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Abstract

The clinical translation of deep learning models in medical imaging is critically lim-
ited by their failure to generalize to out-of-distribution (OOD) data. Models trained
in one clinical setting often underperform when encountering variations in patient
populations, imaging equipment, and preparation protocols. This thesis addresses
this challenge by systematically benchmarking strategies to improve OOD general-
ization across two distinct medical domains: inter-hospital variability in histopathol-
ogy, using the WILDS Camelyon17 dataset, and skin tone bias in dermatology,
using the Fitzpatrick17k dataset.

Our evaluation benchmarks two fundamental approaches against the standard train-
ing method, Empirical Risk Minimization (ERM). The first approach to be
tested is a specialized algorithmic approach, HYPO, a representation learning strat-
egy that seeks to learn domain-invariant features by actively organizing them on a
hypersphere. Its goal is to make features from the same class cluster tightly together
regardless of their source domain, while pushing clusters of different classes far apart.
The second approach is data-centric, for which we evaluate multiple augmentation
strategies. This includes leveraging AugMix, a powerful processing framework
that creates diverse training examples by mixing multiple augmentation chains,
and MedMNIST-C, a benchmark providing targeted corruptions that simulate
realistic medical image artifacts. This culminates in our proposed novel method,
MedAugmix, which combines these ideas by using the targeted corruptions from
MedMNIST-C as the core ingredients within the robust AugMix framework.

Our findings reveal a clear hierarchy of effectiveness. While the HYPO algorithm
provides a solid improvement over the baseline, confirming the value of represen-
tation learning, the most significant performance gains were achieved through our
data-centric approach. The proposed MedAugmix strategy delivered the most
substantial gains, drastically reducing the OOD performance gap. For example,
on the challenging Camelyon17 benchmark, ERM with MedAugmix achieved an
OOD accuracy of 0.913 compared to 0.853 for standard ERM—a substantial 6.0
percentage point improvement that exceeded all evaluated HYPO configurations.
Crucially, a standard ERM model, when enhanced with MedAugmix, consistently
outperformed the specialized HYPO algorithm across both the histopathology and
dermatology benchmarks, demonstrating the generalizability of this core finding.

This thesis concludes that while specialized OOD algorithms are beneficial, a sophis-
ticated, data-centric approach focused on targeted augmentation can be even more
impactful for building robust medical AI. The success of the proposed MedAugmix
strategy highlights that focusing on high-quality data augmentation that simulates
realistic domain shifts is a crucial and highly effective path toward developing mod-
els that are not only accurate but also equitable and reliable enough for real-world
clinical deployment.
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1 INTRODUCTION 1

1 Introduction

1.1 Motivation and Problem Statement

Deep learning models have achieved expert-level performance across a wide array
of medical imaging tasks, holding immense promise for improving diagnostic accu-
racy and accelerating clinical workflows (Esteva et al., 2021; Litjens et al., 2017).
However, their widespread clinical adoption is critically hindered by a lack of gener-
alization. Models often exhibit a significant drop in performance when encountering
data from new sources, a pervasive issue known as domain shift (Finlayson et al.,
2021). This lack of robustness to Out-of-Distribution (OOD) data undermines clin-
ical trust and poses significant risks to patient safety, making OOD generalization
one of the most important research frontiers in medical AI (Koh et al., 2021).

This challenge manifests in diverse ways across medical specialties, highlighting the
need for broadly robust solutions. To investigate this general problem, this thesis
evaluates strategies against two distinct and clinically relevant OOD test cases:

• In computational histopathology, models must contend with significant
inter-hospital variability arising from inconsistent slide staining, tissue prepa-
ration, and digital scanner hardware (Madabhushi and Lee, 2016). TheWILDS
Camelyon17 benchmark encapsulates this challenge, requiring models to gen-
eralize to unseen hospitals.

• In dermatology, a critical OOD challenge arises from patient demographics,
particularly the underrepresentation of darker skin tones in clinical datasets.
The Fitzpatrick17k dataset provides a platform to evaluate model robustness
to this skin-tone-based distribution shift (Groh et al., 2021).

Given this multifaceted problem, this study seeks to derive generalizable insights by
benchmarking different approaches against these disparate challenges. This work
undertakes a comprehensive evaluation of a specialized representation learning al-
gorithm, HYPO, against a standard baseline. In parallel, it critically assesses the
impact of data augmentation techniques, including the application of targeted cor-
ruptions sourced from theMedMNIST-C benchmark, the use of theAugMix data
processing framework, and a novel hybrid strategy proposed called, MedAugmix,
which combines these data-centric concepts.

1.2 Research Questions and Objectives

To address the general problem of Out-of-Distribution (OOD) generalization in med-
ical imaging outlined in Section 1.1, this thesis seeks to answer a set of focused
research questions through a systematic evaluation framework.
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Research Questions

1. How does the performance of a specialized representation learning algorithm
(HYPO) compare to a standard baseline (Empirical Risk Minimization) in im-
proving OOD generalization across diverse medical imaging tasks, specifically
histopathology and dermatology?

2. What is the comparative impact of different data-centric augmentation strate-
gies, ranging from a basic application of targeted corruptions (Basic MedMNIST-
C) to a generic advanced method (Standard AugMix) and a novel hybrid ap-
proach (MedAugmix) on model robustness?

3. Does the effectiveness of these learning algorithms and augmentation strate-
gies generalize across different types of domain shifts, namely the inter-hospital
variations inWILDS Camelyon17 and the skin tone biases in Fitzpatrick17k?

4. Ultimately, which combination of learning algorithm and data augmentation
strategy yields the most effective and broadly applicable solution for enhancing
OOD generalization across the evaluated medical imaging benchmarks?

To answer these questions, the following concrete objectives were established for this
thesis:

Objectives

1. To systematically implement and evaluate the OOD generalization perfor-
mance of the ERM baseline and the HYPO algorithm on two distinct medical
imaging benchmarks: WILDS Camelyon17 and Fitzpatrick17k.

2. To implement and assess the impact of three different categories of data aug-
mentation on both learning algorithms and both datasets: (a) a basic appli-
cation of targeted corruptions, (b) the standard AugMix method, and (c) the
proposed novel MedAugmix strategy.

3. To conduct a comprehensive comparative analysis of all evaluated combina-
tions to identify the most effective and robust strategies for improving OOD
performance.

4. To analyze and interpret the findings to derive generalizable insights into the
interplay between algorithmic approaches (representation learning) and data-
centric approaches (structured augmentation) for building more reliable med-
ical AI systems.
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1.3 Key Contributions

This thesis makes several key contributions to the field of medical image analysis,
specifically concerning the development and evaluation of robust models for Out-of-
Distribution (OOD) generalization. The contributions are:

1. Proposal and Evaluation of a Novel Targeted Augmentation Strat-
egy (MedAugmix): We introduce, implement, and evaluate MedAugmix,
a novel data augmentation strategy. MedAugmix adapts the principles of the
AugMix data processing pipeline to leverage targeted MedMNIST-C corrup-
tions, creating a powerful, domain-aware augmentation technique specifically
for medical imaging.

2. Comprehensive Benchmarking Across Diverse Medical Domains: This
work provides a systematic and comparative evaluation of multiple OOD gen-
eralization strategies (ERM, HYPO, and various augmentations) across two
distinct and challenging medical domains: histopathology (WILDS Came-
lyon17) and dermatology (Fitzpatrick17k). By testing these methods against
different types of domain shifts inter-hospital variation and demographic (skin
tone) bias this evaluation offers more generalizable insights than a single-
dataset study.

3. Empirical Demonstration of Data-Centric Superiority: A significant
discovery from our benchmarking is the empirical evidence that a standard
Empirical Risk Minimization (ERM) algorithm, when paired with our
proposed MedAugmix strategy, consistently outperforms other strategies
tested within this study. This combination surpassed the specialized repre-
sentation learning algorithm, HYPO, across both datasets and architectures.

1.4 Thesis Outline

The remainder of this thesis is organized to systematically build upon the motivation
and objectives outlined above. The structure is as follows:

• Section 2: Background and Literature Review provides the necessary
foundational knowledge. It reviews the state of deep learning in medical imag-
ing, details the Out-of-Distribution (OOD) generalization challenge across
different medical domains, and discusses existing approaches, including the
HYPO algorithm, the AugMix framework, and the MedMNIST-C benchmark.

• Section 3: Experimental Design and Methodology details the compre-
hensive framework developed for this study. It introduces the two benchmark
datasets, WILDS Camelyon17 and Fitzpatrick17k, describes the model archi-
tectures and evaluation protocol, and provides a detailed account of the specific
strategies under evaluation: ERM, HYPO, and the various data augmentation
techniques including the proposed MedAugmix.
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• Section 4: Experimental Results factually presents the empirical findings
of the study. It first details the results on the primary benchmark, Came-
lyon17, to establish key performance trends. It then presents a summary of
findings on the secondary benchmark, Fitzpatrick17k, to assess the generaliz-
ability of these trends.

• Section 5: Discussion provides an in-depth interpretation and synthesis of
the results. This section is structured thematically to analyze the value of
representation learning (HYPO), the impact of data-centric approaches (aug-
mentations), and the significance of the key discovery that a well-augmented
ERM can surpass specialized OOD algorithms.

• Section 6: Conclusion and Future Work concludes the thesis by recapit-
ulating the study, summarizing its principal findings and contributions, and
discussing its strengths and limitations. Finally, it proposes several concrete
directions for future research based on the insights gained from this work.

2 Background and Literature Review

2.1 Deep Learning in Medical Image Analysis: Overview

The past decade has witnessed a paradigm shift in the field of medical image analysis,
largely driven by the remarkable advancements and successes of deep learning (DL)
methodologies (Esteva et al., 2021; Litjens et al., 2017). Deep learning, a subfield
of machine learning, employs artificial neural networks with multiple layers (hence
“deep”) to learn hierarchical representations of data. This capability has proven
exceptionally potent for interpreting complex medical imagery, offering tools that
can augment clinical decision-making, improve diagnostic accuracy, and streamline
analytical workflows across various medical specialties.

At the heart of this revolution are Convolutional Neural Networks (CNNs or Con-
vNets), a class of deep neural networks particularly well-suited for processing grid-
like data, such as images (LeCun et al., 1998; Krizhevsky et al., 2012). CNNs auto-
matically and adaptively learn spatial hierarchies of features from images, from low-
level edges and textures in the initial layers to more complex, task-specific patterns
in deeper layers. This is achieved through the use of key architectural components:

• Convolutional Layers: These apply learnable filters to input images (or fea-
ture maps from previous layers) to create feature maps that highlight specific
patterns. The filters are shared across the spatial dimensions of the input,
enabling parameter efficiency and translation equivariance.

• Pooling Layers: These layers reduce the spatial dimensionality of the feature
maps, which helps to decrease computational complexity, control overfitting,
and create a degree of invariance to small translations or distortions in the
input. Max pooling and average pooling are common strategies.
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• Activation Functions: Non-linear activation functions, such as the Rectified
Linear Unit (ReLU) (Nair and Hinton, 2010) and its variants, are applied
element-wise to introduce non-linearity into the model, enabling it to learn
more complex relationships.

• Fully Connected Layers: Typically found at the end of the network, these
layers perform high-level reasoning by connecting every neuron from the pre-
vious layer to every neuron in the current layer, often leading to the final
classification scores or regression outputs.

Figure 1: A simple CNN architecture showing successive convolutional and pooling
layers with their channel counts and spatial dimensions. Template generated via
NN-SVG.

The ability of CNNs to learn features directly from data, bypassing the need for
manual, often laborious, feature engineering, has led to breakthroughs in numerous
medical imaging tasks:

• Image Classification: Assigning a label to an entire image, such as determin-
ing the presence or absence of a disease (e.g., diabetic retinopathy detection
from fundus images (Gulshan et al., 2016), classifying skin lesions (Esteva
et al., 2017)), or grading tumor malignancy from histopathology slides, as is
relevant to this thesis.

• Object Detection: Identifying and localizing specific objects or regions of
interest within an image by drawing bounding boxes around them, for example,
detecting nodules in chest X-rays or localizing organs (Lakhani and Sundaram,
2017).

• Image Segmentation: Assigning a class label to every pixel in an image,
allowing for the precise delineation of anatomical structures or pathological
regions. This is crucial for tasks like tumor volume quantification in MRI scans
or segmenting cells in microscopy images (Ronneberger et al., 2015). The U-
Net architecture (Ronneberger et al., 2015) and its variants have become a de
facto standard for many medical image segmentation tasks.
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(a) No DR (label 0)

(b) Proliferative DR (label 4)

Figure 2: Examples of diabetic retinopathy classification from EyePACS (Kaggle
DR challenge).

Figure 3: Example of an object detection task in medical imaging. A bounding box
highlights a suspicious region in a chest X-ray, indicative of a potential abnormality
such as pneumonia. Image adapted from the NIH ChestX-ray14 dataset (Wang
et al., 2017).
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Figure 4: Example of medical image segmentation from the BraTS 2021 dataset.
Brain MRI slices are shown with segmentation masks overlaid, highlighting tumor
subregions: enhancing tumor (light blue), tumor core (gold), and whole tumor.
Segmentation enables detailed analysis of tumor structure at the pixel level. Image
credit: BraTS 2021 dataset (Baid et al., 2021).

Further advancements in CNN architectures have continued to push the boundaries
of performance. Two notable architectures relevant to this work are:

• ResNet (Residual Networks): Introduced by He et al. (2016), ResNets
addressed the degradation problem encountered when training very deep net-
works. They employ “residual blocks” with skip connections, which allow
the network to learn an identity mapping if a layer is not beneficial, thereby
enabling the training of significantly deeper and more powerful models (e.g.,
ResNet50, ResNet101).

• DenseNet (Densely Connected Convolutional Networks): Proposed
by Huang et al. (2017), DenseNets connect each layer to every other layer in a
feed-forward fashion within each dense block. This encourages feature reuse,
strengthens feature propagation, reduces the number of parameters, and can
lead to improved efficiency and performance.

These architectures, often pre-trained on large natural image datasets like ImageNet
(Deng et al., 2009), serve as powerful feature extractors that can be fine-tuned for
specific medical imaging tasks, leveraging transfer learning to achieve good perfor-
mance even with limited medical data.

In summary, deep learning, and CNNs in particular, have become indispensable
tools in medical image analysis, offering unprecedented capabilities for interpreting
complex visual medical data. While their potential is vast, realizing this potential
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in routine clinical practice requires addressing several challenges, most notably the
ability of these models to generalize to diverse, unseen data, which will be discussed
in subsequent sections.

2.2 The Domain Generalization Challenge in Medical AI

While the previous section highlighted the transformative potential of deep learn-
ing in medical image analysis, a critical impediment to its widespread and reliable
clinical integration is the challenge of domain generalization (Wang et al., 2023).
Deep learning models, despite their impressive performance on data similar to what
they were trained on (in-distribution, ID data), often exhibit a significant degra-
dation in performance when deployed in new clinical settings or applied to patient
populations different from the training cohort. This phenomenon, known as domain
shift or dataset shift, occurs when the statistical distribution of the test or deploy-
ment data (target domain) differs from that of the training data (Quionero-Candela
et al., 2009). The ability of a model to maintain its performance when encountering
such previously unseen domains, without any access to target domain data dur-
ing training, is termed Out-of-Distribution (OOD) generalization (Koh et al.,
2021). Achieving robust OOD generalization is arguably one of the most pressing
research frontiers in medical AI, as failures can directly impact patient safety, di-
agnostic accuracy, and clinical trust (Finlayson et al., 2021; Castro et al., 2020).
The research community continues to actively develop and benchmark methods to
address this persistent issue, with new insights and approaches emerging regularly
(Zhou et al., 2023).

Several factors contribute to domain shifts in medical imaging, creating a complex
landscape of variability. These sources are often intertwined and can manifest subtly
or profoundly:

1. Patient Demographics and Biological Heterogeneity: Patient popu-
lations naturally vary in age, sex, ethnicity, genetic predispositions, lifestyle
factors, and comorbidities. These differences can lead to variations in anatomy,
disease manifestation, prevalence, and image characteristics, directly impact-
ing model performance if not accounted for (Gichoya et al., 2022). For instance,
a model trained primarily on one demographic group might perform subopti-
mally on others, raising significant ethical concerns about fairness and equity
in AI-driven healthcare (Rajpurkar et al., 2022). The Fitzpatrick17k dataset,
used as a secondary benchmark in this thesis, directly encapsulates this chal-
lenge by evaluating model performance across a spectrum of skin tones.

2. Variations in Medical Equipment and Acquisition Protocols: This is
a major source of domain shift, especially across different hospitals or even
within the same institution over time.

• Scanner Differences: Different manufacturers (e.g., Siemens, GE, Philips
for MRI/CT; Hamamatsu, Leica, Aperio for digital slide scanners) and
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models of imaging equipment possess unique hardware characteristics,
internal image processing algorithms, and sensor properties, leading to
systematic variations in image quality, resolution, contrast, and noise
profiles (Stacke et al., 2020).

• Acquisition Parameters: Slight modifications in imaging protocols—such
as MRI sequence parameters (e.g., echo time, repetition time), CT slice
thickness or radiation dose, ultrasound probe frequency and settings, or
microscope objectives and illumination in digital pathology—can sub-
stantially alter the resultant images (Glocker et al., 2019).

• Calibration and Maintenance: Imaging equipment can drift from its orig-
inal calibration over time, or maintenance schedules might differ, intro-
ducing temporal shifts in image characteristics.

3. Image Processing and Site-Specific Practices: The journey from raw
sensor data to a viewable medical image often involves multiple processing
steps that can differ significantly.

• Histopathology: This domain is notoriously affected by variability in tis-
sue fixation methods (e.g., formalin-fixed paraffin-embedded), microtome
sectioning thickness, Hematoxylin and Eosin (H&E) staining protocols
leading to color and intensity variations, coverslipping techniques, and
the characteristics of digital slide scanners (Madabhushi and Lee, 2016;
Tizhoosh and Pantanowitz, 2018). Even subtle differences in reagent
batches or technician practices can cause considerable visual shifts (Howard
et al., 2021). The Camelyon17 dataset, used in this thesis, specifically
captures such inter-hospital staining and scanner variations (Koh et al.,
2021).

• Radiology and Other Modalities: Image reconstruction algorithms for
CT/MRI, post-processing filters (e.g., noise reduction, edge enhance-
ment), image normalization techniques, and windowing settings for dis-
play can all introduce domain-specific characteristics.

4. Geographical and Institutional Factors: Clinical practices, disease preva-
lence, and even subtle environmental factors can vary by location. Data col-
lected from a single institution or a limited set of geographically similar institu-
tions may not capture the full spectrum of variability encountered globally or
even nationally, leading to models that are geographically brittle (Zech et al.,
2018). Multi-center studies frequently reveal performance drops when mod-
els are tested on external validation cohorts from unseen hospitals (DeGrave
et al., 2021).

5. Temporal Shifts (Concept Drift): Over time, changes can occur in medical
knowledge, diagnostic criteria, treatment protocols, equipment upgrades, and
patient demographics. A model deployed today might see its performance
degrade over months or years as the underlying data distributions gradually
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evolve, a phenomenon known as concept drift or model drift (Gama et al.,
2014). This necessitates continuous monitoring and periodic retraining or
updating of clinical AI models.

The consequences of these domain shifts are profound for the clinical translation of
medical AI. Unreliable OOD performance erodes clinician trust, poses risks of mis-
diagnosis or biased assessments (potentially leading to patient harm), and can ex-
acerbate health disparities if models perform differently across demographic groups
(Finlayson et al., 2021). Furthermore, the need for extensive site-specific recalibra-
tion or retraining for each new deployment environment is costly and impractical,
hindering scalability. Regulatory bodies like the U.S. Food and Drug Administration
(FDA) and the European Medicines Agency (EMA) are increasingly emphasizing
the need for robust validation of AI/ML-based medical devices on diverse datasets
that reflect real-world variability (U.S. Food and Drug Administration, 2023).

It is important to distinguish domain generalization from the closely related problem
of domain adaptation (DA). In DA, some data (labeled or unlabeled) from the
target domain(s) is assumed to be available during the training or fine-tuning phase,
allowing the model to adapt (Wang and Deng, 2018). In contrast, domain general-
ization, the focus of this thesis, addresses the more challenging scenario where the
model must perform well on unseen target domains without any prior exposure to
their data.

Addressing the OOD generalization challenge is therefore not merely an academic
exercise but a critical prerequisite for realizing the full societal and clinical benefits
of AI in medicine. This thesis contributes to this endeavor by evaluating specific
algorithmic and data-centric strategies designed to enhance the robustness of deep
learning models against domain shifts prevalent in medical imaging..

2.3 Approaches to Out-of-Distribution Generalization

Given the critical challenges posed by domain shifts in medical AI, as detailed in
Section 2.2, a significant body of research has been dedicated to developing methods
that enhance Out-of-Distribution (OOD) generalization. These approaches can be
broadly categorized based on where they intervene in the learning process: data-
centric strategies that manipulate or augment the input data, model-centric strate-
gies that modify the model architecture or learning objective, and learning strategy-
centric approaches such as meta-learning or ensembling (Wang et al., 2023; Zhou
et al., 2023). This thesis primarily investigates a model-centric approach (HYPO)
and data-centric techniques (specific augmentations detailed in Section 2.4).

Empirical Risk Minimization (ERM) as a Baseline

The most fundamental approach to machine learning is Empirical Risk Minimization
(ERM) (Vapnik, 1992). ERM aims to learn a model by minimizing the average loss
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(empirical risk) on the observed training data, assuming that this data is represen-
tative of the test distribution. While often effective when training and test data are
identically distributed, ERM can struggle with OOD generalization. Models trained
via ERM may learn spurious correlations present only in the source domains, which
do not hold in unseen target domains, leading to poor performance (Arjovsky et al.,
2019). Consequently, ERM serves as a crucial baseline against which more sophis-
ticated OOD generalization methods are compared.

Overview of Domain Generalization Strategies

Beyond ERM, numerous strategies have been developed to explicitly tackle OOD
generalization. Some prominent categories include:

• Domain-Invariant Feature Learning: These methods aim to learn fea-
ture representations that are common across different domains, effectively fac-
toring out domain-specific information while retaining task-relevant signals.
Techniques include minimizing domain discrepancies using metrics like Maxi-
mum Mean Discrepancy (MMD) (Gretton et al., 2012), employing adversarial
training to make features indistinguishable to a domain classifier (inspired by
methods like DANN (Ganin et al., 2016)), or using contrastive learning to pull
representations from the same class across different domains closer (Motiian
et al., 2017).

• Meta-Learning for Domain Generalization: Meta-learning, or ”learn-
ing to learn,” approaches simulate domain shifts during training by splitting
source domains into meta-train and meta-test sets. The goal is to learn an
optimization procedure or model initialization that quickly adapts or general-
izes to new, unseen domains (Li et al., 2018). Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017) and its variants have been explored in this context.

• Ensemble Methods: Combining predictions from multiple diverse models
(an ensemble) can often lead to improved robustness and generalization com-
pared to a single model. Diversity can be achieved by training models with
different initializations, architectures, subsets of data, or even different learn-
ing algorithms (Lakshminarayanan et al., 2017).

• Data Augmentation and Generation: While ERM trains on the original
data, data augmentation enriches the training set with synthetically modified
samples. This can expose the model to a wider range of variations, potentially
improving its robustness. General augmentation techniques are widely used,
and more advanced strategies aim to generate OOD-like samples or specifically
target robustness. This category, particularly targeted augmentation, is a key
focus of this thesis and will be elaborated upon in Section 2.4.
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Focus on Hyperspherical Embeddings: The HYPO Algorithm

Among model-centric approaches that aim to learn robust feature representations,
methods leveraging hyperspherical geometry have gained attention. This thesis
specifically evaluates the HYPO algorithm (Lee et al., 2024). The core idea behind
such approaches is to constrain learned features to lie on a hypersphere, promoting
desirable geometric properties in the embedding space.

The rationale for using hyperspherical embeddings for OOD generalization stems
from several potential benefits:

• Enhanced Discriminability: By normalizing feature magnitudes, hyper-
spherical learning focuses on the angular separation between class features.
This can lead to larger angular margins between classes, potentially making
the decision boundaries more robust to OOD perturbations that might other-
wise shift features across them (Liu et al., 2017).

• Feature Compactness and Uniformity: Some hyperspherical methods
encourage features of the same class to form tight, compact clusters on the
hypersphere, while ensuring that different class clusters are well-separated and
that features are somewhat uniformly distributed, preventing collapse and
improving representation quality (Wang et al., 2018; Deng et al., 2019).

• Reduced Sensitivity to Magnitude Variations: Domain shifts can some-
times manifest as changes in feature magnitudes. By projecting features onto
a hypersphere, the model might become less sensitive to such variations, fo-
cusing instead on the intrinsic directional information of the features.

Figure 5: Illustration of hyperspheri-
cal embeddings. Reproduced fromLee
et al. (2024). Subpanel images are
from the PACS dataset (Li et al.,
2017).

The HYPO algorithm, as presented by Lee
et al. (2024), specifically improves OOD
generalization by guiding its hyperspherical
learning algorithm with principles of intra-
class variation reduction and inter-class sep-
aration maximization. This ensures that
features from the same class, even across dif-
ferent training domains, are closely aligned
with their respective class prototypes on the
hypersphere, while the prototypes of differ-
ent classes are pushed to be maximally sep-
arated. This prototypical learning objective
is designed to learn domain-invariant repre-
sentations and is theoretically justified by
the authors to improve the OOD general-
ization bound. It combines a standard clas-
sification loss with regularization terms that
enforce these geometric properties in the hy-
perspherical feature space. The original work demonstrated HYPO’s effectiveness
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on several OOD benchmark datasets, suggesting its potential for enhancing model
robustness.

Given its recent proposal and focus on learning geometrically robust representations
for OOD generalization, HYPO was selected as a representative advanced model-
centric technique for evaluation in this thesis. Its performance will be compared
against ERM baseline and data-centric augmentation strategies to understand its
relative benefits and interactions in the context of medical image analysis.

While model-centric approaches like HYPO offer promising avenues for improving
intrinsic model robustness, they can often be complemented by data-centric strate-
gies. The next section will delve into data augmentation techniques, which form
another critical pillar of the investigations in this thesis.

2.3.1 The HYPO Algorithm: Hyperspherical Learning for OOD Gener-
alization

A promising model-centric approach that has recently emerged is the HYPO (HY-
Perspherical Out-of-Distribution Generalization) algorithm, introduced by Lee et al.
(2024). This method directly addresses the challenge of learning representations that
are robust to domain shifts by leveraging the geometric properties of hyperspherical
spaces. The development of HYPO is motivated by theoretical insights suggesting
that OOD generalization performance is intrinsically linked to two key properties of
the learned feature space: intra-class variation and inter-class separation (Lee et al.,
2024).

• Intra-class variation, V (ϕ,E), quantifies the stability of a feature represen-
tation ϕ for samples of the same class across different domains e, e′ within a
set of environments E. Low intra-class variation implies that features for a
given class remain consistent despite domain changes.

• Inter-class separation, I(ϕ,E), measures the discriminability of features
from different classes within any given domain in E. High inter-class separa-
tion ensures that classes are clearly distinguishable.

While these properties were theoretically linked to OOD generalization, Lee et al.
(2024) note that a practical learning algorithm directly optimizing for them with
accompanying theoretical guarantees was previously an open area.

The core idea of HYPO is to learn domain-invariant feature representations by shap-
ing the embedding space to reside on a unit hypersphere (i.e., ||z||2 = 1 for a feature
embedding z). Within this hyperspherical space, HYPO’s learning algorithm is ex-
plicitly guided by the principles of minimizing intra-class variation and maximizing
inter-class separation. Specifically, it aims to ensure that feature embeddings from
the same class, irrespective of their originating training domain within the available
environments (Eavail), are closely aligned with a common class prototype on the
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hypersphere. Concurrently, the prototypes representing different classes are pushed
to be maximally distant from each other (Lee et al., 2024).

Methodologically, HYPO processes input samples x with corresponding labels y
(for a finite set of classes Y ) and learns a feature extractor ϕ that produces these
normalized embeddings z = ϕ(x). The optimization is driven by a loss function
comprising two main components:

1. Lvar: A variation loss term designed to reduce intra-class variation by en-
couraging sample embeddings to be close to their respective class prototypes
within the hyperspherical space.

2. Lsep: A separation loss term aimed at increasing inter-class separation by
maximizing the distance between different class prototypes on the hypersphere.

By minimizing the combined loss LHY PO = Lvar + λLsep (where λ is a weighting
factor), the algorithm directly promotes the desired geometric configuration of fea-
tures. This approach of shaping the embedding geometry around class prototypes
is intended to lead to smaller distribution discrepancies across domains, thereby
benefiting OOD generalization (Lee et al., 2024).

A significant aspect of the HYPO framework is its theoretical justification. Lee et al.
(2024) provide formal arguments demonstrating how their prototypical learning ob-
jective improves OOD generalization bounds. Their Theorem 6.1 (Appendix C.1 in
their work) establishes that training with the proposed loss function, by aligning
samples with class prototypes, effectively upper-bounds the supremum intra-class
variation (Vsup). This Vsup is identified in their Theorem 3.1 as a key quantity de-
termining the general upper bound on OOD generalization error. The HYPO loss
directly minimizes a term ϵ that quantifies how well sample embeddings align with
their class prototypes, thus tightening this bound. The theory also underscores the
necessity of adequate inter-class separation for achieving OOD learnability. The re-
lationship between training domains (Eavail) and the broader set of all potential test
environments (Eall) is characterized using an ”expansion function,” which quantifies
the potential increase in variation from Eavail to Eall and influences the learnability
of an OOD problem (Lee et al., 2024).

Empirically, HYPO was evaluated on several standard OOD and domain generaliza-
tion benchmarks, including corrupted versions of CIFAR-10 (e.g., CIFAR-10-C with
Gaussian noise) and multi-domain datasets like PACS, Office-Home, and VLCS, of-
ten using ResNet architectures. The results reported by Lee et al. (2024) indicate
that HYPO often significantly improves OOD generalization performance compared
to ERM and other baselines. For instance, it demonstrated substantial accuracy
gains on CIFAR-10-C and achieved competitive or superior performance on domain
generalization tasks like PACS. The authors also noted that HYPO’s performance
could be further enhanced when combined with specialized optimization techniques
such as Stochastic Weight Averaging Densely (SWAD). Importantly, their empirical
analysis corroborated the theoretical claims by showing a significant reduction in



2 BACKGROUND AND LITERATURE REVIEW 15

average intra-class variation in practice, and ablation studies confirmed the benefit
of the inter-class separation loss component (Lee et al., 2024).

While other methods have explored hyperspherical embeddings (e.g., for face recog-
nition (Liu et al., 2017; Deng et al., 2019)) or contrastive learning in various contexts
(e.g., CIDER (Ming et al., 2023)), Lee et al. (2024) position their contribution in pro-
viding a direct theoretical linkage between their specific hyperspherical prototypical
learning approach, the reduction of intra-class variation, and improved OOD gen-
eralization bounds. This distinguishes HYPO from methods that primarily aim to
make feature distributions indistinguishable using discriminative classifiers or those
that lack such formal OOD generalization guarantees.

However, the authors of HYPO also acknowledge limitations. Generalization to en-
tirely arbitrary OOD scenarios remains an unsolved problem, and theoretical bounds
depend on the nature of the distribution shift (e.g., the expansion function). The
HYPO framework, with its reliance on class prototypes, is primarily presented for
multi-class classification where the marginal label distribution P (Y ) is assumed to
be consistent between training and testing. Significant shifts in the conditional
distributions P (X|Y ) that drastically alter class appearance (e.g., photo-to-sketch
transformations) might pose challenges for prototype-based methods (Lee et al.,
2024).

Given its strong theoretical underpinnings related to intra-class variation and inter-
class separation on the hypersphere, and its promising empirical performance on
OOD benchmarks, HYPO is selected in this thesis as a key advanced algorithm
for evaluation. Its study in the specific context of medical histopathology, with its
unique domain shift characteristics, is expected to provide valuable insights.

While model-centric approaches like HYPO offer promising avenues for improving
intrinsic model robustness, they can often be complemented by data-centric strate-
gies. The next section will delve into data augmentation techniques, which form
another critical pillar of the investigations in this thesis.

2.4 Data Augmentation for Enhanced Generalization and
Robustness

Beyond modifying model architectures or learning objectives, data-centric approaches,
particularly data augmentation, play a pivotal role in improving the generalization
capabilities and robustness of deep learning models (Shorten and Khoshgoftaar,
2019). Data augmentation artificially expands the training dataset by creating mod-
ified copies of existing data or synthesizing new data instances. By exposing the
model to a wider and more diverse range of training examples, augmentation helps
it learn more invariant features, reduce overfitting to the original training set, and
improve its performance on unseen data, including OOD samples.
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Standard Data Augmentation Techniques

A variety of standard data augmentation techniques are commonly employed, espe-
cially in computer vision tasks. These can be broadly categorized:

• Geometric Transformations: These alter the spatial properties of images
and include operations such as rotations, random scaling, translations, hor-
izontal or vertical flipping, and random cropping. They aim to make the
model invariant to changes in object position, orientation, and scale (Taylor
and Nitschke, 2018).

• Color Space Transformations: These modify the pixel intensities and color
characteristics of images. Common techniques include adjusting brightness,
contrast, saturation, and hue, or adding random noise (e.g., Gaussian noise).
These help the model become less sensitive to variations in lighting conditions
and color distributions.

• Other Deformations and Corruptions: Techniques like elastic deforma-
tions, cutout/random erasing (occluding parts of an image), or applying vari-
ous types of blur are also used to simulate different types of image degradations
or variations.

While widely adopted and often beneficial, these generic augmentations may not
always capture the full complexity or specific nature of variations encountered in
specialized domains like medical imaging. Their effectiveness can be limited when
domain shifts are characterized by artifacts or structural changes not well repre-
sented by simple geometric or color transformations.

Advanced Augmentation Frameworks: AugMix

To address the need for more diverse and effective augmentations that can improve
robustness against unforeseen data shifts, advanced frameworks like AugMix have
been proposed by Hendrycks et al. (2020). AugMix is a data processing technique
designed to enhance the resilience and uncertainty estimation of image classifiers.
It achieves this by creating augmented training samples that are significantly more
varied and corrupted compared to standard augmentation methods, thereby pushing
the model to learn more robust and invariant features.

The core technical pipeline for generating an AugMix image (xaugmix) from an origi-
nal input image (xorig) involves applying chains of simple augmentation operations,
mixing the results of these chains using weights sampled from a Dirichlet distribu-
tion, and then mixing that composite image with the original using a weight sampled
from a Beta distribution. This process is illustrated in Figure 6.

A critical component of the original AugMix method, beyond the data transfor-
mation itself, is the use of a Jensen-Shannon Divergence (JSD) consistency
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Figure 6: The AugMix data-augmentation pipeline. Briefly, AugMix generates mul-
tiple augmented variants of an image, mixes them with random convex weights, and
then blends the result with the original input to improve robustness. Figure adapted
directly from Hendrycks et al. (2020), Figure 4.

loss during training. This loss encourages the model to produce consistent predic-
tions across diverse augmentations of the same input image. The total loss function
is a combination of the standard classification loss and this JSD consistency loss,
weighted by a hyperparameter λ:

Ltotal = Lclass(pθ(y|xorig), ytrue)

+ λ · JSD
(
pθ(y|xorig) ||

pθ(y|xaug1) + pθ(y|xaug2)

2

)
(1)

It is important to note that while the JSD loss is a core component of the original
AugMix method, the experiments in this thesis primarily investigate the impact of
the data processing and mixing pipeline itself. Therefore, this additional consistency
loss term is not used in our implementations of AugMix-based strategies, allowing
for a focused evaluation of the data transformation’s effect.

While AugMix typically employs a set of general-purpose augmentation operations,
its underlying framework for mixing is flexible. This flexibility is key to the MedAug-
mix strategy proposed in this thesis, where the set of base augmentations is replaced
with targeted MedMNIST-C corruptions.

Targeted Augmentations and Benchmarks: MedMNIST-C

Recognizing that the nature of image variations and corruptions in medical imaging
is often distinct from that in natural images, there has been a growing empha-
sis on developing targeted augmentation techniques and evaluation benchmarks.



2 BACKGROUND AND LITERATURE REVIEW 18

Generic augmentations may not adequately simulate realistic medical artifacts (e.g.,
scanner-specific noise, patient movement, staining irregularities) or crucial biologi-
cal variability, thereby limiting their effectiveness in preparing models for real-world
clinical data.

A significant step in addressing this gap was the introduction of MedMNIST-C by
Di Salvo et al. (2024). This work presents a comprehensive benchmark and an ac-
companying Python library designed to simulate realistic image corruptions tailored
for medical imaging tasks. The motivation behind MedMNIST-C is to fill a critical
void in the medical imaging field, analogous to what ImageNet-C (Hendrycks and
Dietterich, 2019) provides for the natural image domain: a standardized method to
assess algorithmic robustness to common, realistic image corruptions across diverse
modalities and applications. MedMNIST-C is explicitly inspired by the MedMNIST
(Yang et al., 2023) APIs and the ImageNet-C repository, focusing on corruption
robustness.

Technically, MedMNIST-C is built upon the MedMNIST+ collection, which com-
prises 12 2D datasets spanning 9 different imaging modalities. The corruptions
defined in MedMNIST-C are applied to the test sets of these MedMNIST+ datasets
(Di Salvo et al., 2024). A key aspect of its design is the structured categorization of
corruptions and the use of domain knowledge to ensure their clinical relevance:

• Corruption Categories: The corruptions are organized into five main cat-
egories: digital, noise, blur, color, and task-specific, allowing for a nuanced
evaluation of model performance against different types of potential real-world
artifacts.

• Modality-Specific Examples:

– Digital Corruptions: Applied broadly, these include JPEG compression
and a pixelate corruption designed to mimic the effect of upsampling
low-resolution images.

– Pathology and Blood Microscopy (Highly relevant to this thesis): Cor-
ruptions include simulated stain deposits and air bubbles, as well as
defocus and motion blur from image acquisition. Variations in bright-
ness, contrast, and saturation due to differing illumination and scanner
conditions are also incorporated.

– Chest X-Ray and Abdominal CT: Includes brightness/contrast variations,
Gaussian blur, various noise types common in X-ray imaging (Gaussian,
speckle, impulse, shot noise), and gamma correction.

– Dermatoscopy: Features noise artifacts (Gaussian, speckle, impulse, shot),
blurring effects (defocus, motion, zoom), color-based artifacts (brightness,
contrast), and task-specific artifacts like black corners from the dermato-
scope and characters from camera overlays.
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Visual examples of these corruptions applied to datasets like PathMNIST,
ChestMNIST, and DermaMNIST are provided in the original work (Di Salvo
et al., 2024).

• Severity Levels: Crucially, following established benchmarking practices,
each corruption is applied at five varying severity levels. This technical nuance
allows researchers to measure the gradual degradation of model performance
as corruptions intensify and to better understand model breaking points.

(a) Corruptions applied to a sample from BloodMNIST or PathMNIST (Microscopy).

(b) Corruptions applied to a sample from ChestMNIST (Chest X-Ray).

(c) Corruptions applied to a sample from RetinaMNIST (Retinal Fundus Image).

Figure 7: Visual examples of targeted medical corruptions from the MedMNIST-C
framework. For each modality, an original image (left) is shown alongside several
corrupted versions. Images sourced from the MedMNIST-C project GitHub reposi-
tory (Di Salvo et al., 2024).

The MedMNIST-C benchmark and its associated open-source Python library facil-
itate the systematic assessment of algorithm robustness and, importantly, provide
the tools to utilize the defined corruptions as data augmentation techniques during
training. A key finding presented by Di Salvo et al. (2024) is the significant perfor-
mance advantage gained by embedding domain knowledge into data augmentation
strategies for improving model robustness against these specific corruptions.

Beyond benchmarking, the corruptions defined in MedMNIST-C are directly rele-
vant to developing more robust models.

In essence, MedMNIST-C provides a much-needed, structured platform for evalu-
ating and improving model robustness to common, realistic image corruptions. Its
technical design, incorporating categorized and severity-scaled corruptions, offers
a nuanced tool for researchers to both identify weaknesses in current models and
rigorously test methods aimed at enhancing clinical reliability. The principles of ad-
vanced augmentation frameworks like AugMix and targeted corruption libraries like
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MedMNIST-C form a crucial basis for the novel strategy proposed and evaluated in
this thesis, whose detailed methodology will be presented in Section 3.

2.4.1 The WILDS Camelyon17 Dataset

A cornerstone of this thesis is the rigorous evaluation of OOD generalization strate-
gies on a challenging and clinically relevant benchmark. For this purpose, the
Camelyon17-wilds dataset, part of the WILDS (Workshops and Benchmarks on
In-the-Wild Distribution Shifts) collection (Koh et al., 2021), was selected. The
WILDS project curates datasets specifically designed to facilitate research and stan-
dardized evaluation of machine learning models under realistic distribution shifts.

The Camelyon17-wilds dataset is a patch-based variant derived from the original
CAMELYON17 challenge (Bandi et al., 2019), which itself built upon data from
the earlier CAMELYON16 challenge (Bejnordi et al., 2017). The original CAME-
LYON17 challenge focused on analyzing histological whole-slide images (WSIs) of
lymph nodes from breast cancer patients, collected from five different medical centers
(hospitals) in the Netherlands. The domains within the Camelyon17-wilds dataset
directly correspond to these five hospitals.

The primary task in the Camelyon17-wilds benchmark is a lesion-level binary clas-
sification problem: to predict whether a given 96x96 pixel image patch, extracted
from a WSI, contains tumor tissue (Koh et al., 2021). More specifically, the la-
bel pertains to whether the central 32x32 pixel region of the patch contains tumor
cells. The dataset comprises approximately 455,954 such patches extracted from 50
WSIs, which were originally annotated by pathologists. A key characteristic of the
dataset splits (training, validation, and test sets) provided by WILDS is that they
are class-balanced, containing an equal number of positive (tumor) and negative
(normal) examples (Koh et al., 2021). Metadata, including the source WSI (slide)
and hospital ID (domain identifier), is available for each patch.

The critical distribution shift addressed by Camelyon17-wilds is the inter-hospital
variation. The WILDS framework structures the dataset such that the training
set includes data from a subset of these hospitals, while the OOD validation and
test sets include data from hospitals not seen during training. This setup directly
simulates the real-world scenario of deploying a model in a new clinical environment.
The sources of this inter-hospital variation are multifaceted and include (Koh et al.,
2021):

• Differences in patient populations across institutions.

• Variations in histopathological slide preparation, particularly staining pro-
tocols (e.g., H&E). Staining differences are noted as a major source of visual
dissimilarity in such datasets and present a significant challenge for model
generalization.

• Discrepancies in image acquisition protocols and digital slide scanning
equipment used at the different medical centers.
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The OOD test hospital in the WILDS setup was specifically chosen because its
patches were visually distinct, emphasizing the impact of domain shift on model
performance (Koh et al., 2021). Consequently, Camelyon17-wilds serves as a con-
trolled and challenging testbed for methods aiming to learn robustness to these
common variations.

Figure 8: Example image patches from the WILDS Camelyon17 dataset, illustrating
visual differences between (a) a training hospital domain and (b) an unseen OOD
hospital domain. Note the variations in staining and appearance. (Figure adapted
from Koh et al. (2021))

Models are evaluated on Camelyon17-wilds using average accuracy, which is an
appropriate metric given the class-balanced nature of the dataset splits (Koh et al.,
2021). Baseline Empirical Risk Minimization (ERM) models typically exhibit a
substantial performance gap between in-distribution (ID) and OOD settings. For
instance, Koh et al. (2021) report ERM achieving high ID accuracy on training
hospital data (e.g., 98.7%) but significantly lower OOD test accuracy (e.g., 70.3%),
highlighting the severity of the generalization challenge. The availability of train-
ing data from multiple distinct hospital domains within Camelyon17-wilds allows
algorithms the opportunity to learn representations that are more robust to these
variations.

The Camelyon17-wilds benchmark setup is distinct from some previous uses of
CAMELYON data. For example, Tellez et al. (2018) explored scenarios using data
from only one hospital for training, whereas Camelyon17-wilds leverages multiple
training hospitals. Similarly, the PCam dataset (Veeling et al., 2018), based on the
earlier CAMELYON16 challenge, primarily involved data from two hospitals. The
specific multi-domain training and disjoint OOD test structure of Camelyon17-wilds
makes it particularly well-suited for the domain generalization research pursued in
this thesis.
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Given its clinical relevance, well-defined OOD generalization problem based on real-
world inter-hospital variations, and standardized evaluation protocol, the Camelyon17-
wilds dataset provides an ideal platform for the investigations conducted in this
work.

2.4.2 The Fitzpatrick17k Dataset

To test the generalizability of findings in a different medical domain, the Fitz-
patrick17k dataset was used as a secondary benchmark. This dataset facilitates
research into the critical challenge of model fairness and robustness in dermatology
(Groh et al., 2021).

Dataset Content and Task: Fitzpatrick17k is designed for fine-grained skin
disease classification. It is composed of 16,577 clinical photographs sourced from
two public dermatology atlases: DermaAmin and Atlas Dermatologico. The primary
task is to classify an image into one of 114 distinct skin disease categories, which
range from common benign lesions to malignant cancers. For broader analysis, the
dataset also provides labels for coarser groupings of these conditions into 9 mid-
level and 3 high-level (benign, malignant, non-neoplastic) categories. Each image is
annotated with a disease label and a Fitzpatrick skin type (1–6), a scale used
to classify human skin color based on its response to UV light.

Figure 9: The Fitzpatrick scale, a widely used numerical classification scheme for
human skin phototypes based on their response to sun exposure. The scale ranges
from Type I (very fair) to Type VI (deeply pigmented). Image adapted from Alipour
et al. (Alipour et al., 2024).

Skin-Tone Imbalance: The principal Out-of-Distribution (OOD) challenge within
the Fitzpatrick17k dataset stems from a significant skin-tone imbalance. The
dataset is skewed towards lighter skin types, with approximately 7,755 images of
Fitzpatrick types 1-2 and 6,089 of types 3-4, but only 2,168 images of darker skin
types 5-6. This distribution reflects a common bias in medical data collection. It
creates a critical fairness and robustness challenge, where models trained predom-
inantly on images of lighter-skinned individuals may underperform when deployed
on underrepresented populations with darker skin tones.
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Dataset Splits and Evaluation: For the OOD evaluation in this thesis, the
dataset was split by skin tone: models were trained on images corresponding to
Fitzpatrick types 1 through 4, and subsequently tested on the OOD set composed
of images from types 5 and 6. The primary evaluation metric reported for this
dataset is balanced accuracy across the 3 higher level classes, which appropriately
accounts for potential class imbalance within the dataset splits.

2.4.3 Backbone Model Architectures

To evaluate the different Out-of-Distribution (OOD) generalization strategies inves-
tigated in this thesis, two widely adopted and powerful Convolutional Neural Net-
work (CNN) architectures were selected as backbones: ResNet50 and DenseNet121.
These models are frequently employed in medical image analysis tasks due to their
strong performance capabilities and the common availability of weights pre-trained
on large-scale natural image datasets, which facilitates transfer learning. For all ex-
periments conducted in this study, both ResNet50 and DenseNet121 models were ini-
tialized with weights pre-trained on the ImageNet dataset (Deng et al., 2009). This
standard practice allows the models to leverage foundational visual features learned
from a diverse dataset, often leading to improved performance and faster conver-
gence on more specialized medical imaging tasks with potentially smaller datasets.

• ResNet50: The Residual Network (ResNet) architecture, introduced by He
et al. (2016), marked a significant breakthrough in deep learning by enabling
the effective training of substantially deeper neural networks than was previ-
ously feasible. The core innovation of ResNets is the ”residual block,” which
incorporates skip connections or shortcuts. These connections allow the net-
work to learn residual functions with reference to the layer inputs, essentially
allowing gradients to bypass layers if an identity mapping is optimal for that
block. This mechanism mitigates the vanishing gradient problem in very deep
networks. The ResNet50 variant, which comprises 50 layers, has become a de
facto standard in computer vision and is frequently used as a strong baseline
in medical imaging research due to its excellent balance of representational
capacity and computational demand. It was chosen for this thesis to represent
a well-established, high-performing architectural paradigm.

• DenseNet121: Densely Connected Convolutional Networks (DenseNets), pro-
posed by Huang et al. (2017), offer an alternative architectural design aimed at
improving information flow and gradient propagation throughout the network.
In a DenseNet, each layer within a ”dense block” receives direct connections
from all preceding layers in that block, and its own feature maps are passed
on to all subsequent layers. This dense connectivity encourages substantial
feature reuse, reduces the number of parameters (often leading to higher pa-
rameter efficiency compared to ResNets of similar depth), and can alleviate the
vanishing gradient problem. DenseNet121, a 121-layer variant, is known for its
strong performance across various benchmarks. It was selected for this thesis
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to provide an evaluation on a distinct architectural design, allowing for an
assessment of whether the observed OOD generalization effects are consistent
across different types of deep CNNs.

By employing these two different yet powerful CNN architectures, this thesis aims
to draw more robust and generalizable conclusions regarding the effectiveness of the
evaluated OOD generalization strategies and data augmentation techniques. The
consistent performance (or lack thereof) of a method across these diverse backbones
can lend greater credibility to the findings.

2.5 Evaluation Metrics for OOD Generalization

To provide a comprehensive and fair assessment of model performance, particularly
for Out-of-Distribution (OOD) generalization, a carefully chosen suite of metrics
was employed. The primary metric was tailored to the specific characteristics of
each benchmark dataset to ensure a meaningful evaluation.

Primary Performance Metrics: For the WILDS Camelyon17 dataset, a
class-balanced binary classification task, standard Accuracy was used as the pri-
mary performance indicator. For the Fitzpatrick17k dataset, which for this study
involves a high-level 3-class classification task (benign, malignant, and non-neoplastic)
with inherent class imbalance, Balanced Accuracy was chosen as the primary
metric. Balanced accuracy, defined as the average of recall obtained on each class,
provides a more robust measure of performance on imbalanced multi-class problems.

OOD Evaluation Framework: A consistent framework was used to evaluate
OOD generalization across both datasets. The process was designed to simulate a
realistic model development and deployment scenario:

1. Model Selection: During training, model performance was monitored on an
In-Distribution (ID) validation set. The single model checkpoint that achieved
the highest performance (highest Accuracy for Camelyon17, or highest Bal-
anced Accuracy for Fitzpatrick17k) on this ID validation set was selected as
the ”best” model for evaluation.

2. OOD Performance Measurement: This selected ”best” model checkpoint
was then evaluated on the completely unseen Out-of-Distribution (OOD) test
set. Its performance on this OOD set is the primary metric we report for
practical OOD generalization.

3. Generalization Gap Calculation: To quantify how well a model’s perfor-
mance translates from familiar to unfamiliar data, we calculated the ”gener-
alization gap.” This is the simple difference between the model’s peak per-
formance on the ID validation set and its corresponding performance on the
OOD test set.
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Statistical Robustness and Reporting To ensure the reliability of our findings,
all experiments were conducted three times using distinct random seeds (0, 1, and 2).
All reported performance values in the results section are the mean and standard
deviation across these three runs. While the discussion focuses on the key metrics
described above, the detailed results tables in Section 4 also report other supporting
metrics, such as the absolute best OOD performance achieved at any point during
training.

3 Methodology

This chapter details the comprehensive methodology designed to systematically eval-
uate strategies for enhancing Out-of-Distribution (OOD) generalization in medical
imaging. The experimental framework was constructed to directly address the re-
search questions outlined in Section 1.2.

3.1 Experimental Design Overview

The core of this research is a comparative benchmark designed to assess the effec-
tiveness of different approaches to improving OOD robustness. To ensure that our
findings are not limited to a single type of domain shift, the evaluation framework
is built upon two distinct and challenging medical imaging benchmarks:

1. WILDS Camelyon17: A histopathology dataset used to evaluate generaliza-
tion across different hospitals, representing a domain shift caused by variations
in lab protocols, staining, and scanners.

2. Fitzpatrick17k: A dermatology dataset used to evaluate generalization across
different patient demographics, representing a domain shift caused by biases
in skin tone representation.

Within this dual-dataset framework, we benchmarked two primary categories of
OOD generalization strategies against a standard baseline. These strategies are:

• Algorithmic Strategies: This involves comparing the performance of stan-
dard Empirical Risk Minimization (ERM) against a specialized represen-
tation learning algorithm, HYPO, which is designed to learn a more robust
feature space.

• Data-Centric Strategies: This involves evaluating the impact of various
data augmentation techniques applied during training. These include a ba-
sic application of targeted medical corruptions, the standard (Plain) AugMix
method, and our proposed novel strategy, MedAugmix, which tailors the
AugMix pipeline with targeted medical image corruptions.
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By systematically applying these strategies to both datasets and evaluating them
with a consistent protocol, this thesis aims to identify which approaches offer the
most significant and generalizable improvements in OOD performance. The subse-
quent sections of this chapter detail each component of this experimental design: the
benchmark datasets and their pre-processing (Section 3.2), the model architectures
and evaluation metrics (Section 2.5), the specific implementation of the training
strategies (Section 3.1), and the hardware and software setup (Section 3.4).

3.2 Benchmark Datasets

The experimental framework of this thesis is built upon two distinct and publicly
available medical imaging benchmarks. Each was chosen to represent a different,
clinically relevant type of Out-of-Distribution (OOD) challenge. By evaluating
methods against these disparate problems—one technical and process-based, the
other demographic and fairness-related—this thesis aims to derive more robust and
broadly applicable conclusions about OOD generalization in medical AI.

3.2.1 Primary Benchmark: WILDS Camelyon17 (Histopathology)

The primary benchmark for this study is the WILDS Camelyon17 dataset (Koh
et al., 2021). Sourced from the CAMELYON17 challenge, it consists of 96x96 pixel
histopathology image patches for a binary classification task: detecting metastatic
breast cancer in lymph node sections. The critical OOD challenge stems from inter-
hospital variability, as the dataset combines images from different medical centers
with variations in slide preparation, H&E staining protocols, and digital slide scan-
ning equipment. The standard WILDS evaluation protocol involves training on a
subset of hospitals and testing on data from an entirely unseen hospital. Due to
the class-balanced nature of the dataset splits, standard Accuracy is used as the
primary evaluation metric.

3.2.2 Secondary Benchmark: Fitzpatrick17k (Dermatology)

The secondary benchmark is the Fitzpatrick17k dataset (Groh et al., 2021), which
focuses on dermatology. It is composed of 16,577 clinical photographs which can
be categorized into 114 fine-grained disease classes. For the purposes of this the-
sis, we focus on a higher-level, 3-class classification task (benign, malignant, and
non-neoplastic). The principal OOD challenge arises from a significant skin tone
imbalance, where the dataset is skewed towards lighter skin types. For our evalu-
ation, models were trained on images of skin types 1-4 and tested on an OOD set of
underrepresented skin types 5-6. This setup creates a critical fairness and robustness
challenge. Given the multi-class nature of the task, Balanced Accuracy is used
as the primary evaluation metric.
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3.3 Model Setup

To create a consistent and fair benchmark for all evaluated strategies, a common
experimental setup was established for the model architectures and the protocol for
measuring success. This section outlines these core methodological components.

To create a consistent and fair benchmark for all evaluated strategies, a common
experimental setup was established for the model architectures. This section outlines
these core methodological components.

3.3.1 Model Configuration

The experiments utilized two standard backbone architectures, ResNet50 and
DenseNet121, with weights pre-trained on ImageNet, to serve as powerful fea-
ture extractors. A key aspect of our experimental design was the addition of a
common projection head to both backbones. This head, an MLP with two linear
layers, transformed the backbone features into a 128-dimensional embedding
space.

This common architecture allowed for a direct comparison of how different learn-
ing algorithms utilize this feature space. For the HYPO algorithm, these 128-
dimensional features were L2-normalized, as required by its hyperspherically-based
loss functions. For the ERM baseline, in a specific configuration designed for this
study, the standard Cross-Entropy loss was applied directly to the unnormalized
128-dimensional output of this same projection head. This unified model structure
ensures that performance differences can be more directly attributed to the learning
algorithms and augmentation strategies rather than disparate model architectures.
For fine-tuning, BatchNorm layers were frozen for ResNet50, while DenseNet121
was fine-tuned end-to-end.

subsectionTraining Algorithms and Strategies

This section details the core learning algorithms and specific data augmentation
strategies employed. To ensure fair comparisons, a consistent set of fundamental
training hyperparameters was used for all experiments, as summarized in Table 1.
Specific parameters for each algorithm are detailed in their respective subsections.

3.3.2 Empirical Risk Minimization (ERM) Baseline

Purpose The Empirical Risk Minimization (ERM) principle served as the stan-
dard baseline for all comparative evaluations.

Loss Function The training objective for ERM was to minimize the Binary
Cross-Entropy loss (torch.nn.CrossEntropyLoss). As detailed in Section 3.3,
this loss was applied to the 128-dimensional unnormalized output of the model’s
projection head.
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Table 1: Common Hyperparameters for All Training Runs.

Hyperparameter Value

Optimizer SGD (Nesterov momentum = 0.9)
Weight Decay 1e-4
Batch Size 384
Total Epochs 50
Initial Learning Rate 5e-4
Learning Rate Schedule Step decay: rate 0.1 at epochs 30 and 40
Learning Rate Warm-up 10 epochs (linear from 0.001 to 5e-4)

Optimization and Schedule The optimization process followed the common
protocol detailed in Table 1.

3.3.3 HYPO Implementation

Purpose The HYPO algorithm (Lee et al., 2024) was implemented as the ad-
vanced, model-centric strategy for improving OOD generalization by learning a ge-
ometrically structured feature space.

Loss Function The HYPO training objective is a composite loss that operates
on the L2-normalized 128-dimensional features from the model’s projection head. It
consists of two main components:

• Compactness Loss (LComp): Encourages features of the same class to clus-
ter tightly around their class-conditional prototype on the hypersphere.

• Dispersion Loss (LDis): Encourages the class prototypes to be maximally
separated from each other in the hyperspherical space.

The total loss for HYPO is a weighted sum of these two components:

LHYPO = w · LComp(f ; θ) + LDis(f ; θ)

where f represents the features and θ the model parameters.

Optimization and Schedule Optimization followed the common protocol de-
tailed in Table 1.

Key Hyperparameters: The HYPO loss function was governed by three key
algorithm-specific hyperparameters: the compactness weight w was set to 2.0, the
loss temperature was set to 0.1, and the prototype EMA momentum was set to 0.95.
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3.3.4 Data Augmentation Strategies

To investigate the impact of data-centric approaches on OOD generalization, four
distinct augmentation conditions were applied during model training. The strategies
ranged from a baseline control to advanced mixing techniques, including the novel
MedAugmix method proposed in this thesis. An overview of these strategies is
provided in Table 2. For all conditions, these augmentations were applied to the
training data only; validation and test sets consistently underwent only the basic
pre-processing steps of tensor conversion and normalization.

Table 2: Overview of Data Augmentation Strategies Evaluated.

Strategy Name Description
(Execution Identifier)

No Advanced Augmentation Serves as the control group. Models are trained with
only basic pre-processing (ToTensor and Normalize).

(baseline)

Basic MedMNIST-C Applies a single, randomly chosen targeted medical
corruption with a random severity to each image to
test simple targeted augmentation.

(medmnistc)

Standard AugMix Applies the generic torchvision.transforms.AugMix()
to benchmark against a standard advanced augmenta-
tion method.

(plain_augmix)

MedAugmix (Proposed) The novel strategy proposed in this thesis. Adapts the
AugMix pipeline to use a mixture of targeted medical
corruptions as its base operations.

(medmnist_c_augmix)

(a) No Advanced Augmentation (Baseline Control) To establish a direct
baseline performance for both ERM and HYPO without the influence of any ad-
vanced data augmentation.
Implementation: The data pipeline for this condition only included the fundamen-
tal pre-processing steps of converting images to PyTorch tensors and normalizing
them with ImageNet statistics.

(b) Basic MedMNIST-C Augmentations To assess the impact of applying
simple, individual targeted medical corruptions.

• Source of Corruptions: The transform was initialized with the set of cor-
ruptions defined for the ”bloodmnist” dataset for Camelyon17 experiments,
and the ”dermamnist” set for Fitzpatrick17k experiments.
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• Application: For each training image, this transform applies a single, ran-
domly selected MedMNIST-C corruption type from the source pool at a ran-
domly chosen severity level (from 1 to 5).

(c) Standard AugMix (Plain AugMix) To benchmark performance against a
standard, off-the-shelf advanced augmentation technique that uses generic, natural-
image-focused transformations.

• Parameters: The default parameters of the torchvision implementation were
used: operational severity of 3, mixture width (k) of 3, a random chain depth
of 1-3 operations, and an alpha of 1.0 for mixing.

• JSD Loss: Consistent with our other augmentation experiments, the Jensen-
Shannon Divergence (JSD) consistency loss was not used.

(d) MedAugmix (Proposed Novel Strategy) To evaluate a novel hybrid strat-
egy that combines the structural diversity of the AugMix pipeline with the domain
relevance of targeted medical corruptions.

• Base Operations: The augmentation operations used within the AugMix
chains were sourced from the MedMNIST-C corruption sets (”bloodmnist” for
Camelyon17, ”dermamnist” for Fitzpatrick17k). Specific corruptions known
to cause processing issues (e.g., ”MotionBlur,” ”ZoomBlur”) were excluded.

• Key Hyperparameters: The implementation was configured using the ex-
perimental arguments:

– Severity: All operations within a given experiment operated at a fixed
severity, controlled by args.augmix_severity (e.g., 3 or 5).

– Mixture Width (k): The number of parallel augmentation chains was
controlled by args.augmix_mixture_width (e.g., 1, 3, or 5).

– Chain Depth: A random depth of 1 to 3 MedMNIST-C operations was
applied per chain.

– Alpha: A value of 1.0 was used for the Dirichlet and Beta mixing distri-
butions.

• JSD Loss: The JSD consistency loss was not used for this strategy.

3.4 Experimental Runs and Hardware

We detail our experimental management and compute resources to ensure full re-
producibility.
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3.4.1 Reproducibility Protocol

• Configurations: ERM and HYPO × {No Augmentation, Basic MedMNIST-
C, MedCAugMix, Standard AugMix} × {ResNet50, DenseNet121}.

• Seeds: Each configuration executed with seeds {0, 1, 2}

• Execution Control: Managed via Bash scripts (e.g., run_missing_seeds.sh),
which fix all hyperparameters except seed.

• Reporting: Results are reported as mean ± standard deviation over the three
runs.

3.4.2 Hardware Specifications

Table 3: Compute Resources

GPU NVIDIA RTX A5000 (24 GB)
CPU Intel Core i7-13700 (13th Gen)
RAM 62 GB DDR4
Storage 1 TB NVMe SSD
OS Ubuntu 22.04 LTS

All training and evaluation runs use a single GPU (specified via args.gpu).

4 Experimental Results

This section presents the empirical findings from our experimental benchmark. We
first report the detailed results on the primary benchmark, WILDS Camelyon17, to
establish core performance trends. Subsequently, findings from the secondary bench-
mark, Fitzpatrick17k, are presented to assess the generalizability of these trends.

All quantitative results are reported as the mean and standard deviation across three
independent runs with different random seeds (0, 1, and 2). A detailed interpretation
and discussion of these findings will follow in Section 5.

4.1 Performance on Primary Benchmark (Camelyon17)

We begin our analysis with the results on the WILDS Camelyon17 dataset. This
section systematically evaluates the performance of the baseline algorithms and the
incremental impact of each data augmentation strategy.
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4.1.1 Baseline Performance: ERM vs. HYPO

First, we establish the foundational performance when training with no advanced
data augmentation. These results, shown in Table 4, reveal the inherent difficulty
of the OOD challenge and provide a direct comparison between Empirical Risk
Minimization (ERM) and the HYPO algorithm.

Table 4: Baseline OOD performance on Camelyon17 (Mean ± Std over 3 seeds).

Architecture Algorithm ID Val Acc OOD Test Acc Gap

DenseNet121 ERM 0.9147 ± 0.0015 0.8529 ± 0.0120 0.0618
HYPO 0.9158 ± 0.0132 0.8626 ± 0.0172 0.0532

ResNet50 ERM 0.9125 ± 0.0003 0.8211 ± 0.0101 0.0914
HYPO 0.9067 ± 0.0048 0.7735 ± 0.0563 0.1333

On the DenseNet121 architecture, the HYPO algorithm achieved a slightly higher
practical OOD performance than ERM, with a mean accuracy of 0.8626 compared
to ERM’s 0.8529. This suggests a modest benefit from HYPO’s representation
learning on this backbone. Interestingly, this trend reversed for the ResNet50 archi-
tecture, where ERM outperformed HYPO with a practical OOD accuracy of 0.8211
versus 0.7735, suggesting an architecture-dependent effect for these baseline algo-
rithms.

These initial results highlight the severity of the OOD challenge, as all configurations
exhibited substantial generalization gaps, ranging from approximately 0.05 to 0.13.
This establishes that without effective regularization, even specialized algorithms
struggle to generalize. Next, we will show how each augmentation strategy impacts
the performance and the generalization gaps reported above.

4.1.2 Impact of Basic MedMNIST-C Augmentations

The next set of experiments assessed the impact of a simple, targeted augmentation
strategy. For this condition, models were trained with ”Basic MedMNIST-C” aug-
mentations, which involved applying a single, randomly selected corruption from the
”bloodmnist” set with a random severity (1-5) to each training image, as detailed
in Section 3.3.4.

Table 5 presents the performance of ERM and HYPO when trained with this aug-
mentation strategy.

When comparing these results to the non-augmented baselines (Table 4), the effec-
tiveness of this basic augmentation strategy appears to be highly dependent on the
model architecture.

For the DenseNet121 architecture, this approach yielded modest benefits. As
shown by comparing Table 5 with the baseline results, ERM’s OOD accuracy in-
creased from 0.8529 to 0.8660. This improvement came with a reduction in the



4 EXPERIMENTAL RESULTS 33

Table 5: OOD Performance with Basic MedMNIST-C Augmentations on
Camelyon17-wilds (Mean ± Std over 3 seeds).

Architecture Algorithm ID Val Acc OOD Test Acc Gap

DenseNet121 ERM 0.9175 ± 0.0042 0.8660 ± 0.0385 0.0515
HYPO 0.9336 ± 0.0015 0.8701 ± 0.0304 0.0634

ResNet50 ERM 0.9123 ± 0.0009 0.8205 ± 0.0065 0.0918
HYPO 0.9071 ± 0.0086 0.7568 ± 0.0303 0.1504

Table 6: Comparison of OOD Accuracy with and without Basic MedMNIST-C
Augmentations.

Architecture Algorithm Baseline MedMNIST-C Change (∆)

DenseNet121 ERM 0.8529 0.8660 +0.0131
HYPO 0.8626 0.8701 +0.0075

ResNet50 ERM 0.8211 0.8205 -0.0006
HYPO 0.7735 0.7568 -0.0167

generalization gap, suggesting that DenseNet121 was able to leverage these simple
corruptions as a useful regularization signal. HYPO’s OOD accuracy also saw a
slight increase from 0.8626 to 0.8701, although its generalization gap widened, indi-
cating it improved more on in-distribution data than out-of-distribution data with
this strategy.

Conversely, for the ResNet50 architecture, this augmentation strategy offered no
benefits and was even detrimental in the case of HYPO. ERM’s OOD performance
remained static (0.8211 vs. 0.8205), while HYPO’s performance noticeably de-
creased from 0.7735 to 0.7568. This suggests that for a less inherently robust ar-
chitectural setup like ResNet50 in this context, the unstructured noise from single
random corruptions may have disrupted the feature learning process more than it
helped. It is plausible that for a sensitive algorithm like HYPO, which relies on
learning a precise geometric structure, this type of random noise can make it more
difficult to find stable and generalizable class prototypes.

These findings provide a key insight: simply applying random, targeted corruptions
is not a universally effective strategy. Its success is conditional on the underlying
model architecture’s capacity to handle such variations, which motivates the need
for more structured and powerful augmentation pipelines.

4.1.3 Impact of Standard AugMix (Plain AugMix)

Next, we evaluated the impact of a standard, generic advanced augmentation method,
”Plain AugMix.”
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Table 7: OOD Performance with Standard AugMix on Camelyon17-wilds (Mean ±
Std).

Architecture Algorithm ID Val Acc OOD Test Acc Gap

DenseNet121 ERM 0.9360 ± 0.0010 0.8791 ± 0.0076 0.0569
HYPO 0.9427 ± 0.0042 0.8655 ± 0.0131 0.0771

ResNet50 ERM 0.9338 ± 0.0007 0.8527 ± 0.0038 0.0811
HYPO 0.9460 ± 0.0022 0.7924 ± 0.0157 0.1536

To more clearly quantify the effect of this augmentation, Table 8 presents a direct
comparison of the OOD performance against the non-augmented baselines.

Table 8: Comparison of OOD Accuracy with and without Standard AugMix on
Camelyon17.

Architecture Algorithm Baseline AugMix Change (∆)

DenseNet121 ERM 0.8529 0.8791 +0.0262
HYPO 0.8626 0.8655 +0.0029

ResNet50 ERM 0.8211 0.8527 +0.0316
HYPO 0.7735 0.7924 +0.0189

The results show that applying Standard AugMix provided a significant and positive
impact, particularly for the ERM algorithm on both architectures. This suggests
that the data diversification from the AugMix processing pipeline acts as a powerful
regularizer, even when using generic, non-targeted augmentations.

This trend was most pronounced for ERM on the ResNet50 architecture, which saw
a substantial OOD accuracy improvement of +0.0316. ERM on DenseNet121 also
benefited significantly, with an increase of +0.0262. These gains highlight ERM’s
ability to effectively leverage the broad diversity introduced by the AugMix pipeline
to learn more robust features.

In contrast, the HYPO algorithm benefited much more modestly from this generic
augmentation. While its OOD accuracy did increase for both ResNet50 (+0.0189)
and DenseNet121 (+0.0029), the improvements were considerably smaller than those
seen with ERM. It is plausible that the non-targeted, sometimes ”unrealistic” trans-
formations from Standard AugMix do not align as well with HYPO’s objective of
learning a geometrically precise feature space based on class prototypes.

A key observation across both architectures is that ERM consistently outperformed
HYPO when this generic Plain AugMix strategy was applied. On ResNet50, ERM’s
OOD accuracy of 0.8527 was substantially higher than HYPO’s 0.7924. This result
reverses the performance hierarchy seen in the baseline condition for DenseNet121,
where ERM also surpassed HYPO (0.8791 vs. 0.8655). This further supports the
finding that a simpler learning algorithm like ERM can be made more effective for
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OOD generalization than a specialized algorithm, provided it is paired with a strong
and diverse data augmentation pipeline.

4.1.4 Performance of Proposed MedAugmix Strategy

The final and most critical set of experiments on the Camelyon17 benchmark eval-
uated the performance of the novel MedAugmix strategy. As detailed in the
methodology, this approach adapts the AugMix pipeline to use targeted MedMNIST-
C corruptions sourced from ”bloodmnist” as its base operations. The results for two
primary configurations of MedAugmix are presented in Table 9.

Table 9: OOD Performance with Proposed MedAugmix Strategy on Camelyon17-
wilds (Mean ± Std).

Arch Algo Config ID Val Acc OOD Test Acc Gap

DenseNet121 ERM 5 / 1 0.9334 ± 0.0009 0.9126 ± 0.0061 0.0208
HYPO 5 / 1 0.9341 ± 0.0031 0.8964 ± 0.0160 0.0377
ERM 3 / 5 0.9291 ± 0.0016 0.8883 ± 0.0059 0.0408
HYPO 3 / 5 0.9390 ± 0.0022 0.8758 ± 0.0226 0.0632

ResNet50 ERM 5 / 1 0.9265 ± 0.0022 0.8826 ± 0.0122 0.0439
HYPO 5 / 1 0.9245 ± 0.0049 0.8464 ± 0.0399 0.0781
ERM 3 / 5 0.9221 ± 0.0010 0.8528 ± 0.0088 0.0693
HYPO 3 / 5 0.9311 ± 0.0054 0.8094 ± 0.0204 0.1218

The application of MedAugmix yielded the best OOD generalization results ob-
served in this study. To precisely quantify this improvement, Table 10 compares the
performance of the best MedAugmix configuration (Severity 5, Width 1) against the
next best augmentation strategy for each algorithm (Standard AugMix for ERM,
and Basic MedMNIST-C for HYPO on DenseNet121).

As the results demonstrate, the proposed MedAugmix strategy is a significant step
forward. The top-performing configuration overall was ERM combined with
MedAugmix (Severity 5, Width 1) on the DenseNet121 architecture,
which achieved an OOD accuracy of 0.9126. As highlighted in Table 10, this rep-
resents a substantial improvement of +0.0335 over the next best strategy, Standard
AugMix. This MedAugmix configuration also produced the smallest generalization
gap observed in the entire study (0.0208), indicating a strong alignment between ID
and OOD performance.

A consistent trend was observed across all experiments: ERM consistently outper-
formed HYPO when both were trained with MedAugmix. On ResNet50, the per-
formance difference was particularly large, with ERM achieving an OOD accuracy
of 0.8826 versus HYPO’s 0.8464. This pattern strongly suggests that the power-
ful, targeted regularization provided by the MedAugmix data pipeline particularly
benefits the simpler ERM learning objective.
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Table 10: Comparison of MedAugmix against previous best augmentation strategies
(OOD Accuracy).

Arch Algo Previous Best MedAugmix Change (∆)

DenseNet121 ERM 0.8791 ( AugMix) 0.9126 +0.0335
HYPO 0.8701 ( MedMNIST-C) 0.8964 +0.0263

ResNet50 ERM 0.8527 ( AugMix) 0.8826 +0.0299
HYPO 0.7924 ( AugMix) 0.8464 +0.0540

Finally, comparing the MedAugmix configurations reveals that the setup with higher
severity and lower mixture diversity (Severity 5, Width 1) generally outperformed
the one with moderate severity and higher mixture diversity (Severity 3, Width 5).
This was true for ERM on both architectures and for HYPO on ResNet50, suggesting
that applying stronger, more focused targeted corruptions was more beneficial than
more diverse mixing of moderately corrupted images for this task. These results
factually establish MedAugmix as the most effective method evaluated in this thesis
for improving OOD generalization on the Camelyon17 benchmark.

4.2 Generalization of Findings on Secondary Benchmark
(Fitzpatrick17k)

To assess the broader applicability of the findings from Camelyon17, the experi-
mental strategies were replicated on the Fitzpatrick17k dermatology dataset. This
secondary benchmark tests generalization across a different type of domain shift:
from well-represented lighter skin tones to underrepresented darker skin tones. As
detailed in the methodology, the primary metric for this multi-class, imbalanced
dataset is Balanced Accuracy. This section analyzes the performance trends on
this distinct medical imaging challenge. All models were initialized with ImageNet
pre-trained weights, and results are averaged over three random seeds.

The results for all experimental conditions on Fitzpatrick17k are summarized and
ranked by OOD performance in Table 11 for ResNet50 and Table 12 for DenseNet121.

The evaluation on Fitzpatrick17k largely confirms the primary trend observed on
Camelyon17: a standard ERM algorithm, when enhanced with a strong augmenta-
tion pipeline like MedAugmix or Standard AugMix, is a highly effective strategy for
OOD generalization. On this benchmark, it again surpassed the specialized HYPO
algorithm across all comparable conditions.

As shown in Tables 11 and 12, both MedAugmix and Standard AugMix provided
a dramatic boost to ERM’s OOD performance. For ResNet50, MedAugmix yielded
the top result, improving OOD balanced accuracy by over 10 percentage points
from its baseline (0.5009 to 0.6060). For DenseNet121, Standard AugMix was the
top performer, improving from 0.5273 to 0.5952. The fact that both advanced
augmentation methods were similarly effective on this benchmark suggests that for
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Table 11: Ranked Summary of OOD Performance for ResNet50 on Fitzpatrick17k.
Sorted by OOD Balanced Accuracy (ood_at_best_id_val_bal_acc).

Algo Augmentation Strategy ID Val Bal. Acc OOD Bal. Acc

ERM MedAugmix (Sev 3/Width 3) 0.6937 ± 0.0119 0.6060 ± 0.0152
ERM Standard AugMix (Plain) 0.6963 ± 0.0064 0.5970 ± 0.0101
ERM No Augmentation (Baseline) 0.6029 ± 0.0241 0.5009 ± 0.0169
ERM Basic MedMNIST-C† 0.5786 ± 0.0304 0.4964 ± 0.0266
HYPO MedAugmix (Sev 3/Width 5) 0.5361 ± 0.0447 0.4690 ± 0.0425
HYPO Basic MedMNIST-C† 0.5255 ± 0.0839 0.4688 ± 0.0623
HYPO No Augmentation (Baseline) 0.5355 ± 0.0494 0.4661 ± 0.0569
HYPO Standard AugMix (Plain) 0.5246 ± 0.0259 0.4619 ± 0.0295
†Basic MedMNIST-C (plain_medmnistc_random) used corruptions from ”dermamnist”.

Table 12: Ranked Summary of OOD Performance for DenseNet121 on Fitz-
patrick17k. Sorted by OOD Balanced Accuracy (ood_at_best_id_val_bal_acc).

Algo Augmentation Strategy ID Val Bal. Acc OOD Bal. Acc

ERM Standard AugMix (Plain) 0.6784 ± 0.0021 0.5952 ± 0.0029
ERM MedAugmix (Sev 3/Width 5) 0.6687 ± 0.0162 0.5925 ± 0.0170
ERM No Augmentation (Baseline) 0.6036 ± 0.0211 0.5273 ± 0.0213
ERM Basic MedMNIST-C† 0.5993 ± 0.0139 0.4973 ± 0.0162
HYPO MedAugmix (Sev 3/Width 5) 0.5472 ± 0.0331 0.4944 ± 0.0426
HYPO No Augmentation (Baseline) 0.5113 ± 0.0271 0.4592 ± 0.0068
HYPO Standard AugMix (Plain) 0.4945 ± 0.0441 0.4442 ± 0.0259
HYPO Basic MedMNIST-C† 0.4772 ± 0.0567 0.4376 ± 0.0438
†Basic MedMNIST-C (plain_medmnistc_random) used corruptions from ”dermamnist”.
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OOD shifts related to demographic attributes like skin tone, the sheer diversity and
intensity of transformations from any advanced mixing pipeline may be the dominant
beneficial factor, with the specific type of corruption (targeted vs. generic) being
less critical than on the artifact-driven Camelyon17 task.

In contrast, the HYPO algorithm did not benefit from any of the augmentation
strategies on this dataset. Its performance remained low across all conditions, in-
dicating that neither simple nor advanced augmentations were able to help its geo-
metric learning objective succeed on this particular fairness-related OOD challenge.

Overall, the evaluation on Fitzpatrick17k provides strong secondary evidence for the
core finding of this thesis: data-centric regularization through advanced augmenta-
tion is a powerful and generalizable approach for improving OOD performance in
medical imaging, and can enable a simple ERM model to be more robust than a
specialized OOD algorithm.

4.3 Overall Summary of Experimental Findings

The results from the two benchmarks reveal several clear and generalizable trends.
The most significant findings are summarized below and in Table 13.

• The proposed MedAugmix strategy, when paired with ERM, delivered the
highest OOD performance on both benchmarks. It yielded a +6.0 percent-
age point (pp) gain in OOD accuracy over the baseline on Camelyon17
and a +10.5 pp gain in OOD balanced accuracy on Fitzpatrick17k.

• An ERMmodel augmented with an advanced mixing strategy (either MedAug-
mix or Standard AugMix) consistently matched or surpassed the performance
of the specialized HYPO algorithm across all tested architectures and datasets.

• The effectiveness of targeted vs. generic augmentation appears to be context-
dependent. The targeted corruptions in MedAugmix showed a clear advantage
on the artifact-driven Camelyon17 benchmark, while its performance was more
competitive with the generic Standard AugMix on the demographically-driven
Fitzpatrick17k benchmark.

Table 13: Summary of Best OOD Performance by Augmentation Strategy for ERM.

Augmentation Strategy Camelyon17 Fitzpatrick17k
(OOD Accuracy) (OOD Balanced Accuracy)

No Augmentation (Baseline) 0.853 (DenseNet121) 0.527 (DenseNet121)
Basic MedMNIST-C 0.866 (DenseNet121) 0.497 (DenseNet121)
Standard AugMix (Plain) 0.879 (DenseNet121) 0.597 (ResNet50)
MedAugmix (Proposed) 0.913 (DenseNet121) 0.606 (ResNet50)



5 DISCUSSION 39

In summary, the results demonstrate a clear hierarchy of effectiveness. While the
baseline models struggled with significant generalization gaps, the application of ad-
vanced augmentation provided substantial improvements. The data diversification
from Standard AugMix improved ERM’s OOD accuracy by a notable 2.6–3.2 pp
on Camelyon17. However, the proposed MedAugmix strategy provided the largest
and most consistent boost, increasing ERM’s OOD accuracy by a full 6.0 pp on
Camelyon17 (from 0.853 to 0.913 on DenseNet121) and its OOD balanced accuracy
by 10.5 pp on Fitzpatrick17k (from 0.501 to 0.606 on ResNet50).

In Section 5, we will analyze why these data-centric strategies, particularly MedAug-
mix, appear to outshine the purely algorithmic approach of HYPO in these medical
imaging contexts and discuss the broader implications for designing clinically robust
models.

5 Discussion

This section provides an in-depth discussion and interpretation of the experimental
findings presented in Section 4. We will synthesize the results from both the Came-
lyon17 and Fitzpatrick17k benchmarks to analyze the core research questions, ex-
ploring why certain strategies were more effective than others and what the broader
implications are for Out-of-Distribution (OOD) generalization in medical imaging.

To facilitate a comprehensive overview, Figure 10 and Figure 11 present a visual
summary of the key OOD performance metrics for all evaluated strategies on the
two primary architectures. These charts will serve as a central reference for the
thematic discussion that follows.

Table 14 and Table 15 present all distinct experimental configurations for Came-
lyon17, ranked by their OOD generalization performance. These tables serve as a
central reference for the discussion that follows.

The discussion will proceed thematically. First, we will interpret the performance of
the baseline algorithms (ERM vs. HYPO) in the absence of advanced augmentation.
Second, we will analyze the impact of the different data augmentation strategies,
with a focus on the proposed MedAugmix method. Finally, we will synthesize these
findings to address the core research questions and discuss the broader significance
of this work.

5.1 Analysis of Training Dynamics and Model Selection

Beyond the final performance of the selected models, analyzing their behavior over
the training duration provides valuable insights into issues like overfitting to source
domains and the reliability of In-Distribution (ID) validation as a proxy for Out-of-
Distribution (OOD) performance. We examine this by comparing two key values:
the practical OOD performance (achieved by the model checkpoint with the
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Figure 10: Summary of OOD Accuracy on the Camelyon17 benchmark across differ-
ent augmentation strategies for ERM and HYPO algorithms. Error bars represent
the standard deviation over 3 random seeds.
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across different augmentation strategies for ERM and HYPO algorithms. Error bars
represent the standard deviation over 3 random seeds.
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Figure 12: Generalization gap analysis for all strategies on the Camelyon17 bench-
mark. The plot is sorted by OOD performance (blue dots). The horizontal lines
visually represent the generalization gap between ID validation performance (orange
dots) and OOD performance.

Table 14: Ranked Summary of OOD Performance forDenseNet121 Configurations
on Camelyon17-wilds (Mean ± Std). Sorted by OOD Test Accuracy (ood_at_-
best_id_val).

Algorithm Strategy OOD Test Acc ID Val Acc Gap

ERM MedAugmix (5/1) 0.9126 ± 0.0061 0.9334 ± 0.0009 0.0208
HYPO MedAugmix (5/1) 0.8964 ± 0.0160 0.9341 ± 0.0031 0.0377
ERM MedAugmix (3/5) 0.8883 ± 0.0059 0.9291 ± 0.0016 0.0408
ERM AugMix 0.8791 ± 0.0076 0.9360 ± 0.0010 0.0569
HYPO MedAugmix (3/5) 0.8758 ± 0.0226 0.9390 ± 0.0022 0.0632
HYPO MedMNIST-C 0.8701 ± 0.0304 0.9336 ± 0.0015 0.0634
ERM MedMNIST-C 0.8660 ± 0.0385 0.9175 ± 0.0042 0.0515
HYPO AugMix 0.8655 ± 0.0131 0.9427 ± 0.0042 0.0771
HYPO Baseline 0.8626 ± 0.0172 0.9158 ± 0.0132 0.0532
ERM Baseline 0.8529 ± 0.0120 0.9147 ± 0.0015 0.0618
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Figure 13: Generalization gap analysis for all strategies on the Fitzpatrick17k bench-
mark. The plot is sorted by OOD balanced accuracy (blue dots), illustrating the
performance gap between ID and OOD results for each condition.

Table 15: Ranked Summary of OOD Performance for ResNet50 Configurations on
Camelyon17-wilds (Mean ± Std). Sorted by OOD Test Accuracy (ood_at_best_-
id_val).

Algorithm Strategy OOD Test Acc ID Val Acc Gap

ERM MedAugmix (5/1) 0.8826 ± 0.0122 0.9265 ± 0.0022 0.0439
ERM MedAugmix (3/5) 0.8528 ± 0.0088 0.9221 ± 0.0010 0.0693
ERM AugMix 0.8527 ± 0.0038 0.9338 ± 0.0007 0.0811
HYPO MedAugmix (5/1) 0.8464 ± 0.0399 0.9245 ± 0.0049 0.0781
ERM Baseline 0.8211 ± 0.0101 0.9125 ± 0.0003 0.0914
ERM MedMNIST-C 0.8205 ± 0.0065 0.9123 ± 0.0009 0.0918
HYPO MedAugmix (3/5) 0.8094 ± 0.0204 0.9311 ± 0.0054 0.1218
HYPO AugMix 0.7924 ± 0.0157 0.9460 ± 0.0022 0.1536
HYPO Baseline 0.7735 ± 0.0563 0.9067 ± 0.0048 0.1333
HYPO MedMNIST-C 0.7568 ± 0.0303 0.9071 ± 0.0086 0.1504
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best ID validation score) and the potential OOD performance (the absolute
best OOD score achieved at any epoch during training).

5.1.1 Training Dynamics on Camelyon17

Table 16 compares the epoch at which peak ID validation accuracy was reached
versus the epoch of peak OOD test accuracy. It also shows the gap between the
practical OOD performance and the potential best OOD performance.

Table 16: Training Dynamics on Camelyon17. ”Potential OOD” refers to the best
possible OOD accuracy achieved at any epoch. ”Practical OOD” is the OOD accu-
racy of the model selected via best ID validation.

Architecture Strategy
Best ID
Epoch

Best OOD
Epoch

Potential
OOD Acc

Practical
OOD Acc

ERM Algorithm
DenseNet121 Baseline 29 5 0.8817 0.8529
ResNet50 Baseline 18 1 0.8641 0.8211
DenseNet121 MedAugmix (5/1) 7 3 0.9231 0.9126
ResNet50 MedAugmix (5/1) 6 2 0.9073 0.8826

HYPO Algorithm
DenseNet121 Baseline 23 9 0.9008 0.8626
ResNet50 Baseline 6 11 0.8396 0.7735
DenseNet121 MedAugmix (5/1) 20 0 0.9222 0.8964
ResNet50 MedAugmix (5/1) 8 3 0.8712 0.8464

A clear trend emerges from the Camelyon17 results: for nearly all configurations,
the peak OOD performance was achieved much earlier in training than the peak
ID validation performance. For example, the baseline ERM model on DenseNet121
reached its best OOD accuracy at epoch 5 but continued to improve on the ID
validation set until epoch 29. This divergence indicates that models quickly began
to overfit to the source domains, and continuing to train them to maximize ID
performance was actively detrimental to their ability to generalize to the unseen
OOD domain.

Crucially, the application of MedAugmix appears to mitigate this issue. While
the peaks still do not perfectly align, the gap between the epoch of best ID perfor-
mance and best OOD performance is reduced. More importantly, the gap between
the potential OOD accuracy and the practical OOD accuracy is much smaller for
MedAugmix-trained models. For ERM on DenseNet121, the gap was reduced from
0.0288 (0.8817 - 0.8529) in the baseline to just 0.0105 (0.9231 - 0.9126) with MedAug-
mix. This suggests that the strong, targeted regularization provided by MedAugmix
not only improves overall performance but also makes the ID validation metric a
more reliable proxy for selecting a model with strong OOD capabilities.
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5.1.2 Training Dynamics on Fitzpatrick17k

The training dynamics on Fitzpatrick17k, summarized in Table 17 for the key
ResNet50 configurations, tell a similar story.

Table 17: Training Dynamics on Fitzpatrick17k. Comparison of the epoch of best
ID performance vs. best OOD performance, and the gap between potential and
practical OOD balanced accuracy.

Architecture Strategy
Best ID
Epoch

Best OOD
Epoch

Potential
OOD Bal

Practical
OOD Bal

ERM Algorithm
ResNet50 Baseline 10 26 0.5630 0.5009
DenseNet121 Baseline 11 28 0.5718 0.5273
ResNet50 MedAugmix (Best) 38 43 0.6210 0.6060
DenseNet121 MedAugmix (Best) 30 34 0.6126 0.5925

HYPO Algorithm
ResNet50 Baseline 23 31 0.5410 0.4661
DenseNet121 Baseline 36 14 0.5245 0.4592
ResNet50 MedAugmix (Best) 21 17 0.5347 0.4690
DenseNet121 MedAugmix (Best) 39 29 0.5393 0.4944

Again, for all configurations, the potential OOD performance was higher than the
practical performance achieved by selecting the model based on ID validation. This
reinforces the finding that standard model selection can be suboptimal for OOD
generalization.

A key observation from Table 17 is that, similar to Camelyon17, the potential OOD
performance is consistently higher than the practical performance achieved by se-
lecting the model based on ID validation. This again reinforces the finding that
standard model selection protocols can be suboptimal for OOD generalization.

However, unlike on Camelyon17 where the best OOD performance typically occurred
very early, the dynamics on Fitzpatrick17k are different. For the baseline ERM
models, the peak OOD balanced accuracy was reached much later in training (e.g.,
epoch 26 for ResNet50) than the peak ID balanced accuracy (epoch 10). This
suggests that for this specific demographic shift, longer training was required for the
model to learn features that had some utility on the OOD (darker skin tone) domain,
even as performance on the ID (lighter skin tone) domain may have saturated earlier.

Crucially, the application of MedAugmix once again appears to improve the
reliability of the model selection process. For both ERM and HYPO on both
architectures, the gap between the potential and practical OOD balanced accuracy
was significantly reduced when MedAugmix was applied. For instance, with ERM
on ResNet50, this gap shrank from a substantial 0.0621 (0.5630 - 0.5009) in the
baseline condition to just 0.0150 (0.6210 - 0.6060) with MedAugmix.
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This confirms the central trend seen on Camelyon17: advanced, targeted aug-
mentation not only boosts the overall performance ceiling but also makes
the model’s performance on the ID validation set a more reliable indica-
tor of its performance on the OOD test set . This alignment is a significant
practical benefit, as it increases confidence in the model development and selection
process.

5.2 Analysis of End-of-Training Performance and Overfit-
ting

A crucial aspect of OOD generalization is understanding how models behave over
the full course of training. By examining performance at the final training epoch
(epoch 50), we can gain insights into whether models continue to generalize or begin
to overfit to the source domains. This subsection analyzes the gap between In-
Distribution (ID) and Out-of-Distribution (OOD) performance at the end of training
for key experimental conditions.

5.2.1 Final Epoch Performance on Camelyon17

Table 18 presents the ID validation and OOD test accuracies at the final training
epoch for the baseline and best-performing MedAugmix strategies on Camelyon17.

Table 18: End-of-Training Performance on Camelyon17 (Epoch 50). The gap rep-
resents the final difference between ID and OOD accuracy.

Architecture Strategy
Final ID
Val Acc

Final OOD
Test Acc

Final Gap

ERM Algorithm
DenseNet121 Baseline 0.9104 0.8620 0.0484
ResNet50 Baseline 0.9076 0.8300 0.0777
DenseNet121 MedAugmix (5/1) 0.9262 0.8852 0.0410
ResNet50 MedAugmix (5/1) 0.9198 0.8311 0.0887

HYPO Algorithm
DenseNet121 Baseline 0.9091 0.8510 0.0580
ResNet50 Baseline 0.8969 0.8136 0.0833
DenseNet121 MedAugmix (5/1) 0.9272 0.8786 0.0486
ResNet50 MedAugmix (5/1) 0.9048 0.8042 0.1007

The results on Camelyon17 show that for most baseline configurations, the final
OOD accuracy is similar to or slightly higher than the ”practical” OOD accuracy
selected earlier in training. However, when MedAugmix is applied, the models gen-
erally continue to improve on both ID and OOD metrics through to the final epoch,
suggesting that the strong regularization provided by MedAugmix helps to prevent
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catastrophic overfitting to the source domains. For example, the ERM DenseNet121
model with MedAugmix ends with a high OOD accuracy of 0.8852, maintaining a
relatively small generalization gap. This indicates that MedAugmix not only boosts
peak performance but also contributes to more stable training dynamics over a
longer duration.

5.2.2 Final Epoch Performance on Fitzpatrick17k

A similar analysis for the Fitzpatrick17k benchmark reveals the profound regulariz-
ing effect of advanced augmentation. Table 19 shows the performance at epoch 50
for key ResNet50 configurations.

Table 19: End-of-Training Performance on Fitzpatrick17k (ResNet50). The gap
represents the final difference between ID and OOD balanced accuracy.

Algorithm Strategy
Final ID
Bal. Acc

Final OOD
Bal. Acc

Final Gap

ERM Baseline 0.6404 0.5533 0.0871
ERM MedAugmix (Best) 0.6930 0.6106 0.0824

HYPO Baseline 0.5236 0.4928 0.0308
HYPO MedAugmix (Best) 0.5550 0.4605 0.0945

For the baseline ERM model, the final OOD balanced accuracy (0.5533) is signif-
icantly higher than its practical OOD performance selected earlier (0.5009). This
aligns with the epoch data from the previous section, which showed that peak OOD
performance on Fitzpatrick17k tended to occur later in training. When MedAugmix
is applied to ERM, it not only achieves a much higher final OOD balanced accuracy
(0.6106) but also maintains a similar generalization gap, indicating that it scales
performance on both ID and OOD domains effectively throughout training.

In contrast, the HYPO algorithm shows a different trend. While its final OOD
performance with MedAugmix (0.4605) is similar to its practical OOD performance
(0.4690), it does not reach the levels of the augmented ERM model.

Collectively, the analysis of end-of-training performance across both datasets re-
inforces a key finding: advanced, targeted augmentation like MedAugmix acts as
a powerful regularizer. It not only elevates the ceiling of OOD performance but
also helps to maintain or improve that performance through to the end of training,
mitigating the kind of source-domain overfitting that can plague less-regularized
models.

5.3 Interpretation of Key Findings

The experimental results reveal a clear and consistent narrative across both the
Camelyon17 and Fitzpatrick17k benchmarks. This section interprets these findings,
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focusing first on the baseline comparison between ERM and HYPO, and then on
the transformative impact of the data augmentation strategies.

Baseline Performance: An Architecture-Dependent Advantage for HYPO
The baseline experiments, conducted without advanced augmentation, highlight the
inherent difficulty of the OOD tasks and reveal that the effectiveness of the spe-
cialized HYPO algorithm is highly contextual. On the DenseNet121 architecture
for Camelyon17, HYPO demonstrated a modest but clear advantage over ERM.
This aligns with the core premise of the HYPO paper (Lee et al., 2024), suggesting
its geometric constraints on the feature space can indeed provide a benefit. How-
ever, this advantage was not universal; ERM surprisingly outperformed HYPO on
the ResNet50 architecture for the same task and across both architectures on the
more challenging Fitzpatrick17k benchmark. This indicates that while specialized
algorithms can help, their success is not guaranteed and can depend on a favorable
interaction with the backbone’s learned feature space.

Impact of Augmentation: From Ineffective to Transformative The evalu-
ation of data-centric strategies demonstrated a clear hierarchy of effectiveness. The
application of Basic MedMNIST-C (a single random targeted corruption) proved
to be an unreliable strategy, offering only marginal gains in the best-case scenario
(DenseNet121 on Camelyon17) and proving detrimental in others, particularly for
HYPO on ResNet50.

In contrast, the advanced mixing strategies had a profound impact, especially on
ERM. Standard AugMix, with its generic transformations, provided a substantial
boost to ERM’s OOD performance on both datasets, consistently making it superior
to HYPO. This highlights the power of the AugMix processing pipeline itself as a
strong regularizer.

The proposed MedAugmix strategy represents the pinnacle of performance in this
study. By combining the structural diversity of the AugMix pipeline with the do-
main relevance of targeted MedMNIST-C corruptions, it delivered the highest OOD
performance for ERM on both benchmarks. Its clear superiority over Standard
AugMix on the artifact-driven Camelyon17 dataset underscores the benefit of using
targeted corruptions that mimic realistic domain shifts. On the demographically-
driven Fitzpatrick17k dataset, its performance was highly competitive with Stan-
dard AugMix, suggesting that for such shifts, the sheer diversity of any advanced
mixing pipeline may be the dominant beneficial factor.

Training Dynamics: Augmentation as a Stabilizer Beyond elevating peak
performance, the training dynamics reveal another crucial benefit of advanced aug-
mentation. Analysis of the per-epoch metrics shows that for baseline models, the
best OOD performance was often achieved very early in training, long before the
model achieved its best performance on the in-distribution validation set. This di-
vergence indicates that models were quickly starting to overfit to the source domains.
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Crucially, MedAugmix mitigated this issue significantly. On both datasets,
the gap between the model’s potential best OOD performance and the practical
performance achieved by selecting the model via ID validation was much smaller
for MedAugmix-trained models. Furthermore, models trained with MedAugmix
maintained strong OOD performance through to the final epoch. This indicates that
MedAugmix not only boosts performance but also acts as a powerful regularizer
that stabilizes training and makes the standard model selection process more reliable.

5.4 Overall Comparative Analysis and Synthesis

The preceding discussion has interpreted the performance of individual algorithms
and augmentation strategies. This section now synthesizes these findings into a holis-
tic view, drawing overarching conclusions from the ranked summary tables (Table 14
and Table 15) and addressing the core research questions that motivated this thesis.

Synthesis of Key Performance Trends

Across two distinct medical OOD benchmarks, a clear hierarchy of strategies emerged.
While specialized algorithms like HYPO offered modest baseline improvements in
specific contexts, the most significant and reliable gains in OOD generalization were
consistently driven by advanced data augmentation. The proposed MedAugmix
strategy, when paired with ERM, systematically produced the best or near-best re-
sults. Standard AugMix also proved to be a powerful regularizer for ERM, while the
simple application of Basic MedMNIST-C corruptions had a limited and unreliable
impact.

A central finding is the dynamic between the learning algorithm and the augmenta-
tion strategy. In non-augmented or simply-augmented settings, the relative perfor-
mance of ERM and HYPO was inconsistent and architecture-dependent. However,
when a strong and diverse augmentation pipeline (Standard AugMix or MedAug-
mix) was introduced, ERM consistently matched or surpassed HYPO’s OOD per-
formance. This suggests that the regularization effect of a powerful data-centric
approach can be the dominant factor in achieving OOD robustness. Architecturally,
DenseNet121 also generally proved to be a more robust backbone for this task than
ResNet50 across most experimental conditions.

Addressing the Research Questions

These synthesized findings provide clear answers to the initial research questions of
this study:

RQ1: How does the performance of HYPO compare against ERM? Our
evaluation shows that the performance of HYPO relative to ERM is highly con-
textual. In baseline (non-augmented) conditions, HYPO provided a modest OOD
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advantage on DenseNet121 for Camelyon17 but was outperformed by ERM on
ResNet50 and on the Fitzpatrick17k benchmark. When strong augmentation strate-
gies like Standard AugMix or MedAugmix were applied, the simpler ERM algo-
rithm consistently achieved superior OOD performance on both datasets. Therefore,
HYPO is not a universally better solution than ERM; its benefit is most apparent
in the absence of strong data-centric regularization and can be superseded by a
well-augmented ERM baseline.

RQ2: What is the comparative impact of different data augmentation
strategies? The data-centric strategies exhibited a clear performance hierarchy.
MedAugmix was the most effective strategy overall, delivering the highest OOD
scores in the majority of top-performing configurations. Standard AugMix also
provided substantial benefits, particularly for ERM, proving more effective than
the ”Basic MedMNIST-C” approach. The Basic MedMNIST-C strategy (a single
random corruption) was largely ineffective, yielding only marginal gains in the best
case and proving detrimental in others. This demonstrates that not just the use of
augmentation, but its structural sophistication (e.g., mixing multiple operations as
in AugMix and MedAugmix) is critical for significant performance gains.

RQ3: Does the effectiveness of these strategies generalize across differ-
ent domain shifts? Yes, the primary findings demonstrated strong generalizabil-
ity across the two different OOD challenges. The core conclusion—that a simple
ERM algorithm augmented with an advanced mixing strategy (Standard AugMix
or MedAugmix) is a top-performing approach—held true for both the inter-hospital
variations in Camelyon17 and the skin tone biases in Fitzpatrick17k. However, a
nuance was observed: the targeted nature of MedAugmix showed a clear advan-
tage over the generic Standard AugMix on the artifact-driven Camelyon17 dataset,
whereas their performance was more competitive on the demographically-driven
Fitzpatrick17k dataset.

RQ4: Which combination yields the most robust OOD performance?
Across all evaluated configurations, the combination that yielded the most robust
and effective OOD performance was Empirical Risk Minimization (ERM) combined
with the proposed MedAugmix strategy. Specifically for Camelyon17, the top per-
former was ERM on a DenseNet121 backbone with MedAugmix (Severity 5, Width
1). For Fitzpatrick17k, it was ERM on a ResNet50 backbone with MedAugmix
(Severity 3, Width 3). This consistently highlights the power of pairing a sim-
ple learning objective with a strong, diverse, and domain-aware data augmentation
pipeline.
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5.5 Significance of Findings and Relation to Prior Work

The comprehensive evaluation conducted in this thesis offers several significant find-
ings that contribute to the broader understanding of Out-of-Distribution (OOD)
generalization in medical imaging. The primary significance lies not in proposing
a fundamentally new learning algorithm, but in the systematic benchmarking of
existing ones and the introduction of a novel, data-centric strategy, MedAugmix.
This evaluation provides practical insights into the relative merits and interplay of
algorithmic versus data-centric approaches to improving robustness.

A key finding of this work is the demonstrated power of a well-augmented Empirical
Risk Minimization (ERM) baseline. Our results consistently show that ERM,
when paired with an advanced, targeted augmentation strategy like MedAugmix,
can achieve state-of-the-art OOD performance that surpasses a specialized OOD
algorithm. This contributes a crucial perspective to the field: for certain challenging
OOD problems, the most effective path to robustness may lie in sophisticated data
augmentation rather than solely in the development of more complex algorithmic loss
functions. This has significant practical implications, suggesting that research and
engineering efforts focused on data-centric solutions can yield substantial returns.

The findings also provide valuable context for the specific methods evaluated:

• Relation to HYPO (Lee et al., 2024): The HYPO algorithm was pro-
posed as a method to learn domain-invariant representations by enforcing
geometric constraints on a hypersphere. Our evaluation on two large-scale
medical benchmarks provides new evidence on its applicability. While HYPO
did show a modest advantage over baseline ERM in some contexts (e.g., with
DenseNet121 on Camelyon17), its performance was not uniformly superior and
was consistently surpassed by the augmented ERM models. This does not re-
fute the principles of HYPO, but rather contextualizes its utility, suggesting
that its benefits may be most pronounced in low-data or low-augmentation
regimes and can be overshadowed by powerful data-centric regularization.

• Relation to AugMix (Hendrycks et al., 2020): The original AugMix
framework demonstrated the power of combining diverse augmentations with
a consistency loss. Our evaluation contributes in two ways. First, by showing
that Standard (Plain) AugMix without the JSD loss is still a potent regular-
izer for ERM, we highlight the inherent strength of its data mixing pipeline.
Second, and more importantly, the success of our proposed MedAugmix
demonstrates that the AugMix framework is highly adaptable. By replacing
its generic operations with targeted MedMNIST-C corruptions, we show that
its effectiveness can be significantly enhanced for specific domains like medical
imaging.

• Relation to MedMNIST-C (Di Salvo et al., 2024): The MedMNIST-C
paper introduced its corruptions as a vital tool for benchmarking model ro-
bustness and suggested their potential use for data augmentation. This thesis
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acts directly on that suggestion and provides a key validation of their utility.
Our evaluation shows that while a simple application (”Basic MedMNIST-C”)
has limited effect, a structured application within our MedAugmix pipeline is
highly effective. This work therefore serves as a successful case study, demon-
strating a concrete and powerful method for leveraging MedMNIST-C corrup-
tions not just for testing models, but for actively training more robust and
generalizable ones.

In summary, by conducting a rigorous evaluation across two distinct medical OOD
challenges, this thesis provides a nuanced perspective on building robust AI. It
confirms the value of specialized algorithms like HYPO, but ultimately champions a
data-centric viewpoint, demonstrating that a novel, targeted augmentation strategy
like MedAugmix enables a simple ERM baseline to achieve excellent, and in this
study superior, OOD generalization.

6 Conclusion and Future Work

This final section consolidates the research presented in this thesis. It begins with
a recapitulation of the study’s objectives and approach, followed by a summary of
the principal findings and contributions. The strengths and limitations of the work
are then discussed, leading to suggestions for promising avenues for future research.

6.1 Recapitulation of Thesis Work

The clinical translation of deep learning models is critically limited by their inabil-
ity to generalize to Out-of-Distribution (OOD) data. This thesis addressed this
widespread challenge in medical imaging by designing and executing a systematic
benchmark of OOD generalization strategies. The evaluation was conducted across
two distinct medical domains to ensure the broad relevance of the findings: inter-
hospital variability in histopathology, using the WILDS Camelyon17 dataset, and
demographic (skin tone) bias in dermatology, using the Fitzpatrick17k dataset.

The primary objectives were to: (1) evaluate a standard Empirical Risk Minimiza-
tion (ERM) baseline against a specialized representation learning algorithm, HYPO;
(2) assess the impact of various data augmentation strategies, from basic targeted
corruptions to standard AugMix; and (3) propose and evaluate a novel hybrid strat-
egy, MedAugmix, which adapts the AugMix pipeline to use targeted, clinically-
relevant image corruptions sourced from MedMNIST-C.

6.2 Summary of Principal Findings and Contributions

The comprehensive experimental evaluation yielded several key findings:
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• The proposed MedAugmix strategy, when combined with ERM, consistently
produced the top-performing models across both the Camelyon17 and Fitz-
patrick17k benchmarks, demonstrating its effectiveness across different medi-
cal domains and OOD challenges.

• A standard ERM model, when enhanced with an advanced augmentation
pipeline like MedAugmix or Standard AugMix, consistently matched or sur-
passed the OOD performance of the specialized HYPO algorithm.

• The benefit of using targeted MedMNIST-C corruptions (in MedAugmix)
over generic corruptions (in Standard AugMix) was most pronounced on the
artifact-driven Camelyon17 dataset, while both were highly competitive on the
demographically-driven Fitzpatrick17k dataset.

• The HYPO algorithm’s effectiveness relative to ERM was found to be context-
dependent and was generally overshadowed by the significant performance
gains provided by strong data-centric regularization.

The principal contributions of this thesis are:

1. A systematic evaluation of ERM versus HYPO across two distinct medical
OOD benchmarks, providing insights into their relative strengths and weak-
nesses under various augmentation conditions.

2. The proposal, implementation, and successful evaluation of MedAug-
mix, a novel data augmentation strategy that tailors the AugMix framework
with targeted medical corruptions, demonstrating state-of-the-art performance
within this study.

3. Empirical evidence that a strong, data-centric approach can be a more effec-
tive path to OOD robustness than relying solely on the specialized learning
algorithms evaluated.

4. Practical insights into the effectiveness of different augmentation approaches
for improving OOD generalization in medical imaging.

6.3 Strengths of the Study

This research possesses several strengths that bolster the validity of its findings:

• Dual-Dataset Evaluation: By benchmarking strategies on both Came-
lyon17 and Fitzpatrick17k, the study tests its conclusions against two fun-
damentally different types of domain shifts, enhancing the generalizability of
its insights.

• Systematic Comparison: The work provides a rigorous comparison of algo-
rithmic versus data-centric approaches across two architectures and multiple
well-defined augmentation strategies.
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• Novel Augmentation Strategy: A key strength is the proposal and eval-
uation of MedAugmix, a thoughtfully designed approach that synergistically
combines existing concepts.

• Methodological Rigor: Experiments were conducted with multiple random
seeds (three for primary results) and evaluated using a comprehensive suite of
metrics appropriate for each dataset.

• Practical Implications: The findings offer clear, practical guidance for de-
veloping more robust medical AI models, emphasizing data-centric solutions.

6.4 Limitations of the Study

While this thesis provides valuable insights, it is important to acknowledge its limi-
tations:

• Scope of Evaluation: The study was limited to two datasets, two backbone
architectures, and two primary learning algorithms. The findings may not
generalize to all medical imaging tasks, modalities, or OOD methods.

• MedAugmix Implementation Details: The evaluated MedAugmix strat-
egy did not incorporate the JSD consistency loss from the original AugMix
paper, and it used a fixed operational severity within each experimental run.
Exploring these variations could yield different results.

• ERM Baseline Configuration: The ERM baseline applied CrossEntropy-
Loss to the 128-dimensional output of a projection head. While kept consistent
for fair comparison, this is an unconventional setup, and its performance might
differ from an ERM model with a standard final classification layer.

• Hyperparameter Tuning: Exhaustive hyperparameter optimization for ev-
ery experimental condition was beyond the scope of this work due to compu-
tational constraints.

6.5 Future Work

The findings and limitations of this thesis open several promising avenues for future
research:

• Broader Evaluation of MedAugmix: Systematically evaluate MedAugmix
on a wider variety of medical imaging datasets (including 3D data), clinical
tasks (e.g., segmentation), and against a broader array of state-of-the-art OOD
generalization algorithms.

• Enhancements to MedAugmix:
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– Investigate the impact of incorporating the JSD consistency loss into the
MedAugmix training framework.

– Explore the use of different MedMNIST-C corruption sets (e.g., ”pathm-
nist” or a mix of sets) as source operations.

– Experiment with adaptive policies for selecting operations and severities
within the MedAugmix chains.

• Feature Space Analysis: Conduct in-depth analyses of the learned feature
representations (e.g., using t-SNE/UMAP) to better understand howMedAug-
mix and HYPO shape the embedding space and contribute to OOD robustness.

• Fairness and Demographic Shifts: Further investigate the use of MedAug-
mix and other augmentation strategies specifically for mitigating demographic
bias in medical AI, building on the findings from the Fitzpatrick17k bench-
mark.

• Theoretical Understanding: Explore the theoretical underpinnings of why
a well-augmented ERM can achieve strong OOD generalization, potentially
rivaling specialized algorithms.

Addressing these future research directions could further advance the development
of robust, reliable, and equitable deep learning models for widespread clinical appli-
cation.



BIBLIOGRAPHY 55

Bibliography

Neda Alipour, Ted Burke, and Jane Courtney. Skin type diversity in skin lesion
datasets: A review. Current Dermatology Reports, 13:1–13, aug 2024. doi: 10.
1007/s13671-024-00440-0.
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