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Abstract

Deep learning holds great promise for advancing medical image analysis, but access
to large and diverse datasets for robust training is often constrained by privacy reg-
ulations. Federated Learning (FL) enables collaborative training among distributed
institutions without sharing raw data. However, conventional FL approaches, which
rely on downstream model sharing, are restricted to specific tasks, incur high com-
munication costs, and remain vulnerable to privacy attacks. We propose a novel
FL framework that shifts from model-centric collaboration to privacy-preserving
data sharing. By leveraging pre-trained foundation models (FMs), clients extract
compact, semantically rich embeddings and share anonymized representations to
support local downstream tasks without the need for parametric synchronization.

As anonymization strategies for this framework, we explore (i) a non-parametric ap-
proach based on unsupervised clustering and k-anonymity with additive differential
privacy (DP) noise (DP-kSame), and (ii) a generative approach using a federated,
differentially private Conditional Variational Autoencoder (DP-CVAE) to model a
global, privacy-aware data distribution. Both methods enhance client autonomy
and support personalized downstream learning with minimal additional training.
Validated across multiple medical imaging datasets and feature extractors, our pro-
posed methods outperform traditional FL classifiers while ensuring strong privacy
guarantees. Together, they demonstrate the viability of FM-embedding-based data
sharing for scalable and secure FL. DP-CVAE achieves the best privacy–utility trade-
off, offering superior accuracy, fidelity, adaptability, and robustness against privacy
attacks.

The code is available on GitHub1.

1https://github.com/myng15/privacy-preserving-non-parametric-FL
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Abstract

Deep Learning bietet großes Potenzial für Fortschritte in der medizinischen Bild-
analyse, doch der Zugang zu großen und vielfältigen Datensätzen für ein robustes
Training wird häufig durch Datenschutzbestimmungen eingeschränkt. Federated
Learning (FL) ermöglicht kollaboratives Training zwischen verteilten Institutionen,
ohne dass Rohdaten ausgetauscht werden müssen. Herkömmliche FL-Ansätze, die
auf dem Austausch von Downstream-Modellen basieren, sind jedoch auf spezifische
Aufgaben beschränkt, verursachen hohe Kommunikationskosten und bleiben anfällig
für Privacy-Angriffe. Wir schlagen ein neuartiges FL-Framework vor, das von einer
modellzentrierten Zusammenarbeit zu einer datenschutzkonformen Datenfreigabe
übergeht. Durch die Nutzung vortrainierter Basismodelle (FMs) extrahieren die FL-
Clients kompakte, semantisch aussagekräftige Einbettungen und teilen anonymisierte
Repräsentationen, um lokale nachgelagerte Aufgaben zu unterstützen, ohne dass eine
parametrische Synchronisation erforderlich ist.

Als Anonymisierungsstrategien für dieses Framework untersuchen wir (i) einen nicht-
parametrischen Ansatz basierend auf unüberwachtem Clustering und k-Anonymität
mit additivem Differential Privacy (DP)-Rauschen (DP-kSame) und (ii) einen gen-
erativen Ansatz unter Verwendung eines föderierten, differentiell privaten Condi-
tional Variational Autoencoder (DP-CVAE) zur Modellierung einer globalen, daten-
schutzbewussten Datenverteilung. Beide Methoden stärken die Autonomie der Clients
und ermöglichen personalisiertes Downstream-Lernen mit minimalem zusätzlichem
Trainingsaufwand. Unsere vorgeschlagenen Methoden wurden anhand mehrerer
medizinischer Bilddatensätze und Basismodelle validiert und übertreffen traditionelle
FL-Klassifikatoren bei gleichzeitig hohen Datenschutzgarantien. Zusammen zeigen
sie die Praktikabilität von FM-Embedding-basiertem Datenaustausch für skalier-
bares und sicheres FL. DP-CVAE erzielt dabei das beste Privacy-Utility-Verhältnis
und bietet höchste Klassifikationsgenauigkeit, Rekonstruktionsgenauigkeit, Anpas-
sungsfähigkeit und Robustheit gegenüber Datenschutzangriffen.

Der Quellcode ist auf GitHub verfügbar2.

2https://github.com/myng15/privacy-preserving-non-parametric-FL
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1 INTRODUCTION 1

1 Introduction

Data-driven machine learning (ML) methods, particularly deep neural networks,
have driven remarkable advancements in various domains, including medical image
analysis (Altaf et al., 2019; Litjens et al., 2017). Yet, their clinical adoption remains
constrained by data scarcity and stringent privacy regulations (Adnan et al., 2022;
Casaletto et al., 2023). Medical datasets are often siloed within institutions, and rare
diseases in particular suffer from the lack of diverse, high-quality training datasets
(Chen et al., 2024; Rieke et al., 2020). While collaborative data sharing could
alleviate these problems, legal frameworks such as HIPAA in the US (Annas, 2003)
or GDPR in Europe (Voigt and Bussche, 2017) impose strict limitations on the
sharing of personally identifiable health data. This restricts the collective insights
necessary for developing robust artificial intelligence (AI) solutions in healthcare.

Federated Learning (FL), first introduced by Google in 2017 (McMahan et al., 2017),
offers a promising approach to resolve this fundamental tension between data-driven
AI and data privacy protection. It enables collaborative model training without raw
data exchange: each participating client (e.g., a hospital) trains a local model on its
private data and shares only parameter updates to form a global model (Jere et al.,
2021; Khan et al., 2025). However, despite its foundational appeal, FL introduces
its own set of challenges. First, (parametric) FL typically requires a shared model
architecture, often tied to a single downstream task (e.g., classification or segmen-
tation). This design limits personalization and flexibility when clients have different
needs or resources (Marfoq et al., 2022; Tzortzis et al., 2025). Second, privacy re-
mains a concern: even parameter updates can leak sensitive information from the
training data through membership inference or model inversion attacks (Casaletto
et al., 2023; Jere et al., 2021), and methods that attempt to protect against these
attacks often sacrifice model performance (Chen et al., 2022; Rodŕıguez-Barroso
et al., 2023). Third, frequent transmission of large, complex deep learning archi-
tectures like Vision Transformers (ViTs) (Dosovitskiy et al., 2021) in FL settings
incurs excessively high communication costs.

Our work addresses these challenges by first and foremost pivoting to a latent-
space FL approach that facilitates few-shot learning with even basic non-parametric
methods like k-means clustering or k-nearest neighbors (k-NN). Instead of training
and sharing large parametric models for downstream tasks in the input space, we
leverage pre-trained foundation models (FMs) to extract compact, semantically rich
feature embeddings (Di Salvo et al., 2024; Doerrich et al., 2024; Li et al., 2024a).
Such embeddings are robust to distribution shifts and can be used directly for down-
stream tasks without fine-tuning, often achieving better performance than represen-
tations produced by task-specific models (Caron et al., 2021; Oquab et al., 2024).
This makes FM embeddings a strong basis for pursuing various downstream tasks
with algorithms as simple as k-NN, motivated by such methods’ interpretability
and adaptability (Doerrich et al., 2024). Furthermore, we aim at decoupling local
training from global aggregation – a direction increasingly advocated in recent FL
research as a strategy to improve client autonomy, architecture flexibility, communi-
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cation efficiency, and privacy (Chen and Chao, 2022; Gao et al., 2022; Marfoq et al.,
2022; Tan et al., 2023; Yurochkin et al., 2019). Non-parametric methods emerge as
a natural choice to implement this decoupled update exchange, as they require no
shared architectures, avoid gradient leakage, and allow flexible adaptation to differ-
ent data distributions without the need to retrain upon receiving new data (Imam
et al., 2024; Marfoq et al., 2022).

Motivated by these insights, we explore non-parametric alternatives in FL at two
levels: first, for global knowledge aggregation and sharing, and second, for the lo-
cal downstream task (e.g., classification). After extracting robust feature embed-
dings using a pre-trained FM (e.g., DINOv2), our framework proposes that, in-
stead of training and exchanging local models for global aggregation, clients share
anonymized data representations. Specifically, clients can share cluster centroids
computed from their embedding dataset via k-means clustering, or apply k-anonymity
protection (Sweeney, 2002) to the entire shared embedding dataset, ensuring each
shared “representative” is indistinguishable from at least k−1 others. Subsequently,
for the downstream task, each client uses a non-parametric algorithm such as k-NN
on its private embeddings and on the anonymized global embeddings received from
the server to predict on test data. The final prediction is then obtained by fus-
ing the local and the global k-NN outputs to balance local specificity and global
generalization.

Regarding the global sharing stage, similar prototype- or data-sharing techniques
have been explored to improve FL performance, especially in heterogeneous settings
(Zhu et al., 2021). Prior works like Tan et al. (2022); Tran et al. (2024); Yoshida
et al. (2019); Zhao et al. (2018) have attempted to mitigate the negative effect
of data heterogeneity by sharing a limited amount of local data or “knowledge”
(e.g., local class prototypes) with the server to regularize the federated training.
As Casaletto et al. (2023) suggests, if we can share the capabilities to generate
these summary statistics, then we can share knowledge without exposing sensitive
patient data. However, these approaches still face the risk of violating FL’s privacy-
preserving requirements, as clients are still exchanging direct (even if summarized)
data representations. To address this, we further apply Differential Privacy (DP)
noise (Dwork et al., 2006; Dwork, 2006) to the anonymized embeddings, thereby
enforcing a formal privacy guarantee. Figure 1 illustrates our approach to this non-
parametric federated data sharing scheme.

While such centroid-based schemes can be straightforward and efficient, they have
inherent limitations. They summarize data distributions rather coarsely and cannot
generate new, diverse, and task-relevant samples, particularly for underrepresented
classes. These shortcomings have prompted us to adopt a different approach in
our proposed pipeline: data-sharing via privacy-preserving synthetic data genera-
tion. As illustrated in Figure 2, clients collaboratively train a Differentially Private
Conditional Variational Autoencoder (DP-CVAE) to model a global, privacy-aware
data distribution. Notably, only the decoder weights of the CVAE – which are typ-
ically small and contain minimal leakage of raw data – are shared and aggregated.
This generative approach therefore substantially improves privacy compliance while
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supporting broader downstream tasks (Giuffrè and Shung, 2023; Koetzier et al.,
2024; Ktena et al., 2024). Besides, the use of a lightweight generative model like
CVAE, operating directly on embeddings instead of raw images, enhances fidelity
and robustness of the generated embeddings while reducing communication over-
head compared to existing federated generative modeling approaches (see Gargary
and De Cristofaro (2024) for a comprehensive review). In particular, training a
CVAE on rich FM embeddings further facilitates the accurate representation of fea-
ture distributions and the low-cost downstream learning. After generating a globally
representative synthetic set locally using the shared decoder, a client can train any
downstream model (e.g., k-NN or simple linear probes) without further federation.
Similar to our exploratory non-parametric pipeline introduced earlier, this synthetic-
data-based method nicely decouples data sharing from downstream training.

In summary, our contributions are:

• We shift the FL paradigm from downstream model sharing in the input space
to privacy-preserving data sharing in the embedding space, effectively decou-
pling global representation learning from local downstream tasks for enhanced
personalization and generalizability. By leveraging FMs for advanced feature
extraction, we enable more efficient and secure data exchanges.

• We introduce two representation sharing approaches: one based on direct,
non-parametric k-anonymization mechanisms, and another based on synthetic
data generation, leveraging a federated, differentially private generative model
(CVAE). By evaluating these methods, we validate the effectiveness of privacy-
preserving data sharing via FM embeddings in enhancing the privacy-utility
trade-off in FL.

• We empirically demonstrate that our federated generative approach and subse-
quent (non-parametric) downstream training outperform traditional federated
classifiers across multiple medical datasets, achieving superior classification
accuracy and privacy-utility trade-offs.

• We show that training a lightweight CVAE on feature embeddings in a fed-
erated setting achieves higher-fidelity generation than GAN-based methods
while requiring approximately 5× fewer parameters, significantly improving
computational efficiency.

The remainder of this work is structured as follows. Section 2 describes back-
ground knowledge and reviews relevant prior works on FL and its primary challenges,
privacy-preserving techniques, and pre-trained vision FMs. Section 3 elaborates on
our proposed methods and supporting theories. Section 4 presents a set of experi-
ments and results on standard medical image datasets (e.g., MedMNIST datasets),
including analyses of both theoretical and empirical privacy (versus utility) of our
methods. In Section 5, we discuss the key findings and their impact, the limitations
of our methodologies, and potential avenues for future research. Finally, we conclude
the study in Section 6.
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Figure 1: Illustration of our DP-kSame methodology. (1) Each client H encodes
its image-based dataset D into an embedding-based dataset S using a large, pre-
trained FM Φ. (2) Clients form clusters with k embeddings to ensure k-anonymity
(k = 2 in this illustration), then replace all embeddings in each cluster with its
DP-noised centroid (darker point), and send this k-anonymous dataset S ′ into a
global datastore Ŝg. (3) A server distributes the global datastore back to each client
(excluding the data sent by the respective client). (4) Each client utilizes (real) local
and (anonymized) global data for any downstream task f .

1 2 3

. . .

Feature extraction Global CVAE training Data generation

Downstream training

4

Figure 2: Illustration of our DP-CVAE methodology. (1) Each client H encodes its
image-based dataset D into an embedding-based dataset S using a large, pre-trained
FM Φ. (2) Clients collaboratively train a DP-CVAE (E ,D) and periodically share
decoder weights, which are aggregated into a global decoder Dg. (3) Each client
independently generates a synthetic dataset Ŝ using the globally trained CVAE de-
coder Dg, and (4) utilizes (real) local and (synthetic) global data for any downstream
task f .
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2 Background and Related Work

2.1 Federated Learning: Overview

FL is a collaborative learning paradigm that aims to solve a ML problem using
multiple decentralized data sources, referred to as clients, while keeping their data
local (McMahan et al., 2017; Kairouz et al., 2021; Karimireddy et al., 2022). These
clients can be individual mobile or Internet of Things (IoT) devices (cross-device
FL), or different institutions, organizations or geo-distributed data centers (cross-
silo FL). Typically, a central server or service orchestrates the training of a shared
model, but never sees raw data.

Algorithm 1 FederatedAveraging (Adapted from McMahan et al. (2017)).

1: Input: M participating clients; number of communication rounds T ; local mini-
batch size nb; number of local training epochs E; learning rate η

2: Output: Global model weights θ(T )

3: Server executes:
4: Initialize global weights θ(0)

5: for each round t = 1, . . . , T do
6: for each client m = 1, . . . ,M in parallel do
7: θ

(t)
m ← ClientUpdate(m, θ(t)) ▷ start local training with current

global weights
8: end for
9: st ←

∑M
m=1 n

train
m

10: θ(t+1) ←
∑M

m=1
ntrain
m

st
θ
(t)
m ▷ update global model with weighted average of

client updates
11: end for

12: function ClientUpdate(m, θ)
13: for each local epoch e = 1, . . . , E do
14: for each mini-batch b of size nb do
15: θ ← θ − η∇f(θ; b) ▷ perform local mini-batch gradient descent
16: end for
17: end for
18: return θ to server
19: end function

In its standard, parametric form, FL solves a global, distributed optimization prob-
lem: it seeks a parameter set θ ∈ Rd that minimizes the total loss across all M
participating clients,

min
θ

{
f(θ) :=

1

M

M∑
m=1

fm(θ)

}
, (1)
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where fm(θ) : Rd → R denotes the expected loss with respect to client m’s local data
using the shared parameters θ. A standard algorithm to solve this is FederatedAv-
eraging (or FedAvg), introduced by McMahan et al. (2017). In each communication
round t, the server broadcasts the current global model θ(t) to all M participating
clients, who run local steps of stochastic gradient descent (SGD) on their local data

to update θ(t). The server aggregates the resulting weights θ
(t)
m by computing their

weighted average as follows to update the global model:

θ(t+1) =
M∑

m=1

wmθ
(t)
m , wm =

ntrain
m∑M

m=1 n
train
m

, (2)

where ntrain
m is the number of training data points at client m. The updated global

model is subsequently redistributed to the clients for further iterations. Complete
pseudo-code of this process is given in Algorithm 1.

The core principles of FL are data localization and minimization. It is therefore a
privacy-by-design framework: local data stays local, and only focused updates (i.e.,
minimum information necessary for the specific task) are exchanged to achieve the
learning objective (Jere et al., 2021; Kairouz et al., 2021). This design not only
mitigates many privacy risks faced by traditional, centralized ML, but also reduces
network communication overhead compared to raw data transmission (Hallaji et al.,
2024; Rauniyar et al., 2024). This efficiency is particularly beneficial for environ-
ments with limited bandwidth or high data volumes, such as edge computing or IoT
deployments.

In fact, FL was initially introduced with an emphasis on mobile and edge device
applications, motivated by the bandwidth and latency limitations inherent in dis-
tributed training on such devices (McMahan et al., 2017). Google pioneered cross-
device FL with the first production-grade FL system for training language models
powering the Gboard mobile keyboard’s next-word prediction (McMahan and Ra-
mage, 2017; Jere et al., 2021). Since then, FL has seen widespread adoption across
different domains, from edge computing and IoT (Kairouz et al., 2021; Yurdem
et al., 2024) to finance (He et al., 2024; Liu et al., 2023; Shi et al., 2023) and natural
language processing (NLP) (Du et al., 2023; Lin et al., 2022). Especially, FL has
gained a lot of attention in the medical field (Rauniyar et al., 2024; Rieke et al.,
2020), since health data is often highly sensitive and its usage is tightly regulated,
hindering its centralization for model training (Tan et al., 2023; Rieke et al., 2020).
Cross-silo FL is particularly relevant in healthcare, enabling secure collaboration
among institutions who are holders of private, siloed datasets. For instance, in joint
medical imaging tasks, cross-silo FL can facilitate the training of robust and scalable
diagnostic or prognostic models by leveraging medical images from multiple hospi-
tals (Kairouz et al., 2021; Myakala et al., 2024). During the COVID-19 pandemic,
researchers have harnessed the potential of FL for a wide range of innovative ap-
plications, such as estimating oxygen requirements or detecting lung abnormalities
in CT (Liu and Han, 2024; Rauniyar et al., 2024). The ability to leverage decen-
tralized datasets for collective intelligence with minimal data transfer makes the FL
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paradigm ideal for scenarios where the need for collaborative insights and timely
responses while preserving privacy is paramount.

Despite these benefits, traditional FL (where a parametric model like a neural net-
work is shared for a downstream task) faces significant real-world obstacles, including
statistical, computational, communication, and privacy challenges. In the remain-
der of this subsection, we examine these key challenges of FL and review existing
research efforts to address them.

2.2 Heterogeneity Challenges in Federated Learning

In FL, clients often differ both in volume and distribution of their local datasets
(statistical heterogeneity), and in their storage, computational, and communication
resources (system heterogeneity) (Marfoq et al., 2022; Saeed et al., 2025; Ye et al.,
2023). On the one hand, the decentralized nature of FL allows for scalable and
inclusive model training, where devices with varying resources can contribute to
and benefit from the collaborative learning. On the other hand, relying on a single
global model trained on heterogeneous data across all clients often leads to sub-
optimal performance and fairness concerns. For example, medical image data from
different institutions are typically non-independent and identically distributed (non-
IID). Variations in imaging modalities, equipments, and patient populations cause
distribution shifts that degrade the performance of the global FL model on individ-
ual institutions (Tan et al., 2023; Tzortzis et al., 2025). As summarized by Kairouz
et al. (2021), the core challenges of FL arise from unbalanced and non-IID data
distributions across numerous unreliable devices with limited bandwidth.

Personalized FL has emerged as a promising solution to the issue of heterogeneity
by creating customized models for each client while leveraging the shared knowledge
from the others (Chen and Chao, 2022; Morafah et al., 2024). Clustering-based FL
methods (e.g., Sattler et al. (2020); Ghosh et al. (2020) partition clients into clusters
with similar data distributions, each cluster sharing the same model. Other works
(Li and Wang, 2019; Wang et al., 2024; Xu and Fan, 2023) involve distilling the
knowledge from a global or historical “teacher” model to clients’ “student” models,
while allowing federated clients to learn different model architectures suited to their
capabilities. Meta-learning-based strategies (Fallah et al., 2020; Liu et al., 2024;
Scott et al., 2024; Voleti and Ho, 2024) learn a shared meta-model that enables fast,
few-shot local adaptation. Another group of studies (Deng et al., 2020; Mansour
et al., 2020; Marfoq et al., 2022) proposes model interpolation techniques, which seek
the optimal combination of a global and a local model per client with a controllable
mixing weight in order to achieve the best client-specific interpolated model.

While many personalized FL approaches still rely on the joint learning of global and
local models, recent works have shown a growing interest in decoupling local model
optimization from the global training process. This separation has been demon-
strated to resolve more effectively the dilemma in heterogeneous settings about
whether to prioritize the learned model’s generic performance for future global use



2 BACKGROUND AND RELATED WORK 8

or its personalized performance for individual clients (Chen and Chao, 2022). Ad-
ditionally, decoupled FL methods promise enhanced privacy when personalization
occurs separately from federated communication and clients do not need to share
information about their local models with the server (Marfoq et al., 2022). Methods
like FedPer (Arivazhagan et al., 2019), FedRep (Collins et al., 2021), and pFedGP
(Achituve et al., 2021) approach a global-local decoupling by separating model lay-
ers into a globally trained base (for representation learning) and a locally trained
head (for personalized learning). However, the global representation learned by the
base layers is still affected by local refinement (i.e., by the gradient updates from the
local heads). In contrast, kNN-Per (Marfoq et al., 2022) offers a more pronounced
decoupling between local model training and the federated learning of a shared rep-
resentation. It interpolates predictions from a global parametric model with local
k-NN outputs computed from client-specific datastores. Similarly, FedMeS (Xie
et al., 2024) leverages local memory and kNN-based inference for personalized fed-
erated continual learning. In both methods, however, the globally learned model
remains tied to a single, specific downstream task (e.g., classification), which can
limit their generalizability across different applications.

Memorization-based, decoupled FL techniques like kNN-Per and FedMeS motivate
us to explore k-NN for producing client-specific predictions in our interpolation-
based FL pipeline as we strive towards a clearer separation between global and local
learning to improve personalization and privacy. Unlike parametric models, non-
parametric methods like k-NN do not assume a fixed functional form for the model,
as illustrated in Figure 3. They discover patterns directly from the data and enable
a potentially better representation of complex data distributions, thus increasing
prediction accuracy (Imam et al., 2024). Importantly, non-parametric algorithms
offer increased flexibility and adaptability to heterogeneous data while not requiring
continuous joint optimization or parameter synchronization between global and local
models. kNN-Per, for instance, allows quick adaptation to changes in a client’s data
distribution simply by updating the local datastore without having to retrain the
global model (Marfoq et al., 2022).

For producing global-side predictions (based on globally aggregated knowledge), our
framework involves clients sharing data-based representatives instead of model up-
dates for global aggregation. One method we explore is to share data based on
centroids of clusters formed in the local data via k-means clustering. In general,
the idea of sharing a small, globally balanced dataset and using it in conjunction
with private data to improve FL performance in non-IID settings has appeared in
multiple studies (Zhao et al., 2018; Zhu et al., 2021; Yoshida et al., 2019). Closer to
our method are prototype-based FL techniques (Tan et al., 2022; Tran et al., 2024;
Voleti and Ho, 2024) - another group of personalized FL strategies. They address
heterogeneity by letting clients share abstract data representations (e.g., class means
or cluster centroids) instead of gradients, and use the globally aggregated proto-
types to refine their own models. These prototypes provide information about local
data distributions while minimizing direct data exposure, reducing communication
costs and mitigating privacy risks. Like meta-learning-based techniques, prototype-
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Figure 3: The attributes X1 and Y1 tend to follow a linear relationship and can be
modeled using a linear parametric technique, while the attributes X2 and Y2 does
not follow any known or linear distribution; therefore, a nonparametric technique
would be a better choice. This figure is reproduced from Imam et al. (2024).

based approaches allow clients to use their own model architectures with different
input/output spaces, breaking the assumption of federation-wide identical architec-
tures made by most parametric FL methods. Our work refines this prototype-sharing
strategy by sharing multiple centroids of arbitrary clustered embeddings instead of
a single centroid per class, preserving richer diversity and client-specific knowledge
while preventing class-related information leakage. Another difference is that we col-
lect these local prototypes and distribute them back to clients “as they are” without
aggregating them into global prototypes to maintain each client’s unique contribu-
tion. To enhance the privacy of these shared data representatives, different privacy
mechanisms are considered, which we will discuss in the following subsection.

2.3 Privacy Challenges in Federated Learning

While FL aims to preserve privacy by keeping raw data local, it does not by itself
provide a strong privacy guarantee (Adnan et al., 2022; Ziller et al., 2021). An
adversary observing model updates (gradients or weights) can still infer sensitive
information about the clients’ data. For instance, studies in medical imaging have
demonstrated that shared gradients from models trained without additional privacy-
preserving techniques can be reverse-engineered to reconstruct images that reveal a
patient’s identity or medical condition (Kaissis et al., 2021; Ziller et al., 2021, 2024).
These model inversion attacks are a type of reconstruction attack, which is just one
of many adversarial threats against FL.

2.3.1 Privacy Threats

Rodŕıguez-Barroso et al. (2023) and Jere et al. (2021) describe similar taxonomies
of adversarial attacks in FL, differentiating between data privacy attacks (inferring
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sensitive information from the learning process), and model performance attacks
(modifying the behavior of the federated model, thereby degrading its performance).

Data Privacy Attacks As mentioned above, one type of data privacy attacks is
reconstruction attacks, which aim to recover the training data of a client participating
in a FL task from the exchanged model updates.

Another sub-category is attribute inference attacks, which aim to extract whether
a property of a client or the entire FL participant population, potentially uncorre-
lated with the main task, is present in the FL model. For instance, if a ML model’s
objective is face detection, an attacker might infer if there are training images fea-
turing blue-eyed faces, an attribute not expected to be shared. Melis et al. (2019)
observed that modern deep learning models develop separate internal representa-
tions of various features, some of which are independent of the main task. These
“unintended” features can leak information about participants’ training data. An
active adversary can manipulate the joint model into learning to better separate the
features of interest, thereby extracting even more information.

Membership inference attacks (MIAs) form another important group of data privacy
attacks. Their main objective in FL is to determine whether a specific data record
(available to the adversary) was part of a client’s training dataset. For example,
Melis et al. (2019) achieved high accuracy in inferring when a certain person first
appeared in photos used to train a binary gender classifier. In a synthetic data
context, an MIA is when an attacker tries to identify if certain real records have
been used to train the synthetic data generation algorithm. This is a privacy risk
since, for example, if the synthetic dataset is about breast cancer, then the attacker
can deduce if the person they found has breast cancer (Steier et al., 2025).

Model Performance Attacks Adversarial attacks on the federated model aim
to compromise the joint model performance rather than revealing data. Frequently,
these attacks are carried out from the client side, leveraging the fact that FL clients
can send poisoned updates, while the server cannot inspect the training data stored
on the clients.

This group can be categorized into data poisoning attacks and model poisoning
attacks. In data poisoning, the attacker has access to the training data of one or
more clients and is able to modify it, e.g., by shuffling labels at random. Model
poisoning covers a broad range of methods to manipulate the FL training process,
such as poisoning local model updates or altering training rules.

2.3.2 Privacy-Enhancing Techniques

In response to these threats, we propose first and foremost a shift from sharing
parameter- or gradient-based updates - typically used for direct training of a shared
downstream model - to exchanging anonymized, task-agnostic data representations
in the embedding space. A key enabler of this approach is the use of pre-trained FMs,
which we will review in Section 2.5. By utilizing these powerful feature extractors,
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our FL pipeline can achieve strong downstream performance without requiring ac-
cess to local downstream models. This strengthens defenses against gradient-based
privacy attacks that exploit the implicit leakage of sensitive information from raw
local data through shared model updates. However, FMs alone do not provide a for-
mal privacy guarantee, and additional privacy-enhancing procedures for the shared
feature embeddings are needed.

Simple perturbation methods, such as adding noise to local data or shared model
parameters (Chen et al., 2022; Rodŕıguez-Barroso et al., 2023), can reduce infor-
mation leakage, but often diminish data utility. Cryptographic methods like se-
cure multiparty computation or homomorphic encryption allow clients to encrypt
model updates before global aggregation, ensuring no party learns anything about
the other parties’ contributions. Despite offering strong privacy, these approaches
typically impose high computational and communication overhead, limiting their
practicality for large-scale FL with resource-constrained participants (Chen et al.,
2022; Krishnamoorthy, 2025).

Data anonymization techniques, such as k-anonymity (Sweeney, 2002), ℓ-diversity
(Machanavajjhala et al., 2007), and t-closeness (Li et al., 2007), aim to obscure or re-
move sensitive personal attributes to prevent individual identification. k-anonymity
ensures each record in a dataset is indistinguishable from at least k − 1 others. ℓ-
diversity further requires diversity in sensitive attributes within these indistinguish-
able groups, while t-closeness mandates that the distribution of sensitive attributes
within a group closely matches the overall dataset distribution. Building on k-
anonymity, the k-Same algorithm (Newton et al., 2005) achieves anonymity while
minimizing information loss by replacing each data point within disjoint clusters of
k similar data points with a single surrogate, typically the cluster centroid.

Similarly, prototype-based FL approaches, such as FedProto (Tan et al., 2022) and
FedNTProto (Tran et al., 2024), exchange “data representatives” instead of model
parameters. These methods inherently provide a degree of privacy by hiding iden-
tifiable individuals behind averaged representations.

In practice, however, these anonymization methods come with critical limitations.
Besides potential losses in data quality, the anonymized data remain vulnerable to
de-anonymization, for instance, by cross-referencing them with some public dataset
(Chen et al., 2022). A classic example is the Netflix case, where Narayanan and
Shmatikov (2008) demonstrated that anonymized movie ratings could be accurately
linked to users’ public IMDb profiles for re-identification. The GDPR specifies
that anonymized datasets that can be re-identified with “reasonable effort” are still
considered personal data (Curelariu and Lodie, 2024). Additionally, although tech-
niques like k-anonymity are effective for simple datasets, their practicability for
anonymizing high-dimensional, diverse data is questionable (Abadi et al., 2016; Ag-
garwal, 2005; Brickell and Shmatikov, 2008; Narayanan and Shmatikov, 2008). They
may also not adequately protect against “singling out” attacks, which the GDPR
defines as an adversary’s ability to find a predicate that matches exactly one individ-
ual in a dataset without knowing their identity (Cohen and Nissim, 2020; Nissim,
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2021). Consequently, data anonymization often requires combination with other
privacy-enhancing techniques (Chen et al., 2022).

2.3.3 Differential Privacy

A standard and more rigorous approach to enforce formal privacy guarantees is
Differential Privacy (DP), as recommended by numerous recent works (Abadi et al.,
2016; Kairouz et al., 2021; Palle, 2018; Ziller et al., 2021, 2024). Introduced by Dwork
et al. (2006), DP is a mathematical framework for quantifying the privacy provided
by a protocol. It ensures that the contribution of any single individual’s data point
is statistically indistinguishable, meaning the privacy risk to an individual does not
significantly change whether their data is included or not in an analysis. Formally,
a mechanism M applied to the private dataset D is (ϵ, δ)-differentially private if,
for any two neighboring datasets D and D′ differing by at most one sample, and for
any possible output S ⊆ Range(M):

P [M(D) ∈ S] ≤ eϵP [M(D′) ∈ S] + δ, ϵ > 0, δ ∈ [0, 1) (3)

Here, ϵ measures the maximum privacy loss permitted, i.e., our privacy budget. δ
bounds the probability of exceeding the privacy budget given by ϵ, so that we can
ensure that with probability 1−δ, the privacy loss will not be greater than ϵ. Lower
values of ϵ and δ imply stronger privacy. This provides a formal upper bound on an
attacker’s ability to reconstruct or re-identify specific data points. A standard way
to achieve (ϵ, δ)-DP for a function is to add an amount of noise to the function’s
output. The output of a function f applied to the dataset D perturbed by noise η
is therefore:

M(D) := f(D) + η (4)

This additive noise is determined by (ϵ, δ) as well as the function’s sensitivity, defined
as

∆f = max
D,D′
∥f(D)− f(D′)∥ . (5)

DP views privacy as a quantifiable resource, which is used up as information is
extracted from a dataset. The goal of private data analysis is, therefore, to extract
as much useful information as possible while consuming the least privacy (Adnan
et al., 2022). This privacy budget can be calibrated according to policy requirements
(Ziller et al., 2024). DP has also been shown to better prevent the aforementioned
“singling out” attacks compared to k-anonymity (Cohen and Nissim, 2020; Nissim,
2021).

The use of DP in (parametric) FL was introduced at Google (Abadi et al., 2016) as
an extension to the FL paradigm proposed by McMahan et al. (2017). This process
is termed Differentially Private Stochastic Gradient Descent (DP-SGD). Each client
clips the norm of per-sample gradients to limit the influence of a single data point,
and adds noise to those gradients before sending updates to the server. This ensures
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that even with knowledge of the learning algorithm, an adversary cannot confidently
infer any single data point. DP defends against various common attacks in FL,
such as gradient-based reconstruction attacks (see Figure 4). In our non-parametric
approach using k-Same for anonymizing shared data, we apply DP noise to the data
instead of gradients, establishing a method that will be detailed in Section 3.2.1.

2.3.4 Privacy-Preserving Synthetic Data Sharing

A promising alternative privacy strategy involves generating synthetic data that
mimic the real data distribution. Downstream tasks are then trained on synthetic
samples, which ideally preserve the utility of real data while containing no exact
identifiers. This approach can reduce privacy risks compared to direct data shar-
ing and increase utility compared to traditional anonymization methods (Kaabachi
et al., 2025). In the medical domain, several studies have demonstrated the useful-
ness of synthetic data as proxy for real data (Wang et al., 2019; Azizi et al., 2021;
Beaulieu-Jones et al., 2019; Choi et al., 2017), or in augmenting the volume and
variability of available data (Jiang et al., 2021; Sufi, 2024).

Data synthesis can be achieved using a wide range of generative models. Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014) train two competing neu-
ral networks to produce realistic data: a discriminator, which learns to distinguish
between real and synthetic data, and a generator, which tries to create synthetic
data that is indistinguishable from real data so that it can “fool” the discriminator.
Variational Autoencoders (VAEs) (Kingma and Welling, 2014) are another class of
neural network models used to generate synthetic data. Like all standard autoen-
coders, VAEs consists of an encoder that transforms input data into a compact
latent representation and a decoder that reconstructs the input from this represen-
tation. However, instead of encoding inputs as fixed points, the VAE encoder maps
each input into a probability distribution in the latent space – parameterized by a
mean and a variance vector. The decoder learns to sample from these distributions
to generate new data that reflect the statistical properties of the original dataset.

Of particular interest are the conditional variants of these generative models. Condi-
tional GANs (CGANs) (Mirza and Osindero, 2014) and Conditional VAEs (CVAEs)
(Sohn et al., 2015) allow for generating data conditioned on specific information,
such as class labels, which is useful for mimicking original class distributions and
even augmenting underrepresented classes. For instance, conditional synthetic data
generation has been instrumental in augmenting data volume for imaging studies
during the COVID-19 pandemic (Jiang et al., 2021) and improving the accuracy of
COVID-19 detection by classifying patients based on chest CT scans (Das et al.,
2022). Especically, a recent work has demonstrated that generating synthetic fea-
ture embeddings using a CVAE preserved classification performance comparable to
real embeddings, while enhancing data privacy (Di Salvo et al., 2024). Training a
CVAE on feature embeddings rather than raw images further allows to better cap-
ture feature distributions (e.g., than k-Same), making it less susceptible to fidelity
degradation.
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Figure 4: Overview of the gradient-based privacy attacks against medical image
analysis using the MedNIST dataset in a variety of scenarios. The original image
is shown (“Original”) alongside the reconstruction results from a model trained
without secure aggregation or DP (DP–/SecAgg–) as well as a model trained with
DP and SecAgg (DP+/SecAgg+). In every case, the attack reveals confidential
information about the patient when the model is trained without privacy-enhancing
techniques. In (a), Breast MRI reveals absence of the right breast, likely due to
operative removal due to breast cancer. In (b), Breast MRI reveals breast implants.
Both (a) and (b) also allow assumptions about the patient’s sex. (c) shows cranial
computed tomography image at the level of the nose. Facial contours reconstructed
from such images can lead to personal identification (Parks and Monson, 2017;
Schwarz et al., 2019). (d) shows Abdominal CT at the level of the liver, which
allows visualization of a hypodense lesion in the left liver lobe in the reconstructed
image. In every case, using DP thwarts the attack, disallowing any usable image
features from being visualized. This figure is reproduced from Kaissis et al. (2021).
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In a FL setting, one can imagine each client training a local generator on its data
or using a shared global generative model. Alternatively, they can train together a
federated generative model to capture cross-client data variations while preserving
local data privacy. This particular setting has been explored in many recent works
(Gargary and De Cristofaro, 2024). A wide range of generative models from GANs
to diffusion models (Ho et al., 2020) and Large Language Models (LLMs) (Brown
et al., 2020) have also been deployed in federated settings (Zhang et al., 2024; Sufi,
2024). There is also medGAN (Choi et al., 2017), which combines an autoencoder
and generative adversarial networks to generate realistic synthetic patient records.
These architectures may, however, be unnecessarily heavy for synthesizing embed-
dings in the latent space of powerful pre-trained FMs. VAEs and CVAEs are more
lightweight generative models that have also been explored in FL. However, prior
work has primarily applied them to simpler generative tasks, such as MNIST-like
datasets (Pfitzner and Arnrich, 2022) and sensor data (Kaspour and Yassine, 2023),
or jointly trained the generative model with a downstream classifier (Chen et al.,
2023a), limiting their adaptability. This motivates our extension of CVAE to a fed-
erated setting, where, as illustrated in Figure 2, clients collaboratively train a global
CVAE decoder and then use it locally to generate synthetic embeddings from medi-
cal datasets for downstream tasks. Unlike prior FL settings, our approach decouples
generative modeling from task-specific constraints. It offers similar privacy and task
flexibility as the decoupling of global and local learning discussed in Section 2.2.

Since the use of synthetic data alone is insufficient to guarantee a formal level of
privacy, it needs to be used in conjunction with a rigorous privacy mechanism such as
DP, carefully designed to keep data unidentifiable without compromising the realism
and diversity of the synthesized samples. Differentially private learning of generative
models has been studied mostly under the GAN framework, including techniques
like DPGAN (Beaulieu-Jones et al., 2019; Cao et al., 2021; Frigerio et al., 2019;
Xie et al., 2018), DP-CGAN (Sun et al., 2023; Torkzadehmahani et al., 2019), and
PATE-GAN (Jordon et al., 2018). In contrast, recent works on generating data with
a CVAE for privacy-preserving data sharing such as Di Salvo et al. (2024) did not
include a formal privacy guarantee analysis. Therefore, in this work, we integrate
DP into the FL training of both CGAN and CVAE. In this way, our DP-CVAE
approach directly addresses the limitations of previous works, ensuring that the
synthetic features have provable (ϵ, δ)-differential privacy.

2.3.5 Trade-off between Privacy and Utility

A common theme across all privacy strategies in FL is the inherent trade-off between
the strength of privacy guarantees provided by a mechanism and the utility of its
output, whether it be model accuracy or data fidelity (Chen et al., 2022; Kairouz
et al., 2021; Rodŕıguez-Barroso et al., 2023).

For instance, adding more DP noise for stronger privacy (smaller ϵ and δ) can de-
grade model performance. Similarly, synthetic data generation must balance realism
with the risk of memorization or distortion of the original data distribution. This
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often leads to difficult choices for an appropriate privacy budget. Higher budgets
correspond to less privacy protection and thus an increased risk of successful attacks,
while lower budgets limit the information available for training. Therefore, striking
a balance between privacy and utility is often a fundamental issue when applying
privacy-preserving techniques in the FL framework.

2.4 Communication and Computational Challenges in Fed-
erated Learning

FL’s decentralized training paradigm introduces critical communication and com-
putational challenges. Large-scale FL systems with complex model architectures
typically require frequent synchronization of millions of parameters. This places
considerable strain on network bandwidth and results in high latency and energy
consumption, especially on resource-limited clients (Myakala et al., 2024; Rauniyar
et al., 2024; Wu et al., 2022). In addition, unreliable or inconsistent connectivity
between participating institutions can also hinder the FL process. Heterogeneous
clients with vastly different compute capabilities, ranging from high-performance
servers to low-power edge devices, introduce further complexity, as uniform training
of large models across all participants becomes impractical (Marfoq et al., 2022; Mao
et al., 2022). To enable scalable and inclusive FL, communication- and computation-
efficient strategies must be developed without sacrificing downstream performance
(Myakala et al., 2024; Tran et al., 2024).

One promising direction is to move away from full model synchronization and in-
stead adopt non-parametric data sharing approaches. Prior work (Tan et al., 2022;
Tran et al., 2024) has shown that communicating compact embedding-level class
prototypes, rather than entire model weights, can reduce communication costs by
orders of magnitude while preserving classification accuracy. These prototype-based
approaches also offer inherent privacy advantages, as sharing abstract data rep-
resentations poses lower privacy risks than transmitting raw data or full gradient
updates.

Non-parametric models such as k-NN, used in methods like kNN-Per (Marfoq et al.,
2022), offer further benefits in terms of computational and communication efficiency.
These models allow for fast, retraining-free adaptation to distribution shifts, and
naturally support personalized decision-making. Importantly, they decouple global
and local modeling, thereby relieving stronger clients from the need to align their
model updates to weaker peers. This allows each participant to independently adapt
based on its specific compute and storage capacity.

While kNN-Per still depends on a globally trained model to provide local data em-
beddings used by local k-NN classifiers, we adopt a fixed global backbone for local
feature extraction, leaving clients to perform lightweight downstream adaptation.
This decoupling of representation learning from downstream tasks not only reduces
communication and computation demands, but also supports better privacy preser-
vation by minimizing the private information exchanged across clients. Indeed,
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strategies addressing communication and computation bottlenecks in FL must be
designed to not compromise privacy, and, ideally, to enhance the protection and
reduce attack surfaces (Jere et al., 2021).

To mitigate computational and communication costs, FL research also explores the
use of lightweight architectures. For example, we can employ shallow linear models
instead of deep neural networks for downstream classification, and opt for com-
putationally efficient VAEs rather than heavy GAN- or diffusion-based models for
federated generative modeling. However, such simplifications often come at the cost
of performance and robustness when used in isolation. To reconcile efficiency with
strong performance, we leverage high-quality feature representations from powerful
pre-trained FMs. This strategy underpins our approach throughout this work and
is introduced in the following section.

2.5 Pre-trained Foundation Models

FMs have emerged as a transformative development in modern ML, especially in
the field of NLP and, more recently, computer vision (Babé et al., 2025; Zhang
et al., 2025). These models are typically large-scale neural networks, pre-trained
on vast, diverse datasets using self-supervised or weakly supervised objectives. No-
table vision FMs include CLIP (Radford et al., 2021), DINO (Caron et al., 2021),
and DINOv2 (Oquab et al., 2024), which leverage architectures like ViTs to learn
semantically rich, general-purpose feature representations. Unlike traditional mod-
els trained for specific tasks, pre-trained FMs are designed to be task-agnostic and
adaptable. These properties make FMs particularly attractive for FL, where het-
erogeneity, privacy, and communication efficiency are major challenges.

FMs such as DINOv2 are trained on hundreds of millions of images from diverse
domains, producing embeddings that generalize well across input corruptions, dis-
tribution shifts, and downstream tasks (Kazmierczak et al., 2025; Paul and Chen,
2022). These embeddings capture both fine-grained textures and high-level seman-
tics, enabling even simple classifiers such as k-NN to perform competitively without
task-specific fine-tuning. For instance, Caron et al. (2021) show that a 20-NN clas-
sifier operating on DINO features performs on par with trained linear models. This
robustness and generalization in representation learning are valuable in FL appli-
cations, especially in healthcare, where statistical and system heterogeneity often
render end-to-end federated training of deep architectures impractical.

This synergy with non-parametric methods like k-NN is a particularly promising as-
pect of FM embeddings. Non-parametric classifiers are often fast and light to deploy,
and require no domain adaptation, making them practical in resource-constrained
environments. They are also easy to update and maintain, allowing data points to
be added or removed from a datastore without retraining the model. Doerrich et al.
(2024) emphasize this flexibility as essential for supporting privacy-preserving ML,
including compliance with regulations such as the right to erasure (Article 17 of the
GDPR). They further demonstrate that combining k-NN with the robust and dis-
criminative feature spaces of vision FMs improves interpretability and adaptability,
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particularly in medical image analysis. The strong performance of k-NN classifiers
on DINO embeddings without fine-tuning, as shown in Caron et al. (2021), indi-
cates that representations provided by such FM architectures are well-suited for
non-parametric evaluation. Li et al. (2024a) also note that the pre-learned, trans-
ferable knowledge in FMs and its few-shot learning capabilities can accelerate the
FL process and reduce the need for extensive retraining. In this work, we evaluate
k-NN classification alongside linear models to study the downstream adaptability of
FM embeddings in our FL settings, especially under privacy-aware constraints.

Prior work has also highlighted the inherent privacy and communication benefits of
operating in the latent space of FMs. For example, Di Salvo et al. (2024) empha-
size the compactness (low dimensionality) and reduced redundancy of these repre-
sentations, making them ideal for data exchange in distributed learning systems.
Importantly, these embeddings are also more privacy-preserving than raw data. Kr-
ishnamoorthy (2025), for instance, argue that it is difficult to reconstruct original
inputs from latent representations resulting from complex, nonlinear transformations
without access to the encoding process.

In summary, the past works outlined above motivated our use of pre-trained vision
FMs (particularly the DINOv2 backbone) in this work. They play a central role
in our proposed methods, enabling a shift from model-centric FL to lightweight,
embedding-based collaboration. By providing compact, robust, and task-agnostic
features, FMs facilitate efficient data sharing and adaptable, few-shot downstream
learning. At the same time, they reduce communication and computational overhead
while enhancing privacy. These advantages are fundamental to our pipelines and
establish a new class of collaborative ML systems that rely on efficient, adaptable,
and privacy-aware data sharing in the latent space.
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3 Methods

3.1 Overview and Notations

In this work, we explore two novel FL approaches that decouple local downstream
tasks from (parametric) global learning, aiming to address key FL challenges such
as data privacy and communication overhead. The first approach employs non-
parametric clustering (via k-means and k-Same algorithms) combined with DP to
anonymize client data prior to sharing. This method is referred to as DP-kSame.
The second approach instead leverages federated, differentially private generative
modeling using a CVAE to facilitate knowledge transfer through synthetic data. We
refer to this method as DP-CVAE. In both methods, clients utilize both private local
data and globally shared knowledge to perform personalized downstream tasks. In
particular, for image classification, we evaluate both non-parametric models (e.g.,
k-NN) and parametric ones (e.g., linear classifiers).

Consider a federation of M clients with a total of n =
∑M

m=1 nm samples belonging
to a set C ⊂ N of unique classes. Each client m ∈ [M ] := {1, . . . ,M} has a private
image-based dataset Dm := {(dm

i , y
m
i )}nm

i=1, where dm
i denotes the i-th raw image at

client m and ymi ∈ C is its label. For simplicity, we assume all M clients participate
in every round of the FL process. Both DP-kSame and DP-CVAE follow a shared
pipeline consisting of four main stages:

1. Feature Extraction: Each client encodes their image data using a shared,
frozen FM Φ, yielding an embedding-based dataset Sm := {(xm

i , y
m
i )}nm

i=1 where
xm
i ∈ Xm ⊆ Rd is the feature embedding of image dm

i in the representation
space of Φ. For brevity, when referring to a single client, we drop the super-
script and write Sm := {(xi, yi)}nm

i=1. Under data heterogeneity, each Sm is
drawn i.i.d. from a client-specific distribution Pm; for instance, clients may
hold disjoint or imbalanced subsets of classes in C.

2. Global Knowledge Aggregation:

(a) DP-kSame: Each client m clusters its embedding dataset Sm using the
k-means algorithm, forming groups of k samples to satisfy the require-
ments of k-anonymity. Note that the k in k-means denotes the number
of clusters and is distinct from the k used in this work to indicate the
number of samples per cluster. Gaussian DP noise is added to each
cluster centroid, which is then used to replace all embeddings within
the corresponding cluster (as in the k-Same algorithm). This yields an
anonymized dataset S ′

m that satisfies both k-anonymity and (ϵ, δ)-DP.
Each client transmits its anonymized embeddings S ′

m to the server.

(b) DP-CVAE: Each client trains a lightweight CVAE on Sm and period-
ically shares their decoder weights. A DP mechanism is applied during
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local training to ensure each shared decoder update is differentially pri-
vate. The server aggregates these updates (via FedAvg) into a global
decoder Dg.

3. Global Knowledge Distribution:

(a) DP-kSame: The server merges S ′
m from all clients into a global datastore

Ŝg and distributes it so that each client m receives Ŝm = Ŝg \ S ′
m (i.e.,

all anonymized data from other clients).

(b) DP-CVAE: Using the global CVAE decoder Dg, each client m indepen-
dently generates a synthetic dataset Ŝm by sampling embeddings condi-
tioned on a chosen class distribution tailored to its downstream needs.
The generated set approximates the global data distribution while re-
maining privacy-preserving.

4. Downstream Training: Each client performs downstream training on its
real local dataset Sm and the global dataset Ŝm it receives (either anonymized
or synthetic). To preserve personalization, models are trained separately on
local and global data, and their predictions are combined via a weighted inter-
polation. A weighting parameter λm, tunable via local validation, controls the
contribution of each model to the final prediction, enabling a balance between
local specificity and global generalization.

The complete workflows of DP-kSame and DP-CVAE are illustrated in Figure 1 and
Figure 2 respectively. Both methods leverage the semantic richness of FM embed-
dings and DP mechanisms to support secure, flexible, and data-efficient knowledge
sharing in FL. Notably, the generative approach in DP-CVAE can help mitigate
long-tailed distribution issues by augmenting underrepresented classes. The subse-
quent subsections describe each method in further detail.

3.2 Privacy-Preserving Federated Data Sharing

3.2.1 Non-parametric Data Anonymization via DP-kSame

To avoid sharing model parameters, we adopt a non-parametric prototype-based
sharing technique. In existing prototype-based FL methods such as FedProto (Tan
et al., 2022) and FedNTProto (Tran et al., 2024), each client m computes a class

prototype C
(c)
m = 1

n
(c)
m

∑
(x,y)∈S(c)

m
x to represent class c ∈ C. These local prototypes

are aggregated into global prototypes C̄(c) = 1
Mc

Mc∑
m=1

C
(c)
m , where Mc is the number of

clients with data from class c. The global prototypes are shared back with clients and
used as alignment targets: for example, a regularization term penalizes the distance
between C

(c)
m and C̄(c) in each client m’s loss function. Similar to our pipeline, these

methods compute prototypes from the set of feature vectors Sm extracted from raw
inputs using a feature extractor fm . Sharing only one aggregated vector per class
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reduces both privacy leakage and communication overhead compared to transmitting
a full set of raw data.

We extend these prototype-based methods by: (i) using a powerful FM Φ as a
shared feature extractor across clients instead of local embedding functions (e.g.,
representation layers) fm, and (ii) sharing a k-anonymous dataset S ′

m of size nm,
instead of a single prototype per class. Following the k-Same algorithm (Newton
et al., 2005), each client m clusters its dataset Sm into groups of size k (ignoring
original labels), computes the centroid of each cluster, and assigns a label to the
centroid via majority voting. This unsupervised clustering offers a privacy benefit:
instead of using true class labels, which might leak sensitive information – especially
in the case of outliers, the method only shares the derived labels. Each cluster
centroid then replaces all its member embeddings, producing an anonymized dataset
S ′
m that contains k identical copies of each centroid. This ensures k-anonymity: each

data point in S ′
m could be any of the k originals in the cluster, making individual

re-identification unlikely beyond a probability of 1/k (Sweeney, 2002). Furthermore,
unlike methods that only share class prototypes or cluster centroids, we share the
full anonymized dataset as a surrogate for real data, mitigating information loss and
enabling richer downstream use (Meden et al., 2018).

Enhancing Privacy with DP To strengthen privacy, we add DP noise to the
cluster centroids before applying the k-Same replacement. This addition is moti-
vated by Garg and Torra (2024); Holohan et al. (2017), and similar works, which
combine k-anonymity and DP into a unified framework.

To achieve (ϵ, δ)-DP as defined in Equation 3, each original embedding x is first
clipped to a norm bound B, so that ||x||2 ≤ B. Then, cluster centroids are computed
from these clipped embeddings. This gives an upper bound to the sensitivity of
the centroid computation function. Following the definition in Equation 5, the
sensitivity ∆fj in this case can be interpreted as the maximum change in the centroid
of a cluster j resulting from the inclusion or exclusion of a single embedding x in
j. Bounding this sensitivity ensures that no individual data point can significantly
influence the output, thereby reducing re-identification risk.

The next step involves adding Gaussian noise zj ∼ N (0, σ2
j I) to the centroid of each

cluster j. The standard deviation σj is calculated according to the work of Dwork
and Roth (2013) as:

σj =
∆fj ·

√
2 ln(1.25/δ)

ϵ
. (6)

Leveraging Global Knowledge Inspired by Garg and Torra (2024) and Holohan
et al. (2017), we refer to the resulting anonymized dataset as a (k, ϵ, δ)-anonymized
dataset S ′

m, where all embeddings in each cluster are represented by its DP-noised
centroid. The server collects all S ′

m into a global pool Ŝg =
⋃M

m=1 S ′
m. Each client

receives this pooled set, excluding its own share. This ensures each client has access
to a diverse, privacy-preserving global dataset for downstream tasks. Algorithm 2
outlines this DP-kSame sharing process.
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In summary, DP-kSame offers several advantages over existing prototype-based FL:
(i) it preserves each client’s unique information by sharing anonymized but not ag-
gregated centroids (as opposed to averaged class prototypes), (ii) it provides formal
privacy guarantees via k-anonymity and DP, and (iii) it leverages powerful FMs and
non-parametric clustering to produce compact, semantically rich representations for
global data sharing without requiring local training of an embedding model.

Algorithm 2 DP-kSame

Each client m ∈ [M ] creates a (k, ϵ, δ)-anonymized dataset S ′
m from its local embed-

ding set Sm using DP-noised cluster centroids.

1: Input: Embedding dataset Sm = {(xi, yi)}nm
i=1; anonymity parameter k; DP

parameters ϵ, δ and norm bound B
2: Output: Anonymized dataset S ′

m of same size nm

3: // Step 1: Feature Clipping
4: for each xi ∈ Sm do
5: x̄i ← xi/max(1, ||xi||2

B
) ▷ clip ℓ2 norm of feature vectors to B

6: end for

7: // Step 2: Unsupervised Clustering
8: J ← max(1, ⌊nm

k
⌋) ▷ get number of clusters of size k

9: Form J clusters from {x̄i} and get centroids {C(j)
m }Jj=1

10: ∀j ∈ [J ] : ŷ(j) ← argmax
c∈Y

∑
x̄i∈cluster j 1{yi=c} ▷ assign label to centroid C

(j)
m

11: // Step 3: Gaussian DP Noise to Centroids
12: for each cluster j = 1, . . . , J do
13: ∆j ← 2B

kj
▷ compute sensitivity of cluster mean with kj points

14: σj ←
∆j ·
√

2 ln(1.25/δ)

ϵ
▷ compute standard deviation for Gaussian distribution

15: zj ∼ N (0, σ2
j I) ▷ sample noise from Gaussian distribution

16: C̃
(j)
m ← C

(j)
m + zj ▷ add noise to centroids

17: end for

18: // Step 4: k-Same Anonymization
19: for each x̄i ∈ cluster j do
20: x′

i ← C̃
(j)
m ▷ replace each real embedding in a cluster with its centroid

21: end for

22: return S ′
m = {(x′

i, ŷ
(j)) : x̄i ∈ cluster j}nm

i=1

3.2.2 Synthetic Data Generation via DP-CVAE

While DP-kSame provides formal privacy, cluster centroids are inherently coarse
approximations of the original data and may fail to capture fine-grained structure.
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Anonymization methods relying on k-anonymity also tend to reduce data diversity,
which can negatively impact model robustness (Di Salvo et al., 2024; Larson et al.,
2020; Yu et al., 2022). Although reducing k improves fidelity, it increases the risk
of re-identification (Abadi et al., 2016; Aggarwal, 2005; Narayanan and Shmatikov,
2008). Furthermore, the direct addition of DP noise to centroids can distort data
distributions and harm downstream performance. These limitations motivate a more
expressive yet still privacy-preserving alternative.

To retain richer information, we propose sharing synthetic embeddings produced by
a federated, differentially private generative model. FM embeddings are semantically
rich and lower-dimensional than raw images, which reduces training complexity and
improves the quality of generated samples. A recent study (Di Salvo et al., 2024)
has shown that training on synthetic embeddings can preserve classification accuracy
compared to training on raw images while enhancing data privacy.

Among generative models, GANs and diffusion models are often computationally in-
tensive and thus impractical for resource-constrained federated environments. GANs,
in particular, are prone to training instabilities and mode collapse, leading to reduced
sample diversity (Fonseca and Bação, 2023; Koetzier et al., 2024; Hayaeian Shir-
van et al., 2025). In contrast, VAEs and CVAEs are more stable and lightweight.
While they may produce slightly blurrier outputs, CVAEs avoid the complexity
and instability of adversarial training and offer better control and reproducibility.
Di Salvo et al. (2024) also shows that CVAE-generated embeddings can exceed k-
Same datasets in diversity and robustness.

CVAE We adopt a CVAE architecture inspired by Di Salvo et al. (2024), with sym-
metric encoder and decoder networks, each comprising three linear layers. Extending
the standard VAE framework (Kingma and Welling, 2014), the CVAE models the
conditional generation of an embedding x given a class label y via a latent variable
z. Specifically, the encoder, represented by qϕ(z | x, y), approximates the true pos-
terior over z given x and y, outputting the parameters (i.e., the mean and standard
deviation) of a Gaussian distribution. The decoder pθ(x | z, y) reconstructs x from
z and y.

The model samples z from the encoder distribution using the reparameterization
trick (Kingma and Welling, 2014) and generates a reconstruction x∗. Training max-
imizes a variational lower bound on the conditional log-likelihood log pθ(x | y), which
decomposes into: (i) a reconstruction loss, for which we use the Mean Squared Er-
ror (MSE) between x and x∗, and (ii) a regularization term, which is the Kull-
back–Leibler (KL) divergence between the learned latent distribution qϕ(z | x, y)
and the prior pθ(z) = N (0, I). A hyperparameter β controls the trade-off between
reconstruction fidelity and alignment of the learned latent distribution with the prior
(indicating better sampling and generalization). The resulting CVAE loss function
for a single embedding–label pair (x, y) is:

LCVAE(x, y; θ, ϕ) = MSE(x,x∗)− β ·DKL (qϕ(z | x, y)∥pθ(z)) , (7)
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where x∗ ∼ pθ(x | z, y), and z ∼ qϕ(z | x, y). The loss encourages the decoder to
accurately reconstruct embeddings of specific classes while regularizing the latent
space to remain close to the standard normal prior for effective generative sampling.

To generalize well across clients while preserving privacy, we train the CVAE in a
federated manner. Each client m maintains a local encoder with parameters ϕm

and a shared decoder with parameters θ. At each round, clients train on their
local dataset Sm, updating both CVAE components, but share only the decoder
parameters with the server. In FedAvg style (see Algorithm 1), the shared decoder
weights are averaged to update the global decoder Dg, which is redistributed to
clients. Over rounds, Dg captures global (intra-class) variations, while the encoder
stays personalized. For comparison, we also experiment with a CGAN model where
the generator is federated and the discriminator is local.

Enhancing Privacy with DP In training federated generative models, DP is a
well-established method for ensuring provable privacy guarantees through controlled
injection of random noise (Kaabachi et al., 2025). To achieve (ϵ, δ)-DP during our
CVAE training, we integrate DP-SGD algorithm Abadi et al. (2016), illustrated in
Figure 5. Each client clips per-sample gradients of the decoder to a norm bound
B, aggregates them, and adds Gaussian noise N (0, σ2B2I) before updating the
global decoder. Any outputs of the resulting decoder are guaranteed to protect
an individual’s data used in training according to the chosen privacy budget (ϵ, δ).
This method mirrors the DP-noise mechanism used in DP-kSame but applies it
to gradients instead of feature embeddings (see Table 1 for a full comparison). In
both approaches, privacy-preserving operations are performed locally by each client
without exposing individual privacy details to the server.

Table 1: Comparison of DP mechanisms in our federated data sharing methods

DP-kSame DP-CVAE/-CGAN

Clipping target Per-sample embeddings Per-sample gradients

Noise target Cluster centroids Aggregated (average) gradients

Sensitivity based on Norm of embeddings Norm of per-sample gradients

Leveraging Global Knowledge Once the federated training of the global decoder
Dg is completed, each client uses it to create a synthetic dataset that approximates
a globally representative, privacy-preserving feature distribution. Given a target
synthetic dataset size Nm, each client m constructs its synthetic dataset Ŝm as
follows:

Ŝm = {(x̂i, ŷi)}Nm
i=1, x̂i = Dg(zi | ŷi) (8)

where zi ∼ N (0, I) is sampled from a standard normal Gaussian distribution, and
ŷi is sampled from a selected class distribution K. This synthetic dataset can then
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Figure 5: Visualization of the DP-SGD algorithm. Solid-colored lines represent
per-sample gradients (with width indicating norm), and multicolored lines represent
the aggregated, noised gradients. This figure is reproduced from Yousefpour et al.
(2022).

be used for downstream tasks. Algorithm 3 details the training and generation
processes in our DP-CVAE approach.

3.3 Downstream Classification

All downstream tasks (e.g., classification) are performed in the embedding space of a
pre-trained FM. This enables clients to achieve strong performance even with simple
classifiers such as linear probes or non-parametric methods like k-NN. Importantly,
in this setup, downstream training is decoupled from the federated aggregation pro-
cess, offering several advantages as discussed in Section 2.1. For example, clients
gain autonomy (as no parameter synchronization is required) and can rapidly adapt
to new classes or tasks. Prior work such as Doerrich et al. (2024) demonstrated that
combining k-NN with vision FMs yields adaptable, privacy-preserving classifiers that
outperform standard deep networks in certain settings.

In both DP-kSame and DP-CVAE, each client m retains two datasets: its private lo-
cal set Sm and a global set Ŝm (anonymized or synthetic). This setup enables clients
to tailor models to their specific downstream needs. For instance, clients can utilize
the same synthetic data to train classifiers with different label granularities, model
data distributions for anomaly detection, or address out-of-distribution detection,
depending on the client’s application.
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Algorithm 3 DP-CVAE

Clients train a CVAE in a differentially private manner, and synchronize only the
decoder via FedAvg. The final global decoder is used to generate synthetic data
locally.

1: Input: M participating clients with local embedding datasets Sm =
{(xi, yi)}nm

i=1; number of communication rounds T ; number of local training
epochs E; learning rate η; DP noise scale σ (determined based on input (ϵ, δ)),
clipping norm B; batch size nb; target synthetic size Nm; class distribution K

2: Output: Global decoder Dg, synthetic dataset Ŝm for each client m

3: // Step 1: Federated Training of DP-CVAE
4: Server executes:
5: Initialize weights θ(0) for global decoder Dg

6: for each round t = 1, . . . , T do
7: for each client m = 1, . . . ,M in parallel do
8: θ

(t)
m ← ClientUpdate(m, θ(t))

9: end for
10: st ←

∑M
m=1 n

train
m

11: θ(t+1) ←
∑M

m=1
ntrain
m

st
θ
(t)
m ▷ FedAvg on CVAE decoder only

12: end for

13: function ClientUpdate(m, θ)
14: Initialize or load encoder ϕm; set decoder θm ← θ
15: for each local epoch e = 1, . . . , E do
16: for each mini-batch {(xi, yi)}nb

i=1 ⊂ Sm do
17: For each (xi, yi), compute gi ← ∇θm,ϕmLCVAE(xi, yi; θm, ϕm)

18: ḡi ← gi/max(1, ||gi||2
B

) ▷ clip per-sample gradients
19: g̃← 1

nb

∑
i ḡi +N (0, σ2B2I) ▷ add noise to aggregated gradient

20: (θm, ϕm)← (θm, ϕm)− η · g̃ ▷ update CVAE with DP gradient
21: end for
22: end for
23: return θm to server
24: end function

25: // Step 2: Local Synthetic Data Generation
26: for each client m = 1, . . . ,M do
27: Ŝm ← ∅
28: for i = 1, . . . , Nm do
29: ŷi ∼ K ▷ sample label from selected class distribution
30: zi ∼ N (0, I) ▷ sample latent from standard normal distribution
31: x̂i ← Dg(zi | ŷi) ▷ generate embedding
32: Ŝm ← Ŝm ∪ {(x̂i, ŷi)}
33: end for
34: end for
35: return (Ŝm)Mm=1
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We focus on image classification as the primary downstream task for a standardized
evaluation. The availability of both local and global datasets supports personalized
FL, where each client trains a model adapted to its local distribution while leveraging
knowledge from the broader federation. To formalize our objective, we begin with
the optimization problem of parametric personalized FL, which can be defined as
follows:

∀m ∈ [M ], θ∗m = argmin
θm

Lm(h
θm
m ), (9)

where Lm(h
θm
m ) = E(x,y)∼Pm [ℓ (hm (x; θm) , y)] is the error of client m’s model hm

with parameters θm in predicting the true label y ∈ Ym given the input x ∈ Xm, and
Pm is the distribution over Xm × Ym (Chen and Chao, 2022; Morafah et al., 2024).
The objective of parametric personalized FL is therefore to train models to perform
well on each client’s distinctive data distribution. Marfoq et al. (2022) generalizes
this objective to non-parametric models:

∀m ∈ [M ], h∗
m = argmin

hm∈H
Lm(hm), (10)

where hm ∈ H is a model (hypothesis) fit to each client’s data distribution, mapping
each input x ∈ Xm to a probability distribution over Y ; the true risk of a model
hm under data distribution Pm is measured by Lm(hm) = E(x,y)∼Pm [ℓ (hm (x) , y)].
hm can therefore be interpreted as an estimate of the conditional probability distri-
bution Pm(y | x), and non-parametric personalized FL directly optimizes over the
hypothesis space H without explicit parameters.

In contrast to many existing personalized FL methods (cf. Section 2.2), our approach
leverages shared feature representations from a FM and focuses solely on downstream
training without additional representation learning. For each client m, we train one
classifier on the local data Sm and another on the global (anonymized or synthetic)
data Ŝm. Predictions are then obtained by interpolating the outputs of these two
models using a tunable parameter λm ∈ [0, 1], optimized based on the validation
set. Given a test sample xtest, the interpolated class distribution is:

hm,λm(y | xtest) := λmPSm(y | xtest) + (1− λm)PŜm
(y | xtest) (11)

where PSm and PŜm
denote the predictive distributions from the local and global

models, respectively. The final predicted class is given by:

ŷtest = argmax
c∈Y

Pm,λm(y | xtest) (12)

As λm → 1, the model emphasizes client-specific knowledge. Conversely, as λm → 0,
it relies more on global information aggregated across clients. Thus, λm offers a
tunable balance between personalization and generalization.
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4 Experiments

4.1 General Setup

4.1.1 Datasets

We evaluate DP-kSame and DP-CVAE on a suite of medical image datasets to
assess their performance in privacy-sensitive and realistic federated learning scenar-
ios. Specifically, we use multiple 2D multi-class classification datasets from MedM-
NISTv2 (Yang et al., 2023), along with a subset of 4,600 images from Camelyon17-
Wilds (Koh et al., 2021), as utilized in Chen et al. (2023b). Camelyon17 is a binary
histopathological image dataset drawn from five hospitals in the Netherlands, nat-
urally reflecting a federated setting. The selected datasets vary in different aspects
like imaging modality, resolution, and class balance, posing distinct challenges in
learning and privacy protection. They provide a comprehensive benchmark for eval-
uating privacy-utility trade-offs and potential robustness of our methods in diverse
clinical imaging tasks. Table 2 gives an overview of the datasets used.

Table 2: Overview of benchmark medical datasets used in experiments

Dataset Data Modality # Classes # Samples

Camelyon17 Histopathology 2 4,600

OrganSMNIST Abdominal CT 11 25,211

BloodMNIST Blood Cell Microscopy 8 17,092

DermaMNIST Dermatoscopy 7 10,015

PneumoniaMNIST Chest X-Ray 2 5,856

For feature extraction, we opt for the DINOv2-Base model as our primary back-
bone due to its state-of-the-art performance in learning general-purpose visual fea-
tures. Using this backbone, we obtain 768-dimensional embeddings from our image
datasets. For Camelyon17 dataset, each hospital is treated as a distinct client. In
the MedMNIST datasets, we simulate heterogeneity by partitioning each dataset
among M clients using a Dirichlet distribution, following Marfoq et al. (2022). For
each class label y, we draw a vector py = [py,1, . . . , py,M ] from a symmetric Dirichlet
distribution with parameter α and assign a fraction py,m of samples with label y to
client m ∈ [M ]. Smaller values of α result in more skewed (non-IID) distributions
across clients. Each client’s data is split into training (70%), validation (10%), and
test (20%) sets.
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4.1.2 Implementation Details

DP-kSame Each client anonymizes its embedding dataset using the k-Same algo-
rithm with k = 10, grouping roughly 10 samples per cluster. The clustering (via
k-means) is performed in an unsupervised manner to obscure class identity. Cluster
centroids are used to replace the embeddings in the corresponding clusters, and their
labels are assigned via majority voting. To satisfy (ϵ, δ)-DP with (1.0, 10−4), Gaus-
sian noise is added to each centroid after clipping real embeddings with ℓ2-norm
bound 1.5. This choice, with ϵ ≤ 1 and δ ≪ 1/n, where n is the average num-
ber of training samples per client in our experiments, provides meaningful privacy
guarantees while preserving utility (Nasr et al., 2021; Lange et al., 2022).

DP-CVAE Clients train class-conditional CVAEs on their local embeddings. The
CVAE has three linear layers in both encoder and decoder, with a latent dimension
of 100. Class conditioning is implemented via concatenation of one-hot encoded
labels to the inputs at both ends. The model is trained for 50 communication
rounds with 5 local epochs per round, using Adam optimization with learning rate
of 10−3. During local training, we apply DP-SGD via the Opacus library (Yousefpour
et al., 2022) with (ϵ, δ) = (1.0, 10−4) and a clipping norm of 1.5, similar to the DP
configuration used in DP-kSame. Clients share only their decoder weights, and the
server aggregates them via FedAvg into a global decoder Dg.

After training, each client generates synthetic embeddings by sampling latent vec-
tors from N (0, I) and decoding them with Dg. Instead of reproducing the original
class distribution, we exploit the flexibility of this generative approach to explore
alternative class-balancing strategies during generation – such as uniform or inverse-
frequency sampling – while keeping the total number of generated samples equal to
the original dataset size for a fair comparison with DP-kSame. Since the trained
CVAE can produce an arbitrary number of samples for any class, it enables the
construction of synthetic datasets tailored to each client’s needs, which can then
be combined with the client’s real embeddings to train downstream models. This
generative flexibility is a key advantage of our DP-CVAE approach. For all experi-
ments reported below, we adopt inverse class frequency weighting (i.e., oversampling
minority classes), which consistently yields stronger classification performance. By
generating diverse variations of input samples, the CVAE increases intra-class di-
versity, particularly benefiting underrepresented classes.

Downstream Classification We evaluate both linear classifiers and non-parametric
k-NN models. Linear models are trained using the Adam optimizer with a learning
rate of 10−3 for 100 epochs. For k-NN, we use the FAISS library (Douze et al., 2024)
for efficient search with Euclidean distance metric. The number of nearest neighbors
is set to k = 3.

Like linear classifiers, k-NN is applied separately on local and global data to compute
a local probability PSm(y | xtest) and a global probabilityPŜm

(y | xtest). While the
outputs of linear classifiers can be interpreted as softmax logits, the output of k-NN
is a probability vector over classes, where each entry reflects the weighted influence
of the k nearest neighbors for a given class. We compute these weights using a
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Gaussian kernel applied to the neighbors’ distances to the test embedding, which
transforms distances into smoothly decaying weights. This approach helps mitigate
sensitivity to variations in distance and reduces the influence of outliers. For each
set of k nearest neighbors retrieved from the datastore (local or global), we compute:

P (y = c | xtest) =

∑k
i=1 1{yi=c} · exp {−d (xtest,xi)}∑k

i=1 exp {−d (xtest,xi)}
(13)

where d (xtest,xi) denotes the Euclidean distance between the test embedding and
neighbor i. For final predictions, interpolation weights λm ∈ 0.0, 0.1, . . . , 1.0 are
selected for each client via validation performance to combine the global and local
model outputs, as described in Equation 11.

4.2 Downstream Classification Performance

4.2.1 Benchmarks

We compare DP-kSame and DP-CVAE against both standard and personalized FL
baselines. The standard methods include FedAvg (McMahan et al., 2017) and its
enhanced version, FedProx (Li et al., 2020), which addresses local data heterogeneity
by adding a regularization term that penalizes large deviations in client updates from
the global model. Personalized FL baselines include kNN-Per (Marfoq et al., 2022)
and FedProto (Tan et al., 2022). Similar to our methods, these approaches aim to
obtain personalized models for participating clients and shift towards decoupling
global and local training, as analyzed in Section 2.2.

For kNN-Per, we implement an adapted version where each client uses the pre-
trained FM instead of the global model to obtain embeddings. The outputs of the
global model are now used solely for the downstream task by interpolating them
with the local k-NN classifier to produce the final prediction. kNN-Per remains our
semi-parametric competitor, as the global model is still trained through FedAvg for
the downstream task. The other personalized baseline, FedProto, closely resembles
our methods, particularly DP-kSame, in its prototype-based data sharing approach,
as described in Section 3.2.1. We adapt FedProto by computing fixed class pro-
totypes using frozen FM feature representations, rather than iteratively updating
them via client-side model training. This change reflects our use of a single-layer lin-
ear classifier on top of fixed embeddings, in contrast to training full deep networks.
As a result, downstream training becomes entirely local and the overall pipeline
becomes non-parametric. This effectively makes FedProto our non-parametric base-
line, where local linear classifiers are trained on frozen FM embeddings and use
static class prototypes for regularization.

We also compare against DP-CGAN (Sun et al., 2023; Torkzadehmahani et al.,
2019), a generative baseline trained with DP-SGD. Here, a global generator is
learned in a federated manner by aggregating generator weights across clients and
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Table 3: Mean ± standard deviation of test accuracy (ACC) and balanced accuracy
(BACC) across clients, averaged over three seed runs. We highlight in bold the
top two results in each setting. Rows containing methods that incorporate privacy-
enhancing mechanisms are shaded in gray. For these, both k-NN and linear classifiers
are evaluated.

OrganSMNIST (IID) OrganSMNIST (α = 0.3) Camelyon17

ACC BACC ACC BACC ACC

FedAvg 72.29±0.51 65.69±0.73 64.57±7.35 59.28±4.48 88.77±3.42

FedProx 72.24±1.04 65.64±1.04 64.44±9.92 59.20±4.18 88.70±3.50

kNN-Per 75.22±0.95 68.93±1.24 87.21±1.39 60.39±3.12 92.21±2.93

FedProto 76.87±1.06 70.98±1.22 88.92±2.27 57.00±2.55 94.09±1.22

DP-kSame (Ours)

+ k-NN 71.48±1.81 65.90±2.40 86.46±2.56 56.15±2.99 92.07±1.61

+ Linear 76.41±1.16 70.54±1.27 89.18±1.23 58.39±2.12 92.21±1.20

DP-CGAN

+ k-NN 71.64±1.45 66.01±1.85 86.43±1.85 56.27±2.80 92.03±0.93

+ Linear 76.90±1.14 70.90±1.87 88.93±1.28 57.53±2.61 94.09±0.94

DP-CVAE (Ours)

+ k-NN 71.66±1.32 66.14±1.84 86.53±1.22 56.27±2.56 91.99±1.29

+ Linear 76.96±0.99 71.14±1.27 89.03±0.74 57.58±3.51 94.57±0.91

used for producing synthetic embeddings. Like DP-kSame and DP-CVAE, we eval-
uate DP-CGAN’s downstream performance with both k-NN and linear classifiers.

All classifiers except kNN-Per’s local k-NN classifiers are implemented as single-
layer linear models. Similar to our DP-CVAE, all federated models are trained
for 50 rounds with 5 local epochs using SGD optimization with a learning rate of
10−3. Local linear classifiers in FedProto are trained for 100 epochs using the Adam
optimizer with a learning rate of 10−3, as in DP-kSame and DP-CVAE.

4.2.2 Average Performance

Table 3 reports the overall mean and standard deviation of classification accuracy
and balanced accuracy across clients and three random seeds. Following Li et al.
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(2024b), we use OrganSMNIST – an abdominal CT dataset (Sagittal view) (Xu
et al., 2019), utilizing the splits from Yang et al. (2023) with 25, 211 images across
11 classes. We distribute the data among 10 clients under both highly non-IID
(Dir(α = 0.3)) and IID conditions. In addition, we test on Camelyon17, adopting
its natural partitioning across five hospitals as five clients. Since Camelyon17 is
roughly class-balanced, we report only the accuracy.

For all interpolation-based methods (kNN-Per, DP-kSame, DP-CGAN, DP-CVAE)
and settings reported in Table 3, the optimal λm (averaged across clients over three
seed runs) is around 0.7, indicating that a 70% weight on the local model yields
the best results. This observation enables a fair comparison across methods, as it
ensures a similar balance between local and global contributions to final predictions.

Overall, personalized FL methods improve substantially upon FedAvg and Fed-
Prox, demonstrating the benefits of incorporating local predictions for personaliza-
tion. Among these, federated data sharing schemes outperform end-to-end feder-
ated training approaches, with DP-CVAE achieving the best performance in most
cases, closely followed by DP-CGAN, DP-kSame and FedProto. This supports our
hypothesis that sharing anonymized or synthetic embeddings, even under DP con-
straints, can be more effective than exchanging model parameters. The success of
these methods despite privacy-enhancing mechanisms highlights the benefits of de-
coupling global learning from local downstream tasks. As argued by Marfoq et al.
(2022), this decoupling avoids conflicts between global and local objectives.

Among privacy-preserving methods, DP-CVAE performs best overall, especially in
data-scarce settings like Camelyon17, where each client has fewer than 500 train-
ing samples on average. Its notable performance gap over DP-kSame and DP-
CGAN on Camelyon17 suggests that CVAEs are more data-efficient than the other
anonymization mechanisms. The success of DP-CVAE highlights the effectiveness
of our generative modeling approach in preserving utility while providing strong
privacy protection.

In highly heterogeneous settings like OrganSMNIST with α = 0.3, our DP-kSame
and DP-CVAE methods achieve slightly lower balanced accuracy than FedAvg, Fed-
Prox, and kNN-Per, yet surpass them in overall accuracy. This discrepancy arises
from the nature of the data used for downstream training: while traditional feder-
ated classifiers and kNN-Per rely entirely on clients’ true local data distributions,
DP-kSame and DP-CVAE train models on data shaped by global aggregation –
either globally collected anonymized centroids or synthetic samples from federated
decoders. The resulting global models, interpolated with local models at inference,
generalize well across clients. However, in extreme non-IID scenarios, the global
classifier may underrepresent minority classes specific to a client. As a result, its
contribution can dampen the balanced accuracy of the interpolated model. Despite
this, the accuracy gains show that modeling shared structure through global data
remains beneficial. Furthermore, it is important to note that the benchmark meth-
ods are not differentially private, whereas DP-kSame and DP-CVAE enforce strong
privacy guarantees, which may affect performance. The additive DP noise can dis-
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tort the representation space, leading to less precise decision boundaries, especially
for underrepresented classes.

Although our discussion mainly focuses on linear models due to their overall better
performance, it is noteworthy that a simple k-NN classifier performs nearly on par
with a linear model trained for 100 epochs. The gap with linear classifiers is espe-
cially small in highly non-IID conditions like OrganSMNIST (α = 0.3). confirming
the strength of rich FM embeddings (Caron et al., 2021; Oquab et al., 2024). This
aligns with earlier evaluations of DINO features, suggesting that rich FM embed-
dings allow a basic k-NN model to achieve competitive results without additional
training (Caron et al., 2021; Oquab et al., 2024). Moreover, as noted by Marfoq
et al. (2022), k-NN classifiers offer fast adaptability by updating the local datastore
without requiring a full model retraining cycle.

Lastly, across methods, the tuned interpolation weight λm yielding the best (bal-
anced) accuracy consistently lies between 0.4 and 0.7. This confirms that combining
global and local models provides a consistent performance boost and underscores
the utility of the shared anonymized or synthetic data in our methods.

4.2.3 Effect of Data Heterogeneity

Figure 6 shows how balanced accuracy changes with data heterogeneity (defined by
Dirichlet parameter α) for four MedMNIST datasets. We exclude Camelyon17 due
to its fixed client structure. For each α, we simulate 10 clients and report the average
balanced accuracy across clients. To compare the best possible performance of our
privacy-preserving methods against the benchmarks, we use linear models instead
of k-NN for downstream classification in these methods.

As expected, performance generally improves as data become more IID (larger α)
and converge as α→∞ (near IID). For OrganSMNIST and BloodMNIST, FedAvg
and kNN-Per seem to address high heterogeneity (α ≤ 0.5) more effectively, but
DP-kSame and DP-CVAE (along with FedProto) gain a clear advantage in more
balanced settings (α ≥ 1). This suggests that the shared (synthetic or anonymized)
data improves generalization compared to training solely on local data. This result
aligns with our observations in the previous experiment that the current design of our
DP-kSame and DP-CVAE works best in less heterogeneous settings, where they can
fully leverage globally aggregated knowledge and shared structure for downstream
prediction.

Notably, DP-CVAE consistently outperforms DP-kSame, particularly under high
heterogeneity or in limited-data scenarios like DermaMNIST and PneumoniaMNIST.
This further underscores our earlier observation from the classification results on
Camelyon17 about the robustness of our generative method in challenging data
conditions. Importantly, DP-CVAE’s flexibility in sample generation allows future
extensions to more advanced class-rebalancing strategies (Liu et al., 2025), unlike
the fixed anonymization scheme in DP-kSame.
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Figure 6: Balanced accuracy (BACC) (averaged across 10 clients over three seed
runs) versus Dirichlet parameter α. Smaller α implies higher heterogeneity; as
α→∞, local distributions approach the IID setting.

4.2.4 Generalizability across Backbones and Robustness to Data Scarcity

In Figure 7, we demonstrate the robustness of our methods across different back-
bones (DINO-, DINOv2-, ViT-Small) and varying client counts. We use OrganSM-
NIST under IID partitioning.

The results show that both methods generalize well across different feature extrac-
tors, with a modest drop in balanced accuracy from DINO to DINOv2 to ViT. As the
number of clients increases, resulting in smaller local datasets, performance declines
only marginally. Compared to the upper-bound performance achievable through
centralized learning, our methods remain competitive while ensuring privacy, even
with limited data. Overall, the experiment demonstrates that our methods are ro-
bust across diverse feature representations and dataset sizes, with DP-CVAE consis-
tently outperforming DP-kSame in most settings. This further suggests a favorable
privacy-utility trade-off: our methods achieve competitive predictive performance
while providing strong privacy protection, generalizing nearly as well as models
trained on real embeddings.
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Figure 7: Generalizability of our methods across different backbones and increasing
numbers of clients (i.e., fewer samples per client), utilizing OrganSMNIST (IID).
The dashed lines represent the BACC obtained when training a linear classifier on
real image embeddings with the original train–validation–test split for each back-
bone.

4.3 Privacy-Utility Trade-off

4.3.1 Data Utility across Differential Privacy Budgets

To evaluate the trade-off between privacy and utility in our proposed methods, we
examine how the fidelity of the shared data deteriorates as we tighten the DP budget
(ϵ), which is used in data anonymization (DP-kSame) or privacy-preserving gener-
ative modeling (DP-CVAE). We consider Camelyon17 and OrganSMNIST datasets
without differentiating between IID and non-IID settings due to similar results.
Specifically, we vary ϵ (with a fixed δ = 10−4) and measure the 2-Wasserstein dis-
tance (Panaretos and Zemel, 2019) between a client’s real embedding distribution
and the distribution of its shared data.

The p-Wasserstein distance, also known as the Earth Mover’s Distance, quantifies
the minimal effort required to transform one probability distribution into another.
It is widely used to evaluate how well synthetic (or anonymized) data preserves the
statistical properties of real data (Qian et al., 2024; Sella et al., 2025). A lower
Wasserstein distance indicates higher fidelity, which is often critical for downstream
performance.

Figure 8 illustrates the results. As ϵ decreases below 1 (indicating stronger pri-
vacy), DP-kSame exhibits a sharp increase in Wasserstein distance, reflecting large
deviations in the anonymized centroids from the real data. In contrast, DP-CVAE
maintains a consistently low Wasserstein distance, even at ϵ = 0.01, demonstrating
robustness to tight privacy constraints.

This discrepancy stems from the mechanisms used. DP-kSame directly adds noise
to centroids, which replace all data points in a cluster, thus amplifying distortion.
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Figure 8: Privacy-utility trade-off: Wasserstein distance (W), averaged across
clients over three seed runs, between the distributions of real and shared embeddings
versus DP privacy budget ϵ (lower ϵ = stronger privacy).

Conversely, DP-CVAE applies DP noise during model training and generates new
samples without further perturbation, thereby preserving fidelity. The strong per-
formance of DP-CVAE in the range of strict privacy budgets (ϵ ≤ 1) highlights its
advantage in mitigating the privacy-utility trade-off in privacy-preserving FL.

4.3.2 Evaluation of Empirical Privacy

DP is the property of our data sharing mechanisms that establishes how protected
individuals are when sharing their sensitive data. Some works (Wagner and Eckhoff,
2018) consider DP, along with k-anonymity, as a privacy metric. However, interpret-
ing its parameters (e.g., ϵ) can be difficult in practice. To offer a more intuitive and
empirical perspective, multiple privacy metrics (PMs) have been proposed (see e.g.,
Trudslev et al. (2025) andWagner and Eckhoff (2018) for a comprehensive overview).
We complement the theoretical DP guarantees with four PMs: two distance-based
(so-called Unidentifiability Score and Distance to Closest Record (DCR)) and two
attack-based (MIA and DOMIAS privacy attacks). Additionally, Unidentifiability
Score and MIA F1-score measure record-level privacy, whereas DCR and DOMIAS
F1-score offer a distributional view on privacy leakage. We follow existing imple-
mentations from Synthcity (Qian et al., 2023) and Syntheval (Lautrup et al., 2024)
frameworks to compute these metrics.

Unidentifiability Score This score measures whether the anonymized records
(including synthetic ones) are “different enough” from their real counterparts. Fol-
lowing Yoon et al. (2020), we compute identifiability score – the probability that an
anonymized data point is closer to a real training point than that real point’s near-
est neighbor. The derived privacy score is then defined as 1 − identifiability score,
where a score near 1 indicates strong privacy (minimal re-identification risk), and a
score near 0 indicates poor protection.
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Distance to Closest Record (DCR) DCR measures the median distance from
each anonymized record to its nearest real record, normalized by distances among
the real records (Steier et al., 2025; Trudslev et al., 2025). A high DCR suggests
that anonymized samples are well-separated from real data, reducing memorization
risk. To improve interpretability, we compare the DCR between anonymized and
training data against a holdout set. If anonymized data is significantly closer to the
training data than to the holdout data, we define a DCR privacy loss, meaning some
information specific to the training data has leaked into the anonymized dataset. A
negative DCR privacy loss suggests information leakage, while a positive one implies
accuracy or fidelity loss.

MIA MIAs simulate an adversary attempting to determine whether a specific
record was used in training. Following Syntheval’s implementation (Lautrup et al.,
2024), we adopt a black-box MIA setup using a Random Forest classifier to distin-
guish between training and holdout samples based on anonymized data (available to
the attacker). Performance is evaluated via typical classification metrics, especially
ROC-AUC and F1-score. Poor classification performance indicates strong privacy
protection, as the attacker cannot confidently infer if a target record was a training
member.

DOMIAS DOMIAS (van Breugel et al., 2023) is an unsupervised, density-based
MIA that detects local overfitting via kernel density estimation. It estimates whether
a data point is more likely to belong to the training distribution than a reference dis-
tribution. As with MIA, we compute metrics like ROC-AUC and F1-score; poorer
performance indicates stronger privacy. While classifier-based MIAs might under-
estimate leakage if a poor classifier is chosen, DOMIAS is independent of model
performance and captures distributional overexposure instead.

All PMs are computed directly on real embedding datasets as well as on anonymized
datasets after they have been generated. Like prior work (Steier et al., 2025; van
Breugel et al., 2023), we argue that such post-hoc, black-box metrics are more
realistic for our FL setting, where clients only release anonymized or synthetic data,
not raw inputs or models.

Figure 9 summarizes the trade-offs evaluated on Camelyon17 and OrganSMNIST
datasets (not differentiating between IID and non-IID settings due to similar results).
Both DP-kSame and DP-CVAE achieve strong privacy across all evaluation metrics.
The unidentifiability scores for both methods are consistently close to 1.0, indicating
that individual samples cannot be reliably traced back to their source. They both
show less severe DCR privacy loss (higher values towards the positive side) than
the Centroids-only baseline. Furthermore, the ROC-AUC values for both MIA and
DOMIAS attacks (not included in the Figure) are close to 0.5 on both datasets. This
is considered a strong privacy signal, suggesting that adversaries gain no advantage
over random guessing. All other metrics for these attacks lie on the lower side, with
F1-scores well below 0.5 and both precision and recall < 0.3. Compared to the
baseline, these privacy attacks are clearly less successful on the anonymized data
generated in DP-kSame and DP-CVAE paradigms.
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Figure 9: Privacy versus utility for DP-kSame and DP-CVAE, compared against
a “Centroids-only” baseline (i.e., no k-Same or DP). Privacy is measured Uniden-
tifiability Score, DCR Privacy Loss, MIA F1-score, and DOMIAS F1-score; arrows
indicate whether higher (↑) or lower (↓) values imply stronger privacy. Utility is
measured by Wasserstein distance W (lower is better).

While DP-kSame and DP-CVAE offer comparable privacy, DP-kSame exhibits sub-
stantially higher Wasserstein distance, indicating reduced utility of its anonymized
data. As discussed in 4.3.1, this degradation arises from the direct injection of noise
into cluster centroids, which are then used to represent all samples in a group. The
lack of a decoding mechanism to project these noisy centroids back into realistic
sample space (based on a prior distribution) further limits fidelity. In contrast,
DP-CVAE, though trained under similar DP constraints, can generate samples that
remain statistically close to the real distribution. These findings highlight DP-
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CVAE’s strength in balancing privacy and utility. Its ability to maintain high gen-
eration fidelity while providing strong privacy guarantees makes it a more effective
and scalable solution for privacy-preserving data sharing in FL.

4.4 Selection of Generative Models

We conduct an ablation study comparing DP-CVAE and DP-CGAN – two federated,
differentially private generative models. Our goal is to evaluate their effectiveness in
preserving the original data distribution, as well as their computational efficiency.

We measure fidelity using the average 2-Wasserstein distance (W) between each
client’s real and synthetic datasets. As shown in Figure 10, DP-CVAE consistently
achieves lowerW , indicating better approximation of the original data distribution.

Figure 10: Fidelity of synthetic data generated by DP-CVAE versus DP-CGAN
to the original data distribution, measured by the Wasserstein distance (lower is
better). Results are analyzed in relation to the number of model parameters.

Interestingly, despite this clear difference in generation fidelity, the downstream
classification accuracy and balanced accuracy of DP-CGAN and DP-CVAE are quite
similar (see Table 3). This can likely be attributed to the semantic richness of FM
embeddings, which makes downstream classifiers resilient to moderate distortions
in input data. Nevertheless, DP-CVAE’s higher fidelity demonstrates more faithful
generation under DP, which is critical for generalizing to more complex or sensitive
downstream tasks.

Moreover, DP-CVAE requires approximately 5× fewer parameters than DP-CGAN,
reducing communication and computational overhead, which are critical in FL set-
tings. While both models implement the same DP mechanism, DP-CVAE emerges
as a favorable choice because of its efficiency and superior reconstruction quality.
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5 Discussion

5.1 Key Findings and Contributions

A core novelty of our work is the paradigm shift it proposes: instead of training
models on raw input data and sharing privacy-sensitive model updates, we explore
representation-level data sharing in the latent space of a fixed, pre-trained FM. By
leveraging rich and generalizable embeddings from FMs like DINOv2, we decou-
ple local downstream modeling from global collaboration. This allows for privacy-
enhanced and computationally lightweight participation, eliminating the need for
costly end-to-end model synchronization. At the same time, clients can operate in-
dependently with simple classifiers and still benefit from shared knowledge through
anonymized or synthetic embeddings.

To this end, we propose and evaluate two approaches for privacy-preserving rep-
resentation sharing: (i) DP-kSame, a direct anonymization strategy based on k-
anonymity with additive DP noise, and (ii) DP-CVAE, a generative framework that
learns to generate privacy-aware synthetic embeddings through federated, differ-
entially private CVAEs. Across diverse experiments on different medical image
datasets, our findings reveal several consistent patterns that shed light on the prac-
tical effectiveness and privacy strengths of the proposed strategies.

In both of our proposed methods, downstream training remains private, person-
alized, and decoupled from the global collaboration. We demonstrate that, with
this setup, both methods deliver stable performance across different FM backbones,
indicating their general applicability for varied feature representations.

Among the evaluated methods, DP-CVAE emerges as the most effective privacy-
preserving approach, offering the best balance between privacy protection and utility.
In terms of utility, DP-CVAE consistently achieves competitive classification accu-
racy and reconstruction fidelity (measured by Wasserstein distance) compared to the
baselines. On the privacy front, DP-CVAE performs best across all evaluated met-
rics. Its synthetic embeddings exhibit both lower record-level re-identifiability (mea-
sured by Unidentifiability Score) and reduced distributional memorization (mea-
sured by DCR Privacy Loss). They are also less vulnerable to both supervised
(MIA) and unsupervised (DOMIAS) membership inference attacks. Notably, DP-
CVAE outperforms DP-kSame in the privacy-utility trade-off under stringent pri-
vacy budgets (e.g., ϵ ≤ 1). This advantage is attributable to the CVAE’s ability
to approximate the original data distribution while enforcing DP guarantees. Un-
like direct anonymization through noise-perturbed centroids, DP-CVAE employs a
generative modeling process that is more resilient to DP noise. Furthermore, by
providing a globally trained class-conditional decoder, the DP-CVAE pipeline fa-
cilitates greater adaptability across applications without retraining the generative
model. Compared to DP-CGAN, DP-CVAE generates higher-fidelity embeddings
while incurring substantially lower computational and communication costs. This
further underscores the practicality and scalability of the DP-CVAE framework in
FL contexts.
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As an exploratory approach, DP-kSame offers a conceptually simple and inter-
pretable mechanism for embedding anonymization. Grounded in classical k-anonymity
principles, this method replaces real data with cluster centroids and enforces formal
privacy by adding DP noise before sharing these centroids. In classification tasks,
DP-kSame performs on par with DP-CVAE. This confirms the viability of prototype
sharing to support downstream inference, as suggested in prototype-based FL liter-
ature, especially when the embedding spaces are well-clustered. However, compared
to DP-CVAE, DP-kSame can be more data-hungry, as evidenced by its notably
lower accuracy on Camelyon17 (see Table 3) and overall lower balanced accuracy
on OrganSMNIST as the number of local training samples decreases (see Figure 7).
Besides, its practice of maintaining and transmitting a global datastore introduces
additional storage and communication overhead.

DP-kSame also faces challenges in balancing privacy and utility, as its sensitivity
to DP noise causes sharp fidelity degradation. Nevertheless, DP-kSame shows clear
potential under looser privacy budgets and in empirical privacy evaluations, where
its performance approaches that of DP-CVAE. Importantly, DP-kSame provides
a transparent and computationally lightweight anonymization baseline that serves
as an intermediary step between direct feature-sharing and generative synthesis. It
helps us reason and motivate the need for a more flexible and noise-resilient approach
like DP-CVAE.

In summary, our findings validate the effectiveness of privacy-preserving data sharing
via pre-trained FM embeddings in FL. They demonstrate that DP-CVAE offers a
scalable, robust and privacy-preserving solution, addressing multiple limitations of
existing FL approaches. DP-kSame, while being less adaptive, indicates the viability
of data anonymization through clustering and contributes to a better understanding
of privacy–utility trade-offs in the embedding space. Together, these results chart a
promising direction for designing data-centric FL solutions based on privacy-aware
representation sharing.

5.2 Limitations and Future Work

While our work demonstrates the potential of privacy-preserving representation
sharing in FL – particularly through our generative-based method, DP-CVAE –
certain limitations remain, suggesting valuable directions for future research.

A key limitation arises in scenarios with highly heterogeneous data distributions and
significant class imbalance. Although both DP-CVAE and DP-kSame generalize well
in terms of accuracy, their balanced accuracy tend to suffer when minority classes
are underrepresented in the synthetic or anonymized datasets. This stems from the
globally aggregated nature of the shared data, which may not align with client-
specific distributions. Consequently, global predictions can dilute local signals from
underrepresented classes during interpolation.

To address this, future work could integrate ideas from long-tailed learning (Zhang
et al., 2023), such as generative techniques designed to explicitly model minority
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classes. Notably, our DP-CVAE currently samples embeddings with a fixed unit
variance, allowing the model to learn adaptive or class-specific variance parameters
could enhance the diversity and fidelity of generated data. Furthermore, condi-
tioning the generative process on additional confounders, such as domain-specific
attributes or client metadata, could enhance its ability to capture distributional nu-
ances and mitigate inherent biases in the training distribution, thereby promoting
generalization and fairness in real-world deployments.

Another interesting direction is to further investigate the potential of non-parametric
models, such as k-NN, within the federated embedding sharing paradigm. In our
analysis, k-NN classifiers generally underperform linear models, but in certain set-
tings, especially under extreme non-IID conditions, they show competitive results.
In general, their strengths lie in training-free deployment, adaptability (Imam et al.,
2024; Marfoq et al., 2022), and resilience against catastrophic forgetting (Doerrich
et al., 2024; Nakata et al., 2022). These properties suggest that k-NN could be
revisited in scenarios where it may provide unique advantages, such as continual
learning or edge deployment, where retraining is costly or infeasible.

The use of more specialized foundation models (FMs) also merits further investiga-
tion. We adopt DINOv2 for its strong general-purpose representations, but domain-
specific FMs, such as those pre-trained on medical images, could offer improved
performance in specialized tasks (Zhang et al., 2022; Zhou et al., 2023). Evaluat-
ing how such models interact with our privacy-preserving methods could enhance
utility in high-stakes fields. Moreover, our current setup assumes all clients share
a common FM backbone for feature extraction. In practice, however, clients may
rely on heterogeneous FMs due to privacy concerns, resource constraints, or institu-
tional differences. Future work could examine how this heterogeneity affects global
representation alignment and downstream performance in our framework.

Finally, while our approach advances the trade-off between privacy, utility, and effi-
ciency in FL through embedding-level sharing under formal privacy guarantees, fur-
ther research is needed to evaluate broader concerns such as fairness, interpretabil-
ity, and integration with other privacy-enhancing technologies. Continued efforts at
the intersection of privacy, generative modeling, and federated systems design hold
strong potential to extend and strengthen the framework proposed in this work.
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6 Conclusion

This thesis proposes a new direction for privacy-preserving FL by shifting from tra-
ditional (downstream) model sharing to collaboration through differentially private
representations in the rich embedding space of pre-trained FMs. We introduce and
evaluate two novel methods within this paradigm: DP-kSame and DP-CVAE. DP-
kSame serves as an interpretable intermediary between prototype sharing and syn-
thetic data generation, helping to illuminate privacy–utility trade-offs in anonymized
feature spaces. DP-CVAE, in contrast, leverages a generative approach that offers
substantial improvements over DP-kSame and other baselines in balancing privacy
and performance. Unlike conventional FL approaches that are tied to a specific
downstream task, DP-CVAE enables clients to flexibly generate globally represen-
tative yet privacy-aware datasets for diverse applications.

Our experiments on medical imaging datasets show that both methods outperform
end-to-end federated classifiers in accuracy while strengthening both theoretical and
empirical privacy guarantees. Notably, DP-CVAE achieves higher data fidelity than
DP-kSame and DP-CGAN, with lower communication and computation overhead.
Overall, our proposed methods advance a growing trend in FL toward personalized,
non-parametric, and representation-based collaboration (Collins et al., 2021; Mar-
foq et al., 2022; McLaughlin and Su, 2024; Tan et al., 2022; Tran et al., 2024), by
addressing not only downstream performance but also privacy and communication
– two central challenges in federated systems (Kairouz et al., 2021). Our findings
position the proposed paradigm shift and especially DP-CVAE as a promising al-
ternative for enabling secure, efficient, and adaptable FL workflows, particularly in
privacy-sensitive domains such as medical imaging.
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Mauro Giuffrè and Dennis L. Shung. Harnessing the power of synthetic data in
healthcare: Innovation, application, and privacy. npj Digital Medicine, 6(1):186,
2023. doi: 10.1038/s41746-023-00927-3.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
Advances in neural information processing systems, 27, 2014.

Ehsan Hallaji, Roozbeh Razavi-Far, Mehrdad Saif, Boyu Wang, and Qiang Yang.
Decentralized federated learning: A survey on security and privacy. IEEE Trans-
actions on Big Data, 10:194–213, 04 2024. doi: 10.1109/TBDATA.2024.3362191.

Mozafar Hayaeian Shirvan, Mohammad Hossein Moattar, and Mehdi Hosseinzadeh.
Deep generative approaches for oversampling in imbalanced data classification
problems: A comprehensive review and comparative analysis. Applied Soft Com-
puting, 170:112677, 2025. doi: https://doi.org/10.1016/j.asoc.2024.112677.

Peilin He, Chenkai Lin, and Isabella Montoya. DPFedBank: Crafting a privacy-
preserving federated learning framework for financial institutions with policy pil-
lars, 10 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-
els. Advances in neural information processing systems, 33:6840–6851, 2020.

Naoise Holohan, Spiros Antonatos, Stefano Braghin, and Pól Mac Aonghusa. (k,ϵ)-
anonymity: k-anonymity with ϵ-differential privacy, 2017.

Fariha Imam, Petr Musilek, and Marek Z. Reformat. Parametric and nonparametric
machine learning techniques for increasing power system reliability: A review.
Information, 15(1), 2024. doi: 10.3390/info15010037.

Malhar Jere, Tyler Farnan, and Farinaz Koushanfar. A taxonomy of attacks on
federated learning. IEEE Security & Privacy, 19:20–28, 2021. doi: 10.1109/
MSEC.2020.3039941.

Yifan Jiang, Haofu Chen, Murray Loew, and Hanbin Ko. COVID-19 CT image
synthesis with a conditional generative adversarial network. IEEE Journal of
Biomedical and Health Informatics, 25(2):441–452, Feb 2021. doi: 10.1109/JBHI.
2020.3042523.



BIBLIOGRAPHY 49

James Jordon, Jinsung Yoon, and Mihaela van der Schaar. PATE-GAN: Generating
synthetic data with differential privacy guarantees. In International Conference
on Learning Representations, 2018.

Bayrem Kaabachi, Jérémie Despraz, Thierry Meurers, Karen Otte, Mehmed
Halilovic, Bogdan Kulynych, Fabian Prasser, and Jean Louis Raisaro. A scop-
ing review of privacy and utility metrics in medical synthetic data. npj Digital
Medicine, 8(1):60, 2025. doi: 10.1038/s41746-024-01359-3.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
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Farinella, and Tal Hassner, editors, Computer Vision –ECCV 2022, pages 457–
474, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-19836-6.

https://ai.googleblog.com/2017/04/ federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/ federated-learning-collaborative.html


BIBLIOGRAPHY 53

Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages
111–125, 2008. doi: 10.1109/SP.2008.33.

Mahmood Nasr, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, and Nicholas
Carlini. Adversary instantiation: Lower bounds for differentially private machine
learning. In 2021 IEEE Symposium on Security and Privacy (S&P). IEEE, 2021.

E.M. Newton, L. Sweeney, and B. Malin. Preserving privacy by de-identifying face
images. IEEE Transactions on Knowledge and Data Engineering, 17(2):232–243,
2005. doi: 10.1109/TKDE.2005.32.

Kobbi Nissim. Privacy: From database reconstruction to legal theorems. In Pro-
ceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS’21, page 33–41, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383813. doi: 10.1145/3452021.3458816.
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