. The growing workload on pathologists requires more efficient solu-
tions. As WSIs (whole slide images) become integral to pathology workflows, devel-
oping reliable AI models to classify these images can enhance diagnostic precision
and reduce time spent on repetitive tasks.

Building upon the foundation laid by previous works, particularly Hempel’s (2023)
Bachelor’s thesis on dataset development and initial classification models and
Höfling’s (2023) Master’s thesis on improving classification algorithms, this thesis
seeks to push forward the classification of gastric tissue, focusing on distinguishing
anatomical regions and detecting inflammation in WSIs. This work also aims to
refine data preprocessing, tile-based classification approaches, and model general-
ization issues, as identified in previous research.

1.2 Objectives of the Thesis

The primary objective of this thesis is to develop a comprehensive dataset and
baseline model for the classification of gastric tissue in WSIs. The focus is on two key
classifications: the anatomical regions of the stomach (antrum and corpus) and the
presence of inflammation. Leveraging deep learning models aims to build upon the
prior proof-of-concept models and achieve greater generalizability and aggregated
test accuracies. This thesis will explore:

• Creation of a robust dataset comprising high-resolution WSI tiles annotated
for both anatomical regions and inflammation status.

• Development and tuning of deep learning models, including experimentation
with architectures, hyperparameters, and threshold strategies.

• Improvement of tile-based classification.

• Addressing cross-scanner generalizability.

• Ensuring the reproducibility of experiments and developing a baseline that
can be extended in future research.
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2 Background

2.1 Prior Research Foundation

The methodologies and approaches presented in this work are built upon a founda-
tion of prior research in gastric histopathology analysis. Significant contributions to
this field have been made through systematic investigations at the Otto-Friedrich-
University Bamberg in collaboration with clinical experts at Klinikum Nürnberg.
The initial digitization protocols, annotation frameworks, and quality control mea-
sures established by Hempel (2023) provided the essential infrastructure for whole-
slide image processing in gastric tissue analysis. Subsequently, Höfling (2023) ad-
vanced these methodologies with refined neural network architectures, targeted data
augmentation strategies, and systematic hyperparameter optimization techniques
specific to gastric tissue classification.

The technical details of these previous investigations, including their architectural in-
novations and methodological contributions, are thoroughly examined in Section 3.1.
The present thesis systematically addresses specific limitations identified in prior
works, particularly focusing on looking into cross-scanner generalizability, improv-
ing dataset quality, and increasing the accuracy of deep learning models across two
different scanners.

2.2 Whole Slide Imaging in Computational Pathology

Whole slide imaging has transformed the field of pathology by enabling the digiti-
zation of entire tissue slides at high resolution, mirroring the impact digital imaging
had on radiology over the past three decades (Griffin and Treanor, 2017). This
digitization has led to significant advancements in computational pathology, where
researchers apply machine learning models to analyze and classify histopathological
images for tasks such as tumor detection, tissue morphology analysis, and disease
diagnosis (Aeffner et al., 2019). The integration of WSI into clinical workflows
promises to enhance diagnostic accuracy, reproducibility, and efficiency across mul-
tiple disease domains.

However, whole slide imaging presents unique computational challenges due to the
extreme resolution of digitized slides, which often reach dimensions of hundreds of
thousands of pixels. These WSI require specialized approaches for efficient pro-
cessing (Koohbanani et al., 2021). Analyzing such large images typically requires
breaking them down into smaller tiles, enabling efficient memory management dur-
ing both the training of deep learning models and inference. Furthermore, the size of
WSI datasets leads to substantial demands for data storage infrastructure and com-
putational resources, creating barriers for implementation in resource-constrained
settings.

In gastric pathology specifically, whole slide imaging facilitates critical diagnos-
tic tasks such as distinguishing between different anatomical regions (corpus and
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antrum) and identifying inflammatory conditions. These distinctions are essential
for accurate diagnosis of conditions including gastritis, gastric cancer, and other
gastroenterological diseases (Rugge et al., 2011; Banks et al., 2019). The ability
to digitally analyze tissue characteristics enhances consistency in classification and
enables more quantitative assessment of disease features, potentially improving di-
agnostic accuracy and treatment planning (Obuchowicz et al., 2024).

The development of robust computational models for WSI analysis depends fun-
damentally on comprehensive, well-annotated datasets. Creating such datasets in-
volves multiple preprocessing steps, including converting proprietary formats (such
as MRXS) into standard formats, generating tiles at appropriate magnifications,
and implementing downsampling strategies for classification tasks. These prepro-
cessing pipelines must address several critical challenges, including ensuring dataset
consistency across multiple scanners, managing class imbalance in pathology data,
and developing models that generalize across institutions and patient populations.
The quality and breadth of training data ultimately determine the clinical utility of
computational pathology systems in gastric tissue analysis and beyond (Hu et al.,
2022).

3 Related Work

This section examines relevant literature and previous research efforts in computa-
tional pathology, particularly emphasizing methodologies applicable to gastric tissue
analysis. We begin by analyzing foundational work that preceded this study, followed
by an examination of public benchmark datasets and state-of-the-art approaches in
histopathological image analysis.

3.1 Previous Work in the Research Group

This work builds upon two previous theses (Hempel, 2023; Höfling, 2023) conducted
at the Chair of Explainable Machine Learning at Otto-Friedrich-University Bamberg
in collaboration with the Klinikum Nürnberg.

3.1.1 Initial Dataset Development and Proof-of-Concept Models

The foundational work by Hempel (2023) established one of the first comprehen-
sive frameworks for gastric tissue classification using digital pathology, addressing
a significant gap in computational pathology research. Prior to this work, most
digital pathology research focused on cancer detection (Hu et al., 2021; Sakamoto
et al., 2020; Bera et al., 2019; Ehteshami Bejnordi et al., 2017; Nero et al., 2022),
with limited attention to gastric tissue classification despite its clinical relevance.
In collaboration with expert pathologists at the Klinikum Nürnberg, Hempel (2023)
developed a carefully curated dataset of digitized slides specifically designed for gas-
tric tissue analysis. This dataset comprised 270 slides digitized at 20x magnification
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using a Pannoramic MIDI I scanner (3DHISTECH Ltd., Budapest, Hungary), rep-
resenting a diverse spectrum of tissue types and pathological conditions essential for
robust model development.

A significant contribution of this work was the systematic annotation protocol de-
veloped through iterative refinement with senior pathologists. This protocol delin-
eated anatomical regions (antrum, corpus, intermediate) and inflammatory states
(inflamed/non-inflamed), with clearly defined criteria for each classification cate-
gory. The annotation methodology incorporated robust quality control measures,
including multi-reviewer validation and standardized classification criteria (Hempel,
2023). This meticulous approach to annotation provided a reproducible founda-
tion for subsequent machine learning applications and addressed a key challenge in
developing reliable ground truth for algorithm training.

The preprocessing pipeline introduced several methodological innovations for effi-
cient slide analysis. Raw slides were systematically processed using a tile-based ap-
proach, extracting 256×256 pixel segments with 64-pixel overlap to maintain spatial
context while managing the computational challenges posed by gigapixel-sized WSIs.
Unlike many studies that use non-overlapping tiles, this approach preserved impor-
tant contextual information at tile boundaries. A comprehensive quality assessment
framework filtered artifacts and non-informative regions through automated tissue
content validation (threshold >10% tissue content per tile). The final preprocessed
dataset contained approximately 34,000 annotated tiles across both classification
tasks, representing one of the larger annotated datasets for gastric tissue analysis.

Initial deep learning models demonstrated promising results in both classification
tasks. The tissue classification model achieved a tile-level area under the receiver
operating characteristic curve (AUC) of 0.95 on the test set, while inflammation
detection reached a tile-level AUC of 0.98. Perfect classification accuracy was ob-
served at the slide-level for inflammation detection, though as the authors noted,
these results warrant careful interpretation given the limited test set size (n=20
slides). These initial results, while preliminary, suggested the viability of auto-
mated gastric tissue classification and laid the groundwork for more sophisticated
approaches. However, the study also identified several limitations requiring fur-
ther research, including larger test sets, more diverse training data, and improved
handling of intermediate tissue types and subtle inflammation patterns.

3.1.2 Advanced Model Development and Dataset Refinement

Building upon the initial dataset framework, Höfling (2023) introduced substantial
methodological improvements in both model architecture and evaluation approaches.
This work focused on enhancing the robustness and clinical applicability of auto-
mated gastric tissue classification systems.

The study applied a systematic approach to address class imbalance, which was
particularly pronounced in the inflammation detection task (62.67% inflamed vs.
37.33% non-inflamed in the training set). A combination of weighted loss func-
tions and strategic data augmentation techniques was employed, including rotation



3 RELATED WORK 5

(90°, 180°, 270°), random flips, and controlled color perturbations to improve model
generalization.

Architectural innovations were introduced by implementing two distinct ResNet18-
based models, each optimized for their respective classification tasks. The tissue
classification model incorporated a novel probabilistic averaging approach for tile
aggregation, achieving a validation accuracy of 87.80% while maintaining compu-
tational efficiency. The inflammation classification model demonstrated improved
performance by integrating cross-entropy loss with class-specific weights, reaching a
validation accuracy of 92.41%.

Performance metrics demonstrated that the tissue classification model achieved con-
sistent performance across different anatomical regions, with a tile-level F1 score of
90.11% on the test-set. For inflammation status classification, the model reached an
accuracy of 72.73% at the tile-level on the test-set and maintained high consistency
in slide-level predictions (94.74% accuracy) on the test-set.

The study introduced a systematic approach to hyperparameter optimization, em-
ploying grid search across learning rates (10-4 to 10-2) and batch sizes (16 to 128).
This methodical optimization resulted in more stable training dynamics and im-
proved convergence characteristics compared to previous implementations.

Despite advancements laying crucial groundwork for clinical deployment consider-
ations, several challenges remained unaddressed. In particular, the need for multi-
scanner validation and larger-scale clinical validation were identified as critical areas
for future investigation. The work also highlighted the importance of developing
more sophisticated approaches to handling ambiguous cases and intermediate tissue
types.

3.2 Public Pathology Benchmark Datasets

The availability of public benchmark datasets has significantly advanced the devel-
opment of robust deep learning models for histopathology analysis. These datasets
facilitate fair comparisons between algorithms and accelerate progress in computa-
tional pathology by enabling researchers to build upon prior work. This Section
reviews key benchmark datasets that have influenced the field, particularly those
relevant to gastric histopathology.

3.2.1 CAMELYON Challenges

The CAMELYON challenges represent pivotal efforts in standardizing the evaluation
of deep learning algorithms for computational pathology. These challenges have
established rigorous benchmarks for metastasis detection in histological images and
have significantly advanced the field.
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CAMELYON16 The CAMELYON16 challenge (CAncer MEtastases in LYmph
nOdes challeNge) focused on the automated detection of breast cancer metastases
in WSIs of lymph nodes (Ehteshami Bejnordi et al., 2017). This landmark chal-
lenge provided 399 WSIs (270 training, 129 testing) from two medical centers in the
Netherlands, with exhaustive pixel-level annotations of metastatic regions.

The challenge demonstrated that deep learning algorithms could achieve perfor-
mance comparable to or exceeding that of expert pathologists in this specific task.
The winning algorithm achieved an AUC of 0.994 for slide-level classification, sur-
passing the average performance of a panel of 11 pathologists operating under time
constraints (mean AUC of 0.810) and approaching that of a pathologist with unlim-
ited time (AUC of 0.966) (Ehteshami Bejnordi et al., 2017).

Key methodological insights from CAMELYON16 included the importance of patch-
based analysis for processing gigapixel whole-slide images, effective handling of color
variation between scanning centers, and strategies for reducing false positives. The
challenge established that convolutional neural networks, particularly those with
residual connections, were particularly effective for histopathological image analysis.

CAMELYON17 CAMELYON17 extended the scope of its predecessor by ad-
dressing more clinically relevant tasks (Bandi et al., 2019; Litjens et al., 2018). While
CAMELYON16 focused on the binary classification of individual slides, CAME-
LYON17 aimed to classify the pathologic lymph node status (pN-stage) at the pa-
tient level, which more closely mirrors clinical practice. The challenge introduced
several important advances:

• Multi-slide analysis: Each patient case included multiple WSIs, requiring
algorithms to integrate information across slides.

• Broader classification scope: The challenge included isolated tumor cells
(ITCs), which were excluded from CAMELYON16, creating a more complete
clinical scenario.

• Increased diversity: Data from five medical centers (versus two in CAME-
LYON16) better represented real-world slide preparation and scanning proto-
cols variation.

• Expanded dataset: The dataset size increased to 1,000 WSIs, enabling more
robust model development and evaluation.

The results of CAMELYON17 revealed both progress and persistent challenges. The
best-performing algorithm achieved a quadratic-weighted kappa score of 0.8993, indi-
cating substantial agreement with pathologist assessments. However, all algorithms
struggled with reliably identifying isolated tumor cells, with detection rates below
40%. Simple combinations of the top algorithms resulted in better performance
than any individual system (Bandi et al., 2019), suggesting the value of ensemble
approaches in this domain.



3 RELATED WORK 7

The CAMELYON challenges have established benchmark methodologies and datasets
that continue to influence computational pathology research, particularly in tumor
detection, slide-level classification, and integration of multi-slide information.

3.2.2 Prov-GigaPath: A Foundation Model for Digital Pathology

A significant advancement in computational pathology was recently introduced by
Xu et al. (2024) with Prov-GigaPath, a foundation model pre-trained on an un-
precedented scale of histopathological data. The model was trained on 1.3 billion
256×256 pixel image tiles derived from 171,189 WSIs, spanning 31 major tissue
types from over 30,000 patients. This extensive dataset, Prov-Path, is one of the
largest histopathology datasets to date.

The model consists of two main components:

• A tile encoder that processes individual 256×256 pixel tiles to extract local
features.

• A slide encoder based on the LongNet architecture that aggregates information
across the entire slide, capable of handling up to 70,121 tiles per slide.

Prov-GigaPath represents a breakthrough in foundation model development for com-
putational pathology, with several key innovations:

• Scale and coverage: The unprecedented scale of training data offers compre-
hensive coverage of histopathological variations across multiple cancer types
and tissue sites.

• Multi-scale integration: The model effectively integrates information from
local cellular patterns to global tissue architecture.

• Transfer learning capabilities: Pre-trained representations demonstrate
strong transfer learning potential for downstream tasks with limited labeled
data.

• Cross-domain generalization: Strong performance across diverse tissue
types and scanning protocols suggests robust generalization capabilities.

Notably, the model achieved state-of-the-art performance across 25 out of 26 eval-
uation tasks, including cancer subtyping and mutation prediction. For pathology
tasks similar to our gastric tissue classification, Prov-GigaPath demonstrated signif-
icant improvements over previous methods, particularly in capturing complex tissue
patterns and their spatial relationships.

The introduction of Prov-GigaPath represents a paradigm shift similar to what oc-
curred in natural language processing with large language models, suggesting that
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foundation models trained on massive histopathology datasets can provide power-
ful representations that generalize across a wide range of downstream tasks. This
approach is particularly promising for areas such as gastric histopathology, where
labeled data is limited but the patterns have commonalities with other epithelial
tissues Xu et al. (2024).

3.2.3 GasHisSDB: A Public Benchmark Dataset

GasHisSDB (Hu et al., 2021), a pioneering public dataset for gastric histopathology
image classification, influenced the development of our dataset and methodology.
GasHisSDB demonstrated several key principles that informed our approach:

Dataset Organization: GasHisSDB introduced a hierarchical approach to or-
ganizing histopathological data, structuring 245,196 sub-size images into multiple
resolutions (160×160, 120×120, and 80×80 pixels). While we adopted a similar
hierarchical organization, our work extends this concept by using a fixed tile size of
256×256 pixels to better balance resolution and computational efficiency. We fur-
ther enhanced this approach by implementing a 64-pixel overlap between adjacent
tiles to maintain spatial context and developing a more stringent tissue content val-
idation process requiring >90% tissue content compared to GasHisSDB’s less strict
criteria.

Classification Tasks: GasHisSDB focused on binary classification between nor-
mal and abnormal tissue samples. Our work builds upon this foundation by ex-
panding to specific anatomical classification (antrum vs. corpus), adding dedicated
inflammation detection capabilities, and implementing a more granular annotation
system at the particle-level that enables hierarchical prediction aggregation.

Model Evaluation: The evaluation framework in GasHisSDB demonstrated the
importance of comprehensive model assessment. Their work showed performance
variations across different architectures, with traditional machine learning meth-
ods achieving 86.08% accuracy, deep learning approaches reaching 96.47% accuracy,
and Vision Transformers showing promise despite requiring longer training periods.
Our work extends this evaluation framework by systematically comparing multiple
modern architectures and assessing cross-scanner generalization capabilities.

These findings influenced our model selection and evaluation strategy, particularly
our focus on state-of-the-art architectures like ConvNeXt, implementation of robust
cross-validation procedures, and scanner-specific evaluations to assess real-world de-
ployment challenges.
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3.2.4 HMU-GC-HE-30K: A Histological Dataset for Gastric Cancer

Another significant recent contribution to the field is the HMU-GC-HE-30K dataset
by Lou et al. (2025), which provides a comprehensive collection of gastric cancer
histological images with detailed tumor microenvironment (TME) annotations. This
dataset addresses a critical gap in gastric cancer research, as the TME plays a crucial
role in disease progression and treatment response.

The dataset comprises nearly 31,000 histological image patches extracted from 300
WSIs of gastric cancer patients. A distinguishing feature of this dataset is its com-
prehensive annotation of eight distinct tissue classes within the tumor microenvi-
ronment:

• Adipose tissue (ADI)

• Debris (DEB)

• Lymphocyte aggregates (LYM)

• Mucus (MUC)

• Muscle (MUS)

• Normal mucosa (NOR)

• Stroma (STR)

• Tumor epithelium (TUM)

This granular annotation approach provides significant advantages over previous
datasets like GasHisSDB, which offered only binary classification (normal/abnor-
mal). The detailed TME classification enables a more sophisticated analysis of
histological patterns and their relationship to clinical outcomes.

An additional strength of HMU-GC-HE-30K is the inclusion of comprehensive clin-
ical data for each patient, including demographic information, TNM staging, histo-
logical type, Lauren classification, and various invasion parameters. This histological
and clinical data integration facilitates research into clinically relevant biomarkers
and prognostic factors.

The dataset has been validated through the development of two deep learning mod-
els: a Transformer-based architecture (ViT) and a CNN-based model (EfficientNet).
Both achieving high classification performance (AUC of 0.94 and 0.96, respectively)
across the eight tissue classes. This demonstrates the utility of the dataset for
developing and evaluating computational pathology algorithms.
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3.3 Machine Learning Methods in Medical Imaging

While benchmark datasets provide essential resources for model development and
evaluation, selecting appropriate machine learning methodologies is equally cru-
cial for advancing computational pathology applications. The evolution of these
methods has significantly influenced how histopathological images are analyzed and
interpreted.

A comprehensive review by Husain et al. (2024) systematically analyzed the appli-
cation of different machine learning algorithms across diverse medical imaging con-
texts, highlighting several key findings directly relevant to computational pathology.
The review emphasized the importance of comprehensive evaluation using multiple
metrics rather than relying on accuracy alone, which can be particularly mislead-
ing in scenarios with imbalanced datasets, a common challenge in pathology where
certain tissue types or pathological conditions may be underrepresented. The com-
bination of accuracy with AUC was found to provide a more complete assessment of
model performance, allowing for better evaluation of sensitivity-specificity tradeoffs
that are critical in medical diagnostic contexts.

The effectiveness of different ML architectures was found to vary significantly based
on the imaging modality and the specific medical condition being analyzed. For
histopathology specifically, convolutional neural networks (CNNs) consistently demon-
strated superior performance, achieving 95-99% accuracy in various tissue classifi-
cation tasks. Among CNN variants, residual networks (ResNets) and densely con-
nected networks (DenseNets) showed particular promise due to their ability to learn
hierarchical features while mitigating the vanishing gradient problem in deep archi-
tectures.

Beyond architecture selection, the review highlighted the importance of appropriate
preprocessing steps and data augmentation techniques specific to histopathological
images. Color normalization, in particular, was identified as a critical preprocessing
step for handling stain variation across slides from different laboratories or scanning
equipment. Similarly, carefully selected data augmentation strategies were shown
to effectively address the challenge of limited training data, with rotation and color
perturbation proving especially valuable for histopathology applications.

These insights into machine learning methods provide a robust theoretical foun-
dation for our work in gastric tissue classification, informing our choices of model
architecture, evaluation metrics, and preprocessing approaches.

3.4 WSI Preprocessing Methods

Effective preprocessing of WSIs constitutes a critical foundation for computational
pathology applications. These images’ large dimensions necessitate specialized ap-
proaches to transform raw data into analyzable units while preserving diagnostic
information.
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3.4.1 The Tiling Approach for WSI Processing

The tiling approach has emerged as the predominant method for managing computa-
tional challenges posed by WSIs (Xu et al., 2024). Nahhas et al. (2023) established a
systematic protocol for preprocessing WSIs into smaller image patches optimized for
deep-learning workflows. Their methodology first converts WSIs from proprietary
formats (SVS, MRXS, NDPI) to standardized formats, followed by segmentation
into tiles of consistent dimensions. This crucial step enables the analysis of com-
putationally prohibitive gigapixel images while preserving diagnostically relevant
information.

The selection of optimal tile dimensions represents a critical balance between contex-
tual information preservation and computational feasibility. While common dimen-
sions range from 256×256 to 512×512 pixels, the choice depends on the specific di-
agnostic task, available computational resources, and required analytical resolution.
Standardizing the tiling process across datasets ensures consistency in downstream
analysis.

In our implementation, as detailed in Section 4.4, we extract 256×256 pixel patches
using a protocol that includes 64-pixel overlap to preserve contextual continuity at
tile boundaries. This dimension choice builds upon established methodologies from
previous research Höfling (2023); Hempel (2023).

3.4.2 Color Normalization and Artifact Management

Beyond tiling, stain normalization has been recognized as a fundamental prepro-
cessing step. Mahbod et al. (2024) demonstrated that structure-preserving color
normalization methods substantially improve cross-dataset generalization by trans-
forming color distributions of source images to match reference standards while pre-
serving underlying tissue structure. Their research showed that non-deterministic
training with normalization followed by deterministic testing significantly enhanced
model generalization across diverse datasets.

Tellez et al. (2018) developed a novel approach for stain normalization by directly
modifying H&E color channels to create diverse and realistic stain variations. Their
data augmentation strategy and network ensembling resulted in stain-invariant con-
volutional networks for mitosis detection in breast histology. This work demon-
strated that specialized augmentation strategies can significantly reduce general-
ization error when transferring models across different centers without requiring
multicenter training cohorts or conventional stain standardization algorithms.

Di Salvo et al. (2024) established MedMNIST-C, a comprehensive benchmark span-
ning 12 datasets and nine imaging modalities, to evaluate model robustness against
realistic image corruptions. Their research confirmed that domain-specific data aug-
mentation targeting modality-specific artifacts (such as stain variations, blur, and
noise) consistently outperforms generic augmentation methods. This work high-
lights the importance of designing targeted preprocessing strategies that account for
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the unique characteristics of histopathological images. We explore similar domain-
specific augmentation approaches in our research, as detailed in Section 10.4.

Artifact detection and filtering constitute another critical preprocessing component.
Our preprocessing pipeline employs quality assessment through tissue content val-
idation, excluding regions with insufficient diagnostic content. The effectiveness of
such quality control measures is supported by findings from Tellez et al. (2018), who
emphasized the importance of filtering artifacts when building robust histopatho-
logical image analysis systems.

The careful implementation of these preprocessing methods transforms raw histopatho-
logical data into a standardized format suitable for computational analysis while
addressing the unique technical challenges inherent in whole slide imaging. Estab-
lishing a robust preprocessing framework ultimately enhances the reliability and
reproducibility of downstream analytical results.

3.5 Research Gap and Contributions

This review of related work highlights the significant progress made in computational
pathology and the remaining opportunities. While public datasets like CAME-
LYON, GasHisSDB, and HMU-GC-HE-30K have established important benchmarks,
and foundation models like Prov-GigaPath have demonstrated the potential of large-
scale pretraining, the domain of gastric tissue classification, particularly the distinc-
tion of anatomical regions and inflammation states, remains underexplored.

Similarly, while advanced machine learning methods and preprocessing techniques
have shown promise in various histopathological applications, their application to
gastric tissue analysis has been limited. Most existing work focuses on cancer detec-
tion rather than the more routine but clinically important tasks of anatomical region
classification and inflammation assessment, which constitute a significant portion of
pathologists’ daily workload.

Our work addresses these gaps by building upon the initial dataset development
and proof-of-concept models from Hempel (2023) and the methodological advance-
ments from Höfling (2023), while incorporating insights from broader computational
pathology research. We specifically focus on improving gastric tissue classifica-
tion through enhanced dataset curation, architectural innovations, and evaluation
methodologies designed to address the unique challenges of this domain.

The primary contributions of our work include: (1) an expanded and refined dataset
of annotated gastric tissue WSIs, (2) improved deep learning models for anatomical
region and inflammation classification, (3) a systematic evaluation of model per-
formance at both tile and slide-levels, and (4) insights into the potential clinical
applicability of automated gastric tissue classification systems. These contributions
advance the field toward the broader goal of developing practical computational
pathology tools to assist pathologists in routine diagnostic tasks, potentially im-
proving efficiency and consistency in gastric tissue assessment.
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4 Definitions

This Section introduces the key terminology and concepts used throughout this
work, establishing a clear hierarchy from WSIs down to individual tiles.

Whole Slide Image
(Slide 1 1 1 HE)

Cluster
(Cluster 1) Particle

(Particle c5d838e1-[...])
Tile

(Tile 50239 19761)

Figure 1: Progression from slide to individual tiles

4.1 Whole Slide Images

WSIs/Slides are high-resolution digital scans of complete histological glass slides.
The slides are stored in the proprietary MRXS format with dimensions of 103356 x
203931 pixels. Each slide may contain multiple tissue sections, typically requiring
0.5-4GB of storage space. In previous works (Höfling, 2023; Hempel, 2023), 270 slides
were digitized at the Südklinikum Nürnberg using a Pannoramic MIDI I scanner at
20x magnification. In this work, 90 additional slides, digitized at the Südklinikum
Nürnberg using a Pannoramic MIDI II scanner at 20x magnification were added to
the existing dataset.

Three different staining techniques (HE,PAS,MG) were used in the preparation of
the slides, and we will exclusively work with HE-stained slides during this thesis.
More information about staining selection is available in Section 6.2.3.

Slides follow a consistent naming scheme:
[slideID] [patientID] [scanner] [stain].mrxs, for example 70 50 1 HE.mrxs.
Each MRXS file is accompanied by a directory containing auxiliary data files:

• Multiple Data[xxxx].dat files containing image data
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Figure 2: Example slide 1 1 1 HE

• Index.dat for indexing information

• Slidedat.ini containing slide metadata

This naming scheme represents a significant improvement over the initial non-
standardized naming conventions used with the two scanners (detailed in
Appendix A.2). The original naming schemes posed challenges for data organiza-
tion and cross-scanner analysis, necessitating the development of the current unified
system.

For brevity and clarity in subsequent sections, the complete identifier string
[slideID] [patientID] [scanner] [stain] will be denoted as [Slide name] in
all references.

4.2 Clusters

Clusters represent rectangular regions (colored yellow in Figure 3) within a slide
that group together related regions of interest. They serve multiple purposes:

1. Organization of similar tissue sections within a slide

2. Enabling researchers to use one or multiple clusters per slide in future experi-
ments
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Figure 3: Example cluster 1 of slide 1 1 1 HE

Each cluster is defined by its identifier and bounding box coordinates that spec-
ify its spatial extent within the slide. Clusters are stored in JSON format, with
files following the naming convention [slide name] clusters.json. The following
example demonstrates the structure of a cluster file:

1 [

2 {

3 "id": 1,

4 "bounds": {

5 "left": 58477 ,

6 "right": 78791 ,

7 "top": 41783 ,

8 "bottom": 70210

9 }

10 },

11 {

12 "id": 2,

13 "bounds": {

14 "left": 52704 ,

15 "right": 70740 ,

16 "top": 77511 ,

17 "bottom": 102600

18 }

19 },

20 [...]

21 ]

(Example from 270 244 1 PAS clusters.json)

4.3 Particles

A particle represents a distinct slice of gastric tissue within a slide. Particles are
stored as annotations in GeoJSON format using polygonal regions drawn around
areas of interest. They are created either manually or semi-automatically using
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Figure 4: Example particle 5d838e1-8449-4d08-a8f4-7b46a43664b8, located in clus-
ter 1 of slide 1 1 1 HE

specialized annotation software (see Appendix A.4) and stored in files following the
naming convention [slide name] annotations.json.

Each particle is represented as a GeoJSON feature object containing:

• A unique identifier

• Classification metadata including:

– Anatomical region (antrum, corpus, intermediate, or other)

– Inflammation status (inflamed, non-inflamed or other)

• An associated cluster ID

• Geometric boundaries defined by polygon coordinates

The following example illustrates the GeoJSON structure for a single particle:

1 {

2 "type": "Feature",

3 "id": "c5d838e1 -8449 -4d08 -a8f4 -7 b46a43664b8",

4 "properties": {

5 "objectType": "annotation",

6 "classification": {

7 "tissue_type": "corpus",

8 "inflammation_status": "inflamed"

9 },

10 "cluster_id": 1

11 },

12 "geometry": {

13 "type": "Polygon",

14 "coordinates": [ [[[53347 , 19761] , ...]]

15 }

16 }
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(Example from 1 1 1 HE annotations.json)

These particle annotations form the ground truth for model training and evalua-
tion, bridging raw slides and the extracted tiles used for training. The geometric
boundaries of each particle determine the regions from which tiles are generated.

4.3.1 Valid Annotations

Annotations were classified as valid based on two independent criteria:

Valid Inflammation Status:

• Valid categories: inflamed or noninflamed

– Slides with any other inflammation category were excluded from inflam-
mation status analysis

• Assessment performed at the slide-level

• The slide’s inflammation status applies to all its components (clusters, parti-
cles, and tiles)

Valid Tissue Type:

• Valid categories: corpus or antrum

• Assessment performed at the particle-level

• A slide is considered valid if it contains at least one particle annotated as either
”corpus” or ”antrum”

• Particles annotated as other tissue types (e.g., ”intermediate”, ”other”) within
a valid slide:

– inherit the slide’s inflammation status

– are excluded from tissue type analysis

For more information, a detailed example is explained in Section A.5 of the Ap-
pendix.

4.4 Tiles

Tiles are fixed-size image patches (256x256 pixels) extracted from annotated parti-
cles. The tiling process:

1. Processes annotated particles using geometric containment checks
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Figure 5: Example tile 50239 19761 within particle 5d838e1-8449-4d08-a8f4-
7b46a43664b8, which is within cluster 1 of slide 1 1 1 HE

2. Extracts 2560×2560 pixel regions

3. Downsamples regions by 10× to 256×256 pixels using Lanczos resampling

4. Maintains 64-pixel overlap in downsampled space (640 pixels at native scale)

5. Uses parallel processing (32 workers) with batched coordinate handling

The selection of 10x downsampled 256×256 pixel tiles was determined through con-
sideration of multiple technical and practical factors. This dimension builds upon
established methodologies from previous research, specifically the student theses of
Höfling (2023) and Hempel (2023). From a computational perspective, the power-
of-two dimensions (28) provide optimal memory alignment and GPU operations,
enhancing processing efficiency. The chosen dimensions also facilitate effective fea-
ture extraction through a 64-pixel overlap protocol, ensuring the continuity of his-
tological features across tile boundaries without introducing excessive redundancy
in the dataset. The effectiveness of 256×256 pixel tiles has been further validated
in large-scale histopathological applications. The Prov-GigaPath project (Xu et al.,
2024) successfully processed 1.3 billion tiles of this size, demonstrating the dimen-
sion’s suitability for large-scale deep learning applications. This empirical validation
reinforces our dimensional choice for the current study.

Tiles represent the fundamental input unit for the deep learning models used in this
work. Tiles are saved as PNG files with a naming scheme that encodes their origin
and location:
[Slide name] particle [particle id] tile [x] [y] size [width]x[height]

For example:
1 1 1 HE particle 5d838e1-[...] tile 50239 19761 size 2560x2560.png

where:

• [x] and [y] represent the pixel coordinates in the original slide where the tile
extraction begins



5 DATASET ANALYSIS AND COHORT CHARACTERISTICS 19

• These coordinates mark the top-left corner of the extracted region

• Values are in level 0 (highest resolution) coordinates of the WSI

• Example: tile 50239 19761 indicates the tile was extracted starting at:

– x = 50239 pixels from the left edge of the WSI

– y = 19761 pixels from the top edge of the WSI

The implementation utilizes a Cartesian coordinate system where coordinates (x, y)
represent pixel distances from the WSI origin (top-left corner). This standardized
approach ensures consistency across different scanning platforms and facilitates inte-
gration with existing digital pathology workflows. Through this coordinate system,
precise spatial relationships between extracted tiles and their source material can
be maintained, enabling comprehensive validation and reproducibility of results.

5 Dataset Analysis and Cohort Characteristics

Developing robust deep learning models for computational pathology necessitates
high-quality, well-annotated datasets. We present a comprehensive data processing
pipeline that systematically transforms slides through multiple hierarchical levels:
raw digital slides, annotated tissue regions, classified particles, and analysis-ready
tiles.

5.1 Data Acquisition and Preprocessing

Digital slides were acquired from gastric tissue biopsies using Pannoramic MIDI I
(Scanner1) and MIDI II (Scanner2) scanners (3DHISTECH Ltd., Budapest, Hun-
gary) at 20x magnification at the Department of Pathology, Klinikum Nürnberg.
Following standard pathological practice, all gastric biopsies were stained with a
complete set of three staining methods: Hematoxylin and Eosin (HE), Periodic
acid–Schiff (PAS), and Modified-Giemsa (MG). Our clinical collaborator (Dr. Brau-
necker), confirmed that this comprehensive staining protocol is standard practice
for complete gastric pathological assessment, as each stain highlights different tissue
structures critical for accurate diagnosis.

The two scanner cohorts followed distinct acquisition protocols:

• Scanner1 Cohort: Slides were specifically created for this research project
from archived patient tissue blocks. These slides were consistently processed
by the same medical technical assistant, assigned standardized case numbers,
and remain physically available for potential reexamination.
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• Scanner2 Cohort: Slides were obtained from routine clinical diagnostics
during a limited scanner availability window. These slides were temporarily
relabeled for anonymized scanning and then returned to clinical use, making
them unavailable for rescanning. According to our clinical collaborator, this
cohort was deliberately curated to include underrepresented cases (such as
non-inflamed antrum particles and intermediate zone mucosa) and exemplary
clear cases, potentially introducing a selection bias different from the Scanner1
cohort.

5.2 Expert Annotation Protocol

Expert pathologists provided annotations in two complementary formats to ensure
accurate tissue classification. For straightforward cases, written documentation was
provided detailing the classification of each tissue particle (e.g., ”Slide 20HE: left
particle corpus, center antrum, right particle corpus”). Pathologists provided addi-
tional visual annotations for more complex slides containing multiple tissue types
or ambiguous regions, by marking tissue types directly on slide images, as shown in
Figure 6. Image from slide 277 247 2 HE was selected as a representative example
containing all possible expert tissue annotation types.

These visual annotations were crucial for capturing spatial relationships and precise
tissue boundaries, particularly in slides containing intermediate regions or multiple
tissue types close to each other. The annotations used standardized markings:

• C: Corpus

• A: Antrum

• IM: Intermediate

• NK: Non-classifiable regions (German: ”nicht klassifizierbar”)

Annotations were serialized in a standardized JSON format, incorporating categor-
ical classifications (tissue type, inflammation status) and geometric data (ROI co-
ordinates). This format ensures reproducibility and facilitates programmatic access
during model development.

5.3 Automated Tile Generation

The final phase implemented an automated tile extraction pipeline utilizing
OpenSlide (Sepulveda and Patil, 2008a) and PIL libraries. The pipeline generates
standardized 256×256 pixel tiles with 64-pixel overlap between adjacent sections,
representing 2560×2560 pixel regions of the original slide at a downsampling factor
of 10. See Section 4.4 for more information on tiles. The resulting dataset comprises
59,612 tiles, representing diverse tissue characteristics and pathological conditions.
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Figure 6: Digital annotation example showing pathologist-marked tissue classifica-
tion on a gastric biopsy slide.

6 Patient Selection and Cohort Definition

6.1 Patient Flow Analysis

The initial cohort consisted of 274 unique patients with histological slides across
multiple scanners, stain types, and annotations. A systematic selection process was
applied to ensure data consistency and validity for this study’s specific aims (Table
1, Figure 7).
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Table 1: Patient Selection Flow

Selection Stage Patient Count Percentage

Initial Cohort 274 100%

Valid Annotation Cohort 252 92.0%

Scanner1 Cohort 222 81.0%

Scanner1 HE Staining Cohort 210 76.6%
Scanner1 Tissue Analysis Cohort 201 73.4%
Scanner1 Inflammation Analysis Cohort 204 74.4%

Overlap (in both analysis cohorts) 195 71.2%

6.2 Selection Process and Criteria

The patient selection process followed a systematic approach with specific exclusion
criteria at each stage.

6.2.1 Annotation Validity Assessment

The annotation validity assessment ensured data quality and reliable model training.
Valid annotations were determined using a two-tier validation system independently
assessing tissue type and inflammation status. This approach allowed slides to be
valid for one task but not necessarily the other, maximizing the usable data for each
specific analysis. For tissue classification, annotations were considered valid if they
explicitly identified regions as either ”corpus” or ”antrum”. Each particle within
a slide was evaluated independently, allowing slides with multiple tissue types to
contribute to the analysis. Importantly, slides containing particles with intermedi-
ate or unclear tissue types were not entirely excluded; instead, only the specifically
marked corpus and antrum regions were used for tissue classification. For inflam-
mation classification, validity was assessed at the slide-level. Only slides with clear
”inflamed” or ”noninflamed” status designations were considered valid. All parti-
cles within a valid slide inherited their inflammation status, regardless of their tissue
type classification.

Following these criteria:

• Excluded 22 patients lacking valid annotations for either classification task
(See Section A.6, Patient Exclusion)

• Retained partially valid slides (valid for one task but not the other) to maxi-
mize usable data

• Implemented consistent validation rules across both scanner cohorts

Section A.5, Valid Annotations Example, provides a detailed example of this valida-
tion process, demonstrating how these criteria were applied to specific cases.
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Initial Cohort (n=274)
All scanners, all

stains, all annotations

Valid Annotation Cohort
(n=252) Excluded: 22 patients

without valid tissue and
inflammation annotations (See
Section A.6, Patient Exclusion)

Scanner1 Cohort (n=222)
Excluded: 30 Scanner2 pa-
tients (See Section A.7.1,
Scanner Selection Process)

Scanner1 HE Staining Co-
hort (n=210) Excluded: 12
patients without HE stain-
ing (See Section A.7.2, Pa-
tients Missing HE staining)

Scanner1 Tissue Analysis
Cohort (n=201) Excluded:

9 patients without valid
tissue annotations (See Sec-
tion A.7.3, Patients Missing
Valid Tissue Annotations)

Scanner1 Inflammation
Analysis Cohort (n=204)

Excluded: 6 patients without
valid inflammation anno-

tations (See Section A.7.4,
Patients Missing Valid In-
flammation Annotations)

Figure 7: Patient flow diagram showing the systematic selection process for study
inclusion. The process resulted in two partially overlapping cohorts for tissue and
inflammation analysis. Detailed information about excluded cases can be found in
the referenced sections.
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6.2.2 Scanner Selection Strategy

• Excluded 30 patients with slides from Scanner2 (See Section A.7.1, Scanner
Selection Process)

• Retained for later generalizability testing

The dataset comprises slides from two scanner generations (Pannoramic MIDI I and
II), presenting a unique opportunity for assessing model generalizability across dif-
ferent imaging devices. Scanner2 patients (n=30) were deliberately reserved as a
separate evaluation set to assess how well the trained models generalize to images
from different acquisition hardware. This separation is crucial because scanner vari-
ations in factors like color calibration and image processing can significantly impact
model performance.

6.2.3 Stain Selection Strategy

• Limited to HE staining

• Excluded 12 patients without HE staining (See Section A.7.2, Patients Missing
HE staining)

All gastric biopsies were routinely stained with all three stains (HE, PAS, MG) to
reveal different tissue structures, representing standard pathological practice. While
all three stain types exist for each case, our study focuses primarily on HE-stained
slides as they represent the foundational staining method for histopathological as-
sessment.

However, the Scanner1 dataset contains slides that were inadvertently scanned with
PAS or MG staining instead of HE. These misscans occurred due to two specific
factors identified through consultation with our clinical collaborator:

• Medical technical assistants occasionally placed slides in an order different
from the standard sequence (HE, PAS, MG) on the scanning trays, while
the scanning protocol was configured to capture only the first slide in each
sequence

• Höfling (2023) and Hempel (2023) performing the scanning, being unfamiliar
with identifying stain types through visual inspection, did not recognize when
non-HE stains were being digitized

In contrast, the Scanner2 cohort maintains complete staining consistency, with all
three stain types (HE, PAS, MG) available for each case, providing a valuable op-
portunity for potential multi-stain analysis in future work.
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6.2.4 Task-Specific Selection Strategy

Following the initial annotation validity assessment, we implemented task-specific
selection criteria to ensure optimal dataset quality for each classification task. This
additional filtering step was necessary to address the distinct requirements of tissue
type and inflammation classification while maintaining the highest possible data
quality for each task.

We established a cohort of 201 patients (73.4% of the initial dataset) with definitive
anatomical annotations for tissue type classification. This selection required the
presence of clearly identified antrum or corpus particles within each slide, ensuring
reliable ground truth for the tissue classification task. Nine patients were excluded
at this stage due to the abscence of any antrum or corpus tissue type annotations,
with detailed exclusion rationales provided in Section A.7.3, Patients Missing Valid
Tissue Annotations.

Similarly, we identified 204 patients (74.4% of the initial cohort) with reliable in-
flammation status annotations for inflammation classification. This cohort was es-
tablished by excluding six patients whose slides lack definitive inflammation status
classifications. The specific reasons for these exclusions are documented in Sec-
tion A.7.4, Patients Missing Valid Inflammation Annotations.

There is substantial overlap between these two cohorts, with 195 (71.2% of the initial
cohort) patients qualifying for both classification tasks. This significant intersection
provides several advantages for our analysis. It enables robust comparative studies
between tissue type and inflammation classification performance. Finally, this over-
lap validates our annotation and selection methodology, demonstrating that most
properly annotated slides can meet the quality standards for both classification tasks
while maintaining task-specific integrity through distinct annotation requirements.

This validation approach provided multiple benefits for dataset quality. By enforc-
ing rigorous annotation standards, we ensured the data was sufficiently reliable for
model training. We deliberately maintained a separation between tissue type and
inflammation classification tasks, which allowed us to evaluate each independently.
The careful documentation of our selection criteria makes our dataset generation
process transparent and reproducible. Perhaps most importantly, our flexible ap-
proach maximized data utilization without compromising quality standards, allow-
ing slides to be valid for one task while invalid for another. This practical solution
helped us retain valuable samples that would otherwise have been excluded entirely,
ultimately strengthening our analyses while maintaining methodological integrity.

6.3 Dataset Notation Convention

We employ a standardized notation system to ensure clarity and reproducibility
when presenting results. Following the valid annotation criteria defined in Sec-
tion 4.3.1, we denote datasets as Datasetscanner−stain

task,val , where:
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The superscript position indicates data source specifications:

scanner-stain =

{
scanner ∈ {S1, S2, S12} (Scanner1, Scanner2, Both)

stain ∈ {HE,PAS,MG}

The subscript position indicates both analysis task and annotation validity:

task, val =

{
task ∈ {I, T, IT} (Inflammation, Tissue, Both)

val ∈ {v, a} (valid, all)

The ’val’ subscript distinguishes between:{
v : slides with any valid annotations per Section 4.3.1

a : all annotated slides, including those with exclusively non-valid annotations

For examples, see Section A.3.

This notation system enables clear differentiation between single-scanner and
combined-scanner datasets while maintaining the distinction between different anno-
tation types and validity criteria. The S12 designation specifically indicates datasets
that combine slides from both scanners, facilitating transparent reporting of dataset
composition and scanner origin.

6.4 Dataset Analysis

6.4.1 Initial Cohort Analysis

Table 2: Dataset Summary Statistics (Dataset S12−HE,PAS,MG
IT,a )

Characteristic Scanner1 Scanner2

Total Slides 270 90
Unique Patients 244 30

Stain Distribution (slides)
HE 244 (90.37%) 30 (33.33%)
PAS 13 (4.81%) 30 (33.33%)
MG 13 (4.81%) 30 (33.33%)

Inflammation Status (slides)
Inflamed 138 (51.11%) 60 (66.67%)
Non-inflamed 99 (36.67%) 30 (33.33%)
Other 33 (12.22%) 0 (0.0%)

Table 2 presents the raw composition of our initial dataset before any quality fil-
tering or validation procedures. This unfiltered cohort includes all digitized slides,
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irrespective of content quality or annotation validity, representing the complete col-
lection of available data. The ”Other” inflammation status category (12.22% of
Scanner1 slides) encompasses slides with ambiguous inflammation patterns, insuf-
ficient diagnostic tissue, non-gastric tissue samples, or unclear expert annotations.
Notably, the Scanner1 cohort contains an uneven staining distribution due to selec-
tive digitization practices, while Scanner2 exhibits a balanced representation across
all three staining methods. It is important to emphasize that this initial dataset
serves as the starting point for our systematic filtering pipeline, which subsequently
removes non-representative samples, ambiguous annotations, and tiles that fail to
meet our quality control criteria, as detailed in the following sections.

6.4.2 Valid Annotation Cohort Analysis

Following rigorous data acquisition and preprocessing, we conducted a comprehen-
sive statistical analysis of the Valid Annotation Cohort (DatasetS12−HE,PAS,MG

IT,v ),
which includes all slides with any valid annotations across both scanners and all
staining methods. Table 3 provides a comprehensive overview of this cohort.

The Valid Annotation Cohort encompasses 252 patients and 338 slides, totaling
3,803 tissue particles. The dataset presents a balanced distribution of tissue types,
with 44.8% corpus and 46.8% antrum particles, alongside 8.4% other tissue particles.
Similarly, the inflammation status displays an appropriate distribution with 58.6%
inflamed and 38.2% non-inflamed slides, alongside 3.2% other inflammation slides.
This balanced representation is crucial for developing robust classification models.

6.5 Dataset Splits Creation

Robust train-validation-test partitioning is essential for unbiased model evaluation
in computational pathology. We implemented a principled splitting strategy to
address key challenges unique to histopathological data:

• Patient-level separation to prevent information leakage

• Systematic handling of heterogeneous staining modalities

• Stratification across imaging hardware to assess generalizability

To ensure methodological rigor and mitigate data leakage, we developed a patient-
centric splitting protocol that separates patients across splits. While our dataset
contains slides with multiple staining modalities (HE, PAS, MG), this study focuses
exclusively on HE-stained slides based on the rationale detailed in Section A.7.2.
Our preprocessing pipeline maintains a strict one-to-one correspondence between
patients and slides in DatasetS1−HE

I,T , with each patient represented by precisely one
HE-stained slide. This design enables interchangeable use of patient and slide counts
in statistical reporting while ensuring partition independence.
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Table 3: Dataset Summary Statistics (DatasetS12−HE,PAS,MG
IT,v )

Characteristic Total Train Val Test Test Scanner2

SLIDE-LEVEL

Total Slides 338 149 46 53 90
Scanner1 Slides 248 149 46 53 0
Scanner2 Slides 90 0 0 0 90

Total Patients 252 133 44 45 30

Total Slides 338 149 46 53 90
HE stained Slides 240 125 42 43 30
PAS stained Slides 54 15 3 6 30
MG stained Slides 44 9 1 4 30

Total Slides 338 149 46 53 90
Inflamed Slides 198 82 22 34 60
Non-inflamed Slides 130 60 21 19 30
Other Inflammation Status 10 7 3 0 0

PARTICLE-LEVEL

Total Particles 3803 1638 563 511 1091
Corpus Particles 1704 853 260 195 396
Antrum Particles 1779 675 247 284 573
Other Tissue Particles 320 110 56 32 122

TILE-LEVEL

Total Tiles 59,612 24,460 8,640 7,917 18,595

Inflammation Classification
Inflamed Tiles 38,920 15,717 5,250 5,838 12,115
Non-inflamed Tiles 19,010 7,513 2,938 2,079 6,480
Other Inflammation Status 1,682 1,230 452 0 0

Tissue Classification
Corpus Tiles 28,472 13,137 4,532 3,445 7,358
Antrum Tiles 26,409 10,251 3,249 4,009 8,900
Other Tissue Tiles 4,731 1,072 859 463 2,337

6.5.1 Data Splitting Implementation Methodology

The data splitting process was implemented through a specialized Python
DataSplitter class adhering to the following methodological principles:

• Patient-Level Stratification: Partitioning was performed at the patient
level rather than at individual slide or tile granularity. This approach en-
sures that all slides from a single patient remain within the same partition,
preventing cross-contamination during model validation.
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• Scanner Stratification: We explicitly separated DatasetS1−HE,MG,PAS
IT,v and

DatasetS2−HE,MG,PAS
IT,v to enable rigorous generalizability assessment.

DatasetS1−HE,MG,PAS
IT,v was distributed across train/validation/test partitions

for the primary analysis, while DatasetS2−HE,MG,PAS
IT,v was reserved exclusively

for generalizability evaluation.

• Reproducibility Control: A fixed random seed (42) ensured determinis-
tic partitioning while maintaining stochastic patient distribution across splits.
The data splitting script (create splits.py) uses the base seed plus 2 (seed
42+2=44) to ensure balanced class distribution. This offset produced a bet-
ter balance between train/validation/test sets than the default seed alone, as
detailed in Appendix A.8.

6.5.2 Split Ratios and Validation

To optimize the trade-off between model development and evaluation, we imple-
mented a systematic data partitioning strategy. The valid annotations dataset
(DatasetS1−HE,MG,PAS

IT,v ) was divided into three non-overlapping partitions:

• Training set: 60% for model development and parameter estimation

• Validation set: 20% for hyperparameter and threshold optimization

• Test set: 20% for unbiased performance evaluation

While our preprocessing pipeline supports multi-stain analysis (HE, MG, PAS), we
focused exclusively on HE-stained slides to maintain methodological consistency.
The Scanner2 cohort (DatasetS2−HE,MG,PAS

IT,v ) was deliberately isolated as a sepa-
rate evaluation set to assess model performance across different imaging devices, a
critical factor in clinical deployment scenarios. This cross-scanner generalizability
assessment is analyzed separately in Sections 9.3 and 9.4.

7 Dataset Splits Distribution

7.1 HE Staining Cohort Analysis

Table 4 provides a detailed breakdown of the Scanner1 and Scanner2 HE Staining
Cohort across partitions. It illustrates the distribution of this cohort across train-
ing, validation, and test partitions. The Scanner1 HE cohort comprises 210 slides
(excluding Scanner2), distributed in a 60:20:20 ratio across training, validation, and
test sets. This partition ensures sufficient data for model training while allowing for
robust validation and unbiased testing. This resulted in the allocation of 125 slides
to the training set, 42 to the validation set, and 43 to the test set, maintaining our
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Table 4: Detailed Composition of HE Dataset Partitions (DatasetS12−HE
IT,v )

Characteristic Training Validation Test Test Scanner2 Total

HE stained
Slides 125 42 43 30 240
Patients 125 42 43 30 240
Inflammation Status
Inflamed 65 19 24 20 128
Non-inflamed 57 20 19 10 106
Tissue Particles
Corpus 737 232 163 144 1276
Antrum 524 215 200 205 1144
Intermediate 67 48 32 42 189

targeted 60:20:20 distribution ratio. The balanced distribution of slides and parti-
cles across partitions ensures consistent evaluation conditions. The distribution of
tissue types and inflammation status is maintained across partitions, with minor
variations that reflect natural biological diversity.

7.2 Tile-Level Distribution Analysis

Following the hierarchical organization of our dataset, we analyzed the distribution
of extracted tiles across different dataset splits and staining types. We analyzed
the comprehensive tile counts for the entire dataset, revealing a substantial vol-
ume of image data available for model training and evaluation. Our dataset com-
prises 41,107 tiles across all stains within Scanner1, with 34,141 tiles derived from
DatasetS12−HE

IT,v . This distribution ensures sufficient data volume for deep learning
model development.

The tile distribution follows a consistent 60:20:20 split ratio, with approximately 60%
allocated to training (60.2% for HE stains, 59.5% for all stains), 21% to validation
(21.7% for HE stains, 21.0% for all stains), and 19% to testing (18.1% for HE stains,
19.3% for all stains). This balanced distribution supports robust model development
and unbiased evaluation within the Scanner1 domain.

It is important to note that these figures represent the total extracted tiles before
quality filtering. During the model training and evaluation phases, additional filter-
ing is applied to exclude tiles with insufficient tissue content (less than 10% tissue
area), as detailed in Section 8 (Table 5, 6). This filtering step ensures that only di-
agnostically relevant tiles are used for model development, enhancing the reliability
of our classification approach.
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7.3 Cross-Scanner Generalization Dataset

We implemented a systematic approach for handling the Scanner2 cohort to fa-
cilitate rigorous cross-scanner generalization testing. This dedicated evaluation
DatasetS2−HE,MG,PAS

IT,v ) was kept separate from all training and validation proce-
dures. It serves as an independent test set for assessing model performance across
different scanning hardware environments. Figure 8 illustrates the patient selection
workflow for this generalizability cohort.

As confirmed by Dr. Braunecker, the Scanner2 cohort differs from Scanner1 in the
scanning hardware and slide selection methodology. While Scanner1 slides were sys-
tematically created from archived patient blocks, Scanner2 slides were specifically
curated from routine diagnostic work to include: (1) underrepresented case types
such as non-inflamed antrum particles, (2) intermediate zone mucosa examples, and
(3) particularly clear exemplary cases. This purposeful selection may have intro-
duced a distribution bias that partially explains performance differences observed
in cross-scanner generalization experiments.

Unlike the Scanner1 cohort, all Scanner2 patients had the complete staining sets
with all three stain types (HE, PAS, MG) scanned for each slide. All 30 Scanner2
patient slides provided valid annotations for the inflammation classification task.
However, two patients (IDs 260 and 263) were excluded for tissue classification
because they contained only intermediate tissue regions without clear corpus or
antrum annotations, resulting in a 28-patient tissue analysis cohort.

8 Deep Learning Model Development

8.1 Technical Contributions and Overview

While previous work in the research group (Hempel, 2023; Höfling, 2023) provided
a valuable foundation, our work makes several distinct contributions:

• Annotation Framework: Implementation of a hierarchical annotation sys-
tem that supports both tissue type and inflammation status classification

• Quality Control: Introduction of more stringent quality control measures,
including more detailed expert pathologist review

• Generalizability: Explicit consideration of scanner variability through the
inclusion of data from multiple scanner generations

• Preprocessing Pipeline: Development of a more sophisticated preprocess-
ing workflow that handles varying scanner outputs and staining patterns
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Scanner2 Cohort (n=30)
All stains, all annotations

Scanner2 Valid Annotation
Cohort (n=30) All patients

have either valid tissue or
inflammation annotations

Scanner2 HE Staining
Cohort (n=30) Each pa-
tient has complete set of
HE, PAS, and MG stains

Scanner2 Tissue Analysis
Cohort (n=28) Excluded: 2

patients (ID 260, 263) with only
intermediate tissue annotations

Scanner2 Inflamma-
tion Analysis Cohort
(n=30) All patients have
valid inflammation status

Figure 8: Patient flow diagram showing the systematic selection process for inclu-
sion in the Scanner2 cohort study. The process resulted in two partially overlapping
cohorts for tissue and inflammation analysis, with all patients having complete stain-
ing sets (HE, PAS, MG) but varying annotation validity.
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Developing our deep learning models for histological image classification followed a
systematic pipeline comprising data handling, model architecture design, hyperpa-
rameter optimization, and evaluation. All experiments were conducted on a dual-
GPU system with two NVIDIA RTX A5000 graphics cards, each featuring 24 GB
of GDDR6X memory. This high-performance computing infrastructure enabled effi-
cient parallel training and extensive hyperparameter optimization for both models.

Our development process focused on two independent classification models:

1. Tissue Type Classification Model: Specialized in distinguishing between
antrum and corpus tissue regions, requiring sensitivity to subtle architectural
differences in tissue organization and cell distribution patterns.

2. Inflammation Status Detection Model: Designed to identify inflamma-
tory patterns in tissue samples, focusing on detecting cellular infiltrates and
other inflammation-associated morphological changes.

Each model was independently trained and optimized, although both shared the
same architectural foundations to ensure consistent methodology while allowing for
task-specific adaptations in hyperparameters and training protocols.

8.2 Dataset Implementation

The foundation of our model development pipeline is a custom PyTorch
HistologyDataset class that handles efficient loading and preprocessing of histo-
logical image tiles. This implementation addresses several key challenges specific to
histopathology through a comprehensive data management approach.

Our dataset architecture supports a hierarchical data organization that mirrors the
natural structure of histopathological slides: WSIs contain multiple tissue particles,
which are further divided into individual tiles. The implementation provides built-in
support for both inflammation and tissue classification tasks.

To ensure data quality, the implementation incorporates an automated tissue con-
tent validation methodology. This process employs grayscale intensity analysis to
quantify the proportion of tissue-containing regions within each tile. The valida-
tion algorithm converts input images to grayscale space and applies an intensity
threshold of 240 on the 8-bit scale (0-255) to differentiate between tissue and back-
ground regions. Tiles are retained for analysis only if the background proportion
remains below 90%, effectively filtering out regions dominated by non-tissue content
while preserving sufficient diagnostic information. Table 5 presents the resulting dis-
tribution of filtered tiles (containing >10% tissue) across both classification tasks,
demonstrating the balanced composition of our training, validation, and test sets
after quality filtering.

The dataset implementation also supports domain adaptation research through flex-
ible filtering capabilities between Scanner1 and Scanner2. This feature allows selec-
tive training and evaluation of images from specific scanner devices, enabling the
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Table 5: Dataset Distribution Across Classification Tasks

Particles Total Tiles
Inflammation Classification Non/Inflamed % Inf.

Training (122) 1,335 19,747 7,107 12,640 64.0
Validation (39) 467 6,852 2,716 4,136 60.4
Test (43) 395 6,120 2,049 4,071 66.5

Tissue Classification Antrum/Corpus % Corp.

Training (121) 1,261 19,099 7,839 11,260 59.0
Validation (38) 447 6,425 2,610 3,842 59.5
Test (42) 363 5,668 2,766 2,902 51.2

Note: Numbers in parentheses indicate unique slides. Percentages show the proportion
of positive class (inflamed/corpus) within respective splits.

investigation of scanner-specific characteristics and their impact on model general-
ization. Our implementation handles multiple data splits
(train/validation/test/test scanner2) with consistent processing, facilitating repro-
ducible evaluation across development stages.

A key feature of our implementation is comprehensive metadata handling. Each
image tile is associated with rich contextual information, including slide origin, par-
ticle identifier, and class-specific annotations (inflammation status or tissue type).
This metadata is propagated through the data pipeline and made available during
training and inference, enabling hierarchical aggregation of predictions from tile to
particle to slide-level. The metadata integration allows for nuanced evaluation across
different levels of the histological hierarchy, better reflecting real-world diagnostic
workflows.

The dataset’s modular design and efficient memory management facilitate large-
scale processing, which is critical for WSI analysis, where individual slides may
yield thousands of tiles. This implementation establishes a standardized baseline
by systematically applying consistent quality control measures across all extracted
tiles, while significantly reducing manual curation requirements.

8.3 Model Architecture

Due to the complex nature of tissue morphology, selecting an appropriate deep
learning architecture for histological image analysis presents unique challenges. We
systematicly evaluated modern architectures, starting with an established baseline
and exploring state-of-the-art models.
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8.3.1 Architectural Selection and Design

We established ResNet18 (He et al., 2015) as our foundational baseline architecture,
strategically building upon established precedent in gastric histopathology classifi-
cation. This choice was supported by the successful implementations documented
in prior research within our group. Hempel (2023) demonstrated ResNet18’s ef-
fectiveness for tissue classification, achieving a tile-level accuracy of 89.1% and in-
flammation classification accuracy of 90.3% on their test set. Subsequently, these
findings were validated by Höfling (2023) with independent implementations, reach-
ing 88.6% accuracy for tissue classification, though they showed more modest results
(72.7%) for the more challenging inflammation detection task. These consistent per-
formance metrics across two separate investigations provided a reliable benchmark
against which we could evaluate our architectural innovations and methodologi-
cal refinements. ResNet18’s computational efficiency and established performance
characteristics made it an ideal reference point before exploring more complex ar-
chitectures.

In addition to this baseline, we systematically evaluated five state-of-the-art archi-
tectures, each representing different approaches to computer vision:

1. ConvNeXt Large (Liu et al., 2022b): A modern evolution of traditional con-
volutional networks incorporating transformer-inspired design elements.

2. Swin Transformer V2-B (Liu et al., 2022a): A hierarchical vision transformer
with shifted windows for efficient self-attention computation.

3. Prov-GigaPath (Xu et al., 2024): A foundation model pre-trained on 1.3 billion
histopathology image tiles spanning 171,189 WSIs.

4. DenseNet121 (Huang et al., 2018): A convolutional network with dense con-
nectivity patterns, where each layer receives feature maps from all preceding
layers, enhancing feature reuse and gradient flow.

5. DenseNet169 (Huang et al., 2018): A deeper variant of DenseNet with 169 lay-
ers, maintaining the same dense connectivity principle while offering increased
representational capacity.

8.3.2 Implementation and Transfer Learning

Our model implementation centers on a flexible HistologyClassifier class that
supports multiple state-of-the-art convolutional neural network backbones with
architecture-specific adaptations:

• Standard CNN backbones: ResNet18, DenseNet121, and DenseNet169
were initialized with pre-trained ImageNet weights from torchvision, providing
robust general-purpose feature extraction capabilities.
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• Modern architectures: ConvNeXt Large and Swin Transformer V2-B were
similarly initialized with ImageNet weights but required specialized head adap-
tations to accommodate their unique feature extraction patterns.

• Domain-specific foundation model: For Prov-GigaPath, we employed a
unique transfer learning strategy by utilizing a frozen encoder pre-trained on
1.3 billion histopathology images. This encoder outputs 1536-dimensional
feature vectors which are then processed by a trainable classification head
consisting of dimensionality reduction (1536→512), ReLU activation, dropout
regularization, and final binary classification.

The architecture implementation includes these key components:

• Input preprocessing pipeline:

– Spatial dimensions: 224×224 pixels (resized and center-cropped from
original tiles)

– Normalization using ImageNet statistics (µ = [0.485, 0.456, 0.406], σ =
[0.229, 0.224, 0.225])

• Task-specific classifier head modifications:

– Architecture-aware feature handling (preserving spatial information where
beneficial)

– Task-calibrated dropout layers with rates individually optimized per ar-
chitecture

– Binary classification output for both tissue and inflammation tasks

• Training optimization:

– AdamW optimizer with architecture-specific learning rates and weight
decay

– Mixed precision training support via PyTorch’s GradScaler

– BCE with logits loss function with class weighting capabilities

For GigaPath specifically, we employed a highly efficient learning approach by keep-
ing the extensive pre-trained encoder frozen during training, allowing optimization
to focus exclusively on the classification head parameters. This strategy significantly
reduced training time while leveraging the rich histopathological features captured
by the foundation model’s extensive pre-training. In contrast, the other models were
fine-tuned end-to-end, allowing all parameters to adapt to our specific histological
classification tasks.
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8.4 Training Methodology

We implemented a training methodology optimized for histological image classifi-
cation tasks, focusing on hyperparameter optimization, efficient training pipelines,
and robust validation strategies.

8.4.1 Hyperparameter Optimization Framework

We optimized hyperparameters using the Optuna framework with the Tree-structured
Parzen Estimators (TPE) sampler (Akiba et al., 2019). This Bayesian optimization
approach efficiently navigates high-dimensional parameter spaces by constructing
probabilistic models of objective function values. We employed a structured search
space with architecture-specific parameter ranges to ensure comprehensive architec-
tural comparison while maintaining computational feasibility.

The optimization space included the following dimensions:

• Model architecture: Six distinct architectures were evaluated (ResNet18,
ConvNeXt Large, Swin Transformer V2-B, GigaPath, DenseNet121, and
DenseNet169), each representing different approaches to feature extraction

• Architecture-aware batch sizes: Dynamically adjusted based on model
memory requirements, with smaller batches for memory-intensive models (16-
24 for GigaPath, 24-64 for DenseNet169) and larger batches for lightweight
models (64-128 for ResNet18)

• Learning rates: Model-specific ranges on log-scale, with foundation mod-
els using higher rates (5e-4 to 1e-2 for GigaPath, leveraging frozen encoder
properties) and deeper networks using lower rates (5e-5 to 2e-4 for DenseNet
variants)

• Regularization parameters: Weight decay (1e-5 to 1e-3, log-scale) and
dropout rates (0.0 to 0.3) to control overfitting

• Class balancing: Adaptive positive class weight ranges centered around class
distribution-derived values, dynamically adjusted within ±0.15 of the optimal
theoretical value

To maximize computational efficiency and ensure robust evaluation, we implemented
several advanced optimization mechanisms:

• Hyperband pruning: Early termination of underperforming trials based on
performance trajectory, with minimum evaluation of 5 epochs before pruning
decision

• Early stopping: Training terminated after 3 epochs without validation loss
improvement
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• Gradient clipping: Applied max norm of 1.0 to prevent gradient explosion
during exploration of sensitive parameter regions

• Multi-GPU parallelization: Distributed batch processing across available
GPUs using PyTorch’s DataParallel

Each trial ran for up to 20 epochs with validation loss as the optimization objective.
To mitigate the risk of local minima solutions, we conducted 100 trials per task, re-
quiring approximately 2-3 days of computation on dual NVIDIA RTX A5000 GPUs.
Following hyperparameter optimization, we selected the best configuration for each
model architecture and performed extended training for 50 epochs. This compre-
hensive approach resulted in 12 fully trained models, six architectures for each clas-
sification task, enabling a thorough comparison of architectural performance across
both tissue type and inflammation detection objectives.

8.4.2 Training Pipeline Implementation

Our training pipeline incorporated several technical optimizations to ensure efficient
and reproducible model development. We implemented automatic mixed precision
(AMP) training to accelerate computation while maintaining numerical stability.
For multi-GPU environments, DataParallel was employed to distribute batch pro-
cessing across available devices. The pipeline supports both SGD with momentum
and AdamW optimizers, with optimization parameters derived from hyperparame-
ter tuning.

Learning rate scheduling was implemented using either cosine annealing or reduction
on plateau strategies, depending on model architecture and task requirements. All
models were equipped with gradient clipping (max norm 1.0) to prevent gradient ex-
plosion and early stopping mechanisms to mitigate overfitting. Each training session
maintained comprehensive metadata, including random seeds, CUDA configuration,
and timestamp information to ensure reproducibility of results.

8.4.3 Data Processing and Augmentations

Data augmentation was tailored to histological image characteristics and imple-
mented as configurable transformation pipelines. For training, we employed random
resized crops (scale 0.8-1.0), random horizontal and vertical flips, and task-specific
augmentations. For inflammation classification random rotations and Gaussian blur
were found to improve performance, while tissue classification benefited primarily
from rotational augmentations. All images underwent standard normalization using
ImageNet statistics to facilitate transfer learning from pre-trained models.

Input data was processed using optimized DataLoader configurations with eight
worker processes and pin memory to maximize GPU utilization. Based on memory
constraints and convergence behavior, batch sizes were individually optimized for
each architecture, ranging from 24 for DenseNet169 to 128 for ResNet18.
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8.4.4 Validation Strategy and Model Selection

We implemented a hierarchical validation strategy that evaluated model perfor-
mance at multiple levels of granularity. For inflammation classification, metrics
were calculated at both tile and slide-levels, while tissue classification was evaluated
at tile and particle-levels. This approach ensured that models were optimized for
real-world clinical applications rather than just tile-level accuracy.

During training, models were validated after each epoch using a comprehensive set
of metrics, including loss, accuracy, sensitivity, specificity, F1 score, and AUC-ROC.
Based on validation loss, the best-performing model weights were saved, and training
continued until either the maximum epoch count was reached or early stopping
was triggered. This methodology ensured robust model selection while preventing
overfitting to the validation data.

All training sessions were documented with logging and performance visualization
to facilitate experimental tracking and reproduction. The final models underwent
evaluation on separate test sets to assess generalization performance in both same-
scanner and cross-scanner scenarios.

8.5 Experimental Configurations

8.5.1 Tissue Classification Configuration

We conducted comprehensive hyperparameter optimization by systematically ex-
ploring 100 trials utilizing the Optuna framework with Tree-structured Parzen Esti-
mators (TPE). This Bayesian optimization approach efficiently navigated the high-
dimensional parameter space while prioritizing promising regions. The computa-
tional demands of this process were substantial, requiring over 72 hours of continuous
computation on dual NVIDIA A5000 GPUs for the tissue classification task alone,
underscoring the resource-intensive nature of neural architecture optimization.

Figure 9 illustrates the progression of validation loss (objective value) throughout
the tissue task optimization process. Starting from approximately 0.3, the validation
loss exhibits a consistent downward trend during early trials, with significant im-
provements occurring within the first 25 trials. The optimization curve demonstrates
classic diminishing returns, with only marginal improvements observed during the
subsequent 75 trials despite extensive computational investment. This plateau indi-
cates effective convergence toward optimal hyperparameter configurations, suggest-
ing that the search space was thoroughly explored.

The optimal hyperparameter configurations for each architecture are detailed in
the Results section (Table 9). ConvNeXt Large achieved the lowest validation loss
and highest performance on most metrics across all architectures, while GigaPath
demonstrated efficient transfer learning capabilities with comparable validation AUC
to more complex models despite its lower validation accuracy.
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Figure 9: Hyperparameter optimization trajectory across 100 trials for tissue clas-
sification task. The blue points represent individual trial validation losses, while
the orange line tracks the best validation loss achieved to date. The optimization
demonstrates rapid initial improvement before reaching diminishing returns around
trial 25, with minimal improvement thereafter despite extensive additional explo-
ration.

8.5.2 Inflammation Classification Configuration

We employed a similar hyperparameter optimization approach through 100 trials
using the Optuna framework with Tree-structured Parzen Estimators (TPE) for
the inflammation detection task. While maintaining the same methodological rigor
as the tissue classification optimization, the inflammation classification process re-
quired less computational resources, completing in around 60 hours on the same
dual NVIDIA A5000 GPU system.

Figure 10 depicts the optimization trajectory for the inflammation classification task.
The validation loss began at approximately 0.5 and rapidly improved to 0.3 by the
second trial, followed by further refinement to 0.27 at trial 13. The optimization
process exhibited an extended plateau before achieving the optimal validation loss
of 0.244 at trial 66 with the Swin-V2-B architecture. This pattern suggests that
the parameter space for inflammation classification presented different optimization
challenges than tissue classification, potentially requiring more extensive exploration
to identify optimal configurations.

The detailed hyperparameter configurations for the inflammation classification task
are presented in Table 12. Interestingly, while ConvNeXt Large demonstrated supe-
rior performance for tissue classification, the Swin-V2-B architecture achieved the
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Figure 10: Hyperparameter optimization trajectory across 100 trials for inflamma-
tion classification task. The blue points represent individual trial validation losses,
while the orange line tracks the best validation loss achieved to date. After initial
rapid improvement, the optimization process required extensive exploration before
achieving the optimal configuration at trial 66.

lowest validation loss for inflammation detection, suggesting that different architec-
tural designs may be optimal for capturing the distinct visual patterns associated
with each classification task.

8.6 Hierarchical Prediction Aggregation

A critical challenge in WSI classification is effectively aggregating numerous tile-
level predictions into a unified particle- or slide-level diagnosis. This hierarchical
aggregation process is essential in histopathological analysis, where diagnostically
relevant features may be concentrated in specific regions rather than distributed uni-
formly throughout the tissue. To address this challenge, we systematically evaluated
multiple aggregation strategies that capture different statistical properties of the tile
prediction distributions, enabling robust inference at higher hierarchical levels.

8.6.1 Mathematical Formulation

Let S = {t1, t2, . . . , tn} represent a particle or slide containing n tiles, and P =
{p1, p2, . . . , pn} denote the corresponding probability predictions for each tile, where
pi ∈ [0, 1] represents the model’s confidence that tile ti belongs to the positive class
(corpus for tissue classification or inflamed for inflammation classification). We
define the particle-/slide-level aggregation function f : P → [0, 1] that maps the
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set of tile predictions to a single aggregated prediction score, which is subsequently
thresholded to obtain the final binary classification.

We implemented and systematically evaluated the following aggregation strategies:

1. Mean Aggregation: The arithmetic mean of all tile predictions, providing
an unweighted average across the entire particle/slide:

fmean(P ) =
1

n

n∑
i=1

pi (1)

2. Median Aggregation: The median value of all tile predictions, offering ro-
bustness against outlier predictions:

fmedian(P ) = median(p1, p2, . . . , pn) (2)

3. Top-K Percentile Mean: The mean of the top k% of tile predictions, where
k ∈ {10, 20, 30}. This approach focuses on the most confident positive pre-
dictions, which is particularly relevant when diagnostically significant features
appear in only a small portion of the particle/slide:

ftop-k%(P ) =
1

|Pk|
∑
p∈Pk

p (3)

where Pk represents the subset containing the top k% of values from P , for-
mally defined as:

Pk = {pi ∈ P | pi ≥ P(1−k/100)} (4)

with P(1−k/100) representing the (1 − k/100)-quantile of set P .

8.6.2 Comparative Analysis of Aggregation Strategies

Each aggregation strategy exhibits distinct properties that make it suitable for spe-
cific scenarios in histopathological analysis:

• Mean Aggregation is computationally efficient and provides a global per-
spective of the tissue sample. This strategy performs optimally when diagnos-
tically relevant features are distributed relatively uniformly throughout the
tissue but may be suboptimal when significant features are localized to small
regions or when the presence of artifacts leads to outlier predictions.

• Median Aggregation offers superior robustness to outliers compared to
mean aggregation, which is particularly valuable in scenarios with noisy pre-
dictions or artifacts. However, this approach may be less sensitive to small
regions of diagnostic significance when these regions constitute less than 50%
of the sample.



8 DEEP LEARNING MODEL DEVELOPMENT 43

• Top-K Percentile Mean strategies are specifically designed to capture in-
stances where pathological features occupy only a small fraction of the slide.
For example, a top-10% strategy would be particularly suitable for detecting
focal inflammation or isolated regions of distinctive tissue architecture that
may be present in just a small portion of the sample. However, this approach
disregards the majority of predictions and may be more susceptible to false
positives if artifacts are present in the sample.

The optimal aggregation strategy is inherently task-dependent and influenced by
the classification target’s specific biological and morphological characteristics. Dif-
ferent strategies might be optimal for inflammation detection, where inflammatory
infiltrates may be focal or diffuse, compared to tissue type classification, where ar-
chitectural patterns tend to be more globally distributed. The empirical evaluation
of these strategies is presented in Section 9.

8.7 Cross-Scanner Generalization and Clinical Validation

To evaluate cross-scanner generalization capabilities of our models, we employed a
dedicated set of slides from Scanner2 that were deliberately excluded from the train-
ing process. This separate cohort of 30 patients (described in Section A.7.1) provides
a critical test environment for assessing model robustness when deployed on different
imaging hardware. Our generalizability analysis follows the same rigorous quality
control standards applied to the primary dataset. The automated tissue content
validation methodology ensures consistency across scanner platforms by applying
identical filtering criteria. Table 6 presents the resulting distribution of filtered tiles
(containing >10% tissue content) from Scanner2 across both classification tasks.

Table 6: Dataset Distribution Across Classification Tasks

Particles Total Tiles
Inflammation Classification Non/Inflamed % Inf.

Training (122) 1,335 19,747 7,107 12,640 64.0
Validation (39) 467 6,852 2,716 4,136 60.4
Test Scanner2 (30) 397 6,829 2,194 4,635 67.9

Tissue Classification Antrum/Corpus % Corp.

Training (121) 1,261 19,099 7,839 11,260 59.0
Validation (38) 447 6,425 2,610 3,842 59.5
Test Scanner2 (28) 349 5,922 3,212 2,710 45.8

Note: Numbers in parentheses indicate unique slides. Percentages show the proportion
of positive class (inflamed/corpus) within respective splits.
The Test Scanner2 dataset represents a completely separate test set, while all training
and validation was performed on Scanner1 data.

The present study extends previous work by addressing critical challenges in model
generalization and clinical deployment. Central to this research is integrating data
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from multiple scanner types, specifically incorporating an additional 90 WSIs from
a Pannoramic MIDI II scanner (3DHISTECH Ltd., Budapest, Hungary) alongside
the existing MIDI I dataset. This multi-scanner approach enables systematic inves-
tigation of model robustness across different digitization platforms.

Our methodology encompasses several key research objectives:

1. Dataset Expansion and Standardization: Development of a comprehen-
sive dataset incorporating WSIs from multiple scanners, with standardized
protocols for:

• Systematic quality assessment across scanner types

• Unified annotation procedures ensure consistency

2. Generalizability Assessment Framework: Design of rigorous validation
protocols including cross-scanner performance evaluation

9 Results

Our experimental evaluation assesses the performance of various deep learning archi-
tectures across two distinct classification tasks: inflammation detection and tissue
type classification. We present a comprehensive analysis following a rigorous test-
ing methodology that simulates real clinical deployment scenarios. All performance
metrics and ROC curves presented in this section are derived exclusively from test
set data, using Scanner1 test set for within-scanner evaluations and Scanner2 test
set for cross-scanner generalization assessments.

To ensure methodological rigor, all classification thresholds were optimized strictly
on the Scanner1 validation set and applied directly to the respective test sets without
further adjustment. This approach replicates clinical reality where model deploy-
ment occurs on previously unseen data. The validation-optimized thresholds and
corresponding aggregation strategies for tissue and inflammation classification can
be found in Table 9 and Table 12, respectively.

For each classification task, we report hierarchical evaluation results at multiple
levels of granularity: tile-level, particle-level (for tissue classification), and slide-level
(for inflammation detection). This section highlights key findings with particular
emphasis on comparing our models with previous approaches and evaluating within-
scanner performance and cross-scanner generalization capabilities.
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9.1 Within-Scanner Performance (Scanner1): Tissue Clas-
sification

Figure 11: ROC curves comparing
model performance for tissue classifica-
tion at the tile-level on Scanner1 test-set

Figure 12: ROC curves comparing
model performance for tissue classifica-
tion at the particle-level on Scanner1
test-set

When comparing our results with previous work (Table 7), our models show com-
petitive performance at the tile-level test performance, with our ResNet18 tissue
classification model achieving 85.20% accuracy compared to Hempel’s 89.10% and
Höfling’s 87.00%. This comparison is not entirely fair, as different dataset splits
were used across studies. Furthermore, the metrics for previous works were calcu-
lated based on their published confusion matrices, as their models discriminated
between corpus, antrum, and intermediate tissue types, while our approach focused
on binary classification (corpus/antrum). Significantly, our study extends beyond
previous work by reporting comprehensive particle-level metrics and cross-scanner
generalization performance.

Table 8 presents the performance of different models for gastric tissue classification.
Hyperparameters were optimized using Optuna with validation loss as the objective.
The optimization process completed in 3 days, 2 hours, and 21 minutes on dual
NVIDIA A5000 GPUs. All models, excluding ResNet18, were subsequently trained
for 50 epochs.

The optimal hyperparameter configurations for each architecture are detailed in
Table 8 under ”Implementation Details”. These were determined through a sys-
tematic Bayesian optimization process using Optuna (Akiba et al., 2019) with Tree-
structured Parzen Estimators (TPE), which efficiently explored the high-dimensional
parameter space to minimize validation loss.
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Table 7: Performance Comparison of ResNet18 Models for Gastric Tissue Classifi-
cation Across Studies

Current Work Previous Work†

Study This Study Hempel (2023) Höfling (2023)

Validation Performance
Tile-Level Accuracy 86.81% 87.50% 88.56%
Tile-Level Sensitivity 88.76% — —
Tile-Level Specificity 83.95% — —
Tile-Level F1 Score 88.91% — —
Tile-Level AUC 92.23% — —

Test Performance
Tile-Level Accuracy 85.20% 89.10% 87.00%
Tile-Level Sensitivity 85.32% 89.80% 91.10%
Tile-Level Specificity 85.08% 88.00% 85.20%
Tile-Level F1 Score 84.91% 90.40% 90.11%
Tile-Level AUC 89.20% 95.00% 95.00%

Aggregation Strategy
Strategy top k mean 20 majority vote probabilistic avg

Implementation Details
Batch Size 64 32 64
Dropout Rate 0.000 0.000 0.000
Epochs 20 10 11
Learning Rate 1e-3 1e-4 1e-3
Weight Decay 0.000 0.000 0.000
Positive Class Weight 1.0 1.0 1.0
Optimizer SGD SGD SGD

† Direct numerical comparison is not straightforward due to different dataset splits,
multi-class vs. binary classification approaches, and metrics recalculated from
published confusion matrices.
Note: All results are from ResNet18 models.
Note: Previous studies also classified intermediate tissue types. For comparison with
our binary classification, only their antrum and corpus predictions were considered.
Note: Missing values (—) indicate metrics not reported in previous studies.

Table 9 highlights the impact of different aggregation strategies on model perfor-
mance.
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Table 8: Comprehensive Performance Comparison of Deep Learning Models for
Gastric Tissue Type Classification (Scanner1)

Model ConvNeXt DenseNet121 DenseNet169 GigaPath ResNet18 Swin-V2
Metric Large Base

Validation Performance
Tile-Level Accuracy 90.47% 89.09% 87.99% 87.74% 86.81% 81.18%
Tile-Level Sensitivity 93.75% 92.24% 89.28% 90.45% 88.76% 81.70%
Tile-Level Specificity 85.63% 84.44% 86.09% 83.75% 83.95% 80.42%
Tile-Level F1 Score 92.13% 90.97% 89.85% 89.78% 88.91% 83.80%
Tile-Level AUC 92.91% 94.26% 94.05% 93.04% 92.23% 86.97%

Particle-Level Accuracy 96.35% 94.62% 95.45% 96.33% 95.47% 93.91%
Particle-Level Sensitivity 98.28% 94.83% 97.41% 98.71% 96.98% 95.26%
Particle-Level Specificity 94.42% 94.42% 93.49% 93.95% 93.95% 92.56%
Particle-Level F1 Score 96.61% 94.83% 95.76% 96.62% 95.74% 94.24%
Particle-Level AUC 97.05% 98.06% 98.15% 97.70% 97.38% 95.96%

Test Performance
Tile-Level Accuracy 88.71% 87.07% 84.23% 84.30% 85.20% 78.41%
Tile-Level Sensitivity 87.06% 84.60% 84.16% 76.46% 85.32% 68.91%
Tile-Level Specificity 90.28% 89.42% 84.29% 91.76% 85.08% 87.46%
Tile-Level F1 Score 88.27% 86.46% 83.89% 82.62% 84.91% 75.69%
Tile-Level AUC 91.83% 90.52% 88.79% 89.63% 89.20% 84.55%

Particle-Level Accuracy 92.01% 90.91% 91.46% 90.36% 91.46% 91.46%
Particle-Level Sensitivity 90.18% 87.73% 89.57% 87.12% 90.80% 90.80%
Particle-Level Specificity 93.50% 93.50% 93.00% 93.00% 92.00% 92.00%
Particle-Level F1 Score 91.02% 89.66% 90.40% 89.03% 90.52% 90.52%
Particle-Level AUC 93.61% 92.43% 91.15% 92.46% 92.03% 92.33%

Optimal Aggregation Strategy
Strategy mean median mean top k mean 30 top k mean 20 top k mean 20

Implementation Details
Batch Size 64 64 56 48 64 64
Dropout Rate 0.201 0.061 0.150 0.236 0.000 0.224
Epochs 50 50 50 50 20 50
Learning Rate 4.285e-4 1.894e-4 1.903e-4 9.328e-4 1.000e-3 4.372-4
Weight Decay 2.130e-4 1.077e-5 5.859e-4 9.532e-5 0.000 4.600e-5
Positive Class Weight 0.551 0.654 0.5704 0.551 1.000 0.713
Optimizer AdamW AdamW AdamW AdamW SGD AdamW

Note: Optimal aggregation strategies were determined through validation data
optimization.
Note: Aggregation strategies determine how tile-level predictions are combined to
make particle-level decisions.
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Table 9: Comparison of Aggregation Strategies based on Validation Set for Gastric
Tissue Classification Across Models

Model Strategy Threshold Balanced Accuracy Sensitivity Specificity F1 Score

ConvNeXt Large

mean 0.470 96.35% 98.28% 94.42% 96.61%
median 0.497 96.13% 97.84% 94.42% 96.39%
top k mean 10 0.900 95.87% 98.71% 93.02% 96.22%
top k mean 20 0.900 96.33% 98.71% 93.95% 96.62%
top k mean 30 0.875 96.35% 98.28% 94.42% 96.61%

DenseNet121

mean 0.595 94.41% 94.40% 94.42% 94.60%
median 0.621 94.62% 94.83% 94.42% 94.83%
top k mean 10 0.900 93.13% 97.41% 88.84% 93.78%
top k mean 20 0.894 93.86% 96.55% 91.16% 94.32%
top k mean 30 0.900 94.09% 96.55% 91.63% 94.51%

DenseNet169

mean 0.551 95.45% 97.41% 93.49% 95.76%
median 0.597 95.45% 97.41% 93.49% 95.76%
top k mean 10 0.900 92.23% 96.55% 87.91% 92.95%
top k mean 20 0.896 93.86% 96.55% 91.16% 94.32%
top k mean 30 0.896 94.55% 96.55% 92.56% 94.92%

GigaPath

mean 0.362 95.65% 98.28% 93.02% 96.00%
median 0.253 95.38% 99.14% 91.63% 95.83%
top k mean 10 0.759 94.70% 98.71% 90.70% 95.22%
top k mean 20 0.756 96.10% 98.71% 93.49% 96.42%
top k mean 30 0.705 96.33% 98.71% 93.95% 96.62%

ResNet18

mean 0.485 93.89% 95.69% 92.09% 94.27%
median 0.616 93.30% 93.10% 93.49% 93.51%
top k mean 10 0.900 94.07% 96.98% 91.16% 94.54%
top k mean 20 0.900 95.47% 96.98% 93.95% 95.74%
top k mean 30 0.873 95.24% 96.98% 93.49% 95.54%

Swin v2 b

mean 0.432 92.78% 94.40% 91.16% 93.19%
median 0.428 92.38% 92.67% 92.09% 92.67%
top k mean 10 0.678 93.03% 93.97% 92.09% 93.36%
top k mean 20 0.632 93.91% 95.26% 92.56% 94.24%
top k mean 30 0.588 93.87% 96.12% 91.63% 94.29%

Note: Aggregation strategies represent different methods for combining tile-level
predictions to make particle-level decisions.
Values shown are from the aggregation strategies based on the validation set perfor-
mance.
Threshold values were optimized on validation data to maximize balanced accuracy.
”mean”: Average of all tile predictions within a particle
”median”: Median of all tile predictions within a particle
”top k mean n”: Average of the top n% tile predictions within a particle
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9.2 Within-Scanner Performance (Scanner1): Inflammation
Classification

Figure 13: ROC curves comparing
model performance for inflammation
classification at the tile-level on Scan-
ner1 test-set

Figure 14: ROC curves comparing
model performance for inflammation
classification at the slide-level on Scan-
ner1 test-set

Table 10 shows how our models compare to previous work. While Hempel (2023)
reported higher tile-level metrics (90.30% accuracy vs. our 81.70%), direct compar-
isons are challenging due to different dataset splits, evaluation methodologies, and
metrics recalculated from published confusion matrices.

Table 11 presents the performance of different models for gastric inflammation clas-
sification. Hyperparameters were optimized using Optuna with validation loss as the
objective. The optimization process completed in 2 days, 12 hours, and 46 minutes
on dual NVIDIA A5000 GPUs. All models, excluding ResNet18 which was trained
for 25 epochs, were subsequently trained for 50 epochs.

The optimal hyperparameter configurations for each architecture are also detailed
in Table 11 under ”Implementation Details”.

The comparison of aggregation strategies in Table 12 reveals that selective aggrega-
tion methods like top k mean tend to outperform simpler approaches for inflamma-
tion detection across all models, likely because they can focus on the most informa-
tive regions of the slide.
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Table 10: Performance Comparison of ResNet18 Models for Gastric Inflammation
Classification Across Studies

Current Work Previous Work†

Study This Study Hempel (2023) Höfling (2023)

Validation Performance
Tile-Level Accuracy 82.19% — 92.41%
Tile-Level Sensitivity 81.65% — —
Tile-Level Specificity 83.03% — —
Tile-Level F1 Score 84.70% — —
Tile-Level AUC 91.19% — —

Slide-Level Accuracy 100.00% — —
Slide-Level Sensitivity 100.00% — —
Slide-Level Specificity 100.00% — —
Slide-Level F1 Score 100.00% — —
Slide-Level AUC 100.00% — —

Test Performance
Tile-Level Accuracy 81.70% 90.30% 72.73%
Tile-Level Sensitivity 80.42% 88.30% 67.90%
Tile-Level Specificity 84.24% 94.70% 88.10%
Tile-Level F1 Score 85.39% 92.60% 79.08%
Tile-Level AUC 90.43% 98.00% 86.00%

Slide-Level Accuracy 95.35% 100.00% 94.74%
Slide-Level Sensitivity 100.00% 100.00% —
Slide-Level Specificity 89.47% 100.00% —
Slide-Level F1 Score 96.00% 100.00% —
Slide-Level AUC 99.56% 100.00% 97.00%

Aggregation Strategy
Strategy top k mean 30 majority vote probabilistic avg

Implementation Details
Batch Size 128 32 128
Dropout rate 0.000 0.000 0.000
Epochs 25 10 25
Learning Rate 1e-3 1e-4 1e-3
Weight Decay 0.000 0.000 0.000
Positive Class Weight 1.0 1.0 1.0
Optimizer SGD SGD SGD

† Direct numerical comparison is not straightforward due to different dataset splits.
Note: All results are from ResNet18 models.
Note: Missing values (—) indicate metrics not reported in previous studies.
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Table 11: Comprehensive Performance Comparison of Deep Learning Models for
Gastric Inflammation Classification (Scanner1)

Model ConvNeXt DenseNet121 DenseNet169 GigaPath ResNet18 Swin-V2
Metric Large Base

Validation Performance
Tile-Level Accuracy 83.95% 86.06% 81.16% 82.57% 82.19% 74.21%
Tile-Level Sensitivity 82.16% 85.61% 79.55% 82.08% 81.65% 75.58%
Tile-Level Specificity 86.67% 86.75% 83.62% 83.32% 83.03% 72.13%
Tile-Level F1 Score 86.07% 88.12% 83.60% 85.05% 84.70% 77.96%
Tile-Level AUC 91.78% 93.61% 89.56% 90.61% 91.19% 81.34%

Slide-Level Accuracy 95.00% 97.37% 97.37% 97.50% 100.00% 92.24%
Slide-Level Sensitivity 100.00% 94.74% 94.74% 100.00% 100.00% 89.47%
Slide-Level Specificity 90.00% 100.00% 100.00% 95.00% 100.00% 95.00%
Slide-Level F1 Score 95.00% 97.30% 97.30% 97.44% 100.00% 91.89%
Slide-Level AUC 99.74% 100.00% 99.74% 100.00% 100.00% 97.11%

Test Performance
Tile-Level Accuracy 83.73% 76.93% 82.76% 80.44% 81.70% 75.88%
Tile-Level Sensitivity 84.65% 68.88% 82.63% 77.79% 80.42% 74.92%
Tile-Level Specificity 81.89% 92.92% 83.02% 85.70% 84.24% 77.79%
Tile-Level F1 Score 87.37% 79.89% 86.44% 84.11% 85.39% 80.52%
Tile-Level AUC 91.93% 91.20% 91.36% 90.29% 90.43% 83.63%

Slide-Level Accuracy 90.70% 95.35% 93.02% 95.35% 95.35% 90.70%
Slide-Level Sensitivity 95.83% 91.67% 91.67% 100.00% 100.00% 91.67%
Slide-Level Specificity 84.21% 100.00% 94.74% 89.47% 89.47% 89.47%
Slide-Level F1 Score 92.00% 95.65% 93.62% 96.00% 96.00% 91.67%
Slide-Level AUC 97.37% 99.56% 99.56% 99.12% 99.56% 95.18%

Optimal Aggregation Strategy
Strategy top k mean 10 mean top k mean 30 top k mean 30 top k mean 30 mean

Implementation Details
Batch Size 64 32 64 64 128 96
Dropout Rate 0.049 0.161 0.228 0.208 0.000 0.286
Epochs 50 50 50 50 25 50
Learning Rate 4.117e-4 1.777e-4 1.860e-4 9.145e-4 1.000e-3 3.887e-4
Weight Decay 8.027e-5 3.438e-5 1.462e-4 2.035e-4 0.000 5.240e-5
Positive Class Weight 0.572 0.413 0.417 0.465 1.000 0.574
Optimizer AdamW AdamW AdamW AdamW SGD AdamW

Note: All metrics are calculated on the test datasets using consistent methodology.
Optimal aggregation strategies were determined through validation data optimization.
Note: Slide-level refers to WSI, where all tiles from the same slide share
the same inflammation label. Aggregation strategies determine how tile-level
predictions are combined to make slide-level decisions.
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Table 12: Comparison of Aggregation Strategies based on Validation Set for Gastric
Inflammation Classification Across Models

Model Strategy Threshold Balanced Accuracy Sensitivity Specificity F1 Score

ConvNeXt Large

mean 0.428 94.87% 94.74% 95.00% 94.74%
median 0.526 94.74% 89.47% 100.00% 94.44%
top k mean 10 0.900 95.00% 100.00% 90.00% 95.00%
top k mean 20 0.870 94.87% 94.74% 95.00% 94.74%
top k mean 30 0.782 94.87% 94.74% 95.00% 94.74%

DenseNet121

mean 0.691 97.37% 94.74% 100.00% 97.30%
median 0.815 97.37% 94.74% 100.00% 97.30%
top k mean 10 0.900 90.00% 100.00% 80.00% 90.48%
top k mean 20 0.900 92.50% 100.00% 85.00% 92.68%
top k mean 30 0.900 95.00% 100.00% 90.00% 95.00%

DenseNet169

mean 0.435 94.87% 94.74% 95.00% 94.74%
median 0.340 94.87% 94.74% 95.00% 94.74%
top k mean 10 0.900 85.00% 100.00% 70.00% 86.36%
top k mean 20 0.900 95.00% 100.00% 90.00% 95.00%
top k mean 30 0.900 97.37% 94.74% 100.00% 97.30%

GigaPath

mean 0.587 97.37% 94.74% 100.00% 97.30%
median 0.614 97.37% 94.74% 100.00% 97.30%
top k mean 10 0.900 92.50% 100.00% 85.00% 92.68%
top k mean 20 0.900 92.50% 100.00% 85.00% 92.68%
top k mean 30 0.900 97.50% 100.00% 95.00% 97.44%

ResNet18

mean 0.617 97.37% 94.74% 100.00% 97.30%
median 0.665 97.37% 94.74% 100.00% 97.30%
top k mean 10 0.900 90.00% 100.00% 80.00% 90.48%
top k mean 20 0.900 97.50% 100.00% 95.00% 97.44%
top k mean 30 0.900 100.00% 100.00% 100.00% 100.00%

Swin v2 b

mean 0.494 92.24% 89.47% 95.00% 91.89%
median 0.478 89.74% 89.47% 90.00% 89.47%
top k mean 10 0.818 89.61% 84.21% 95.00% 88.89%
top k mean 20 0.732 89.74% 89.47% 90.00% 89.47%
top k mean 30 0.741 92.11% 84.21% 100.00% 91.43%

Note: Aggregation strategies represent different methods for combining tile-level
predictions to make slide-level decisions.
Values shown are from the aggregation strategies based on the validation set perfor-
mance.
Threshold values were optimized on validation data to maximize balanced accuracy.
”mean”: Average of all tile predictions within a slide
”median”: Median of all tile predictions within a slide
”top k mean n”: Average of the top n% tile predictions within a slide
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9.3 Cross-Scanner Performance (Scanner2): Tissue Classi-
fication

Figure 15: ROC curves comparing
model performance for tissue classifica-
tion at the tile-level on Scanner2 test-set

Figure 16: ROC curves comparing
model performance for tissue classifica-
tion at the particle-level on Scanner2
test-set

This section evaluates the models’ ability to generalize to a different scanner en-
vironment for tissue classification. Using the same validation-optimized thresholds
from Scanner1, we assess how well these models perform when applied to Scanner2
data without recalibration. Tables 13 and 14 present comprehensive metrics for
this cross-scanner evaluation, while Figures 15 and 16 visualize the ROC curves for
tile-level and particle-level performance respectively.



9 RESULTS 54

Table 13: Cross-Scanner Generalization for Gastric Tissue Classification - Part 1

ConvNeXt Large DenseNet121 DenseNet169

Metric Scanner1 Scanner2 Scanner1 Scanner2 Scanner1 Scanner2

Validation Performance
Tile-Level Accuracy 90.47% — 89.09% — 87.99% —
Tile-Level Sensitivity 93.75% — 92.24% — 89.28% —
Tile-Level Specificity 85.63% — 84.44% — 86.09% —
Tile-Level F1 Score 92.13% — 90.97% — 89.85% —
Tile-Level AUC 92.91% — 94.26% — 94.05% —

Particle-Level Accuracy 96.35% — 94.62% — 95.45% —
Particle-Level Sensitivity 98.28% — 94.83% — 97.41% —
Particle-Level Specificity 94.42% — 94.42% — 93.49% —
Particle-Level F1 Score 96.61% — 94.83% — 95.76% —
Particle-Level AUC 97.05% — 98.06% — 98.15% —

Test Performance
Tile-Level Accuracy 88.71% 79.80% 87.07% 80.40% 84.23% 66.65%
Tile-Level Sensitivity 87.06% 56.09% 84.60% 60.04% 84.16% 32.03%
Tile-Level Specificity 90.28% 99.81% 89.42% 97.57% 84.29% 95.86%
Tile-Level F1 Score 88.27% 71.77% 86.46% 73.70% 83.89% 46.78%
Tile-Level AUC 91.83% 94.91% 90.52% 93.81% 88.79% 86.87%

Particle-Level Accuracy 92.01% 84.24% 90.91% 81.09% 91.46% 65.62%
Particle-Level Sensitivity 90.18% 61.81% 87.73% 54.17% 89.57% 16.67%
Particle-Level Specificity 93.50% 100.00% 93.50% 100.00% 93.00% 100.00%
Particle-Level F1 Score 91.02% 76.39% 89.66% 70.27% 90.40% 28.57%
Particle-Level AUC 93.61% 99.36% 92.43% 99.48% 91.15% 95.27%
Generalization Gap* -5.75% -7.05% -4.12%

Optimal Aggregation Strategy
Strategy mean median mean

* Generalization Gap = Scanner1 Aggregated AUC - Scanner2 Aggregated AUC.
Negative values indicate better performance on Scanner2.
Note: Aggregation strategy optimized on validation data from Scanner1, then applied
to both test datasets.
Note: Scanner1 results are from the held-out test set of the same scanner used for
training. Scanner2 results are from a completely different scanner representing
real-world domain shift.
Note: Missing values (—) denote the absence of validation metrics for Scanner2, as it
is exclusively used as a test set.
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Table 14: Cross-Scanner Generalization for Gastric Tissue Classification - Part 2

GigaPath ResNet18 Swin v2 b

Metric Scanner1 Scanner2 Scanner1 Scanner2 Scanner1 Scanner2

Validation Performance
Tile-Level Accuracy 87.74% — 86.81% — 81.18% —
Tile-Level Sensitivity 90.45% — 88.76% — 81.70% —
Tile-Level Specificity 83.75% — 83.95% — 80.42% —
Tile-Level F1 Score 89.78% — 88.91% — 83.80% —
Tile-Level AUC 93.04% — 92.23% — 86.97% —

Particle-Level Accuracy 96.33% — 95.47% — 93.91% —
Particle-Level Sensitivity 98.71% — 96.98% — 95.26% —
Particle-Level Specificity 93.95% — 93.95% — 92.56% —
Particle-Level F1 Score 96.62% — 95.74% — 94.24% —
Particle-Level AUC 97.70% — 97.38% — 95.96% —

Test Performance
Tile-Level Accuracy 84.30% 79.92% 85.20% 66.18% 78.41% 74.47%
Tile-Level Sensitivity 76.46% 57.34% 85.32% 27.12% 68.91% 48.86%
Tile-Level Specificity 91.76% 98.97% 85.08% 99.13% 87.46% 96.08%
Tile-Level F1 Score 82.62% 72.33% 84.91% 42.33% 75.69% 63.65%
Tile-Level AUC 89.63% 96.26% 89.20% 87.48% 84.55% 88.01%

Particle-Level Accuracy 90.36% 91.98% 91.46% 62.75% 91.46% 87.39%
Particle-Level Sensitivity 87.12% 81.94% 90.80% 9.72% 90.80% 73.61%
Particle-Level Specificity 93.00% 99.02% 92.00% 100.00% 92.00% 97.07%
Particle-Level F1 Score 89.03% 89.39% 90.52% 17.72% 90.52% 82.81%
Particle-Level AUC 92.46% 99.23% 92.03% 96.31% 92.33% 96.89%
Generalization Gap* -6.77% -4.28% -4.56%

Optimal Aggregation Strategy
Strategy top k mean 30 top k mean 20 top k mean 20

* Generalization Gap = Scanner1 Aggregated AUC - Scanner2 Aggregated AUC.
Negative values indicate better performance on Scanner2.
Note: Aggregation strategy optimized on validation data from Scanner1, then applied
to both test datasets.
Note: Scanner1 results are from the held-out test set of the same scanner used for
training. Scanner2 results are from a completely different scanner representing
real-world domain shift.
Note: Missing values (—) denote the absence of validation metrics for Scanner2, as it
is exclusively used as a test set.
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9.4 Cross-Scanner Performance (Scanner2): Inflammation
Classification

Figure 17: ROC curves comparing
model performance for inflammation
classification at the tile-level on Scan-
ner2 test-set

Figure 18: ROC curves comparing
model performance for inflammation
classification at the slide-level on Scan-
ner2 test-set

Following our assessment of tissue classification, we evaluate the cross-scanner gener-
alization capabilities of our models for inflammation detection. This analysis applies
Scanner1-optimized thresholds and aggregation strategies to Scanner2 data, mirror-
ing a real-world clinical scenario where models trained on one scanner are deployed
to another without recalibration. The performance metrics are presented in Ta-
bles 15 and 16, with ROC curves for tile-level and slide-level performance illustrated
in Figures 17 and 18 respectively.
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Table 15: Cross-Scanner Generalization for Gastric Inflammation Classification -
Part 1

ConvNeXt Large DenseNet121 DenseNet169

Metric Scanner1 Scanner2 Scanner1 Scanner2 Scanner1 Scanner2

Validation Performance
Tile-Level Accuracy 83.95% — 86.06% — 81.16% —
Tile-Level Sensitivity 82.16% — 85.61% — 79.55% —
Tile-Level Specificity 86.67% — 86.75% — 83.62% —
Tile-Level F1 Score 86.07% — 88.12% — 83.60% —
Tile-Level AUC 91.78% — 93.61% — 89.56% —

Slide-Level Accuracy 95.00% — 97.37% — 97.37% —
Slide-Level Sensitivity 100.00% — 94.74% — 94.74% —
Slide-Level Specificity 90.00% — 100.00% — 100.00% —
Slide-Level F1 Score 95.00% — 97.30% — 97.30% —
Slide-Level AUC 99.74% — 100.00% — 99.74% —

Test Performance
Tile-Level Accuracy 83.73% 68.11% 76.93% 71.12% 82.76% 60.51%
Tile-Level Sensitivity 84.65% 99.50% 68.88% 93.92% 82.63% 66.71%
Tile-Level Specificity 81.89% 1.78% 92.92% 22.97% 83.02% 47.40%
Tile-Level F1 Score 87.37% 80.90% 79.89% 81.53% 86.44% 69.63%
Tile-Level AUC 91.93% 67.97% 91.20% 76.31% 91.36% 62.88%

Slide-Level Accuracy 90.70% 66.67% 95.35% 76.67% 93.02% 66.67%
Slide-Level Sensitivity 95.83% 100.00% 91.67% 100.00% 91.67% 95.00%
Slide-Level Specificity 84.21% 0.00% 100.00% 30.00% 94.74% 10.00%
Slide-Level F1 Score 92.00% 80.00% 95.65% 85.11% 93.62% 79.17%
Slide-Level AUC 97.37% 91.00% 99.56% 88.00% 99.56% 75.50%
Generalization Gap* 6.37% 11.56% 24.06%

Optimal Aggregation Strategy
Strategy top k mean 10 mean top k mean 30

* Generalization Gap = Scanner1 Aggregated AUC - Scanner2 Aggregated AUC.
Negative values indicate better performance on Scanner2.
Note: Aggregation strategy optimized on validation data from Scanner1, then applied
to both test datasets.
Note: Scanner1 results are from the held-out test set of the same scanner used for
training. Scanner2 results are from a completely different scanner representing
real-world domain shift.
Note: Missing values (—) denote the absence of validation metrics for Scanner2, as it
is exclusively used as a test set.
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Table 16: Cross-Scanner Generalization for Gastric Inflammation Classification -
Part 2

GigaPath ResNet18 Swin v2 b

Metric Scanner1 Scanner2 Scanner1 Scanner2 Scanner1 Scanner2

Validation Performance
Tile-Level Accuracy 82.57% — 82.19% — 74.21% —
Tile-Level Sensitivity 82.08% — 81.65% — 75.58% —
Tile-Level Specificity 83.32% — 83.03% — 72.13% —
Tile-Level F1 Score 85.05% — 84.70% — 77.96% —
Tile-Level AUC 90.61% — 91.19% — 81.34% —

Slide-Level Accuracy 97.50% — 100.00% — 92.24% —
Slide-Level Sensitivity 100.00% — 100.00% — 89.47% —
Slide-Level Specificity 95.00% — 100.00% — 95.00% —
Slide-Level F1 Score 97.44% — 100.00% — 91.89% —
Slide-Level AUC 100.00% — 100.00% — 97.11% —

Test Performance
Tile-Level Accuracy 80.44% 70.95% 81.70% 64.75% 75.88% 67.78%
Tile-Level Sensitivity 77.79% 91.07% 80.42% 91.05% 74.92% 94.56%
Tile-Level Specificity 85.70% 28.44% 84.24% 9.21% 77.79% 11.21%
Tile-Level F1 Score 84.11% 80.97% 85.39% 77.81% 80.52% 79.94%
Tile-Level AUC 90.29% 70.29% 90.43% 61.85% 83.63% 69.87%

Slide-Level Accuracy 95.35% 66.67% 95.35% 66.67% 90.70% 66.67%
Slide-Level Sensitivity 100.00% 100.00% 100.00% 100.00% 91.67% 100.00%
Slide-Level Specificity 89.47% 0.00% 89.47% 0.00% 89.47% 0.00%
Slide-Level F1 Score 96.00% 80.00% 96.00% 80.00% 91.67% 80.00%
Slide-Level AUC 99.12% 80.00% 99.56% 73.00% 95.18% 84.00%
Slide-Level Generalization Gap* 19.12% 26.56% 11.18%

Optimal Aggregation Strategy
Strategy top k mean 30 top k mean 30 mean

* Generalization Gap = Scanner1 Aggregated AUC - Scanner2 Aggregated AUC.
Negative values indicate better performance on Scanner2.
Note: Aggregation strategy optimized on validation data from Scanner1, then applied
to both test datasets.
Note: Scanner1 results are from the held-out test set of the same scanner used for
training. Scanner2 results are from a completely different scanner representing
real-world domain shift.
Note: Missing values (—) denote the absence of validation metrics for Scanner2, as it
is exclusively used as a test set.
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10 Discussion

10.1 Within-Scanner Performance (Scanner1)

Our experiments on Scanner1 demonstrate robust performance across multiple ar-
chitectures for tissue and inflammation classification tasks, as evidenced by the com-
prehensive metrics in Tables 8 and 11. These results reflect the models’ ability to
generalize within the same scanner domain, leveraging optimized hyperparameters
determined through Bayesian optimization with Optuna (Akiba et al., 2019).

10.1.1 Tissue Classification

ConvNeXt Large emerges as the top performer for tissue classification, achieving a
particle-level test accuracy of 92.01% and an AUC of 93.61% (Table 8). ConvNeXt
Large outperforms simpler models like ResNet18 (test particle-level AUC of 92.03%)
by approximately 1.58 percentage points, as visualized in the ROC curves at tile
and particle-levels (Figures 11 and 12). The superior performance of ConvNeXt
Large is likely attributable to its advanced convolutional design, which enhances
feature extraction from histological images. GigaPath also performs competitively
with a particle-level test AUC of 92.46%, slightly outperforming ResNet18, while
DenseNet169 shows slightly lower performance with a particle-level test AUC of
91.15%. These results suggest that modern convolutional architectures and deeper
networks can effectively capture tissue-specific patterns.

10.1.2 Inflammation Classification

Multiple models achieved excellent slide-level test performance for inflammation
classification, with DenseNet121, DenseNet169, and ResNet18 all reaching an AUC
of 99.56% (Table 11). GigaPath follows closely with a slide-level test AUC of 99.12%,
while ConvNeXt Large (97.37%) and Swin-V2 Base (95.18%) show slightly lower
performance. The slide-level test accuracy results follow a similar pattern, with
DenseNet121, GigaPath, and ResNet18 all achieving 95.35%, followed by
DenseNet169 (93.02%), ConvNeXt Large and Swin-V2 Base at 90.70%. These re-
sults are confirmed by the ROC curves (Figures 13 and 14), where multiple models
exhibit near-perfect discrimination.

This pattern differs from tissue classification, where ConvNeXt Large led the per-
formance metrics. For inflammation detection, the simpler ResNet18 achieves com-
parable performance to more complex architectures, suggesting that inflammation
features may be more readily detectable without requiring advanced architectural
design.
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10.1.3 Aggregation Strategies

The impact of different aggregation strategies varies significantly between models,
as detailed in Tables 9 and 12. For tissue classification, ConvNeXt Large achieves
optimal performance with a simple ‘mean‘ strategy (balanced validation accuracy
96.35%), while GigaPath and ResNet18 benefit from more selective approaches like
‘top k mean 30‘ (96.33%) and ‘top k mean 20‘ (95.47%), respectively. This suggests
that focusing on high-confidence predictions can enhance model robustness.

For inflammation classification, selective aggregation dominates across most models,
with ‘top k mean‘ variants showing the best performance. ResNet18 achieves per-
fect validation balanced accuracy (100.00%) with ‘top k mean 30‘, while GigaPath
(97.50%) and DenseNet169 (97.37%) also excel with this approach. These results
indicate that slide-level inflammation classification benefits substantially from fo-
cusing on the most informative regions of a slide, which aligns with clinical intuition
where inflammation often presents in localized areas rather than uniformly across
the entire slide (Pennelli et al., 2020; Sepulveda and Patil, 2008b).

10.2 Cross-Scanner Generalization (Scanner2)

Cross-scanner generalization tests the real-world applicability of our models by eval-
uating performance on Scanner2, a distinct domain from the training Scanner1.
Results in Tables 13–16 reveal varying degrees of domain adaptation, visualized in
Figures 15–18.

10.2.1 Tissue Classification

Our models demonstrate remarkable cross-scanner generalization for tissue classifi-
cation, with all models performing better on Scanner2 than on their original training
domain. This unexpected finding is evidenced by the negative generalization gaps
on the test sets across all models, ranging from -4.12% (DenseNet169) to -7.05%
(DenseNet121), as shown in Tables 13 and 14.

GigaPath exhibits exceptional cross-domain performance with a particle-level test
AUC of 99.23% on Scanner2, considerably higher than its 92.46% on Scanner1, yield-
ing a negative generalization gap of -6.77%. ConvNeXt Large and DenseNet121 also
demonstrate strong generalization capabilities with Scanner2 test AUCs of 99.36%
and 99.48%, respectively. These results suggest that these architectures effectively
capture scanner-invariant tissue features, likely due to their sophisticated feature ex-
traction capabilities and, in GigaPath’s case, possible benefits from its pretraining
on diverse pathology datasets.

However, a notable pattern emerges when examining sensitivity and specificity met-
rics. Across all models, we observe substantial decreases in tile-level test sensitivity
on Scanner2 compared to Scanner1 (e.g., from 90.18% to 61.81% for ConvNeXt
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Large, and most dramatically from 90.80% to 9.72% for ResNet18), offset by near-
perfect specificity values (approaching 100% for most models). This significant
imbalance suggests a shift in classification thresholds when transitioning between
scanner domains, potentially driven by differences in staining intensity and image
characteristics between scanners.

This trade-off is most pronounced with ResNet18, which, despite achieving a rela-
tively good Scanner2 AUC of 96.31%, shows a sensitivity drop to just 9.72%. Such
extreme performance characteristics indicate that while the model can rank predic-
tions effectively (as reflected in the high AUC), its decision boundary is severely
miscalibrated for the new domain. Swin v2 b maintains a more balanced perfor-
mance with a Scanner2 sensitivity of 73.61% and AUC of 96.89%, suggesting its
transformer-based architecture may provide some inherent robustness to domain
shifts.

The negative generalization gaps observed across all architectures highlight an in-
triguing phenomenon wherein models trained on Scanner1 exhibit enhanced discrim-
inative power on Scanner2 data. This could potentially be attributed to Scanner2’s
image characteristics providing greater contrast between tissue types, making the
classification task easier despite the domain shift.

10.2.2 Inflammation Classification

In stark contrast to tissue classification, inflammation classification presents a signif-
icantly more challenging cross-scanner generalization scenario. All models demon-
strate substantial performance degradation when applied to Scanner2, with positive
generalization gaps ranging from 6.37% (ConvNeXt Large) to 26.56% (ResNet18)
on the test sets, as detailed in Tables 15 and 16.

At the slide-level, ConvNeXt Large maintains the strongest cross-domain perfor-
mance with an AUC of 91.00% on the Scanner2 test set compared to 97.37%
on the Scanner1 test set, representing the smallest generalization gap of 6.37%.
DenseNet121 follows with a Scanner2 AUC of 88.00%, while GigaPath (80.00%),
Swin v2 b (84.00%), DenseNet169 (75.50%), and ResNet18 (73.00%) show more
significant performance drops. These results suggest that detecting inflammation
features is susceptible to scanner-specific characteristics, with more complex ar-
chitectures like ConvNeXt Large demonstrating greater resilience to these domain
shifts.

A concerning pattern emerges in the test specificity metrics across all models. At
the slide-level, test specificity values on Scanner2 drop dramatically, reaching as low
as 0.00% for several models, including ResNet18, GigaPath, and Swin v2 b. This
is accompanied by consistently high sensitivity values (95.00%-100.00%), indicating
that models systematically overpredict inflammation on Scanner2 samples. This
severe decision boundary shift results in models effectively classifying nearly all
Scanner2 samples as inflamed regardless of their true label.
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The tile-level test performance mirrors this trend, with specificity values ranging
from just 1.78% (ConvNeXt Large) to 47.40% (DenseNet169), while sensitivities re-
main high (66.71%-99.50%). This pervasive misclassification pattern suggests that
Scanner2’s image characteristics likely contain features that closely resemble inflam-
mation signals learned from Scanner1, leading to widespread false positive predic-
tions.

These findings have significant implications for clinical deployment, indicating that
inflammation models trained on a single scanner would require substantial domain
adaptation before reliable use on images from different scanning devices. This is
consistent with the findings of Howard et al. (2021), who demonstrated that site-
specific digital histology signatures can lead to biased accuracy in deep learning
models, highlighting the importance of accounting for scanner-specific variations.
Furthermore, Shi et al. (2022) successfully applied domain adaptation techniques
to improve cross-hospital diagnosis of gastric dysplasia, suggesting that similar ap-
proaches could benefit cross-scanner generalizability in our context. The stark differ-
ence in cross-scanner generalization between tissue and inflammation classification
suggests that tissue morphology features are inherently more scanner-agnostic than
the more subtle textural and intensity patterns that characterize inflammation.

10.3 Comparative Analysis with Previous Studies

This thesis builds on previous studies from 2023, offering insights into the progression
of deep learning for gastric histological classification. Direct comparisons with prior
work by Höfling (2023) and Hempel (2023), as detailed in Tables 7 and 10, must
account for methodological differences, including dataset refinements (e.g., corrected
annotations) and varied data splits in the current study.

Comparisons with the previous studies (Table 7) show that our tissue classifica-
tion ResNet18 model (tile-level test accuracy 85.20%) is slightly outperformed by
Hempel (2023) (89.10%) and Höfling (2023) (87.00%). However, direct comparisons
are confounded by differences in dataset splits and classification scope, as well as our
binary corpus/antrum task versus their multi-class approaches including intermedi-
ate types. Our study extends beyond prior work by reporting particle-level metrics,
offering a more granular assessment of model performance critical for clinical appli-
cations.

Compared to prior work (Table 10), our inflammation classification ResNet18 tile-
level accuracy (81.70%) is lower than Hempel’s (90.30%) but higher than Höfling’s
(72.73%). At the slide-level, our model’s test accuracy (95.35%) approaches Hempel’s
(100.00%) and slightly exceeds Höfling’s (94.74%). These comparisons highlight the
advantage of our hierarchical evaluation, where slide-level performance can outshine
tile-level metrics, aligning with clinical needs for whole-slide diagnoses.

Höfling (2023) established human expert benchmarks, reporting tile-level test ac-
curacies of 80.00-86.44% for tissue classification and 70.00-73.33% for inflamma-
tion classification. These benchmarks contextualize our computational results: our
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ResNet18 achieves a tile-level test accuracy of 85.20% for tissue (Table 7) and 81.70%
for inflammation (Table 10), surpassing human performance in the latter and ap-
proaching the upper bound in the former. Slide-level accuracies (e.g., 95.35% for
ResNet18 inflammation) further suggest that our models may exceed human capa-
bilities at the WSI level, a critical advancement for clinical diagnostics.

The architectural evolution across studies is notable. Höfling relied solely on
ResNet18, while Hempel demonstrated improved performance with the same archi-
tecture. Our study extends this by evaluating ResNet18 alongside advanced models
like ConvNeXt Large and GigaPath on a refined dataset. For tissue classification,
ConvNeXt Large achieves a tile-level test accuracy of 88.71% and specificity of
90.28%, compared to ResNet18’s 85.20% and 85.08%, and Hempel’s 89.10% and
88.00% (Table 7). For inflammation, ConvNeXt Large reaches 83.73% tile-level ac-
curacy, surpassing Höfling’s 72.73% but trailing Hempel’s 90.30% (Table 10). These
gains reflect dataset improvements and architectural advancements, though compar-
isons remain nuanced due to differing classification scopes on the tissue classification
task (binary vs. multi-class).

While Höfling’s work showed lower tile-level test performance for inflammation clas-
sification (72.73% vs. Hempel’s 90.30%), both achieved comparable slide-level test
accuracy (94.74% vs. 100.00%), highlighting the critical role of effective aggregation
strategies. Our selective ‘top k mean‘ approach (yielding 95.35% slide-level accu-
racy) offers a middle ground between Höfling’s probabilistic averaging and Hempel’s
majority voting, with stronger robustness to outlier tiles.

Particle-level tissue test classification shows consistent robustness, with accuracies
ranging from 90.36% (GigaPath) to 92.01% (ConvNeXt Large) on Scanner1, aligning
with the range implied by prior confusion matrices. This stability underscores the
effectiveness of our hierarchical approach across architectures.

Our contributions advance gastric histopathology analysis in several key ways:

• Cross-Scanner Validation: Unlike prior single-scanner evaluations, our
cross-scanner analysis (Tables 13–16) exposes real-world deployment chal-
lenges, a methodological leap.

• Architecture Exploration: Beyond ResNet18, we demonstrate ConvNeXt
Large’s superior feature extraction (e.g., AUC 91.83% for tissue) and Giga-
Path’s scanner-agnostic robustness (e.g., negative generalization gap -6.77%),
insights unavailable from earlier single-architecture studies.

• Aggregation Strategy Optimization: Our systematic evaluation of aggre-
gation strategies, e.g., ‘top k mean 30‘ yielding 100.00% balanced accuracy for
ResNet18 inflammation, offers a novel framework for hierarchical prediction
that builds upon the probabilistic approach (Höfling, 2023).

• Task-Specific Deployment Guidelines: The divergent generalization pat-
terns (e.g., tissue robustness vs. inflammation sensitivity, Section 10.2) sug-
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gest tailored clinical strategies, providing critical insights not available in prior
studies’ uniform approaches.

These findings affirm that modern architectures can match or exceed human-level
performance at tile and WSI levels, with ConvNeXt Large showing particular promise.
Coupled with dataset refinements and selective aggregation strategies, our work
systematically enhances histopathological classification, paving the way for robust
computer-aided diagnosis in clinical practice.

10.4 Augmentation Strategies

We implemented and evaluated five distinct augmentation strategies to enhance
model robustness, particularly for cross-scanner generalization: MedMNIST, Col-
orJitter, ModelConfig, Medmnist ColorJitter (combined approach), and Normal-
izationOnly. Each approach addresses different aspects of histopathological image
variability, to improve performance across scanners.

10.4.1 Theoretical Foundation and Implementation

Our approach to stain augmentation draws inspiration from prior work by Tellez
et al. (2018, 2019), who established that direct manipulation of HE color channels
generates diverse, realistic variations that substantially enhance cross-center gener-
alization in computational pathology. Similarly, Salvo et al. (2024) demonstrated
that domain-specific augmentations, tailored to address modality-specific artifacts,
consistently outperform generic augmentation strategies across a range of imaging
modalities.

We implemented the following augmentation variants:

• MedMNIST: Leveraging the MedMNISTC framework, this approach applied
pathology-specific corruptions derived from the CORRUPTIONS DS registry
for PathMNIST (Salvo et al., 2024).

• ColorJitter: This strategy implemented a novel hematoxylin and eosin-specific
color transformation based on a stain separation matrix. The
StainColorJitter class performs the following operations:

1. Converts RGB values to the optical density domain using a logarithmic
transformation.

2. Applies the inverse of a predefined stain matrix M to separate the hema-
toxylin and eosin components.

3. Introduces controlled perturbations through scaling (α) and shifting (β)
operations with stochasticity controlled by σ (set to 0.05).

4. Recombines the perturbed stain components and transforms back to the
RGB space.
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• Medmnist ColorJitter: This combined approach sequentially applies both
the MedMNIST pathology-specific corruptions (Salvo et al., 2024) and the
StainColorJitter transformation, potentially offering complementary benefits
of both domain-specific augmentation techniques.

• NormalizationOnly: This approach serves as a controlled comparison, ap-
plying only standard normalization using ImageNet statistics (mean=[0.485,
0.456, 0.406], std=[0.229, 0.224, 0.225]) without additional augmentations.

• ModelConfig: The baseline approach used the standard augmentation con-
figuration specified in the model configuration files, including random resized
cropping (scale 0.8-1.0), random horizontal and vertical flips, and standard
normalization.

10.4.2 Experimental Configuration

The augmentation strategies were systematically evaluated using DenseNet121 as
the base architecture to ensure controlled comparison. For each augmentation vari-
ant, we maintained identical hyperparameters derived from our Bayesian optimiza-
tion process:

• For inflammation classification: Batch size of 32, dropout rate of 0.161,
AdamW optimizer with learning rate of 0.00018, weight decay of 3.44e-05, and
positive class weight of 0.413.

• For tissue classification: Batch size of 64, dropout rate of 0.061, AdamW
optimizer with learning rate of 0.00019, weight decay of 1.08e-05, and positive
class weight of 0.654.

All models were trained using early stopping with a patience of 10 epochs and
cosine annealing learning rate scheduling to ensure fair comparison across augmen-
tation strategies. To maintain experimental integrity, we standardized the validation
process by using pre-computed thresholds and maintaining consistent aggregation
strategies when evaluating performance.

Experiments were structured to assess both within-scanner performance (Scanner1
test set) and cross-scanner generalization (Scanner2 test set) across both classifica-
tion tasks. To ensure comprehensive evaluation, we assessed performance at multiple
hierarchical levels:

• Tile-level metrics (accuracy, sensitivity, specificity, F1 score, AUC).

• Aggregated metrics (particle-level for tissue classification, slide-level for in-
flammation).
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For both tasks, we implemented rigorous evaluation procedures by adopting previ-
ously determined optimal thresholds from our DenseNet121 experiments (as doc-
umented in Tables 9 and 12). These validation-optimized thresholds were applied
consistently to test data across all augmentation variants, ensuring a realistic and
fair assessment of model generalization capabilities.

Note on Training Time: Due to time constraints, all models were trained for only
20 epochs, which may result in slightly different performance compared to previous
DenseNet121 ”ModelConfig” results that used more extensive training. However, the
relative performance across augmentation strategies still provides valuable insights
into their effectiveness for WSI images, particularly for H&E stained slides.

10.4.3 Results and Analysis

Our experimental results reveal that augmentation strategies have differential effects
based on the classification task and evaluation context:

Tissue Classification:

Figure 19: ROC curves comparing aug-
mentation results for tissue classification
at the tile-level on Scanner1 test-set

Figure 20: ROC curves comparing aug-
mentation results for tissue classification
at the particle-level on Scanner1 test-set

• Within Scanner1, the Medmnist ColorJitter augmentation demonstrated
the highest particle-level test AUC (93.13%), slightly outperforming the base-
line ModelConfig approach (92.61% test AUC), also outperforming the particle-
level test accuracy (91.46% vs. ModelConfig’s 90.91%).

• For cross-scanner generalization to Scanner2, Medmnist ColorJitter aug-
mentation again showed the strongest performance, with a particle-level AUC
of 100.00% and particle-level accuracy of 96.56%.
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Table 17: Comprehensive Results for Tissue Classification Augmentation Results on
Scanner1 Test-Set

Metric Medmnist ColorJitter ModelConfig Medmnist ColorJitter NormalizationOnly
Test Performance

Tile-level Accuracy 87.07% 86.20% 85.62% 85.57% 82.67%
Tile-level Sensitivity 84.45% 78.81% 82.75% 86.08% 79.21%
Tile-level Specificity 89.56% 93.25% 88.35% 85.08% 85.98%
Tile-level F1 Score 86.44% 84.79% 84.89% 85.34% 81.69%
Tile-level AUC 90.48% 90.95% 90.49% 90.03% 89.16%

Particle-level Accuracy 89.81% 89.26% 90.91% 91.46% 87.33%
Particle-level Sensitivity 85.28% 83.44% 88.34% 88.34% 79.75%
Particle-level Specificity 93.50% 94.00% 93.00% 94.00% 93.50%
Particle-level F1 Score 88.25% 87.46% 89.72% 90.28% 84.97%
Particle-level AUC 92.59% 92.88% 92.61% 93.13% 92.77%

Figure 21: ROC curves comparing aug-
mentation results for tissue classification
at the tile-level on Scanner2 test-set

Figure 22: ROC curves comparing aug-
mentation results for tissue classification
at the particle-level on Scanner2 test-set

Table 18: Comprehensive Results for Tissue Classification Augmentation Results on
Scanner2 Test-Set

Metric Medmnist ColorJitter ModelConfig Medmnist ColorJitter NormalizationOnly
Test Performance

Tile-level Accuracy 87.89% 81.12% 75.36% 91.88% 76.65%
Tile-level Sensitivity 74.65% 59.82% 48.86% 84.35% 52.36%
Tile-level Specificity 99.07% 99.10% 97.73% 98.23% 97.14%
Tile-level F1 Score 84.95% 74.36% 64.48% 90.48% 67.24%
Tile-level AUC 95.58% 93.60% 90.92% 97.04% 92.88%

Particle-level Accuracy 91.12% 79.94% 73.93% 96.56% 71.06%
Particle-level Sensitivity 78.47% 51.39% 36.81% 91.67% 29.86%
Particle-level Specificity 100.00% 100.00% 100.00% 100.00% 100.00%
Particle-level F1 Score 87.94% 67.89% 53.81% 95.65% 45.99%
Particle-level AUC 99.59% 99.39% 99.24% 100.0% 99.51%

• Interestingly, the NormalizationOnly approach showed a nuanced pattern:
it performed similar to the Medmnist ColorJitter on Scanner1 and main-
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tained excellent discriminative power on Scanner2 (99.51% particle-level test
AUC) despite lower particle-level test accuracy (71.06%). This suggests that
while the model can distinguish between tissue types across scanners, the op-
timal decision threshold shifts significantly depending on the augmentation
strategy. This highlights that threshold recalibration, rather than complete
retraining, might be sufficient for cross-scanner adaptation with simple nor-
malization for tissue classification tasks.

Inflammation Classification:

Figure 23: ROC curves comparing aug-
mentation results for inflammation clas-
sification at the tile-level on Scanner1
test-set

Figure 24: ROC curves comparing aug-
mentation results for inflammation clas-
sification at the slide-level on Scanner1
test-set

Table 19: Comprehensive Results for Inflammation Classification Augmentation
Results on Scanner1 Test-Set

Metric Medmnist ColorJitter ModelConfig Medmnist ColorJitter NormalizationOnly
Test Performance

Tile-level Accuracy 72.09% 68.38% 73.24% 74.04% 63.14%
Tile-level Sensitivity 59.49% 53.89% 61.88% 63.18% 46.75%
Tile-level Specificity 97.12% 97.17% 95.80% 95.61% 95.71%
Tile-level F1 Score 73.93% 69.40% 75.46% 76.40% 62.78%
Tile-level AUC 91.62% 90.22% 91.70% 90.60% 85.80%

Slide-level Accuracy 86.05% 81.40% 83.72% 83.72% 79.07%
Slide-level Sensitivity 75.00% 66.67% 70.83% 70.83% 62.50%
Slide-level Specificity 100.00% 100.00% 100.00% 100.00% 100.00%
Slide-level F1 Score 85.71% 80.00% 82.93% 82.93% 76.92%
Slide-level AUC 99.34% 100.00% 98.90% 100.00% 96.71%

• Within Scanner1, Medmnist ColorJitter and ColorJitter achieved per-
fect slide-level AUC (100.00%), with Medmnist showing the highest slide-
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Figure 25: ROC curves comparing aug-
mentation results for inflammation clas-
sification at the tile-level on Scanner2
test-set

Figure 26: ROC curves comparing aug-
mentation results for inflammation clas-
sification at the slide-level on Scanner2
test-set

Table 20: Comprehensive Results for Inflammation Classification Augmentation
Results on Scanner2 Test-Set

Metric Medmnist ColorJitter ModelConfig Medmnist ColorJitter NormalizationOnly
Test Performance

Tile-level Accuracy 59.85% 62.22% 51.69% 66.25% 59.85%
Tile-level Sensitivity 65.13% 79.72% 38.96% 73.25% 51.05%
Tile-level Specificity 48.68% 25.25% 78.58% 51.46% 78.44%
Tile-level F1 Score 68.77% 74.12% 52.26% 74.66% 63.31%
Tile-level AUC 61.66% 56.53% 65.16% 68.92% 70.66%

Slide-level Accuracy 63.33% 66.67% 53.33% 76.67% 70.00%
Slide-level Sensitivity 75.00% 95.00% 30.00% 90.00% 60.00%
Slide-level Specificity 40.00% 10.00% 100.00% 50.00% 90.00%
Slide-level F1 Score 73.17% 79.17% 46.15% 83.72% 72.73%
Slide-level AUC 64.50% 56.00% 78.50% 79.00% 85.50%

level test accuracy (86.05%) compared to the baseline ModelConfig approach
(98.90% AUC, 83.72% accuracy).

• For cross-scanner inflammation detection, NormalizationOnly achieved the
highest slide-level AUC (85.50%), while Medmnist ColorJitter demonstrated
the best slide-level accuracy (76.67%).

The combination of Medmnist and ColorJitter augmentations (i.e., Medm-
nist ColorJitter) yielded the most balanced performance across both tasks and
scanner environments, suggesting that domain-specific augmentations targeting both
morphological variations and stain characteristics are essential for robust cross-
scanner performance.
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These findings align with the principles established by Tellez et al. (2018), confirm-
ing that stain-specific augmentations particularly benefit inflammation detection
by normalizing color variations across scanners. Our results further validate Salvo
et al. (2024)’s observation that domain-specific augmentation strategies consistently
outperform generic approaches, with the performance differential being most pro-
nounced in cross-scanner generalization scenarios.

10.5 Limitations and Improvements

This thesis advances beyond prior work by addressing several limitations, yet it
is not without constraints that warrant consideration. Below, we outline how we
have improved upon previous research and identify remaining challenges, preempting
potential critiques by providing context and mitigation strategies.

• Scanner Variability: Unlike single-scanner studies (Höfling, 2023; Hempel,
2023), we incorporate data from Scanner1 and Scanner2 (Tables 13–16), en-
abling a more realistic assessment of generalizability across imaging devices.
This addresses a key gap in prior work, where scanner-specific biases remained
untested.

• Annotation Quality: We systematically corrected annotation errors, en-
hancing dataset reliability over earlier studies that relied on noisier labels.

• Architectural Exploration: By evaluating five architectures (e.g., Con-
vNeXt Large, GigaPath, ResNet18) and the GigaPath model, we offer a broader
performance spectrum than the ResNet18-centric focus of previous investiga-
tions.

• Aggregation Analysis: Our novel analysis of aggregation strategies (Ta-
bles 9 and 12) provides actionable insights into optimizing hierarchical predic-
tions, absent in prior work.

Despite these advancements, several limitations persist, which we address proac-
tively to guide interpretation and future research:

• Scanner Diversity and Domain Adaptation: A common critique might
highlight our testing on only two scanners, limiting broader generalization to
diverse manufacturers or imaging conditions. Chen et al. (2024) provide a
comprehensive review, emphasizing the need for domain adaptation to ensure
model robustness across diverse imaging environments, which aligns with our
findings. This is evident in Scanner2’s performance drops (e.g., ResNet18 in-
flammation tile-level AUC falls to 61.85%, Table 16), with generalization gaps
up to 26.56%. We did not implement domain adaptation techniques in the
main study, such as stain normalization (Tellez et al., 2021) or adversarial
training (Ganin et al., 2016), to align feature distributions across scanners.
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This omission likely exacerbates sensitivity-specificity shifts (e.g., ResNet18
specificity drops from 84.24% to 9.21%, Table 16), reflecting potentially unad-
dressed scanner-specific artifacts (e.g., color or resolution variances). Future
work could mitigate this by applying unsupervised domain adaptation, po-
tentially reducing gaps by aligning Scanner2’s intensity distributions to Scan-
ner1’s, as demonstrated in similar histopathology studies (Stacke et al., 2019).
While our study highlights the need for models that generalize across different
scanners, future work could explore domain adaptation techniques to miti-
gate these challenges. For instance, Shi et al. (2022) demonstrated the use
of deep learning with domain adaptation to improve cross-hospital diagnosis
of gastric dysplasia, which could be adapted to our context. Additionally, a
comprehensive review of AI applications in digital pathology for gastric cancer
Chen et al. (2024) suggests that integrating such techniques could significantly
enhance model performance and clinical applicability.

• Sample Size and Statistical Power: The Scanner2 test set, particularly
for inflammation classification (30 slides), may draw scrutiny for its limited
size, potentially inflating generalization gaps (e.g., 26.56% for ResNet18) and
constraining statistical power. While Scanner1’s larger dataset supports ro-
bust within-scanner results, expanding Scanner2’s sample size (e.g., to >100
slides) would enhance confidence in cross-scanner findings, a priority for future
validation.

• Binary Classification Constraints: Reviewers may note that the binary
tasks (corpus/antrum, inflamed/non-inflamed) oversimplify clinical reality, omit-
ting intermediate tissue types (e.g., transitional zones) and inflammation sever-
ity grades (e.g., mild, moderate, severe per Sydney System (Dixon et al.,
1996)). For instance, our models cannot distinguish subtle gastritis subtypes
critical for treatment decisions, limiting diagnostic granularity. A multi-class
approach, though computationally intensive, could leverage GigaPath’s high
AUC (99.23% on Scanner2, Table 14) to address this, albeit requiring expanded
annotations.

• Lack of Interpretability: A potential critique is the absence of explainabil-
ity tools (e.g., saliency maps (Selvaraju et al., 2017), SHAP values (Lund-
berg and Lee, 2017)) to elucidate model decisions. While ConvNeXt Large
excels (Scanner1 test tile-level AUC 91.83%, Table 8), its black-box nature
may undermine clinical trust. Integrating attention mechanisms could re-
veal whether high performance stems from pathologically relevant features or
scanner-specific noise, enhancing adoption.

• External Validation: Our reliance on internal datasets might prompt con-
cerns about external generalizability. Without testing on independent cohorts
(e.g., from different institutions), Scanner2 results (e.g., GigaPath’s -6.77%
gap) may reflect dataset-specific biases rather than universal scanner robust-
ness. Collaborating with external pathology centers for validation would ad-
dress this, though resource constraints precluded such efforts here.
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To improve, we propose expanding scanner diversity (e.g., including scanners from
different manufacturers), increasing Scanner2 sample sizes, and transitioning to
multi-class frameworks. Implementing domain adaptation, such as cycle-consistent
adversarial networks (Zhu et al., 2020), could mitigate cross-scanner degradation,
while attention-based visualizations would enhance interpretability. These steps,
grounded in our findings (e.g., Figures 15-18), aim to bridge current gaps and tackle
concerns, ensuring robustness for clinical translation.

10.6 Clinical Implications and Future Directions

Our models demonstrate significant potential for transforming pathology practice,
with high accuracies in tissue and inflammation classification, 92.01% particle-level
accuracy for tissue on Scanner1 test data using ConvNeXt Large (Table 8) and
95.35% slide-level accuracy for inflammation on Scanner1 test data using DenseNet121,
GigaPath, or ResNet18 (Table 11). These results suggest several clinical benefits:

• Diagnostic Workflow Enhancement: High accuracies enable initial screen-
ing, prioritizing urgent cases and reducing turnaround times amid rising work-
loads.

• Standardization of Assessment: Objective predictions, with slide-level
AUCs nearing 100% for inflammation classification on Scanner2 test data (Fig-
ures 14), can minimize inter-observer variability in gastritis diagnosis, enhanc-
ing consistency.

• Resource Optimization: Robust tissue classification, exemplified by Giga-
Path’s negative generalization gap of -6.77% (Table 14), supports triage in
resource-scarce settings, optimizing expert review.

However, while expert-level performance is achieved within the same scanner do-
main (Scanner1), cross-scanner challenges, particularly for inflammation detection
(Section 10.2), necessitate careful consideration for deployment. The stark differ-
ence in generalization between tissue and inflammation classification highlights the
need for task-specific strategies:

• Task-Specific Deployment: Tissue classification systems appear more im-
mediately deployable across varied scanner environments, whereas inflamma-
tion detection requires sophisticated domain adaptation techniques to ensure
reliability.

• Foundation Model Advantage: The exceptional cross-scanner performance
of GigaPath suggests that histopathology-specific foundation models may pro-
vide a more robust starting point for clinical applications than general com-
puter vision architectures.
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• Threshold Recalibration: High AUC values maintained across scanners in-
dicate that collecting a small calibration set from each new scanner to optimize
decision thresholds could be a practical solution for clinical deployment.

To address these challenges and build on our findings, future work should focus on
three key areas:

• Technical Improvements:

– Developing specialized domain adaptation techniques, such as stain nor-
malization or adversarial training, and implementing scanner harmoniza-
tion to improve cross-scanner generalization, particularly for inflamma-
tion detection (e.g., addressing ResNet18’s 26.56% slide-level inflamma-
tion classification generalization gap).

– Integrating explainable AI methods, such as attention mechanisms
(Vaswani et al., 2023), to enhance model interpretability and foster clin-
ical trust (e.g., visualizing features from Figure 11).

• Clinical Relevance:

– Moving beyond binary classification to capture inflammation severity and
intermediate tissue types for greater diagnostic granularity.

– Developing integrated systems that combine multiple diagnostic tasks
(e.g., tissue classification and inflammation detection) into unified plat-
forms.

• Validation and Deployment:

– Expanding evaluations to additional scanner types and manufacturers to
assess broader generalization capabilities.

– Conducting prospective clinical validation studies to quantify the impact
on diagnostic workflows and patient outcomes in real-world settings.

10.7 Conclusion

Our comprehensive evaluation of deep learning approaches for gastric histopathology
classification has yielded significant insights into both architectural performance and
cross-scanner generalization capabilities. By systematically assessing multiple state-
of-the-art models across two distinct classification tasks with a rigorously curated
dataset, we have established several key findings:

1. Architectural Performance: We demonstrated that modern convolutional
architectures, particularly ConvNeXt Large, excel at tissue classification
(92.01% particle-level accuracy, 93.61% AUC), outperforming traditional mod-
els like ResNet18. For inflammation detection, multiple architectures achieved
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excellent slide-level performance (DenseNet121, DenseNet169, and ResNet18
all reaching 99.56% AUC), suggesting that inflammation features may be more
readily detectable without requiring complex architectural designs.

2. Task-Specific Aggregation Strategies: Our systematic evaluation revealed
that optimal prediction aggregation varies by task and model architecture.
While tissue classification with ConvNeXt Large benefited from simple mean
aggregation (96.35% validation accuracy), inflammation detection consistently
improved with selective aggregation approaches like top k mean 30, which
reached 100% validation accuracy with ResNet18. This pattern aligns with
the clinical understanding that inflammation often presents in localized re-
gions rather than uniformly across slides.

3. Divergent Cross-Scanner Generalization: Perhaps our most significant
finding was the stark contrast in cross-scanner generalization between tasks.
Tissue classification exhibited remarkable robustness, with all models per-
forming better on previously unseen Scanner2 data than on their training
domain (negative generalization gaps ranging from -4.12% to -7.05%). Giga-
Path demonstrated exceptional cross-scanner capabilities with a particle-level
AUC of 99.23% on Scanner2. Conversely, inflammation classification suffered
severe degradation when deployed cross-scanner, with specificity collapsing to
near-zero levels despite maintained sensitivity, resulting in generalization gaps
up to 26.56%.

4. Foundation Model Advantage: The histopathology-specific foundation
model GigaPath consistently demonstrated superior cross-scanner robustness,
particularly for tissue classification (-6.77% generalization gap), vastly outper-
forming general vision models. This suggests that domain-specific pretraining
on diverse histopathological data confers significant advantages for real-world
deployment scenarios.

5. Domain-Specific Augmentation Benefits: Our augmentation experiments
revealed that a combined approach of pathology-specific corruptions with
stain-specific color transformations (Medmnist ColorJitter) yielded the most
balanced performance across both tasks and scanner environments. This sup-
ports prior research indicating that domain-specific augmentations targeting
both morphological variations and stain characteristics are essential for robust
cross-scanner performance.

These findings have important implications for clinical implementation. Tissue clas-
sification systems appear more immediately deployable across varied scanner en-
vironments, while inflammation detection may require either sophisticated domain
adaptation techniques or scanner-specific recalibration. The foundation model ap-
proach exemplified by GigaPath offers a promising direction for developing scanner-
agnostic models.
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Future work should focus on expanding scanner diversity to assess broader general-
ization capabilities, implementing targeted domain adaptation techniques for inflam-
mation detection, transitioning to multi-class frameworks that capture intermediate
tissue types and inflammation severity gradients, and integrating explainable AI
methods to enhance clinical interpretability and trust.

In conclusion, while we have demonstrated that deep learning can achieve expert-
level performance for gastric histopathology classification within controlled envi-
ronments, achieving robust performance across diverse scanning devices remains a
significant challenge, particularly for inflammation detection. By identifying these
task-dependent generalization challenges and evaluating potential mitigation strate-
gies, our work provides a foundation for developing computational pathology tools
that can be reliably deployed in varied clinical settings.
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A Appendix

A.1 Dataset and Code Availability

To facilitate reproducibility and further research in this area, we have made all ma-
terials used in this study publicly accessible. The complete dataset, including all
images and annotations, is available for download through our institutional repos-
itory. The implementation code, including all analysis scripts and documentation,
has been released under the MIT License and can be accessed via our GitHub
repository at https://www.github.com/DominicLiebel/GSDB. We encourage the
scientific community to build upon our work.

A.2 Original Dataset Naming Schemes

The dataset contains slides from two different scanners, each initially using distinct
and less systematic naming conventions before the implementation of our unified
naming scheme ([slideID] [patientID] [scanner] [stain]):

A.2.1 Scanner1 Naming Scheme

Slides from the first scanner followed a naming scheme:

• Basic format: [NUMBER][TYPE][STAIN], e.g., 1BHE

• HE: Hematoxylin and Eosin stain

• PAS: Periodic acid–Schiff stain

• modGiem: Modified Giemsa stain

• Type indicators:

– No letter: Non-inflamed tissue

– B: Type B gastritis

– C: Type C gastritis

– S: Other inflammation types

– K: Non-classifiable tissue

These slides were specifically prepared for the project from archived patient samples,
ensuring consistent preparation by the same medical technical assistant. The original
glass slides remain available for potential rescanning.

https://www.github.com/DominicLiebel/GSDB
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A.2.2 Scanner2 Naming Scheme

The second scanner dataset originally used a sequential numbering scheme:

• Format: [NUMBER]-[STAIN] [TYPE], e.g., 201-1 c

• Each case includes three stains: HE, PAS, and modified Giemsa (indicated by
-1, -2, -3 respectively)

• Inflammation indicators:

– c: Type C gastritis

– b: Type B gastritis

– ef: Non-inflamed tissue

This dataset contains 90 total scans from 30 patients, with each case represented
by three staining methods (HE, PAS, modified Giemsa), resulting in 30 scans per
staining type.

The limitations of these initial naming schemes, particularly their inconsistency and
lack of explicit patient-slide relationships, motivated the development of our current
unified naming convention. For this work, we introduced this new, more systematic
naming convention to improve:

• Reproducibility: Clear patient and slide associations

• Data organization: Structured identifiers for database management

• Cross-scanner analysis: Scanner-specific identifiers for studying scanner effects

• Stain tracking: Explicit stain type in filename

A.2.3 Dataset Identifier Mapping Protocol

To ensure systematic data management and reproducibility, we implemented an
identifier mapping protocol for the datasetS12−HE,PAS,MG

IT,a . The protocol establishes
a bidirectional mapping between legacy identifiers and standardized naming con-
vention, facilitating consistent data organization while maintaining traceability to
original annotations.

Mapping Implementation The mapping schema was implemented as a CSV
file, maintained at data/raw/archive/mapping.csv. The mapping follows a one-
to-one correspondence principle with two primary fields:

• old id: Legacy identifier from original data collection

• slide name: Standardized identifier following the convention defined in Sec-
tion 4.1
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Example Mapping Entries Table 21 presents representative examples from the
mapping schema, illustrating the transformation from legacy to standardized iden-
tifiers across different staining types.

Table 21: Example entries from the Slide Identifier Mapping Protocol

old id slide name

1BHE 1 1 1 HE
1CHE 2 2 1 HE
1CmodGiem 3 2 1 MG
1CPAS 4 2 1 PAS
... ...

Applications and Significance The mapping protocol primarily serves as a
traceability mechanism between the original slide identifiers and our standardized
naming convention. By maintaining a clear record of identifier transformations, re-
searchers can trace any slide back to its original designation in the source dataset.
This documentation is particularly crucial for verifying data processing steps and
validating analyses against the original expert annotations. The systematic ap-
proach ensures that despite the implementation of a more structured naming con-
vention, no historical context or reference capability is lost. This transparency in
data transformation supports auditability of the research pipeline while enabling
efficient cross-referencing between the original and standardized naming systems.

A.3 Dataset Notation Convention Examples

DatasetS12−HE,PAS,MG
IT,a : Initial Cohort

DatasetS12−HE,PAS,MG
IT,v : Valid Annotation Cohort

DatasetS1−HE,PAS,MG
IT,v : Scanner1 Cohort

DatasetS1−HE
IT,v : Scanner1 HE Staining Cohort

DatasetS1−HE
T,v : Scanner1 Tissue Analysis Cohort

DatasetS1−HE
I,v : Scanner1 Inflammation Analysis Cohort

DatasetS2−HE,PAS,MG
IT,a : Scanner2 Cohort

DatasetS2−HE,PAS,MG
IT,v : Scanner2 Valid Annotation Cohort

DatasetS2−HE
IT,v : Scanner2 HE Staining Cohort

DatasetS2−HE
T,v : Scanner2 Tissue Analysis Cohort

DatasetS2−HE
I,v : Scanner2 Inflammation Analysis Cohort
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A.4 Annotation Software Pipeline

The annotation process involves two key software components:

A.4.1 Slide Preparation

Prior to annotation, slides are downsampled using a Python script that leverages
the OpenSlide library. The script processes MRXS format slides with a downsample
factor of 16, converting them to more manageable PNG files while maintaining
sufficient detail for accurate annotation. Key features include:

• Downsampling MRXS files with specified factor

• Conversion to RGB color space

• Progressive processing with error handling

• Comprehensive logging system

A.4.2 Annotation Tool

Annotations are created using a custom-developed Python-based tool that provides
a graphical user interface for precise particle marking. The tool features:

• Interactive polygon drawing interface

• Automatic detection of particles

• Support for multiple tissue types and inflammation states

• GeoJSON format export

• Automatic backup system

• Cluster management

• Multi-level undo/redo functionality

The left panel shows available slides with their thumbnail previews and annota-
tion counts. The main viewport displays the current slide with manually drawn
annotations (red outlines) marking distinct tissue particles. The yellow rectangle
indicates a cluster. The right panel lists all annotations for the current slide, show-
ing tissue type (corpus) and inflammation status (inflamed) along with their cluster
assignments (numbers in parentheses).

Full documentation and installation instructions are maintained in the repository.
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Figure 27: Screenshot of the WSI Annotation Tool interface showing the interactive
polygon drawing system

A.5 Valid Annotations Example

Example: Consider slide 93 67 1 HE which demonstrates independent validity for
both inflammation and tissue tasks:

Inflammation Task Validity:

• Slide is classified as ”inflamed” (valid inflammation status)

• All particles and their tiles inherit this inflammation status:

– 4 corpus particles → used in inflammation analysis

– 8 antrum particles → used in inflammation analysis

– 4 intermediate particles → used in inflammation analysis, as inflammation
status is independent of tissue type

Tissue Task Validity:

• Contains:

– 4 corpus particles → used in tissue analysis

– 8 antrum particles → used in tissue analysis

– 4 intermediate particles → reserved for future analysis (outside thesis
scope)
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• Valid for tissue analysis because it contains at least one corpus or antrum
annotated particle

Key Point: The 4 intermediate particles:

• Are included in inflammation analysis (inherit slide’s ”inflamed” status)

• Are not included in the tissue analysis of this thesis, which focuses specifically
on binary classification between corpus and antrum. These intermediate tissue
regions represent a valuable dataset for future multi-class classification models
or transitional zone analysis

Table 22: Annotation Analysis Validity Example (Slide 93 67 1 HE)

Particle ID Inflammation Valid for Inflammation Tissue Type Valid for tissue*

c909943[...] inflamed ✓ antrum ✓
0deed90[...] inflamed ✓ antrum ✓
fae3b18[...] inflamed ✓ antrum ✓
f48e8c0[...] inflamed ✓ antrum ✓
bec7ad1[...] inflamed ✓ antrum ✓
968cc72[...] inflamed ✓ antrum ✓
d98c507[...] inflamed ✓ antrum ✓
2599d8f[...] inflamed ✓ antrum ✓
b6952e0[...] inflamed ✓ corpus ✓
e7c4343[...] inflamed ✓ corpus ✓
fef9075[...] inflamed ✓ corpus ✓
e596f28[...] inflamed ✓ corpus ✓
c49c66a[...] inflamed ✓ intermediate †
65c11ab[...] inflamed ✓ intermediate †
cf226a9[...] inflamed ✓ intermediate †
d4c48b7[...] inflamed ✓ intermediate †

Note: All particles inherit slide’s inflammation status (”inflamed”)

* Valid for tissue column reflects thesis scope (corpus/antrum binary classification)

† Intermediate tissue particles are preserved in the dataset for future research
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A.6 Patient Exclusion

Prior to dataset splitting, 22 patients were removed based on expert pathological
review by Dr. Bettina Braunecker and Dr. med. Volker Mordstein (Table 23).
These patients were excluded as they could compromise both primary analysis and
generalizability testing. These quality control exclusions were applied before any
subsequent steps to ensure a foundation of high-quality data for all analyses.

Table 23: Patients excluded from splitting

Patient ID Exclusion Reason

4 No gastric biopsies but rather biopsies from other organs
9 No gastric biopsies but rather biopsies from other organs
14 No gastric biopsies but rather biopsies from other organs
18 Non-representative sample
24 No gastric biopsies but rather biopsies from other organs
29 No gastric biopsies but rather biopsies from other organs
34 No gastric biopsies but rather biopsies from other organs
39 No gastric biopsies but rather biopsies from other organs
44 No gastric biopsies but rather biopsies from other organs
49 No gastric biopsies but rather biopsies from other organs
54 No gastric biopsies but rather biopsies from other organs
59 No gastric biopsies but rather biopsies from other organs
64 No gastric biopsies but rather biopsies from other organs
69 No gastric biopsies but rather biopsies from other organs
74 No gastric biopsies but rather biopsies from other organs
75 No gastric biopsies but rather biopsies from other organs
79 No gastric biopsies but rather biopsies from other organs
83 No gastric biopsies but rather biopsies from other organs
180 Non-representative sample
197 Non-representative sample
213 Too superficial for reliable classification
217 Non-representative sample

Note: These patients were excluded based on expert pathological review by
Dr. Bettina Braunecker and Dr. med. Volker Mordstein. These cases were removed
prior to creating splits to ensure data quality.

A.7 Thesis Specific Excluded Patient Analysis

This section provides a comprehensive analysis of patients excluded from the main
study, ensuring transparency and reproducibility of the patient selection process.
Each exclusion category is documented with its specific criteria and rationale.
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A.7.1 Scanner Selection Process

The initial dataset included patients from two distinct scanning devices (Scanner1
and Scanner2). To maintain methodological consistency and minimize technical
variability, only Scanner1 patients were used for the primary analysis. Scanner2
patients (n=30) were reserved for subsequent generalizability testing.

Table 24: Scanner2 Dataset Distribution

Stain Type Patients Slides

HE staining 10 30
PAS staining 10 30
MG staining 10 30

Total 30 90

Note: Each patient (n=30, patientIDs 245-274) has a complete set of three stains
Scanner2 patients were reserved for future generalizability testing

A.7.2 Patients Missing HE Staining

From the Scanner1 cohort, 12 patients were excluded due to having only non-HE
stained slides. These cases comprised:

Table 25: Scanner1 non-HE stained patients

Patient ID Stain Type

70 PAS
80 PAS
181 PAS
183 PAS
185 PAS
234 MG
239 PAS
240 PAS
241 PAS
242 PAS
243 PAS
244 PAS

Note: These patients were excluded from analysis as they lacked HE staining.
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A.7.3 Patients Missing Valid Tissue Annotations

Scanner1 HE patients lacking valid tissue type annotations:

Table 26: Patients with No Valid Tissue (HE Scanner1)

Patient ID Exclusion Reason

62 Esophageal mucosa, tissue type unclassifiable
73 Intermediate tissue
104 Intermediate tissue
110 Intermediate tissue
147 Intermediate tissue
165 Esophageal mucosa, tissue type unclassifiable
229 Intermediate tissue
232 Intermediate tissue
236 Partially blurry, intermediate tissue

Note: This table shows HE slides that lack valid tissue type annotations but
have inflammation annotations.

A.7.4 Patients Missing Valid Inflammation Annotations

Scanner1 HE patients lacking valid inflammation status annotations:

Table 27: Patients with No Valid Inflammation (HE Scanner1)

Patient ID Exclusion Reason

5 Glandular cysts, unclear inflammation
25 Glandular cysts, unclear inflammation
30 Glandular cysts, unclear inflammation
60 Non-representative inflammation
65 Non-representative inflammation
204 Glandular cysts, unclear inflammation

Note: This table contains HE slides that lack valid inflammation annotations but
have tissue type annotations.
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A.7.5 Summary of Excluded Patients

Table 28: Summary of Excluded Patients

Exclusion Reason Patient Count

Missing valid annotations 22
Scanner2 (reserved for generalizability testing) 30
Missing HE staining 12
Missing valid tissue annotations 9
Missing valid inflammation annotations 6

Total Excluded 79
Fully Included 195

A.8 Impact of Random Seeds on Dataset Distribution

Tables 29, 30, and 31 demonstrate the effect of different random seeds on class
distribution across dataset splits. These tables illustrate why seed 44 was selected
as the optimal seed for the data splitting process. When comparing the distribution
of inflammation and tissue types across train, validation, and test sets, seed 44
provides the most balanced allocation.

It should be noted that the percentages in these tables do not sum to 100% because
the ”Other” category tiles have been omitted for clarity. For inflammation classi-
fication, the remaining 2-3% of tiles belong to slides with ambiguous inflammation
status. Similarly, for tissue classification, the remaining 8-10% represent interme-
diate zones and non-classifiable tissue regions that don’t clearly belong to either
corpus or antrum categories. These ”Other” category particles/slides were excluded
from model training and evaluation but are included in the total tile counts for
completeness.
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Table 29: Seed: 42 Dataset Summary Statistics (DatasetS12−HE
IT,v )

Characteristic Total Train Val Test

TILE-LEVEL

Total Tiles 40,997 19,787 6,915 7,439

Inflammation Classification
Inflamed Tiles 25,875 (63.1%) 12,227 (61.8%) 4,812 (69.6%) 4,181 (56.2%)
Non-inflamed Tiles 14,250 (34.8%) 7,319 (37.0)% 2,103 (30.4%) 2,627 (35.3%)

Tissue Classification
Corpus Tiles 20,903 (51.0%) 9,693 (49.0%) 3,285 (47.5%) 5,197 (69.86%)
Antrum Tiles 16,787 (40.9%) 8,211 (41.5%) 3,366 (48.7%) 1,995 (26.8%)

Table 30: Seed: 43 Dataset Summary Statistics (DatasetS12−HE
IT,v )

Characteristic Total Train Val Test

TILE-LEVEL

Total Tiles 40,997 19,295 8,015 6,831

Inflammation Classification
Inflamed Tiles 25,875 (63.1%) 12,386 (64.2%) 5,472 (68.3%) 3,362 (49.2%)
Non-inflamed Tiles 14,250 (34.8%) 6,768 (35.1%) 2,015 (25.1%) 3,266 (47.8%)

Tissue Classification
Corpus Tiles 20,903 (51.0%) 9,929 (51.5%) 4,685 (58.5%) 3,561 (52.1%)
Antrum Tiles 16,787 (40.9%) 7,659 (39.7%) 2,896 (36.1%) 3,017 (44.2%)

Table 31: Seed: 44 Dataset Summary Statistics (DatasetS12−HE
IT,v )

Characteristic Total Train Val Test

Total Tiles 40,997 20,542 7,420 6,179

Inflammation Classification
Inflamed Tiles 25,875(63.1%) 12,923 (60.9%) 4,197 (56.56%) 4,100 (66.4%)
Non-inflamed Tiles 14,250 (34.8%) 7,199 (35.0%) 2,771 (37.3%) 2,079 (33.65%)

Tissue Classification
Corpus Tiles 20,903 (51.0%) 11,475 (55.9%) 3,917 (52.79%) 2,783 (45.0%)
Antrum Tiles 16,787 (40.9%) 7,995 (38.9%) 2,644 (35.6%) 2,933 (47.5%)
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