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Abstract

Domain generalization addresses the challenge of deploying machine learning models
in environments where the data distribution differs from that seen during training.

This thesis introduces a new method to improve the robustness of deep neural net-
works when faced with shifts in data distribution by applying data augmentation
at test time using latent style statistics. The approach extracts style-related feature
statistics from intermediate layers of a pre-trained model and uses these statistics
to generate style-transformed variants of samples at test time. The augmented
inputs are then processed by the model and their predictions are aggregated, re-
ducing sensitivity to domain-specific variations. Experiments on standard domain
generalization benchmarks demonstrate that this test-time augmentation can im-
prove accuracy on unseen target domains compared to models with training-time
style-based augmentation.

The findings indicate that leveraging style variations at inference time effectively
mitigates these shifts and enhances the model’s generalization performance without
requiring any modification to the trained network.

All code and experimental resources accompanying this thesis are accessible under
the project repository hosted on GitHuH]

Thttps://github.com/ahlershilke/latent-style-tta.git



Abstract

Domain Generalization befasst sich mit der Herausforderung, Machine-Learning-
Modelle in Umgebungen einzusetzen, in denen die Datenverteilung von der wahrend
des Trainings beobachteten abweicht.

Diese Arbeit stellt eine neue Methode vor, um die Robustheit tiefer neuronaler Netze
bei Verschiebungen in der Datenverteilung zu verbessern, indem zum Testzeitpunkt
eine Datenaugmentierung unter Verwendung latenter Stilstatistiken durchgefiihrt
wird. Der Ansatz extrahiert stilbezogene Merkmalsstatistiken aus den Zwischen-
schichten eines vortrainierten Modells und verwendet diese, um stiltransformierte
Varianten jeder Testeingabe zu generieren. Die augmentierten Eingaben werden
dann vom Modell verarbeitet und ihre Vorhersagen aggregiert, wodurch die Empfind-
lichkeit gegeniiber domanenspezifischen Schwankungen verringert wird. Experi-
mente mit standard Datensétzen zu Domain Generalization zeigen, dass diese Aug-
mentierung zum Testzeitpunkt die Genauigkeit auf unbekannten Zieldoménen im
Vergleich zu Modellen mit stilbasierter Augmentierung zur Trainingszeit verbessern
kann.

Die Ergebnisse deuten darauf hin, dass die Nutzung von Stilvariationen zum Zeit-
punkt der Inferenz diese Verschiebungen wirksam abmildert und die allgemeine
Leistung des Modells verbessert, ohne dass Anderungen am trainierten Netzwerk
erforderlich sind.

Der gesamte Code und alle experimentellen Ressourcen zu dieser Arbeit sind im
Projekt-Repository auf GitHubP| verfiigbar.

Zhttps://github.com/ahlershilke/latent-style-tta.git

i



Acknowledgements

I am grateful to Prof. Dr. Ledig for giving me the opportunity to write my thesis
at his chair. I also want to acknowledge my second supervisor, Francesco Di Salvo,
for his continuous support and very helpful pep talks.

I would like to thank my family and friends for their kind words of encouragement
and care throughout this process.

Special thanks go to my support group D.R.O.P.O.U.Tf|, who made sharing the
burdens about theses a group effort — you guys are the best.

And finally, I want to thank myself for pushing through and getting this thesis done.
Cheers!

3Doing Research. Overwhelmed. Procrastinating. Overcaffeinated. Underfunded. Terrified.

il



Contents

[List of Figures|

[List of Tables|

[List of Acronyms|

[2° Theoretical Background|

[2.2 Augmentation| . . . . . . ...

[2.2.1 Image-level Augmentation| . . . . . . . . ... ... ... ...

[2.2.2  Feature-level Augmentation| . . . . . .. ... ... ... ...
[2.2.3  Style Transter| . . . . . . ... ... Lo
2.3 Test-Time Augmentation|. . . . . . . . ... ... ... ... .....

[3 Methodology|

v

vi

vil

ix

10
12
13

17
17
18
19
24
29
31



[4.4.1 'T'TA Approach| . . . . . . . . .. . ... ... ... ...
[4.4.2  Statistical Analysis| . . . . . . ...

E D onl

6 Conclusion|

(A Appendix|

(Bibliography|

52
52
63
65

67

69

88



List of Figures

(1 Stylized Pipeline] . . . . . ... ..o o 32
[2 Exemplary images from the PACS dataset, containing images from |
[ the classes dog, elephant, giraffe, guitar, horse, house and person |
| each from the four domains Art_painting, Cartoon, Photo and Sketch.| 34
[3 Exemplary images from the VLCS dataset, containing images from |
| the classes bird, car, chair, dog and person, each from the four do- |
| mains Caltech-101, LabelMe, SUNO9 and VOC2007|. . . . . . . . .. 35
[4 t-ONE visualization of the raw PACS image tensors. Left: samples |
| color-coded by domain. Right: samples color-coded by class.,| . . . . . 36
(5 t-ONE visualization of the raw VLCS image tensors. Left: samples |
| color-coded by domain. Right: samples color-coded by class.| . . . . . 36
(6 Dataset PACS, Test Domain Art Paintingl . . . . . . . . . . . . ... 43
{7 Dataset PACS, Test Domain Cartoon| . . . . . . . . . ... ... ... 43
(8 Dataset PACS, Test Domain Photo| . . . . . . . . . .. ... .. ... 44
[9 Dataset PACS, Test Domain Sketch| . . . . . . . . .. ... ... ... 44
(10 Dataset VLCS, Test Domain CaltechiOi| . . . . . . ... .. ... .. 46
(11T Dataset VLCS, Test Domain LabelMe|. . . . . . . . .. ... ... .. 46
(12 Dataset VLCS, Test Domain SUNOY| . . . . . . . .. ... ... ... 46
(13  Dataset VLCS, Test Domain VOC2007. . . . . . . . ... ... ... 47
(14~ Mode average| . . . . . . ... 73
(15 Mode single 2| . . . . . . . . 73
[16  Mode single 5| . . . . . . . .. 74
(17 Mode selective 021 . . . . . . . ... 74
18 Mode selectiwe 051 . . . . . . . . ... 74
19 Mode selective 1.2 . . . . . . . 74
20 Mode selectiwe 1.3 . . . . . . . 75
2 Mode selective 2 .31 . . . . . . . . 75
22 Mode average] . . . . . .. .. 75
23 Mode single_2| . . . . . . . . 76
24 Mode single_ 3| . . . . . . ... 76
25 Mode selectiwe 021 . . . . . . . 76
26  Mode selectiwve 031 . . . . . . 76
27 Mode selectiwve 1.2 . . . . . .. 7
28 Mode selective 131 . . . . . ... 7
29 Mode selective 2.3 . . . . . . 7

vi



List of Tables

[l Mean accuracy results in % for the PACS dataset in comparison to the |
Baseline results of a ResNet-50 model trained with MixStyle (Zhou |
etal, 2021)] . . . ... 42

[2 Summary of results per domain and top-3 modes on PACS. Accuracy, |

AUAD, and Gain are reported in % across seeds, AUC is reported in |

A .. 42

[3 Mean accuracy results in % for the VLCS dataset in comparison to the
Baseline results of a ResNet-50 model trained with MixStyle (Zhou
et al L 2021 . . . . .. 45
{4 Summary of results per domain and top-3 modes on VLCS. Accuracy, |

AUAD, and Gain are reported in % across seeds, AUC is reported in |

oA ... 45

[>  Mixed Linear Model Regression Results for PACS (TTA-only: mode |
| effects) . . . . .. 48
6 Mixed Linear Model Regression Results for PACS (MixStyle (base) |
| vs. best TTA modes)| . . . . . . ... ... . . 49
(7 Mixed Linear Model Regression Results for VLCS (TTA-only: mode |
| effects) . . . . .. 50
[ Mixed Linear Model Regression Results for VLCS (MixStyle (base) |
| vs. TTA modes)|. . . . . . . . .. ... 50
[9 Hyperparameter configuration used for model training for the PACS |
[ dataset) . . . . . . . . 78
(10 Hyperparameter configuration used for model training for the VLCS |
[ dataset) . . . . . . . . 78
(11 Mean Accuracy for Test Domain Art Painting, augmented with Fea- |
| ture Statistics towards the Trainings Domains, across all modes and |
[ seedsl . . oL L e e 79
(12 Mean Accuracy for Test Domain Cartoon, augmented with Feature |
[ Statistics towards the Trainings Domains, across all modes and seeds| 80
(13  Mean Accuracy for Test Domain Photo, augmented with Feature |
[ Statistics towards the Trainings Domains, across all modes and seeds] 80
(14 Mean Accuracy for Test Domain Skeich, augmented with Feature |
| Statistics towards the Trainings Domains, across all modes and seeds| 81
(15 Mean Accuracy tor Test Domain Caltech101, augmented with Feature |
| Statistics towards the Trainings Domains, across all modes and seeds| 81
(16 ~ Mean Accuracy for Test Domain LabelMe, augmented with Feature |

Statistics towards the Trainings Domains, across all modes and seeds| 82

vil



(17

Mean Accuracy for Test Domain SUN0Y, augmented with Feature |

Statistics towards the Trainings Domains, across all modes and seeds| 82

(18  Mean Accuracy for Test Domain VOC2007, augmented with Feature |

Statistics towards the Trainings Domains, across all modes and seeds| 83
(19 Fixed Effects for PACS (TTA-only) . . . . . . . ... ... ... ... 84
[20  Fixed Effects for PACS (MixStyle vs. best TTA modes)|. . . . . . . . 84
21  Domains x Modes: Improvement over base for PACS (paired per seed)| 85
22  Fixed Effects for VLCS (TTA-only)[ . . . . . . . ... ... ... ... 86
23 Fixed Effects for VLCS (MixStyle vs. best TTA modes). . . . . . .. 86
24 Domain x Mode: Improvement over base for VLCS (paired per seed)| 87

viii



List of Acronyms

AdalN
AUAD
AUC
CNN
DA
DG
ERM
11D
LODO
ML
00D
PACS
ResNet
ROC
t-SNE
TTA
VLCS

Adaptive Instance Normalization

Area Under Accuracy Drop

Area Under Curve

Convolutional Neural Network

Domain Adaptation

Domain Generalization

Empirical Risk Minimization
Independent and Identically Distributed
Leave One Domain Out

Machine Learning

Out of Distribution

Photo, Art Painting, Cartoon, Sketch
Residual Network

Receiver Operating Characteristic Curve
t-distributed Stochastic Neighbor Embedding
Test-Time Augmentation

VOC2007, LabelMe, Caltech101, SUN09

X



1 INTRODUCTION 1
1 Introduction

1.1 Motivation

Deep learning has become a central technology in computer vision, powering ap-
plications from autonomous driving to medical imaging. Neural networks typically
assume that the training and test data are drawn from the same distribution (Zhou
et al., 2022a)). In practice, this assumption rarely holds due to variations in visual
style, lighting or other domain-specific factors. For example, a model trained on
clear daytime images may perform poorly on images taken at night or in foggy con-
ditions (Zhou et al.,2022a}). Domain Generalization (DG) addresses this problem by
learning representations that remain robust across distribution shifts, using one or
multiple source domains for training to enable generalization to previously unseen
target domains (Zhou et al.; 2022a)). In DG, the model has access only to the source
domains during training, which makes large domain shifts particularly challenging.

Many recent works focus on image style as a way to characterize domain differences.
In convolutional neural networks (CNN), the channel-wise means and variances of
feature maps, which are often called latent style statistics, encode the low-level
appearance of an image (Park et al., 2023). Observations by Huang and Belongie
(2017) and others show that domain characteristics strongly correlate with these
feature statistics. For example, approaches by Zhou et al.| (2021)) and Li et al.| (2021))
explicitly mix the style statistics of different images during training to generate
new domain variants, which has been shown to improve generalization. However,
even with these methods, an unseen target domain may lie far outside the range of
generated styles, and a model trained only on source data may still be affected by
a large style gap.

A promising direction for addressing domain shift is test-time adaptation and aug-
mentation. Instead of relying exclusively on training-time strategies, these methods
adapt the model or its inputs at inference. Test-time data augmentation, in par-
ticular, leverages the idea of exposing a model to transformed versions of each test
sample to improve prediction robustness (Shanmugam et al.| |2020)). Recent work
has shown that augmenting test data with style-related variations can reduce sensi-
tivity to unseen domains. Park et al.| (2023) propose shifting a test sample’s style to
match the nearest training domain using Adaptive Instance Normalization (AdalN)
normalization.

Inspired by Park et al.| (2023)), we focus on transforming the test data itself by
augmenting it with source-domain style statistics from multiple intermediate convo-
lutional layers. By manipulating these statistics at inference, we align test samples
with the known source-domain characteristics. In doing so, we aim to improve ro-
bustness without altering the trained model’s parameters to offer a lightweight and
flexible approach for DG.
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1.2 Focus and Scope

The central focus of this thesis is to evaluate whether inserting source-domain feature
statistics into selected layers of a network during inference can enhance DG. This
approach falls under the umbrella of Test-Time Augmentation (TTA), but it differs
in that it operates within the feature space of a pre-trained model and selectively
shifts the latent style of test samples toward training domains.

The scope of this work are classification tasks. We use convolutional residual net-
works as the backbone architecture. Two benchmark datasets are employed, PACS
(Li et al., 2017) and VLCS (Fang et al. 2013)), which are widely adopted in DG
literature (PACS stands for Photo, Art Painting, Cartoon, Sketch, VLCS is short
for VOC2007, LabelMe, Caltech101, SUN0O9; both are acronyms for their respective
domains). Within this setup, we systematically compare different insertion points
in the network and focus on how layer depth influences the trade-off between style
alignment and semantic preservation.

By narrowing the scope to this setting, we aim to provide insights into the inter-
play between feature statistics, TTA and classification performance. These insights
are intended to inform future extensions to more complex architectures, tasks and
domains.

1.3 Relevance of Research

The relevance of this work lies in its position at the intersection of three active
research areas: domain generalization, style transfer and test-time augmentation.
Prior approaches such as MixStyle (Zhou et al, 2021)) have demonstrated the effec-
tiveness of blending feature statistics during training to create synthetic domains.
At the same time, test-time augmentation shows that adjusting models or inputs at
inference can mitigate unexpected domain shifts (Park et al., 2023]).

This thesis aims to contribute to this landscape by exploring a hybrid perspective.
Instead of retraining the model or relying only on training-time mixing, we directly
manipulate test samples in feature space during inference. The novelty lies in eval-
uating where in the network this manipulation is most effective, and whether it
provides measurable robustness improvements across benchmarks.

By situating the work within this broader literature, the thesis both validates and
extends the idea that style statistics are useful for managing domain shifts. It
provides insight on the conditions under which test-time style augmentation succeeds
and where its limitations become apparent.
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1.4 Contributions

This thesis aims to make the following contributions:

1. Test-Time Latent Style Augmentation: We propose a test-time data augmen-
tation framework that modifies test features by injecting source-domain style
statistics. This approach improves the model’s robustness to unseen target
domains without any model fine-tuning.

2. Analysis of Extraction Strategies: We systematically evaluate how the layer at
which style augmentation is applied affects domain generalization. Our results
show that aligning low-level statistics often yields the largest improvements in
bridging domain gaps, while perturbing higher-level features tends to hurt
semantic content.

3. Augmentation Techniques: We explore multiple methods for blending or sub-
stituting feature statistics during inference. For example, we test simple sub-
stitution versus mixing of channel means and standard deviations. We find
strategies that effectively draw test samples towards the source-domain mani-
fold while preserving class identity, and we quantify their impact on accuracy.

4. Uncertainty-Accuracy Study: We investigate the relationship between predic-
tive accuracy and model uncertainty under different strategies. Our analysis
reveals whether more accurate configurations also tend to produce more con-
fident predictions. This has implications for using uncertainty estimates to
gauge reliability in domain-shift scenarios.

5. Empirical Validation: We demonstrate our approach on the PACS and VLCS
benchmarks. On challenging domains, our approach substantially improves
classification accuracy by reducing style discrepancies. The results support
our hypotheses about layer choice and style injection, and provide practical
insights for future DG research.

Thesis Organization The remainder of the thesis is organized as follows. Chap-
ter 2| reviews the theoretical background on domain generalization and related con-
cepts. Chapter [3| describes our methodology in detail, including the test-time aug-
mentation pipeline and feature extraction strategies. Chapter {4l presents the exper-
imental setup and results, analyzing the influence of different strategies and vali-
dating the research questions. Finally, Chapter [5| concludes with a discussion of the
findings, limitations and possible future directions.
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2 Theoretical Background

2.1 Domain Generalization

Domain Generalization refers to a machine learning (ML) paradigm that aims to
overcome the fundamental challenge of distributional shift between training and
deployment environments by learning models capable of generalizing to out-of-
distribution (OOD) target domains without access to any target domain data during
training (Mai et al} 2025; Zhou et al., 2022al).

Formally, let the input space be denoted by X and the label space by ). A domain is
defined as a joint probability distribution Pxy over X x ). For a particular domain
Pxy, we denote Py as the marginal distribution over inputs, Py x as the posterior
distribution and Pxy as the class-conditional distribution.

In DG, we are given access to K related but distinct source domains
§ = {8y = {(@" u/HE (1)

where each domain Sy is sampled from a distinct joint distribution P)((k; It holds

that P)({]?/ # P;g) for all £ # k’. The goal is to learn a predictor f : X — ) based
solely on source domains such that the prediction error is minimized on an unseen
target domain 7 = {27 }N% with its own distribution P¥,, where PL, # Pk ¢
{1,..., K} (Mai et al., 2025} Zhou et al., [2022a)).

The DG task was first formalized as a learning problem by |Blanchard et al.| (2011)),
while the term ’'domain generalization’” was later introduced by Muandet et al.
(2013). Unlike Domain Adaptation (DA) or transfer learning, DG assumes that
no samples, not even unlabeled ones, from the target domain are available at train-
ing time, which makes it a more challenging yet practical setting for real-world
applications (Gulrajani and Lopez-Paz, [2020)).

Multi-Source vs. Single-Source Domain Generalization DG has been most
extensively studied under the multi-source setting, where data is drawn from multi-
ple distinct but related source domains (K > 1). This setting is particularly powerful
because it enables models to discover statistically invariant patterns across domains,
which are more likely to hold in novel target domains (Zhou et al., [2022a). The orig-
inal motivation for DG, as outlined by Blanchard et al.| (2011)), was to exploit these
multiple sources to learn robust predictors without relying on target domain data.
In contrast, the single-source DG setting assumes all training data originates from
a single distribution (K = 1). While more restrictive, this setting is relevant to
research on robustness to OOD shifts, such as image corruptions or changes in
environment. Many techniques originally designed for multi-source DG are also
applicable in the single-source setting and vice versa, as they generally focus on en-
hancing the model’s robustness to domain shifts in a more general sense (Gulrajani
and Lopez-Paz, [2020).
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Domain Shift and the IID Assumption A core challenge in DG is the domain
shift problem, which refers to a mismatch between the distributions of training and
test data. Formally, if Dy.gin ~ P(train(X,Y) and Dies ~ P(test)(X,Y) with
Pirain # Piest, we have a distribution shift that violates the standard IID assump-
tion of training and test samples being independently and identically distributed
(Zhou et all 2022a)). Such distributional discrepancies are ubiquitous in real-world
applications and often lead to significant drops in model performance (Mai et al.,
2025). For example, Torralba and Efros| (2011) demonstrated that an object de-
tector trained on one image dataset failed to generalize to another dataset due to
dataset-specific biases. Likewise, modern deep learning systems such as self-driving
car vision models can ’crash’ when tested in conditions unlike those in training
with changes in lighting, weather or sensor perspective degrading their performance
(Gulrajani and Lopez-Paz, [2020)). These failures occur because models trained via
empirical risk minimization (ERM) on Dy, tend to overfit to domain-specific pat-
terns by exploiting incidental or spurious correlations in the source data that do not
hold in the new domain (Gulrajani and Lopez-Paz, 2020). Deep neural networks
in particular are notorious for latching onto superficial cues that can differ across
domains (Gulrajani and Lopez-Paz, 2020)). As a result, even minor perturbations
in the data-generating process can cause significant drops in accuracy when models
are evaluated OOD (Zhou et al., |2022a)). This underscores the inherent fragility
of current ML systems under distribution shift and highlights the need for robust
generalization, i.e. models that maintain high performance despite changes in data
distribution. Designing algorithms to achieve this kind of robustness is therefore of
importance in DG research.

Most existing DG benchmarks assume a relatively homogeneous domain shift, where
the differences between source and target domains are of a similar nature across
all domains (Zhou et al., [2022a)). Under such setups, the source to source shifts
encountered during training are highly correlated with the source to target shifts
at test time. However, real-world scenarios often exhibit heterogeneous domain
shifts, where the target domain differs in a fundamentally new way not observed in
any source domain (Zhou et al., 2022a). In these cases, the shifts between training
domains provide poor predictors of the shift to an unseen test domain. For example,
sources might consist of photos, paintings or sketches of objects, while an unforeseen
target domain contains images captured from novel viewpoints (Zhou et al., 2022a)).
Another example would be digit images under various rotations as source domains
with the target domain containing digits with a different texture or background
(Zhou et al.| |2022a)). Such heterogeneous shifts are a critical challenge for DG, and
they are underrepresented in current benchmarks (Zhou et al., [2022a)).

Formal Learning Objective in DG The supervised learning objective in stan-
dard settings is to learn a function f : X — ) that minimizes the expected loss over
the true data distribution:

Bz y)~pll(f(z),y)]. (2)
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In practice, due to limited access to the real distribution P, this is approximated via
ERM on a training dataset D = {(z;,y;)}, ~ P:

= mgming S U/ (w).10). ®
i=1

In DG, this objective is redefined to account for distributional variability across
multiple training domains with the goal of minimizing the expected loss on unseen
domains:

A

f= argflinpgl}%itE(z,y)wP [(f(x), )], (4)

where Py is the family of test distributions that are unknown during training but
share certain invariances with the source domains (Arjovsky et al., [2020; Gulrajani
and Lopez-Paz|, [2020). Various Domain Generalization algorithms differ in how they
model and enforce invariances, for example by aligning causal mechanisms through
regularization based on average causal effects (e.g., Contrastive ACE by Wang
et al. (2023))) or by learning transformations that minimize distributional diver-
gence across domains to extract domain-invariant features (e.g., Domain-Invariant
Component Analysis by [Sheth et al.| (2022)).

Methods and Applications DG has found applications across domains, partic-
ularly in computer vision, speech recognition and medical imaging.

In computer vision, DG is crucial for tasks like object recognition and detection
under varying conditions. Models are often evaluated on datasets such as PACS (Li
et al., [2017), VLCS (Fang et al., 2013) or DomainNet (Peng et al. [2019), which
simulate shifts in image style or capture environment (Gulrajani and Lopez-Paz,
2020). Here residual networks (ResNet) (He et al., 2016) serve as strong baselines,
and methods ranging from style transfer data augmentation to domain-adversarial
training are used to learn representations invariant to image style. The efficacy of
these approaches is evidenced by robust performance across drastically different vi-
sual domains in object recognition tasks (Gulrajani and Lopez-Paz, 2020). Another
vision application is in autonomous driving, where models trained in one city or
weather condition need to generalize to new cities or weather conditions without
additional tuning, a scenario where DG algorithms can improve safety by handling
unseen conditions. The computer vision field has driven much of development in DG,
with algorithms stress tested on heterogeneous image domains and even challenges
like image corruption robustness under the single-source DG setting.

In speech recognition, DG addresses variability in speakers, accents, languages and
acoustic environments. A notable study by Narayanan et al.| (2018) trained an end-
to-end ASR system on six distinct source domains like voice search queries, dictated
speech or telephone audio and tested it on unseen domain data of telephony speech.
The multi-source trained model achieved better accuracy on the unseen domain than
any single-source model, demonstrating that diverse training data leads to a more
domain-agnostic speech recognizer.
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In medical imaging, DG is particularly critical due to the variability across hospitals,
imaging devices and patient populations (Yoon et al., |2024). A model trained on
scans from one hospital may fail when applied to another hospital’s data because
of shifts in image distributions caused by different scanner manufacturers, protocols
or demographic differences. In this direction, DG is often addressed through data
augmentation to mimic the induced variability. [Zhang et al.| (2020]) proposed an al-
gorithm with a stacked transformation pipeline for combining intensity, appearance
and spatial changes, which significantly improved cross-site MRI and ultrasound seg-
mentation without target data. Ouyang et al.|(2022) introduced a causality-inspired
augmentation framework that generates diverse appearance shifts and breaks spuri-
ous correlations to achieve robust gains across cross-modality and cross-site bench-
marks. Similarly, Zhou et al.| (2022b) used style-based intensity transformations
and dual normalization to enhance cross-modality generalization in brain and car-
diac imaging.

A key enabler for DG has been the advent of deep architectures like ResNets. In-
troduced by He et al.| (2016]), ResNet uses skip connections (residual shortcuts) to
combat the vanishing gradient problem to allow the training of ultra-deep CNNs
without degradation in performance. These residual networks achieved state-of-the-
art results on ImageNet (Deng et al., 2009) and demonstrated excellent general-
ization to other recognition tasks. ResNets (especially ResNet-50) have become a
backbone in many DG studies. Recent evidence suggests that a strong backbone
coupled with proper training strategies can substantially narrow the gap between
vanilla ERM and specialized DG algorithms. Gulrajani and Lopez-Paz| (2020) found
that a deep ResNet with heavy data augmentation performed on par with numer-
ous DG-specific methods across vision benchmarks. Likewise, an extensive study
by |[Angarano et al.| (2024) showed that simply adopting a more powerful feature ex-
tractor together with effective augmentation allows plain ERM to outperform many
dedicated DG solutions, even reaching state-of-the-art accuracy on standard bench-
marks. These findings underscore the importance of network architecture in DG and
suggest that continuing advances in backbone designs directly translate to stronger
OOD performance.

To address the challenges of DG, multiple algorithmic strategies have been devel-
oped. These include domain-invariant representation learning, where distributions
are aligned in feature space (Muandet et al., [2013), meta-learning, where models are
trained on simulated domain shifts to improve their adaptability (Zhou et al., [2022a)
and data augmentation, which introduces variability in the training data to enhance
model robustness (Mai et al., [2025). Data augmentation methods in particular have
been proven effective for DG.
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2.2 Augmentation

Data Augmentation is a key strategy for improving model robustness under domain
shift in DG. By generating diverse training examples, augmentations encourage
models to learn invariant features that generalize to unseen domains. Augmentation
methods are often categorized by where they act in the pipeline. Image-level (input-
space) augmentations operate directly on raw images and apply transformations or
perturbations that mimic cross-domain variability (Mai et al. [2025). In contrast,
feature-level augmentations act on intermediate neural representations and inject
variability into the latent feature space. Style-transfer—based augmentations have
emerged as a complementary approach by synthesizing novel image styles while
preserving semantic content to expose models to a broader range of appearance
variability.

2.2.1 Image-level Augmentation

At the image level, augmentations manipulate the raw input space X to simulate
inter-domain variability. Traditional geometric and photometric augmentations such
as random flips, crops, color jitter and scaling are simple yet effective techniques to
enlarge the training set. For example, random horizontal flips and crops encourage
invariance to object viewpoint and positioning, while brightness and contrast ad-
justments or Gaussian noise mimic camera or sensor variability (Mai et al., 2025}
Schwonberg et al., 2023)). These classic augmentations preserve the semantic label of
an image (e.g., an object remains the same despite a flip) and have proven beneficial
in many DG settings. In particular, device-related shifts in medical imaging (e.g.,
changes in scanner settings or patient conditions) can often be mitigated by basic
augmentations (Mai et al., [2025; Zhou et al., 2022a)). However, it is important that
augmentations do not distort class semantics. For instance, flipping a handwritten
digit may alter its label and extreme color changes can render an object unrecog-
nizable. Thus, practitioners typically choose augmentations that are semantically
appropriate for the task and domain. When well-chosen, even standard augmen-
tations can significantly improve generalization without adding complexity to the
model.

Beyond naive transformations, advanced image space strategies can generate more
powerful domain variations. One notable example is Fourier-based Amplitude Mix-
ing (Xu et al.; 2021). This method decomposes an image into its Fourier amplitude
(low-level texture) and phase (high-level structure). To synthesize an augmented
image, Xu et al| (2021) linearly interpolate the amplitude of two images from dif-
ferent domains while keeping the phase fixed. After mixing amplitudes, the inverse
Fourier transform produces the new image. Because phase encodes the object’s
semantic layout, preserving it ensures that the augmented image depicts the same
content (e.g., a 'horse’ remains recognizable) while its texture and color statistics
are blended. In practice, an image reconstructed from only phase retains clear struc-
ture, whereas an amplitude-only reconstruction loses detail (Xu et al., [2021). By
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perturbing the entire amplitude spectrum, the Amplitude Mixing strategy injects
aggressive yet label-preserving variations. The authors show that this forces the
model to focus on phase (semantic) information and become invariant to amplitude
variations. In other words, Fourier mixing helps the network ignore domain-specific
texture differences and concentrate on the core content, which enhances OOD per-
formance.

Another sophisticated augmentation is Stochastic Feature Augmentation (Li et al.,
2021), which although applied in feature space, can be viewed as an image-level
regularizer. This approach injects Gaussian noise into the latent embedding of each
training image during forward passes. In its simplest form, a feature vector is scaled
and shifted by random factors sampled from normal distributions. This perturbs
features in a data-independent way and creates slight variations of each example
as if drawn from a continuous domain. The authors further propose an adaptive
variant by maintaining running estimates of the class-conditional covariance matri-
ces of features and sampling a noise vector to add to features of a class. Intuitively,
this adds larger perturbations along directions of high inter-domain variability while
preserving intra-class structure. Although Stochastic Feature Augmentation mod-
ifies feature vectors, it has a comparable effect to image augmentation. |Li et al.
(2021) demonstrate that this simple plug-in augmentation substantially improves
DG performance.

In addition, sample mixing augmentations like MixUp (Zhang et al., 2018) and Aug-
Mix (Hendrycks et al., [2020) have been used to synthesize novel images. In MixUp,
two images are combined, with their one-hot labels similarly mixed. This creates
training samples 'between’ domains and encourages linear label interpolation. Aug-
Mix takes a different approach: It applies multiple random simple augmentations
from a predefined set (like rotation or contrast change) in sequence and averages
the results with the original. Both techniques generate diverse yet realistic augmen-
tations that help models generalize. While they were not specifically designed for
DG, they are complementary tools for creating domain-bridging samples.

It is important to exercise caution when applying augmentations. Wen et al.| (2021)
show that MixUp can adversely interact with model ensembling. They find that the
soft-labeling inherent in MixUp leads to ensembles that are systematically under-
confident. Intuitively, mixing labels across classes spreads probability mass, so when
averaged over ensemble members, predictions gravitate towards a low-confidence
baseline. This 'compounding under-confidence’ degrades calibration (reliable uncer-
tainty estimation). |Wen et al| (2021) address this by proposing CAMixUp, which
adapts the mix ratio A on a per-class basis according to the accuracy-confidence
mismatch. By doing so, they partially recover confidence levels without sacrific-
ing the accuracy gains from MixUp. So complex augmentations, especially those
which soften labels, must be integrated carefully, since naive combinations can yield
unforeseen calibration issues (Wen et al., [2021). Beyond calibration, overly aggres-
sive augmentations may introduce artifacts or unrealistic samples that confuse the
model. Thus in practice, one typically applies a balanced suite of augmentations by
combining several mild transformations such as blur, color shift and slight geometric
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distortions, which often yield the best results. [Schwonberg et al.| (2023) find that
blending multiple simple augmentations can nearly match complex DG methods in
semantic segmentation. The authors observe that chains of basic augmentations
outperform single operations and achieve competitive mean Intersection over Union
values on challenging synthetic-to-real benchmarks.

In summary, image-level augmentation spans a spectrum from standard color trans-
forms to novel spectral and mixing techniques. Each tool has trade-offs: while
geometric and photometric edits are cheap and interpretable (Mai et al., 2025)), ad-
vanced mixes create stronger domain shifts at the risk of calibration or semantic
distortion (Wen et al., [2021; |Xu et al 2021)). Selecting and tuning augmentations
remains task-dependent, but an effective augmentation pipeline typically includes a
variety of both low-level and learned transformations.

2.2.2 Feature-level Augmentation

Unlike image-level augmentations, feature-level augmentations operate on the hid-
den representations (the latent features) ¢(z) within the neural network rather than
on pixels. In a deep CNN, latent space refers to the intermediate feature maps or
activation vectors produced by each layer, essentially a high-dimensional encoding of
the input image at a level of abstraction (Islam et al.; 2023). These latent represen-
tations capture salient information about the input. Lower-layer CNN features tend
to encode style or texture, while deeper layers capture more content or structure re-
lated to object identity (Zhou et al., [2021). By manipulating these internal features
directly, variability to simulate new domain conditions without altering the pixel
space can be introduced. Because augmentations in latent space do not require ren-
dering of an image, they are often more flexible and computationally cheaper (Mai
et al., 2025). Many feature-space augmentation modules are built for easy insertion
as an extra layer in the network without requiring major architectural changes (Mai
et al., 2025; Zhou et all [2021). This makes them a practical option for improving
domain robustness.

Latent feature augmentation methods generally fall into two broad categories, fea-
ture perturbation and feature stylization. These are also known as adversarial and
non-adversarial feature augmentations (Mai et al. 2025). Feature perturbation tech-
niques introduce noise or other random perturbations into the intermediate features
to simulate domain shifts. For instance, Simple Feature Augmentation by |Li et al.
(2021)) adds Gaussian noise to feature activations by randomly scaling and shifting
the feature map values. They sample random affine parameters from a Gaussian
distribution and apply them to the feature tensor, which injects controlled noise into
the network’s representation. Such perturbations imitate real-world variation in the
latent space. By training with these perturbed features, the model learns to ignore
domain-specific activation patterns and focuses instead on the essential signals that
generalize across domains. Some approaches craft these perturbations adversarially,
for example by adding feature noise that maximally confuses a domain classifier (Mai
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et al., 2025)), to explicitly force the learned representation toward domain-invariant
directions.

Feature stylization methods alter the distributional statistics of feature maps to cre-
ate novel styles in the latent space. A hallmark feature-level method is MixStyle
(Zhou et al.; 2021). Intuitively inspired by style transfer techniques such as AdalN,
MixStyle randomly exchanges the channel-wise feature statistics between two sam-
ples. Given two feature embeddings f; and f; (e.g., from the first CNN block), their
per-channel means and standard deviations are computed (y;, 0;) and (p;,0;), then
a value A ~ Beta(a, «) is sampled and mixed statistics pimix = i + (1 — Ay,
Omix = A0; + (1 — Ao, are formed. Finally, these mixed features are applied to
normalize and re-scale f;:

Ji— 1 (5)

fmix = Omix © + Mmix-

)

This operation swaps the "style’ or texture encoded in f; with that of f; while leaving
the relative content structure intact. Intuitively, mixing feature statistics in this
way synthesizes new domain appearances within the feature space so the network is
exposed to a continuum of interpolated styles beyond those present in the original
training data Zhou et al.| (2021)). This is done implicitly during training without
needing to generate any actual images to keep it efficient. By randomizing feature
distributions on the fly, the model is encouraged to learn latent representations that
discount style variations as irrelevant and focus on more stable, domain-agnostic
features. |Zhou et al. (2021) observe that visual domains form distinct clusters
in the feature-style space. By continually mixing these statistics during training,
MixStyle creates a continuum of novel styles. This creation of synthetic distributions
effectively augments the feature set with unseen domain styles without changing
the class labels. Empirically, feature stylization methods like MixStyle have shown
substantial gains in DG performance across vision benchmarks (Mai et al., [2025;
Zhou et al., [2021)).

Several extensions and variants build on the MixStyle idea. |Jeon et al.| (2021) make
feature augmentation aware of class semantics through contrastive learning to fur-
ther improve domain robustness. The authors combine feature stylization with a
domain-aware contrastive loss by decomposing a feature map into high-frequency
(detailed) and low-frequency (coarse) components. Then they stylize only the low-
frequency part by mixing in statistics from other samples which preserves the high-
frequency shape cues. The augmented features are merged back and fed to the
network. They introduce a supervised contrastive objective that pulls together styl-
ized features of the same class across different simulated styles while pushing apart
different classes. This encourages the model to learn features that are invariant to
the artificial style perturbations yet still discriminative by class.

Yamashita and Hotta| (2024]) extend MixStyle into a framework for adaptation at
inference. They propose MixStyle-based Contrastive Test-Time Adaptation, where
the network learns with two objectives, standard classification and a MixStyle-driven
contrastive task. At test-time, they apply MixStyle-based contrastive updates to
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adapt the feature extractor to the incoming unlabeled domain. This two-phase
scheme leads to state-of-the-art DG accuracy on benchmarks like PACS and Office-
Home and surpasses even specialized Test-Time Augmentation methods. The key
insight is that the same style-mixing that diversifies domains during training can be
used to align the model to a new domain at inference, all without needing target
labels.

Other feature-level augmentations have been explored, such as Huang et al. (2025),
who introduce a generative feature-style augmentation targeted at medical image
segmentation. They train a style generator to produce plausible variations of fea-
ture ’style’ that mimic different imaging devices. By feeding these synthetic style-
perturbed features to the segmentation network during training, they increase ro-
bustness to cross-device shifts.

Park et al.[(2023]) focused on inference-time stylization. They compute a test image’s
style vector and align it to the nearest source domain style centroid via feature
normalization. This style shifting at test time requires no gradient updates and
effectively induces the model into processing the input as if it came from a known
source domain, which reduces performance drops due to style discrepancy.

While the above methods differ in implementation, the unifying theme is leveraging
the latent feature space to induce variability that covers potential domain shifts.
Augmenting the hidden representations expands the support of the training data in
a conceptually richer way than pixel-level augmentation alone. The model learns to
stabilize its intermediate representations against these perturbations, which yields
features that are more invariant to domain-specific quirks. In practice, feature-
level augmentations often complement image-level ones, and using both in tandem
can substantially enrich the training distribution. That said, designing effective
latent-space augmentations remains an active search area. It requires balancing
diversity and realism of the perturbations such that they help rather than hurt
learning (Mai et al., 2025). The continued refinement of these approaches is crucial to
improving robustness. The consensus in recent literature is that perturbing feature
representations markedly improves a model’s ability to generalize to new domains
(Mai et al., [2025; Wen et al., [2021; |Zhou et al., 2021)).

2.2.3 Style Transfer

Style-transfer augmentation refers to techniques that transform the visual style (e.g.,
textures, color statistics, contrast) of input images while preserving their high-level
semantic content, to simulate domain shifts in the training data and thus improve
OOD robustness. It operates in pixel space like image-level methods but shares
the objective of promoting style invariance typically targeted by feature-level ap-
proaches.

Recent work has extended this idea in several ways. For example, the approach
by [Yamashita et al. (2021)) replaces low-level texture features of histopathology im-
ages with styles sampled from non-medical image sources (e.g., paintings or artistic
styles), while keeping cellular or tissue structures intact. This encourages the model
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to rely less on superficial texture cues and more on content and shape (Yamashita
et al., 2021)).

In medical imaging, DG methods using style transfer have also been applied to
cross-modality segmentation, where images from different imaging modalities differ
in contrast and intensity distributions. The recent work by Zhou et al. (2022b)
uses Bezier-curve transformations to generate ’source-similar’ styles, which are close
to the original domain, and ’source-dissimilar’ styles, which show more extreme
transformations, to augment the source data. A dual-normalization module helps
the network adapt to both types of styles and generalize to new modalities (Zhou
et al., 2022b)).

Further, in histopathological image classification, style-augmented feature domain
mixing that uses AdalN to perturb the style statistics of feature maps has been
shown to improve generalization substantially, often with lower computational over-
head than full image-space transformations (Khamankar et al., [2023)).

Empirical results across these works show that style-transfer augmentations tend to
outperform or complement traditional image-level augmentations, especially when
style shifts are a major factor in domain difference (Khamankar et al., [2023; [Ya-
mashita et al., 2021; Zhou et al., 2022b). They help widen the support of training
data in appearance space, reduce overfitting to source-style texture biases, and im-
prove the feature invariance to style (Khamankar et al., |2023; |Yamashita et al.,
2021). The efficacy of style-transfer augmentation depends on preserving semantic
content during transformation (Yamashita et al. 2021). The style variations ap-
plied must be diverse and realistic, but should not compromise label integrity (Zhou
et al., [2022b)). Additionally, these augmentations should be carefully balanced and
integrated with other data augmentation strategies to maintain a representative and
stable training distribution (Khamankar et al., [2023]).

2.3 Test-Time Augmentation

Test-Time Augmentation (TTA) refers to the technique of applying data augmen-
tation during inference to improve a model’s predictions on new inputs. In practice,
multiple transformed versions of each test example are passed through the model
and their predictions are aggregated, typically by averaging, to yield the final predic-
tion (Kimuray, 2021; |[Shanmugam et al., 2021)). This simple ensemble-style approach
can substantially improve robustness: for instance, Kimura| (2021)) describes TTA
as "a very powerful heuristic” that ”takes advantage of data augmentation during
testing to produce averaged output”. Similarly, Shanmugam et al.| (2020)) note that
TTA is a common practice in image classification which often yields net accuracy
gains.

In essence, TTA leverages the same intuition as training-time augmentation (in-
creasing data diversity) and model ensembling by exposing the model to multiple
views of an input, which enables smoothing out of idiosyncratic errors and produces
a more reliable estimate. Unlike training-time augmentation and test-time adapta-
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tion, which modify the model or its parameters during training or inference, test-
time augmentation leaves the model fixed and instead augments the test samples,
aggregating predictions from their transformed versions (Kimura, 2021; |Shanmugam
et al., 2020).

From a theoretical perspective, researchers have shown that TTA can strictly reduce
expected error under certain assumptions (Kimuray [2021). Intuitively, if individual
augmentations produce somewhat independent prediction errors, then averaging can
cancel out random mistakes (much like an ensemble) and lower overall error (Kimural,
2021 Shanmugam et al., 2020). Experiments confirm that simple TTA often im-
proves accuracy on computer-vision tasks (Kimura, 2021; Shanmugam et al., [2020)).
However, [Shanmugam et al.| (2020, [2021)) emphasize that naive TTA can also corrupt
some predictions: Even when the average accuracy increases, ”it can change many
correct predictions into incorrect predictions” (Shanmugam et al,[2020). That work
analyzes when and why TTA succeeds or fails, noting that the choice of augmen-
tations and aggregation method matters. Building on these insights, Shanmugam!
et al| (2021)) propose learnable aggregation weights rather than simple averaging,
which consistently outperforms naive TTA.

TTA is closely related to DA and DG because it actively uses unlabeled test data
to adjust the model’s output. As [Zhou et al.| (2021) note, test-time training (or
adaptation) ”blurs the boundary between [domain] adaptation and domain gener-
alization”. In both cases, the model must cope with domain shift from training
(source) to testing (target) distributions. TTA effectively assumes that small, unla-
beled test batches are available to the model at inference time. Like DA, it tailors the
model to the test distribution (albeit without labels), but unlike typical adaptation
it usually makes no architectural changes and requires no supervision. [Zhou et al.
(2021)) argue that TTA is thus related to source-free DA (no access to source data at
test time) while also resembling generalization approaches that assume target data
will be encountered during deployment. In practice, TTA is often evaluated on the
same corrupted-image benchmarks used in domain-shift research and tends to yield

larger gains than generic DG methods because it exploits actual test samples (Zhou
et al., 2021)).

Style-Specific Test-Time Augmentation Certain TTA methods explicitly tar-
get style differences between domains. Park et al|(2023) observe that in DG sce-
narios, a target domain may have very different visual style statistics (e.g., texture
or color distributions) from all source domains. To address this, they propose Test-
Time Style Shifting, as introduced in section 2.2.2] a technique that modifies the
style of each test sample before inference without any gradient updates. Concretely,
the method finds the nearest source-domain style (in terms of batch normalization
statistics) and shifts the test image’s style toward that domain’s style distribution
(Park et al., [2023). For an incoming feature map f(¢) extracted from an early
convolutional block, they compute its style vector

C(f(t)) = [ue(f (1)), oe(f(1))]cts (6)
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where u. and o, are the per-channel mean and standard deviation across spatial
locations. They precompute and store the style centroids ®g, for each source domain
Sk. At test-time, they measure the Euclidean distance to each centroid and identify
the nearest domain £* = arg min,dy. If di~ > «, which is a small threshold tuned on
source validation data, they perform Adaptive Instance Normalization (AdaIN) by
normalizing f(t) using its own p, o and then re-scaling and shifting with ug,.,0g,.:

RO - alf)
T8 = o5 =505 w))

This style shift forces the network to process the test sample as if it came from
a familiar source domain, thereby reducing texture- or color-based domain shift.
During training, they further introduce a lightweight style balancing module that
periodically mixes style statistics among under-represented domain-class pairs to
ensure the stored centroids reflect balanced class proportions and prevent bias in
the nearest-centroid selection. Together, these components require no model updates
or additional parameters at inference, yet consistently improve OOD classification
accuracy on benchmarks with large style gaps.

+ [ (7)

Conceptually, this approach is a hybrid of augmentation and adaptation. It does not
update the model but transforms the input representation so that its style matches
known source domains. This makes the method particularly useful when a test
image’s style is extreme or anomalous, which allows models to "handle any target
domains with arbitrary style statistics, without additional model update at test
time” (Park et al., 2023).

Advanced Test-Time Augmentation More recent work has focused on improv-
ing the basic TTA framework by making the augmentation process more adaptive
and uncertainty-aware. For example, |Chen et al.| (2023)) point out two key pitfalls
in standard TTA: selecting an appropriate auxiliary loss for adaptation and decid-
ing which model parameters to update with test data. They propose an improved
Test-Time Augmentation method that addresses both issues. First, instead of using
a fixed self-supervised loss (like entropy minimization) to tune the model on test
samples, this method learns a small set of adaptive consistency parameters within
a loss function so that the auxiliary task (e.g., a consistency loss between differ-
ent augmentations) becomes ’aligned’ with the main classification objective (Chen
et al.,[2023). Second, their approach augments the model with a few new parameters
added after each layer that are the only weights tuned at test time, which leaves
the rest of the network fixed. This avoids forgetting or instability when updating
on a single test batch. In practice, this method achieves state-of-the-art results on
challenging DG benchmarks (Chen et al., 2023)).

Another recent advance is to make TTA uncertainty-aware. [Sherkatghanad et al.
(2024)) introduce BayTTA, which integrates Bayesian model averaging into the TTA
pipeline. The standard TTA pipeline produces multiple predictions by augmenting
the input and averaging; BayTTA instead treats each augmented version’s prediction
as coming from a different 'model’ and uses Bayesian Model Averaging (Fragoso
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et al., 2018) to combine them. Concretely, BayTTA generates a list of predictions
for each input (one per augmentation) and then weights them according to their
posterior probabilities under a Bayesian model. This means predictions from more
likely’ augmentations (or ensemble members) have more influence and the process
naturally captures model uncertainty. [Sherkatghanad et al.| (2024) report that their
approach significantly outperforms simple averaging TTA, especially on medical
imaging tasks with high uncertainty. By explicitly accounting for uncertainty via
Bayesian weighting, BayTTa reduces the risk of spurious errors that a naive average
might commit.

In summary, the theoretical foundations outlined above establish the key challenges
of domain shift and motivate the use of augmentation and test-time techniques as
central strategies, which directly influences the methodological choices in this work.
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3 Methodology

3.1 Research Objectives

This project is motivated by the observation that two complementary strands of
robustness research offer a promising opportunity to explore. Feature-statistic mix-
ing methods like MixStyle (Zhou et al., [2021) that operate in deep feature space to
encourage style-invariance and TTA approaches that adapt predictions at inference
by exposing the model to plausible variations both aim to improve generalization
under distribution shift, yet they are rarely studied together within a unified frame-
work. This thesis wants to test if training-domain feature statistics can be used to
systematically move test features at inference toward the known domains at test
time, similarly to style transfer, and if so, how the way of extraction influences the
performance of such a model.

The central research objectives driving this project are therefore closely tied to the
experimental design:

1. How does the choice of feature extraction strategy affect Domain Generaliza-
tion performance measured by prediction accuracy when these statistics are
used within a TTA pipeline for classification?

2. What methods augment test features toward training domains without erasing
class-discriminative information?

3. Isthere a correlation between predictive accuracy and model uncertainty across
extraction strategies?

Underpinning these objectives are several hypotheses:

1. We hypothesize that the choice of extraction strategy is crucial because differ-
ent residual blocks encode varying mixtures of semantic content and domain
style. While earlier blocks capture lower-level texture and color statistics that
are closely tied to appearance, later blocks encode higher-level, class-specific
representations (Yosinski et al., 2014} [Zeiler and Fergus, 2014). Accordingly,
shifting statistics from early blocks is expected to provide stronger alignment
style benefits, whereas modifying higher-level representations may be less ef-
fective at bridging appearance gaps.

2. We further hypothesize that domain-specific performance patterns observed
during training are preserved under TTA. Specifically, domains that achieve
the highest accuracy in the training setting are expected to remain the strongest
under TTA, while domains that perform poorly in training are likewise antic-
ipated to perform worst under adaptation.

3. Finally, we hypothesize that augmenting test samples from domains with lower
baseline performance using feature statistics derived from stronger-performing
domains will improve predictive accuracy.
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The thesis will operationalize these research objectives and evaluate them through
controlled experiments across two datasets with a specialized approach to test the
domain-specific statistics on for the model unseen domains. Its contribution lies
in demonstrating that feature extraction combined with a style augmentation at
inference can further improve domain generalization by identifying which layers are
most effective for style shifting. Collectively, these research objectives aim to bridge
conceptual gaps between style-mixing augmentation in feature space and TTA.

3.2 Problem Formulation

We consider the problem of Domain Generalization with Test-Time Augmentation
in image classification.

Let
e D={Dy, ..., Dy} denote the set of source domains,

e where each domain D; consisting of samples (z,y) with inputs x € REH*W
and class labels y € {1, ..., K},

e with N being the number of source domains and K the number of semantic
classes.

To simulate real-world generalization to unseen domains, we adopt a Leave-One-
Domain-Out (LODO) evaluation protocol:

e In each fold, one domain D, is selected as the target domain,

e while the remaining N — 1 domains {D; }, 2 serve as source domains.

A model fy is trained exclusively on labeled data from the union of source domains

Dsrc = UDH (8)

it

and is evaluated on the held-out target domain D;.

During both training and TTA, we represent the style of an activation map
= RBXCXHXW (9)

by its per-instance, per-channel statistics:

p(x) ZLWZZ bk (10)

h=1 w=1
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e = | i D0 D e = o) (1)

1 w=1

These statistics (i, o) are commonly used to represent style information of a domain,
while the normalized activations
Tb,e b — H(T)be

Thohw = 2 12
Tooh, o(z)pe+€ (12)

encode content features that are more domain-invariant.

The target domain D; remains unseen throughout training. To mitigate the domain
shift, we employ TTA as follows. First, style statistics from all source domains are
pre-computed and stored during training. Second, at inference, unlabeled samples
from D; are forwarded through the model while domain-aware hooks replace their
feature statistics with those of candidate source domains. This process produces a
set of augmented predictions { f(,(])(x) ?;’11, one per source domain style. Finally,
the predictions are aggregated across these source-domain hypotheses by averaging
to obtain the final output for each sample. The learning and inference objectives

are defined as follows:

. o1
Training (per fold): min —— ;E(a),y)w'Dig(f@(x)?y)? (13)

: N-1
Test-time augmentation (Inference on D,): ¢(z) = A({ fe(] )(x)} ) , o (14)
i=1

where ¢ is the cross-entropy loss and A(-) is the aggregation operator, e.g. the
average of softmax probabilities.

This procedure enables the model to leverage style variability from source domains
in order to adapt on-the-fly to unseen domains without requiring target labels or
retraining.

3.3 Setup

All experiments were implemented in PyTorch 2.5.1 with torchvision 0.20.1 and ex-
ecuted on a dedicated workstation provided by the Chair. The system was equipped
with an NVIDIA RTX A5000 GPU (24 GB VRAM), a 24-core CPU and 63.5 GB
RAM. For storage, the workstation offered a 512 GB SSD and an 8 TB HDD, pro-
viding sufficient capacity. The software environment was based on Ubuntu 22.04.4
LTS with CUDA 11.5 and cuDNN 9.0.1. To ensure reproducibility, random seeds
were fixed across PyTorch, NumPy and the Python random library. For a complete
specification of the Python environment, including all package dependencies, please
refer to the provided GitHub repositorylﬂ

4https://github.com/ahlershilke/latent-style-tta.git
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Baseline Model Architecture The baseline model of this work employs a ResNet-
50 architecture, which was chosen for its proven effectiveness in visual representation
learning and DG tasks. The residual connections of a ResNet enable the training
of deeper networks while mitigating vanishing gradient problems (He et al., [2016)).
This property makes it particularly suitable for learning robust, transferable repre-
sentations across diverse domains. The model is initialized with weights pretrained
on ImageNet (Deng et al.| 2009)). By using the pretrained version, the early layers
of the model are already able to capture generic low-level features such as edges or
textures, thereby bootstrapping feature extraction capabilities.

Input images are resized to 224 x 224 pixels and normalized using standard ImageNet
statistics (mean [0.485, 0.456, 0.406], standard deviation [0.229, 0.224, 0.225]). No
additional data augmentation is applied to the models used for feature extraction.
MixStyle (Zhou et al., 2021)) is only applied to the model that serves as the compar-
ative baseline for the evaluation of our method.

The ResNet-50 backbone consists of four residual blocks (layerl - layerd), where
each contains multiple bottleneck layers that progressively transform the input into
higher-level semantic features. During training, the outputs of each residual block
are captured using forward hooks. This yields hierarchical feature representations
at different levels of abstraction (Yosinski et al., [2014} [Zeiler and Fergus, 2014)):

e layerl: low-level features such as textures and edges, with high spatial reso-
lution

e layer2 - layer3: mid-level features such as shapes and patterns, at reduced
spatial dimensions

e layer4: high-level semantic features such as object parts or global context, at
the highest abstraction.

Two modes of feature utilization are supported. In end-to-end fine-tuning, all layers
are trainable. This allows adaptation of the backbone to the target task. Batch
normalization statistics are updated during training to align with the target domain
distribution. In frozen feature extraction, the pretrained backbone remains fixed,
and only task-specific heads (e.g., classifiers) are trained.

For DG, the system further extracts style statistics (mean p and standard deviation
o) from the activations of each residual block using the hooks. The statistics are
computed spatially over the height and width dimensions [H, W] for each channel,
which results in descriptors of shape [B, C, 1, 1] where B is the batch size and
C' the channel dimension. A dedicated StyleStatistics module aggregates these
statistics per domain using exponential moving average (EMA), which ensures stable
updates while adapting to domain-specific distributions. These statistics capture
domain-specific characteristics while remaining invariant to spatial arrangement,
which makes them particularly valuable for domain analysis and adaptation.
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LODO Setup To study TTA driven by feature statistics, the deployment data
must come from a previously unseen domain. Classical random train/validation/test
splits intermingle images from every domain in the used dataset(s) and therefore
can not measure performance under genuine domain shift properly. For a proper
evaluation of this approach, an evaluation protocol is needed that isolates an entire
domain during training, permits learning only from the remaining source domains
and tests on the unseen domain for an attempt at imitating domain shift in one
dataset. The LODO protocol is able to fulfill these criteria. It ensures that model
performance is measured on truly unseen domains and prevents data leakage that
could otherwise bias the results. This separation is particularly important for our
TTA mechanism. Since it adapts features at inference time, mixing target-domain
images into training would compromise the integrity of the style statistics.

Given D domains, the used LODO setup creates D folds. In fold ¢, domain D; is
fully excluded from training and used only for testing. The other D — 1 domains
are used to form the training validation set by a 80/20 split, balancing the need for
a large and diverse training set with a sufficiently representative validation set for
reliable model selection. This ensures the prevalence of every training domain in
both train and validation splits. The held-out domain is rotated across folds so that
each domain serves once as the target. This yields unseen-domain evaluation, per-
domain diagnostics and enables the aggregation of statistics across folds to quantify
DG. In our experiments, this setup creates four folds per used dataset.

LODO is integrated into our approach in multiple areas.

e Data splitting. Multi-domain datasets are divided into LODO folds.

¢ Global Hyperparameters. Results are aggregated across folds to estimate
hyperparameters that generalize robustly. The global configuration is then re-
evaluated to confirm domain-agnostic performance and used for model train-
ing.

e Training & statistics collection. The backbone is trained on the D-1 source
domains while collecting layer-wise style statistics per domain. The held-out
domain remains completely unseen.

e Model saving & stats export. For each fold the best model is saved and
its corresponding style statistics are extracted per source domain and per ex-
traction mode.

e TTA evaluation. At test time, the model trained without domain D; is eval-
uated on that domain using source domain statistics applied through forward
hooks.

Hyperparameter Tuning Framework The hyperparameter optimization pipe-
line employs Optuna (Akiba et al) 2019) to systematically explore the model’s
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hyperparameter space, utilizing a tree-structured Parzen Estimator sampler for ef-
ficient search. Hyperparameters are tuned per fold using only the source domains
of the LODO cross-validation setup, after which a global configuration is computed
across folds. This two-stage procedure avoids tailoring the model to any single do-
main, produces parameters that transfer across domains and establishes a consistent
configuration for training and evaluation. The optimization process is implemented
in a custom class which manages the full lifecycle of trials, logging, and model saving.

The search space spans both architectural and optimization parameters, including:

e Learning rates (le-5 to le-2 in log scale)

Batch sizes (8, 16, 32, 64)

Weight decay values (1e-5 to le-3 in log scale)

Optimizer configurations (Adam, AdamW, SGD with momentum)

Learning rate schedulers (StepLR, CosineAnnealing, ReduceLROnPlateau)

Dropout rates (0.0 to 0.5)

Each trial’s configuration and validation accuracy are recorded to ensure full repro-
ducibility. The system also preserves the top five configurations per domain fold,
including their trained weights and optimizer states.

Hyperparameter configurations are evaluated within each LODO fold using only
source domains. Key elements of the evaluation procedure include:

e Early Stopping with patience=3 and 6 = 0.001

e Median Pruning after 5 warm-up trials

e Evaluation for each configuration over 20 epochs
e Tracking of validation accuracy as primary metric

e Maintenance of separate trial records per domain fold

After fold-wise optimization, results are aggregated to produce a robust global con-
figuration. Performance patterns across folds are analyzed to identify parameter
values that generalize consistently across domains. These consolidated results are
stored in a YAML configuration file as a standardized reference for Model Training.
This automation eliminates the need for manual transfer of parameters between
experimentation and deployment phases, reducing overhead and enhancing repro-
ducibility.

Domain relationships are preserved during the tuning process through index man-
agement, which ensures that domain shifts are correctly accounted for. Stratified
sampling maintains class balance when splitting data into training and validation
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sets to prevent bias towards dominant classes. In addition, domain-specific per-
formance metrics are tracked across folds to enable analysis of how different hy-
perparameter combinations generalize across heterogeneous data distributions. The
framework supports both models with MixStyle layers and models that rely on fea-
ture extraction for style augmentation.

Training Framework The model training pipeline is implemented using PyTorch
and operates over domain-diverse datasets such as PACS or VLCS, supporting both
architectures with and without MixStyle augmentation. Its primary training objec-
tive is to learn representations that generalize effectively across unseen visual do-
mains, which is simulated again through the LODO cross-validation setup. Training
relies on the globally optimized hyperparameters identified by the tuning pipeline,
which are applied uniformly across domain folds to ensure experimental consistency.
For the used hyperparameter configurations in the experiments, refer to Tables [J]
and (10| in the appendix. The respective configurations were used for model training
of the baseline with and without MixStyle.

For reproducibility, random seed control is enforced across multiple runs (seeds: 42,
7, 0). Using multiple seeds allows us to test the robustness of the models against
random initialization and provides the foundation for later statistical significance
analysis. All experiments are logged using TensorBoard for performance tracking

(Abadi et al., 2015)).

Each training run is based on a domain-aware dataset split into N folds, with N
being the number of domains. In fold ¢, domain ¢ is excluded for testing, while
the remaining N — 1 domains are used for training and validation. Results are
aggregated across folds to compute mean accuracy and standard deviation per run.

Training proceeds for 50 epochs, with evaluation after each epoch. Each epoch
consists of forward and backward passes over batches, with each batch containing
images, their class labels and respective domain indices. Due to our experimental
setup, proper handling of the domain indices is critical. Thus, the data loaders use
a custom collate function to handle the indices alongside their respective images
and labels in a seamless integration with the model’s forward pass. Validation and
test sets are evaluated at the end of each epoch to assess generalization. The best
performing model per fold is saved based on its validation accuracy. The framework
tracks accuracy and loss across training, validation and test sets as well as per-
domain performance. The TensorBoard integration logs scalar metrics for inspection
(Abadi et al., 2015).

The framework includes a Visualizer class:

e Training Dynamics: Learning curves for training/validation loss and accuracy
are plotted per fold to diagnose overfitting or optimization issues.

e Feature Space Analysis: t-SNE projections of ResNet block outputs reveal
domain clustering and style invariance.
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e Seed-overarching Results: Comparative plots for results across random seed
runs.

The framework’s modular design allows easy integration of new datasets (e.g., Of-
ficeHome).

3.4 Feature Extraction

This section provides an analysis of the provided implementation for collecting,
extracting, storing and applying per-domain feature statistics inside a ResNet by
using PyTorch.

The code implements three cooperating components:

e DomainAwareHook
This is a lightweight forward hook that transforms feature maps during in-
ference by normalizing them per-channel per-sample and re-scales them with
target domain statistics p and o. It can obtain those domain statistics either
directly from a StyleStatistics object in-memory or by loading a pth file.

e StyleStatistics
This is the module responsible for collecting, maintaining and exposing per-
domain per-layer style statistics, which consist of channel-wise mean and stan-
dard deviation. It supports several collection methods and uses EMA with
warm-up behavior to update the stored statistics.

e StyleExtractorManager
A manager class that creates multiple StyleStatistics extractors with dif-
ferent modes. It attaches hooks to the model to collect statistics for specific
domains by performing forward passes with dummy inputs, transfers statistics
between extractor instances and persists statistics to disk.

The dominant concept is the extraction and management of per-domain channel
statistics for feature maps. These statistics are used to adapt features at inference
time.

In DA, style transfer and robustness experiments, it is often helpful to capture
statistics of intermediate feature maps for different data domains (Huang and Be-
longie, 2017)). The module implemented here computes the per-channel mean and
standard deviation by averaging over the spatial dimensions of intermediate feature
maps. [t aggregates these statistics per domain and per layer, with optional selec-
tion for specific layers of the architecture and stores them in disk-friendly formats,
to be re-applicable to feature maps during forward passes via hooks, which enables
inference-time style adaptation. The extraction is happening after the finished model
training, so the internal weights and other activations are already fine-tuned to the
dataset used.
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DomainAwareHook The hook encapsulates the runtime behavior needed to
transform intermediate feature maps so that their per-channel statistics match a
chosen target domain. It is intended to be attached to a ResNet-50 block and exe-
cuted automatically during the model’s forward pass. The hook can obtain target-
domain statistics either directly from an in-memory StyleStatistics object or by
loading a record from disk. This flexibility supports both interactive experiments
and deployment scenarios where only files are available.

Given an input feature map of shape [B, C, H, W] the hook computes the sample-
specific per-channel mean and standard deviation across spatial locations. It nor-
malizes the features using these instance statistics and then re-scales and re-centers
the normalized features using the stored statistics. This is the standard AdaIN-style
transform applied at the selected network location to impose the target domain’s
'style’” on the incoming features while preserving per-sample content information.

The hook includes mechanisms to cope with differences between stored statistics and
the current layer’s channel dimensionality. If necessary it will up or down-sample
the stored vectors so that broadcasting to [1, C, 1, 1] is possible. This allows
the same persisted statistics to be re-used across slightly different model variants or
extraction modes.

It is also used at inference time to replace features at particular ResNet layers with
domain-specific statistics collected post-training.

StyleStatistics This module is the authoritative store and update engine for per-
domain, per-layer channel statistics. It provides logic to initialize storage for different
network layers, update running statistics based on batches of activations, retrieve
aggregated statistics according to different strategies and (de-)serializes the state.

For each ResNet layer of interest the module holds a compact representation of per-
domain statistics. Each stored vector represents the channel-wise mean or standard
deviation aggregated over time and batches. The storage is structured so there is
a separate row per domain per layer. The class supports multiple strategies for
producing a domain-level statistic that can be applied later during TTA.

e Single-layer mode
This mode provides the most granular style representation by isolating the
statistical signature from a single network layer. All four ResNet blocks are
available for extraction. In this mode, the model exclusively tracks and up-
dates statistics for the chosen layer, disregarding the others. This approach is
optimal for analyzing the distinct stylistic contribution of a specific hierarchi-
cal level of features.

e Selective mode
The selective mode offers a multi-layer perspective by collecting statistics from
a defined subset of layers. For each layer in the subset, the statistics are tracked
and updated independently, but stored in a single tensor with a dedicated layer
dimension to ensure efficient organization and access. This mode enables the
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creation of a tailored style profile that balances specific feature hierarchies by
combining the different structural patterns of different layers.

e Average mode

This mode generates the most comprehensive and generalized domain signa-
ture by incorporating statistics from all available layers of the architecture.
Independent features are tracked and maintained for every layer. Then fol-
lows the interpolation of each layer’s feature vector to a common reference
length, which are 256 channels in this case, before they are element-wise av-
eraged to form a single feature vector. This results in a holistic style vector
that is supposed to encapsulate the domain’s characteristic patterns across all
feature scales and semantic levels.

These modes allow a choice whether to apply a narrowly scoped style or a broader,
multi-layer style signature.

During training, the style statistics of the domains and layers are updated with
each forward pass. In this pipeline, the updates are performed using EMA with
a configurable momentum. This works by reducing per-batch computed p and o
values to summaries and blending them into the already stored statistics. The
StyleStatistics module tracks the update counts per domain and layer so the
system knows how many observations contributed to each stored value. This ap-
proach yields a compromise between reactivity to new observations and long-term
stability of the stored statistics. The implementation also supports a warm-up pe-
riod during which the effective momentum ramps up over the first N updates, which
lets early observations shape the stored statistics more strongly. If a batch contains
samples from multiple domains, the module can partition the batch by domain and
perform per-domain updates in a vectorized way. This capability enables efficient
collection of domain-specific statistics during a multi-domain training or evaluation
pass. If incoming statistics have a different channel dimensionality than the exist-
ing storage for a layer, the module will initialize or reinitialize storage for the new
dimensionality. This behavior makes the system robust to variations in the feature
extractor.

In the average mode which combines statistics across layers, the module includes an
alignment step that interpolates per-layer channel vectors to a common reference
length before averaging. This is a pragmatic choice to produce a single, comparable
signature from heterogeneous layer outputs as an approximation that trades some
fidelity for interoperability between layers.

The module implements loader routines that are designed to accept slightly different
on-disk layouts for storage. Statistics are saved in both human-readable files (in
JSON-format) and tensor-preserving files that can be reloaded without loss of shape
(pth-format). The module also can reconstruct the in-memory storage appropriately
and map tensors to the desired device.

StyleExtractorManager The manager automates the end-to-end process of cre-
ating multiple StyleStatistics extractors, one per chosen aggregation mode, by
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running inference passes to populate their storage from a trained ResNet-50 model
and saving the resulting artifacts. This module provides a experiment-level inter-
face so that multiple extraction strategies can be executed and persisted in a single
controlled workflow.

The manager constructs a set of the StyleStatistic extractors, where each is
independently configurable and can maintain its own training-domain mask which
controls which domains it should collect statistics for. This is useful for training
on multi-domain datasets with a LODO setup. The manager can load a saved
ResNet-50 checkpoint and restore both the model weights and any embedded style
statistic state saved with the checkpoint. During loading it separates model weights
from style storage so that the latter can be inspected, transferred or reinitialized as
needed.

For each domain and each extractor the manager attaches the domain-aware hooks
to the targeted ResNet blocks, typically the last block of each layer. Then it performs
a forward pass with a dummy input that is expected to trigger the model’s internal
statistics collection. Dummy inputs are enough in this case since the objective is
to elicit typical activations of per-channel statistics in an already trained model.
After the forward pass the hooks are removed. This controlled attach-execute-
detach cycle ensures the statistics are gathered at the intended network locations
and for the specific domain label. After gathering statistics from the model’s own
StyleStatistics instance or the live activations, the manager can transfer per-layer
vectors into the per-mode extractors. This step consolidates raw collected values
into the formats required by the different aggregation styles and update counters so
downstream users are aware of how much data underlies each stored vector.

Feature Statistics As mentioned above, the statistics are obtained by using hooks
in the internal model architecture. The per-sample per-channel feature mean is
computed as the mean over the spatial axes for each channel, for each sample in the
batch. The feature standard deviation is computed across the spatial axes. These
operations yield tensors shaped [B, C, 1, 1]. To avoid division by zero in low-
variance channels, there is an epsilon (1le—6) applied in the normalization step. This
is the standard instance statistics procedure used by AdalN and related methods by
summarizing the per-sample style of a channel across spatial support (Huang and
Belongie, 2017).

The aggregation of the feature statistics is handled by the StyleStatistics module.
For a batch of samples from domain D and layer [ the incoming p and o are averaged
over the batch axis to produce the mean values of these statistics for the current
update (Spean). The EMA update uses these average statistics to calculate the new
stored statistic s,e.; the same formula applies to both p and o:

Spey = Momentum # s,14 + (1 — momentum) * Spean- (15)

The warm-up updating logic scales the momentum linearly during early updates,
which makes the early statistic rapidly adapt to incoming samples due to low mo-
mentum and becomes more stable later on when the momentum approaches the
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configured value (0.9 in this pipeline).

The use of EMA for maintaining running statistics avoids recomputing exact statis-
tics over the entire training set, which would be computationally expensive and
memory-intensive. Instead, EMA provides a smoothed and memory-efficient ap-
proximation of the underlying distribution by gradually integrating information from
new batches while retaining long-term statistics. This principle is similar to the run-
ning mean and variance updates used in Batch Normalization (loffe and Szegedy),
2015)).

The StyleStatistics module supports multiple retrieval modes for obtaining stored
feature statistics. For each domain d and layer ¢ € {0, 1,2, 3}, the module maintains
per-channel mean and standard deviation vectors

meanff) e R, stdg) e R,

where Cy is the number of channels in layer ¢. At runtime, the retrieval mode
determines how these layer-wise vectors are combined into the final statistics (u, o)
that are used to normalize and re-style features in the forward pass.

The single-layer mode retrieves statistics from a single, specified layer L without
any modification:

= mean&L), o= stdﬁlL). (16)

This is appropriate when the style is assumed to be localized to one network stage
or when analyzing layer-specific domain characteristics.

The selective-layer mode operates on a predefined subset of layers S C {0,1,2,3}
but treats them independently. For each selected layer ¢ € S, the corresponding
stored statistics are applied when that layer’s forward hook is triggered:

= mean((f), o= stdg). (17)

This approach enables capturing style statistics that are distributed across specific
regions of the network, rather than relying solely on a single layer.

The average mode aggregates information from all monitored layers £ = {0, 1,2, 3}
to form a single global style signature. Because the layers have different channel
dimensions Cy, each vector is first interpolated to a common dimensionality Cigy:

()

. —(t
mean, = Interp (mean((f) — Clgt), std((i) = Interp (std((f) — Ctgt)- (18)

The aligned vectors are then averaged element-wise across layers:

1 _— 1 —(¢
p=— mean{, o= stdy . (19)
‘ﬁ‘ el ’£| el

This provides a holistic domain representation that smooths over layer-specific vari-
ations and captures network-wide activation patterns.

The choice of retrieval mode reflects a trade-off between preserving layer-specific
information and capturing a generalized style signature. The single-layer mode
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offers a high specificity by preserving the unique characteristics of a single network
stage but potentially misses important style information from other layers. The
selective-layer mode balances specificity and generality in theory, which should allow
targeting style information from multiple layers without averaging over the entire
network. The full-layer average mode maximizes generality by producing a unified
style vector that captures overall domain characteristics at the cost of losing fine-
grained layer distinctions.

3.5 Augmentation at Test-Time

This section provides a description of the TTA experiment framework for feature
augmentation in the supplied code. The aim is to give a clear mental model of
how the system is organized and how the pieces cooperate to carry out LODO TTA
experiments.

The code implements an experiment pipeline for evaluating TTA strategies on multi-
domain image classification tasks. It was designed to load pre-trained models and
per-domain style statistics to apply domain-aware modifications to model activa-
tions at test time via forward hooks to mimic style transformations. The inference
is run over one held-out test domain while adapting features from other domains
as the augmentations, with the aggregation and computation of performance and
uncertainty metrics.

Two cooperating classes structure the pipeline. The TTAClassifier encapsulates
the model-level augmentation and prediction logic while TTAExperiment organizes
the experiments across multiple test domains, modes and random seeds. Utility
helpers for seed management and result serialization support reproducibility and
result handling.

The TTAExperiment class is responsible for running experiments across the full set
of domains of the used datasets, the configured modes and configured seeds. Its
primary entry points are a method that iterates over the test domains, modes and
seeds, calls another method for completion of the logic and logs per-seed and per-
mode summaries by writing a timestamped text file for enabling of reproducibility
for recorded metrics.

The pipeline centralizes seed setting in the SeedManager helper. This class sets
seeds for the Python random module, NumPy and PyTorch, which provides a deter-
ministic execution environment to the external libraries permit, and is invoked at
both experiment initialization and per-seed runs to isolate seed effects.

The system assumes a pre-trained ResNet model and checkpoint files organized
by seed and test domain, as made available by the training process and the style
extraction functionality. The style statistics for individual domains and layers are
stored as mentioned above as PyTorch objects, which can be loaded and used in the
DomainAwareHooks for the style adaptation.

The TTAClassifier wraps an existing model and provides the mechanisms required
for TTA and prediction aggregation. Its main responsibilities include the loading
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and integration of the extracted style statistics for training the source domains with
respect to a held-out test domain; the registration of forward hooks to capture the
intermediate activations and dynamic installation of domain-aware hooks during
per-domain inference. The classifier performs inference across the specific test set
while applying the domain adaptation hooks and collecting as well as aggregating
predictions and metrics for analysis.

The classifier accepts a mode argument (introduced in section that configures
which layers will be used for the TTA process. The supplied model is moved to
the configured device, all parameters are frozen and the evaluation mode is called.
The classifier creates a new linear head where its feature dimensions are estimated
by forwarding a dummy tensor through the model to receive a feature vector. The
forward hooks are registered on every 2D convolutional layer in the model to capture
the output activation tensors.

The main logic is orchestrated by the predict() method. It creates a list of all
available source domains, excluding the configured test domain. These source do-
mains are the target directions for the augmentation process, in which the images
of the excluded domain are adapted towards. For each batch of the dataloader con-
taining the test samples, it computes an original prediction without augmentation
and then dynamically constructs and registers DomainAwareHook instances for each
source domain targeted at the specified layers for the experiment. It then performs
a forward pass to obtain the domain-adapted logits and probabilities. The hooks are
removed after obtaining the domain-adapted outputs. Across the source domains
it computes the prediction accuracy and per-sample variance of per-class probabili-
ties. These metrics are introduced in section 4.2.1l For each source domain used as
an adaptation target, the logic stores the logits, probabilities and predictions and
then computes accuracy as well as the additional measures. The metrics are used
to quantify how sensitive the model’s beliefs are to the style transformation space
induced by the training domains. A non-augmented ’original’ forward pass over the
test set provides the baseline predictions and class variance for comparison. For each
test domain and mode, the pipeline records per-seed metrics for every augmentation
target. All results are returned in a structured dictionary and written to disk.

Finally, TTAExperiment orchestrates the LODO protocol by looping over all test
domains, all configured modes and the specified random seeds. It restores the ap-
propriate checkpointed ResNet-50 for each seed/test-domain pair, constructs the
test loader and instantiates the TTAClassifier. Deterministic behavior is enforced
as far as the libraries allow via the centralized SeedManager to ensure that results
are repeatable across execution runs and seed effects can be reported isolated.
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3.6 Workflow

The overall workflow of the proposed system integrates the previously described
components into a coherent pipeline for DG and TTA. The process can be divided
into two main phases: Model training with style extraction and evaluation with style
augmentation (see Fig. [1)).

In the training phase, images from the source domains are processed by the ResNet-
50 backbone to extract hierarchical feature representations. Forward hooks are
attached to selected residual blocks to enable the collection of per-channel statistics
(mean and standard deviation) of intermediate activations. The aggregated statis-
tics serve two purposes. First, they capture domain-specific style signatures that
can later be re-applied at inference and second, they provide a basis for analyzing
inter-domain variability. Simultaneously, the extracted feature embeddings are fed
into a task-specific classifier, which is trained to minimize cross-entropy loss on the
source domains. The LODO protocol ensures the full exclusion of one domain during
training, which allows the system to simulate realistic domain shift.

In the evaluation phase, the pipeline performs TTA by reintroducing the style statis-
tics collected during training. For each test image from the unseen domain, the
frozen ResNet backbone is traversed while forward hooks dynamically apply domain-
aware transformations. Specifically, the DomainAwareHook normalizes activations
per sample and re-scales them with style statistics from one of the source domains,
which projects the test sample into the style space of that domain. This procedure is
repeated across all available source domains, resulting in multiple domain-adapted
feature representations for the same test input. The classifier collects predictions
from these augmented passes for aggregation and computes the additional uncer-
tainty metric like variance. The final prediction is derived by combining the aug-
mented outputs with the unmodified baseline prediction.
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Figure 1: Stylized Pipeline

This pipeline establishes a process where domain-specific statistics are first extracted
during training and subsequently re-applied during evaluation to enable style-driven
TTA. This design ensures both reproducibility and generalization across unseen

domains as well as provides interpretable measures of robustness under domain
shift.
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4 Experiments & Results

4.1 Datasets

This section describes the datasets used in the experiments.

4.1.1 PACS

The PACS dataset is a widely adopted benchmark for evaluating DG algorithms,
designed to test model robustness under cross-domain distribution shifts (Li et al.
2017)).

It consists of four distinct stylistic domains. The Photo domain uses real-world
photographs with natural textures and lighting, whereas the Art_painting domain
includes artistic renditions such as paintings or illustrations with varied brushstrokes
and color palettes. The less realistic domains Cartoon and Sketch consist of styl-
ized drawings with bold outlines and flat shading as well as black-and-white line
drawings with minimal texture respectively. This diversity requires models to learn
style-invariant features, as domain shifts are primarily stylistic rather than semantic
(Zhou et all 2022a). Rather unequally distributed across these domains are the
seven classes of the dataset. PACS includes these object categories: dog, elephant,
giraffe, guitar, horse, house and person. It is worth noting that these classes are
semantically consistent across domains but exhibit stylistic divergence within each
class. E.g., a guitar appears differently in a photo than in a sketch but shares the
same characteristics in both domains.

The dataset contains 9991 images in total, with an uneven distribution across do-
mains. While the Sketch domain contains 3929 images, Photo only consists of 1670
images. Cartoon and Art_painting contain 2344 and 2048 images respectively.
Figure [2| shows examples of every class in every domain of the dataset.

4.1.2 VLCS

The VLCS dataset is another widely used benchmark for evaluating DG algorithms,
first introduced by Fang et al.| (2013). It combines image data from four distinct
sources, VOC2007, LabelMe, Caltech101 and SUNO0Y, each representing a separate
domain. While all domains consist of real-world photographs, they vary in compo-
sition, background complexity and perspective. For example, Caltech101 typically
includes object-centric images with minimal background clutter, whereas the others
contain more complex scenes with variable lighting and context (Fang et al., [2013)).

Across all domains, the dataset shares five object categories: bird, car, chair, dog
and person. These classes remain semantically consistent throughout the domains
but differ stylistically. For instance, while a car appears in each domain as a real
object, the backgrounds, occlusions and angles differ, which forces models to learn
representations that are invariant to these domain-specific features.
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Figure 2: Exemplary images from the PACS dataset, containing images from the
classes dog, elephant, giraffe, guitar, horse, house and person, each from the four
domains Art_painting, Cartoon, Photo and Sketch.

The dataset contains a total of 10729 images with an imbalanced distribution across
domains: while both VOC2007 and SUNO9 consist of more than 3000 examples
(3376 and 3282 images respectively), LabelMe and Caltech101 contain significantly
less data (2656 and 1415 images respectively). These differences in domain size
introduce additional challenges during training and evaluation, as the models must
generalize under data scarcity and imbalance.

During dataset preparation, four images from the VLCS dataset were identified as
corrupted during the download process and consequently excluded from the exper-
imental setup. This exclusion resulted in a final curated dataset comprising 10725
valid images for analysis. The removal of these corrupted samples ensured data
integrity while maintaining a statistically robust sample size for all subsequent ex-
periments.

Figure |3 shows examples from every class of every domain in the dataset.

4.1.3 Domain and Class Structure Analysis

Both the PACS and VLCS datasets were selected for this study due to their comple-
mentary strengths in evaluating DG algorithms. Their defined domain boundaries
allow for precise assessment of model robustness against distribution shifts, where
PACS emphasizes stylistic variation across artistic modalities and VLCS highlights
real-world diversity arising from different data sources.

As established community benchmarks, both datasets facilitate meaningful compar-
ison with prior DG approaches. Moreover, their inherent class and domain imbal-
ances reflect challenges commonly found in practical settings, such as heterogeneous
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Figure 3: Exemplary images from the VLCS dataset, containing images from the
classes bird, car, chair, dog and person, each from the four domains Caltech-101,
LabelMe, SUNO9 and VOC2007.

data distributions and uneven sample availability (Choi et al., 2024; |Gulrajani and|
Lopez-Paz, 2020)).

To gain an intuition for the structure of the raw datasets, we apply t-distributed
Stochastic Neighbor Embedding (t-SNE), a nonlinear dimensionality reduction tech-
nique that maps high-dimensional data into a two-dimensional space while preserv-
ing local neighborhood relationships (van der Maaten and Hinton, 2008). Figure
and figure [5| show the resulting embeddings when color-coded by domain on the left
and by class on the right.

The domain-based visualization reveals a clear separation between the stylistic
groups for the PACS dataset in figure [4l Particularly, the Sketch domain forms
a distinct cluster, while Photo and Art painting exhibit partial overlap but remain
distinguishable. In contrast, the class-based visualization shows considerable over-
lap across categories and highlights that stylistic variance dominates the embedding
structure more strongly than semantic variance.

In contrast to PACS, where stylistic differences dominate the structure, the visu-
alization for the VLCS dataset (see Fig. |5) shows a substantial overlap between
the four source domains. The only limited separation visible is for the subset Cal-
tech101, which forms more compact clusters. The class-wise visualization shows,
like with PACS, a high entanglement across domains without clear boundaries in
the embedding space.

These observations are highly relevant for TTA strategies that augment with feature
statistics. If style drives the primary shifts in representation, then adapting feature
distributions to better align with unseen target domains may mitigate domain gaps
without harming class semantics. The overlap for VLCS suggests that the TTA
might have to adapt to subtler shifts in distribution caused by scene complexity.
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Figure 4: t-SNE visualization of the raw PACS image tensors. Left: samples color-
coded by domain. Right: samples color-coded by class.

Raw Data t-SNE by Domain Raw Data t-SNE by Class
(Total samples: 10725) (Total samples: 10725)

Caltech101 40

LabelMe

SUNO9.

V02007

8
.

.

.
cecoe

SNE Dimension 2

£:SNE Dimensi

0 o
LSNE Dimension 1 t-SNE Dimension 1

Figure 5: t-SNE visualization of the raw VLCS image tensors. Left: samples color-
coded by domain. Right: samples color-coded by class.

4.2 Metrics & Tests

This section describes the metrics and statistical means used for evaluation in the
project.

4.2.1 Metrics

TTA alters a trained model’s behavior at inference to reduce the impact of domain
shift between training and deployment. Because TTA changes both the model’s
decisions and its confidence under transformed inputs, the evaluation of such a
system cannot rely solely on accuracy, which quantifies task correctness. Accuracy
does not reveal whether a model’s predictions are stable under the applied test-time
transformations or whether the model’s confidence is reliable.

To characterize the effects of TTA we therefore use variance as a complementary
stability metric alongside accuracy to measure how the predicted probability distri-
bution fluctuates across augmentations. Variance exposes changes in model confi-
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dence that can indicate calibration or robustness issues even when the top-1 level
remains constant.

Accuracy Let N denote the number of evaluated test samples and let y; €
{1,..., K} be the ground truth label of sample i. Let g; denote the predicted
label for sample ¢ (a single label per sample, such as the model’s top-1 prediction
after any aggregation). The accuracy over the dataset is defined as

N
1
Accuracy = N Z Hi = vi}s (20)

i=1

where 1{-} is the indicator function that equals 1 if the argument is true and 0
otherwise.

The TTA pipeline introduced in this work computes an original prediction for each
input and stores these as g "9 This equals the accuracy for the model forward
pass without augmenting towards the target domains. The pipeline also computes
domain-adapted predictions via domain-aware forward passes with one forward per
target domain acting as an augmentation, which yields domain-specific predicted
labels QZ@ for augmentation a. The implementation concatenates predicted labels
and ground-truth labels across batches and computes accuracy by taking the mean of
equality tests ((preds == labels).mean()). When experiments are repeated with
multiple random seeds, the experiment runner aggregates final accuracies across
seeds and reports summary statistics for the sample mean and standard deviation

of accuracy across seeds.

Accuracy measures task correctness, the fraction of examples for which the model’s
chosen label equals the ground truth. The comparison between the original accu-
racy for images without feature augmentation and TTA-derived accuracy indicates
whether the chosen method is beneficial for predictive performance on the test do-
main. An increase in accuracy after TTA indicates an improved task performance,
whereas a decrease suggests a less accurate classifier decision, e.g. by misaligned
features or over-correction.

Per-sample variance Let pl(‘z)l denote the predicted probability assigned to the
true class y; of sample ¢ under augmentation a where a = 1,..., A. For a given
sample 7, the augmentation-wise mean probability of the true class is defined as:

A
1 a
a=1

The TTA pipeline extracts the probability associated with the correct class y; for
each sample and augmentation, computes its variance across domain adaptations
and then averages across all samples for class variance.

The Variance measure here therefore measures confidence instability. It quantifies
how much the entire predicted distribution changes across augmentations, not just
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the top-1 label. Low variance indicates consistent confidence, which shows a stable
probability mass of the model across augmentations. High variance shows a strong
probability fluctuation with the augmentations, suggesting a sensitivity of the model
to the TTA transformations. Large mean variance across the dataset suggests poor
robustness of confidence estimates to domain-adaptive transform; this motivates
methods that either stabilize probabilities or use aggregation strategies that reduce
variance.

Evaluating TTA requires measuring not only whether the model predicts the correct
label, but also how stable those predictions and their associated confidences are
under the applied transformations. The presented metrics are able to give a multi-
dimensional view of model behavior.

Accuracy as the primary performance metric can be misleading in TTA contexts
when used alone. It does not indicate whether the model’s predictions are consistent
across the different augmentations that the TTA mechanism produces.

Beyond point estimates of variance, we quantify how well per-sample variance acts
as a usable uncertainty metric signal by studying accuracy drop curves based on
uncertainty ranking and by reporting three scalar summaries, Area Under Accuracy
Drop (AUAD), Gain and Area Under Curve (AUC). Let u; denote the uncertainty
score for sample 7, derived from the augmentation-wise variability of its predicted
probabilities. Unless stated otherwise, we use the above defined per-sample variance.

For the accuracy drop curves, let = € [0, 1] be a removal rate. Sort the evaluation
set by u; in descending order and remove the top 7w fraction, which represent the
most uncertain samples. The retained accuracy is

AcCyne(m) = 1lg =vy|, Z,={i:inot in the top 7 fraction by w;}. (22)

We compare the curve to a random removal baseline Acc,aq(7) obtained by repeat-
edly (e.g., 10® trials) removing a fraction of m samples uniformly at random and
averaging the resulting accuracies.

We summarize Accyn(m) by its area
1 1
AUAD, e — / Acune(dr),  AUADpg — / AcCeana(dr), (23)
0 0

approximated via the trapezoidal rule on a fixed grid = € {0, 0.05, ... , 0.95}.
Larger AUAD,,, indicates a steeper improvement when abstaining on high-variance
samples.

To quantify the added value of variance over uninformed abstention, we report

. . AUADunc - AUADran
Gaingps = AUAD e — AUAD, g,  Gaing = AUAD. d (24)

Gaing,s measures absolute improvement in the area, Gain,, contextualizes it as a
S b
percentage over the random baseline.
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We additionally treat u; as a score for identifying errors and compute the Area
Under the Receiver Operating Characteristic Curve (ROC), which is denoted in this
work as AUC, between u; and the error indicator e; = 1[g; # i]:

An AUC close to 1 indicates that higher variance tends to occur on misclassified
samples, whereas 0.5 corresponds to chance. All these quantities are computed per
test domain and TTA mode.

4.2.2 Tests

To evaluate the performance of different adaptation strategies, we conducted a series
of statistical analyses based on linear mixed-effects models (Jiang, |2007)). The aim of
this evaluation was to determine whether various TTA modes provide a measurable
improvement in accuracy compared to the baseline method, while accounting for
the variability introduced by different domains and random seeds, as claimed as a
research objective in section

While paired t-tests could in principle be used to compare accuracies across modes,
they are limited to analyzing one contrast at a time and assume independence of
observations (Yu et al., [2022). In this setting, multiple sources of variability exist
simultaneously: there are differences across domains and random seeds as well as
repeated measures within domain-seed combinations. A linear mixed-effects model
is therefore more appropriate in this context, as it allows the inclusion of fixed effects,
which are the systematic differences between modes, and the modeling of random
effects, which are present by uncontrolled variation due to different domains and
seeds (Jiang, 2007). It also makes the simultaneous estimation of multiple contrasts
within one unified framework possible. This approach increases the statistical power
and provides a more reliable quantification of uncertainty compared to running a
large number of separate paired tests.

Before using the linear mixed-effects model, we defined categorical variables for the
experimental factors (approach, mode) and introduced a combined domain seed
identifier. This ensured that the subsequent models could properly account for
repeated measures within the same domain and seed.

Two main model specifications were estimated:

e TTA-only analysis. The results were restricted to runs under the TTA ap-
proach. A mixed-effects model was fitted with mode as a fixed effect, random
intercepts for domains and additional random variability at the domain_seed
level. This estimates whether different TTA modes significantly differ in ac-
curacy.

e Baseline comparison. The MixStyle baseline (base) was compared against
selected TTA modes. By using base as the reference category, the model
estimated the expected difference in accuracy between each TTA mode and
the baseline, while controlling for domain and random seed.
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Coefficients and their confidence intervals were extracted to provide interpretable
estimates of the expected accuracy differences. Positive coefficients indicate im-
provements relative to the baseline. Confidence intervals that exclude zero suggest
statistically significant differences at the 95% level.

Beyond the global models, paired differences per domain and seed were computed.
For each domain, accuracy differences between a TTA mode and the baseline were
calculated per seed. From these differences, mean improvements, standard devi-
ations, standard errors, and t-based 95% confidence intervals were derived. This
domain-level analysis illustrates whether improvements hold consistently across in-
dividual domains and seeds or whether gains are specific to certain cases. Narrow
confidence intervals suggest stable effects while wide intervals reflect variability.
With wide confidence intervals the effects of the respective augmentation style ap-
pears to be unstable and may depend heavily on which seed is used.

4.3 Experiments

The experimental evaluation investigates whether domain-aware TTA can improve
model robustness under distribution shifts. We use the community benchmarks
PACS and VLCS, as introduced in section [4.1] which differ in the nature of their
domain shifts. Whereas PACS emphasizes stylistic variation across artistic modali-
ties, VLCS highlights real-world diversity across different sources. For each dataset,
we follow the LODO protocol (see section , training on all but one domain and
treating the remaining domain as unseen test environment.

During inference, we apply domain-aware feature transformations based on stored
style statistics. These consist of channel-wise means and standard deviations and
are extracted from the training domains at multiple ResNet layers using hooks. At
test time, they are injected into the forward pass to simulate different domain styles,
producing multiple augmented predictions per input. We evaluate several augmen-
tation strategies, namely single layer, selective multi-layer and averaging modes,
which differ in how layer-level statistics are selected and combined (see section [3.4).
We use statistics from all four ResNet-50 convolutional blocks for the modes.

Each experiment is repeated with three random seeds to account for initialization
variability. For every test domain, we report mean accuracy as well as other values
like AUAD, Gain and AUC values, which are derived from our uncertainty mea-
sure per-sample variance. While mean accuracy is reported for all TTA modes in
order to provide a complete picture of classification performance, the evaluation of
uncertainty quality is restricted to the three best-performing modes per dataset.
This choice avoids redundancy and highlights the configurations most relevant for
selective prediction.

Statistical analyses are performed using linear mixed-effects models to compare TTA
modes with the baseline model without style adaptation, and with usage of the
MixStyle approach (Zhou et al., 2021), while controlling for variability introduced
by domains and seeds. This comprehensive setup allows the assessment of both task
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performance and prediction stability for a thorough evaluation of TTA effectiveness
across heterogeneous distribution shifts.

4.4 Results
4.4.1 TTA Approach

The evaluation of the proposed TTA approach compared to the ResNet-50 base-
line trained with MixStyle (Zhou et al., |2021) shows dataset- and mode-dependent
outcomes. Tables [I] and [3| show mean accuracy results for the datasets used in this
project. The reported values were obtained by averaging the results of TTA toward
the respective training domains across three random seeds. The baseline values

were also calculated by averaging the test accuracies for the respective models in
the LODO split.

PACS For the PACS dataset (see Tab. [I]), several configurations achieve accu-
racies that are higher than the baseline. The single_.1 mode provides the most
consistent improvements, with mean accuracies of 87.47% for Art Painting, 79.57%
for Cartoon and 78.8% for Sketch, each exceeding the corresponding baseline results
of 85.75%, 77.7% and 73.84%. In the Photo domain, single_1 remains close to the
baseline (96.86% vs. 96.99%). The single_0 configuration also reaches competitive
results, e.g., yielding 97.11% in Photo, which is slightly higher than the baseline. In
contrast, modes involving single_3 and their selective combinations result in consid-
erably lower accuracies across domains, often in the range of 12—16%. The extended
breakdown across target domains (see Tab. — in the appendix) illustrates this
variation. In the Cartoon domain, mode selective_0_2 reaches 80.63% accuracy com-
pared to the baseline of 77.7% (see Tab. while in the Sketch domain, single_1
obtains 79.18% relative to the baseline of 73.84% (see Tab. [14)), both when aug-
mented towards the Photo domain. These observations indicate that improvements
are attainable, but outcomes depend strongly on the specific configuration and test
target domain.

In addition to accuracy, the quality of the uncertainty estimate variance is evalu-
ated using AUAD, Gain and AUC measures (see Tab. [2). The AUAD values are
consistently high, with all domains except Sketch exceeding 90%, and Sketch still
achieving values above 80%. This indicates that the proposed method consistently
produces accuracy-drop curves that remain well above the baseline and that discard-
ing the samples with the highest estimated sample variance substantially improves
the accuracy of the remaining predictions. This behavior can be clearly observed in
the drop curve plots (Figs. |§| — E[), where the blue variance-based curve rises much
more steeply than the orange random baseline as the most uncertain samples are

discarded.

The observed gains quantify this improvement over random dropping. For domain
Art Painting, the gains reach about 9.5%, while in Cartoon and Sketch are slightly
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Table 1: Mean accuracy results in % for the PACS dataset in comparison to the
Baseline results of a ResNet-50 model trained with MixStyle (Zhou et al., 2021)

Mode Mean accuracy across seeds for Test Domain
Art Cartoon Photo Sketch
Painting

single_0 86.83 +£0.82 76.46+2.2 97.11+0.46 72.74+ 5.09
single_1 87.47+1.09 79.57 +£1.81 96.86 £0.45 78.8+241
single_2 83.06 £2.23 79.1+1.24 9593+0.71 71.49+4.51
single_3 13.51+4.79 15.95+2.08 15.04+6.05 11.98+7.65
selective_0_1 86.944+1.26 7871199 96.69+0.43 77.16+3.42
selective_0_2 83.45+249 79.414+1.26 9548+0.8 72.84+3.11
selective_0_3 13.51+4.79 15.95+2.08 15.04+6.05 11.98+7.65
selective_1_2 82.77+247 79.45+1.34 94.98+1.09 73.19+4.76
selective_1_3 13.51+4.79 15.95+2.08 15.04+6.05 11.98+7.65
selective_2_3 13.51 +4.79 15.95+£2.08 15.04+6.05 11.98+7.65
average 16.494+2.85 16.6£0.0 11.26+0.35 9.26+7.34
Baseline with MixStyle 85.75+1.77 77.7+2.53 96.99+0.69 73.84 +4.12

Table 2: Summary of results per domain and top-3 modes on PACS. Accuracy,
AUAD, and Gain are reported in % across seeds, AUC is reported in [0,1].

Domain Mode Accuracy AUAD Gain AUC
single. 0 86.83 £ 0.82 90.82 £ 0.05  9.67 £ 0.30  0.824 £ 0.006
Art Painting single 1 87.47 +1.09 90.74 + 0.14  9.58 £ 0.45 0.822 £+ 0.011
sel 0.1  86.94 +1.26 90.50 £ 0.08 9.35 £ 0.36  0.806 % 0.008
single 0  76.46 £ 2.20 84.02 £ 0.66 11.00 + 0.52 0.721 4+ 0.003
Cartoon single.1  79.57 £1.81 86.02 £ 0.52 13.00 & 0.81 0.785 + 0.011
sel 0_1 78.71 +1.99 85.46 + 0.44 12.43 +£0.87 0.768 £+ 0.012
single 0 97.11 £ 0.46 94.78 £ 0.03  2.13 £ 0.07  0.932 £+ 0.008
Photo single.1 96.86 £ 0.45 94.76 £ 0.04  2.11 £ 0.09  0.929 + 0.007
sel 0.1  96.69 £ 0.43 94.77 £0.02 2.13 £ 0.08 0.929 &+ 0.004
single 0 72.74 +5.09 7883 +£3.23 824 +3.04 0.640 £+ 0.062
Sketch single.1  78.80 £ 2.41 82.89 + 241 12.30 + 0.63 0.740 4+ 0.023
sel_0_1 77.16 + 3.42  81.04 + 3.46 10.45 4+ 1.54 0.694 £ 0.047

sel_0_1 = selective_0_1

higher at 11 — 13% (Tab. [2). These values match the visibly larger gap between
the uncertainty and random curves in Figs[7]and [9] In contrast, the Photo domain,
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where accuracies are already close to 97%, shows only marginal gains of around 2%,
as there is little room left for selective prediction to improve performance (see Fig.

The AUC values provide a complementary view by directly assessing the ability of
our second metric variance to discriminate between correct and incorrect predictions.
In Art Painting and Cartoon, AUC values of about 0.82 and 0.78 confirm that
variance is consistently informative (see Tab. [2). For the Sketch domain, AUC
values around 0.64 — 0.74 indicate a moderate discriminative ability. The AUC
values for Photo peak at around 0.93, showing that variance is strongly aligned with
prediction correctness in this domain.
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Figure 7: Dataset PACS, Test Domain Cartoon

VLCS For the VLCS dataset (Tab. , the baseline generally attains higher or
comparable accuracies across domains. For Caltech101, the baseline reaches 97.97%,
with single_0 and single_1 producing similar values of 97.6% and 96.51%, respec-
tively. In VOC2007, mode single_1 achieves 77.08%, which is slightly above the
baseline of 76.02%. For LabelMe and SUNO0Y, however, the TTA modes remain
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Figure 9: Dataset PACS, Test Domain Sketch

below the baseline: the best performing configurations reach 63.79% and 70.28%,
while the baseline achieves 64.91% and 72.37%, respectively. The more detailed per-
domain results (see Tab. in the appendix) provide further insight into these
patterns. While certain modes approach or slightly exceed the baseline in individual
cases, other configurations yield substantially lower values, with accuracies around
35 — 46% in some instances.

The VLCS dataset presents a more heterogeneous picture in the evaluation of
AUAD, Gain and AUC (see Tab. . For Caltech101, AUAD values approach
95%, with small positive gains of around 1.6%. This is also visible in the drop
curve plots (Fig. , where the uncertainty-based curve consistently outperforms
the random baseline, but the gap remains narrow due to the already very high base
accuracy (=~ 97%). The corresponding AUC values between 0.88 and 0.91 underline
that variance is a reliable error signal in this domain. By contrast, LabelMe shows
clear weaknesses. AUAD values are close to 58% and the gains are negative (—3
to —4%). In the drop curves (Fig. [L1)), the uncertainty-based line falls below the
random baseline, illustrating that variance fails to guide selective prediction and
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Table 3: Mean accuracy results in % for the VLCS dataset in comparison to the
Baseline results of a ResNet-50 model trained with MixStyle (Zhou et al., 2021)

Mode Mean accuracy across seeds for Test Domain
Caltech101 LabelMe SUNO09 VOC2007
single_0 976 £0.44 63.28£0.68 70.284+1.23 77.02+0.69
single_1 96.51 £1.04 63.794+0.88 70.13+£0.86 77.08+ 0.86
single_2 90.15+3.86 62.734+2.06 61.24+4.42 70.06+4.47
single_3 55.62+16.6 46.57+0.0 35.14+4.77 39.14+9.85
selective 0_1 95.78 £1.27 63.224+0.98 69.6 £0.77 76.45+0.87
selective_0_2 88.21 £3.97 61.214+2.37 58.94+£4.19 67.76 £4.34
selective_0_3 55.62+16.6 46.57+0.0 35.14+4.77 39.14+9.85
selective_1_2 86.23 £4.67 61.67+2.64 58.0+4.42 66.68 +4.3
selective_1_3 55.624+16.6 46.574+0.0 35.14+4.77 39.14 +9.85
selective 2_3 55.624+16.6 46.57+0.0 35.14+4.77 39.14 +9.85
average 61.48£0.0 46.57+£0.0 38.51+0.0 44.4+0.0

Baseline with MixStyle 97.97 £0.73 64.91 +0.36 72.37 +1.18 76.02 £ 0.49

Table 4: Summary of results per domain and top-3 modes on VLCS. Accuracy,
AUAD, and Gain are reported in % across seeds, AUC is reported in [0,1].

Domain Mode Accuracy AUAD Gain AUC
single 0 97.60 + 0.44  94.74 + 0.18 1.66 £ 0.52  0.912 + 0.032
Caltech101 single.l1  96.51 4+ 1.04  94.67 £+ 0.22 1.59 + 0.47  0.880 &£ 0.029
sel 0_1 95.78 £ 1.27  94.64 + 0.25 1.57 £ 044  0.879 £+ 0.034
single 0  63.28 + 0.68  57.88 £ 0.56  —3.79£ 0.69 0.481 £ 0.009
LabelMe single.1 63.79 + 0.88  58.28 + 0.74  —3.40+ 1.04 0.497 4+ 0.012
sel 0-1 63.22 £ 098  57.90 £ 0.90 —3.77+ 1.20 0.487 £ 0.012
single 0 70.28 +1.23  75.80 + 1.11 7.05 £ 0.23  0.616 £ 0.005
SUNO09 single. 1 70.13 + 0.86  75.80 4+ 0.69 7.05 +£ 0.46  0.620 £+ 0.004
sel 0_1 69.60 = 0.77  75.53 £ 0.58 6.78 £ 0.54  0.612 £+ 0.005
single 0 77.02 + 0.69  79.84 + 1.19 7.60 £ 0.91  0.663 £ 0.023
VOC2007  single.l 77.08 £ 0.86  79.27 £ 1.40 7.03 £ 1.01  0.646 £+ 0.027
sel 0_1 76.45 £ 0.87  78.96 £ 1.23 6.72 + 0.89  0.641 4+ 0.025

sel_0_1 = selective_0_1

can degrade performance. The AUC results mirror this, with values near 0.5, which
is equivalent to random discrimination. SUN09 and VOC2007 show intermediate
behaviour. In SUN09, AUAD values of about 76% and gains of roughly 7% indi-
cate that variance is moderately useful for filtering and is consistent with the clear
separation visible between the uncertainty and random curves in Figure (12 The
AUC values, around 0.61, suggest modest discriminative ability. A similar pattern
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is observed in domain VOC2007 (Fig. , where AUAD values close to 79% and
gains of 7% align with AUC scores = 0.65. Overall, the results highlight a marked
variability across domains.

Accuracy
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Figure 13: Dataset VLCS, Test Domain VOC2007

4.4.2 Statistical Analysis

The statistical analysis reveals differences between the accuracy for TTA modes and
the MixStyle baseline, with notable variation across datasets and domains.

In the regression tables, the intercept represents the estimated baseline accuracy for
the reference condition, which is either the mode average or the MixStyle baseline,
depending on the model. Each coefficient indicates the difference in performance be-
tween a specific TTA mode and this reference, with positive values denoting higher
accuracy and negative values indicating lower accuracy. The associated p values
report whether these differences are statistically significant, while the confidence
intervals provide the estimated range within which the true effect is likely to fail.
Thus, modes with positive coefficients and statistically significant p values can be
interpreted as outperforming the reference, whereas non-significant or negative co-
efficients suggest comparable or inferior performance.

PACS The mixed linear model regression for PACS (see Tab. shows clear
differences in the effectiveness of TTA modes across domains. Several configura-
tions exhibit strongly positive and statistically significant coefficients relative to the
average mode reference. The most effective mode is single_-1 (f = 0.723, p <
0.001, CI [0.686,0.759]), closely followed by selective_0_1 (5 = 0.715, p < 0.001,

CI [0.678,0.752]) and single_0 (5 = 0.699, p < 0.001, CI [0.662,0.736]). Single_2
and selective_0_2 also significant positive coefficients (8 = 0.69 and 0.692, respec-
tively, both p < 0.001), albeit slightly lower. By contrast, single_3 and its associated
selective modes (selective_{0,1,2}_3) return coefficients close to zero (=~ 0.007) with
non-significant p values (p = 0.702), statistically confirming their poor predictive
performance in addition to the observations from the TTA results. These findings
indicate that while several TTA modes provide a significant accuracy advantage in
relation to the augmentation with averaged feature statistics, their effectiveness is
highly mode-dependent.

When directly comparing the three best TTA modes against the MixStyle baseline
(see Tab. [6]), results become more nuanced. The baseline intercept is estimated
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Table 5: Mixed Linear Model Regression Results for PACS (TTA-only: mode effects)

Coef. Std.Err. z P>|z] [0.025 0.975]

Intercept [T.average] 0.134 0.055 2450  0.014 0.027 0.241
C(mode)[T.selective 0_1] 0.715 0.019 38.083 0.000 0.678 0.752

)l ]

C(mode)[T.selective.0_2] 0.694  0.019 36.972  0.000 0.657 0.731
C(mode)[T.selective_0-3] 0.007 0.019 0.382  0.702 -0.030 0.044
C(mode)[T.selective_1 2] 0.692 0.019 36.867  0.000 0.655 0.729
C(mode)[T.selective 1.3 0.007  0.019 0382  0.702 -0.030 0.044
C(mode)[T .selective_2_3] 0.007 0.019  0.382 0.702 -0.030 0.044
C(mode)[T.single_0] 0.699 0.019 37.234 0.000 0.662 0.736
C(mode)[T single_1] 0.723 0019 38.508  0.000 0.686 0.759
C(mode)|T single_2] 0.600  0.019 36.758  0.000 0.653 0.727

C(mode)[T.single_3] 0.007 0.019 0.382 0.702 -0.030 0.044
seed Var 0.034

Model: MixedLM  Dependent Variable: accuracy
No. Observations: 132  Method: ML
No. Groups: 4 Scale: 0.0021
Min. group size: 33 Max. group size: 33 Mean group size: 33.0

Log-Likelihood: 188.1686  Converged: Yes

at 0.835 (CI [0.786,0.883]), which serves as the reference performance level. Here,
only mode single_1 achieves a statistically significant improvement (5 = 0.022, p =
0.002, CI [0.008,0.036]), confirming its superiority over the baseline across seeds.
The other modes single_0 (f = —0.002, p = 0.781, CI [—0.016,0.012]) and selec-
tive_0_1 (f = 0.014, p = 0.047, CI [0.000,0.028]) are statistically indistinguishable
from the baseline. The fixed effects estimates (see Tab. [19 and [20]in the appendix)
confirm these patterns by providing narrow confidence intervals for the strong modes,
which indicate that their effect sizes are estimated with high precision. This rein-
forces the conclusion that the observed improvements are both statistically reliable
and robust across seeds.

Domain-specific improvements over the baseline (see Tab. in the appendix) pro-
vide further insights. In Art Painting, both single_0 and single_1 show small positive
mean differences (mean A = 0.0145 and A = 0.0209, respectively), though their
confidence intervals cross zero, indicating non-significance. For domain Cartoon,
mode single_1 again records a positive mean improvement (mean A = 0.0187),
with selective_0_2 and selective_1_2 showing similar trends, though none are sta-
tistically conclusive. In the Photo domain, nearly all TTA modes underperform
relative to the baseline, with selective_1_2 producing a significant negative effect
(mean A = —0.0202, CI [-0.0362,—0.0042]). The most notable improvements
occur in the Sketch domain, where single_1 shows a highly robust positive effect
(mean A = 0.0495, CI [0.0428,0.0562]), representing the clearest and most consis-
tent domain-specific gain across the dataset with the suggested approach.
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Table 6: Mixed Linear Model Regression Results for PACS (MixStyle (base) vs.
best TTA modes)

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept (base) 0.835 0.025 33.678 0.000 0.786 0.883
single_0 -0.002 0.007 -0.278 0.781 -0.016 0.012
single_1 0.022 0.007  3.119 0.002 0.008 0.036
selective_0_1 0.014 0.007  1.986 0.047 0.000 0.028
seed Var 0.007 0.196

Model: MixedLM  Dependent Variable: accuracy
No. Observations: 48  Method: ML
No. Groups: 4 Scale: 0.0003
Min. group size: 12 Max. group size: 12  Mean group size: 12.0
Log-Likelihood: 99.4076  Converged: Yes
single_k = C(mode, Treatment(reference="base’))[T.single K]

selective_i_j = C(mode, Treatment(reference="base’))[T .selective_i_j]

Thus, the statistical analysis for PACS indicates that while several TTA modes out-
perform chance levels, single_1 is the only configuration that provides a consistent,
statistically significant improvement over the MixStyle baseline, with its advantage
being most pronounced in the Sketch domain.

VLCS The regression results for the VLCS dataset present a markedly different
picture. In the TTA-only analysis (see Tab. , several modes demonstrate signifi-
cant positive coefficients relative to the average intercept (0.477, CI [0.417,0.538]).
Specifically, single_0 (5 = 0.293, p < 0.001), single_1 (5 = 0.291, p < 0.001) and
single_2 (5 = 0.233, p < 0.001) all show strong positive effects. Selective modes such
as selective_0_1 (f = 0.284, p < 0.001) and selective_1_2 (8 = 0.204, p < 0.001) also
achieve positive effects in comparison to the intercept. However, modes involving
single_3 (selective_{0,1,2}_3) yield small negative coefficients (—0.036) that are only
marginally significant (p = 0.057). When the best three modes are directly compared
against the MixStyle baseline (see Tab. , the positive impression shifts. The base-
line intercept is estimated at 0.777 (CI [0.708,0.845]), higher than in PACS, and sev-
eral TTA modes fall short of this level. The best modes single_0 (5 = —0.006, p =
0.031, CI [—0.012,0.001]), single_1 ( = —0.008, p = 0.006, CI [-0.013,0.008]) and
selective_0_1 (f = —0.014, p = 0.000, CI [—0.020,0.008]) are not significantly dif-
ferent from the baseline, which indicates comparable but not superior performance.
The fixed effects estimates (see Tab. and [23| in the appendix) reinforce these
findings, with consistently negative coefficients and narrow confidence intervals for
mode single_2 and the selective combinations.

The domain-by-domain analysis (see Tab. in the appendix) highlights further
variability. In Caltech101, nearly all modes underperform relative to the MixStyle
baseline, with single_2 (mean A = —0.0757, CI [—0.1496, —0.0018]) and selective_1_2
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Table 7: Mixed Linear Model Regression Results for VLCS (TTA-only: mode effects)

Coef. Std.Err. z P>z [0.025 0.975]
Intercept [average]  0.477 0.031 15.456  0.000 0.417 0.538
sel 0_1 0.284 0.020 14.520 0.000 0.245 0.322
sel 02 0.213 0.019 11.167 0.000 0.176  0.250
sel_0_3 -0.036 0.019 -1.902 0.057 -0.074 0.001
sel 1.2 0.204 0.019 10.703 0.000 0.167 0.241
sel 1.3 -0.036 0.019 -1.902 0.057 -0.074 0.001
sel 2.3 -0.036 0.019 -1.902 0.057 -0.074 0.001
single_0 0.293 0.019 15.369 0.000 0.256 0.330
single_1 0.291 0.019 15.281 0.000 0.254 0.329
single_2 0.233 0.019 12.217 0.000 0.196 0.270
single_3 -0.036 0.019 -1.902 0.057 -0.074 0.001
seed Var 0.009 0.087

Model: MixedLM  Dependent Variable: accuracy
No. Observations: 131  Method: ML
No. Groups: 4 Scale: 0.0022
Min. group size: 32 Max. group size: 33 Mean group size: 32.8

Log-Likelihood: 192.3458  Converged: Yes

single k = C(mode)[T.single_k] sel.i_j = C(mode)[T.selective_i_j]

Table 8: Mixed Linear Model Regression Results for VLCS (MixStyle (base) vs.
TTA modes)

Coef. Std.Err. z P>|z] [0.025 0.975]
Intercept [base]  0.777 0.036 21.689 0.000 0.706 0.847
single_0 -0.006 0.003 -2.16  0.031 -0.012 0.001
single_1 -0.008 0.003 -2.752 0.006 -0.013 0.008
sel 0_1 -0.014 0.003 -4.9 0.0 -0.02 0.008
seed Var 0.015 1.035

Model: MixedLM  Dependent Variable: accuracy
No. Observations: 48  Method: ML
No. Groups: 4 Scale: 0.0000
Min. group size: 12 Max. group size: 12 Mean group size: 12.0

Log-Likelihood: 127.3225 Converged: Yes
single_k = C(mode, Treatment(reference="base’))[T.single k|

selij = C(mode, Treatment(reference="base’))[T.selective_i_j]

(mean A = —0.1149, CI [-0.2085,—0.0212]) showing significant declines. In La-
belMe, even the stronger modes exhibit negative mean differences, such as single_1
(mean A = —0.0108, CI [—0.0145, —0.0072]), indicating that the baseline remains
superior. SUN09 displays the sharpest contrast, with large and significant declines
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for mode single_2 (mean A = —0.1091, CI [—0.1893, —0.029]) and the selective com-
binations (up to —0.1411). Only in domain VOC2007 do the modes single_0 and
single_1 show small positive differences (0.0108 and 0.0113), though their confidence
intervals include zero, which renders them statistically insignificant.

Overall, the VLCS analysis reveals that the MixStyle baseline consistently outper-
forms most TTA configurations of this approach, with only two modes approaching
comparable levels of performance in isolated domains.
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5 Discussion

5.1 Experimental Findings

The results of this study hint at the strong dependence of TTA’s effectiveness on
both the dataset and the chosen mode. While PACS demonstrates consistent im-
provements under certain TTA configurations, VLCS largely favors the MixStyle
baseline. We first analyze PACS, then VLCS, and finally synthesize results across
datasets and relate them to prior work.

PACS The PACS experiments show in which cases domain-aware TTA can help
and when it harms. Injecting augmentations at the shallow or intermediary layers
is beneficial, while deeper interventions are detrimental.

This benchmark offers a revealing test case for domain-aware TTA. The descriptive
results show that the effectiveness of the method depends strongly on which layers
are targeted for adaptation. Configurations that intervene in shallow and mid-
level layers, especially single_1, consistently achieve the best results. This mode
improves over the MixStyle baseline in three out of four target domains, with mean
accuracies of 87.47% in Art Painting, 79.57% in Cartoon, and 78.8% in Sketch,
compared to 85.75%, 77.7% and 73.84% for the baseline. In the Photo domain,
where the baseline already reaches 96.99%, single_1 remains almost identical at
96.86%. The single_0 configuration also performs well, slightly outperforming the
baseline in Photo (97.11%) while remaining competitive in the other domains. In
contrast, adapting at the deepest block, as in single_3, or stacking it with other
layers like in the selective variants, produces collapsing accuracies to the low teens
(~ 12 — 16%) across all domains. The selective modes reflect the same depth-
dependent trend. Selective_0_1, which combines two shallow blocks, closely mirrors
the strong performance of single_1, while combinations that include the deepest block
replicate the breakdown of single_3. Finally, the average mode, which injects pooled
statistics across all domains, performs worst of all. Across the dataset, it reduces
accuracies to 9—16%, well below both baseline and any targeted configuration.

Uncertainty analysis provides a complementary perspective. Using variance across
style augmentations as an uncertainty measure reveals a consistent ability to sepa-
rate easy from difficult cases. Accuracy-drop curves demonstrate high AUAD val-
ues in Art Painting, Cartoon and Photo (around 90—95%) and somewhat lower
but still useful values in Sketch (=~ 83%). Gains over random removal quantify
this advantage: improvements of 9—13% in Art Painting, Cartoon and Sketch show
that discarding high-variance samples leads to substantial boots in retained accu-
racy. While Photo achieves only = 2% gain, this reflects the fact that its baseline
is already near ceiling. AUC values reinforce this interpretation. In Art Painting
and Cartoon, variance is a strong predictor of error (=~ 0.82 and 0.78). In Sketch,
the values are lower (=~ 0.64 — 0.74), indicating moderate but not perfect discrim-
ination. In Photo, variance is especially reliable, with AUC = 0.93, which shows
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that even small fluctuations in confidence correlate with misclassifications. Impor-
tantly, these uncertainty patterns align with the most effective adaptation modes.
The same shallow/mid-level configurations that achieve the highest accuracies also
yield the clearest separation between correct and incorrect predictions, which makes
per-sample variance not only a diagnostic signal but also a useful tool for selective
prediction for this dataset.

Statistical analyses confirm and sharpen these observations. When using average
as the regression reference, all shallow and mid-layer modes achieve large, positive
and highly significant coefficients (e.g., 5 & 0.723 for single_1, p < 0.001), while the
deep-layer modes remain statistically indistinguishable from zero, which formally
establishes the depth effect seen in the descriptive results. When compared directly
to the MixStyle baseline, results are more conservative. Single_.1 emerges as the
only configuration with a statistically robust improvement (5 ~ 0.022,p ~ 0.002).
Single_0 and selective_0_1 are statistically comparable to the baseline, showing that
while they may match its performance, they do not significantly exceed it. Domain-
specific contrasts localize these effects even further. Sketch shows the clearest and
most reliable benefit, with single_1 achieving a mean improvement of &~ +0.05 over
the baseline and narrow confidence intervals that exclude zero. In Cartoon and
Art Painting, the gains are smaller and not always statistically conclusive, while
in Photo most TTA modes remain neutral or slightly negative, consistent with its
already high baseline accuracy. The domain-level contrasts (see Tab. in the
appendix) further clarify where these effects originate. In Sketch, single_1 produces
a highly reliable mean improvement of roughly 40.05 over the baseline, with con-
fidence intervals that are both narrow and strictly positive. This underscores that
gains in this domain are consistent across seeds and represents the clearest case
where shallow-layer adaptation provides tangible benefits. In Cartoon, positive dif-
ferences are also observed, especially for single_! (mean A ~ 0.019) and certain
selective variants, though here the confidence intervals overlap zero, which renders
the improvements suggestive but not conclusive. For Art Painting, the effects are
even smaller. Shallow adaptations trend slightly positive, but none reach statistical
significance, which aligns with the descriptive finding of only moderate performance
shifts. By contrast, Photo shows no meaningful improvements; most modes remain
neutral or slightly negative relative to the baseline, consistent with the domain’s
already high baseline accuracy that leaves little headroom for further gains. Taken
together, the regression results confirm that while the advantage of shallow test-
time adaptation is robust at the global level, it is concentrated almost entirely in
the Sketch domain, with Cartoon and Art Painting showing weaker and less stable
improvements, and Photo remaining essentially unaffected. This domain-specific
breakdown highlights that the utility of domain-aware adaptation is not evenly dis-
tributed, but most pronounced where the stylistic mismatch with training data is
largest.

VLCS Below, we discuss the VLCS findings. Overall, the descriptive picture is
clear: our approach does not surpass the MixStyle baseline. The baseline already
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achieves strong accuracies, such as 97.97% on Caltech101 and 76.02% on VOC2007,
with moderate values like 64.91% on LabelMe and 72.37% on SUNO9. Shallow or
mid-layer TTA modes sometimes come close, but rarely exceed these levels. For
example, single_0 and single_1 yield 97.6% and 96.51% on Caltech101, which is
essentially at parity but not exceeding the baseline. In LabelMe, the best modes
reach 63.79% versus 64.91% for the baseline; and in SUN09, they hover around
70%, still below 72.37%. The one domain where our domain-aware TTA approach
edges ahead is VOC2007, where mode single_1 obtains 77.08% and single_0 77.02%,
both nominally above the baseline of 76.02%. However, this edge is small and, as
we show below, fragile when subjected to statistical controls. The selective modes
largely mirror the shallow single-layer variants. Selective_0_1 reaches competitive
but not superior accuracies (e.g. 95.8% on Caltech101 vs. 97.9% baseline; 76.5% on
VOC2007 vs. 76.0%), while combinations involving the deepest block collapse to
poor performance (~ 35 — 46%). The average mode performs the worst across do-
mains. While single and some selective modes hover close to the baseline, averaging
style statistics collapses accuracy to mid-40s or lower (e.g., 61.5% on Caltech101,
46.6% on LabelMe, 38.5% on SUNO9, 44.4% on VOC2007). This shows again that
blending domain styles washes out discriminative structure instead of bridging shifts.
These depth-dependent structures follow the findings on the PACS dataset.

Uncertainty and selective prediction provide a complementary lens to these results.
On Caltech101, the AUC between variance and error lies high (= 0.88 — 0.91), and
AUAD is = 94.7% with small positive gains of about 1.6%. This pattern of strong
discrimination with only marginal selective-prediction improvement is expected near
a performance ceiling, such that a good uncertainty signal has limited headroom to
improve retained accuracy after abstention. The results for domain LabelMe sit on
the opposite extreme. AUAD is low (~ 58%) and the gains are slightly negative
(—3% to —4%). The AUC hovers around ~ 0.48 — 0.5 which equals random chance.
Here, the per-sample variance fails to separate hard from easy examples better than
random. The fluctuations induced by our style augmentations do not align with
the true sources of error in this domain. SUN09 and VOC2007 occupy the middle
ground. AUADs are ~ 75—80% with gains around 7%, with AUC results moderately
above chance (~ 0.61 — 0.66). In these two domains, variance is useful for triaging
predictions, yet it still falls short of being as reliable as on PACS. The confidence
instability we measure on VLCS is thus only partially linked to misclassification
tasks.

Statistical modeling confirms and sharpens these patterns. In the TTA-only analysis
that uses mode average as the reference, shallow and mid-layer modes show positive
fixed effects. Coeflicients around +0.29 for single_0 and single_1 as well as 40.23
for single_2 with selective_0_1 being similarly positive (4+0.28). In contrast, any
mode that touches the deepest block like single_3 and its selective variations trends
negative (= —0.036) and is at best marginal. This ranking is consistent with the
findings for PACS.

When compared to the MixStyle baseline, the coefficients of the best TTA modes
become small and negative: —0.006 for single_0 (p ~ 0.03), —0.008 for single_1
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(p ~ 0.006) and —0.014 for selective_0_1 (p < 0.001). Thus, once domain variability
is controlled, the apparent descriptive ties or tiny wins largely diminish; across
VLCS, the baseline is at least as good or better. Domain-level contrasts reinforce
this point. In Caltech101, several TTA modes suffer significant drops (e.g., single_2
at —0.0757; selective_1_2 at —0.1149). In LabelMe, even nominally strong modes
show small but consistent negatives (e.g., single_1 at —0.0108). SUNO09 reveals
the sharpest declines for deeper or selective modes (single_2 at —0.1091; selective
combinations up to —0.1411). Only in VOC2007 do single_0 and single_1 show
positive deltas (~ +0.011), and even there the confidence intervals include zero,
which indicates no statistical conclusive gains.

Interpretation and Implications Addressing our first research objective, our
findings demonstrate that the choice of feature extraction strategy has a decisive
impact on DG performance within a TTA pipeline. In line with our hypothesis
that earlier residual blocks capture style information more effectively than deeper
blocks, adaptations applied at shallow and mid-level layers like single_0 and sin-
gle_1 improved or at least matched baseline accuracy, whereas interventions at the
deepest block (single_3) consistently degraded performance. This pattern was most
pronounced on PACS. Where the stylistic shifts dominated, the early-layer strate-
gies delivered stable gains, particularly in the Sketch domain. On VLCS, shallow
strategies achieved parity at best with the MixStyle baseline, again with later-layer
interventions proving harmful. These outcomes confirm that the extraction layer is
a critical determinant of TTA effectiveness, with shallow layers offering the strongest
benefits under stylistic shifts, and they further support our hypothesis that domains
which are strong during training tend to remain strong under TTA, while weaker
domains continue to lag behind, e.g. with both the Photo and Caltech101 domains
being both accurate in training and during inference.

The depth-dependent behaviors observed in PACS and VLCS can be explained
through the hierarchical organization of CNNs such as ResNet-50. Earlier layers
predominantly capture low-level statistics such as edges, textures and color distri-
butions, while progressively deeper layers encode higher-level semantic content like
object structures (Yosinski et al., 2014} Zeiler and Fergus, 2014)). Prior work in tex-
ture synthesis and style transfer has shown that style information is concentrated
in shallow to mid layers of CNNs, where correlations of feature maps effectively re-
produce textures and stylistic attributes (Gatys et al. 2015)). More recent analyses
confirmed that ImageNet-trained CNNs rely heavily on local texture clues for clas-
sification, which underscores the role of shallow/mid layers as the primary carriers
of style features (Geirhos et al., 2018).

Within this framework, the results of both datasets align with these expectations:
the strong performance of modes single_0 and single_1 can be attributed to their
intervention at precisely those stages where style is most strongly represented. In-
jecting domain statistics here realigns superficial attributes such as texture or brush-
stroke patterns, which constitute the dominant axes of variation across PACS do-
mains. Because these layers are early enough that semantic evidence is not yet
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tightly bound to the activations, manipulating them does not destabilize category-
level information. By contrast, deeper interventions such as single_3 corrupt rep-
resentations that already encode semantic distinctions by overwriting class-specific
abstractions with mismatched style priors and thereby collapsing accuracy. Selective
shallow combinations such as selective_(_1 remain effective because they reinforce
alignment at style-sensitive layers without disturbing semantics, though their bene-
fits diminish once statistics have been shifted toward a plausible source style. The
failure of the average mode is likewise consistent: pooling statistics across hetero-
geneous domains produces incoherent distributions that match no real style, which
leads to representational collapse (Chang et al., 2019)).

Addressing our second research objective, our results again show that the most
effective methods are those that intervene at shallow or mid-levels without dis-
turbing deeper semantic features. Specifically, single_0, single_1 and selective_0_1
consistently preserved class-discriminative information while improving or at least
matching the baseline accuracy. Any mode involving the deeper layers led to severe
performance breakdowns, confirming our hypothesis that interventions in later lay-
ers overwrite semantic representations and erase class information. On PACS, the
shallow and mid-level strategies yielded clear improvements, especially in domains
with strong stylistic mismatch, while mode average collapsed accuracy by blending
incompatible style cues. On VLCS, the shame shallow strategies achieved parity but
rarely surpassed the MixStyle baseline. These outcomes also support our hypothesis
that augmenting 'weaker’ domains with statistics from ’stronger’ ones can provide
measurable gains, as observed in PACS (Sketch improved most when aligned with
statistics from Cartoon or Photo), though this effect was less pronounced in VLCS.

The contrasting outcomes on PACS and VLCS regarding the (mis-)success of our
approach can be understood through the representational hierarchy of CNNs and
the nature of the domain shifts in each benchmark. In PACS, the domain shifts are
primarily stylistic. Images differ in textures, edges and color distributions across the
four modalities that are being handled as domains. These variations align closely
with what early and mid layers of a ResNet-50 represent (Yosinski et al., 2014;
Zeiler and Fergus, 2014)). VLCS represents a more content-driven domain shift.
Due to its nature, the domains differ by object scale, background clutter, contextual
co-occurrence and even annotation conventions. Such variation challenges deeper
semantic representations rather than shallow style encodings. Consequently, the
feature statstics injection of our approach appears to be poorly aligned with the
sources of error for this dataset.

Beyond which layer to adopt, the direction of augmentation matters. For a fixed test
domain, there seems to be a difference in which source domains statistics provide the
best alignment for performance. On PACS, the answer is not always the 'nearest’
domain and it seems to vary by target domain (see Tab. in the appendix).
For Art Painting, shifting towards Cartoon is best under the top mode single_1,
where the mean accuracy reaches 88.14%, which beats augmenting toward both
Photo (86.87%) and Sketch (87.4%). For Cartoon, the strongest configuration cou-
ples a shallow or mid intervention with a complementary source, where augmenting
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with statistics from the Sketch domain yields the highest accuracy (81.64%). For
the Photo domain, whose accuracy is already close to the ceiling, the best per-
forming source domain is Art Painting (97.55% in single_0), which appears to be
logical, given their stylistic similarities. However, shifting Art Painting towards
Photo doesn’t work as well, as seen above. Augmenting images of the Photo do-
main with statistics from worse performing domains would intuitively not work for
a better performance, which seems to be confirmed here. For Sketch, the top mode
single_1 dominates regardless of source, but the top direction is the Cartoon domain
(79.18%), closely followed by Photo (79.02%). Collectively, these patterns indicate
that augmenting toward the nearest domain is not consistently optimal. Instead,
the best source often provides a sufficiently large and stylistically informative shift.
This supports the view that what matters is the magnitude and relevance of the
style realignment rather than proximity per se.

On VLCS, directionality is clearer but yields smaller gains and seldom surpasses
the MixStyle baseline even when split up for the target domains (see Tab. [15-18§]
in the appendix). For Caltech101, the strongest direction is LabelMe under mode
single_0 (97.74%) which still trails the baseline. Augmenting LabelMe test images
towards VOC2007 appears to be the best choice with mode single_1 (64.72%). For
SUNOY, the best configuration is augmenting toward VOC2007 in single_0 (70.7%).
The one case with a nominal edge over baseline is VOC2007, where augmenting
towards the strongest domain Caltech101 on single_1 reaches 77.7% accuracy. As in
PACS, the best directions appear to be often complementary rather than intuitively
‘nearest’. But in this case, the content-centric nature of the dataset limits how
much a style-only realignment can help. Taken together, the directional analysis
supports our broader claim: effective augmentation directions are those that induce
a sufficiently informative shift in shallow or mid-level style statistics. However, when
the underlying domain shift is semantic, as in VLCS, even the best performing
domain rarely closes the gap to the baseline.

A complementary view comes when visualizing the raw datasets with t-SNE (see
Fig. [ and [5). In PACS, the domains are mostly well separated, with three distinct
clusters forming. Sketch shows the most compact group, while Art Painting and
Photo are overlapping. This clear separation reflects the strong stylistic differences
between the domains and explains why our approach proves as an effective layer for
style alignment. By contrast, VLCS shows extensive overlap across the domains,
with only Caltech101 forming a few sub-clusters. This overlap highlights that the
main source of variation is not stylistic texture but semantic and contextual con-
tent, which our approach cannot easily bridge. This visualization reinforces the
interpretation of style-driven TTA needing a clear stylistic domain separation.

A further factor that helps explain the contrast between PACS and VLCS is the
intrinsic structure of the datasets themselves. Within VLCS, performance varies
strongly across domains, with Caltech101 consistently yielding higher accuracies
than LabelMe, SUN0O9 or VOC2007. A plausible explanation lies in the photographic
composition of the images. Caltech101 typically presents objects in a centered, un-
cluttered manner, which reduces background interference and aligns well with the
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spatial biases of CNN feature extractors. By contrast, the other domains often con-
tain off-center objects, richer contextual co-occurrence, and distracting background
material, introducing semantic variability that shallow style-based adaptation can-
not resolve. This points to a more general limitation: Augmentations based on
feature statistics, while effective at bridging stylistic shifts in PACS, are insufficient
to capture the full extent of natural variation in VLCS, where errors stem more
from structural, contextual, or annotation differences than from style alone. In
this sense, the dataset characteristics themselves delimit the conditions under which
TTA provides meaningful benefits.

Interpreting the uncertainty results reveals complementary but dataset-specific be-
haviors. By design, the method probes each test input under several plausible source
styles. Samples whose predictions are stable across stylizations are likely to be both
stylistically well-aligned and semantically unambiguous, while those that fluctuate
tend to depend on style-sensitive features or lie near decision boundaries. Thus, per-
sample variance acts as a functional estimate of sensitivity to stylistic perturbations,
a form of epistemic uncertainty tied to the model’s texture bias.

In PACS, this metric shows the strongest results in Photo (high AUC, small AUAD
gains), a regime with few but well-identified hard cases, whereas in Sketch, values are
noisier but still useful for ranking. Abstention thresholds should therefore be tuned
per domain: conservative in Sketch to capture brittle cases, and tighter in Photo
to catch rare but clear outliers. Importantly, these benefits are realized on top of
MixStyle training (Zhou et al., 2021)), which already improves style robustness. Our
test-time method improves further, especially in shallow/mid-layer modes (single_1,
selective_0_1), showing that it is complementary rather than redundant. MixStyle
broadens the basin of attraction through average-case augmentation, while test-time
alignment snaps inputs toward discrete, mastered style modes.

The findings on VLCS present a more nuanced picture. Because all four domains
(Caltech101, LabelMe, SUN09, VOC2007) are photographic and differ more in scene
layout, context, and annotation than in texture, variance reflects scene and label-
context shifts rather than style. It remains highly predictive in Caltech101 (high
AUC, small gains), moderately useful in SUN09 and VOC2007 (mid AUC, mid
gains), and non-informative in LabelMe (AUC = 0.5, negative gains). Relative
to PACS, complementarity with MixStyle is weaker: MixStyle’s average-case ro-
bustness already covers most residual variability in VLCS, so snapping test inputs
toward stored source styles rarely helps and can even hurt when the dominant shift
is semantic rather than textural.

Addressing our third research objective, we find a clear relationship between predic-
tive accuracy and our uncertainty measure, per-sample variance, across extraction
strategies. Modes that improved accuracy, such as single_0, single_1 and selec-
tive_0_1, also produced lower variance and stronger discriminative power for error
detection, whereas modes that harmed accuracy (notably those involving deep-
layer adaptation) generated unstable and less informative uncertainty estimates.
On PACS, this coupling was especially strong with the best modes yielding steep
accuracy-drop curves and high AUC values, showing that higher accuracy coincided
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with more reliable uncertainty signals. On VLCS, the correlation was weaker but
still present with shallow strategies showing moderate to high AUCs. The outlier in
LabelMe could be ascribed to domain-specific properties.

While these dataset-specific patterns highlight when variance succeeds or fails as a
predictor, it is also important to situate our approach in the broader landscape of
uncertainty estimation. The metric employed in this approach, per-sample variance
across style augmentations, differs conceptually from more common measures such
as entropy or confidence scores. Because it is structurally tied to the TTA mech-
anism itself, it provides a particularly direct view on how predictions respond to
plausible domain shifts. Our approach injects different source domain style statis-
tics into each test sample’s features, which yields a set of heterogeneous outputs
that reflect how sensitive the model’s classification is to stylistic shifts. If the model
is truly confident and invariant to style, these augmented predictions will agree by
showing low variance values, whereas high variance indicates the prediction flips
under the domain shifts, which is a clear sign of uncertainty. The variance thus acts
as a form of aleatoric uncertainty measurement by capturing the output variabil-
ity due to input perturbations (Wang et al. 2019). One advantage of our method
is that it is a data-centric ensemble at inference because we combine predictions
from transformed versions of the same sample rather than from multiple models
(Conde et al, [2024)). This avoids the need to train an ensemble of networks while
still reaping the benefits of ensemble uncertainty. Compared to model-centric ap-
proaches like Monte Carlo dropout, where dropout is kept active during inference
and multiple forward passes are used to approximate the posterior predictive distri-
bution (Gal and Ghahramani, 2016), our variance metric probes the data sensitivity
of the model by checking consistency across input transformations. This enables
our per-sample variance to complement traditional confidence measures by focusing
on domain-related uncertainty. Whereas a single forward pass softmax score may
be overconfident and mislead on OOD inputs, the variance across style augmented
predictions provides an external consistency check to reveal when a high probability
prediction may be fragile.

The per-sample variance proved to be a reliable indicator of prediction difficulty in
our project. For instance, on the PACS benchmark we found that variance-based
uncertainty yielded high area under ROC values for error detection (AUC = 0.82
in the Art Painting domain, and up to ~ 0.93 in Photo), far above random chance
(0.5). This suggests that the test examples whose predictions fluctuated the most
across style augmentations where the ones likely to be misclassified. Exploiting this,
we ranked test samples by their variance and removed the most uncertain fraction,
which led to substantial accuracy boosts on the remaining data (e.g., a 9 — 13%
increase in accuracy in domains Cartoon and Sketch after filtering out the top 20%
most uncertain samples), whereas removing the same number of samples at ran-
dom yielded minimal improvement (see Fig. |§] These plots underline that our
variance metric is capturing meaningful signals. If discarding a small percentage
of high-variance predictions yields a much larger gain in reliability than a random
removal, this indicates that the metric is pinpointing the difficult cases. Notably,
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this aligns with observations in prior work that TTA-based uncertainty estimates
can reduce overconfident errors and improve calibration compared to single-pass or
dropout-based methods (Wang et al. |2019)). Our use of style-focused TTA provides
a targeted form of this effect by focusing on domain-shift-induced uncertainty. It dif-
fers from generic uncertainty metrics like softmax entropy or maximum probability
by being sensitive to stylistic perturbations, which makes it especially effective on
datasets such as PACS where inter-domain differences are largely texture and style
based. Even on the more content-driven VLCS dataset, the variance offered moder-
ate utility by achieving an average AUC around 0.6 —0.7 in domains like SUN09 and
VOC2007. Incorporating per-sample variance as an uncertainty measure was highly
valuable for this project by providing deeper insight into our model’s robustness.

Several alternative explanations may account for the outcomes reported above. Nor-
malization interactions remain a potential confound: injecting foreign statistics into
deeper blocks can mis-scale activations when BatchNorm moments mismatch per-
sample distributions, especially in scene-heavy VLCS images, though this issue could
be mitigated by recomputing normalization in strict evaluation mode or by adopt-
ing a Normalization strategy like GroupNorm or InstanceNorm. Another factor is
source-statistic representativeness, since the style bank reflects variable intra-domain
diversity. Statistics from ’safer’ domains such as Caltech101 or Photo may cause less
harm, which aligns with their relatively strong AUC values, and an explicit analysis
of domain balance and within-domain variability (as emphasized in style-balancing
work from |Park et al.| (2023))) would help contextualize these effects. Architecture
specificity also poses a limitation, as the optimal depth index identified for ResNet-50
(single_1) may not transfer cleanly to other backbones such as ConvNeXt or ViTs;
while shallow and mid-level adaptation is likely to generalize, the exact layer choice
may differ. In addition, result variability should not be overlooked: Despite averag-
ing over seeds, some domains such as Sketch and LabelMe exhibit wide spreads in
AUC and AUAD, particularly where variance approaches randomness. This means
that although ranking across modes is consistent, statistical significance depends on
the assumptions of the mixed-effects analysis.

The broader context of our findings highlights that TTA is not a one-size-fits-all
remedy and its success is highly contingent on the nature of the domain shift and
the model itself. Consistent with prior analyses, simple augmentations may fail to
capture the full spectrum of natural variation in complex shifts (Shanmugam et al.
2020). For instance, our VLCS results underscore observations from Shanmugam
et al.| (2020) that when the distribution shift is more semantic or contextual rather
than stylistic, conventional TTA strategies struggle to improve performance. More-
over, the impact of TTA appears to diminish with increasing model complexity.
Kimura, (2021)) notes that simpler models often reap larger benefits from TTA com-
pared to deeper, more capable networks, which could explain the gains from our
results.

Another important consideration is when and how to apply the style-based adapta-
tion. Our evidence and prior work advocate a selective, domain-aware use of this
feature statistical TTA. If a target domain exhibits clear stylistic deviation as in
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PACS, shallow-layer style alignment yields tangible gains; but if the shift is not
primarily stylistic or is already well-handled by the base model (as in VLCS with
the MixStyle baseline), aggressive test-time changes can be unnecessary or even
detrimental. Recent advances like Park et al.| (2023) offer an alternative perspective
through their style balancing approach. By injecting a few style-transferred samples
during training to cover underrepresented class-domain combinations, they address
domain imbalance before deployment to ensure each source domain has sufficient
examples per class. This pre-training approach incurs no test-time cost, which im-
plies that if domain shifts are anticipated and broad enough, it is possible to handle
them upfront and skip test-time processing altogether for faster inference. The di-
rection of only engaging TTA when the domain shift exceeds a certain threshold,
and otherwise relying on a well-trained, balanced model, represents a promising
strategy for minimizing unnecessary inference-time computation while preserving
accuracy on in-distribution data. The computational efficiency of such methods
is inherently higher during deployment, since they avoid the per-sample overhead
of online adaptation. In scenarios where test-time speed is crucial, this trade-off
between pre-training augmentation and on-the-fly adaptation becomes especially
relevant. In terms of computational efficiency, our approach and that of Park et al.
(2023) make opposite trade-offs. By storing and injecting style statistics at infer-
ence, our method keeps training simple but introduces additional overhead during
deployment, as each test sample requires extra processing for feature manipulation
and uncertainty estimation. By contrast, the approach from Park et al. (2023)) shifts
the complexity into training: a subset of samples is style-shifted before learning to
ensure a more balanced class disposition; then the distance to the nearest domain
is calculated and only when this succeeds a certain threshold, is test-time evalua-
tion executed as a standard forward pass. This means their method achieves lower
latency and higher throughput at deployment, which is advantageous in real-time
or resource-constrained scenarios. Our method offers the flexibility of adapting dy-
namically to unseen domains without requiring prior style balancing, at the cost of
slower inference.

Our methodology itself yields insights about the interaction of training-time DG
and TTA. In our case, the style statistics for adaptation are extracted from a model
trained without using MixStyle (Zhou et al., |2021)) to ensure that each domain’s
features remain distinct and suitable for targeted manipulation. This distinguishes
our approach from the MixStyle baseline, where domain information is intentionally
mixed during training. Whether it would be possible or even advisable to apply
feature statistics TTA on top of a trained MixStyle model remains uncertain. Be-
cause MixStyle explicitly blends domain styles, the resulting representations may
no longer preserve domain-specific feature distributions with the synthetic styles
created during training. Injecting style statistics at test time in such a setting could
reintroduce redundancy or even conflict with the already mixed representations. At
the same time, it is conceivable that carefully designed variants might combine the
broad robustness of MixStyle with the domain-targeted calibration of test-time style
injection by careful analysis to avoid collapsing domain cues. This remains to be
tested in practice.
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Another practical consideration is our choice of using the global hyperparameter
configuration across all folds and target domains for consistency. While this en-
sured fairness in comparison, it might not have been optimal for each domain. By
allowing to train the models with their respective hyperparameter configurations
determined during tuning, we might improve the quality of extracted statistics and
thus the results themselves, albeit at the cost of additional complexity. This uniform
approach could partially explain why some domains, especially those with unique
characteristics like LabelMe, didn’t see improvements. Nevertheless, the consistency
of our hyperparameters makes our findings more directly comparable across domains,
which reinforces the validity of the depth-related trends we observed.

Encouragingly, our findings resonate with and reinforce developments in the litera-
ture. The recent work of |Yamashita and Hotta (2024)) demonstrates that MixStyle-
based contrastive TTA can surpass standard DG baselines to affirm that careful
designed TTA can significantly boost robustness in unseen domains. Likewise, the
layer-wise pattern we observed mirrors the conclusions of Wang et al.| (2022)). Their
results reported the largest accuracy gain when injecting style randomization right
after the first ResNet block, which parallels our findings of the best configurations
(single_0 and single_1 on ResNet-50) for the approach presented in this thesis. Their
approach of adding random noise on top of original feature statistics to diversify
styles provides an interesting comparison: Whereas they added subtle noise to en-
rich style variation, our method takes a more extreme step by completely substi-
tuting feature statistics with those from other domains at inference. This full swap
could be seen as pushing the style randomization to its limit, which in PACS yielded
strong gains but in VLCS proved excessive, which again highlights the importance
of matching the adaptation strategy to the nature of the shift. The success of other
TTA techniques relative to our baseline with MixStyle reinforces the general efficacy
of test-time adaptation for domain shift problems, and it motivates exploring hybrid
methods.

In summary, these reflections emphasize that the benefit of TTA is nuanced. It
works best when the source of domain shift aligns with what the augmentation can
offer like texture differences, and when applied at the right representational level.
Looking forward, incorporating insights such as those from [Shanmugam et al.| (2020)),
Kimura (2021)) and |Park et al.| (2023) could guide more adaptive and efficient TTA
protocols, which might dynamically decide if and how to apply augmentation at
inference, possibly by first detecting the degree of domain shift or relying on uncer-
tainty estimates (as we have explored) to trigger adaptation only when needed. This
might preserve the strong baseline performance on easier or well-aligned domains
and enable the deployment of style-shifting tools on harder, OOD cases to achieve
a balance between robustness and efficiency.
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5.2 Limitations

Our implementation introduces limitations beyond the dataset and design choices
already discussed.

The pipeline is architecturally coupled to the ResNet hierarchy, where statistics and
hooks are defined per block with fixed channel assumptions, so portability to non-
ResNet backbones would require re-engineering. The hook-based test-time transfor-
mation itself is somewhat fragile in deployment by relying on correct internal naming
and careful hook management. This increases maintenance risk and the chance of
silent failures or memory leaks. Our aggregation methods for the style transfer
are heuristic rather than learned; more principled approaches such as learned layer
weighting could yield better calibration and robustness. The mode average is es-
pecially critical. In it, we reconcile layer heterogeneity by interpolating channel
statistics to a common size, which distorts the underlying style signal as shown in
section [l Another limitation is the nontrivial overhead for storage and runtime.
Because we persist per-mode, per-domain statistics in both JSON (for better read-
ability) and tensor formats and perform repeated forward passes, scaling to larger
dataset may reduce the computational efficiency even further.

Another limitation could be the exclusion of one domain from training, so that the
amount of available training data per fold is reduced, which may increase variability.
This effect is partly mitigated by repeating experiments with multiple random seeds
and result aggregation. However, this reduction in training data is an inherent
requirement of the LODO setup, which is essential for evaluating TTA and DG
under truly unseen domains, and thus cannot be avoided without compromising
the validity of the experimental design. This constraint can also be advantageous.
Because our approach relies on extracting style statistics from a single domain,
it is amenable to single-source DG scenarios, where the features from the single
source could be used at test time to align samples more closely with the source
domain distribution, albeit at the cost of losing the uncertainty measure that relies
on diversity across domains.

The domains from our used datasets are imbalanced in difficulty, with some posing
greater challenges than others, which may bias cross-domain comparisons. The
external validity of our findings is restricted to the PACS and VLCS datasets. This
raises the question of how well our approach generalizes to other benchmarks or
real-world settings.

Additionally, in this work, style statistics are defined as the per-domain means
and standard deviations of intermediate feature activations, and were maintained
throughout training using an EMA update rule. This approach was directly moti-
vated by the runnning statistics employed in Batch Normalization layers (loffe and
Szegedy|, [2015]), where EMA provides an efficient method of approximating global
dataset statistics. Instead of recomputing exact statistics from all training samples,
EMA iteratively blends the current batch statistics with previously accumulated
values, thereby yielding a smoothed and memory-efficient approximation of the un-
derlying distribution.
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The primary advantage of EMA is its ability to mitigate stochastic fluctuations
arising from limited batch sizes or sampling variability (loffe, 2017; |Cai et al., [2021)).
By placing greater weight on recent batches, the method adapts to changes in the
learned feature space during training to ensure that the stored statistics remain
aligned with the evolving representation. However, this temporal weighting also
introduces a subtle bias towards later training phases, which may result in earlier
domain characteristics being underrepresented. Whether this bias is beneficial or
detrimental depends on the objective. It may improve stability by reflecting the
most refined feature space, but it could also reduce fidelity to the full distribution
of domain styles.

An alternative strategy is to compute the style statistics post hoc, after training
has converged. In this setting, the final model would be used to extract statistics
from the entire training set to ensure that each sample contributes equally and that
the statistics correspond exactly to the converged feature representation. From a
theoretical standpoint, this yields a more balanced and unbiased estimate of each
domain’s style. Such an approach may be particularly appealing in TTA scenarios,
where accurate cross-domain style information is critical (Wang et al., [2022)).

While our approach provides a smoothed approximation of the domain statistics,
its necessity in our setup is debatable. Since we already perform a dedicated post-
training extraction phase through an additional forward pass with a dummy input,
EMA does not reduce the computational burden of style statistics collection but in-
stead influences how these statistics evolve during training. This raises the question
of whether EMA is truly beneficial in this context, or whether computing post hoc
averages might yield more balanced and representative domain styles. Exploring
this trade-off experimentally would provide valuable insight into the impact of tem-
poral smoothing versus unbiased aggregation on the effectiveness of test-time style
adaptation.
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5.3 Future Work

Looking forward, several promising research directions could further improve and
extend our approach.

One avenue is to incorporate advanced training-time DG techniques such as fea-
ture stylization and supervised contrastive learning. |Jeon et al. (2021) introduced
a framework that stylizes feature statistics to synthesize novel domain features
while preserving class-critical information. They also employed a domain-aware
contrastive loss to ensure domain-invariant yet class-discriminative representations.
Exploring a similar feature stylization strategy or a contrastive objective in our
training pipeline could enhance the model’s robustness to unseen domains. Another
interesting direction is to examine test-time input transformations as an alternative
or complement to model adaptation. The incorporation of test-time style shifting
proposed by |[Park et al.| (2023) into our approach could reveal the relative merits
of input-level against model-level adaptation. This may help build a unified frame-
work that capitalizes on both approaches by using style shifts to quickly handle
larger appearance gaps, while relying on model adaptation for remaining represen-
tation alignment. The comparison of our proposed method against these two very
interesting approaches would offer a comprehensive picture of where each approach
excels and how they might be combined effectively.

We can further make our TTA strategy adaptive to each target domain or even test
batch. As proven by our results, not every domain shift requires the same level of
adaptation. A future extension could be to develop a mode selection mechanism
that uses signals like feature or prediction variance to decide when to deploy full
TTA, light-weight adjustments or no adaptation at all. For example, if the models
predictions in a new domain show high uncertainty or instability, the system could
trigger a stronger adaptation mode, e.g. by updating more network layers or it-
erations. If variance is low, which would indicate well-aligned domains, the model
could skip or reduce adaptation to avoid unnecessary drift. Such an adaptive TTA

controller would make the model more reliable across varying degrees of domain
shift.

Our results indicated that on certain datasets, a simple training-time augmentation
like MixStyle (Zhou et al., 2021)) can already yield robust performance, in some
cases even outperforming TTA. This opens up the possibility of combining MixStyle
with our TTA procedure to harness the strengths of both. Prior works have shown
that integrating MixStyle into a DG pipeline alongside TTA can substantially boost
accuracy. For instance, Park et al.| (2023) demonstrated that their style-shifting
scheme achieves its best results when combined with MixStyle augmentation during
training. Similarly, [Yamashita and Hottal (2024]) found that their MixStyle-based
contrastive approach outperformed both standard TTA and standalone DG methods
on multiple benchmarks. Inspired by these findings, a hybrid method that applies
MixStyle during source training and then performs the TTA might be especially
beneficial for datasets like VLCS, where style diversity is limited. We suggest that
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this hybrid could include the synthetic feature statistics produced by MixStyle as
its own domain and thus could be used to augment during inference.

Finally, an extension to additional benchmarks for verification of our approach would
be beneficial. So far, evaluations have focused on the PACS and VLCS datasets; as
future directions, targeting larger and more diverse DG benchmarks such as Office-
Home or DomainNet could be of interest. Moreover, it would be valuable to assess
performance on data from medical imaging. Medical imaging offers a compelling
testbed. Pronounced domain shifts arise naturally across hospitals, scanner vendors,
protocols and patient populations, which creates style and distribution changes sim-
ilar to the challenges our method seeks to address. At the same time, the stakes
for generalization are high, as clinical models must perform reliably when deployed
outside the training site. Because retraining with local data is often infeasible due
to privacy, regulatory or resource constraints, a TTA strategy that operates without
labeled target data is especially well suited. Additionally, the growing availability
of multi-center medical datasets provides a rich opportunity for LODO evaluations
in this domain.

In summary, the results highlight both the potential and the limitations of TTA. On
datasets with clear domain separation such as PACS, TTA can provide significant
benefits, particularly when configured appropriately. On datasets with less separa-
tion and higher intra-domain variability like VLCS, the MixStyle baseline remains
more robust. The additional analysis of variance and disagreement underscores that
stable adaptation is as important as raw accuracy gains, and future work should
explore approaches that enhance both dimensions simultaneously.
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6 Conclusion

This thesis investigated whether TTA through the injection of training-domain fea-
ture statistics can improve domain generalization in image classification, and if so,
at which layers of a deep network such interventions are most effective. The cen-
tral research questions asked how layer-wise test-time style adaptation influences
robustness under domain shift, and under what conditions it provides measurable
benefits. The evidence gathered across extensive experiments with PACS and VLCS
shows that the answer depends on the depth of intervention and on the nature of the
dataset. Shallow and mid-level feature manipulations yield tangible improvements
when the primary domain shift is stylistic, as in PACS, while deeper interventions
consistently harm performance. On datasets where domain variation is less stylistic
and more semantic, as in VLCS, test-time style injection rarely surpasses a strong
baseline.

The study as carried out by using a LODO cross-validation setup to ensure that each
target domain remained fully unseen during training, which created OOD deploy-
ment. The approach relied on a ResNet-50 backbone, which was chosen for its wide
adoption in DG research and its clear layer hierarchy. This facilitated a systematic
investigation of shallow, mid and deep interventions. Style statistics were extracted
and maintained with EMA updates during training. At test time, forward hooks
replaced the statistics of unseen-domain inputs with those from source domains to
produce augmented predictions.

This methodological pipeline had several strengths. It ensured reproducibility through
fixed seeds, systematic hyperparameter optimization and per-domain evaluation
across folds. It also allowed direct comparison between the training-time augme-
nation baseline MixStyle (Zhou et al., 2021)) and TTA. At the same time, it pre-
sented challenges. The maintenance of per-domain required careful separation to
avoid distortions and combining layer outputs through averaging proved to be detri-
mental. Moreover, the LODO setup inherently reduces the amount of training data
available in each fold, which amplified variability in smaller domains. Despite these
challenges, the design was robust enough to yield patterns in how TTA interacts
with depth and dataset characteristics.

Several contributions emerge from this thesis. First, it establishes depth as a critical
factor in test-time adaptation. While theory and style transfer literature suggested
this, the empirical confirmation across two benchmarks provides evidence for this
claim. The contrast between the strong performance of shallow modes and the col-
lapse of deep ones formalizes what had often been assumed. Second, the approach
highlights how dataset properties interact with adaptation strategies. The stylistic
variation of PACS proved to be effective for shallow adaptation techniques. The
limits of this method were exposed through the more content-driven shifts of VLCS,
which illustrates the non-interchangeability of benchmarks due to the nature of the
shift included in the data. Third, the thesis shows that per-sample variance across
augmented predictions can serve as a useful uncertainty measure. For the PACS
benchmark, using this metric to identify uncertain outputs enabled an effective
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selective prediction strategy, which improved overall accuracy. On VLCS, its use-
fulness varied, but even there it provided moderate signals in some domains. This
demonstrates that TTA can serve a dual role, not only as an adaptation mechanism
but also as a diagnostic tool for uncertainty. Finally, the work clarifies the relation-
ship between training-time and test-time strategies. MixStyle (Zhou et al., |2021)
offers broad robustness by blending styles during training; test-time injection offers
targeted alignment to specific source styles. On PACS, the two can reach similar
outcomes, with the test-time approach improving over the baseline in some cases,
while on VLCS, the baseline often remains superior. This suggests that training-time
diversity and test-time alignment towards known domains address different aspects
of robustness and that their effectiveness appears to depend on the dataset’s type
of shift.

Overall, the findings present a nuanced view of test-time style injection as a strategy
for DG. It is neither a universal solution nor an ineffective tool. Applied at appro-
priate network depths and in contexts where domain shifts are primarily stylistic,
it can yield gains in accuracy and provide informative uncertainty estimates. By
contrast, indiscriminate use, particularly at deeper layers or on datasets character-
ized by semantic variation, tends to undermine performance. These results highlight
that adaptation must respect both the hierarchical organization of CNNs and the
nature of the used datasets. The process also emphasized the value of reflective
experimentation.

Beyond numerical outcomes, the research also illustrates the value of reflective ex-
perimentation. Some of the most instructive insights arose from the unexpected
findings, such as the collapse of the average mode or the limited effectiveness on
VLCS, which helped to delineate the boundaries of the method. These observations
prompt further consideration of how best to combine statistics across layers and how
to determine when test-time adaptation is warranted.

In conclusion, this thesis contributes to a more refined understanding of test-time
adaption for domain generalization. It demonstrates that style-statistics injection
can be an effective tool, but only under specific conditions. By clarifying where
and why it succeeds, the study adds to the broader effort of developing models that
remain robust under distribution shift.
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A Appendix

A.1 Algorithms

In this section, we provide pseudocode for the core methods introduced in our work.
The algorithms illustrate how style statistics are extracted, managed and applied
during test-time augmentation. They form the foundation of our method for domain-
aware TTA to improve robustness on unseen target domains.

e Algorithm [T} Describes how domain-specific mean and variance statistics are
obtained for a given domain as well as retrieved from pre-computed dictionar-
ies. Depending on the chosen mode, statistics can be taken from one layer, a
subset of layers or averaged across layers.

e Algorithm[2; Shows how intermediate feature maps are normalized and restyled
during the forward pass of a network by injecting the domain-specific style
statistics extracted after model training. This mechanism enables controlled
feature adaptation without retraining the model.

e Algorithm [3} Explains the procedure for collecting and persisting style statis-
tics from a trained model. It involves loading checkpoints, attaching hooks
to feature extractors, running dummy forwards and saving extracted statistics
for later use.

e Algorithm [4f Summarizes the initialization and inference process of our TTA
classifier. It prepares the model, loads source-domain style statistics and dur-
ing prediction applies restyling hooks for different target domains to enable
domain-aware feature adaptation at test-time.
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Algorithm 1: Get Style Statistics

Function GET_STYLE _STATS (domain_idz, optional layer_idz):

if layer_idx is given then

return (u_dict[layer_idx][domain_idz], o_dict[layer idz|[domain_idzx])

reshaped to [1,C,1,1] ;

switch mode do

case single do

( « target_layer ;

return p_dict[{][domain_idz|,o_dict[l|][domain_idz] — [1,C,1,1] ;

case selective do

L < target_layer list ;

p < mean({p-dict[l][domain_idz] | { € L}) ;

o < mean({o_dict[{][domain_idz] | { € L}) ;

return p,0 — [1,C,1,1] ;

case average do

fs; s <[]

for ¢ in sorted(all layers) do
ps-append(interpolate_to_size(u-dict[¢][domain_idx], 256)) ;

L os.append(interpolate_to_size(o_dict[l][domain_idzx], 256)) ;

p < mean(stack(us)) ;
o < mean(stack(oy)) ;
return p, o — [1,256,1,1] ;
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Algorithm 2: Domain-Aware Hook Forward Pass

Function DOMAIN_AWARE HOOK_FORWARD Coutput, mode, layer_idx, domain_idx):
if mode = “direct” then
| (u,0) « style_stats.get_style_stats(domain_idx, layer_idx)
else if mode = “file” then
(i, o) + read_from_loaded_stats(layer_idx, modus);
if modus = “average” then
| adjust (u, o) by repeating to match channel count

reshape (u,0) — [1,C, 1,1];

feat_p < mean(output over spatial dims);
feat_o < std(output over spatial dims);
normalized < (output — feat_p)/(feat_o + €);
trans formed <— normalized x o + y;

return transformed

Algorithm 3: Extract Style Statistics from Saved Model

Function EXTRACT _FROM_SAVED MODEL (model_path, domain_name, ModelClass,
model_args):
model <+ load ModelClass with checkpoint(model_path);
model.enable_style_stats(True);
model.eval();
if domain_indices not provided then
L domain_indices < all domains;

foreach extractor € extractors do

foreach domain_idx € domain_indices do
attach_hooks(model, extractor, domain_idx);
model(dummy _input, domain_idx);
remove_hooks();
transfer_stats(model.style_stats, extractor, domain_idx);

save_all_extractors(domain_name);
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Algorithm 4: TTAC]lassifier: Init and Predict

Class TTAClassifier(model, stats_root, test_domain, mode, device,

domain_names, seed):
move model to device

freeze model parameters
set model to eval mode
target_layers < parse(mode)
single_k — [K]
selective_i_j — [i, ]
average — [0, 1, 2, 3]
style_stats <— empty dict
foreach src_domain € domain_names except test_domain do
path < stats_root / seed/ style_stats / test_.domain / mode / pth file
if file exists(path) then
| style_stats[src_.domain| < load(path)

Method PREDICT (test loader):
available_targets <— domain_names \ {test_domain}

foreach (images, labels, _) € test_loader do
baseline_logits <— model(images)

foreach target_domain € available_targets do
handles <— empty list

foreach layer_idz € target_layers do
(u, o) < style_stats[target_domain][layer_idx]
hook <— DomainAwareHook( style_stats = (u, o), layer_idx =
layer_idx, domain_idx = target_domain )
handle «+
register_forward_hook(model.layer(layer_idx).last_block,
hook)
| append handle to handles

logits_target «— model(images)
foreach handle € handles do
| handle.remove()
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A.2 Figures

The following figures present uncertainty—accuracy drop curves for the remaining
style statistic modes across different domains on the PACS and VLCS benchmarks.
Each curve illustrates how predictive uncertainty can be leveraged as a rejection
criterion to improve reliability. Each figure corresponds to one mode of style statistic
usage, with separate subplots for the different target domains. Together, these plots
provide a qualitative assessment of the effectiveness of uncertainty scores under
different strategies.
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A.3 Tables

A.3.1 Hyperparameter Configurations

These tables list the hyperparameter configurations used during model training on
the PACS and VLCS benchmarks. Reported are the optimizer settings, learning
rate schedules, regularization parameters and other key values that governed train-
ing. These configurations provide transparency and reproducibility for the reported

experimental results.

Table 9: Hyperparameter configuration used for model training for the PACS

dataset.

Table 10: Hyperparameter configuration used for model training for the VLCS

dataset.

Hyperparameter Value
Learning Rate 0.0039615723
Optimizer SGD
Scheduler ReduceLROnPlateau
Weight Decay 0.0006719769
Batch Size 8
Momentum 0.2070932
Nesterov False
ReduceLROnPlateau — Factor 0.3742400
ReduceLROnPlateau — Patience 4

Dropout 0.1548816

Hyperparameter Value

Learning Rate 2.23 x107°
Optimizer Adam

Scheduler ReduceLROnPlateau
Weight Decay 0.0001243755
Batch Size 64

b1 0.9212345

(o 0.9409845
Epsilon 5.3319572 x 1077
ReduceLROnPlateau — Factor 0.1976971
ReduceLROnPlateau — Patience 4

Dropout 0.1348674
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A.3.2 Accuracy Scores

These tables report the mean prediction accuracies obtained during TTA when
augmented under different style statistic modes. The results are presented separately
for PACS and VLCS, with each table corresponding to one held-out test domain.
Accuracies are averaged across seeds, with the respective MixStyle (Zhou et al.,
2021) baseline included for comparison. Presented values offer insight into how
domain-aware augmentation strategies affect performance across datasets and target
domains.

PACS

Table 11: Mean Accuracy for Test Domain Art Painting, augmented with Feature
Statistics towards the Trainings Domains, across all modes and seeds

Mode Mean Acc per Mode for Target Domain in %
Cartoon Photo Sketch

single_0 86.88£0.39 86.62+1.04 87.0+ 1.3
single_1 88.14 +£0.51 86.87+0.91 87.4+1.74
single_2 84.2+1.17 8244+ 281 82.54 +3.19
single_3 11.34 +£2.65 17.88+6.99 11.29 £ 2.0
selective_0_1 87.5+0.68  86.72+1.37 86.61 + 2.03
selective_0_2 85.2+1.2 82.54 + 3.27 82.6 £ 2.96
selective_0_3 11.34 £2.65 17.88£6.99 11.29 £ 2.0
selective_1_2 84.78 =0.96  81.53 + 3.52 82.02 +2.19
selective_1_3 11.34 £2.65 17.88£6.99 11.29 £ 2.0
selective_2_3 11.34 +£2.65 17.88£6.99 11.29 £ 2.0
average 16.49 £ 3.5 16.49 £ 3.5 16.49 £ 3.5

Baseline for Test Domain

85.75 £ 1.77
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Table 12: Mean Accuracy for Test Domain Cartoon, augmented with Feature Statis-
tics towards the Trainings Domains, across all modes and seeds

Mode Mean accuracy across seeds for Mode in %

Art Painting Photo Sketch
single_0 74.354+1.62 76.14+1.65 78.88 £ 0.92
single_1 78.13 £0.9 78.95+1.32 81.64 +1.45
single_2 78.12+1.33 80.13+0.62 79.04 £ 1.28
single_3 18.02 +1.28  14.46 £ 2.56 15.37 + 1.06
selective 0_1 77.1+£0.3 77.94 £ 1.77 81.09 1.2
selective_0_2 78.57+0.84 80.63 +1.08 79.02 +1.34
selective_0_3 18.02 +1.28  14.46 £ 2.56 15.37 £ 1.06
selective_1_2 78.56 £1.06 80.28+1.71 79.51 £ 1.37
selective_1_3 18.02 +1.28  14.46 £ 2.56 15.37 + 1.06
selective_2_3 18.02 +1.28  14.46 £ 2.56 15.37 + 1.06
average 16.6 = 0.0 16.6 = 0.0 16.6 0.0
Baseline for Test Domain  77.7 £+ 2.53

Table 13: Mean Accuracy for Test Domain Photo, augmented with Feature Statistics
towards the Trainings Domains, across all modes and seeds

Mode Mean accuracy across seeds for Mode in %
Art Painting Cartoon Sketch

single_0 97.55+0.39 97.19+0.33 96.61 £+ 0.07
single_1 97.254+0.39  96.79 + 0.58 96.03 £ 0.31
single_2 96.01 £1.37  95.75+0.48 96.03 £ 0.31
single_3 1597 £8.57 18.19£7.08 10.98 £ 0.14
selective 0_1 97.07£0.53  96.75+0.19 96.27 £0.12
selective_0_2 95.87+1.18  95.294+0.1 95.27 + 0.42
selective_0_3 1597 £ 857 18.19 £ 7.08 10.98 +£0.14
selective_1_2 94.97+£2.13 95.01+0.75 94.95 4+ 0.51
selective_1_3 1597 £8.57 18.19 £ 7.08 10.98 £ 0.14
selective_2_3 1597 £ 857 18.19£7.08 10.98 +£0.14
average 11.44+£0.61 11.18+£0.24 11.18 £ 0.24

Baseline for Test Domain

96.99 £+ 0.69
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Table 14: Mean Accuracy for Test Domain Sketch, augmented with Feature Statis-
tics towards the Trainings Domains, across all modes and seeds

Mode Mean accuracy across seeds for Mode in %

Art Painting Cartoon Photo
single_0 71.73 £ 7.06 72.98 £6.1 73.5 4+ 5.22
single_1 7819+ 3.21 79.18+2.25 79.02 + 3.15
single_2 73.61 £4.55  69.69 +4.77 71.16 £ 6.02
single_3 14.3 £ 8.86 14.46 + 9.0 7.194+7.24
selective 0_1 76.81 £4.32  77.32 +2.68 77.35 £ 5.16
selective_0_2 74.3 4+ 2.22 70.97 +4.19 73.26 + 3.49
selective_0_3 14.3 £ 8.86 14.46 + 9.0 7.194+7.24
selective_1_2 75.57+4.11  71.15+5.51 72.84 +6.33
selective_1_3 14.3 £ 8.86 14.46 + 9.0 7.194+7.24
selective_2_3 14.3 £ 8.86 14.46 + 9.0 7.194+7.24
average 9.26 £9.0 9.26 £9.0 9.26 £9.0
Baseline for Test Domain  73.84 +4.12

VLCS

Table 15: Mean Accuracy for Test Domain Caltech101, augmented with Feature
Statistics towards the Trainings Domains, across all modes and seeds

Mode Mean accuracy across seeds for Mode in %
LabelMe SUNO09 VOC2007
single_0 97.74 £ 0.56 97.5 £ 0.57 97.55 £ 0.43
single_1 96.28 +1.38  96.56 £ 1.34 96.68 + 1.05
single_2 87.58 =4.56  90.08 +4.02 92.77+ 3.14
single_3 43.88 +£30.48 61.48+0.0 61.48 + 0.0
selective 0_1 95.71+1.61 95.64+1.74 96.0 £ 1.25
selective_0_2 85.82 + 4.81 88.5 +4.6 90.32 4+ 3.36
selective_0_3 43.88 +30.48 61.48+0.0 61.48 + 0.0
selective_1_2 83.49 +5.82  85.65 £ 5.09 89.54 + 3.15
selective_1_3 43.88 +£30.48 61.48+0.0 61.48 + 0.0
selective_2_3 43.88 +£30.48 61.48+0.0 61.48 + 0.0
average 61.48 4+ 0.0 61.48 + 0.0 61.48 +£ 0.0

Baseline for Test Domain 97.97 4 0.73
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Table 16: Mean Accuracy for Test Domain LabelMe, augmented with Feature Statis-
tics towards the Trainings Domains, across all modes and seeds

Mode Mean accuracy across seeds for Mode in %
Caltech101 SUNO09 VOC2007
single_0 62.76 £0.25 062.87£0.25 64.2 +0.12
single_1 63.93 + 0.47 62.724+0.25 64.72 £ 0.58
single_2 63.75+£1.66 61.01 £2.41 63.44 +1.93
single_3 46.57 £ 0.0 46.57 £ 0.0 46.57 £ 0.0
selective 0_1 63.24 £0.08  62.07+£0.14 64.37 +0.55
selective_0_2 62.15+1.67  59.01 £2.72 62.47 £+ 2.02
selective_0_3 46.57 £ 0.0 46.57 £ 0.0 46.57 £ 0.0
selective_1_2 62.77+£1.63  59.06 £ 2.81 63.19 + 2.31
selective_1_3 46.57 £ 0.0 46.57 £ 0.0 46.57 £ 0.0
selective_2_3 46.57 + 0.0 46.57 £ 0.0 46.57 £ 0.0
average 46.57 + 0.0 46.57 0.0 46.57 0.0

Baseline for Test Domain 64.91 £+ 0.36

Table 17: Mean Accuracy for Test Domain SUN0Y, augmented with Feature Statis-
tics towards the Trainings Domains, across all modes and seeds

Mode Mean accuracy across seeds for Mode in %
Caltech101 LabelMe VOC2007

single_0 69.79 £1.38 70.35+1.53 70.7 £ 1.36
single_1 69.84 + 0.53 70.48+1.2 70.07 £ 1.14
single_2 59.51+4.89 57.98+0.13 66.12 + 2.81
single_3 38.51 £0.0 28.44+0.0 38.51 0.0
selective_0_1 69.22 +0.41 69.69 +£0.93 69.88 +1.13
selective_0_2 55.86 £4.88  57.5+0.34 63.47 £+ 2.66
selective_0_3 38.51 £ 0.0 28.4+0.0 38.51 4+ 0.0
selective_1_2 54.33 £4.63 56.93 £+ 0.58 62.75 + 3.23
selective_1_3 38.51 0.0 28.44+0.0 38.51 0.0
selective_2_3 38.51£0.0 28.44+0.0 38.51 0.0
average 38.51 £0.0 38.51 £0.0 38.51 £0.0
Baseline for Test Domain 72.37 £1.18




A APPENDIX 83

Table 18: Mean Accuracy for Test Domain VOC2007, augmented with Feature
Statistics towards the Trainings Domains, across all modes and seeds

Mode Mean accuracy across seeds for Mode in %
Caltech101 LabelMe SUNO09

single_0 77.3 4+ 1.06 76.9 4+ 0.56 76.87+0.71
single_1 77.7+0.85 77.03+0.86 76.5 + 0.88
single_2 72.92 +3.52 66.35+ 6.39 70.9 + 1.69
single_3 444+ 0.0 28.6 + 13.68 444+ 0.0
selective_0_1 76.95+0.82 76.69 +0.79 75.71 £0.93
selective_0_2 70.35 £ 3.69 63.84 £ 5.88 69.1 +0.97
selective_0_3 444+ 0.0 28.6 + 13.68 444+ 0.0
selective_1_2 69.32 + 3.86 62.86 £ 5.72 67.87 £ 0.96
selective_1_3 44.44+ 0.0 28.6 + 13.68 444+ 0.0
selective_2_3 44.4 4+ 0.0 28.6 + 13.68 444+ 0.0
average 44.4 4+ 0.0 44.4+0.0 44.4+0.0

Baseline for Test Domain 76.02 £+ 0.49




A APPENDIX

A.3.3 Linear Mixed-Effects Model

These tables provide additional results of the linear mixed-effect model analyses con-
ducted for both PACS and VLCS. Reported are estimated fixed effects for different
MixStyle (Zhou et al., [2021)) baseline
as well as per-domain improvements relative to the baseline. Coefficients are shown
with corresponding confidence intervals, while domain x mode breakdowns highlight
how gains or drops vary across target domains. These results provide an additional
perspective on the consistency and reliability of the observed accuracy differences

TTA modes and their comparison agains the

under different strategies.

PACS

Table 19: Fixed Effects for PACS (TTA-only)

Coef. CI Low CI High
Intercept [average] 0.134  0.027 0.241
selective_0_1 0.715 0.678 0.752
selective_0_2 0.694 0.657 0.731
selective_0_3 0.007  -0.030 0.044
selective_1_2 0.692 0.655 0.729
selective_1_3 0.007  -0.030 0.044
selective_2_3 0.007  -0.030 0.044
single_0 0.699 0.662 0.736
single_1 0.723 0.686 0.759
single_2 0.690 0.653 0.727
single_3 0.007  -0.030 0.044
seed Var 16.000

single k = C(mode)[T.single k]  selective_i_j = C(mode)[T.selective_i_j]

Table 20: Fixed Effects for PACS (MixStyle vs. best TTA modes)

Coef. CI Low CI High
Intercept [base]  0.835 0.786 0.883
single 0 -0.002  -0.016 0.012
single_1 0.022 0.008 0.036
sel_0_1 0.014 0.000 0.028
seed Var 23.823 1.581  46.065

single_k = C(mode, Treatment(reference="base’))[T.single k]

selij = C(mode, Treatment(reference="base’))[T.selective_i_j]
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Table 21: Domains x Modes: Improvement over base for PACS (paired per seed)

Domain Mode Mean A SD SE CI Low CI High
sel 0.1 0.0157 0.0194 0.0112 -0.0325  0.0638
sel 0.2 -0.0193 0.0230 0.0133 -0.0764  0.0377

Art Painting s§1,1,2 -0.0260 0.0208 0.0120 -0.0777  0.0257
single.0  0.0145 0.0153 0.0088 -0.0235  0.0526
single.1  0.0209 0.0158 0.0091 -0.0184  0.0601
single 2 -0.0232 0.0204 0.0118 -0.0738  0.0274
sel 0.1 0.0101 0.0182 0.0105 -0.0351  0.0552
sel 0.2 0.0170 0.0162 0.0094 -0.0232  0.0573

Cartoon sel 1.2 0.0174 0.0218 0.0126 -0.0367  0.0716
single.0  -0.0125 0.0091 0.0053 -0.0350  0.0101
single.1  0.0187 0.0191 0.0110 -0.0287  0.0661
single. 2 0.0139 0.0123 0.0071 -0.0166  0.0444
sel 0_1 -0.0030 0.0040 0.0023 -0.0130  0.0071
sel 02 -0.0152 0.0026 0.0015 -0.0215 -0.0088

Photo sel 1.2 -0.0202 0.0064 0.0037 -0.0362 -0.0042
single_0 0.0012 0.0042 0.0024 -0.0092 0.0116
single.1  -0.0013 0.0049 0.0029 -0.0136  0.0110
single 2 -0.0106 0.0048 0.0028 -0.0226  0.0013
sel 0_1 0.0331 0.0159 0.0092 -0.0064  0.0726
sel 02 -0.0100 0.0036 0.0021 -0.0191  -0.0010

Sketch sel 1.2 -0.0066 0.0303 0.0175 -0.0820  0.0688
single. 0 -0.0111 0.0575 0.0332 -0.1539  0.1317
single.1  0.0495 0.0027 0.0016 0.0428  0.0562
single 2 -0.0236 0.0241 0.0139 -0.0834  0.0362

Mean A = mean Improvement over base.

single k = single_k

seli_j = selective_i_j

All values are based on paired seeds (n = 3 per condition).
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VLCS
Table 22: Fixed Effects for VLCS (TTA-only)

Coef. CI Low CI High
Intercept |average] 0.477  0.417 0.538

sel 0_1 0.284 0.245 0.322
sel 02 0.213 0.176 0.250
sel 0_3 -0.036  -0.074 0.001
sel 1.2 0.204 0.167 0.241
sel 1.3 -0.036  -0.074 0.001
sel 2.3 -0.036  -0.074 0.001
single_0 0.293 0.256 0.330
single_1 0.291 0.254 0.329
single_2 0.233 0.196 0.270
single_3 -0.036  -0.074 0.001
seed Var 4.249 0.603 7.895

single k = C(mode)[T.single_k] sel.i_j = C(mode)[T.selective_i_j]

Table 23: Fixed Effects for VLCS (MixStyle vs. best TTA modes)

Coef. CI Low CI High

Intercept [base] 0.777  0.706 0.847
single_( -0.006  -0.012 0.000
single_1 -0.008  -0.013 0.002
sel_0_1 -0.014 -0.02 0.008
seed Var 314.071451 23.7665 604.3764

single_k = C(mode, Treatment(reference="base’))[T.single k|
selij = C(mode, Treatment(reference="base’))[T.selective_i_j]
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Table 24: Domain x Mode: Improvement over base for VLCS (paired per seed)

Domain Mode Mean A SD SE CI Low CI High
sel_0_1 -0.0193 0.0069 0.0040 -0.0363 -0.0023
sel 02 -0.0950 0.0335 0.0194 -0.1783 -0.0118
Caltech101 s§1,1,2 -0.1149 0.0377 0.0218 -0.2085 -0.0212
single 0 -0.0012 0.0038 0.0022 -0.0107  0.0084
single.1  -0.0121 0.0039 0.0022 -0.0217 -0.0025
single.2  -0.0757 0.0297 0.0172 -0.1496 -0.0018
sel_0_1 -0.0165 0.0027 0.0015 -0.0230 -0.0099
sel_0_2 -0.0366 0.0180 0.0104 -0.0814  0.0082
LabelMe sel_ 1.2 -0.0320 0.0177 0.0102 -0.0758  0.0119
single. 0 -0.0159 0.0042 0.0024 -0.0264 -0.0054
single.1  -0.0108 0.0015 0.0008 -0.0145 -0.0072
single.2  -0.0214 0.0166 0.0096 -0.0627  0.0200
sel_0_1 -0.0252 0.0044 0.0026 -0.0362 -0.0142
sel 0.2 -0.1317 0.0305 0.0176 -0.2075 -0.0559
SUNO09 sel .12 -0.1411 0.0317 0.0183 -0.2199 -0.0624
single.0  -0.0184 0.0071 0.0041 -0.0359 -0.0008
single.1  -0.0198 0.0038 0.0022 -0.0293 -0.0104
single 2 -0.1091 0.0323 0.018 -0.1893 -0.0290
sel 0_1 0.0050 0.0071 0.0041 -0.0126  0.0226
sel 0.2 -0.0818 0.0131 0.0076 -0.1144 -0.0493
sel_ 1.2 -0.0926 0.0130 0.0075 -0.1249 -0.0604
VOC2007 single_0 0.0108 0.0064 0.0037 -0.0051 0.0267
single_1 0.0113 0.0072 0.0042 -0.0067  0.0293
single 2 -0.0589 0.0178 0.0103 -0.1031 -0.0147

Mean A = mean Improvement over base.
seli_j = selective_i_j

single k = single_k

All values are based on paired seeds (n = 3 per condition).

A.4 Use of Generative Al

Generative Al such as ChatGPT, has been used by the author to paraphrase sections
of text, create certain citation references, and adjust spelling and punctuation. It
was also used to generate sections of code for the described software project. All
generated text and code has been carefully proofread and adjusted by the author.
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