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Abstract

Citizen science initiatives have become a cornerstone in advancing scientific research
and democratizing access to knowledge. One of the most impactful ways this is
achieved is through large-scale data collection, which is crucial for biodiversity stud-
ies. This work utilizes a large dataset of 1.39 million images of butterflies and
moths (belonging to the order of Lepidoptera), sourced from Observation.org. The
dataset was split into nine variants to examine how different amounts of samples and
species labels affect the performance of foundation models combined with classifiers
for fine-grained image classification.

The feature embeddings extracted from DINOv2-Giant and ResNet-50 were used
to train and evaluate classifiers such as Logistic Regression and K-Nearest Neigh-
bors (KNN) across the dataset variants. Cross-validation was employed to ensure
robust performance estimation. The results showed that DINOv2 consistently out-
performed ResNet-50, achieving a top-1 accuracy of 92.78% when paired with Lo-
gistic Regression on the optimal dataset variant (277 species, 3,000 samples each).
In contrast, ResNet-50 reached only 70.34% under similar conditions. Notably, DI-
NOv2 demonstrated strong generalization capabilities without requiring fine-tuning,
whereas ResNet-50 may benefit from additional tuning to achieve comparable re-
sults.

Despite concerns about the quality and variability of citizen science data, both
foundation models exhibited resilience to variations in sample size and species count.
For instance, with a dataset containing 589 species and only 500 samples each,
DINOv2 still achieved 86.77% top-1 accuracy, while ResNet-50 reached 57.81%.
Logistic Regression proved more effective than KNN, likely due to its ability to
establish global decision boundaries, which seem to be advantageous in this context.

This research highlights the potential of leveraging citizen science data with foun-
dation models to deliver impactful results in ecological monitoring and conservation
efforts. The findings suggest that even with limited data, fine-grained image classi-
fication can be performed with relatively high precision.
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Abstract

Citizen-Science-Initiativen sind zu einem Eckpfeiler der Förderung wissenschaftlicher
Forschung und der Demokratisierung des Zugangs zu Wissen geworden. Eine der
wirkungsvollsten Möglichkeiten, dies zu erreichen, sind groß angelegte Datenerhe-
bungen, die für Studien zur biologischen Vielfalt entscheidend sind. In dieser Ar-
beit wird ein großer Datensatz von 1,39 Millionen Bildern von Schmetterlingen
und Motten (aus der Ordnung der Lepidoptera) verwendet, der von der Citizen-
Science-Plattform Observation.org stammt. Der Datensatz wurde in neun Varianten
aufgeteilt, um zu untersuchen, wie sich unterschiedliche Mengen an Daten auf die
Leistung von Basis-Modellen (en: foundation models) in Kombination mit Klassi-
fikatoren (en: classifier) für die feinkörnige Bildklassifikation (en: fine-grained image
classification) auswirken.

Die aus DINOv2-Giant und ResNet-50 extrahierten Merkmale (en: feature embed-
dings) wurden verwendet, um Klassifikatoren wie die logistische Regression und
K-nächste Nachbarn (KNN) für die verschiedenen Varianten des Datensatzes zu
trainieren und zu bewerten. Die Kreuzvalidierung (en: cross-validation) wurde
eingesetzt, um eine robuste Leistungseinschätzung zu gewährleisten. Die Ergebnisse
zeigten, dass DINOv2 ResNet-50 durchgängig übertraf und eine Top-1-Genauigkeit
von 92,78% erreichte, wenn es mit der logistischen Regression auf der optimalen
Datensatzkonfiguration (277 Arten, je 3.000 Bilder) kombiniert wurde. Im Gegen-
satz dazu erreichte ResNet-50 unter ähnlichen Bedingungen nur 70,34%. Bemerkenswert
ist, dass DINOv2 starke Verallgemeinerungsfähigkeiten zeigte, ohne dass eine Fein-
abstimmung erforderlich war, während ResNet-50 von einer zusätzlichen Abstim-
mung profitieren könnte, um vergleichbare Ergebnisse zu erzielen.

Trotz der Bedenken hinsichtlich der Qualität und Variabilität von Citizen-Science-
Daten zeigten beide Basis-Modelle eine hoheWiderstandsfähigkeit gegenüber Schwankun-
gen bei der Bildermenge und der Artenzahl. Bei einem Datensatz mit 589 Arten und
jeweils nur 500 Bildern erreichte DINOv2 beispielsweise eine Top-1-Genauigkeit von
86,77%, während ResNet-50 57,81% erreichte. Die logistische Regression erwies sich
als effektiver als KNN, was wahrscheinlich auf ihre Fähigkeit zurückzuführen ist,
globale Entscheidungsgrenzen festzulegen, die in diesem Zusammenhang von Vorteil
zu sein scheinen.

Diese Untersuchung unterstreicht das Potenzial der Nutzung von Citizen-Science-
Daten mit Basis-Modellen, um wirkungsvolle Ergebnisse bei der ökologischen Überwachung
und bei Naturschutzmaßnahmen zu erzielen. Die Ergebnisse deuten darauf hin, dass
selbst mit begrenzten Daten eine feinkörnige Bildklassifizierung mit relativ hoher
Präzision durchgeführt werden kann.
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1 INTRODUCTION 1

1 Introduction

Lepidoptera, comprising butterflies and moths, are one of the most diverse and
ecologically significant insect orders and are playing crucial roles as pollinators, her-
bivores, and prey for various species. (Hajizadeh et al., 2022) With an estimated
species amount of half million, Lepidoptera represent the largest radiation of pri-
marily herbivorous organisms and account for a substantial portion of insect biodi-
versity. (Kristensen et al., 2007) Their ecological importance extends beyond their
sheer numbers, as they serve as reliable bioindicators of ecosystem health and an-
thropogenic landscape transformations. (Vila, 2025)

In recent years, citizen science has emerged as a powerful tool for biodiversity re-
search, particularly in the study of Lepidoptera. The widespread interest in butter-
flies and moths among the general public has led to the creation of numerous citizen
science projects aimed at collecting valuable data on these species. These initiatives
not only contribute to scientific knowledge but often also foster public engagement
in conservation efforts. (Lewandowski and Oberhauser, 2016)

However, the influx of citizen-generated data presents both opportunities and chal-
lenges for researchers. While citizen science projects provide access to vast amounts
of information, the unstructured nature of this data can lead to biases and inconsis-
tencies. (Cordis, 2023) This highlights the critical need for efficient data processing
and classification systems in biodiversity research.

The work addresses this challenge by investigating the performance of different foun-
dation models combined with common classifiers on various combinations of label
and sample amounts from a large Lepidoptera image dataset. This research seeks
to clarify the data requirements essential for precise species classification, offering
valuable insights to refine the data requirements for projects using citizen science
data.

By focusing on data efficiency, this study could enable citizen science projects to
streamline their data collection efforts, concentrating on the most informative types
and quantities of data. This work tries to ultimately contribute to a more effective
biodiversity monitoring and enhanced conservation strategies.
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2 Related Work

Recent advances in deep learning have revolutionized fine-grained visual classifi-
cation, leading to substantial improvements in biodiversity monitoring and insect
studies. The two studies presented below serve as key references, as each tackles
the challenges of small inter-class differences and significant intra-class variations in
insect classification by employing different architectures and datasets.

Pucci et al. evaluated nine deep learning models — including CNNs, vision trans-
formers (ViTs), and locality-based vision transformers (LBVTs) — on heavily im-
balanced insect image datasets sourced from the citizen science initiative Observa-
tion.org: One dataset, containing observations of the order of Odonata (containing
628,189 samples over 235 species) and another of the order Coleoptera (comprising
849,296 samples over 3,087 species). Their results revealed that while ViTs offered
rapid inference and computational efficiency, LBVTs achieved the best overall clas-
sification performance and feature embedding quality, with the top LBVT model
reaching a top-1 accuracy of 89.8% or 93.6%, depending on the dataset. LBVTs
are hybrid models that merge the local feature extraction strengths of CNNs (by
the use of architectures like InceptionV3, EfficientNetV2, and ResNet-50) with the
global context awareness of transformers. Their experiments also encompassed test-
ing a ResNet-50, achieving a top-1 accuracy of 86.7% and 90.80%. All results were
derived using fine tuned models. (Pucci et al., 2024)

Chang et al. focused on the fine-grained classification of butterflies and moths using
a manually annotated dataset of 14,270 samples over 636 species — derived from
various sources, such as Wikipedia, Bing API and Google Search. They fine-tuned
several classical deep convolutional neural networks, including VGG-19, Inception-
v3, ResNet18, and ResNet34, on their dataset to adapt these pre-trained models to
the nuances of butterfly and moth imagery. Their experiments revealed that these
CNN architectures can deliver robust performance when provided with high-quality,
well-prepared data. In fact, the best performing model achieved an accuracy of
71.5% on a ResNet-18. (Chang et al., 2017)

While this experiment relates to the mentioned studies as examples of successful
fine-grained insect classification using foundation models, it differs in its approach
by not directly fine-tuning them. Instead, it employs different classifiers which are
trained on feature embeddings extracted of different foundation models, an approach
commonly referred to as probing. Within this setup, this work focuses on evaluating
data efficiency on balanced datasets, analyzing the impact of data quantities on
the performance in the context of highly variable data quality, a common challenge
in citizen science projects.
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3 Theoretical Background

In order to understand the experiment’s structure and its working principles, some
of the core components will be elaborated on in greater detail in order to enhance
interpretability of the results and provide a deeper understanding of the underlying
methodology.

3.1 Foundation Models

Foundation models are large-scale models trained on extensive datasets to learn
general-purpose representations, often used for feature extraction. Their embeddings
can be leveraged by simpler classifiers, such as K-Nearest Neighbors (KNN) or
Logistic Regression (LR), for downstream tasks. ResNet, a convolutional neural
network (CNN), excels at extracting localized spatial features through its residual
learning mechanism. In contrast, DINO, a vision transformer (ViT)-based model,
uses self-supervised learning to capture global contextual relationships in images.
These architectural differences make ResNet and DINO complementary tools for
generating feature embeddings.

3.1.1 ResNet

ResNet (Residual Neural Network) is a groundbreaking deep learning architecture
introduced by He at al. in their paper, ”Deep Residual Learning for Image Recog-
nition” which also won first places across several categories in the ILSVRC 2015
competition. He et al. (2016) The architecture was developed to address the degra-
dation problem observed in very deep neural networks, where increasing network
depth leads to higher training error, contrary to expectations. This problem hin-
dered the performance of deep networks, despite their potential for learning more
complex features. ResNet revolutionized deep learning by introducing the concept
of residual learning, enabling the training of networks with hundreds of layers.

Characteristics The key innovation of ResNet is its use of residual blocks, which
introduce skip connections (also called shortcut connections). These skip connec-
tions allow the network to bypass one or more layers, enabling it to learn the differ-
ence (or residual) between the input and the desired output, rather than learning the
output directly. Mathematically, if the desired transformation is H(x), the residual
block learns F (x) = H(x)−x, where x is the input. This residual learning approach
makes it easier for the network to optimize very deep architectures.

By using skip connections, ResNet addresses two major challenges in deep learning:

• Vanishing Gradients: Skip connections allow gradients to flow directly
through the network, preventing them from becoming too small during back-
propagation. This makes it possible to train networks with hundreds of layers.
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• Degradation Problem: In very deep networks, adding more layers can some-
times lead to higher training error. Residual blocks mitigate this issue by al-
lowing the network to learn small adjustments (residuals) to the input, rather
than forcing it to learn complex transformations from scratch.

These innovations make ResNet highly efficient and capable of achieving state-of-
the-art performance with fewer parameters compared to earlier architectures like
VGG and AlexNet. (He et al., 2016)

Training Data: ImageNet1k ResNet was originally trained on the ImageNet1k
dataset, a large-scale benchmark for image classification. ImageNet1k contains 1.2
million training images across 1,000 classes, making it a robust dataset for evaluat-
ing deep learning models. In the experiment, the ImageNet1kV2 weights was used.
This means, that it was originally trained on ImageNet1k but fine-tuned to perform
well on both, the ImageNet1k validation set and ImageNet1kV2, which is a newer
dataset designed to mitigate dataset biases and improve generalization. (Recht et al.,
2019) ImageNet1kV2 includes additional images collected using the same class la-
bels as ImageNet1k but with a more rigorous sampling process. It is designed to
reduce overfitting to the original ImageNet1k validation set, providing a more robust
evaluation benchmark.

Variants of ResNet ResNets have been developed in various depths to address
different computational needs and application scenarios. The original ResNet paper
introduced models with 18, 34, 50, 101, and 152 layers, referred to as ResNet-18,
ResNet-34, ResNet-50, ResNet-101, and ResNet-152, respectively. Shallower net-
works, such as ResNet-18 and ResNet-34, are computationally efficient and suitable
for tasks with limited resources. Deeper networks, including ResNet-50, ResNet-101,
and ResNet-152, offer increased representational capacity, making them effective for
complex tasks. ResNet-50, in particular, is noted for its balance between depth
and computational load, making it a popular choice for various applications.

Compared to earlier architectures like VGG and AlexNet, ResNet achieves superior
performance with fewer parameters and computational requirements. For example,
ResNet-50 outperforms VGG-16 on ImageNet1k while being computationally more
efficient. (He et al., 2016)

Application to Fine-Grained Image Classification ResNet-50 was chosen for
the experiments as its widespread use across various domains ensures that results
from experiments using ResNet-50 are highly comparable with other studies. This
comparability might be particularly valuable when evaluating the impact of different
data amounts on model performances.
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3.1.2 DINOv2

DINOv2 is a state-of-the-art self-supervised vision model introduced by Meta AI in
2023. Building on the success of its predecessor, DINO, DINOv2 leverages the vision
transformer (ViT) architecture and a self-supervised learning framework to learn
powerful visual representations without requiring labeled data. Unlike traditional
supervised models, DINOv2 uses a teacher-student distillation approach, where the
model learns by matching predictions of different augmented views of the same
image. This allows DINOv2 to capture both local and global features, making it
highly effective for tasks like fine-grained image classification. (Oquab et al., 2024)

Characteristics DINOv2’s self-supervised training in combination with the
LVD-142M dataset enables it to generate high-quality feature embeddings that gen-
eralize well across diverse datasets. The model furthermore excels at capturing
details and long-range dependencies in images. This makes it particularly suitable
for tasks where subtle differences between classes, such as distinguishing between
insect species, are critical. Additionally, DINOv2’s ability to learn from unlabeled
data makes it highly scalable and adaptable to new domains. (Oquab et al., 2024)

Training Data: LVD-142M The performance of a model is largely influenced
by the size and quality of the dataset used during training. In the development of
DINOv2, researchers assembled a curated dataset (referred to as LVD-142M) con-
sisting of 142 million images. This dataset was assembled through an automated
pipeline designed to select diverse and representative images from a vast pool of
approximately 1.2 billion images. The curation process involved removing irrele-
vant images and balancing the dataset across various concepts to ensure diversity.
Seed images were sourced from multiple public datasets, including ImageNet22k and
the training split of ImageNet1k, and expanded by retrieving similar images from
web data. This meticulous curation was essential for training DINOv2 models to
produce robust visual features applicable across a wide range of computer vision
tasks. (Oquab et al., 2024) (Encord, 2024)

Variants of DINOv2 In fine-grained benchmarks, DINOv2 demonstrated su-
perior performance across various tasks. The DINOv2 ViT-g/14 model outper-
formed its smaller counterparts—ViT-s/14, ViT-b/14, and ViT-l/14—as well as
other transformer-based models like OpenCLIP. Specifically, the ViT-g/14 model
achieved the highest average accuracy across all fine-grained benchmarks, with a
classification accuracy of 92.1%. This enhanced performance underscores DINOv2’s
potential in applications requiring precise image understanding, such as detailed
object segmentation and classification tasks, which are essential for distinguishing
between different insect species. Therefore, the DINOv2 ViT-g/14 (DINOv2-Giant)
model was used in the experiment. (Oquab et al., 2024)
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Comparison to ResNet-50 ResNet-50 and DINOv2-Giant differ fundamentally
in their architectural design and performance. While ResNet-50 is based on convo-
lutional layers that extract localized features through hierarchical representations,
DINOv2-Giant employs self-attention mechanisms in a transformer architecture, al-
lowing it to model long-range dependencies and capture global image relationships
more effectively. This fundamental difference enables DINOv2-Giant to achieve su-
perior performance in fine-grained classification tasks.

Despite the performance gap, ResNet-50 remains relevant due to its computational
efficiency and widespread use in real-world applications. While deeper ResNet vari-
ants or alternative CNN architectures may achieve higher accuracy, ResNet-50 is
supposed to serve as a representative baseline for assessing the impact of different
dataset configurations on performance in fine-grained image classification.

Using Foundatoin Models Two common approaches to leverage foundation
models are linear probing and fine-tuning. Linear probing involves training a classi-
fier on fixed feature embeddings extracted from the model, offering a computation-
ally efficient approach while still achieving strong performance. This technique was
used in the conducted experiments. Fine-tuning, on the other hand, updates the
model’s weights on task-specific data, which is computationally more demanding
but often results in higher accuracy. The choice between these methods depends on
the trade-off between computational resources and performance gains. Since this
work prioritizes data efficiency and explores multiple dataset variants with differ-
ent foundation model and classifier combinations, features were extracted to train
classifiers, following the linear probing approach.

3.1.3 Feature Reduction Techniques

Feature reduction techniques are essential in high-dimensional datasets to improve
computational efficiency, reduce noise, and enhance model interpretability. Two
widely used methods for dimensionality reduction are Principal Component Analysis
(PCA) and Uniform Manifold Approximation and Projection (UMAP).

Principal Component Analysis (PCA) Principal Component Analysis (PCA)
is a linear dimensionality reduction technique that projects the original feature space
onto a lower-dimensional subspace while maximizing variance. It is commonly used
for feature reduction, helping to remove noise while retaining most of the relevant in-
formation in the data. PCA relies on linear transformations, meaning it represents
data as a weighted sum of original features without introducing non-linear map-
pings. While effective for many datasets, this limitation makes PCA less suitable
for capturing complex, non-linear relationships within the data. (Kurita, 2021)

Uniform Manifold Approximation and Projection (UMAP) UniformMan-
ifold Approximation and Projection (UMAP) is a non-linear dimensionality reduc-
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tion technique designed to preserve both local and global structures in data. Unlike
PCA, which relies on linear transformations, UMAP constructs a high-dimensional
graph representation of the data and optimizes a low-dimensional embedding that
maintains the original structure.

UMAP is particularly effective for visualization and clustering tasks, as it captures
complex, non-linear relationships that PCA cannot. However, as it is a newer
technique, it requires careful selection of hyperparameters such as the number of
neighbors and minimum distance. The choice of parameters can make UMAP more
challenging to apply effectively compared to PCA, which has a more straightforward
implementation and interpretation. (Ghojogh et al., 2021)

3.2 Hold-Out Method and Cross-validation

A fundamental step in model evaluation is assessing generalization performance,
which ensures that a trained model performs well on unseen data. The hold-out
method is the most straightforward approach, where the dataset is split into separate
training, validation, and test sets (e.g., 80%-10%-10%). The model is trained on the
training set, hyperparameters are tuned on the validation set, and final performance
is assessed on the test set. This method is computationally efficient and was also
used for preliminary testing and final experiments. However, a key drawback of
the hold-out method is its dependency on a single data split, which may not fully
capture dataset variability, leading to high variance in performance estimates and a
risk of overfitting to the specific partition.

To obtain a more robust evaluation, cross-validation is often preferred, particularly
when dataset size is limited. K-fold cross-validation is a widely used technique where
the dataset is divided into K equally sized folds. The model is trained on K − 1
folds and validated on the remaining fold, repeating the process K times so that
each fold serves as a validation set once. The final performance metric is obtained
by averaging across all folds. Standard choices are 5-fold or 10-fold cross-validation,
which balance computational cost and result stability. More folds (e.g. 10 or more)
are particularly useful for smaller datasets, as they maximize the training data per
iteration, while fewer folds (e.g. 5) are often sufficient for larger datasets to reduce
computational overhead. (James et al., 2013)

Stratified K-Fold Cross-Validation In standard K-fold cross-validation, folds
are created through random splits, which can lead to an uneven class distribution,
particularly in imbalanced datasets. This can result in misleading performance
estimates if certain classes are underrepresented in some folds. Stratified K-fold
cross-validation addresses this issue by ensuring that each fold maintains approxi-
mately the same class distribution as the full dataset. By preserving class ratios,
stratification prevents models from becoming biased toward more frequent classes,
leading to more reliable and generalizable results. (Berrar et al., 2019) While the
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Figure 1: Visualization of 5-fold cross-validation. (Shen, 2020)

dataset used in this experiment was not imbalanced, stratification was still applied
to ensure an equal distribution and mitigate a potential source of error.

Overall, while the hold-out method provides a quick estimate of performance, cross-
validation — especially stratified K-fold—is the preferred approach for ensuring
robust evaluation, particularly when dealing with fine-grained datasets where an
equal distribution of samples per class is desired.

3.3 Classifiers

Foundation models provide the basis for extracting valuable features from data,
which can then be used as inputs for classifiers like K-Nearest Neighbors (KNN)
or Logistic Regression (LR) to perform classification tasks. These classifiers differ
in how they define and use decision boundaries to separate data into distinct classes.

3.3.1 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a popular and widely used algorithm in the field of
supervised learning. It is known for its simplicity, interpretability, and effectiveness
in various machine learning tasks. KNN is a non-parametric and lazy learning
algorithm, meaning it does not make any underlying assumptions about the data
distribution and does not perform any explicit training phase. Instead, it simply
stores the entire training data set and makes predictions at runtime based on the
similarity between data points.
KNN can be used for both regression and classification tasks, although it is more
commonly applied to classification problems. The core idea of KNN is to classify a
new data point based on the labels of its k nearest neighbors in the feature space.
(Müller and Guido, 2016)
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• Distance Metrics: To determine the nearest neighbors, KNN relies on dis-
tance metrics such as Euclidean distance, Manhattan distance, or Minkowski
distance. The choice of distance metric can affect the performance of the al-
gorithm. The Euclidean distance between two points xi and xj in a feature
space can be calculated as follows:

d(xi, xj) =

√√√√ N∑
n=1

(xi,n − xj,n)2

Where N is the number of features.

• Plurality Voting: Once the k nearest neighbors are identified, the algorithm
uses plurality voting to decide the class label of the new data point. Each
neighbor ”votes” for its class, and the class with the most votes is assigned to
the new data point. The number of neighbors participating in the voting can
be specified in the algorithm’s parameters and can also strongly influence its
performance. (IBM, 2025)

Figure 2: Diagram showing new sample placed into feature space and following
classification as class B with neighbors = 3 observable on right hand side. (IBM,
2025)

KNN is an interesting choice for comparison with Logistic Regression due to their
fundamentally different working mechanisms. While KNN operates on the principle
of feature similarity, assigning labels based on the closest data points, Logistic Re-
gression fits a hyperplane to separate probability distributions. In the following its
working mechanisms will be elaborated in greater detail.

3.3.2 Logistic Regression

Logistic Regression (LR) is a widely-used example of a linear classifier, commonly
applied to classification tasks. Despite its name, it is not a regression algorithm but
a classification method that predicts the probability of a data point belonging to a
particular class. It works by learning a linear decision boundary in the feature space,
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which separates one class from another (in binary classification) or distinguishes
among multiple classes (in multi-class classification). The outputs are transformed
to probabilities through the application of the softmax function.

• Linear Transformation: LR begins by applying a linear transformation to
the input features. For each class i, the algorithm computes a score (called a
logit) as:

zi = wi · x+ bi

where x is the input feature vector, wi are the weights for class i, and bi is the
bias term. (Hartmann et al., 2023)

• Softmax Activation: In the case of multi-class classification, the logits zi
are converted into probabilities using the softmax function:

P (classi) =
ezi∑C
j=1 e

zj

where C is the total number of classes. The probabilities indicate how likely
the input belongs to each class. (Stanford, 2025)

• Loss Function: LR uses cross-entropy loss to measure performance by
comparing predicted probabilities to actual class labels:

Loss = − 1

N

N∑
i=1

C∑
j=1

yij logPij

where:

– N is the number of samples,

– C is the number of classes,

– yij is 1 if sample i belongs to class j (and 0 otherwise),

– Pij is the predicted probability that sample i belongs to class j.

High confidence in correct predictions results in lower loss, as log(Pij) ap-
proaches 0 when Pij is close to 1 for the true class. Conversely, incorrect or
uncertain predictions increase the loss. The total loss is averaged across all
samples, and training minimizes this loss by adjusting the model’s parameters.
(Hartmann et al., 2023)

• Optimization: To learn the weights wi and biases bi, the algorithm min-
imizes the cross-entropy loss by iteratively adjusting the parameters using
optimization techniques such as gradient descent, which updates parameters
in the direction of the steepest decrease in the loss function. More advanced
optimizers like Adam can also be used, as they combine the benefits of mo-
mentum, which smooths updates by considering past gradients to reduce
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oscillations, and adaptive learning rates, which automatically adjust the
step size for each parameter based on the magnitude of recent gradients, often
resulting in faster and more efficient convergence. Through this process, LR
finds a decision boundary that best separates the classes in the feature space.
(Kingma and Ba, 2014)

Learning Rate Scheduling Learning rate scheduling can be an important tech-
nique to improve the performance of a model. It dynamically adjusts the learning
rate during training to improve convergence and model performance.

The learning rate is a crucial hyperparameter that determines the step size at each
iteration while moving toward a minimum of the loss function. If the learning rate
is too high, the model may overshoot the minimum, while if it’s too low, training
may be slow or get stuck in local minima.

Learning rate scheduling addresses these issues by adapting the learning rate through-
out the training process. Common strategies include:

• Step Decay: Reduce the learning rate by a factor after a fixed number of
epochs. (PyTorch, 2025c)

• Exponential Decay: Continuously decrease the learning rate exponentially
over time. (PyTorch, 2025a)

• Reduce on Plateau: Lowering the learning rate when the model’s perfor-
mance stops improving for a predefined number of epochs. It is particularly
useful when training stagnates, helping the optimizer escape shallow local
minima and continue converging towards a better solution. (PyTorch, 2025b)
This method was tried in the preliminary tests described in Section 5.2.

The discussed techniques were applied to the dataset which will be introduced and
described in the following.

4 Dataset

As highlighted earlier, citizen science projects can play a crucial role in advancing
biodiversity research. The Global Biodiversity Information Facility (GBIF) is an
international initiative that provides open access to biodiversity data from around
the globe. It aggregates information from a diverse array of sources — including
citizen science, research institutions, and natural history collections — to support
conservation efforts and ecological monitoring. (gbi, 2025) A prime example of this
collaborative approach is Observation.org, a citizen science platform, where users
contribute observations enriched with images and metadata (obs, 2025). These
submissions undergo expert verification before becoming publicly accessible and are
subsequently integrated into larger datasets, such as those hosted by GBIF.
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4.1 Dataset Origin

The dataset used in this experiment was created using GBIF and is accessible at
https://doi.org/10.15468/dl.8byj47. It integrates data from Observation.org, which
collects and verifies biodiversity observations submitted by contributors worldwide.

To ensure relevant data selection for the purpose of fine-grained image classification,
filtering was applied based on the following criteria:

• Lifestage: Imago (Fully developed insects)

• Media Type: StillImage (Images)

• Scientific Name: Lepidoptera (Butterflies and moths)

Taxonomic Hierarchy Lepidoptera, an order within the class Insecta, includes
both butterflies and moths. This diverse group is organized hierarchically into sev-
eral taxonomic groups, such as superfamilies, families, genera, and species. For
example, the superfamily Papilionoidea encompasses all true butterflies, which in-
cludes families such as Pieridae (whites and sulphurs). Moving down the hierarchy,
the genus Pieris is part of the family Pieridae, and within this genus, species like
Pieris napi (green-veined white butterfly) or Pieris rapae (small white butterfly)
are identified. (Heppner, 2010) In the experiment, the focus lies on the classification
at the species level.

4.2 Dataset Structure

The dataset downloaded from GBIF contains structured information about each
observation, recorded in files such as verbatim.txt, which includes 190 columns
covering a wide range of aspects, from taxonomy groups and geographic data to
metadata related to data usage and legal considerations. Instead of directly pro-
viding the images, links to them are listed in the multimedia.txt file under the
column identifier. Each sample is identified by a unique gbifID, which serves as
a key linking corresponding samples across different files.

Upon downloading, the dataset (which doesn’t directly include image data) consists
of 3.67 million samples covering 7,664 distinct species, with a strong class imbalance,
as shown in Figure 3. Specifically, the 589 species with more than 1,000 samples
account for approximately 87.84% of the entire dataset. To mitigate class imbalance
and establish a more reliable base by ensuring a minimum number of samples per
species, the dataset was filtered to retain only these 589 species as illustrated. Each
species in the final dataset contains between 1,000 and 3,000 samples. This selection
allows for the construction of nine balanced dataset variants as shown in Table 1,
which are the foundation to examine the effects of different sample and species
counts. This approach smallers the number of image downloads while attempting
to make the most possible use of the initial dataset.

https://doi.org/10.15468/dl.8byj47
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Figure 3: Cumulative plot showing imbalance in the amount of samples per species.

Sample Amount per Species: 500 1,000 2,000 3,000
Species Amount
277 138,500 277,000 554,000 831,000
387 193,500 387,000 774,000 -
589 294,500 589,000 - -

Table 1: Total amounts of samples for the nine different dataset variants used in the
experiment. The dataset configurations marked in bold are investigated in greater
detail than the other variations in Section 6.

Image Downloading Process Another factor benefiting from the reduction in
sample size is the time required to download images from the links provided in
multimedia.txt. Since no batch-download functionality is available to date, the
1.39 million images had to be retrieved sequentially from Observation.org. In ret-
rospect, the amount of images which has been downloaded was more than really
necessary, since for species containing between e.g. 2,000 and 3,000 samples, all
available images for that species were downloaded as shown in Figure 4.

To prevent server overload, a download speed limit of two images per second was
established in coordination with Observation.org. This process spanned approxi-
mately 10 days, including minor interruptions such as network downtime or broken
links. The complete dataset comprises a total of 265 GB of images, resulting in an
average file size of approximately 200 kB per image.
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Figure 4: Figure showing the sample amounts per species that were downloaded.

4.3 Challenges in Citizen Science Image Processing

Since citizen science datasets rely on contributions from numerous volunteers, the
quality of individual samples varies significantly, causing potential for error in several
ways:

• Variability in image quality: Differences in camera resolution, image for-
mat (resulting in later cropping), and lighting conditions, such as brightness,
sharpness, and contrast, lead to inconsistencies. Additionally, variations in
size and angle in which specimens are captured or obstacles impairing clear
vision on the object can make identification difficult. Examples for those cases
are shown in Figure 5.

(a) (sam, s) (b) (sam, p) (c) (sam, q)

Figure 5: Samples with varying image quality, brightness, focus as well as impaired
visibility and size of the insect in the image.



4 DATASET 15

• Multiple specimens: Some images contain multiple insects, occasionally
even from different species. An example is shown in Figure 6 image a. This
introduces ambiguity and increases the risk of misclassification, as the model
may not correctly associate the provided label with the intended specimen.
This issue is particularly prevalent in moth images, as some are taken from
moth traps, which often contain numerous individuals and species as shown in
Figure 6 image b. Traps however are presumably rather rarely found in the
dataset since multiple random sample slices consisting of 1,000 images only
revealed one trap image.

(a) (sam, r) (b) (sam, t)

Figure 6: Samples containing multiple insects.

• Common genera: Species within the same genus, such as those in the genus
Eupithecia (see Figure 7), often exhibit only subtle morphological differences,
which makes distinguishing between them a challenging task. The dataset
includes 589 species, which are classified into 401 genera. Among these, 301
genera are represented by a single species, while the other 100 genera contain
more than one species. Those are later on referred to as (genus) clusters.
In total, 288 species belong to these 100 clusters. The size of each genus
cluster is defined by the number of species it contains, and larger clusters
present a higher potential for confusion. Table 2 provides the distribution of
all 301+288 = 589 species, while the mentioned 288 species belong to a genus
cluster that contains at least two species.

Cluster Size (CS) 1 2 3 4 5 6 7 8 9 10 11 Sum
Amount of Genera 301 57 23 9 6 3 0 0 0 1 1 401
Amount of Species 301 114 69 36 30 18 0 0 0 10 11 589

Table 2: The table shows the the distribution of 589 species across 401 different
genera. For example the column for CS of 3 means, that there exist 23 genus
clusters that each contain 3 species. In total 23× 3 = 69 species belong to a genus
cluster with a CS of 3.



4 DATASET 16

• Genus labels for unclassified species: Additionally, some samples could
not be assigned to a specific species by experts with certainty and were there-
fore labeled after the genus (e.g. Eupithecia Spec.). These Spec.-labels, which
encompass a variety of unclassified species belonging to the same genus, intro-
duce a significant risk of misclassification. As a classifier attempts to identify
the correct species instead of assigning the sample to the Spec.-label, it is
unable to correctly predict the species even though the classification might
technically be correct. There exist 10 Spec.-labels, of which 5 are the only
species for their corresponding genus. The other 5 Spec.-labels belong to 5
genus clusters of different sizes, accounting for 30 species in total (including
the Spec.-labels). These labels are also included in the 288 species, belonging
to a genus cluster as introduced before. Ideally, those Spec.-labels should have
been removed before classification, but this issue was only discovered retro-
spectively. As a result, their impact on model performance will be analyzed
in the in Section 6.4.3.

(a) (sam, m) (b) (sam,
n)

(c) (sam, o)

Figure 7: Examples of visually similar species belonging to the same genus: (a)
Eupithecia Spec. which contains unclassified species belonging to the Eupithecia
genus, (b) Eupithecia oxycedrata and (c) Eupithecia vulgata

4.4 Quality Control Strategies

Several approaches were tested to improve dataset quality, though most did not
yield satisfactory results. The following strategies were explored:

1. Filtering Dark or Underexposed Images: Pixel brightness was analyzed
to exclude excessively dark images. Images below or above a threshold were
either blacklisted or flagged for manual review. However, many moth images
were incorrectly flagged because their backgrounds were entirely black while
e.g. the moth itself remained clearly visible. As a result, this method only
identified 16 genuinely unusable images which were filtered out, making the
filtering process insignificant for dataset improvement.
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2. Detecting the Number of Insects Per Image: OpenCV-based techniques
were tested to filter out images containing multiple or overly small insects.
However, due to the high detail in many images, contour-based object detec-
tion was found ineffective.

3. Checking for Synonymous Species: Due to variations in discoverers and
naming conventions, species often have multiple synonyms, leading to cases
where different names refer to the same species. To prevent misclassification,
the dataset was checked for synonyms before data retrieval to ensure that
no duplicate species were included. However, this process did not reveal the
10 Spec.-labels that represent genera rather than distinct species as already
explained in 4.3.

In conclusion, given the impracticality of manually reviewing and curating 1.39
million images within a reasonable time frame, the dataset curation attempt is con-
sidered unsuccessful. However, this limitation presents an opportunity to assess the
generalizability of the foundation models used for feature extraction. The dataset,
despite its imperfections, serves as a real-world test for data efficiency and may
provide valuable insights for future classification systems developed for or based on
citizen science projects.

5 Experimental Setup

Concerning hardware, the experiment was conducted using the workstations at Otto
Friedrich University. For the tests, the following hardware was utilized:

• Operating System & Architecture: Ubuntu 20.04.1, x86 64

• CPU: Intel Xeon W-2265, 12 cores, 24 threads, 3.50 GHz (Max: 4.8 GHz)

• GPU: 2× NVIDIA RTX A5000, 24 GB VRAM

• Memory (RAM): 128 GB

The most important libraries and methods shown in Table 3 were implemented using
Python version 3.8.10.

For further insight, the source code is available on GitHub:
https://github.com/leo-grz/BachelorThesis LepidopteraFGIC.git.

https://github.com/leo-grz/BachelorThesis_LepidopteraFGIC.git
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Library Version Used Components

scikit-learn 1.3.2 train test split, PCA, StratifiedKFold,
KNeighborsClassifier, accuracy score,
precision score, recall score, f1 score,
predict proba

PyTorch 2.4.1 DataLoader, CrossEntropyLoss, Adam,
ReduceLROnPlateau, Linear, softmax,
DINOv2-Giant (vitg14)

Torchvision 0.19.1 ResNet-50 (ImageNet1k V2)

Table 3: Libraries and components used for the implementation

5.1 Feature Extraction

After selecting the species and retrieving the corresponding image samples, further
preprocessing steps were necessary before training the classifiers. Since the objec-
tive was to leverage the foundation models ResNet-50 and DINOv2-Giant (in the
following referred to as DINOv2) the next step involved extracting the feature em-
beddings.

All images were resized to 224 × 224 pixels (3 color channels) before being con-
verted into tensors. For feature extraction, ResNet-50 was modified by replacing
its fully connected classification layer with an identity mapping to obtain the 2048-
dimensional feature embeddings. Similarly, DINOv2 was adapted by removing its
classification head, resulting in 1536-dimensional feature embeddings per image.

The extracted embeddings were stored along with the corresponding globally unique
gbifID (for later traceability) and numerical class labels (ranging from 0 to 588).
This resulted in two large datasets:

• ResNet-50 embeddings: 1.39 million samples, each represented by a 2048-
dimensional feature vector, stored in a 7.4 GB lossless compressed .npz file.

• DINOv2-Giant embeddings: 1.39 million samples, each represented by a 1536-
dimensional feature vector, stored in a 5.5 GB lossless compressed .npz file.

After verifying the uniqueness of each gbifID and the correct label encoding, both
datasets were used to create nine dataset variants each as described in Table 1
resulting in 18 different dataset variations.
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5.2 Preliminary Tests

Before conducting cross-validation to determine the best-performing classifiers, pre-
liminary experiments were necessary to assess potential feature reduction techniques
and establish reasonable baseline hyperparameters.

Feature reduction was performed using two different techniques: Uniform Manifold
Approximation and Projection (UMAP) and Principal Component Analysis (PCA)
as introduced in Section 3.1.3. In the case of UMAP, the reduced feature repre-
sentations were evaluated by varying both the number of neighbors and the target
dimensionality. For PCA, the reduced representations, known as principal compo-
nents, were assessed by modifying the number of retained components.

The impact of these dimensionality reductions was analyzed in the context of the two
classifiers K-Nearest Neighbors (KNN) and Logistic Regression (LR), as introduced
in Section 3.3

Choice of Parameter Configuration To assess the impact of different feature
reduction techniques and establish suitable hyperparameter ranges, a series of tests
were conducted using a wide span of hyperparameter configurations for all feature
reduction methods and classifiers. Hereby each classifier with all different com-
binations of hyperparameters was trained on the UMAP embeddings or principal
components (reduced using PCA).

For KNN, 10 different values for k were tested. For LR, a total of 20 combinations
of learning rate and epochs were considered. This resulted in 10+ 20 = 30 classifier
configurations tested for each feature reduction setup.

With 6 different UMAP configurations and 3 PCA configurations, a total of (6+3)×
30 = 270 runs were conducted for each dataset variant. Since both ResNet-50-based
and DINOv2-based datasets were evaluated separately, this led to a combined total
of 270×2 = 540 experimental runs for preliminary testing. The tested hyperparam-
eter ranges are summarized in Table 4.

Choice of Dataset for preliminary Tests All preliminary tests were conducted
using the two dataset variants (ResNet-50-based and DINOv2-based) consisting of
277 species with 1,000 samples per species resulting in a total amount of 277,000
samples each. This configuration was selected for two reasons:

• Using a dataset with a limited total sample size (277,000) compared to other
configurations allows for a faster hyperparameter search, enabling the evalua-
tion of a broader range of feature reduction settings and classifier configura-
tions within a reasonable time frame.
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• The selected dataset serves as a balanced benchmark: it enables a classification
task that is neither trivially easy (due to an excessive number of samples) nor
excessively difficult (due to the lowest amount of species within the different
dataset configurations). Additionally, it allows for easier comparisons across
different species counts, as 1000 samples is the maximum number for which
all species have sufficient data.

The dataset was split using the hold-out method (as introduced Section 3.2 with
an 80/10/10 train/validation/test ratio for LR and 80/20 train/test ratio for K-
Nearest Neighbors. Stratification was applied to ensure an equal distribution of
samples across each split.

Parameter Values
Dataset Variants ResNet-50-based and DINOv2-based

277 Species with 1,000 Samples each
PCA: Reduced Feature Size {256, 512, 1024}
UMAP: Reduced Feature Size {128, 512, 1024}
UMAP: Number of Neighbors {50, 100}
KNN: Number of Neighbors {1, 3, 5, 10, 50, 100, 300, 500, 700, 1000}
LR: Learning Rate {0.1, 0.01, 0.001, 0.0001}
LR: Number of Epochs {250, 500, 750, 1000, 1500}

Table 4: Hyperparameter ranges used for the initial evaluation of UMAP and PCA
feature reduction, as well as baseline parameter discovery.

Results of Preliminary Tests Based on the results of the preliminary exper-
iments, the optimal feature reduction method, reduction extent, and classifier hy-
perparameters were selected for the main cross-validation tests.

Figure 8 visualizes the classification accuracy achived by KNN and LR on feature
embeddings (extracted from ResNet-50 or DINOv2) reduced by using PCA and
UMAP. Each box represents the accuracy distribution across KNN and LR derived
with varying combinations of hyperparameters.

The results clearly indicate that PCA outperforms UMAP across both dataset vari-
ants, with PCA-based reductions yielding consistently higher classification accura-
cies. As visualized, the range of tested hyperparameters and classifiers is causing
substantial variations in accuracy but the significantly higher means highlight a
noticeable difference between UMAP and PCA: approximately 58% difference in
accuracy for the DINOv2-based dataset and 44% difference for the ResNet-50-based
dataset (compare Figure 8).

Given those results, PCA is the preferred feature reduction method for further cross-
validation experiments and all subsequent results discussed further on.

Among the three tested numbers of principal components (256, 512, and 1024), a
slight performance improvement was observed with an increasing number of features.
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Figure 8: Box plot showing the distribution of accuracies achieved by KNN and
LR for different combinations of reducers and foundation models used in dataset
creation. The horizontal line in each box represents the median accuracy, each
point represents the mean accuracy.

The accuracy with 256 principal components is noticeably lower compared to the
results obtained with 512 and 1024 components. This is illustrated in Figure 9 and
Figure 11, where the blue and green lines (representing 512 and 1024 components)
are noticeably closer to each other than the red line (256 components) is to either
of them.

Despite the slight increase in accuracy with 1024 components, 512 was chosen due to
its significantly lower training time, averaging approximately 29 seconds compared
to 53 seconds for 1024 components. These times were computed across all KNN
and LR runs (with 1500 epochs) for both (DINOv2-based and ResNet-50-based)
datasets per amount of principal components. It is important to note that training
duration increases substantially with larger datasets, as the reported averages are
based on the third smallest dataset (containing 277,000 samples).

Since the objective of this test is to identify the most optimal hyperparameter com-
bination for cross-validation (which multiplies the number of runs by a factor of k in
k-fold CV), lower computation time was preferred over a marginally higher accuracy.

For the cross-validation tests, a learning rate of 0.001 with 1500 epochs was chosen
as the starting point. A lower learning rate helps ensure that the model converges
more steadily and does not overlook important patterns in the data, reducing the
risk of overshooting the optimal solution. However, lower learning rates require more
training epochs to reach convergence, which is why 1500 epochs were selected.

As observable in Figure 10, validation loss and accuracy converge differently for the
two dataset types. For both learning rates 0.1 and 0.01 (represented by the blue and
yellow lines), the model overshoots, resulting in an increase in loss after an initial
drop. However, for learning rates 0.001 and 0.0001 (represented by the green and
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Figure 9: Lineplots showing the accuracies achieved by the Logistic Regression
Classifier with 20 different combinations of learning rate and epochs for two different
datasets types whos’ embeddings were reduced to different amounts using PCA.

red lines), the loss consistently decreases while accuracy increases, with convergence
reached significantly earlier on the DINOv2-based dataset. At a learning rate of
0.001, the loss reaches its lowest point for both datasets, while a lower learning rate
(0.0001) might achieve a similar minimum with additional epochs. This trade-off
was further explored by testing surrounding learning rates (0.005, 0.001, 0.0005)
and increasing epochs (1500, 2000) in the cross-validation experiment as listed in
Table 5.

Learning Rate Scheduling It is worth noting that Learning Rate Scheduling was
also explored in a sampling manner. Starting with an initial learning rate of 0.001, a
Reduce On Plateau scheduling strategy was employed (as discussed in Section 3.3.2).
The learning rate was gradually decreased to 10−6, with multiple factor values (0.95,
0.9, 0.5, 0.1) for learning rate multiplication. Various thresholds (0.1, 0.01) were
tested to determine the required difference for adjusting the learning rate, along
with different patience values (3, 5, 10, 20) to specify the number of epochs the
threshold must not be exceeded. Despite these efforts, the accuracy did not surpass
the results obtained using a fixed learning rate of 0.001, and for simplicity, further
exploration of learning rate scheduling was discontinued.

For KNN, using 50 neighbors resulted in the highest accuracy for both datasets.
However, accuracy trends differed between the two: while the DINOv2-based dataset
showed stable accuracy between 10 and 50 neighbors, the ResNet-50-based dataset
exhibited a slight improvement at 50 neighbors before declining.
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Figure 10: Loss and accuracy for different learning rates with 1500 epochs on em-
beddings reduced to 512 components using PCA

Figure 11: Accuracies achieved by the KNN Classifier with 10 different values for k
on two different datasets types. The embeddings were reduced using PCA.
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Due to these differences, the hyperparameter search ranges in cross-validation were
adjusted accordingly:

• For the DINOv2-based dataset, the chosen values were k = 20, 35, 50.

• For the ResNet-50-based dataset, since 50 neighbors provided the peak accu-
racy, a slightly shifted range of k = 35, 50, 65 was used.

This selection ensured that each model was evaluated in its most relevant range.

5.3 Cross-Validation Tests

Based on the results of the preliminary tests, the following set of parameters and
methods was evaluated using stratified 5-fold cross-validation. The goal was to refine
the selection of optimal hyperparameters by testing a smaller, more targeted range
derived from previous experiments, as cross-validation results are more reliable and
robust, providing credibility for small changes.

Unlike the preliminary tests, this cross-validation experiment was conducted across
all 18 dataset configurations (9 ResNet50-based and 9 DINOv2-based), employing
stratified 5-fold cross-validation for every hyperparameter combination listed in Ta-
ble 5.

With three different hyperparameter configurations for KNN and six for logistic
regression, each averaged over the 5 folds for each of the 18 dataset configurations,
a total of

(3KNN + 6LogReg)× 5splits × 9datasets × 2foundation models = 810 (1)

runs were performed.

Parameter Values
PCA: Reduced Feature Size 512
KNN: Number of Neighbors (ResNet-50) {35, 50, 65}
KNN: Number of Neighbors (DINOv2) {20, 35, 50}
Logistic Regression: Number of Epochs {1500, 2,000}
Logistic Regression: Learning Rate {0.005, 0.001, 0.0005}

Table 5: Hyperparameter ranges used for the cross-validation experiment. Marked
bold are the best hyperparameters derived from preliminary experiments.
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Choice of Hyperparameters for Further Analysis The optimal hyperparam-
eters were selected based on mean accuracy and standard deviation across all nine
dataset configurations for each foundation model. The results were averaged over
five cross-validation folds to ensure robustness.

Dataset Type Learning Rate (LR) Epochs (LR) Neighbors (KNN)
ResNet-50-based 0.001 1500 50
DINOv2-based 0.0005 1500 35

Table 6: Selected hyperparameters for further analysis: Learning Rate and Epochs
(Logistic Regression) and Neighbors (KNN).

The choices were guided by a trade-off between accuracy and stability across the
dataset variants, balancing mean accuracy with standard deviation (std). All tables
and figures discussed in the following can be found in the appendix.

• Logistic Regression on DINOv2-based datasets: Learning rate of 0.0005
with 1500 epochs achieved the highest mean accuracy (90.00%) with the low-
est standard deviation (1.99%). Increasing to 2,000 epochs slightly reduced
stability without accuracy gain as shown in Figure 29. (Table 12)

• KNN on DINOv2-based datasets: k = 35 was selected as it provided a
balance between mean accuracy (68.43%) and stability (4.41% std). Although
k = 20 had slightly higher mean accuracy (68.59%), it also had a higher
standard deviation (4.47%) (Table 13).

• Logistic Regression on ResNet-50-based datasets: Learning rate of
0.001 with 1500 epochs were chosen for its stable accuracy (64.82%, std 4.16%).
While 2,000 epochs slightly improved accuracy (64.90%), it increased the de-
viation (4.42%) and increased validation loss for some dataset variants, as
demonstrated in Figure 31. (Table 14)

• KNN on ResNet-50-based datasets: k = 50 was selected for its balance
of accuracy (38.19%) and stability (5.03% std). The highest accuracy (38.31%
at k = 35) had the highest standard deviation (5.14%), making k = 50 the
optimal choice. (Table 15).

All subsequent analyses, including confidence evaluation, are derived using the hy-
perparameters shown in Table 6.
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6 Results & Analysis

6.1 Cross-Validation Results

6.1.1 Accuracy & other Performance Metrics

As illustrated in Figure 12, classifiers trained on DINOv2 embeddings consistently
achieve higher accuracy than those trained on ResNet-50 embeddings. Additionally,
Logistic Regression (LR) outperforms KNN across both dataset types. On average,
the accuracy gap between KNN and LR is 21.56% for the DINOv2-based dataset
and 26.61% for the ResNet-50-based dataset, as the gaps stays relatively consistent
across all dataset variants. Furthermore, classification accuracy improves with an
increasing number of samples per species, while it decreases as the total number of
species increases.

In future, the combinations between foundation models (FM) used for feature ex-
traction and classifiers (CLF) will be referred to as FM-CLF combinations like
DINOv2-KNN or ResNet-50-LR.

Figure 12: Top-1 accuracies derived using LR and KNN with cross-validation on
the 18 different dataset variants with hyperparameters listed in Table 6. The exact
mean accuracies shown in the Figure are listed in the appendix under Table 16.
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Precision, Recall and F1-Score in Comparison to Accuracy To assess the
model’s consistency, the minimum, mean, and maximum differences between key
performance metrics (precision, recall, and f1-score) and accuracy were calculated.
The mean difference of less than 0.1% between these metrics and accuracy indicates
highly consistent performance across different evaluation criteria. This consistency
suggests that the models do not disproportionately favor either false positives or
false negatives, pointing to a well-balanced classification performance. The exact
numerical values can be found in the appendix under Table 17.

Standard Deviation of Metrics Across Folds To assess the impact of the
dataset split on classifier performance, the standard deviation of accuracy over the
five splits was computed for each of the (1KNN + 1LogReg) × 18datasets = 36 cross-
validation runs. The mean standard deviation across all setups is 0.15%, with a
maximum of 0.32% and a minimum of 0.04%. Similarly precision, recall and f1-
score only show marginal changes in between the splits comparable to the accuracy.
Minimum, mean and maximum standard deviations can be accessed in Table 18 in
the appendix.

6.1.2 Computational Efficiency of Classifiers

Figure 13: Training Times for a single run of KNN and Logistic Regression averaged
over 5 folds and 2 dataset types.
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Each bar in Figure 13 represents a training time averaged over 5 folds for each of
the two dataset types. Therefore one bar is depicted for each classifier and dataset
variant.

It is important to interpret these values with caution, as the workstation was shared
with other users, possibly leading to resource contention during training. Addition-
ally, software choices and hardware specifications impact the training times strongly.

While the absolute training time values may be less meaningful, the relative differ-
ences reveal a clear trend: training time increases as the sample size grows. Notably,
LR scales more efficiently than the KNN classifier when handling larger datasets in
terms of training time.

LR may also be influenced by the number of species in the dataset. This is sug-
gested by the relatively constant training times observed across dataset variants
(500samples × 589species), (1, 000samples × 387species), and (2, 000samples × 277species), as
well as between (1, 000samples×589species), (2, 000samples×387species), and (3, 000samples×
277species). This pattern suggests that a decrease in species count, accompanied by
an increase in the total number of samples, does not significantly impact logistic
regression training time, even though the total number of samples increases.

On the other hand, KNN training times appear to be primarily driven by the total
number of samples, regardless of species count. The increases in KNN’s training
time between different dataset variants closely follow the increases in total sample
size.

6.1.3 Effect of Number of Species on Accuracy

Figure 14: Heatmap showing mean accuracies and their differences between FM-
CLF combinations and different amounts of species, represented by 1,000 samples
each.
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A clear trend emerges across all classifier and model combinations, visible in Fig-
ure 14: classification accuracy improves as the number of species decreases. This
is expected, as a lower species count reduces the risk of misclassification. However,
models that already achieve high accuracy show diminishing returns as the species
count decreases. This pattern is particularly evident in the transition from 589 to
387 species, where the largest accuracy gain (3.51%) occurs for KNN trained on
ResNet-50 embeddings, raising its total accuracy to 37.38%. In contrast, Logis-
tic Regression trained on DINOv2 embeddings — consistently the best-performing
combination — only improves by 0.94% over the same reduction in species.

Notably, unlike other FM-CLF combinations that exhibit diminishing accuracy im-
provements, the combination of DINOv2 embeddings and Logistic Regression shows
an increasing rate of improvement as species counts decrease. Specifically, while
the accuracy gain from 589 to 387 species is 0.94%, the improvement from 387 to
277 species is slightly higher at 1.07%. This is particularly interesting given the
difference in species count between these reductions: 202 species between 589 and
387, compared to just 110 species between 387 and 277.

The impact of species amounts is also reflected in the Logistic Regression’s loss and
accuracy curves, provided in the appendix (Figure 33).

6.1.4 Effect of Sample Size per Species on Accuracy

Figure 15: Heatmap showing mean accuracies and differences between FM-CLF
combinations and different amounts of samples for 277 species.

Figure 15 reveals a consistent trend: increasing the number of samples per species
leads to improved classification accuracy across all FM-CLF combinations. Mean-
while, similar to the effect observed when reducing the number of species, increasing
the sample size per species has a more pronounced impact on FM-CLF combinations
with lower initial accuracy.
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The most significant accuracy gains occur between 500 and 1,000 samples, despite
this step representing the smallest absolute increase in sample size (500 additional
samples per species). Meanwhile, relatively seen this step means a ×2 in sample
amounts, which justifies large changes in accuracy.

The rate of improvement diminishes as dataset size increases, particularly for con-
figurations that already achieve high accuracy. This trend is especially apparent
for the ResNet-50-LR combination, where accuracy gains decrease from 3.93% (500
to 1,000 samples) to 1.97% (1,000 to 2,000) and further to 0.76% (2,000 to 3,000).
A similar pattern is observed for DINOv2-LR, with improvements dropping from
1.76% to 1.32% to 0.51%.

On the other hand, both DINOv2-KNN and ResNet-50-KNN combinations exhibit
substantial improvements over the first two sample increases (500 to 1,000 and 1,000
to 2,000), but the gains diminish significantly in the final step from 2,000 to 3,000
samples.

The influence of sample amounts is also evident in the Logistic Regression’s loss and
accuracy curves, as shown in the appendix (Figure 34).

6.2 Other Accuracies

From this point on, results are based on a followup training cycle using the holdout
method with a 80/20 train/test split. Since the performance appears to be consis-
tent across different dataset splits – as seen in the cross-validation results analysis
(Section 6.1) – the analyses is expected to be representative for any possible dataset
split.

Furthermore, to concentrate on the impact of rising sample and species amounts,
three key dataset variations will be analyzed in greater detail:

• 277species × 1, 000samples – used as a reference point, referred to as reference
dataset.

• 277species × 3, 000samples – to evaluate the effect of increasing the number of
samples while keeping the number of species constant, referred to as sample
dataset.

• 589species × 1, 000samples – to assess the impact of increasing the number of
species while maintaining the same number of samples per species, referred to
as species dataset.
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For the sake of comparability with the other accuracy types, the top-1 (or species-
level) classification accuracies for these hold-out runs are provided in Table 7.

Species Sample DINOv2 DINOv2 ResNet-50 ResNet-50
Amount Amount LR KNN LR KNN

277 3,000 92.80 75.02 70.29 45.78
277 1,000 91.12 70.49 67.74 40.69
589 1,000 88.70 65.39 61.43 33.90

Table 7: Top-1 (species-level) classification accuracies (%) for key dataset variants
and FM-CLF combinations.

Species Sample DINOv2 DINOv2 ResNet-50 ResNet-50
Amount Amount LR KNN LR KNN

277 3,000 98.31 91.01 89.36 71.88
277 1,000 97.76 88.49 87.90 67.31
589 1,000 96.89 84.52 83.36 58.29

Table 8: Top-5 classification accuracies (%) for key dataset variants and FM-CLF
combinations.

Species Sample DINOv2 DINOv2 ResNet-50 ResNet-50
Amount Amount LR KNN LR KNN

277 3,000 94.16 78.03 72.85 49.27
277 1,000 92.64 73.88 70.43 44.25
589 1,000 91.39 70.70 66.00 39.41

Table 9: Genus-level classification accuracies (%) for key dataset variants and FM-
CLF combinations.

Species Sample DINOv2 DINOv2 ResNet-50 ResNet-50
Amount Amount LR KNN LR KNN

277 3,000 97.67 91.15 85.68 70.24
277 1,000 96.99 89.14 84.38 66.49
589 1,000 96.69 88.46 82.14 64.04

Table 10: Family-level classification accuracies (%) for key dataset variants and FM-
CLF combinations.

Accuracy Comparison The trend observed in Section 6.1 repeats itself for all
calculated accuracies: rising accuracies with increasing sample sizes and decreasing
species amounts.

However further accuracy types were calculated, such as top-5 accuracy, which treats
a sample as correct as long as the true label is within the 5 highest confidences for its
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prediction. Presented in Table 8, as expected the top-5 accuracies are significantly
higher than top-1 accuracies, while increases are more pronounced for combinations
exhibiting poor top-1 accuracies, such as the ResNet-50-KNN combination.

The same trend shows itself in genus- and family-level accuracy. Genus-level accu-
racy (Table 9) is the accuracy, where a sample is considered correctly predicted, if
the predicted species belongs to the same genus as the true species. In a similar
fashion the family-level accuracy (Table 10) indicates, that the predicted species be-
longs to the same family as the true species. As expected, accuracies on family-level
classification are higher than on genus-level, since the family represents the broader
group than the genus, which is placed lower in the taxonomic hierarchy. These
accuracies and their implications will be discussed in more detail in Section 7.

6.3 Confidence Analysis

For further analysis the probabilities of the classifiers KNN (proba function) and
LR (softmax function) were extracted during the same training cycle mentioned
in Section 6.2.

Figure 16 shows the distribution of the top-1 confidence, which is the confidence the
predicted label was chosen with. While correct and incorrect predictions were sepa-
rated, confidences from all datasets were taken together and grouped after the four
FM-CLF combinations, as the top-1 confidence distribution only varies marginally
in between different dataset variants.

While these differences between dataset variants are reflected in the mean confi-
dences depicted in Figure 17 and Figure 18, their variations are given additionally
as box plots for the three key dataset variations in the appendix and are described
in the following:

Comparing top-1 confidences between the three key dataset variations across FM-
CLF combinations exhibits distinct trends for LR and KNN. Confidences for LR stay
mostly the same during a sample amount increase and drop slightly for the species
dataset in comparison to the reference dataset, smallering the gap between cor-
rect and incorrect predictions. KNN shows a trend, according to which confidences
for correct and incorrect predictions appear to be increasing for the sample dataset
and decreasing for the species dataset, both compared to the reference dataset.
This appears to be the case for both correct and incorrect predictions. The box
plots can be accessed in the appendix for DINOv2-LR (Figure 35), DINOv2-KNN
(Figure 36), ResNet-50-LR (Figure 37) and ResNet-50-KNN (Figure 38).
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Figure 16: Top-1 confidence values for each FM-CLF combination. Each correct-
incorrect boxplot pair represents nine runs over the different dataset variants.

In the following Figure 16 will be analyzed for the different FM-CLF combinations.

DINOv2-LR For incorrect predictions, the confidence values are widely spread
between approximately 5% and 100%. The median confidence is slightly above
50%, indicating an almost uniform distribution of confidence levels for misclassified
samples. In contrast, correct predictions exhibit extremely high confidence, with a
median close to 100% and the smallest range seen in the Figure ranging from slightly
below 80% to 100% confidence. The high median suggests that at least half of all
correct predictions have nearly maximum confidence. The presence of numerous
outliers suggests that some correct predictions still receive relatively low confidence
scores.

DINOv2-KNN Incorrect predictions show a broad distribution of confidence val-
ues, ranging from close to 0% to around closely below 60%, with a median confidence
around 20%, concentrating values rather in the lower half. In contrast, correct pre-
dictions exhibit a much higher confidence range, with a median confidence close to
60%. However, the distribution remains broad, meaning that even correct classifi-
cations sometimes receive relatively low confidence scores.

ResNet-50-LR Incorrect predictions cover a broad confidence range from near
0% to little over 90%, with a median sitting slightly under 35%. This suggests that
half of incorrect classifications receive confidences below 35, though a the upper half
spreads towards high confidence values. While confidences for correct predictions
spread between close to 0% and 100%, its median is located close to 80%, indicating
a strong concentration towards high confidences for correct predictions.
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ResNet-50-KNN Incorrect predictions exhibit the lowest overall confidence among
all FM-CLF combinations, with a median just above 10%. The half exhibiting lower
confidences is much more concentrated as the median is very low as well and the
upper half reaches up to shortly under 40%. Correct predictions show a much
broader spread of confidences between closely above 0% to closely below 100% while
the median of roughly 30% reveals a higher concentration in the lower half. This
suggests that this model has the weakest separation between correct and incorrect
classifications in terms of confidence values.

6.3.1 Confidence of correct Predictions across Dataset Variants

Figure 17 illustrates the mean top-1 confidence for correct predictions across all
foundation model–classifier combinations and dataset variants.

Figure 17: Average of top-1 confidence values of correct predictions for all dataset
variants and FM-CLF combinations.

A clear trend can be observed as the number of species increases, mean confidence
decreases in all cases. However, for the DINOv2–LR combination, confidence values
across species amounts remain much closer together compared to other combina-
tions. Additionally LR – consistently achieving the highest confidence for correct
predictions – shows almost no change in confidence with increasing sample size with
even a very slight decrease visible for the ResNet-50-based datasets. In contrast,
for both DINOv2-KNN and ResNet-50-KNN combinations, confidence increases by
approximately 10% as sample size grows from 500 to 3,000 for the dataset variants
containing 277 species.
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6.3.2 Confidence of incorrect Predictions across Dataset Variants

Conversely, Figure 18 presents the mean top-1 confidence for incorrect predictions,
revealing similar patterns at lower confidence levels. Across all FM-CLF combina-
tions, an increase in species count corresponds to a decrease in mean confidence,
mirroring the trend observed for correct predictions. LR consistently yields higher
confidence values than KNN, with confidence decreasing as species count increases.
In contrast, for KNN, mean confidence rises with increasing sample size, though
the effect is less pronounced than for correct predictions —- approximately a 5%
increase between 500 and 3,000 samples.

Figure 18: Average top-1 confidences of incorrect predictions for all dataset variants
and FM-CLF combinations.

6.4 Species-Level Analysis

The same data as analyzed in Section 6.2 and 6.3 was used for this analysis.

To investigate class-wise accuracies and understand why certain classes perform bet-
ter than others, the DINOv2-LR combination will be analyzed and then compared
to all other combinations. The primary goal is to identify issues within the dataset
rather than the model itself. Since DINOv2 is known for its strong generalization
capabilities, any observed performance issues are more likely due to characteristics
of the species rather than deficiencies in the model. Therefore, the results from Lo-
gistic Regression trained on DINOv2-based dataset variants (DINOv2-LR) served
as a reference point (referred to as reference combination) for the comparison.

To assess the impact of different dataset variants on class accuracies, only the
three key dataset variants were compared, as introduced in Section 6.2: reference
dataset, sample dataset and species dataset.
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Introduction to the Figure As mentioned earlier, the order Lepidoptera consists
of different taxonomic groups, such as genus. Species sharing a common genus pose
the risk of misclassification due to visual similarities. Those genus clusters are
grouped together by cluster sizes, to assess its impact on the performance. Its
important to note, that species that don’t share a common genus can exhibit very
similar appearances as well.

To analyze the impact of genera on classification performance, Figure 19 visualizes
each species according to its classification accuracy within a specific training setup
(DINOv2-LR trained on the reference dataset). Each marker represents a species,
with its accuracy on the x-axis and its cluster size on the y-axis, where cluster
size refers to the number of species within the dataset that share the same genus.
Figure 20 shows the same for the sample dataset while Figure 21 presents the
class distribution for the species dataset. For the other FM-CLF combinations
the figures are provided in the appendix. The major differences between them and
the reference combination (DINOv2-LR) are analyzed below.

While each marker represents a specific class, the colors categorize them into different
groups:

• Red, yellow, and green marker (referred to as traffic light colors) indicate
classes in the lower (red), middle (yellow), and upper (green) thirds of class
accuracy. These accuracy categoies are computed for each cluster size individ-
ually and are specific to this the reference combination (DINOv2-LR) on the
reference dataset (277 species with 1,000 samples each).

• Blue and cyan marker represent species that are Spec.-labels (blue) or belong
to a Spec.-cluster (cyan)

• Pink marker represent specific species which were specifically selected due to
their strong variations in class accuracy in between different dataset variants.
The numbers refer to the specific label used in the source code for reference.

All colors for each specific class remain consistent across all figures, ensuring com-
parability between different FM-CLF combinations and dataset variants, meaning
that if class X is represented by a yellow marker in the reference dataset for the
reference combination, it is represented by a yellow marker in all other figures as
well.

6.4.1 Analysis of Label Distribution and Cluster Size

As the number of species increases, the cluster sizes (CS) grow accordingly. For
example, the (Eupithecia) cluster expands from a CS of 2 in the reference dataset
to a CS of 10 in the species dataset. Similarly, the Idaea cluster increases from a
CS of 7 to 11. These two clusters become the largest in the dataset. On top, both
of them contain a general Spec.-label and will be discussed further in Section 6.4.3.
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Figure 19: Class accuracy distribution for the DINOv2-LR combination trained on
the reference dataset.

Figure 20: Class accuracy distribution for the DINOv2-LR combination trained on
the sample dataset.
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Figure 21: Class accuracy distribution for the DINOv2-LR combination trained on
the species dataset.

When examining all three figures together, a slight mixing of traffic light colors
is evident in the middle accuracy range, where green and red marker blend with
yellow for the sample and species dataset. Nonetheless, green marker predominantly
occupy the upper half of the accuracy range, while red marker are mostly found
in the lower half across all dataset variants. Moreover, the classes are relatively
densely grouped. For instance, the reference dataset shows a mean class accuracy
of 91.1% with a standard deviation of 7.7% (with only marginal differences across
dataset configurations).

In the reference dataset, the difference between mean accuracy across cluster sizes
(as indicated by the dashed lines) is no more than 9.4%. For example, species not
assigned to any cluster (CS of 1) have a mean accuracy of 92.4%, while a CS of 4
has a mean accuracy of 83.0%. In general, mean accuracy declines as the cluster size
increases from 1 to 4. An exception is seen at CS of 7, where performance exceeds
that of CS of 1. This cluster corresponds solely to the Idaea genus, and the classifier
appears to distinguish its species (cyan markers at CS of 7 or 11) particularly well,
resulting in a high mean accuracy.

As the sample size increases in the species dataset, the mean accuracy for each
CS increases by 1.5% to 2.7%. Increasing the number of species on the other side
also alters the composition of CS groups, as species are reallocated from lower to
higher CS layers due to the introduction to more species belonging to the same
genus cluster. This shift complicates direct comparisons of mean accuracies between
the reference and species datasets and makes it challenging to isolate the impact
of additional species on individual class accuracies. An analysis of this impact
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on specific species is provided in Section 6.4.2. Nevertheless, the overall trend of
decreasing mean accuracy with increasing cluster size remains consistent.

DINOv2-KNN The traffic light color pattern is similar to the reference combi-
nation, although the spread of class accuracies is notably wider which reflects in the
significantly higher standard deviation of 18.8% form the mean accuracy of 70.5%.
Mean class accuracy further decreases as cluster size increases, with a total gap
of 21.6% between a CS of 1 (73.7% mean accuracy) and a CS of 4 (52.1% mean
accuracy). Notably, the Idaea cluster (CS of 7) maintains a high mean accuracy
of 70.5%. In addition, the sample dataset shows an improvement in mean class
accuracies for each cluster size by between 4.3% and 7.3% compared to the refer-
ence dataset. Graphics can be found in the appendix for the reference dataset
(Figure 39), sample dataset (Figure 40) and species dataset (Figure 41).

ResNet-50-LR In this configuration, the traffic light colors are more blended
than in the DINOv2-KNN case. The middle range is broader, with yellow appearing
more frequently in both the lower and upper halves, although green and red still
dominate their corners. Overall, the model achieves a mean class accuracy of 67.7%
with a standard deviation of 13.5%, which is slightly lower in both spread and mean
accuracy compared to class accuracies of the DINOv2-KNN combination.

Accuracy declines as cluster size increases: for a CS of 1, the mean accuracy is
70.6%, while for a CS of 4 it drops to 48.3%, yielding a gap of 22.3%. Interestingly,
the accuracy for a CS of 3 is higher than for a CS of 2 – a trend not observed with
DINOv2 embeddings. Additionally, the accuracy for the largest cluster (CS of 7)
falls to 62.2%, which is notably lower than that for a CS of 1. Nevertheless, the
overall downward trend in accuracy with larger cluster sizes remains. Compared
to the reference dataset, the sample dataset exhibits an improvement in mean
class accuracies for each cluster size by between 2.5% and 3.9%. For further insight
please refer to Figure 42 for the reference dataset, Figure 43 for the sample dataset
and Figure 44 for the species dataset, which are all provided in the appendix.

ResNet-50-KNN This combination is the lowest performing among those evalu-
ated which reflects in the average class accuracy of 40.7% for the reference dataset
with a standard deviation of 18.4%, which is similar compared to that observed for
the DINOv2-KNN combination. Furthermore the mixture of traffic light colors is
the strongest with single instances of green and red marker being found at the op-
posite sides. The accuracy gap across cluster sizes is 21.8%: species in a CS of 1
achieve 43.4% accuracy, whereas those in a CS of 4 drop to 21.6%. The accuracy for
a CS of 3 is higher than for a CS of 2, and the accuracy for the largest cluster (CS of
7) further declines to 28.7%. This pattern mirrors the trend seen for ResNet-50-LR.
Moreover, increasing the sample size leads to an improvement in mean accuracy per
cluster size by between 3.9% and 5.5%. For a closer look please refer to the graph-
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ics provided in the appendix for the reference dataset (Figure 45), sample dataset
(Figure 46) and species dataset (Figure 47).

6.4.2 A Closer Look at Specific Species

The following observations are based on the DINOv2-LR combination, depicted in
Figures 19, 20, and 21.

The species Speyeria aglaja (pink marker 528), Agriphila tristella (pink marker 34),
Eilema complana (pink marker 212) and Pieris mannii (pink marker 473) were
selected for their significant variations in class accuracy across different dataset
variants while belonging to different cluster sizes. The number for each species
represents the actual label used in the classification process.

It is important to note that when discussing species that were commonly confused
with a given species, only those that were misclassified more than once are discussed,
as a single misclassification does not indicate a pattern.

• Species Speyeria aglaja (528), CS of 1 in the reference dataset

Species 528 benefits from an increased number of training samples, with its
accuracy improving from 86.5% in the reference dataset by 2% in the sam-
ple dataset. However, when the total number of species is expanded, its
accuracy drops by 33% compared to the reference dataset. This decline is
accompanied by a significant increase in the number of different species it is
commonly confused with, rising from 5 in the reference dataset to 12 in
the species dataset. The two labels label 528 was mostly confused with are
provided in Figure 22 and are both introduced in the species dataset.

(a) 528(sam, l) (b) 271(sam, e) (c) 272(sam, f)

Figure 22: Examples of visually similar species: (a) Speyeria aglaja (528), correctly
predicted in 107 out of 200 cases; (b) Fabriciana adippe (271), wrongly predicted
30 times; (c) Fabriciana niobe (272), wrongly predicted 16 times.
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• Species Agriphila tristella (34), CS of 2 in the reference dataset

Species 34 begins with a high accuracy of 91.5% in the reference dataset, which
improves by 2% with the introduction of more samples. However, when the
number of species is expanded from 277 to 589, accuracy decreases by 13%,
and its cluster size increases by 3. Additionally, the number of species it is
misclassified as rises from 2 in the reference dataset to 6 in the species
dataset.

Among the 39 misclassified instances (as one of the 6) in the species dataset,
24 occurred within the same genus cluster, while 15 involved species outside
this cluster. The two species it was most often confused with are shown in
Figure 23 while neither of which appear in the reference dataset but only
in the species dataset.

(a) 34(sam, h) (b) 32(sam, g) (c) 166(sam, a)

Figure 23: Examples of visually similar species: (a) Agriphila tristella (34), correctly
predicted in 157 out of 200 cases; (b) Agriphila selasella (32), a species within the
same genus cluster, misclassified 17 times; (c) Crambidae indet. (166), an unrelated
species outside any cluster, misclassified 7 times.

• Species Eilema complana (212), CS of 3 in the reference dataset

Species 212 starts with a very high accuracy of 97.5% in the reference dataset,
improving by an additional 1% in the sample dataset. However, when the
number of species increases, its accuracy drops significantly by 17.5% com-
pared to the reference dataset.

In the reference dataset, misclassifications are rare and dispersed across multi-
ple species, each misclassification occurring for a different label. In contrast, in
the species dataset, all misclassifications are concentrated within its genus
cluster, specifically with species 211 and 215 which are illustrated in Figure 24
and both only appear to be in the species dataset.
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(a) 212(sam, c) (b) 211(sam, b) (c) 215(sam, d)

Figure 24: Examples of visually similar species: (a) Eilema complana (212), cor-
rectly classified in 160 out of 200 cases; (b) Eilema caniola (211), wrongly predicted
in 28 cases; (c) Eilema lurideola (215), wrongly predicted in 8 cases.

• Species Pieris mannii (473), CS of 4 in the reference dataset

Species 473 starts with an accuracy of 61.5% in the reference dataset. In the
sample dataset, its accuracy improves by 6.5%, but when the number of
species increases, it drops by 12.5% compared to the reference dataset. The
number of species it is confused with rises from 5 in the reference dataset
to 9 in the species dataset.

A total of 96 instances were misclassified, with 81 of them occurring within the
same cluster. The two species it was most confused with are shown in Figure 25
and do occur in the reference and species dataset. Even though the cluster
size did not increase for the species dataset the amount of misclassifications
within the cluster increased from 64 in the reference dataset to 81 in the
species dataset.

(a) 473(sam, j) (b) 475(sam, k) (c) 472(sam, i)

Figure 25: Examples of visually similar species: (a) Pieris mannii (473), correctly
predicted in 98 out of 200 cases; (b) Pieris rapae (475), wrongly predicted in 41
cases; (c) Pieris brassicae (472), wrongly predicted 23 times.
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Confusion matrices for the different genus clusters can be found in the appendix for
the reference dataset and the species dataset. Figure 48 and 49 show predic-
tions for the Agriphila genus (to which label 34 belongs), Figure 50 and 51 show
predictions for the Eilema genus (part of which is label 212) and Figure 52 and 53
show predictions for the Pieris genus (of which label 473 is a species).

Table 11 presents the classification results for the discussed species, detailing the
two most frequent misclassifications for each species, along with the number of
instances they were predicted and the average confidence scores. The confidence
scores describe how certain the classifier classified the predicted labels on average.
The highest confidence values consistently correspond to correct classifications, while
the difference to the second most predicted species’ mean confidence varies between
12.29% (for label 473) and 16.32% (for label 34). The differences in confidence
levels indicate varying degrees of certainty in the model’s predictions, with some
misclassifications occurring at relatively high confidence levels.

True Label Predicted Label Instances Average Confidence (%)
528 528 107 66.63

271 30 46.21
272 16 52.23

34 34 157 77.53
32 17 61.21
166 7 49.78

212 212 160 88.50
211 28 72.35
215 8 51.20

473 473 98 70.76
475 41 58.47
472 23 58.33

Table 11: Classification results for selected species, showing their two most common
wrong predictions, the number of instances they were classified and the average
confidence with which the prediction was carried out. This table shows results
of the DINOv2-LR combination trained on the species dataset. The test-split
consisted of 200 samples for each species.

6.4.3 Impact of Spec Label on its cluster

Spec. Clusters Results for the DINOv2-LR combination, Figure 19 trained on
the reference dataset, shows a distinct cluster of size 7, corresponding to the Idaea
(330) genus (marked in cyan). Notably, this cluster lacks the Idaea Spec. label
(which would be represented as a blue marker) in this dataset variant. However,
upon increasing the species count to 589, this genus cluster expands from 7 to 11
labels. The second-largest cluster, increasing from 2 to 10 labels, belongs to the
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Eupithecia genus and introduces the Eupithecia Spec. (256) label when increasing
the species amount.

Despite their large cluster sizes, these species exhibit relatively high classification
accuracies. However, the low accuracy of Idaea Spec. (330) and Eupithecia Spec.
(256) (observable as blue marker for cluster sizes 11 and 10, respectively) suggests
that the model tends to classify general species (which were not further categorized
into species by experts) into specific species within the same genus. Conversely,
species occasionally misclassify samples from the Spec. label as their own, though
this occurs less frequently than the former case.

Confusion matrices for both genera and dataset variants (reference and species
dataset) verify that suspicion and are provided in the appendix: Figure 56 and
57 for the Eupithecia genus and Figure 54 and 55 for the Idaea genus.

6.4.4 Inter Cluster Confusions

While species within a genus cluster pose high risk of confusion, species of different
genera can also exhibit similar visual features. This becomes apparent when taking
a look at Figure 26, where the corners of the white squares show genera which were
confused in that run. The species of the Bologira genus for instance were often
confused with species belonging to the Melitaea genus and vice versa. The same
appears to be the case for the genera Agriphila and Crambus. The clearly visible
diagonal, representing misclassification within genus clusters is evidence of genera
posing a challenge for fine-grained image classification.

For all other FM-CLF combinations – which will be discussed in the following – the
confusion matrices for the species dataset are provided in the appendix: Figure 58
for DINOv2-KNN, Figure 59 for ResNet-50-LR, and Figure 60 for ResNet-50-KNN.

Findings in other FM-CLFs’ Confusion Matrices While the overall pattern
observed in Figure 26 remains consistent across the other three FM-CLF combina-
tions, additional trends emerge. Notably, there is frequent confusion between species
of the genera Agrochola and Conistra. Furthermore, some misclassifications occur
asymmetrically: for instance, species from the Scopula genus are often mistaken for
Idaea, and Idaea species frequently misclassified as Eupithecia, yet the reverse confu-
sion (Eupithecia to Idaea or Idaea to Scopula) is not observed in the same strength,
as indicated by the absence of a clear corresponding patch in the confusion matrices.

On a broader level, the ResNet-50-KNN combination exhibits a nearly uniform dis-
tribution of misclassifications across all species, suggesting a higher degree of unre-
lated confusions, visible as noise. However, ResNet-50-LR and DINOv2-KNN show
a more structured pattern, with less dispersed prediction errors.

This concludes the section presenting the experiments’ results and their analysis,
paving the way for further discussion in the following section.
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Figure 26: Confusion matrix including all 589 species (sorted after name and there-
fore grouped by genus) of the species dataset for the DINOv2-LR combination.
With correct classification numbers being set to zero, the focus lies on the misclas-
sifications. The corners of the squares indicate which genus clusters are confused
with each other.
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7 Discussion

7.1 Findings and Implications

In the following the results and analyses from Section 6 will be discussed and inter-
preted.

7.1.1 Cross-Validation Results

Returning to Section 6.1, consistent trends could be observed in Figure 12 which were
derived using cross-validation, underscoring the reliability of the findings. Specif-
ically, the stable performance gaps between different classifiers and the consistent
in- and decrease in accuracy across dataset variants for each combination reflect the
underlying characteristics of the feature embeddings.

Performance of Foundation Models A key observation is, that classifiers trained
on DINOv2 embeddings consistently outperformed those trained on ResNet-50 em-
beddings. This suggests that DINOv2 produces a more robust and informative
feature space for the fine-grained classification task, detecting differences between
different species with more precision than ResNet-50.

DINOv2 uses self-supervised learning to extract high-level, invariant representations
that capture semantic information beyond pixel-level details, which makes it partic-
ularly effective at capturing complex patterns, further enhancing its generalizability
on diverse datasets (Oquab et al., 2024). In contrast, ResNet-50 – trained on the
ImageNet1k dataset using supervised learning – is biased toward dataset-specific
features. If ResNet-50 exhibits a bias toward texture rather than shape (Geirhos
et al., 2018), that could have significant negative impact the ability to distinguish
between species. In theory, this could also benefit classification, as the shapes can
differ strongly while the texture stays consistent within the same species (e.g. due to
different angles for pictures of the same species). Especially if certain species exhibit
very characteristic textures, essential to recognize for successful classification, this
could be an advantage. However this claim is not supported by any results. On the
other side, texture heavily depends on the factors like brightness, sharpness, and
color, which vary significantly when using citizen science data.

By contrast, DINOv2’s self-supervised training (on approximately 110 times the data
that was used for training ResNet-50), demonstrates superior generalization, which
is supported by excellent results, as discussed further on. Given the complexity of
the classification task, ResNet-50 still achieved a reasonable level of generalization.

Furthermore, low standard deviations across cross-validation splits indicate that
both foundation models’ embeddings generalized well, with a minimal impact of
dataset partitioning on the classifiers’ performances.
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Performance of Classifiers Logistic Regression (LR) consistently outperformed
K-Nearest Neighbors (KNN) across all configurations, despite testing a wide range
of k values (1 to 1000). The minimal impact of varying k suggests that local neigh-
borhoods in the feature space do not reliably reflect class distributions, potentially
due to noise or less relevant features retained after dimensionality reduction using
PCA.

While PCA causes information loss, the consistently small accuracy variations across
a wide range of k values stayed persistent across multiple tested target dimensions
using different reduction methods (PCA/UMAP), which indicates that KNN strug-
gles regardless of the reduction method and its’ k values. This could indicate that
the dataset structure might just favor a linear decision boundary, making LR a more
suitable choice, while KNN’s distance-based approach becomes ineffective in a fea-
ture space with overlapping embeddings. As only k was evaluated, it is also possible
that further tests using different distance metrics or other algorithms to compute
the nearest neighbors could have improved its performance.

Computational Efficiency As shown in Section 6.1.2 training time for KNN
increases roughly linearly with the number of training samples. LR strongly benefits
from a reduction in training time when there are fewer target classes involved. As
illustrated in Figure 13, LR clearly outperforms KNN in terms of training time when
handling larger sample amounts, using the given configurations.

Taking a step back: while the training time for the classifiers took only minutes
(using two NVIDIA RTX A5000), fine-tuning foundation models would take signif-
icantly longer. While DINOv2 is suggested to be used with linear probing (META,
2023), its already decent performance might not warrent the effort required for fine-
tuning.

ResNet, on the other hand, is known to benefit significantly from fine-tuning, espe-
cially in comparison to linear probing (Kaplun et al., 2023). Given that its perfor-
mance lagged behind DINOv2, ResNet-50 could be a worthier opponent if fine-tuned.

Impact of Species and Sample Amount on Accuracy Figure 14 shows that
reducing the number of species leads to a slight accuracy increase, even though
the improvements remain relatively small but even across FM-CLF combinations,
despite strong differences in species amounts. This suggests that the foundation
models produce robust, generalizable embeddings, allowing classifiers to perform
well regardless of species amount. However, this observation is made based on a
limited number of species using a balanced dataset and therefore the extent to
which this observation is applicable remains uncertain.

Impact of Sample Amount on Accuracy Moving on to sample amounts, re-
sults shown in Figure 15 underline that increasing the sample size benefits lower-
performing configurations more substantially, while higher-performing configura-
tions approach an accuracy plateau as additional data yields less significant im-
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provements. Notably, while improvements drop when using 3,000 samples, the in-
crease in accuracy remains relatively high between 500 to 1,000 and 1,000 to 2,000
samples. This suggests that there may be a trade-off regarding the amount of data
gathered, as close to optimal performance might be achieved with a limited number
of samples per species (e.g. around 2,000), thereby reducing the need for extensive
data collection.

As accuracy only increases marginally when reducing species amounts or increasing
sample size, the FM-CLF combinations appear to reach a baseline performance
with very limited data. Once this plateau is reached, when increasing sample size
or decreasing species amounts, accuracy improves at a much slower rate.

7.1.2 Other Accuracies

While the top-1 accuracy shows that specifically ResNet-50-KNN exhibits significant
deficits, the top-5 accuracy indicates that KNN trained on ResNet-50 embeddings
is well able to predict a direction with relative certainty. This suggests that while
the feature space provided by ResNet-50 is not sufficiently discriminative for fine-
grained classification when using KNN, it still captures meaningful relationships
between classes. The improved performance in top-5 accuracy indicates that the
feature embeddings preserve a structured similarity, allowing KNN to identify a set
of plausible candidates even if the exact match is uncertain.

Furthermore, the rather small gap between genus-level and top-1 (species-level)
accuracy, with a bigger gap for the species dataset, suggests that the model is not
significantly better at predicting genera than species. This is expected, as species
within the same genus often exhibit strong visual similarities — if the model struggles
to distinguish species, it is likely to struggle with genera as well. On the other
hand, if the model classifies a moth or butterfly within its genus, it is likely to be
the correct species. A reason for this behavior could lie in the variations in data
quality, as some samples might be so out of focus or color-distorted, that it’s very
difficult to distinguish between genera, while sharp images provide sufficient detail
for correct intra-genus classification. However, the larger gap in the species dataset
indicates that while species-level classification remains challenging, some genus-level
information is still retained. In contrast, smaller gaps in other dataset variants imply
frequent misclassifications that go beyond the genus level.

Beyond the genus level: Family-level accuracies closely align with or outperform top-
5 accuracies, suggesting that while species distinctions are challenging, the model
effectively captures broader taxonomic relationships. This implies that misclassifi-
cations tend to occur within their families rather than across more distant taxa.

7.1.3 Confidence Analysis

Foundation Models Across all analyses, classifiers being trained on DINOv2 em-
beddings consistently outperform those trained on ResNet-50 embeddings in terms of
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producing higher confidences for correct predictions and better separation between
correct and incorrect classifications. This highlights the superior feature quality of
DINOv2’s self-supervised learning approach, being trained on a dataset magnitudes
larger than ImageNet1k.

Classifier LR outperforms KNN in both accuracy and confidence metrics across
both embedding types and all dataset variants. Its ability to model linear decision
boundaries effectively leverages the structure of embedding spaces created by both
foundation models. In contrast, KNN struggles with low confidences due to its
reliance on local neighborhood distances, which are less reliable in high-dimensional
or overlapping feature spaces, as discussed before.

Dataset Variants While increasing sample size improves KNN’s performance
slightly by providing more reliable neighbors for distance-based decisions, LR re-
mains largely unaffected by dataset size, possible due to its global optimization
approach and datasets already providing a sufficient number of samples to perform
decently. The decreasing trend in mean confidence with increasing species count
reflects the growing complexity of classification tasks as class diversity increases.

7.1.4 Cluster Analysis

In the course of conducting the cluster and label accuracy analysis in Section 6.4,
visualizations show that both DINOv2 and ResNet-50 tend to have similar classifi-
cation strengths and weaknesses for the same species, as indicated by the similarities
in traffic light color distribution (e.g. in Figure 19 and Figure 42). This suggests,
that both foundation models detect similar features, while DINOv2 appears to dis-
tinguish with higher precision between species and their small differences.

Moreover, a higher number of species within a cluster appears to correlate with a
slight decrease in average accuracy for those species, highlighting the risk of intra-
genus misclassifications. However, as the accuracy results indicate, this risk has a
smaller impact on overall performance than initially expected, as evidenced by only
marginal improvements in genus-level accuracy.

Specific Species Furthermore, a detailed examination of specifically selected
species for their accuracy variations between dataset variants indicates that the
introduction of new species with similar visual features is a primary source of con-
fusion, although clear distinctions in confidence between correct and incorrect pre-
dictions seem to persist, which indicates a clear separation between the feature
embeddings of correctly classified samples and those of misclassified samples

Spec. Labels Finally, it is noteworthy that the error-prone Spec. labels per-
formed surprisingly well. Despite these samples being technically unlabeled as spe-
cific species, the classifiers learned to recognize which species are inherently difficult
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to distinguish. Consequently, the DINOv2-LR combination achieved an accuracy of
50% or higher on these labels. While this means that the species labeled as Spec.
were technically assigned to the wrong label, that does not mean that the species
in that label were misclassified. Conversely, the classification itself could have been
more accurate, possibly placing the species correctly within its wider genus. With
a low amount of 5 Spec. labels that belong to a genus cluster in the species dataset,
the impact of not removing those species is definitely minor, as the species within
the same clusters were not regularly misclassified as the Spec. label.

7.2 Limitations and Challenges

The project faced several limitations and challenges that affected its overall per-
formance. In particular, the dataset suffered from inherent bias, exacerbated by
poor quality control practices that allowed unqualified and trap images – or images
containing multiple insects – to slip through. In addition, Spec. labels were not
removed beforehand, since only valid species should have been retained to maintain
clarity in classification.

Due to time constraints, extensive testing with UMAP and other feature reduction
techniques, as well as experimenting with different hyperparameters for KNN, was
limited. Exploring alternative methods could potentially improve KNN’s perfor-
mance, which warrants further investigation in future experiments.

7.3 Future Work

As DINO-LR and ResNet-50-LR combinations approach a performance ceiling, it
may be necessary to fine-tune the underlying foundation models to push beyond
that ceiling, especially with ResNet-50. Given that DINOv2 is already performing
at a strong level, the effort required for additional fine-tuning may not justify the
potential gains. On the other hand, since ResNet-50’s performance is significantly
lower than that of DINOv2, fine-tuning ResNet-50 for fine-grained classification
tasks could lead to substantial improvements, a strategy that is commonly employed,
as shown in Section 2.

Another interesting pathway to improve accuracy would be, to test alternative clas-
sifiers or improve the dataset curation process. Additionally, experimenting with
dataset variations, including intentionally imbalanced datasets with strongly un-
derrepresented species, could provide further valuable insights for exploring data
efficiency in this domain, leveraging the full 7,442 species contained in the initial
dataset and embracing the class imbalance.

While the key challenge in fine-grained image classification lies in the task to dis-
tinguish between subtle differences, another type of information might help in the
classification process. A promising direction could also lie in the incorporation of
multimodal information, such as geographic location, to leverage additional contex-
tual data for improved species identification. (Yang et al., 2022) The dataset used in
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the conducted experiments also initially included geographical data for each sample,
providing opportunities for further exploration and potential improvements to this
work.

8 Conclusion

This work highlights the challenges of fine-grained insect classification, where visual
similarities within genera but also the broader family often lead to misclassifications.
While in the experiments, KNN struggled with fine-grained distinctions, due to its
reliance on local feature space relationships, Logistic Regression consistently outper-
formed it by leveraging a global decision boundary. Similarly, DINOv2 embeddings
significantly surpass ResNet-50, demonstrating their effectiveness in capturing fine
details without fine-tuning.

Changes in the number of species or samples only resulted in marginal performance
differences for each combination of foundation model and classifier (FM-CLF). These
findings indicate that the FM-CLF combinations reach a threshold, which is difficult
to surpass significantly, unless that means strong increases in sample size or decreases
in species amounts.

However, DINOv2-LR being the by far best FM-CLF combination, emerges as the
optimal choice for fine-grained insect classification out of the experiments conducted,
making it a strong candidate for real-world applications. Fine-tuning the foundation
model or experimenting with alternative linear classifiers could further improve its
performance, but even in its current form, the model’s accuracy enables potential
usability in biodiversity monitoring and conservation efforts.

Beyond this work, this approach could extend to other domains, including different
insect taxa and broader nature datasets. The ability of DINOv2-LR to handle
noisy, variable-quality data makes it particularly valuable for citizen science projects,
where data is often collected under non-standardized conditions. By integrating
such models into citizen science platforms, we could enhance large-scale biodiversity
monitoring, improve species identification accuracy, and empower non-experts to
contribute meaningfully to ecological research.
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A Appendix: Choice of Best Parameters

Cross-validation results for Logistic Regression, averaged over DINOv2-based
dataset variants

Choice Learning Rate Epochs Mean Accuracy (%) ± Std (%)
x 0.0005 1500 89.00 ± 1.99
- 0.0005 2000 89.95 ± 2.07
- 0.0010 1500 89.81 ± 2.17
- 0.0010 2000 89.64 ± 2.24
- 0.0050 1500 88.87 ± 2.36
- 0.0050 2000 88.64 ± 2.39

Table 12: The table is sorted by mean accuracy, the highest mean accuracy and
lowest standard deviation are marked in bold.

Cross-validation results for KNN, averaged over DINOv2-based dataset variants

Choice Neighbors Mean Accuracy (%) ± Std (%)
- 20 68.59 ± 4.47
x 35 68.43 ± 4.41
- 50 68.07 ± 4.39

Table 13: The table is sorted by mean accuracy, the highest mean accuracy and
lowest standard deviation are marked in bold.
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Figure 27: Validation loss (dashed lines) and validation accuracies (continuous lines)
for Logistic Regression Classifier for the nine DINOv2-based dataset variants with
2000 epochs and a learning rate of 0.005.
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Figure 28: Validation loss (dashed lines) and validation accuracies (continuous lines)
for Logistic Regression Classifier for the nine DINOv2-based dataset variants with
2000 epochs and a learning rate of 0.001.
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Figure 29: Validation loss (dashed lines) and validation accuracies (continuous lines)
for Logistic Regression Classifier for the nine DINOv2-based dataset variants with
2000 epochs and a learning rate of 0.0005.
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Cross-validation results for Logistic Regression, averaged over ResNet-50-based
dataset variants

Choice Learning Rate Epochs Mean Accuracy (%) ± Std (%)
- 0.0010 2000 64.90 ± 4.42
x 0.0010 1500 64.82 ± 4.16
- 0.0005 2000 64.43 ± 3.91
- 0.0050 1500 63.96 ± 5.39
- 0.0005 1500 63.76 ± 3.71
- 0.0050 2000 63.61 ± 5.65

Table 14: The table is sorted by mean accuracy, the highest mean accuracy and
lowest standard deviation are marked in bold.

Cross-validation results for KNN, averaged over ResNet-50-based dataset variants

Choice Neighbors Mean Accuracy (%) ± Std (%)
- 35 38.31 ± 5.14
x 50 38.19 ± 5.03
- 65 37.96 ± 4.98

Table 15: The table is sorted by mean accuracy, the highest mean accuracy and
lowest standard deviation are marked in bold.
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Figure 30: Validation loss (dashed lines) and validation accuracies (continuous lines)
for Logistic Regression Classifier for the nine ResNet-50-based dataset variants with
2000 epochs and a learning rate of 0.005.
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Figure 31: Validation loss (dashed lines) and validation accuracies (continuous lines)
for Logistic Regression Classifier for the nine ResNet-50-based dataset variants with
2000 epochs and a learning rate of 0.001.
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Figure 32: Validation loss (dashed lines) and validation accuracies (continuous lines)
for Logistic Regression Classifier for the nine ResNet-50-based dataset variants with
2000 epochs and a learning rate of 0.0005.
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B Appendix: Cross-Validation Results

Species Sample DINOv2 DINOv2 ResNet-50 ResNet-50
Amount Amount LR KNN LR KNN

277 3,000 92.78 75.01 70.34 45.88
2,000 92.27 73.42 69.58 43.99
1,000 90.94 70.43 67.61 40.67
500 89.19 66.94 63.68 36.96

387 2,000 91.26 71.10 66.79 40.75
1,000 89.87 67.95 64.65 37.38
500 87.99 64.15 61.22 33.81

589 1,000 88.93 65.46 61.62 33.87
500 86.77 61.50 57.81 30.49

Table 16: Mean accuracies averaged over 5 cross-validation splits in %, for all nine
dataset variants and four FM-CLF combinations.

Min, Mean and Max were applied on all mean scores (averaged over results of the 5
cross-validation splits) of all 36 cross-validation runs (involving all dataset variants
and FM-CLF combinations.)

Metric Min Gap (%) Mean Gap (%) Max Gap (%)
Precision -0.10 0.85 2.62
Recall 0.00 0.00 0.00
F1-Score -0.71 -0.17 0.08

Table 17: Average differences (gaps) between Accuracy and Precision, Recall and
F1-Score. A negative score indicates, that the metric was smaller than the accuracy.

Calculated over corresponding 5 validation folds over all combinations of classifiers
and dataset variants

Metric Min Std (%) Mean Std (%) Max Std (%)
Accuracy 0.04 0.15 0.32
Precision 0.07 0.16 0.32
Recall 0.04 0.15 0.32
F1-Score 0.06 0.15 0.32

Table 18: Standard deviation statistics for Accuracy, Precision, Recall, and F1-Score
in between 5 validation folds.
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Figure 33: Difference in validation accuracies and losses for dataset variants with
varying amount of species while the amount of samples stays constant at 1,000. The
curves represent results averaged across all 5 cross-validation splits.

Figure 34: Difference in validation accuracies and losses for datasets with varying
amount of samples while amount of species stays constant at 277. The curves
represent results averaged across all 5 cross-validation splits.
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C Appendix: Confidence Analysis

Figure 35: Confidences for correct and incorrect predictions on the three key dataset
for the DINOv2-LR combination.

Figure 36: Confidences for correct and incorrect predictions on the three key dataset
for the DINOv2-KNN combination.



C APPENDIX: CONFIDENCE ANALYSIS 63

Figure 37: Confidences for correct and incorrect predictions on the three key dataset
for the ResNet-50-LR combination.

Figure 38: Confidences for correct and incorrect predictions on the three key dataset
for the ResNet-50-KNN combination.
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D Appendix: Species-Level Analysis

Figure 39: Class accuracy distribution for the reference dataset using the DINOv2-
KNN combination.

Figure 40: Class accuracy distribution for the sample dataset using the DINOv2-
KNN combination.
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Figure 41: Class accuracy distribution for the species dataset using the DINOv2-
KNN combination. New species in this dataset are marked as black dots.

Figure 42: Class accuracy distribution for the reference dataset using the ResNet-
50-LR combination.
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Figure 43: Class accuracy distribution for the sample dataset using the ResNet-50-
LR combination.

Figure 44: Class accuracy distribution for the species dataset using the ResNet-50-
LR combination. New species in this dataset are marked as black dots.
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Figure 45: Class accuracy distribution for the reference dataset using the ResNet-
50-KNN combination.

Figure 46: Class accuracy distribution for the sample dataset using the ResNet-50-
KNN combination.
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Figure 47: Class accuracy distribution for the species dataset using the ResNet-50-
KNN combination. New species in this dataset are marked as black dots.
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Figure 48: Confusion Matrix of Agriphila Genus on the reference dataset using the
DINOv2-LR combination.

Figure 49: Confusion Matrix of Agriphila Genus on the species dataset using the
DINOv2-LR combination.
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Figure 50: Confusion Matrix of Eilema Genus on the reference dataset using the
DINOv2-LR combination.

Figure 51: Confusion Matrix of Eilema Genus on the species dataset using the
DINOv2-LR combination.
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Figure 52: Confusion Matrix of the Pieris Genus on the reference dataset using the
DINOv2-LR combination.

Figure 53: Confusion Matrix of the Pieris Genus on the species dataset using the
DINOv2-LR combination.
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Figure 54: Confusion Matrix of the Idaea Genus on the reference dataset using the
DINOv2-LR combination.

Figure 55: Confusion Matrix of the Idaea Genus on the species dataset using the
DINOv2-LR combination.
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Figure 56: Confusion Matrix of the Eupithecia Genus on the reference dataset using
the DINOv2-LR combination.

Figure 57: Confusion Matrix of the Eupithecia Genus on the species dataset using
the DINOv2-LR combination.
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Figure 58: Confusion matrix including all 589 species (sorted after name and there-
fore grouped by genus) of the species dataset for KNN trained on DINOv2 embed-
dings (DINOv2-KNN). With correct classification numbers being set to zero, the
focus lies on the misclassifications. The corners of the squares indicate which genus
clusters are confused with each other.
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Figure 59: Confusion matrix including all 589 species (sorted after name and there-
fore grouped by genus) of the species dataset for Logistic Regression trained on
ResNet-50 embeddings (ResNet-50-LR). With correct classification numbers being
set to zero, the focus lies on the misclassifications. The corners of the squares indi-
cate which genus clusters are confused with each other.
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Figure 60: Confusion matrix including all 589 species (sorted after name and there-
fore grouped by genus) of the species dataset for KNN trained on ResNet-50 em-
beddings (ResNet-50-KNN). With correct classification numbers being set to zero,
the focus lies on the misclassifications. The corners of the squares indicate which
genus clusters are confused with each other.
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