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Abstract

Self-supervised learning (SSL) is a powerful technique for training deep neural net-
works without the need for large labeled datasets. However, the effectiveness of SSL
heavily relies on data augmentation strategies to generate diverse and informative
training samples. Existing augmentation techniques often apply global transforma-
tions indiscriminately, ignoring the semantic structure of images, which can lead to
suboptimal feature learning.

This thesis introduces a Segmentation-Based Augmentation Pipeline
(SegAug-SimCLR), which enhances the standard SimCLR framework by incorporat-
ing semantic image segmentation into the augmentation process. Instead of applying
transformations uniformly, our method differentiates between foreground and back-
ground regions, allowing for targeted augmentations that preserve important object
features while still increasing variability in the training data.

SegAug-CimCLR consists of four major components: (1) DeepLabV3-based segmen-
tation to generate foreground-background masks, (2) region-specific augmentations
tailored for each part of the image, (3) integration into the SimCLR contrastive
learning pipeline, and (4) evaluation on standard benchmarks.

Quantitative experiments demonstrate that segmentation-based augmentations lead
to minor improvements in contrastive learning performance. On ImageNet (10%
subset), the Top-1 accuracy improves from 34.6% to 35.2% when segmentation-
based augmentations are applied. In transfer learning experiments across multiple
datasets, segmentation-based augmentations show dataset-dependent benefits, with
notable gains in Flowers (+1.0%).

Despite its effectiveness, challenges remain in improving segmentation quality and
ensuring robustness across diverse datasets. Nonetheless, SegAug-SimCLR presents
an approach for structure-aware augmentations in contrastive learning, enabling
better feature learning while maintaining compatibility with existing self-supervised
learning frameworks.
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Abstract

Selbstüberwachtes Lernen (SSL) hat sich als leistungsstarke Methode für das Train-
ing von tiefen neuronalen Netzwerken ohne umfangreiche gelabelte Datensätze
etabliert. Die Effektivität von SSL hängt jedoch stark von geeigneten Augmentations-
Strategien ab, um vielfältige und informative Trainingsproben zu erzeugen. Beste-
hende Augmentierungstechniken wenden globale Transformationen oft wahllos an,
ohne die semantische Struktur von Bildern zu berücksichtigen, was zu einer subop-
timalen Merkmalserfassung führen kann.

Diese Arbeit stellt eine segmentierungsbasierte Augmentierungspipeline (SegAug-
SimCLR) vor, die das SimCLR-Framework durch semantische Bildsegmentierung
erweitert. Anstatt Transformationen einheitlich auf das gesamte Bild anzuwenden,
unterscheidet unsere Methode zwischen Vordergrund und Hintergrund, wodurch
gezielte Augmentierungen möglich werden. So bleiben relevante Objektmerkmale
erhalten, während gleichzeitig die Datenvariabilität erhöht wird.

SegAug-SimCLR besteht aus vier Hauptkomponenten: (1) Segmentierung mittels
DeepLabV3 zur Generierung von Vordergrund-Hintergrund-Masken, (2) bereichsspez-
ifische Augmentierungen, die gezielt für verschiedene Bildregionen angewendet wer-
den, (3) Integration in SimCLR sowie (4) Evaluation auf gängigen Benchmark-
Datensätzen.

Quantitative Experimente zeigen, dass segmentierungsbasierte Augmentierungen
zu leicht verbesserten Leistungen im kontrastiven Lernen führen. Auf ImageNet
(10%-Subset) verbessert sich die Top-1-Genauigkeit von 34,6% auf 35,2%, wenn
segmentierungsbasierte Augmentierungen eingesetzt werden. Bei Transfer-Learning-
Experimenten über mehrere Datensätze zeigen sich datensatzabhängige Verbesserun-
gen, insbesondere bei Flowers (+1,0%).

Trotz dieser Fortschritte bestehen weiterhin Herausforderungen, insbesondere bei
der Verbesserung der Segmentierungsqualität und der Robustheit über verschiedene
Domänen hinweg. Dennoch stellt SegAug-SimCLR eine Erweiterung für strukturbe-
wusste Augmentierungen im kontrastiven Lernen dar, die eine präzisere Merkmalsex-
traktion ermöglicht, während sie mit bestehenden selbstüberwachten Lernverfahren
kompatibel bleibt.
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1 Introduction

Machine learning has seen remarkable advancements in recent years, particularly in
tasks such as image classification, object detection, and image segmentation. A key
factor behind this success has been supervised learning, where models are trained
using large labeled datasets. However, collecting and labeling these datasets is
expensive, requiring significant time and resources. The introduction of ImageNet
by Deng et al. (2009) greatly accelerated progress by providing a large, diverse
labeled dataset.

Despite these advancements, acquiring labeled data remains a challenge in certain
fields, particularly medical imaging, where expert knowledge is essential for reliable
annotations (Esteva et al., 2019). Self-supervised learning (SSL) is a promising
alternative by leveraging unlabeled data to learn meaningful representations. SSL
models are trained using tasks that encourage them to discover patterns without
explicit labels, enabling their use in various downstream applications such as classi-
fication and object detection.

Among different SSL approaches, contrastive learning has gained widespread adop-
tion. This method encourages the model to learn representations by bringing similar
images closer together in the feature space while pushing dissimilar images apart. A
major milestone in contrastive learning was the introduction of SimCLR—A Simple
Framework for Contrastive Learning of Visual Representations (Chen et al., 2020a).
SimCLR demonstrated strong performance across multiple self-supervised bench-
marks while remaining simpler than previous methods. Unlike earlier approaches,
it does not require specialized architectures or memory banks (Chen et al., 2020a).
Instead, it relies on random augmentations to generate positive pairs, which are
then optimized using a contrastive loss function. By maximizing agreement be-
tween these augmented pairs, SimCLR learns meaningful representations that are
invariant to various transformations. The success of SimCLR has inspired subse-
quent methods such as Bootstrap Your Own Latent (BYOL) (Grill et al., 2020) and
Swapping Assignments between Views (SwAV) (Caron et al., 2021).

Despite its achievements, SimCLR has certain limitations. The framework applies
augmentations uniformly across the entire image, disregarding its internal structure.
This can lead to a loss of crucial features, particularly in tasks where fine details are
critical. For example, aggressive cropping or blurring may obscure important pat-
terns or remove key object features. Recent research, such as Local Augment (LA)
(Kim et al., 2021), suggests that applying transformations selectively to different
regions can better preserve essential details and improve the robustness of learned
representations. LA leverages the local bias of convolutional neural networks (CNNs)
by introducing region-specific transformations, such as noise, brightness changes, or
localized cropping, to enhance feature learning.

Building on this idea, this thesis investigates segmentation-based augmentations
as a means of improving SimCLR. Modern semantic segmentation models, such
as Segment Anything (SAM) (Kirillov et al., 2023) and DeepLabv3 (Chen et al.,
2017), can partition an image into semantically meaningful regions, distinguishing
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objects from their background. Using these segmentation maps, augmentations can
be selectively applied to different parts of an image. For instance, color distortions
might be applied only to the background while preserving the main object, ensuring
that key semantic information remains intact.

This segmentation-based approach introduces controlled variability in data while
maintaining crucial structural details, potentially leading to better learned repre-
sentations and improved performance on downstream tasks.

1.1 Motivation

SSL is a strong alternative to traditional supervised learning by reducing the depen-
dency on labeled data, which is often costly and labor-intensive to obtain (Goodfel-
low et al., 2016). In many real-world applications, such as medical imaging and au-
tonomous driving, acquiring high-quality annotations requires significant domain ex-
pertise, making large-scale labeled datasets impractical (Esteva et al., 2019; Geiger
et al., 2012). Contrastive learning, a key paradigm within SSL, has demonstrated re-
markable success in learning meaningful representations without manual supervision
(Chen et al., 2020a).

However, despite these developments, existing contrastive learning methods such
as SimCLR still depend on global data augmentations, which treat the entire im-
age identically and might completely ignore semantic structure information about
objects within a scene (Chen et al., 2020a). This limitation becomes particularly
critical in cases where learning robust representations depends on preserving mean-
ingful semantic structure (Tian et al., 2020) . Motivated by this gap, this work
investigates the usage of segmentation-based augmentations, with a view to improv-
ing feature learning through spatially aware transformations.

By incorporating segmentation techniques into the contrastive learning pipeline, we
will develop a method that retains object structures while maintaining the bene-
fits of standard contrastive learning. The reproduction of key results from Sim-
CLR, introducing segmentation-driven augmentations, and evaluation of the same
on downstream tasks are covered in this thesis to contribute toward the larger field
of self-supervised representation learning.



1 INTRODUCTION 3

1.2 Contribution

This bachelor thesis makes following contributions in the field of contrastive learning:

1. Reproducing SimCLR results: The SimCLR framework is implemented
in PyTorch and the code has been made open source. Additionally, key ex-
periments from the original paper Chen et al. (2020a) are reproduced. This
includes experiments from Table 6, 7, and 8, which evaluate the performance of
the base encoder on downstream tasks like linear classification. These results
serve as a baseline for evaluating the proposed segmentation-based augmenta-
tions.

2. Developing segmentation-based augmentations: A novel augmentation
method is introduced using segmentation maps generated from DeepLabV3
(Chen et al., 2017). This approach allows for region-specific augmentations,
differentiating between foreground and background transformations, unlike
traditional global augmentations.

3. Comparative analysis of segmentation-based augmentations: The pro-
posed segmentation-based augmentations are compared with standard Sim-
CLR augmentations in linear classification tasks. The evaluation assesses
whether foreground-background separation improves feature learning and how
it impacts downstream performance.

These contributions aim to improve contrastive learning by integrating segmentation-
based augmentations.
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2 Related Work

The success of SSL has been driven by the development of powerful frameworks
and techniques, including contrastive learning and advanced data augmentations.
This section reviews the key concepts relevant for this thesis, focusing on the evolu-
tion of contrastive learning frameworks, the role of data augmentation in SSL and
segmentation-based augmentations.
Contrastive learning is an important method in self-supervised learning, which en-
ables models to learn meaningful representations without the need for labeled data.
The central idea is to maximize the agreement between positive pairs while mini-
mizing the agreement between negative pairs.
The foundation of contrastive loss was laid by Hadsell et al. (2006), where contrastive
loss was introduced to learn mappings that are invariant to input transformations.
They minimized the distance between similar samples while maximizing the distance
between dissimilar ones. A key factor in Dimensionality Reduction by Learning an
Invariant Mapping (DrLIM) was the use of different loss functions for similar and
dissimilar pairs. Unlike conventional learning systems, where the loss is computed
as a sum over individual samples, DrLIM applies its loss function over pairs of sam-
ples, categorizing them as similar or dissimilar. Over time, researchers introduced
more advanced contrastive loss functions. Triplet Loss (Schroff et al., 2015), which
was introduced for FaceNet, minimizes the distance between an anchor and a pos-
itive of the same identity and maximizes the distance between the anchor and a
negative of a different identity. Lifted Structured Loss (Song et al., 2015) improved
computational efficiency by considering all pairs within a batch. InfoNCE, used in
Contrastive Predicitve Coding (CPC) (van den Oord et al., 2019), extends Noise
Contrastive Estimation (NCE) (Gutmann and Hyvärinen, 2010) to maximize mu-
tual information between representations.
While early methods were limited in scalability, modern frameworks for contrastive
learning have arisen. One of the first was introduced by van den Oord et al. (2019),
called CPC. CPC learns representations by predicting future observations in latent
space by using powerful autoregressive models. It demonstrated the effectiveness of
contrastive learning in extracting useful representations from high-dimensional data.
Momementum Contrast (MoCo) (He et al., 2020) trains a visual representation en-
coder by matching an encoder query to a dictionary of encoded keys using contrastive
loss. SimCLR (Chen et al., 2020a) introduced a simple yet powerful framework for
contrastive learning. SimCLR emphasizes the importance of strong data augmen-
tations in SSL and the use of a nonlinear transformation to improve the quality
of learned representations. It demonstrated that with sufficient data augmentation
and large batch sizes, contrastive learning could achieve performance comparable to
supervised learning. MoCo v2 (Chen et al., 2020b) is an improved version of MoCo.
By combining findings from the SimCLR paper, namely using a mulit-layer percep-
tron (MLP) projection head and more data augmentation, they could outperform
SimCLR, while not requiring large batch sizes. BYOL (Grill et al., 2020) introduces
a new approach to self-supervised image representation learning. BYOL eliminates
the need for negative pairs, by using two neural networks, an online and a target
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network, that interacts and learn from each other. For each augmented view of an
image, the online network is trained to predict the target network’s representation of
the same image under a different augmentation. Simultaneously, the target network
is updated using an exponential moving average of the online network’s parameters,
ensuring stable and consistent learning. SwAV (Caron et al., 2021) introduces a
clustering-based approach to self-supervised learning, which eliminated the need for
pairwise comparison. Instead of directly contrasting representations, SwAV simul-
taneously clusters data and enforces consistency between cluster assignments across
different augmentations of the same image. This is achieved using a “swapped”
prediction mechanism, where the model predicts the assignment of one view using
the representation of another. Also multi-crop augmentation strategy is introduced,
which generates two full-resolution crops along with multiple smaller, low-resolution
crops. This increases the number of views of an image with no computational or
memory overhead, while improving ImageNet (Deng et al., 2009) linear evaluation
accuracy between 2% and 4%. Barlow Twins (Zbontar et al., 2021) learns useful
representations by ensuring that different versions of the same image have similar
embeddings while reducing redundancy between feature components. It does this
by aligning embeddings along the diagonal of a cross-correlation matrix and min-
imizing off-diagonal values. Unlike other methods, Barlow Twins does not require
negative samples, large batches, or special network designs.
Data augmentation is a fundamental part in contrastive learning by creating diverse
yet semantically meaningful transformations of input images. Chen et al. (2020a)
demonstrated that random cropping and color distortion are essential for learning
high-quality representations in SimCLR. Tian et al. (2020) further explored the
principles of effective augmentations and introduced the InfoMin principle, which
states that the best views for contrastive learning should retain task-relevant infor-
mation while minimizing redundant details. Their experiments showed that stronger
augmentations lead to better accuracy on downstream tasks.
Beyond standard augmentations, learned augmentation strategies like AutoAugment
(Cubuk et al., 2019a) and RandAugment (Cubuk et al., 2019b) have been proposed
to optimize augmentation policies. However, these methods apply transformations
globally and do not take the semantic structure of an image into account.
To address this limitation, segmentation-based augmentations introduce semantic
awareness into SSL by selectively modifying images based on their content rather
than applying global transformations. ClassMix (Olsson et al., 2020) introduces
an approach that blends regions from different images using segmentation masks,
enhancing sample diversity. CutMix (Yun et al., 2019) follows a similar approach
by replacing patches of an image with regions from another, forcing models to learn
robust representations. Kim et al. (2021) have introduced Local Augment (LA),
a novel augmentation strategy that utilizes local bias properties of CNNs. Instead
of applying global transformations LA selects patches within an image and applies
different augmentations to each patch. This creates locally diversified examples,
which helps the network learn in a more generalized way. LA outperforms previ-
ous methods on ImageNet and STL10 (Coates et al., 2011) and has competitive
performance on CIFAR100 (Krizhevsky, 2009).
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3 Background

3.1 Methods of Deep Learning

Deep learning, a subset of machine learning, has revolutionized numerous fields, in-
cluding computer vision, natural language processing, and autonomous systems. It
leverages artificial neural networks with multiple layers to learn hierarchical repre-
sentations of data, enabling models to perform complex tasks such as image recog-
nition, speech processing, and decision-making with remarkable accuracy (LeCun
et al., 2015). The following subsections outline the primary learning paradigms in
deep learning: supervised learning, unsupervised learning, semi-supervised learning,
and self-supervised learning, with a particular focus on contrastive learning, a key
component of this thesis.

3.1.1 Supervised Learning

Supervised learning (SL) is the most important methodology in machine learn-
ing (Cunningham et al., 2008). The objective is to approximate a function f :
X → Y by minimizing a loss function L(y, ŷ) , where y represents the ground truth
labels and ŷ represents the model’s predicted output. Often, y may be difficult
to collect automatically and must be provided by a human supervisor (Goodfel-
low et al., 2016). SL requires large-scale labeled data, which can be expensive and
time-consuming to obtain.

Prominent architectures for SL include Convolutional Neural Networks (Krizhevsky
et al., 2012) and Transformers (Vaswani et al., 2023), which are widely used in com-
puter vision and natural language processing tasks. Despite its success, supervised
learning is highly dependent on labeled data, limiting its applicability in domains
where annotations are scarce.

3.1.2 Unsupervised Learning

Unsupervised learning enables models to identify patterns and structures in data
without relying on labeled examples. Instead of learning explicit input-output map-
pings, it seeks to discover underlying relationships (Goodfellow et al., 2016). No
human intervention is needed. This approach is fundamental for tasks such as
clustering, dimensionality reduction and association rule learning. Despite its ad-
vantages, interpreting the learned representations and ensuring their relevance on
downstream tasks remain challenging.

3.1.3 Semi-Supervised Learning

Semi-supervised learning bridges the gap between supervised learning and unsuper-
vised learning by using both labeled and unlabeled data (Chapelle et al., 2009).
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In the standard setting of semi-supervised learning, the dataset X = (xi)i∈[n] is
divided into two subsets: the labeled subset Xl = (x1, . . . , xl) with corresponding
labels Yl = (y1, . . . , yl), and the unlabeled subset Xu = (xl+1, . . . , xl+u), where the
labels are unknown.

3.1.4 Self-Supervised Learning

SSL is a a powerful alternative to traditional supervised learning, enabling models to
learn from vast amounts of unlabeled data while learning useful feature representa-
tions without human annotation (Jing and Tian, 2019). Unlike fully unsupervised
learning, SSL introduces structured pretext tasks to generate pseudo-labels, allow-
ing models to learn representations that transfer effectively to multiple downstream
tasks (Chen et al., 2020a). One of SSL’s greatest advantages is its broad applica-
bility across domains, like in medicine or biology, where labeled data is expensive
and scarce, and the specific task is not always known in advance (Krishnan et al.,
2022). By learning general-purpose feature representations, SSL enables models to
adapt flexibly to new tasks without retraining from scratch, making it particularly
useful in low-data scenarios.
Formally, SSL optimizes a loss function based on automatically generated pseudo-
labels:

L(D) = min
θ

1

N

N∑
i=1

L(Xi, Pi), (1)

where Pi represents pseudo-labels derived from self-supervised pretext tasks. This
framework allows SSL models to surpass fully supervised methods in some tasks,
particularly when fine-tuned on small amounts of labeled data (Chen et al., 2020a).

3.1.5 Contrastive Learning

Contrastive learning (CL) is a dominant approach in SSL. CL aims to train a model
to generate similar representations for different augmented versions of the same
input while distinguishing them from representations of other inputs (Balestriero
et al., 2023). These augmented views are derived through data transformations,
such as cropping, color distortion, or geometric manipulations. Contrastive learning
aims to learn representations by maximizing the similarity between positive pairs
while minimizing the similarity between negative pairs. Formally, given a reference
sample x, a positive sample x+ (a different augmented view of the same sample),
and a negative sample x− (a different instance), contrastive learning enforces the
following constraint:
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score(f(x), f(x+)) ≫ score(f(x), f(x−)) (2)

where:

• f(x) represents the encoded feature representation of sample x.

The goal is to ensure high similarity between positive pairs (x, x+) and low simi-
larity between negative pairs (x, x−) (Fei-Fei Li, 2022). This principle forms the
foundation of self-supervised contrastive learning, where models learn to distinguish
between augmented views of the same instance and other samples in the dataset.

3.2 Transfer Learning

Transfer learning is a machine learning paradigm where a model trained on one task
is repurposed for a different but related task. This technique is particularly beneficial
when labeled data for the target task is scarce, as it allows the reuse of knowledge
from a source domain, improving generalization and reducing computational costs
(Pan and Yang, 2010). Transfer learning can be mathematically formulated as
follows:

Given a source domain DS with a corresponding task TS and a target domain DT

with a task TT , transfer learning aims to improve the learning of the target predictive
function fT in DT using knowledge from DS and TS, where DS ̸= DT or TS ̸= TT .

This framework allows adaptation even when distributions P (DS) and P (DT ) differ,
which leads to the concept of domain adaptation (Pan and Yang, 2010).

Domain Adaptation Domain adaptation is a specialized case of transfer learning
where the source and target domains are similar but have different distributions.
Formally, given a source domain DS with probability distribution P (XS) and a
target domain DT with P (XT ), domain adaptation assumes that P (XS) ̸= P (XT )
while still sharing commonalities in feature space.

3.3 Image Segmentation

Image segmentation is a fundamental task in computer vision that involves divid-
ing an image into meaningful regions to facilitate object recognition, analysis, and
processing (Minaee et al., 2020). The goal is to simplify the representation of an
image into a form that is more meaningful and easier to analyze. Image segmen-
tation serves as a critical pre-processing step for many computer vision tasks. By
segmenting an image into its constituent parts, it becomes possible to focus on spe-
cific objects or regions of interest. It is widely used in various applications such as
medical imaging (Ronneberger et al., 2015), autonomous driving (Cordts et al.,
2016) or video surveillance (Reenu and Saleem Durai, 2019).
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There are several types of image segmentation, each suited to different tasks and
objectives:

Semantic Segmentation Assigns a label to each pixel in an image, grouping
similar objects together. Unlike other segmentation methods, semantic segmenta-
tion does not distinguish between instances of the same class. Instead, it aims to
understand the high-level structure of the scene and identify the objects present in
the image.

Instance Segmentation Extends semantic segmentation by distinguishing indi-
vidual objects of the same class. This is crucial in scenarios where multiple objects
of the same type must be identified separately.

Panoptic Segmentation A comprehensive approach that combines semantic and
instance segmentation. It provides a unified view where each pixel is classified into
either a specific object instance or a background region. This method is beneficial
for complex scene understanding in robotics and automated systems (Kirillov et al.,
2019).

Figure 1: Visualization of different segmentation methods. (a) shows the ground
truth image. Reproduced from Kirillov et al. (2019).

3.4 The SimCLR Framework

Self-supervised learning provides a method to train deep neural networks without
requiring large amounts of labeled data. SimCLR simplifies recently proposed con-
trastive self-supervised learning algorithms and introduces a framework for con-
trastive learning of visual representations. Unlike traditional supervised learning,
where models are trained with explicit labels, SimCLR constructs a pretext task
that enables the model to learn meaningful representations directly from raw image
data.
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This is achieved through contrastive learning, where the model is trained to maxi-
mize the similarity between different augmented versions of the same image (positive
pairs) while minimizing the similarity between representations of different images
(negative pairs). By applying this contrastive objective, SimCLR learns robust and
transferable representations without requiring labeled supervision.

The success of SimCLR does not stem from entirely novel components but rather
from their specific combination, which significantly improves performance over pre-
vious unsupervised baselines (Chen et al., 2020a). The following section provides a
detailed explanation of these components.

3.4.1 Data Augmentation

One of the key findings in SimCLR is that strong data augmentation plays a crucial
role in the success of the framework (Chen et al., 2020a). Unlike supervised learn-
ing, where augmentations are often mild to avoid altering the semantic meaning of
labeled data, SimCLR relies on strong augmentations to generate meaningful trans-
formations of images. These augmentations create diverse views of the same image
while preserving essential content, enabling the model to learn invariant representa-
tions that generalize well to unseen data.

Figure 2: Illustrations of the studied data augmentations. Reproduced from Chen
et al. (2020a).

As shown in Figure 2, the studied augmentations can be grouped into the following
categories:

• Spatial/Geometric Transformations: Random cropping and resizing (with
flipping), rotation, and cutout.

• Appearance Transformations: Color distortion (modifying brightness, con-
trast, and hue), Gaussian blur, and Sobel filtering.
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Augmentation Pipeline In SimCLR, each input image undergoes two indepen-
dent sets of augmentations, resulting in two transformed views of the same image.
These views serve as positive pairs for contrastive learning, while views from differ-
ent images in the batch act as negative pairs. The process is visualized in Figure
3. The objective is to maximize agreement between positive pairs while ensuring
separability from negative pairs.

Figure 3: Visualization of a positive pair.

The table in Figure 4 presents the results of linear evaluation for Top-1 accuracy on
the ImageNet dataset when various data augmentations are applied either individ-
ually or in combination. Notably, the combination of cropping and color jittering
achieves the highest accuracy of 56.3%. Overall, stronger augmentations tend to
yield better performance than lighter ones, demonstrating the importance of data
transformations in contrastive learning.

Figure 4: Linear evaluation (ImageNet Top-1 accuracy) under individual or com-
bined augmentations. Diagonal entries correspond to single transformations, while
off-diagonal entries represent compositions of two augmentations. Reproduced from
Chen et al. (2020a).
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3.4.2 Base Encoder

The base encoder is responsible for extracting feature representations from input
images. In the original SimCLR study, a ResNet architecture was chosen as the
base encoder due to its proven effectiveness in image representation tasks. Therefore,
ResNet-50, a deep convolutional neural network with 50 layers, was employed. Given
an input image x, the base encoder transforms it into a feature representation h in
a high-dimensional space as follows:

h = f(x) ∈ Rd

where d represents the dimensionality of the feature space, and h is the output before
the average pooling layer. For ResNet-50, this results in a 2048-dimensional feature
vector. These features are not directly optimized for the contrastive learning task.
Instead, they serve as intermediate representations that are further processed by the
projection head.

Variants In addition to the standard ResNet-50 architecture, two extended vari-
ants were investigated as base encoders in the SimCLR study:

• ResNet-50: The original ResNet architecture, where channel sizes follow the
default design.

• ResNet-50 2x: A variant of ResNet where the channel dimensions are doubled
across the network.

• ResNet-50 4x: A further extension where channel dimensions are quadrupled.

Zagoruyko and Komodakis (2017) demonstrated the effectiveness of wide residual
networks. This claim is supported by multiple experimental results presented in this
study. The experiments revealed that ResNet-4x outperformed both the standard
ResNet and ResNet-2x on downstream performance, as detailed in Section 5.

Backbone The base encoder serves as the backbone of the model for downstream
tasks. After pretraining, the projection head is discarded, and a linear classifier is
placed on top of the base encoder. This classifier is trained to evaluate the quality
of the learned representations using linear evaluation. During the training of the
linear classifier, the base encoder can be fine-tuned.
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3.4.3 Projection Head

The projection head improves the performance of the contrastive learning task by
mapping the high-dimensional feature representations extracted by the base encoder
into a lower-dimensional latent space, which is more effective for computing the
contrastive loss.

Architecture The projection head in SimCLR is implemented as a MLP with
two linear layers. A batch normalization layer and a ReLU activation function are
applied to ensure stable training and introduce non-linearity. The second linear
layer reduces the hidden representation to a lower-dimensional space, which is then
used for calculating the contrastive loss.

The final output z of the projection head is computed as follows:

z = g(h) = W ∗ ReLU(W ∗ h)

Performance As shown in Figure 5, models with a projection head outperform
those without it in a linear evaluation benchmark. The x-axis represents the dimen-
sionality of the projection head’s output, while the y-axis shows the corresponding
Top-1 accuracy. The non-linear projection head consistently outperforms the linear
projection head across all dimensionalities.

Increasing the output dimension beyond 128 does not yield further performance
improvements. When no projection head is used, Top-1 accuracy is only measured
for an output dimension of 2048, and it performs significantly worse than with a
projection head. This highlights the importance of the projection head in contrastive
learning.

Figure 5: Linear evaluation of representations with different projection heads g()
and various dimensions of z = g(h). Reproduced from Chen et al. (2020a).
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3.4.4 Loss Function

Contrastive loss encourages the model to produce similar representations for aug-
mented views of the same image while pushing apart representations of different
images. This is achieved by maximizing the similarity of positive pairs while mini-
mizing the similarity of negative pairs. SimCLR uses a specific variant of contrastive
loss called NT-Xent:

Given a batch of N images, two augmented views are generated for each image,
resulting in 2N total samples. For a pair of positive samples (i, j), the NT-Xent loss
is defined as:

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

where:

• zi and zj: The output representations from the projection head for the two
augmented views of the same image.

• sim(zi, zj): Cosine similarity between zi and zj, defined as:

sim(zi, zj) =
zi · zj

∥zi∥∥zj∥

• τ : Temperature parameter.

• 1[k ̸=i]: An indicator function ensuring that zi does not compare to itself.
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4 Methods

This section outlines the methodologies employed in this thesis. We begin by detail-
ing the standard SimCLR pipeline, followed by our proposed segmentation-based
augmentation approach. The goal is to enhance contrastive learning by incorporat-
ing region-specific augmentations, leveraging segmentation techniques to improve
feature extraction and representation learning.

4.1 Standard SimCLR Pipeline

Building upon the SimCLR framework introduced in 3.4, this section focuses on
details.

Figure 6 illustrates the standard SimCLR training pipeline. Our implementation
follows the original framework, incorporating the following components:

• Base Encoder: A ResNet-50 architecture is used as the feature extraction
network.

• Projection Head: A two-layer MLP with ReLU activation maps the encoded
features to a 128-dimensional latent space, where contrastive loss is applied.

• Contrastive Loss: NT-Xent loss with a temperature scaling factor of 0.1.

Data Augmentation Strategy We adopt the same augmentation strategy pro-
posed in the SimCLR study. The strategy consists of:

• Random Resize Crop: Crops a random area of the image and resizes it to
224×224 pixels, with p=1.0.

• Horizontal Flip: Applied with p=0.5.

• Color Jittering: Alters brightness, contrast, saturation, and hue by uniformly
sampling adjustment factors, with p=0.8.

• Grayscale: Applied with p=0.2.

• Gaussian Blur: Applied with a kernel size of 10% of the image height/width,
with p=0.5.
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Figure 6: SimCLR original training pipeline.

4.2 Segmentation-based Augmentation Pipeline

In this section, we introduce our segmentation-based augmentation strategy for Sim-
CLR, expanding on the standard pipeline described in Section 4.1. The main goal
is to preserve critical object features by applying augmentations selectively to dif-
ferent regions in the image, rather than treating the entire image uniformly. This
approach allows us to incorporate stronger data transformations while reducing the
risk of distorting object-relevant information.

This chapter is structured as follows: Section 4.2.1 provides the motivation for
using segmentation-based approaches in contrastive learning. Section 4.2.2 outlines
our chosen segmentation model (DeepLabV3). Section 4.2.3 explains how region-
specific augmentations are selected and applied. Finally, Section 4.2.4 describes
how these augmentations are integrated into the SimCLR framework, forming our
complete segmentation-based SimCLR pipeline.

4.2.1 Motivation

Self-supervised learning frameworks such as SimCLR rely on data augmentations
to generate different views of the same image, thus enforcing similarity constraints
between representations. Traditional augmentation pipelines apply transformations
such as random cropping, color jittering, and Gaussian blur uniformly across the en-
tire image. However, this approach does not account for the foreground-background
structure of natural images.

To address this, we introduce segmentation-based augmentations, which separately
process the foreground and background regions. This method preserves critical ob-
ject information by applying foreground-specific augmentations, while background-
specific transformations help mitigate overfitting to non-informative structures.
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4.2.2 Segmentation Method

DeepLabV3 (Chen et al., 2017) is used as the primary segmentation model for gen-
erating foreground-background masks. DeepLabV3 is a state-of-the-art semantic
segmentation network that employs atrous convolution to balance detailed bound-
ary detection with global context capture. It has demonstrated strong performance
across various benchmarks. In Figure 7 segmentation results can be seen, where
the main object is captured successfully. In the experiments, we use pre-trained
DeepLabV3 models, which have been trained on large-scale datasets such as MS
COCO (Lin et al., 2015) or Cityscapes (Cordts et al., 2016). These models offer
broad applicability across various object classes, making them suitable for general
segmentation tasks. However, for highly specialized domains like biomedical imag-
ing, fine-tuning the model on a domain-specific dataset or training it from scratch to
achieve better performance is recommended (Ronneberger et al., 2015). DeepLabV3
outputs a probability map over semantic classes. For simplicity, we reduce this to
a binary segmentation mask (foreground vs. background). For each pixel, we pick
the class of highest probability.

Figure 7: Visualizations of Deeplabv3 segmentations. Reproduced from Chen et al.
(2017).

4.2.3 Region-specific Augmentations

Once we obtain a binary mask distinguishing the foreground from the background,
we apply region-specific augmentations. Each region, foreground and background,
can receive different transformations. For example, we can apply subtle transforma-
tions to the foreground to preserve details while using stronger modifications on the
background to enhance robustness. By customizing these augmentations per region,
we control how much distortion is introduced in crucial areas, such as an object’s
boundary. This stands in contrast to purely global augmentations where a strong
blur might degrade or even remove an object’s defining features.

As shown in Figure 8, segmentation-based augmentations help enhance feature learn-
ing by applying different transformations to the foreground and background. In the
figure, (a) presents the original image, while (b) displays the segmentation mask,
where the foreground is highlighted in red. Finally, (c) illustrates the augmented
versions of the image: in the top example, the background is converted to grayscale,
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Figure 8: Visualizations of segmentation based augmentations

while in the bottom example, Gaussian blur is applied to the background. In both
cases, Color Jitter is used to modify the foreground, introducing subtle variations
while preserving important details.

4.2.4 Segmentation-Based Augmentation SimCLR Pipeline

The following steps, as shown in Figure 9, are integrated into the SimCLR pipeline
with region-specific augmentations defined:

1. Segmentation Step

• The input image x is processed by DeepLabV3.

• We obtain a binary mask m ∈ {0, 1}H×W , where mij = 1 indicates that
pixel (i, j) belongs to the foreground, while mij = 0 represents the back-
ground.

2. Applying Region-Specific Augmentations

• The image is segmented into foreground and background based on the
mask m.

• Foreground: A predefined set of transformations is applied to the fore-
ground.

• Background: A separate set of transformations is applied to the back-
ground.

3. Recombining Augmented Regions

• The augmented foreground and background are recombined into a single
image, xsegaug.
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4. Generating Augmented Views

• Similar to the standard SimCLR approach, we generate two augmented
views by applying random cropping to xsegaug. Every view is from a
different version of xsegaug.

Figure 9: SimCLR training pipeline with segmentation-based augmentations.

Handling Poor Segmentation While DeepLabV3 performs well in many cases,
certain images may yield poor segmentation quality:

• If the foreground region is too small (e.g., < 5% of total pixels), the model
receives insufficient object information, leading to unstable feature represen-
tations and weak generalization.

• If the foreground region is too large (e.g., > 90% of total pixels), the segmen-
tation fails to differentiate between the object and its surroundings, effectively
classifying the entire image as foreground.

Figures 10, 11, and 12 illustrate these cases. In Figure 10, we present an example of
a well-segmented image where the foreground is correctly identified and sufficiently
large to contribute to effective feature learning. However, in Figure 11, the segmen-
tation process incorrectly classifies nearly the entire image as foreground, making it
difficult for the model to learn meaningful distinctions. Similarly, Figure 12 shows
a case where the entire image is classified as background, effectively removing the
object of interest from the training process.

To quantify segmentation quality, we define the foreground coverage metric as fol-
lows:

Fratio =

∑
mij

H ×W
(3)
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where mij represents the binary segmentation mask at pixel location (i, j), and
H × W is the total number of pixels in the image. This metric computes the
proportion of the image classified as foreground.

To maintain training stability, we set thresholds on the foreground ratio. If Fratio <
0.05 (foreground too small) or Fratio > 0.90 (foreground too large), we discard
the segmentation results and instead apply the standard SimCLR augmentation
pipeline. This fallback strategy ensures training stability by preventing the model
from learning unreliable masks in cases of poor segmentation quality.

By implementing this adaptive approach, we ensure that segmentation-based aug-
mentations are only applied when they provide meaningful benefits, while defaulting
to conventional augmentations in cases of segmentation failure.

Figure 10: Visualization of a well-segmented result.

Figure 11: Visualization of a poor segmentation result (all foreground).

Figure 12: Visualization of a poor segmentation result (all background).
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5 Experiments and Results

The primary objective of this section is to reproduce key experimental results from
the original SimCLR paper to validate the reproducibility of the framework and
establish a reliable baseline. This ensures that our implementation functions cor-
rectly and aligns with prior findings, establishing a strong foundation for further
experiments.

We begin by replicating Figure B7 and Tables 6, 7, and 8 from the original SimCLR
study.

• Figure B7: Validating the correct functionality of the pipeline.

• Table 6: Linear evaluation of the base encoder to assess representation quality.

• Table 7: Fine-tuning the base encoder.

• Table 8: Transfer learning accuracy to evaluate how well learned representa-
tions generalize to new tasks.

After reproducing the standard SimCLR results, we extend our analysis by ap-
plying segmentation-based augmentations and re-evaluating Table 6 to measure
their impact on contrastive learning performance. Additionally, we compare the
segmentation-based base encoder with the standard encoder on transfer learning
tasks.

The following sections provide a detailed breakdown of each experiment and its
corresponding results.

5.1 Datasets

The primary datasets used in our experiments are ImageNet and CIFAR-10
(Krizhevsky, 2009), both widely used benchmarks for evaluating deep learning mod-
els in image classification and representation learning. These datasets provide a
diverse set of natural images and serve as strong benchmarks for self-supervised
learning approaches like SimCLR.

ImageNet consists of 1.28 million training images and 50,000 validation images,
spanning 1000 object categories. The dataset provides a diverse set of high-resolution
natural images, making it an ideal benchmark for evaluating large-scale self-supervised
learning frameworks like SimCLR. For the experiments, we made a time-driven ad-
justment to the ImageNet training set: instead of using the full training dataset, we
sampled 10% of the training images from each class. This reduction was necessary
to keep the training time within feasible limits (with one training iteration taking
approximately 1.5 days for 10% of training data). Importantly, the full ImageNet
validation set was used to ensure a reliable evaluation of the model’s performance.
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CIFAR-10, on the other hand, is a smaller dataset consisting of 60,000 images
across 10 object categories, with 50,000 training samples and 10,000 validation sam-
ples. Each image has a resolution of 32 × 32 pixels, making CIFAR-10 suitable for
testing model performance on lower-resolution datasets and evaluating generaliza-
tion across different image scales.

For transfer learning CIFAR-100 (Krizhevsky, 2009), Oxford 102 Flowers (Nilsback
and Zisserman, 2008), Oxford-IIIT Pets (Parkhi et al., 2012), SUN397 (Xiao et al.,
2010) and Caltech-101 (Fei-Fei et al., 2004) are used.

5.2 Setup and Implementation

5.2.1 Setup for Pretraining

ImageNet For ImageNet training, we use the following setup to align with stan-
dard SimCLR training configurations:

Hyperparameters:

• Batch Size: 4096

• Epochs: 100

• Optimizer: LARS (Layer-wise Adaptive Rate Scaling)

– Learning Rate: 4.8 (calculated as 0.3× Batch Size
256

)

– Weight Decay: 10−6

– Learning Rate Schedule: Linear warmup for the first 10 epochs, followed
by a cosine decay schedule without restarts.

CIFAR-10 Since CIFAR-10 images are significantly smaller (32× 32 pixels) com-
pared to ImageNet, several modifications were applied to adapt the training setup:

ResNet Architecture:

• Replaced the first 7× 7 convolution (stride 2) with a 3× 3 convolution (stride
1) to better fit the small image resolution.

• Removed the first max pooling operation.

• Additionally, we tested a standard ResNet model (without modifications). To
adapt the standard ResNet model to CIFAR-10’s smaller resolution, all images
were resized to 224× 224 pixels after cropping.

Data Augmentation:

• The same augmentation strategy as ImageNet training was applied.

• Images were resized to 32× 32 pixels after cropping.

• Gaussian Blur was omitted since it is less effective on small images.
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Hyperparameters:

• Batch Size: 1024, 128

• Learning Rate: 1.0

• Temperature Parameter: 0.1

All other settings, including the optimizer, weight decay, and overall training sched-
ule, remain the same as those used in ImageNet training.

Segmentation-based augmentations For segmentation-based augmentations,
we applied strong ColorJitter to the foreground to introduce appearance variations
while preserving key object features. For the background, we applied Gaussian
Blur with a probability of 0.85, reducing background details to encourage the model
to focus on the main object. Additionally, we applied Grayscale conversion to the
background with a probability of 0.3 to further enhance contrast between foreground
and background. All other aspects of the training setup remained unchanged.

5.2.2 Setup for Fine-tuning

Fine-tuning is a crucial step in evaluating the effectiveness of self-supervised rep-
resentations. To ensure a fair comparison with the original SimCLR fine-tuning
procedure, we closely follow their training setup while adapting it to our pretraining
constraints. We fine-tune the pretrained base encoder using the Nesterov momentum
optimizer with the following hyperparameters:

• Batch Size: 4096

• Momentum: 0.9

• Learning Rate: 0.8

• No weight decay or additional regularization.

For data augmentation, we apply only random cropping, horizontal flipping, and
resizing to 224 × 224. For validation, images are resized to 256 × 256, and a single
center crop 224 × 224 is used. Fine-tuning is conducted for 60 epochs with 1%
labeled data and 30 epochs with 10% labeled data.

Adapting Fine-Tuning to the Pretraining Setup A key distinction in our
reproduction is that our SimCLR models were pretrained on only 10% of ImageNet
training data, whereas the original study used 100% of ImageNet. As a result, our
fine-tuning label fractions differ conceptually:

• Fine-tuning on 10% labeled data in our setup is equivalent to fine-tuning on
100% of our pretraining dataset.
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– This means that our 10% fine-tuning condition corresponds to fully su-
pervised training on our 10% pretraining subset.

– Although labeled as ”fine-tuning 10%”, in practice, it represents super-
vised learning on our entire pretraining subset.

• Fine-tuning on 1% labels corresponds to 10% of our pretraining dataset.

This adjustment is necessary because applying 1% of the original ImageNet labels to
only 10% of the dataset would produce an extremely small labeled subset, making
fine-tuning ineffective. While this adjustment distorts direct comparability with the
original results, it still provides valuable insights into the effectiveness of fine-tuning
self-supervised representations under limited data availability.

5.2.3 Setup for Transfer Learning

For transfer learning, we closely follow the experimental setup outlined in the orig-
inal SimCLR study. However, due to computational constraints, we use Stochastic
Gradient Descent (SGD) instead of the L-BFGS optimizer used in the original study.

Preprocessing All images were resized to 224 pixels along the shorter side using
bicubic resampling. Next, we applied a 224 × 224 center crop to maintain consistent
image dimensions.

To assess the quality of the learned representations, no additional data augmenta-
tions were applied during transfer learning.

5.2.4 Evaluation Metrics

After pretraining, we evaluate the learned representations using linear evaluation.
This involves extracting frozen representations from the pretrained encoder. Next, a
linear classifier is trained on these representations using the training set. Classifica-
tion accuracy is then measured on the validation set to assess performance. Finally,
the Top-1 and Top-5 accuracy scores are reported as the main results.

5.2.5 Implementation

For the implementation of our training pipeline, we primarily use PyTorch due to
its flexibility and efficiency for deep learning applications. Several additional frame-
works and libraries are integrated to optimize training and augmentation processes.
Frameworks and Libraries:

• PyTorch: Used as the core deep learning framework for model training and
inference.
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• PyTorch Lightning Flash: Utilized for the LARS optimizer, which improves
large-batch training stability.

• Torchvision.transforms: Used for data augmentations, including random crop-
ping, flipping, color jittering, grayscale conversion, and Gaussian blur.

Gradient Accumulation To efficiently train with large batch sizes while man-
aging GPU memory constraints, gradient accumulation is implemented. Instead of
updating model weights after every batch, gradients are accumulated over multi-
ple mini-batches before performing a single optimizer step. Specifically, the loss is
divided by the accumulation step size before backpropagation:

Lossadjusted =
Loss

accumulate steps
(4)

This approach effectively simulates a larger batch size without exceeding memory
limits, allowing for more stable training. The following is the core PyTorch training
loop that implements gradient accumulation:

Algorithm 1 SimCLR Training Loop with Gradient Accumulation
for batch_idx, ((view_1, view_2), _) in enumerate(train_loader):

# Forward pass through the encoder
h_1, h_2 = encoder(view_1), encoder(view_2)

# Pass through the projection head
z_1, z_2 = projection_head(h_1), projection_head(h_2)

# Compute contrastive loss (normalized for accumulation)
loss = loss_fn(z_1, z_2) / accumulate_steps
loss.backward()
total_loss += loss.item() * accumlate_steps

# Perform optimizer step after accumulating gradients
if (batch_idx + 1) % accumulate_steps == 0
or (batch_idx + 1 == len(train_loader)):

optimizer.step()
scheduler.step()
optimizer.zero_grad()

return total_loss / len(train_loader)
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5.3 Validating the Pipeline: Reproducing CIFAR-10 Re-
sults

Due to computational constraints, training SimCLR on the full ImageNet dataset is
not feasible. To ensure the correctness and reproducibility of our implementation,
we use CIFAR-10 as a benchmark to validate our framework in a computationally
manageable setting. This allows us to assess the consistency of our self-supervised
learning pipeline before applying it to larger datasets.

Reproducing SimCLR results on CIFAR-10 is a crucial verification step to ensure our
self-supervised learning pipeline adheres to the original methodology. By confirming
the consistency of learned representations on CIFAR-10, we establish confidence in
our framework before scaling up to more complex datasets such as ImageNet.

Figure 13: Linear evaluation of BaseEncoder trained with different batch sizes and
epochs on the CIFAR-10 dataset. Each bar represents an average over three runs
with learning rates of 0.5, 1.0, and 1.5, and a temperature of 0.5. Reproduced from
Chen et al. (2020a).

The original SimCLR study reports a Top-1 accuracy range of 83% to 85% when
trained for 100 epochs on CIFAR-10.

5.3.1 Pretraining Loss Analysis

To assess the convergence behavior of our self-supervised training, we monitor the
NT-Xent loss throughout the pretraining phase. Figure 14 presents the loss pro-
gression over 100 epochs, indicating how well the model optimizes its contrastive
objective.

The consistent decrease in the loss function indicates that the model is effectively
optimizing the contrastive loss, resulting in meaningful feature representations. A
well-optimized contrastive learning process is essential for ensuring that the encoder
learns discriminative representations, which we further evaluate through linear clas-
sification.
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Figure 14: Pretraining loss curve for SimCLR on CIFAR-10. The NT-Xent loss
decreases over epochs, indicating improved representation learning.

5.3.2 Training and Validation Accuracy

To assess the quality of learned representations, we conduct a linear evaluation by
training a classifier on top of the frozen representations. Figure 15 shows the Top-1
accuracy achieved by models trained under different settings.

Figure 15: CIFAR-10 Top-1 accuracy of different pretrained models.

The results of our CIFAR-10 linear evaluation are as follows:

• SimCLR with batch size 1024: Achieves a Top-1 accuracy of 68.5%.

• SimCLR with batch size 128: Achieves a significantly higher Top-1 accuracy
of 77.8%.
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• SimCLR with resized input: Yields the best performance with a Top-1 accu-
racy of 86.0%.

These results demonstrate that our SimCLR implementation effectively captures
meaningful features, as indicated by the increasing trend in linear evaluation accu-
racy. The difference in performance across batch sizes highlights the sensitivity of
contrastive learning to training hyperparameters.

Successfully reproducing SimCLR’s results on CIFAR-10 confirms the correctness of
our self-supervised learning pipeline in a controlled setting. This serves as a crucial
verification step before extending our approach to larger datasets such as ImageNet.

5.4 Evaluating the Base Encoder: Reproducing Table 6

To assess the effectiveness and reproducibility of SimCLR’s self-supervised learning
approach under limited data constraints, we train and evaluate the base encoder on a
10% subset of ImageNet. This section reproduces Table 6 from the original SimCLR
paper, comparing the linear classifier accuracy of models trained on self-supervised
representations using different ResNet architectures:

• ResNet-50

• ResNet-50 (2×)

• ResNet-50 (4×)

These experiments also aim to quantify how well the learned representations gen-
eralize when trained on a reduced dataset and evaluated with a linear classifier
on ImageNet. Table 1 presents the linear classification accuracy of the reproduced
ResNet-50 model compared to the original SimCLR results. As expected, training
on only 10% of the ImageNet dataset significantly reduces classification accuracy
due to the limited amount of data available.

Table 1: ImageNet accuracies of linear classifiers.
Method Architecture Param (M) Top 1 Top 5
SimCLR original results:
SimCLR ResNet-50 24 69.3 89.0
SimCLR ResNet-50 (2×) 94 74.2 92.0
SimCLR ResNet-50 (4×) 375 76.5 93.2
SimCLR reproduced results:
SimCLR ResNet-50 24 34.6 59.3
SimCLR ResNet-50 (2×) 94 35.8 60.6
SimCLR ResNet-50 (4×) 375 36.4 61.2
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5.4.1 ResNet-50

Pretraining Performance Figure 16 illustrates the pretraining loss curve for the
standard ResNet-50 model, showing the optimization progress during contrastive
learning. The loss starts at 4.9 and decreases steadily to 0.1, indicating effective
minimization of the contrastive objective.

Figure 16: Pretraining loss curve for ResNet-50 trained on 10% of ImageNet.

Linear Evaluation Performance The linear evaluation results, illustrated in
Figure 17, demonstrate the training and validation accuracy progression. The model
starts with a validation accuracy of 15.2%, which gradually improves to 34.6%.
While the absolute accuracy is lower due to the reduced dataset size, the learning
trend remains consistent with full ImageNet training, confirming that self-supervised
learning effectively extracts useful representations even with limited data.

Figure 17: Linear evaluation accuracy of BaseEncoder pretrained with ResNet-50
(1×).
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5.4.2 ResNet-50 (2×)

Pretraining Performance Increasing the model capacity to ResNet-50 (2×) re-
sults in a slightly improved pretraining performance. As shown in Figure 18, the
contrastive loss starts at 4.5 and decreases to 0.09, reaching a lower final value com-
pared to ResNet-50. This suggests that the increased network capacity leads to
better feature extraction during self-supervised training.

Figure 18: Pretraining loss curve for ResNet-50 (2×) trained on 10% of ImageNet.

Linear Evaluation Performance The linear evaluation results for ResNet-50
(2×) are presented in Figure 19. The model begins with a validation accuracy of
17.0% and improves to 35.8%. Compared to ResNet-50, the Top-1 accuracy increases
from 34.6% to 35.8%, reflecting a 1.2% improvement.

For reference, in the full ImageNet setting, SimCLR achieves a 4.9% increase in
performance when scaling from ResNet-50 to ResNet-50 (2×). However, in our data-
constrained 10% ImageNet experiment, the improvement is only 1.2%. Although
the gain is smaller, the learning trend remains consistent with the original results,
confirming that wider models can still improve representation quality, although with
diminishing returns under limited data conditions.

Figure 19: Linear evaluation accuracy of BaseEncoder pretrained with ResNet-50
(2×).



5 EXPERIMENTS AND RESULTS 31

5.4.3 ResNet-50 (4×)

Pretraining Performance The largest model tested, ResNet-50 (4×), achieves
the lowest pretraining loss among all architectures. As illustrated in Figure 20,
the loss starts at 4.48 and decreases to 0.089. The more substantial reduction
in contrastive loss suggests that scaling the model width further enhances feature
separability during contrastive learning.

Figure 20: Pretraining loss curve for ResNet-50 (4×) trained on 10% of ImageNet.

Linear Evaluation Performance The training and validation accuracy curves
for ResNet-50 (4×) are presented in Figure 21. The model begins with a validation
accuracy of 18.2%, improving to 36.4% after training. Compared to ResNet-50 (2×),
the Top-1 accuracy increases from 35.8% to 36.4%, representing a 0.6% gain.

For reference, in the full ImageNet setting, increasing the model size from ResNet-
50 (2×) to ResNet-50 (4×) improves accuracy by 2.3%. However, in our 10% Im-
ageNet experiment, the gain is only 0.6%. Despite the smaller improvement, the
performance trend remains aligned with the original findings, demonstrating that
increasing model capacity continues to enhance representation learning.

Figure 21: Linear evaluation accuracy of BaseEncoder pretrained with ResNet-50
(4×).
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5.5 Evaluating the Segmentation-Based Augmentation Pipeline:
Reproducing Table 6

To assess the effectiveness of our segmentation-based augmentation pipeline, we com-
pare its performance against the standard SimCLR augmentation strategy using the
linear evaluation protocol on ImageNet. This experiment evaluates whether apply-
ing region-specific augmentations to foreground and background regions can improve
self-supervised representation learning over the standard augmentation pipeline.

Table 2 presents the Top-1 and Top-5 classification accuracies of two training pipelines:

1. Reproduced SimCLR results trained using the standard SimCLR augmenta-
tion pipeline.

2. SimCLR with Segmentation-Based Augmentations, where we apply different
augmentation strategies to the foreground and background, as described in
Section 4.2.

Table 2: ImageNet accuracies of standard reproduced results and segmentation-
based augmentations results.

Method Architecture Param (M) Top 1 Top 5
SimCLR reproduced results:
SimCLR ResNet-50 24 34.6 59.3
SimCLR segmentation based augmentations results:
SimCLR ResNet-50 24 35.2 60.11

The results indicate a minor improvement in linear classifier accuracy when using
segmentation-based augmentations. The Top-1 accuracy increases from 34.6% to
35.2%, and the Top-5 accuracy improves from 59.3% to 60.11%.

5.6 Reproducing Table 7: Fine-tuning the Base Encoder

Table 3 presents the Top-1 and Top-5 accuracy for different ResNet architectures at
1% and 10% label fractions, comparing the original SimCLR results to our repro-
duced results.

Fine-tuning with 10% labeled data significantly improves performance. For instance,
the Top-1 accuracy for ResNet-50 (1×) increases from 34.6% in the linear evalua-
tion setting to 44.3% when fine-tuned with 10% labeled data. However, in our case,
fine-tuning with 10% labeled data is effectively equivalent to training on 100% of
the pretraining dataset, as our pretraining was conducted on only 10% of ImageNet.
This means our 10% fine-tuning setup is conceptually closer to a fully supervised
setup within the pretraining constraints rather than a direct replication of the orig-
inal SimCLR setting.
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Method Architecture Label Fraction 1% Label Fraction 10%
Top 1 Top 5 Top 1 Top 5

SimCLR original results:
SimCLR ResNet-50 48.3 75.5 65.6 87.8
SimCLR ResNet-50 (2×) 58.5 83.0 71.7 91.2
SimCLR ResNet-50 (4×) 63.0 76.5 74.7 92.6
SimCLR reproduced results:
SimCLR ResNet-50 19.2 40.0 44.3 69.9
SimCLR ResNet-50 (2×) 20.3 41.9 46.5 71.8
SimCLR ResNet-50 (4×) 20.9 42.8 46.6 71.9

Table 3: Comparison of different methods on ImageNet with varying label fractions.

In our setup, fine-tuning with 1% labeled data corresponds to using 10% of the
pretraining dataset. Since we only pretrained on 10% of ImageNet, applying 1%
of ImageNet labels directly would yield an extremely small labeled subset, limit-
ing fine-tuning effectiveness. To ensure a meaningful comparison, we adjust our
1% fine-tuning condition to correspond proportionally to 10% of our pretraining
dataset, providing a more representative evaluation of label efficiency under limited
pretraining data.

Comparing fine-tuned results with linear evaluation reveals the direct impact of ad-
ditional labeled supervision. In the 1% fine-tuning condition, the Top-1 accuracy
for ResNet-50 (1×) reaches 19.2%, which is significantly lower than the 34.6% ob-
tained through linear evaluation. Similarly, for ResNet-50 (2×), fine-tuning with 1%
labels achieves 20.3% accuracy, whereas the linear evaluation model without fine-
tuning achieves 35.8%. The ResNet-50 (4×) model follows the same trend, with
1% fine-tuning resulting in 20.9% accuracy compared to 36.4% in the linear eval-
uation setting. These results suggest that with limited self-supervised pretraining,
fine-tuning on a small labeled subset may not always surpass the performance of a
linear classifier applied to frozen representations.

Increasing network capacity (ResNet-50 → 2× → 4×) improves performance, but
with diminishing returns. Larger models consistently achieve higher accuracy, re-
inforcing that increasing model width enhances representation learning. However,
under constrained pretraining data, the relative performance gains from wider archi-
tectures are smaller than in the full ImageNet setting. While scaling the model size
remains beneficial, the performance increase is more limited when self-supervised
learning is performed on a reduced dataset.
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5.7 Transfer learning performance: Reproducing Table 8

Table 4 presents the linear evaluation accuracy of SimCLR, comparing standard
and segmentation-based augmentations across six datasets. For CIFAR10, SimCLR
(segaug) achieves a slightly higher accuracy (82.8%) compared to SimCLR (normal)
at 82.4%. On CIFAR100, the difference remains modest, with SimCLR (segaug)
at 59.4% and SimCLR (normal) at 59.1%. For Flowers, the segmentation-based
approach achieves 67.9% accuracy, outperforming the standard method by approx-
imately 1 percentage point.

In contrast, for Pets, SimCLR (normal) performs slightly better (55.0%) than Sim-
CLR (segaug) at 54.2%. A similar trend is observed in Caltech-101, where the
standard pipeline achieves 83.2% compared to 81.3% for the segmentation variant.
On SUN397, both approaches yield similar results, with segmentation-based Sim-
CLR scoring 52.0% and the standard pipeline achieving 51.9%.

These findings indicate that segmentation-based augmentations can enhance perfor-
mance on datasets with diverse or complex object compositions, such as CIFAR10,
CIFAR100, and Flowers. However, for certain datasets like Pets and Caltech-101,
the standard approach yields slightly better results. In general, segmentation-based
augmentations enhance data variability while preserving semantic structure; how-
ever, their effectiveness depends on dataset characteristics.

CIFAR10 CIFAR100 Flowers Pets SUN397 Caltech-101
Linear evaluation:
SimCLR (normal) 82.4 59.1 66.9 55.0 51.9 83.2
SimCLR (segaug) 82.8 59.4 67.9 54.2 52.0 81.3

Table 4: Linear evaluation results of standard SimCLR compared to the
segmentation-based SimCLR pipeline.
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6 Discussion

This section synthesizes the findings from our experiments on self-supervised repre-
sentation learning using SimCLR and its segmentation-based augmentation variant.
We examined model performance under constrained data settings, explored the im-
pact of different ResNet architectures, and evaluated how segmentation-informed
augmentations may benefit transfer learning.

6.1 Experiments in Detail

Evaluating the Base Encoder: Reproducing Table 6 In reproducing the
original SimCLR experiments at a reduced scale (10% of ImageNet), we observe
substantial drops in accuracy compared to the original results. While the loss curves
indicate that the networks effectively minimize the contrastive objective, the final
linear evaluation accuracies (approximately 34.6%–36.4% Top-1) are significantly
lower than the 69.3%–76.5% range reported for full ImageNet. This underscores the
data-intensive nature of deep learning models: without sufficient data variety, the
networks struggle to capture the full breadth of visual concepts.

However, incorporating segmentation-based augmentations led to a slight increase in
linear evaluation accuracy. The Top-1 accuracy improved from 34.6% to 35.2% when
applying region-specific augmentations. This suggests that selective transformations
applied to the foreground and background may introduce more useful variance while
preserving essential object features. The Top-5 accuracy also improved from 59.3%
to 60.1%, reinforcing the idea that segmentation-informed augmentations might pro-
vide some benefits in a contrastive learning setting.

Interestingly, we still find a consistent improvement with larger models (ResNet-
50 1×, 2×, and 4×), signaled by both progressively lower pretraining losses and
gradually higher linear evaluation accuracies. This scaling trend aligns with the
original SimCLR findings, but with a smaller absolute performance gain under data
constraints. Increasing capacity provides more representational flexibility, enabling
better feature disentanglement even in a limited-data regime. However, the marginal
gains (1.2% from 1× to 2×, and 0.6% from 2× to 4×) are far lower than in the
full ImageNet setting, suggesting that larger networks cannot fully leverage their
potential with only 10% of the data.

Fine-Tuning the Base Encoder: Reproducing Table 7 When comparing
fine-tuning results (1% vs. 10% labeled data) with linear evaluation, we see a com-
plex interplay between labeled data availability and the quality of self-supervised
representations. Fine-tuning on 10% of ImageNet substantially boosts performance
over linear evaluation. For ResNet-50 (1×), the Top-1 accuracy increases from 34.6%
to 44.3%, reflecting the benefit of supervised learning. However, in our setup, 10%
fine-tuning is effectively a fully supervised scenario relative to the 10% pretraining
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subset, making it less comparable to the original SimCLR experiments where the
model had exposure to the entire ImageNet distribution.

By contrast, 1% fine-tuning performs noticeably worse than linear evaluation. For
instance, the ResNet-50 (1×) accuracy drops to 19.2% under 1% fine-tuning com-
pared to 34.6% in linear evaluation. This outcome suggests that when both pretrain-
ing data and fine-tuning labels are extremely limited, the advantage of supervised
adaptation diminishes, possibly due to overfitting or insufficient labeled examples
to guide the training process. In essence, if the base encoder has only seen a frac-
tion of ImageNet during pretraining, providing even fewer labeled samples during
fine-tuning may not be sufficient to unlock further performance gains.

Transfer Learning with Segmentation-Based Augmentations: Reproduc-
ing Table 8 Our experiments on six downstream datasets (CIFAR10, CIFAR100,
Flowers, Pets, SUN397, and Caltech-101) show that segmentation-based augmenta-
tions can yield modest gains in datasets characterized by diverse or complex object
compositions (e.g., CIFAR10, CIFAR100, Flowers). However, for Pets and Caltech-
101, the classical SimCLR pipeline remains slightly ahead. These mixed results
highlight the context-dependent nature of segmentation-informed data augmenta-
tion. In some settings, focusing augmentations on foreground or background regions
preserves crucial features and enriches the model’s learned representations. In other
cases, especially in object-centric datasets with simpler compositions, uniform global
augmentations may already capture enough variance.

A potential explanation for these variations lies in the quality of segmentation. If
the segmentation model used for generating masks misclassifies objects and back-
grounds, the localized augmentations might distort relevant information or omit
beneficial background details. Additionally, certain datasets, such as Caltech-101,
often place clear primary objects in near-uniform backgrounds, reducing the net ben-
efit of segmentation-based augmentations. Hence, segmentation-based approaches
may be most valuable in datasets where important structures are scattered through-
out the scene and segmentation can reliably isolate the object(s) of interest.
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6.2 Overall Findings and Future Considerations

From a broader perspective, these experiments underscore several important points:

• Data Scale is Crucial. Even a robust self-supervised method like SimCLR
suffers substantially when pretraining data is reduced to 10% of ImageNet,
underscoring the well-known data-hungry nature of deep learning models.

• Model Scaling Yields Diminishing Returns with Limited Data. Wider
architectures continue to improve performance but only marginally at reduced
scales, suggesting a clear interplay between network capacity and dataset di-
versity.

• Segmentation-Based Augmentations Offer Selective Benefits. While
segmenting images before augmentation can produce gains in certain datasets,
its effectiveness is heavily dependent on dataset structure, segmentation qual-
ity and the complexity of images.

• Fine-Tuning vs. Linear Evaluation Under Limited Data. In ex-
tremely data-constrained scenarios, linear evaluation sometimes outperforms
fine-tuning, implying that the label efficiency gains from self-supervised fea-
tures might not always materialize if the fine-tuning set is too small.

Looking ahead, more precise or adaptive segmentation methods could further en-
hance localized augmentations, especially in heterogeneous datasets where impor-
tant details span different regions of the image. Additionally, scaling up pretraining
data, while maintaining segmentation-based augmentation, could clarify whether
the relatively modest gains observed here scale more convincingly when the model
sees a larger variety of unlabeled examples. Finally, exploring semi-supervised or
active learning strategies might yield additional insights into how best to harness
limited labeled data alongside self-supervised or segmentation-driven pretraining.
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7 Conclusion

In this thesis, we have investigated the potential of SSL to overcome the challenges
posed by limited annotated data, as well as the effectiveness of segmentation-based
augmentations in enhancing contrastive representation learning. Our experiments
focused primarily on SimCLR, a widely adopted SSL framework, and evaluated its
performance across various scales, network architectures, and augmentation strate-
gies.

First, by reproducing select experiments from SimCLR at a reduced scale (e.g., train-
ing with only 10% of ImageNet), we verified that SSL can still extract meaningful
features under data scarcity, but with lower absolute performance. We observed that
larger network architectures (ResNet-50 1×, 2×, 4×) continue to offer incremental
gains, although the margin of improvement is smaller than in the full ImageNet
setting. This finding highlights the interplay between data size and model capacity:
insufficient data can constrain the benefits gained from increasing model width.

Second, we compared linear evaluation and fine-tuning protocols under reduced data
conditions. As expected, fine-tuning with 10% labeled data significantly outper-
formed linear evaluation, since this setting corresponds to fully supervised training
on the entire pretraining dataset. This confirms that when enough labeled data is
available, fine-tuning meaningfully improves performance by refining self-supervised
features. However, fine-tuning with 1% labeled data (which effectively corresponds
to 10% of our pretraining dataset) performed significantly worse than linear eval-
uation. This suggests that when both pretraining data and fine-tuning labels are
severely limited, the advantage of supervised adaptation diminishes.

Third, we integrated segmentation-based augmentations into SimCLR to investigate
whether localizing augmentations to specific regions (foreground vs. background)
could improve feature learning. Although these segmentation-driven approaches
yielded modest gains in some datasets (e.g., ImageNet, CIFAR10, CIFAR100, Flow-
ers, SUN397), the benefits were less consistent in object-centric datasets like Caltech-
101 and Pets. Our observations suggest that segmentation quality and dataset com-
position heavily influence the degree to which region-specific augmentations offer an
advantage. In particular, segmentation-based augmentation appears most beneficial
in scenarios with complex object structures and diverse backgrounds, provided the
segmentation masks accurately capture meaningful regions.

Overall, our findings emphasize the significant role that data diversity and augmen-
tation techniques play in the success of SSL. Data-hungry deep networks may still
yield strong results under limited data conditions. Segmentation-based augmenta-
tions represent a promising direction for future research, particularly if paired with
robust segmentation models and applied to datasets where local context is critical.
Moreover, exploring semi-supervised or active learning paradigms may further en-
hance the utilization of SSL in real-world scenarios, where annotated data remains
a scarce and costly resource.
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A Appendix

A.1 Code Availability

The implementation of this thesis is open-source and available on GitHub:

https://github.com/saswo/SimCLR---segmentation-based

Researchers and practitioners are encouraged to explore, reproduce, and extend the
work presented in this thesis.

https://github.com/saswo/SimCLR---segmentation-based
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Ich erkläre hiermit gemäß §9 Abs. 12 APO, dass ich die vorstehende Abschlussarbeit
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