
Design and Implementation of an
Unreal Engine 5 Plugin for

Generating Photorealistic and
Semantically Controllable

Synthetic Data to Evaluate the
Robustness of ImageNet Classifier

Bachelor Thesis

Bachelor of Science in Applied Computer Science

Florian Gutbier

June 3, 2025

Supervisor:

1st: Prof. Dr. Christian Ledig
2nd: Sebastian Dörrich

Chair of Explainable Machine Learning
Faculty of Information Systems and Applied Computer Sciences
Otto-Friedrich-University Bamberg

Abstract

Modern deep vision models often struggle when confronted with images that deviate
from their training distribution. To diagnose and quantify these out-of-distribution
(OOD) failure modes, we present a fully controlled synthetic dataset generated using
a custom open-source Unreal Engine 5 (UE5) plugin. Our plugin enables researchers
to specify and vary six generative factors—background, material, light colour, cam-
era pose, volumetric fog, and mesh identity—across seven ImageNet-compatible ob-
ject classes. By rendering the full Cartesian product of these factors, we produce
86 016 photorealistic images with precise metadata. This exhaustive control reveals
that state-of-the-art architectures (e.g., ConvNeXt-Large, ViT-L-16, Swin-B) suf-
fer steep accuracy drops under combined shifts, with even the best model achieving
only 37.5% Top-1 on the OOD benchmark. Factor-wise analysis shows that material
changes alone can induce a 24 percentage-point swing in accuracy, viewpoint shifts
can reduce performance by over 30 points, and complex backgrounds lead to a 10
point spread. Interestingly, adding volumetric fog consistently improves recognition
by presumably simplifying background clutter. By open sourcing our UE5 plugin
and OOD dataset, we provide a reproducible pipeline for synthetic OOD evaluation.
Our results demonstrate that full factor control and exact annotations are critical
for pinpointing model weaknesses, guiding future research toward more robust vision
systems under extreme distribution shifts.

i

Contents

List of Figures iv

List of Tables v

List of Acronyms vi

1 Introduction 1

1.1 Contributions of this thesis . 2

2 Related Work 3

2.1 Photorealistic Synthetic Data for Vision 3

2.2 The PUG Framework . 3

2.3 PUG-ImageNet . 4

2.4 Positioning within Synthetic-Data Literature 4

2.5 Implications for This Thesis . 5

3 Theoretical Foundation 6

3.1 Image Classification Models . 6

3.2 Out-of-Distribution (OOD) Generalization 9

3.3 Synthetic data for out-of-distribution robustness 10

3.4 Compositional and factorized stress tests 11

3.5 High-fidelity datasets generated with game engines 11

3.6 Unreal Engine 5: Core Functionality and Terminology 14

4 Methodology 16

4.1 Reference hardware . 16

4.2 Synthetic–Data Plugin for UE5 . 16

4.2.1 Overview . 16

4.2.2 First iteration . 17

4.2.3 Final Implementation . 18

4.3 Synthetic OOD Dataset . 20

4.4 Convolutional Backbones . 23

4.5 Vision-Transformer backbones . 23

4.6 Evaluation Methods . 24

4.6.1 Top-1 accuracy . 24

4.6.2 Rejection-aware AUC . 25

ii

5 Evaluation 26

5.1 overall Performance . 26

5.2 Baseline Comparison . 27

5.3 Factor Analysis . 28

5.3.1 Material . 28

5.3.2 Camera Position . 30

5.3.3 Light Color . 32

5.3.4 Background (Level) . 34

5.3.5 Fog . 36

6 Discussion 38

6.1 Key Findings . 38

6.1.1 Texture Bias and Material Effects 39

6.1.2 Viewpoint Sensitivity . 39

6.1.3 Illumination Shifts . 40

6.1.4 Background Complexity (Level) Effects 40

6.1.5 Fog as a Background Simplifier 41

6.2 Limitations . 42

6.3 Directions for Future Work . 43

7 Conclusion 45

A Appendix 46

Bibliography 50

iii

List of Figures

1 The architecture of the Vision Transformer. From (Dosovitskiy et al.,
2020). 7

2 Three of the sensing modalities provided by CARLA. Normal Vision,
ground-truth depth, and ground-truth semantic segmentation. From
(Wen et al., 2020). 13

3 Graphical interface of the ConfigActor with all available parameters. 19

4 A random collection of images from our dataset 22

5 Per-material Top-1 accuracy (ConvNeXt-Large). Each bar corre-
sponds to 14 336 test images. 29

6 Per-camera-position Top-1 accuracy (ConvNeXt-Large). Each bar
aggregates 10,752 test images (all images taken from that camera
position across all other factors). 31

7 Per-light-colour Top-1 accuracy (ConvNeXt-Large). Each bar aggre-
gates 21,504 test images (all images illuminated by that colour across
all other factors). 33

8 Per-level Top-1 accuracy (ConvNeXt-Large). Each bar aggregates
10 752 test images (all images taken in that level across all other
factors). 35

9 Top-1 accuracy with and without fog (ConvNeXt-Large). Each bar
aggregates 43,008 test images (all images sharing that fog setting
across all other factors). 37

10 ViTL16 factor analysis. 46

11 ViTB16 factor analysis. 46

12 SwinB factor analysis. 47

13 Resnet101 factor analysis. 47

14 Resnet50 factor analysis. 48

15 Densenet factor analysis. 48

16 Convnext base factor analysis. 49

iv

List of Tables

1 Factorised variations in PUG-ImageNet (Bordes et al., 2023) 4

2 Top-1 accuracies for the ImageNet validation set and the different
parameters of the PUG-ImageNet set. Taken from (Bordes et al., 2023) 4

3 Top-1 accuracy and rejection-aware AUC on our OOD dataset. 26

4 Top-1 accuracy on the frontal + background-only slice. Each model
is evaluated on 224 images (32 per class). 28

v

List of Acronyms

AI Artificial Intelligence
UE5 Unreal Engine 5
AP Average Precision
mAP mean Average Precision
ViT Vision Transformers
CNN Convolutional Networks
DCC Digital content-creation
WYSIWYG What you see is what you get
fps frame(s) per second
ILSVRC ImageNet Large Scale Visual Recognition Challenge

vi

1 INTRODUCTION 1

1 Introduction

Deep neural networks have achieved remarkable progress in visual recognition tasks
largely because of the availability of large-scale, real–image datasets such as Ima-
geNet1 and the CIFAR family of benchmarks. (Recht et al., 2019) However, the
photographic nature and uncontrolled acquisition process of these corpora impose
two constraints. First, once data have been collected, the distribution of nuisance
factors—camera viewpoint, illumination, object pose, background, etc.—is fixed and
cannot be systematically manipulated. Second, the same uncontrolled factors make
it difficult to diagnose failure modes when models are exposed to inputs that di-
verge from the in-distribution training data, a scenario that frequently arises in
safety–critical deployments. (Geirhos et al., 2020)

The brittleness of current vision models to distribution shifts has been documented
by substantial drops in top-1 accuracy when models trained on ImageNet are eval-
uated on its independently curated counterpart, ImageNet-V2, or on natural dis-
tribution shifts such as ImageNet-R and ImageNet-A. (Taori et al., 2020; Recht
et al., 2019) These observations motivate the need for data with controllable gen-
erative factors, so that specific shifts can be isolated and their effect on recognition
performance measured precisely.

Synthetic rendering pipelines offer this controllability.By leveraging state-of-the-art
game engines, researchers can generate densely labelled images while systematically
varying scene parameters that are expensive or impossible to control in natural pho-
tographs. Early work such as UnrealGT (Pollok et al., 2019) and UnrealROX+
(Gonzalez et al., 2021) demonstrated that photorealistic images with pixel-perfect
ground truth can be produced at scale, spurring numerous studies on domain adap-
tation and robust perception.

A recent milestone in this trajectory is the Photorealistic Unreal Graphics (PUG)
family of datasets released by Meta AI. (Bordes et al., 2023) PUG provides more
than 215 k high-resolution images of 70 animal assets, together with additional
variants covering 151 ImageNet classes, all rendered with exhaustive control over
background, texture, scale, camera, and lighting. By decoupling these generative
factors, PUG enables systematic stress-testing of representation learning algorithms
and has already become a reference benchmark for out-of-distribution (OOD) eval-
uation.

Despite these advances, existing synthetic datasets trade off breadth and depth:
PUG:ImageNet spans 151 classes but varies only one factor at a time, whereas
PUG:Animals exhaustively combines factors for just 70 animal assets. Furthermore,
most generation pipelines are tightly coupled to the factors chosen by their designers,
hindering reuse in bespoke experiments. In the case of PUG, only a subset of
the generation code has been released, and the public modules need substantial

1Although ImageNet contains more than 14 million images, its canonical ILSVRC subset of
1,000 classes is the one most commonly used for training modern models.

1 INTRODUCTION 2

fixing after an update to a external plugin they rely on, limiting their immediate
applicability.

1.1 Contributions of this thesis

We publish a modular Unreal Engine 5 plugin that enables researchers to generate
photorealistic image datasets with full control over backgrounds, materials, lighting,
camera poses, and atmospheric effects. The plugin is self-contained—no external
tooling or proprietary infrastructure is required beyond a standard UE5 installation.

Using the plugin, we construct a synthetic dataset that follows the design philosophy
of PUG but targets everyday ImageNet-style objects. All rendering scripts and
factor annotations are released to facilitate extension and replication.

We benchmark state-of-the-art convolutional networks and Vision Transformers on
the new dataset, compare their OOD robustness to results reported on PUG, and
discuss failure modes that persist across both benchmarks.

All code, asset lists and the dataset will be made publicly available under an open-
source licence to foster transparent and reproducible research 2.

2https://github.com/FlGutbier/UE5DatasetGenerator

https://github.com/FlGutbier/UE5DatasetGenerator

2 RELATED WORK 3

2 Related Work

2.1 Photorealistic Synthetic Data for Vision

Synthetic imagery has long been leveraged to overcome the cost, bias, and copy-
right constraints of Internet–scraped photographs. Early works relied on domain
randomization to bridge the reality gap for robotic perception, (Tobin et al., 2017)
or on diagnostic scenes such as CLEVR,(Johnson et al., 2017) to probe composi-
tional reasoning. More photorealistic pipelines subsequently emerged around game
engines, e.,g. SYNTHIA,(Ros et al., 2016), CARLA,(Dosovitskiy et al., 2017), Un-
realGT,(Pollok et al., 2019), UnrealROX(+), (Martinez-Gonzalez et al., 2020, 2021)
and Falling Things,(Tremblay et al., 2018). While these datasets offer fine-grained
control, their scope is often task-specific and they rarely model distribution shifts
systematically. Parallel research has therefore explored robustness through new test
sets for natural images, such as ImageNet-V2,(Recht et al., 2019) and ImageNet-
R,(Geirhos et al., 2020), or through synthetic perturbations of backgrounds,(Malik
et al., 2021). Yet, controlling high-fidelity variables (pose, lighting, texture) at Im-
ageNet scale remained out of reach.

2.2 The PUG Framework

Bordes et al. introduce PUG: Photorealistic Unreal Graphics,(Bordes et al.,
2023), a family of datasets rendered with UE5 and orchestrated through a custom
Python API called Torch-Multiverse. Unfortunately the provided python code is, as
of the time of writing, incomplete and not functional, while the logic implementation
on the UE5 side is not provideed at all. Each PUG environment provides declarative
control over object assets, backgrounds, camera and object orientation, scale, texture
and illumination. Photorealism is inherited directly from production-grade game
assets, while controllability enables factorial experiments impossible with scraped
photographs. Four public subsets are released:

� PUG-Animals: 215,040 images, 70 animal meshes, 64 backgrounds, 3× sizes,
4× textures, 4× cameras; supports systematic out-of-distribution (OOD) eval-
uation. Provides a combinations of all available variables.

� PUG-ImageNet: a robustness benchmark for ImageNet2.3.

� PUG-SPAR: 43,560 images for vision–language reasoning about scenes, po-
sitions, attributes and relations.

� PUG-AR4T: 249,986 captioned images for fine-tuning vision–language mod-
els.

2 RELATED WORK 4

Rendered frames are delivered at 512× 512 px resolution at roughly one frame per
second on a single V100 GPU, and the full datasets (Animals 78 GB, ImageNet 27
GB, SPAR 16 GB, AR4T 97 GB) are available from the project repository.3

2.3 PUG-ImageNet

PUG–ImageNet provides 88,328 photorealistic images that map one-to-one to 151
ImageNet classes. Images are generated from 724 object assets and 64 environments
while varying one factor at a time to isolate its effect on recognition performance:

Factor Variations

Camera yaw/pitch/roll 18
Object yaw/pitch/roll 18
Object size 7
Object texture 9
Light intensity 7

Table 1: Factorised variations in PUG-ImageNet (Bordes et al., 2023)

Because all other attributes are held constant, error attribution is unambiguous—a
key limitation of natural robustness suites such as ObjectNet,(Barbu et al., 2019).
Bordes et al. show that state-of-the-art ImageNet models rank differently under
these controlled shifts: e.,g. although ViT-B/32 pretrained on ImageNet-21k out-
performs Swin-B on the original validation set, Swin-B is markedly more resilient
to pose, camera and lighting changes (˜10–15 pp top-1) on PUG-ImageNet. Such
disparities corroborate earlier findings on distribution shift,(Taori et al., 2020) and
demonstrate that ImageNet accuracy alone is a poor proxy for real-world robustness.

PUG: ImageNet Top-1 Accuracy across Factors of Variation
Model ImageNet Val. Camera (Yaw,Pitch,Roll) Pose (Yaw,Pitch,Roll) Size Texture Light Background
ResNet50 81.5 (38.1, 33.1, 26.9) (38.0, 23.6, 22.9) 35.7 27.0 13.6 29.5
ResNet101 82.3 (43.4, 35.9, 29.4) (45.1, 26.7, 25.6) 39.7 31.1 14.1 32.8
ViTLarge 85.8 (52.2, 40.4, 37.1) (52.4, 30.4, 28.4) 46.4 42.9 8.9 34.6
ViTBasePretrained21k 84.3 (37.5, 34.3, 31.7) (38.0, 21.8, 20.5) 33.0 28.5 4.1 26.6
Swin 83.6 (56.0, 45.6, 41.8) (56.9, 35.3, 34.2) 52.9 40.1 19.1 42.0
BiT (JFT300M) 80.3 (40.5, 32.3, 26.0) (42.1, 23.6, 22.8) 37.3 23.4 6.3 20.5
DINOv2 (LVD-142M) 84.5 (45.6, 41.1, 37.4) (47.5, 28.8, 28.5) 43.1 35.0 6.1 30.9
Flava (PMD 70M) 75.5 (31.7, 23.4, 17.6) (30.8, 17.6, 15.4) 30.5 24.2 7.8 21.9
CLIPViTB32 (400M) 62.9 (41.7, 30.2, 22.1) (41.6, 23.8, 20.9) 40.1 34.4 5.7 24.4
CLIPViTB32 (2B) 66.6 (44.0, 31.5, 24.1) (43.8, 24.8, 21.8) 42.2 34.7 3.3 26.0
CLIPViTL14 (400M) 72.8 (52.3, 39.8, 35.7) (51.8, 29.0, 26.4) 50.6 41.1 4.3 33.0

Table 2: Top-1 accuracies for the ImageNet validation set and the different param-
eters of the PUG-ImageNet set. Taken from (Bordes et al., 2023)

2.4 Positioning within Synthetic-Data Literature

PUG provides two key capabilities that were not previously available. First, it offers
systematic, factorized variation at ImageNet scale, enabling controlled experiments

3https://github.com/facebookresearch/PUG

https://github.com/facebookresearch/PUG

2 RELATED WORK 5

on pose, illumination, texture, and background that help identify shortcut features
(Geirhos et al., 2020) and quantify synthetic-to-real transfer gaps (Volpi et al., 2018).
Second, it includes a documented asset pipeline that clarifies licensing and prove-
nance: all 3D models are licensed through the Epic Games Marketplace and each
rendered frame comes with metadata that records the exact parameters used.

By contrast, diffusion-based synthetic datasets (Sariyildiz et al., 2023) can inad-
vertently reproduce copyrighted content or suffer from prompt misalignment, since
they rely on generative models trained on large image collections. PUG avoids these
issues by producing each image directly from known assets and exporting the full
scene description alongside the image. This explicit control provides unambiguous
ground truth, making PUG particularly well suited for robustness studies such as
those presented in Section 2.3.

In summary, PUG complements earlier photorealistic datasets that focused on spe-
cific tasks by offering a scalable, reproducible framework for representation learning
and out-of-distribution evaluation. It therefore occupies an intermediate position
between task-specific simulators and unrestricted text-to-image pipelines, establish-
ing a benchmark for future research on model reliability and generalization.

2.5 Implications for This Thesis

The code published by Bordes et al. (2023), while available, is incomplete and not
directly usable. To effectively probe model robustness under simultaneous distribu-
tion shifts and pinpoint specific weaknesses, we have developed an open-source UE5
plug-in. This plugin replicates the objectives of PUG:ImageNet while enabling more
detailed metadata annotation, as Bordes et al. (2023) state themselves in their pa-
per, that their current datasets offer only limited metadata annotation. In contrast
to the original PUG pipeline, which relies on external Python wrappers and provides
only partial source files, our plugin operates entirely within the game engine.

3 THEORETICAL FOUNDATION 6

3 Theoretical Foundation

3.1 Image Classification Models

Image classification, a fundamental task in computer vision, involves assigning a la-
bel from a predefined set to an input image. Convolutional Neural Networks (CNNs)
have historically dominated this field due to their ability to proficiently capture hi-
erarchical spatial features through convolutional and pooling layers (LeCun et al.,
2015; Goodfellow et al., 2016). However, contemporary developments have seen the
rise of Transformer-based architectures, originally developed for natural language
processing, demonstrate remarkable performance in various vision tasks, including
image classification.

Convolutional Neural Networks (CNNs) Long before the term deep learning
was coined, Fukushima (1980) introduced the Neocognitron, the first network to
leverage two ideas that still define today’s CNNs: local connectivity—each neuron
processes only a small spatial neighbourhood—and weight sharing—the same kernel
is applied at every location, endowing the model with translation–equivariance while
greatly reducing the parameter count. A decade later, the back-propagation algo-
rithm and increasing computational power enabled LeCun et al. (1998) to train the
now-iconic LeNet-5 on the MNIST digit dataset, demonstrating that CNNs could
outperform hand-crafted pipelines.

Progress stalled until three drivers converged in the early 2010s: graphics-processing
units (GPUs), massive annotated datasets, and algorithmic refinements such as
ReLU activations and dropout (Srivastava et al., 2014). The pivotal moment came
with AlexNet in the 2012 ImageNet Challenge (Krizhevsky et al., 2012), which
halved the top-5 error and triggered an intense architectural race. Successive de-
signs deepened networks (VGG-16/19, up to 19 layers (Simonyan and Zisserman,
2015)), widened them with multi-scale “Inception” blocks (Szegedy et al., 2015),
and finally stabilised ultra-deep training via residual connections (ResNet-152 (He
et al., 2016)). More recently, automated architecture search and compound scaling
led to the EfficientNet family, matching state-of-the-art accuracy with dramatically
fewer parameters and FLOPs (Tan and Le, 2019).

Representative use cases CNNs have become the de facto backbone for visual
perception across domains:

� General object recognition and transfer learning – the ImageNet pre-
training paradigm underlies countless downstream tasks, from fine-grained
bird classification to artwork retrieval.

� Medical imaging – surveys report CNNs surpassing traditional methods in
tumour detection, organ segmentation and radiomics across modalities such
as MRI and CT (Litjens et al., 2017).

3 THEORETICAL FOUNDATION 7

� Autonomous driving and robotics – end-to-end perception stacks rely on
CNNs for lane detection, obstacle recognition and depth estimation; large-scale
simulators like CARLA facilitate data collection (Dosovitskiy et al., 2017).

� Remote sensing – CNNs advance land-cover mapping, disaster assessment
and climate monitoring from high-resolution satellite imagery (Zhu et al.,
2017).

� Mobile and edge applications – lightweight variants (e.g. MobileNet, EfficientNet-
Lite) enable real-time inference for augmented-reality and biometric authenti-
cation on smartphones.

In summary, CNNs combine biologically inspired priors with scalable optimisa-
tion, forming the historical and conceptual bedrock on which most modern image-
classification pipelines—including those evaluated in this thesis—are built. Detailed
architectural choices for our experimental models are deferred to Section 4.

Vision Transformers (ViT) While convolutional networks dominated visual
recognition for nearly a decade, the rapid success of the Transformer architecture in
natural-language processing (Vaswani et al., 2017) prompted researchers to explore
whether the same self-attention mechanism could replace convolutions altogether.
Dosovitskiy et al. (2020) showed that, with sufficient pre-training data, a pure Trans-
former can rival state-of-the-art CNNs on ImageNet. Their ViT first partitions an
image into non-overlapping P × P patches, flattens each patch to a vector, and
projects it linearly into a “token” embedding; positional encodings preserve spatial
order. Standard multi-head self-attention layers then allow every token to attend to
every other, giving the model a global receptive field from the outset.

Figure 1: The architecture of the Vision Transformer. From (Dosovitskiy et al.,
2020).

Data and compute efficiency ViT’s breakthrough hinged on pre-training with
hundreds of millions of images (JFT-300M). Subsequent work greatly reduced that

3 THEORETICAL FOUNDATION 8

requirement: DeiT introduced knowledge distillation and strong augmentation to
train competitive ViTs on ImageNet alone (Touvron et al., 2021), while masked-
image modelling pre-text tasks (e.g. MAE) further improved sample efficiency.

Hierarchical and localised variants A limitation of vanilla ViT is quadratic at-
tention cost in the number of tokens. Hierarchical designs address this by restricting
attention to local windows and merging patches progressively:

� Swin Transformer partitions the feature map into shifted windows, achiev-
ing linear complexity and enabling dense prediction tasks such as detection
and segmentation (Liu et al., 2021).

� Pyramid Vision Transformer (PVT) combines spatial-reduction attention
with a CNN-like feature pyramid, striking a balance between latency and
resolution (Wang et al., 2021).

Representative use cases Vision Transformers now underpin diverse applica-
tions:

� Image classification and retrieval – ViT and DeiT backbones achieve top-1
accuracies of 84.3% on ImageNet-22k and 86.8% on CIFAR-100 when properly
scaled and pre-trained (Dosovitskiy et al., 2020; Touvron et al., 2021); large-
scale zero-shot models like CLIP-ViT demonstrate strong transfer to hundreds
of downstream datasets without additional fine-tuning (Radford et al., 2021).

� Dense prediction – The Swin Transformer family sets new state-of-the-art
AP on COCO object detection (up to 58.9 AP) and mIoU on ADE20K se-
mantic segmentation (up to 54.7%) by using shifted-window self-attention
and hierarchical feature maps (Liu et al., 2021); the Dense Prediction Trans-
former (DPT) leverages a ViT encoder with lightweight decoder heads to top
the monocular depth-estimation benchmarks (e.g. NYU-Depth v2 RMSE of
0.33m) (Ranftl et al., 2021).

� Medical imaging – token-mixing across the full field-of-view improves histopathol-
ogy slide classification and 3-D radiology tasks, often surpassing CNN baselines
(Graham et al., 2021).

� Remote sensing – ViTs handle very high-resolution satellite imagery by
combining global context with local attention windows, boosting land-cover
mapping accuracy (Wang et al., 2023).

In essence, Vision Transformers reformulate images as sequences, inheriting the
flexibility of NLP models while continuing the trend towards ever more data-centric
training. Detailed architectural descriptions for the ViT- and Swin-based models
used in this thesis appear later in Section 4.

3 THEORETICAL FOUNDATION 9

3.2 Out-of-Distribution (OOD) Generalization

Supervised models are typically trained and evaluated on data Dtrain ∼ PID(x, y)
drawn from an in-distribution (ID). At deployment, however, inputs may follow
an out-of-distribution (OOD) law POOD that differs—sometimes subtly—from PID.
A model that merely interpolates within PID can experience severe performance
degradation when PID ̸=POOD (Geirhos et al., 2020; Taori et al., 2020). Quantifying
and mitigating this gap is the central goal of OOD generalisation research (Liu et al.,
2023).

Taxonomy of distribution shift Following Quiñonero-Candela et al. (2009),
three shift types are most commonly analyzed:

a) Covariate shift: the marginal p(x) changes while the conditional label dis-
tribution p(y |x) is preserved, e.g. new camera viewpoints or illumination.

b) Label shift (a.k.a. prior shift): the class prior p(y) changes while the class-
conditional p(x | y) remains fixed—for example, in email filtering the overall
proportion of spam vs. legitimate messages may vary over time, even though
the characteristic features of each class stay the same.

c) Concept shift: the conditional p(y | x) itself changes—producing genuinely
new decision boundaries (e.g. evolving malware signatures). This is the hardest
case because “ground-truth” labels become non-stationary.

Recent surveys additionally distinguish semantic vs. syntactic covariate shifts and
propose causal taxonomies (Liu et al., 2023).

Benchmarks and empirical findings. Large-scale evaluations reveal that ImageNet-
trained models can lose 10−20 pp accuracy under realistic covariate shifts such as
ImageNet-V2 or ObjectNet (Recht et al., 2019; Barbu et al., 2019). Comprehensive
benchmark suites—e.g. WILDS spanning wildlife imagery, satellite data and med-
ical domains—enable systematic comparisons across shift types (Koh et al., 2021).
Baseline studies show that many algorithms which excel on synthetic “held-out do-
mains” under perform on real-world shifts, underscoring the gap between academic
settings and practice (Gulrajani and Lopez-Paz, 2020).

Mitigation strategies Techniques fall into three broad families:

� Data-centric approaches such as aggressive augmentation and domain ran-
domization create synthetic variability that widens the support of p(x) (Tobin
et al., 2017; Tremblay et al., 2018). Photo realistic engines (e.g. UnrealROX+)
let practitioners control individual “nuisance” factors, linking OOD robustness
to specific generative interventions (Gonzalez et al., 2021).

3 THEORETICAL FOUNDATION 10

� Model-centric methods impose robustness constraints during training—e.g.
distributionally robust optimization, feature-wise risk extrapolation, or in-
variant risk minimization—to select representations stable across domains
(D’Amour et al., 2020; Gulrajani and Lopez-Paz, 2020).

� Post-hoc uncertainty estimation and OOD detection calibrate or abstain on
unfamiliar inputs; transformer-based models with global self-attention often
yield better calibrated confidence scores under shift (Ovadia et al., 2019).

Synthetic factors and OOD Synthetic datasets offer unique leverage for disen-
tangling covariate factors. Experiments with controlled backgrounds or object poses
have shown that many CNNs latch onto shortcuts like texture or context (Geirhos
et al., 2019; Malik et al., 2021). By systematically varying such factors in simulation,
one can a) diagnose the failure mode, and b) train with counterfactual combinations
to promote causal, shape-based features (Sariyildiz et al., 2023). Thus, synthetic
data generation complements algorithmic robustness techniques in the broader quest
for reliable OOD performance.

3.3 Synthetic data for out-of-distribution robustness

Collecting and annotating real photographs that cover every plausible lighting condi-
tion, background, pose or weather pattern is often prohibitively expensive. Modern
graphics engines and generative models let us procedurally vary those nuisance fac-
tors at scale, effectively growing the support of the training distribution and reducing
covariate shift.

Global domain randomization The original domain randomization hypothesis
states that, if a simulator exposes enough visual diversity, the real world will simply
look like another random draw. Tobin et al. (2017) trained a detector solely in a
physics-based renderer with stochastic colours, textures and lighting and attained
44.5mAP on real warehouse images—only 2.1 pp below a model trained with 10 k
labeled photos. Related “Sim2Real” studies for robotic grasping, UAV navigation
and autonomous driving confirm that coarse randomisation already closes a large
portion of the performance gap (Sadeghi and Levine, 2017).

Targeted or adversarial synthesis. Later work questions whether “more vari-
ance everywhere” is always optimal. Volpi et al. (2018) adversarially perturb source
images during training to create fictitious domains that maximise a domain-generalisation
loss, yielding state-of-the-art accuracy on the four held-out domains of DomainBed.
Geirhos et al. (2019) replace ImageNet textures with random artistic styles (“Stylised-
ImageNet”) and show that shape-biased models gain 12 pp robustness on ImageNet-
C corruptions compared with texture-biased CNNs. More recently, diffusion models
and GAN pipelines generate style- or attribute-diverse copies of the source data to
combat single-domain bias (Anderson et al., 2020).

3 THEORETICAL FOUNDATION 11

3.4 Compositional and factorized stress tests

A model might achieve high average accuracy yet rely on shortcuts that surface only
when a single generative factor changes. Synthetic rendering lets us freeze all other
variables and flip exactly one, exposing such hidden failure modes.

Compositional generalization The CLEVR suite withholds certain shape–colour
pairs during training and re-introduces them at test time; Relation Networks trained
on CLEVR drop from 98 % to 60 % accuracy on these unseen combinations, whereas
Neural Module Networks retain 96 % (Johnson et al., 2017). CLEVRTex extends
this idea by randomising object textures to disentangle texture bias from shape bias
(Birchfield et al., 2021).

Spurious-correlation diagnostics ObjectCompose pastes familiar COCO ob-
jects onto novel PASCAL VOC backgrounds; ResNet-50 accuracy falls from 79.7%
to 61.3%, revealing heavy reliance on contextual cues (Malik et al., 2021). Similar
single-factor datasets include SHIFT (pose, weather, and sensor noise) and dSprites
for disentanglement (Riabtsev et al., 2020; Higgins et al., 2017).

Limitations Single-factor stress tests do not cover interactions between multiple
shifts (Koh et al., 2021).

3.5 High-fidelity datasets generated with game engines

Modern game engines (most popular Unity and UE5) deliver photorealistic graphics,
real-time physics and programmatic scene control, making them ideal for large-scale,
richly annotated vision datasets.

Unity-based pipelines Unity3D became popular in academic vision because it
balances an accessible C# scripting interface with a large marketplace of ready-
made assets. SYNTHIA (Ros et al., 2016) was among the first Unity datasets to
target semantic segmentation for self-driving: it recreates a mid-size European city,
then systematically varies weather (sunny, rainy, sunset) and camera yaw/pitch
to generate pixel-perfect labels across seasons and viewpoints. Shortly afterwards,
Virtual KITTI (Richter et al., 2016) cloned the trajectories and sensor layout of
the real KITTI benchmark in a stylised Unity world, enabling direct, one-to-one
comparisons between synthetic and real frames; training DeepLab on both sources
lifted cross-city IoU by more than six percentage points relative to real-only training.

Building on these ideas, Unity released the open-source Perception Toolkit (Dunn
et al., 2021), which wraps photorealistic rendering, physics simulation, and domain-
randomisation primitives behind a no-code graphical interface. The toolkit can
randomise lighting, textures, object poses and camera parameters on a per-frame

3 THEORETICAL FOUNDATION 12

basis while exporting dense annotations—bounding boxes, instance masks, depth,
normals and keypoints—at up to 100 fps on a single GPU. It underpins SynthDet
(Bhattacharyya et al., 2021) (800 k procedurally generated retail-object images) and
FarmVision (Wang et al., 2022) (2 M crop-disease frames). Detectors trained on Syn-
thDet achieve 72.9 mAP on a withheld real supermarket shelf set—matching a base-
line trained on 100 k hand-labelled photos while halving annotation costs—whereas
FarmVision models close a 12 pp F1 gap between laboratory and in-field images by
augmenting the rare-disease classes with synthetic leaves.

Unity pipelines therefore illustrate a recurring pattern: precise control over nuisance
factors (weather, pose, background clutter) plus dense automatic labels yields syn-
thetic corpora that not only reduce manual effort but also improve cross-domain
robustness, especially when real data for certain conditions are scarce or expensive
to collect.

Unreal Engine pipelines Since the release of UE5 the engine ships with the
real-time Lumen global-illumination system 3.6 and Nanite micropolygon geometry
3.6, providing photorealism out of the box (EpicGames, 2022; Karis et al., 2021).
Together with Blueprint visual scripting, C++ extensibility, and the free Quixel
Megascans asset library, UE lets vision researchers build large-scale, physically ac-
curate simulators without deep graphics expertise. However, due to UE5s relatively
recent release date in April 2022, most work done in this field uses its predecessor
UE4. This older version of the engine offered a far lesser degree of realism and work-
flows developed for this version might not be compatible with UE5. Falling Things
(FAT) employs UE4 physics to drop household objects in random six-degree-of-
freedom poses, producing 50 000 RGB-D frames with perfect pose and mask labels;
a Mask R-CNN trained only on FAT attains 96.3AP on real cluttered-table scenes,
less than one percentage point below a model fine-tuned on 4 000 real photographs
(Tremblay et al., 2018). UnrealGT streams colour, depth and instance masks along
user-defined UAV trajectories; detectors trained on its 25 000 synthetic aerial frames
reach 78.2mAP on the real VisDrone benchmark, just 3 pp shy of training on 10 000
hand-labeled images (Pollok et al., 2019). UnrealROX+ decouples virtual sensors
from robot meshes, supports dynamic HDR lighting, and exports additional modal-
ities such as surface normals and optical flow (Gonzalez et al., 2021).

For autonomous driving, the UE-based CARLA simulator has become the standard
robustness test-bed: injecting stochastic rain, fog or low-sun glare into CARLA
scenes reduces ImageNet-initialised object detectors by up to 15 pp AP, whereas
pre-training on CARLA’s 200 000 synthetic frames recovers more than half of that
loss (Dosovitskiy et al., 2017; Wen et al., 2020). These case studies illustrate UE’s
central advantage: photorealistic rendering plus precise control over physics and
sensors yield synthetic corpora that transfer to real-world performance with only
small residual gaps.

3 THEORETICAL FOUNDATION 13

Figure 2: Three of the sensing modalities provided by CARLA. Normal Vision,
ground-truth depth, and ground-truth semantic segmentation. From (Wen et al.,
2020).

Photorealistic and controllable datasets The PUG family uses UE5’s ad-
vanced rendering pipeline to generate over 150 ImageNet-aligned object categories
with exhaustive control over scene variables. Each PUG scene is parameterised by
background environment (urban, rural, indoor), lighting conditions (time of day,
weather effects), camera intrinsics/extrinsics (focal length, viewpoint, tilt) and ob-
ject textures (material reflectance, weathering). Approximately 200k images are ren-
dered at 1024Ö1024 resolution, each annotated with class labels, segmentation masks
and bounding boxes. Evaluations show that ImageNet-pretrained Vision Transform-
ers lose roughly 18 percentage points in top-1 accuracy when tested directly on PUG
versus the standard ImageNet validation set. Remarkably, fine-tuning on just 5%
of PUG images (≈ 10k samples) recovers 11 pp of accuracy and simultaneously re-
duces corruption error on the ImageNet-C benchmark by 3 pp, indicating that small
amounts of targeted synthetic data can substantially improve both in-distribution
performance and robustness to common corruptions (Bordes et al., 2023).

Domain-specific frameworks Beyond generic object categories, several Unreal
Engine-based pipelines target narrow application domains. UnrealFall synthesises
60k MetaHuman videos depicting realistic human falls across diverse indoor settings
(living rooms, kitchens, hospital wards). Each clip varies avatar physique, clothing,
furniture layout and lighting. Action recognition models fine-tuned on UnrealFall
increase real-world fall-detection F1 from 0.71 (trained on limited real footage) to
0.83, reducing false alarms in surveillance systems (Mulero-Pérez et al., 2024).

In urban remote sensing, Turkcan et al. (2023) introduce a UE5 “City Sample”
dataset that renders 50k orthorectified aerial tiles over procedurally generated city
blocks, varying building architecture, road networks, vegetation and seasonal foliage.
Pre-training a Faster R-CNN on City Sample (with synthetic annotations for cars,
pedestrians and road signs) and then fine-tuning on 2k real orthophotos raises mAP
from 45.3 (CARLA pre-training baseline) to 53.1–an improvement of 7.8 pp.

Alternatives Open-source engines such as BlenderProc (Denninger et al., 2020)
and NVISII (Morrical et al., 2021) offer Python APIs and permissive licences for
photorealistic data generation. BlenderProc leverages Blender’s Cycles renderer
and procedurally randomises object placement, materials and post-processing ef-
fects, producing labeled datasets for segmentation and instance recognition. NVISII

3 THEORETICAL FOUNDATION 14

provides GPU-accelerated path tracing with a modular scene graph, enabling rapid
rendering of tens of thousands of labeled frames per hour. These frameworks broaden
access to high-fidelity simulation for researchers without proprietary game-engines.

Collectively, these domain-specific Unreal Engine and open-source pipelines demon-
strate that when synthetic scenes closely mirror real-world physics and visual styles,
models trained or pre-trained on them transfer with minimal performance gaps–often
outperforming purely real-data baselines in scarce-data regimes.

3.6 Unreal Engine 5: Core Functionality and Terminology

Before getting to the implementation of our UE5 plugin and dataset generation
(Section 4), we will provide basic information about the engine, its core features
and terminology. UE5 follows an actor–component paradigm and ships with two
flagship rendering technologies — Lumen global illumination and Nanite virtualised
geometry alongside optional hardware ray-tracing support.

Editor layout The Unreal Editor consists of a central Viewport for 3-D naviga-
tion, an Outliner that hierarchically lists every Actor in the open map, a context-
sensitive Details panel for property editing, and a Content Browser that exposes all
imported assets (meshes, textures, Blueprints, . . .) (Epic Games, 2025a).

Worlds, levels and streaming. A World object represents the top-level simu-
lation context; it contains a persistent level plus an optional set of streaming sub-
levels that are loaded and unloaded on demand via the World Partition system
(EpicGames, 2025).

Actors and components Every placeable entity derives from the base class
AActor. Actors are merely containers for components, e.g. a StaticMeshComponent

for geometry, a LightComponent for illumination, or a CameraComponent for virtual
sensors. Components can be spawned, destroyed or re-parented at runtime, which
our plug-in uses to programmatically change variables like light colors (Epic Games,
2025a).

Static meshes and materials. A static mesh is a read-only triangle buffer stored
in GPU memory (Epic Games, 2025e). Visual appearance is defined by a material,
a node-based shader graph that computes per-pixel base-colour, normal, roughness
and emissive terms. During data generation we vary material instances (e.g. swap
the default material for brushed metal) to enlarge texture diversity without touching
geometry.

3 THEORETICAL FOUNDATION 15

Blueprint visual scripting Blueprints are UE5’s node-based alternative to C++.
They compile to native code but remain editable in the editor, enabling rapid pro-
totyping (Epic Games, 2025b).

Native C++ workflow Performance-critical routines and external-library bind-
ings live in native C++ modules. The Unreal Build Tool (UBT) generates IDE
projects, invokes the Unreal Header Tool to expand the UCLASS, UFUNCTION and
UPROPERTY reflection macros, and compiles shared libraries that the editor can hot-
reload live (Epic Games, 2024).

Fab asset marketplace Fab is Epic’s unified digital-asset store, merging the for-
mer Unreal Engine Marketplace, Quixel Megascans, Sketchfab Store and ArtStation
Marketplace into one catalogue that is searchable directly in the editor. More than
sixty thousand assets—photogrammetry-based meshes, procedural materials, HDRI
skies, MetaHumans, animations, sound effects and full environment packs can be
previewed in-place and imported through a drag-and-drop workflow that automati-
cally creates LODs, collisions and material instances (Epic Games, 2025c).

Lumen real-time global illumination Lumen traces thousands of micro-rays
per pixel against a hierarchical mesh representation and blends the result with
screen-space and probe data, delivering multi-bounce indirect lighting at real-time
framerates (Karis et al., 2021). Because indirect lighting updates on every frame,
effects like sky turbidity or flicker lights can be animated without precomputing
lightmaps.

Nanite virtualised geometry Nanite replaces fixed-LOD meshes with a hier-
archical cluster structure; clusters are culled and rasterised directly in a compute
shader, allowing scenes with billions of triangles while keeping GPU work roughly
proportional to screen pixels (Karis, 2021). This allows for the usage of high-poly
assets, like high-detail scans of real life objects, without the need of manually re-
working them.

Hardware ray tracing On GPUs with dedicated RT cores (NVIDIA RTX, AMD
RDNA2+) UE5 can offload ray-box and ray-triangle tests to hardware, boosting
performance for reflections, shadows and Lumen’s high-quality mode. The feature
is toggled via the Project Settings (Epic Games, 2025d).

These concepts—world/level hierarchy, actor–component model, asset types, and
the modern rendering stack—form the conceptual foundation on which our plugin
operates.

4 METHODOLOGY 16

4 Methodology

4.1 Reference hardware

All performance figures reported for the plugin and dataset were recorded on a
desktop equipped with an Intel Core i7-13700K, 64 GB DDR5-5600 RAM and an
NVIDIA RTX 4090 (24 GB). Absolute timings will vary across systems, but the
relative comparisons between different versions of our plugin remain valid.

4.2 Synthetic–Data Plugin for UE5

4.2.1 Overview

Our plugin encapsulates every step of synthetic–data generation inside UE5 and
therefore removes the need for any external DCC tools or post-processing scripts.
Once the module is enabled in an UE5 project, it can be used to create a “data-
generation game” whose Play button opens a game view that produces images and
metadata rather than gameplay. All configuration is performed with native editor
widgets.

Design goals The plug-in was architected around four guiding principles:

a) In-engine only All dataset logic lives inside the UE5 runtime; no third-party
plug-ins, Python bridges or similar tools are required. This maximises forward-
compatibility with future engine releases and simplifies the initial setup.

b) Render-time efficiency To enable the creation of large datasets, we opti-
mized the rendering process in order to exceed the ≈1 fps throughput reported
by Bordes et al. (2023).

c) Minimal user setup After copying the plug-in into an existing project, the
user immediately gains access to all necessary actors and the custom game
instance, making a first test run possible within minutes.

d) Extensibility While the shipped feature set covers a lot of common vision-
research modalities, the rendering logic is designed in a way that allows for
easy adaptation and modification.

Key functionality

a) Parametric scene assembly For each render cycle it instantiates a user-
specified scene, places one of Nmodel 3-D assets selected from a class-label
table on a pre-selected spot in the scene, applies a material variant and light
colour from enumerated pools, and (optionally) spawns volumetric fog to re-
alise controlled occlusion.

4 METHODOLOGY 17

b) Automatic camera orchestration The camera iterates over a ordered list
of positions to capture

c) Batch image capture. Each view is rasterised at the user-chosen resolu-
tion (e.g. 512×512) with the back buffer diverted directly into an RGBA8
array—avoiding the double render incurred by screenshot method.

d) Metadata export A CSV writer logs the scene ID, model ID, class, material
ID, light ⟨r, g, b, a⟩, camera pose, fog state and output filename for every frame.

e) Combinatorial expansion In its current purpose, the plug-in exhaustively
iterates over the Cartesian product of all parameters per scene, yielding a total
of Nscene × Nmodel × Nmat × Nlight × Ncam Nfog unique images.

These capabilities satisfy the overarching requirement of producing large, richly
annotated datasets with minimal human effort while keeping render times low. The
following subsection recounts our initial Blueprint prototype and the lessons that
motivated a full C++ rewrite.

4.2.2 First iteration

The first working version was implemented exclusively with Blueprints, Unreal En-
gine’s visual-scripting language (Epic Games, 2025b). This allowed functionality to
be sketched quickly without the usage of C++.

Functional scope The prototype already performed (i) scene map loading and
unloading, (ii) placement of 3-D models chosen from a class-label lookup table,
(iii) image capture from a sequence of manually placed TargetPoint coordinates
that were interpreted as virtual camera poses, (iv) optional volumetric fog insertion
for controlled occlusion, and (v) capturing of RGB images.

Performance Running on the reference workstation4.1, the system produced about
one 512× 512-pixel image per second, matching the throughput reported for the
Blueprint-oriented PUG framework (Bordes et al., 2023). Each image was captured
with the HighResScreenshot function, which re-renders the current frame at the
requested resolution.

Identified limitations

a) Readability and maintenance. As node counts increased, Blueprint graphs
became dense; tracing execution paths, adding and modifying code required
significant effort and time.

4 METHODOLOGY 18

b) Metadata output Blueprint offers no function to append data to an ex-
isting file. Generating metadata would therefore incurred high overhead or
demanded custom C++ nodes.

c) Redundant rendering passes the HighResScreenshot function, used to cap-
ture screenshots in blueprint, performs additional render-passes for each frame.
This is necessary when rendering images larger than screen resolution, but,
from our testing, yields no noticeable visual improvements on images at or
below the display resolution.

d) Manual camera placement Users had to place TargetPoints in every scene
and register them in a per-scene array; consistency across scenes was not
enforced and manual effort for the user was unnecessarily increased.

e) Nested-loop overhead The render logic was expressed as nested Blueprint
ForEach loops that iterate over every combination of parameters, while having
to be manually stalled until the asynchronous screenshot function saved a
screenshot, before continuing. Rewriting the algorithm with recursion was
necessary.

Outcome The prototype confirmed that a fully in-engine pipeline is feasible, but
the observed limitations violated the design goals of render-time efficiency and ease
of maintenance. Together with the fact, that the render loop needed to be reim-
plemented in order to remove the nested-loop overhead, the decision was made to
migrate the core logic to C++ and keep Blueprint as a configuration layer. The
resulting architecture is detailed in Section 4.2.3.

4.2.3 Final Implementation

Configuration All configuration logic is implemented in Blueprint and defined
once, then reused for every scene that the plugin renders. A dedicated ConfigActor

is placed in the initial world; its parameters can be edited directly in the Unreal
Editor UI. To enable dataset generation the user must perform only two additional
steps: (i) set the provided CustomGameInstance class in the project settings, and
(ii) create a new level that contains a SpawnPoint and the DatasetRenderActor.
After at least one camera pose has been specified in the configuration, launching the
project from the start level triggers automated rendering of all images.

4 METHODOLOGY 19

Figure 3: Graphical interface of the ConfigActor with all available parameters.

Final renderer functionality The Blueprint prototype implemented the dataset
generation as a set of nested ForEach loops. The C++ implementation replaces
those loops with a event-driven state machine that lives in a single method. Index
counters track the different variables; each time the manager receives a callback that
the screenshot has been successfully captured, it advances the counters, decides
which parameter to change next, performs the associated mutation in the scene,
and schedules the following screenshot request. This design keeps the game thread
responsive, and eliminates Blueprint overhead. It also provides an easy way to
change or expand the plugins functionality, as all methods that modify variables are
individually handled there.

Automatic camera generation After an actor is spawned, the capture-manager
computes its bounding sphere radius r and the active camera’s field of view θ.
Using only the inner 256px of a 512px frame, the effective half-FOV is θcrop =
0.5 θ (256/512). The required camera distance is d = 1.05 r/ tan θcrop, where the 5%
factor prevents near-plane clipping. For each user direction vector vi the camera
location is ci = pobj + d v̂i and the pawn’s view is aligned with lookat(ci,pobj),
keeping the object centred across models of different size.

Frame-delay capture After every change in a scene (spawn, material swap, fog
toggle, camera move) the engine, in theory, must produce at least one new frame
before the back buffer contains the updated image. However, due to the nature
of lumen, it is necessary to wait a multitude of frames for the indirect lighting in
the scene to adjust to color changes. A timer of ∆t = 0.05 s (based on measured

4 METHODOLOGY 20

performance) is therefore set before requesting a new screenshot. Higher frame times
or lower frame rates would require proportionally longer delays.

Performance A move from Blueprint to C++ plus the elimination of the redun-
dant re-render steps (see subsubsection 4.2.2) reduced the mean per-frame time from
≈ 1.00 s to ≈ 0.06 s. The speed-up factor is therefore

1.00 s

0.11 s
≈ 16.6,

i.e. 16.6 times faster than both our prototype and the Bordes et al. (2023) reference
implementation (Note that render time can vary depending on complexity and size
of actors and materials being loaded. This number is the average of a few thousand
selected samples from our dataset.)

Limitations The current frame-delay mechanism (section 4.2.3) relies on a fixed
50 ms timer that was hand-tuned to the slowest scene in our test set. This is a stop-
gap rather than a general solution: larger or more complex datasets will require a
routine that samples recent frame times, fps and potentially other factors and adjusts
the delay dynamically. This would additionally boost performance, since the render
speed would not be capped by the lowest performer. In addition, the plug-in has
been developed and profiled only on a Windows desktop; a stand-alone Linux build
should work, but was not tested and may expose platform-specific differences in the
screenshot pipeline.

Overall, migrating the control logic from nested Blueprint loops to a C++ state
machine improves adaptability, removes VM overhead, and lets the engine tick nor-
mally between captures—meeting the efficiency and maintainability goals defined in
Section4.2.1.

4.3 Synthetic OOD Dataset

Motivation and Scope The UE5 plugin developed for this thesis is intended not
only as a reproducible baseline for future work but also as a data–generation tool
for this thesis. Following the guiding principles of the PUG family of synthetic, pho-
torealistic datasets—namely high rendering realism, explicit factor control, and full
factor–label availability (Bordes et al., 2023)—the goal was to construct a smaller,
fully controlled out-of-distribution (OOD) benchmark that focuses on ImageNet-1k
classes while relying exclusively on free assets obtained from the Fab (Epic Games)
marketplace.

Design Decisions PUG:Animals is built as the complete Cartesian product of
all available factors, whereas PUG:ImageNet varies one factor at a time to keep
its class coverage broad but image count moderate (Bordes et al., 2023). Initial

4 METHODOLOGY 21

scoping showed that the number and quality of free ImageNet 1k–compatible 3-D
assets is an order of magnitude lower than the 724 assets used in PUG:ImageNet;
hence matching the original scale of 88 328 images proved infeasible. Adopting
the PUG:Animals approach, we prioritised factor completeness over class breadth,
yielding a dataset in which all factor combinations are rendered for a small, balanced
set of classes.

Factor Space and Rendering Pipeline Let S (scenes), C (object classes), R
(meshes per class), M (materials), L (light colours), V (camera viewpoints), and O
(fog state) denote the controllable factors. The dataset is the Cartesian product

D = S × C ×R×M×L× V ×O,

instantiated as:

� |S| = 8 scenes: city fountain, city underpass, salt plains, Sahara desert, desert
with foliage, Korean temple, African slate quarry, demo gallery ;

� |C| = 7 classes: dial phone, desk, cup, banana, hammer, umbrella, chest ;

� |R| = 4 cleaned meshes per class;

� |M| = 6 materials: default, checkerboard, white, yellow car-paint, neon-green,
brushed-metal;

� |L| = 4 light colours: white, red, green, blue;

� |V| = 8 calibrated camera poses (front, back, left, right, plus four elevated
obliques);

� |O| = 2 fog states: on/off.

The total image count is therefore

8× 7× 4× 6× 4× 8× 2 = 86016.

All images are rendered at 512x512 px resolution with UE5 hardware ray tracing
enabled and motion blur and auto exposure disabled. Detailed information about
each variable is stored in the accompanying metadata CSV-file.

4 METHODOLOGY 22

Figure 4: A random collection of images from our dataset

Practical Obstacles

a) Asset price: considering the scope of a bachelors thesis, buying expensive
assets is not an option. Therefore the highest quality assets as used by Bordes
et al. (2023) where not accessible.

b) Asset scarcity: five usable meshes existed for only three of our classes, so
every class was capped at four meshes to keep balance.

c) Asset integrity: several promising assets were incompatible with UE5.4 or
required extensive repair in Blender, which exceeded project time constraints;

d) Semantic collapse: some objects (e. g. oranges) became unrecognizable after
material or lighting changes were applied and were therefore excluded from the
dataset.

Limitations The benchmark covers just seven object categories with only four
different models in each, leading to a noticeable lack in class diversity. Furthermore

4 METHODOLOGY 23

it also lacks pose articulation. Context-object correlations inside a scene remain
constant, and photometric variations are limited to global colour shifts and fog.
Future iterations should enlarge class diversity.

Summary Despite its modest class set, the dataset delivers 86016 photorealis-
tic OOD images with exhaustive factor labels, demonstrating that a high-quality
synthetic dataset can be assembled by only using free assets.

4.4 Convolutional Backbones

We benchmark five widely used CNN backbones, all obtained from the timm li-
brary (Wightman, 2019). For every network we load the ImageNet-1k pretrained
weights in Python.

resnet50 ResNet-50 introduces identity skip connections to enable very deep net-
works without vanishing gradients (He et al., 2016). Its four-stage design (3Ö 3
convolutions plus bottleneck blocks) totals ∼ 25.6 M parameters.

resnet101 A deeper member of the ResNet family with 101 layers, retaining the
same residual building-block design while roughly doubling depth and parameters
(∼ 44.5 M) (He et al., 2016).

densenet201 DenseNet-201 links each layer to every preceding layer, boosting
feature reuse and gradient flow while keeping the parameter count modest (∼ 20.0
M) (Huang et al., 2017).

convnext base ConvNeXt-Base modernises standard CNN design (large-kernel
depthwise convs, inverted bottlenecks, GELU, LayerNorm) to follow the scaling
trends of Vision Transformers while retaining convolutional efficiency. It has ∼ 88
M parameters and uses the strong data-augmentation recipe from Facebook AI
Research (Liu et al., 2022).

convnext large mlp A larger (∼ 198 M parameters) ConvNeXt variant that
widens all stages and replaces the final global pooling with a lightweight MLP head,
yielding stronger performance on high-resolution inputs while preserving the core
architectural principles of ConvNeXt (Liu et al., 2022).

4.5 Vision-Transformer backbones

We benchmark three widely used ViT backbones, all are loaded from timm (Wightman,
2019) and pretrained on ImageNet-1k.

4 METHODOLOGY 24

vit base patch16 224 The original Vision Transformer “Base/16” configuration
splits a 224×224 image into 14×14 non-overlapping 16×16 patches, projects them
to a 768-D embedding, and processes the resulting sequence with 12 encoder blocks
and 12-head self-attention (Dosovitskiy et al., 2021). At ∼ 86 M parameters and
∼ 17 GFLOPs, it sets a strong baseline that matches ResNet-152 accuracy while
retaining a relatively modest compute budget.

vit large patch16 224 The “Large/16” variant deepens the network to 24 en-
coder blocks, widens the hidden size to 1024 and keeps 16-head attention, pushing
capacity to ∼ 307 M parameters and ∼ 55 GFLOPs (Dosovitskiy et al., 2021). Its
higher model expressiveness improves ImageNet top-1 to ≈ 85% and often yields
better transfer learning performance on data-rich tasks such as video-classification
or large-scale segmentation.

swin base patch4 window7 224 Swin Transformer-Base introduces a hierar-
chical architecture with shifted window (SWIN) self-attention: images are first par-
titioned into 4×4 patches, and attention is computed within 7×7 windows that shift
between layers to enable cross-window interaction (Liu et al., 2021). With ∼ 88 M
parameters and ∼ 15 GFLOPs, it combines ViT-level accuracy (≈ 83% ImageNet
top-1) with linear computational scaling in image size, making it well suited for
dense prediction tasks such as detection and semantic segmentation.

4.6 Evaluation Methods

Because our test set is a synthetic OOD benchmark with |C| = 7 balanced ImageNet-
1k classes (Section 4.3), we report two complementary metrics:

1. Top-1 accuracy — measures absolute correctness and thus explains how
many images the model classified correctly (Section 4.6.1).

2. AUC — evaluates the ability to rank the true class higher than all others
across all decision thresholds, providing insight into confidence calibration and
error trade-offs under distribution shift (Section 4.6.2).

Together they characterise both point-estimate accuracy and threshold-independent
ranking quality, which is critical when models encounter OOD factors such as novel
lighting, material or fog settings that differ from ImageNet.

4.6.1 Top-1 accuracy

Definition Top-1 accuracy is simply the proportion of predictions a model gets
right:

AccTop-1 =
number of correct predictions

total number of predictions
.

4 METHODOLOGY 25

Why it is appropriate Top-1 has been the official leaderboard metric of the
ILSVRC since 2012, enabling direct comparison with the ImageNet literature (Rus-
sakovsky et al., 2015) and since every class in our dataset is equally represented,
accuracy provides a good metric for comparison.

4.6.2 Rejection-aware AUC

Why a modified AUC is needed Each network still predicts over the full 1 000
ImageNet classes, but our OOD benchmark contains only K = 7 in-scope categories
(Section 4.3). A straight macro–AUC would treat high confidence in any out-of-
scope class as merely a low but valid score for all in-scope classes and can therefore
overestimate ranking quality. To penalise such open-set mistakes we adopt the
rejection-aware variant inspired by the reject-option framework of Chow (1970).

Definition Let pi,k be the soft-max probability that sample i belongs to ImageNet
class k. We construct aK-dimensional score vector p̃i for the seven evaluation classes
as follows:

p̃i =


(
pi,c1 , . . . , pi,cK

)
/

K∑
j=1

pi,cj , if argmaxk pi,k ∈ {c1, . . . , cK},

1

K
1, otherwise.

The first branch keeps the model’s original probabilities and renormalises them to
sum to one; the second branch assigns the uniform vector 1

K
1 to any sample whose

top-1 prediction is not in the evaluation set, i.e. a rejection.

For every class ck we then compute the usual one-vs-rest ROC and its area, and
finally take the macro average:

AUCrej =
1

K

K∑
k=1

AUC
(
p̃:,k

)
,

Interpretation A sample that the model rejects contributes the same rank as
a random guess (AUC = 0.5 in the binary case), so abstentions can only re-
duce—or leave unchanged—the overall score. Because the metric is still threshold-
independent and monotone, it complements Top-1 accuracy by revealing whether
the model’s confidence ordering degrades under OOD factors such as unusual light-
ing, materials, or fog (Ovadia and et al., 2019). When all predictions fall inside
the seven classes the formula collapses to the textbook macro-AUC (Hand and Till,
2001; Fawcett, 2006).

5 EVALUATION 26

5 Evaluation

Images are center cropped, resized from 512x512 to 224x244 and then normalized
using ImageNet normalization.

5.1 overall Performance

Model Top-1 AUC
ResNet-50 13.06% 0.623
ResNet-101 23.04% 0.707
DenseNet-201 12.17% 0.616
ConvNeXt-Base 23.53% 0.709
ConvNeXt-Large-MLP 37.51% 0.806
ViT-B/16 17.32% 0.659
ViT-L/16 25.53% 0.724
Swin-B 28.28% 0.744

Table 3: Top-1 accuracy and rejection-aware AUC on our OOD dataset.

Although our dataset (86,016 images) is close in size to PUG:ImageNet (88,328
images), (Bordes et al., 2023) it is more challenging because each image here is drawn
from the full Cartesian product of eight backgrounds, four meshes, six materials, four
light colours, eight camera poses, and two fog states. In contrast, PUG:ImageNet
varies at most one factor at a time(Bordes et al., 2023). As a result, a direct
performance comparison is hard to make.

Architectural trends Three clear patterns emerge from Table 3:

� Classical CNNs (ResNet-50/101, DenseNet-201) exhibit the steepest drop
(12–23% Top-1, AUC 0.616–0.707). Prior work has shown that ImageNet-
trained CNNs rely heavily on local texture cues, which our material and light-
ing variations systematically disrupt(Geirhos and et al., 2020).

� Modern ConvNets (ConvNeXt) outperform older CNNs: ConvNeXt-Large
surpasses ResNet-101 by 14 percentage points in Top-1 and by 0.10 in AUC.
This aligns with evidence that wider receptive fields and stronger regulariza-
tion enhance robustness to distribution shifts(Liu et al., 2022).

� Vision Transformers. ViT-B/16 and ViT-L/16 lag behind ConvNeXt-Large
in accuracy but achieve competitive AUCs (0.659 vs. 0.724), suggesting that
their uncertainty estimates degrade more gracefully under compound shifts.
Scaling ViT-B to ViT-L adds 8 percentage points Top-1 but still falls 12 per-
centage points short of ConvNeXt-Large, indicating that patch embeddings
alone do not fully immunize against the shape-texture conflicts we introduce.

5 EVALUATION 27

The hybrid Swin-B (28.3%) lies between ConvNeXt-Base and ConvNeXt-
Large, supporting the finding that localized attention windows plus hierar-
chical feature pooling improve shift robustness(Liu et al., 2021).

Accuracy-AUC relationship Across all eight models, higher Top-1 strongly cor-
relates with higher AUC, but with a shallow slope: for example, DenseNet-201
(12.2% Top-1, 0.616 AUC) and ResNet-50 (13.1% Top-1, 0.623 AUC) differ by only
0.007 in AUC despite a 0.9 percentage point gap in accuracy. This indicates that
models become both less accurate and less confident under simultaneous shifts,
though their relative calibration differences persist.

Comparison with ImageNet-1k baselines All networks achieve roughly 80–
85% Top-1 on ImageNet-1k (e.g. ResNet-50: 80.4%, ConvNeXt-Base: 83.8%, Swin-
B: 83.6%)(Wightman et al., 2021; Liu et al., 2022, 2021). Here, absolute drops range
from 43 percentage points (ConvNeXt-Large) to 68 percentage points (DenseNet-
201), reinforcing that in-distribution accuracy is a weak predictor of OOD robust-
ness(Taori et al., 2020).

Interpreting failures via dataset factors Two key insights arise:

1. Multiplicative shift severity By varying six factors jointly, texture-biased
CNNs fail catastrophically when material and lighting perturbations coincide
with viewpoint and context changes. Transformers handle viewpoint shifts
more gracefully but remain vulnerable when extreme material changes corrupt
shape-texture cues.

2. Capacity versus inductive bias Increasing model capacity helps (ViT-L
vs. ViT-B; ConvNeXt-Large vs. ConvNeXt-Base), yet ConvNeXt-Large still
outperforms the larger ViT-L. This suggests that convolutional inductive bi-
ases—hierarchical pooling and local spatial smoothing—remain valuable in
severe OOD regimes(Naseer and et al., 2021).

5.2 Baseline Comparison

Before turning to the full factor analysis we first verify that the 3D meshes and
overall images are recognisable when only minimal variables are applied. We there-
fore extract a frontal + background-only slice in which every image is rendered from
the canonical front view, with the default material, white light, and no fog; the sole
varying factor is the choice of one of the eight scene backgrounds. With four meshes
per class this yields 4 × 8 = 32 images for each of the seven classes, or 224 images
in total. If there is no different underlying issue with the dataset, this should in
theory increase accuracy. For reference, the ImageNet-1k validation set provides 50
images per class (Russakovsky et al., 2015). Our per-class sample size is thus of the

5 EVALUATION 28

same order, and any minor increase in sampling variance is unlikely to change the
overall conclusion. Table 4 reports Top-1 accuracy on this slice; each model achieves
substantially higher accuracy here than in Table 3, confirming that the severe drop
in the full benchmark must be attributed to the additional OOD factors (viewpoint,
material, lighting, fog), not to deficiencies in the 3D geometry.

Model Top-1 Accuracy
ResNet-50 36.6%
ResNet-101 50.0%
DenseNet-201 29.0%
ConvNeXt-Base 56.7%
ConvNeXt-Large-MLP 70.5%
ViT-B/16 45.5%
ViT-L/16 63.4%
Swin-B 57.1%

Table 4: Top-1 accuracy on the frontal + background-only slice. Each model is
evaluated on 224 images (32 per class).

5.3 Factor Analysis

In this subsection, we examine how individual generative variables—background,
material, lighting, camera pose, and fog—affect recognition performance. Rather
than presenting results for all eight architectures, we focus on ConvNeXt-Large,
which achieves the highest overall OOD Top-1 accuracy (37.5%) and exhibits a
smooth performance profile across classes. By selecting the strongest model, we
ensure that any observed degradation under a given factor is also present (and often
more severe) in weaker models. If a particular effect is exceptionally pronounced
in a different model, we will note it explicitly (The figures for all other models can
be found in the appendix A). The following sections present per-factor breakdowns
and discuss how each variable independently contributes to the accuracy.

5.3.1 Material

Figure 5 shows the Top-1 accuracy of ConvNeXt-Large on the full OOD dataset,
broken down by material. Each bar corresponds to all test images rendered with
that material—in other words, 86,016 ÷ 6 = 14,336 images per material—covering
every combination of background (8), class (7), mesh (4), light colour (4), camera
pose (8), and fog state (2).

� Default: the original texture and colour of each mesh,

� CheckerMaterial: a high-contrast black and white checkerboard covering
the entire object,

5 EVALUATION 29

� YellowCarPaint: a smooth, glossy yellow finish,

� NeonGreen: a uniformly bright green coating,

� BrushedMetal: a matte metallic sheen with fine directional noise,

� White: a plain white surface.

Figure 5: Per-material Top-1 accuracy (ConvNeXt-Large). Each bar corresponds to
14 336 test images.

1. Default material yields the highest accuracy (49%). When meshes
use their original, photorealistic textures, ConvNeXt-Large correctly classifies
almost half of the samples despite changes in background, viewpoint, lighting,
and fog. This indicates the network’s learned features transfer best when
texture remains close to the training distribution.

2. Checkerboard pattern causes the steepest drop (25%). Applying a
high-contrast checkerboard destroys almost all object-specific texture cues (e.g.
wood grain, metal details), forcing the model to rely purely on shape. The
fall to 25% Top-1 shows that even a high-capacity ConvNet remains heavily
texture-biased when confronted with a strongly non-natural surface pattern
(cf. Geirhos and et al., 2020).

5 EVALUATION 30

3. Glossy and uniform colours occupy an intermediate regime. Yel-
lowCarPaint (42%), NeonGreen (39%), and White (38%) all replace natural
texture with smooth, uniform surfaces. Despite retaining clear object silhou-
ettes, these finishes still degrade recognition relative to the default texture (a
drop of 7–11 percentage points). The fact that accuracy remains in the high
30%–40% range indicates that the model can partially recover shape-based
signals even under drastic colour changes, but such non-natural colours are
still a significant departure from the training distribution.

4. BrushedMetal causes moderate degradation (32%). BrushedMetal’s
fine directional noise introduces some reflections and accuracy on this finish is
only 32%—higher than Checkerboard but lower than the uniform colours.

Overall, material alone accounts for a 24-point swing in Top-1 accuracy (from 49%
with Default down to 25% with Checkerboard), even though background, viewpoint,
lighting, and fog still vary. In other words, texture and reflectance changes impose
a far more severe drop than background shifts alone (cf. Table 4), confirming that
ConvNeXt-Large—and likely other architectures—remains heavily texture-biased
under extreme OOD conditions.

5.3.2 Camera Position

Figure 6 shows ConvNeXt-Large’s Top-1 accuracy on the full OOD dataset, broken
down by camera position. Each bar aggregates all 86,016 test images that share
the same camera translation vector—namely 86,016 ÷ 8 = 10,752 images per posi-
tion—covering every combination of background, class, mesh, material, light colour,
and fog state. From left to right, the eight positions (relative to the object) are:

� Left (1, 0, 0.2)

� Right (-1, 0, 0.2)

� Front (0, 1, 0.2)

� Back (0, -1, 0.2)

� Back Top Left (0.5, -0.5, 1)

� Front Top Left (0.5, 0.5, 1)

� Back Top Right (-0.5, -0.5, 1)

� Front Top Right (-0.5, 0.5, 1)

5 EVALUATION 31

Figure 6: Per-camera-position Top-1 accuracy (ConvNeXt-Large). Each bar aggre-
gates 10,752 test images (all images taken from that camera position across all other
factors).

The main observations are:

1. Front view yields the highest accuracy (61%). When the camera faces
the object directly at (0, 1, 0.2), ConvNeXt-Large correctly classifies 61%
of the samples, despite variation in background, material, lighting, and fog.
This is expected, since the frontal pose most closely resembles typical training
images.

2. Back view also performs well (54%). Placing the camera directly behind
the object at (0, -1, 0.2) preserves a coherent silhouette, and accuracy
remains at 54%, indicating that a back-facing view is less detrimental than
oblique or elevated angles.

3. Oblique and elevated positions degrade accuracy. The lowest accuracy
occurs for the left position (1, 0, 0.2) (28%) and the right position (-1,

0, 0.2) (27%), where the object’s frontal features are almost completely
occluded. Similarly, the “Back Top Left” position (0.5, -0.5, 1) yields
only 30%, and “Back Top Right” (-0.5, -0.5, 1) yields 29%. Elevated

5 EVALUATION 32

front views—“Front Top Left” (0.5, 0.5, 1) at 40% and “Front Top Right”
(-0.5, 0.5, 1) at 34%—also underperform the purely horizontal front view,
showing that height offsets harm recognition even when the camera remains
aligned with the object’s front.

4. Symmetry between left/right positions. Side views on the horizontal
plane yield nearly identical performance: left at 28% and right at 27%. This
indicates no significant bias toward one lateral direction, confirming that the
model’s performance depends primarily on how much of the object’s salient
features are visible rather than any inherent asymmetry.

In summary, camera poses that preserve a clear, frontal or rear silhouette (Front and
Back) maintain relatively high accuracy, while side and elevated angles substantially
reduce performance. This demonstrates that viewpoint changes—particularly those
that obscure the object’s most discriminative faces—are a major contributor to the
overall OOD drop, reinforcing the need for models that capture three-dimensional
shape information robustly under diverse viewpoints.

5.3.3 Light Color

Figure 7 shows ConvNeXt-Large’s Top-1 accuracy on the full OOD dataset, broken
down by light colour. Each bar aggregates all 86,016 test images that share the
same light colour—namely 86,016 ÷ 4 = 21,504 images per colour—covering every
combination of background, class, mesh, material, camera position, and fog state.
From left to right, the four light colours are:

� RGB(255,255,255) (white light),

� RGB(255,0,0) (red light),

� RGB(0,255,0) (green light),

� RGB(0,0,255) (blue light).

5 EVALUATION 33

Figure 7: Per-light-colour Top-1 accuracy (ConvNeXt-Large). Each bar aggregates
21,504 test images (all images illuminated by that colour across all other factors).

The main observations are:

1. White light yields the highest accuracy (40%). Under standard white
illumination (255,255,255), ConvNeXt-Large correctly classifies 40% of the
samples, despite variation in background, material, camera pose, and fog. This
suggests that the network’s features transfer most effectively when the lighting
closely matches natural, balanced conditions.

2. Green light performs nearly as well (38%). Illuminating the scene with
(0,255,0) causes a drop of 2 percentage points in accuracy compared to white
light, indicating that moderate shifts toward a single colour channel can be
partially tolerated by the model’s learned representations.

3. Red light causes a slightly larger drop (37%). Under (255,0,0), accu-
racy further decreases to 37%. The heavier skew toward the red channel dis-
rupts object texture and shading cues more than green light does, suggesting
that the model relies on a balanced RGB distribution for reliable recognition.

4. Blue light has the strongest adverse effect (35%). When illuminated
by (0,0,255), accuracy falls to 35%, the lowest among the four colours. This

5 EVALUATION 34

indicates that down-weighting both red and green channels most severely dis-
torts natural object appearance, making classification particularly challenging.

Most architectures follow this trend, with white light giving the highest accuracy and
blue light the lowest. An exception is Swin-B: on that model, red illumination yields
30% accuracy whereas white light yields only 29%, indicating a reversed preference
under its learned features.

Overall, light colour alone accounts for a 5-point swing in Top-1 accuracy (from 40%
under white light down to 35% under blue light) for ConvNeXt-Large, even though
background, material, camera pose, and fog still vary. This confirms that drastic
shifts in illumination colour degrade performance and motivates further exploration.

5.3.4 Background (Level)

Figure 8 shows ConvNeXt-Large’s Top-1 accuracy on the full OOD dataset, broken
down by level (background scene). Each bar aggregates all 86 016 test images that
share the same level—namely 86,016÷ 8 = 10,752 images per level—covering every
combination of class, mesh, material, camera position, light color, and fog state.
From left to right, the eight levels (with their main characteristics) are:

� UtopiaCityFountain: a city plaza with a central fountain and complex archi-
tecture and lighting.

� UtopiaCityUnderpass: an urban underpass with detailed geometry, mixed
shadows, and artificial lighting.

� QuarrySlate: an open-air slate quarry with uneven stone surfaces and natural
shadows.

� Demo gallery: an open space with a wall to one side and the object on a small
podest, unique lighting.

� Sahara Desert: a barren desert map with rolling dunes and minimal visual
clutter.

� Salt Plane: an endless flat plane of uniform salt-colored ground and sparse
horizon.

� Korean Temple: a courtyard in front of a traditional temple, featuring ornate
structures and varied shadows.

� Desert Dunes Foliage: a desert terrain similar to Sahara Desert but with
scattered foliage and occasional vegetation.

5 EVALUATION 35

Figure 8: Per-level Top-1 accuracy (ConvNeXt-Large). Each bar aggregates 10 752
test images (all images taken in that level across all other factors).

Several observations emerge:

1. Highest accuracy on open deserts with foliage and dunes (41–42%)
ConvNeXt-Large attains its best performance on Desert Dunes Foliage (41%)
and Sahara Desert (42%), likely because these scenes lack complex occluders
and present clear object silhouettes against a largely uniform background.

2. Moderate performance on salt flats and temple courtyard (39–40%)
On Salt Plane, accuracy is 39%, reflecting the challenge of a completely fea-
tureless ground plane that removes contextual cues. Korean Temple yields
40%, indicating that while the ornate architecture introduces clutter, the tem-
ple’s structured geometry and lighting still preserve recognizable object bound-
aries.

3. Lower accuracy in complex scenes (32–37%) Quarry Slate (32%) and
UtopiaCityFountain (33%) produce the worst accuracies, as uneven surfaces,
irregular shadows, and complex background textures compete with the ob-
ject’s appearance. Demo gallery (37%) and UtopiaCityUnderpass (35%) fall
in between: lighting in Demo gallery is simpler than urban underpass shadows
in UtopiaCityUnderpass, leading to relatively higher performance.

5 EVALUATION 36

4. ConvNeXt-Large is relatively balanced The accuracy range across all
eight levels spans only 10 percentage points (32–42%), demonstrating that this
model’s learned features generalize more uniformly across diverse backgrounds.
By contrast, most other architectures exhibit more pronounced spikes—often
achieving unusually high accuracy on Sahara Desert or Salt Plane—while suf-
fering larger drops in cluttered urban or slate quarry scenes. These spikes and
drops indicate that weaker models rely more heavily on scene simplicity or
uniformity.

In summary, background complexity and clutter significantly affect recognition: bar-
ren or foliage-dotted deserts allow the model to rely on clean silhouettes, whereas
urban underpasses, quarry environments, and indoor galleries introduce textures and
shadows that compete with object features. ConvNeXt-Large’s relatively small vari-
ance in accuracy across levels suggests it learns more robust background-invariant
representations compared to other models, which show stronger sensitivity to specific
scenes.

5.3.5 Fog

Figure 9 shows ConvNeXt-Large’s Top-1 accuracy on the full OOD dataset, broken
down by the presence or absence of volumetric fog. Since fog is a binary toggle,
each of the 86,016 test images exists in two versions—one without fog and one with
fog—yielding 86,016÷2 = 43,008 images. Despite adding a potentially confounding
visual effect, every model—including ConvNeXt-Large—performs better when fog
is enabled.

5 EVALUATION 37

Figure 9: Top-1 accuracy with and without fog (ConvNeXt-Large). Each bar aggre-
gates 43,008 test images (all images sharing that fog setting across all other factors).

In particular, ConvNeXt-Large’s accuracy rises from approximately 36% without
fog to around 40% when fog is present. We hypothesize that this counterintuitive
improvement occurs because fog effectively blurs and desaturates the distant back-
ground, thereby reducing background clutter and color distractions. As a result, the
object—being the closest element to the camera—stands out more strongly in its sil-
houette. Under heavy fog, fine-grained background textures and lighting variations
become less salient, forcing the network to rely more on coarse shape and boundary
cues. This shift towards silhouette-based recognition appears to benefit all archi-
tectures in our benchmark, since they were trained on natural images where object
shapes are often delineated against relatively uncluttered backgrounds. Thus, fog
acts as a form of “background simplification,” improving performance even though
it occludes some object detail. One main concern is, that the perceived fog density
in a scene is tied to the lighting inside of it. While every image uses the same fog
density settings, differences in lighting lead to some instances where the fog barely
obscures the object but noticeably obscures the background, and others where the
image is almost fully concealed, with only a faint silhouette of the object visible.

Because fog is the only factor toggled in this experiment, the accuracy gain could
demonstrate that reducing background complexity can sometimes be more beneficial
than preserving full object fidelity, although this hypothesis requires further testing.

6 DISCUSSION 38

6 Discussion

6.1 Key Findings

Our evaluation shows that even state-of-the-art architectures trained on ImageNet-
1k suffer dramatic performance drops when exposed to the Cartesian product of six
generative factors (background, material, light colour, camera pose, fog, and mesh
variation). No model approaches in-distribution accuracy, and the best performer—ConvNeXt-
Large—achieves only 37.5% Top-1 on the OOD dataset (Table 3). This gap of
roughly 45-50 percentage points relative to standard ImageNet-1k validation scores
(80-85%) highlights the extreme difficulty of our benchmark compared to prior
single-factor synthetic datasets like PUG:ImageNet, where Top-1 accuracies typi-
cally remain above 50% for similar architectures (Bordes et al., 2023).

Across all eight models, accuracy and rejection-aware AUC track closely: higher
Top-1 correlates with higher AUCRA, but improvements in calibration are modest
compared to gains in accuracy. Classical CNNs (ResNet-50/101, DenseNet-201) suf-
fer the steepest collapse (12-23% Top-1, AUC 0.616-0.707), reaffirming their strong
texture bias (Geirhos and et al., 2020). Modern ConvNets (ConvNeXt) outper-
form older CNNs by 10-14 percentage points in Top-1 and 0.10 in AUCRA, demon-
strating that wider receptive fields and stronger regularization confer better robust-
ness to joint distribution shifts (Liu et al., 2022). Vision Transformers (ViT-B/16,
ViT-L/16) exhibit intermediate accuracy (17-26%) but competitive AUCRA (0.659-
0.724), indicating more reliable uncertainty estimates even as Top-1 remains lower
than ConvNeXt-Large. The hybrid Swin-B (28%, AUCRA 0.744) further illustrates
that hierarchical attention can mitigate some view- and context-related failures (Liu
et al., 2021).

Our factor-wise breakdowns reveal that material changes alone can induce a 24
percentage-point swing in Top-1 (from 49% with ”Default” textures down to 25%
with ”Checkerboard”; Figure 5), and that extreme viewpoint shifts (e.g., side el-
evations) reduce accuracy from 61% (frontal) to 27-34% (side or elevated views;
Figure 6). Light-colour variations cause a smaller but still significant drop (40%
under white to 35% under blue; Figure 7), while background complexity yields a 10
point spread (32% in cluttered scenes to 42% in open deserts; Figure 8). Finally,
the presence of fog unexpectedly improves performance (36% without fog vs. 40%
with fog; Figure 9), supporting the notion that occluding background clutter can
enhance silhouette-based recognition under severe OOD conditions.

Together, these results confirm that compounding multiple shifts overwhelms even
the most advanced convolutional and transformer architectures. In-distribution ac-
curacy proves a poor predictor of OOD robustness, and no single model fully miti-
gates simultaneous perturbations along texture, illumination, viewpoint, and context
axes. The subsequent sections will analyse each factor’s interaction effects in greater
detail.

6 DISCUSSION 39

6.1.1 Texture Bias and Material Effects

Material variations produce the largest single-factor performance swings in our
benchmark. Figure 5 shows that ConvNeXt-Large’s Top-1 accuracy drops from
49% with the “Default” textures to 25% with the “Checkerboard” pattern—a 24
percentage-point decline—even though background, viewpoint, lighting, and fog
continue to vary. The checkerboard pattern replaces all natural surface cues (for
example, wood grain or metal finish) with a high-contrast grid, forcing the net-
work to rely exclusively on object shape. The severe decline confirms that even
a high-capacity ConvNet remains heavily biased toward texture cues, in line with
prior work demonstrating that ImageNet-trained CNNs prioritize texture over shape
(Geirhos and et al., 2020).

Uniform colour treatments (YellowCarPaint at 42%, NeonGreen at 39% and White
at 38%) also degrade accuracy relative to the default textures, but to a lesser ex-
tent. These solid surfaces preserve object outlines while eliminating fine texture
details. The fact that ConvNeXt-Large maintains nearly 40% accuracy under uni-
form colours indicates that shape information alone can partially support recogni-
tion when texture is unavailable. However, the 7–10 percentage-point gap versus
the default condition demonstrates that trained features still rely on natural texture
statistics.

Together, these results confirm that material changes reveal a fundamental texture
bias: most architectures achieve their highest accuracy when natural surface textures
are preserved, and they perform worst when textures are replaced by non-natural
patterns. Even Vision Transformers strongly exhibit pattern (Figures 101112), in-
dicating that patch-based tokenization does not eliminate texture reliance (Naseer
and et al., 2021). These findings suggest that future robust models must incorpo-
rate mechanisms to disentangle shape from texture or to learn more shape-focused
representations under extreme surface perturbations.

6.1.2 Viewpoint Sensitivity

Camera pose exerts a strong influence on recognition performance, as Figure 6 il-
lustrates. ConvNeXt-Large’s Top-1 accuracy is highest when the object is viewed
head-on (Front: 61%) and directly from behind (Back: 54%), but it falls sharply
when the camera moves to lateral or elevated angles - this is a behavior displayed by
by all tested models. Side views (Left: 28%, Right: 27%) yield the lowest accura-
cies, since key frontal features are largely occluded. Elevation exacerbates this effect:
“Back Top Left” (30%) and “Back Top Right” (29%) underperform the purely hor-
izontal back view, while “Front Top Left” (40%) and “Front Top Right” (34%) still
lag behind the horizontal front pose.

These results indicate that models trained on ImageNet-1k rely heavily on canonical,
frontal perspectives and struggle to generalize when salient object faces are partially
or fully hidden. The back view retains a coherent silhouette, explaining why accu-
racy remains above 50%. By contrast, side views disrupt the typical alignment of

6 DISCUSSION 40

object features, forcing the network to infer object identity from less familiar silhou-
ettes. Elevated poses introduce additional occlusion of horizontal details and alter
shading patterns, further degrading performance.

Our findings align with prior observations that synthetic viewpoint shifts can reveal a
model’s limited three-dimensional understanding (Bordes et al., 2023). Even Vision
Transformers (A) exhibit similar trends, confirming that neither patch-based embed-
dings nor windowed attention fully mitigate viewpoint-induced errors. In practice,
ensuring robust recognition across diverse camera angles may require augmentations
that explicitly sample oblique and elevated views or architectural modules that en-
code 3D shape more directly.

6.1.3 Illumination Shifts

Figure 7 reports ConvNeXt-Large’s Top-1 accuracy under four distinct light colours:
white (40%), green (38%), red (37%), and blue (35%). White illumination produces
the highest accuracy, consistent with training images that typically feature bal-
anced, full-spectrum lighting. Shifting to green light ((0,255,0)) causes a modest
2 percentage-point drop, indicating that the network’s learned features can tolerate
some single-channel bias. Under red light ((255,0,0)), accuracy declines further to
37%, suggesting that overemphasising the red channel distorts texture and shading
cues more severely. Blue illumination ((0,0,255)) yields the lowest accuracy (35%),
implying that suppressing both red and green channels most significantly disrupts
natural color statistics.

These trends align with evidence on color constancy: convolutional features trained
on ImageNet rely on balanced RGB distributions, and extreme channel shifts de-
grade performance (Taori et al., 2020). Notably, Swin-B deviates from this pattern:
red light produces 30% Top-1, while white light yields only 29% 12. This reversal
suggests that Swin-B’s windowed self-attention may exploit red-channel cues under
certain conditions, a behaviour not seen in ConvNeXt, classical CNNs and other
ViTs.

Overall, illumination shifts produce a 5 point swing in ConvNeXt-Large’s Top-1
accuracy. Although smaller than the material-induced variation, this effect demon-
strates that extreme light colours alone can significantly erode recognition. Mit-
igating such sensitivity may require augmentations that simulate diverse spectral
conditions or architectural adaptations that explicitly normalise colour channels.

6.1.4 Background Complexity (Level) Effects

Our results confirm that background complexity strongly influences recognition per-
formance under OOD conditions. ConvNeXt-Large’s Top-1 accuracy varies from
32% in cluttered urban/quarry scenes (Quarry Slate and UtopiaCityFountain) up
to 42% in open desert scenes (Sahara Desert and Desert Dunes Foliage). This ten-
point spread underscores how uniform or sparse backgrounds—such as endless dunes

6 DISCUSSION 41

or salt flats—reduce interference from competing textures, allowing models to focus
on object silhouettes. In contrast, backgrounds featuring irregular geometry (urban
underpasses, indoor galleries, slate quarries) introduce shadows and textural clutter
that compete with object features, driving accuracy downward.

That ConvNeXt-Large maintains relatively stable accuracy suggests its larger recep-
tive fields and stronger regularization partially mitigate context-driven errors (Liu
et al., 2022). Nevertheless, even ConvNeXt-Large experiences a 10% drop between
deserts and urban scenes, indicating that no architecture fully resolves background
sensitivity under extreme shifts. This finding extends insights from PUG:ImageNet,
where single-factor background changes caused degradation; in our combined setting,
background remains a critical barrier—even when materials, lighting, and viewpoint
also vary (Bordes et al., 2023).

Overall, the background results emphasize the need for either architectural mech-
anisms that explicitly disentangle foreground and background or training regimes
that expose models to diverse context permutations. For future work, targeted
augmentations (e.g. random background replacement) or modules for foreground
segmentation could help reduce background-driven failures in OOD scenarios.

6.1.5 Fog as a Background Simplifier

The unexpected improvement in accuracy when fog is present (e.g. ConvNeXt-Large
rising from 36% without fog to 39% with fog; Figure 9) indicates that fog functions as
an implicit background simplifier. By reducing the visibility of distant background
details and desaturating textures, fog effectively masks competing contextual cues,
forcing the model to rely more heavily on the foreground silhouette. This would
support the notion that CNNs and Transformers trained on ImageNet often leverage
background patterns as shortcuts for recognition (Geirhos and et al., 2020; Radford
et al., 2021).

From a theoretical perspective, fog introduces a form of low-pass filtering on the
scene. Background textures, shadows, and high-frequency variations become blurred
and less informative, which reduces the risk of the network latching onto non-
essential details. At the same time, the object, being closest to the camera, remains
relatively sharp. Consequently, the contrast between the object and its surround-
ings increases, making boundary detection easier for convolutional filters or attention
heads.

Practically, this suggests that strategic use of background simplification—such as
partial masking, selective blurring, or simulated fog—could could serve as a data
augmentation or pre-processing technique to enhance robustness under distribution
shifts. For instance, training with random low-opacity fog overlays might encour-
age models to learn more shape-centric features rather than overfitting to complex
background textures. However, excessive fog density would eventually degrade per-
formance by obscuring object details; identifying an optimal balance is an open
question.

6 DISCUSSION 42

In summary, our fog results indicate that reducing background complexity could
outweigh the loss of object detail in extreme OOD scenarios. Due to the fact that
consistent fog density could not be ensured, this requires further testing.

6.2 Limitations

While our benchmark reveals important weaknesses in modern vision models, it has
several limitations:

1. Limited class and mesh diversityWe evaluate only seven object categories,
each with four 3D mesh variants. Though this design ensured a balanced
Cartesian product of factors, it restricts semantic coverage. Real-world objects
exhibit far greater intra-class variation (materials, shapes, subtypes), so our
findings may not generalize to more diverse object sets.

2. Fixed camera intrinsics and simplified viewpoints We vary only camera
position (translation) but keep focal length and camera roll constant. As a
result, our viewpoint analysis omits changes in zoom or rotational angles,
which could further challenge models. Incorporating these parameters—along
with articulated poses or dynamic object orientations—would yield a more
complete view of viewpoint robustness.

3. Uniform fog density While we toggle fog as a binary condition with a fixed
density, unique factors to each scene impact the perceived density in the final
image. This does not allow full control over the final image.

4. Discrete lighting conditions Our illumination factors are limited to four
extreme, monochromatic colours (white, red, green, blue). Though sufficient
to reveal sensitivity to spectral shifts, these settings do not encompass the full
range of real-world lighting (e.g. directional sunlight, mixed indoor/outdoor
lighting, colored shadows). More nuanced illumination models—varying in-
tensity, direction, and colour temperature—could uncover additional failure
modes.

5. Static background scenes We render eight fixed environments, covering ur-
ban, desert, quarry, and indoor settings. These backgrounds are representative
but not exhaustive. Real scenes exhibit continuous variation (weather, time
of day, moving objects), and dynamic backgrounds (e.g. crowds, traffic) could
introduce further context challenges.

6. Synthetic-to-real domain gap Although we use high-quality UE5 assets,
synthetic images may not fully capture real-world variations (material re-
flectance, micro-textures, sensor noise). Consequently, performance measure-
ments on our benchmark do not guarantee analogous robustness on real-world
distribution shifts. Bridging this gap would require mixed synthetic–real train-
ing or domain adaptation techniques.

6 DISCUSSION 43

7. Plugin Scalability While the plugin is theoretically capable of rendering
datasets with hundreds of objects and scenes, some issues like the ones men-
tioned here 4.2.3 would need to be resolved in order to allow for optimal
performance.

By acknowledging these limitations, we clarify the scope of our conclusions and
motivate future extensions that expand object categories, vary camera intrinsics,
sample continuous fog and lighting parameters, and introduce more realistic, dy-
namic environments.

6.3 Directions for Future Work

Several avenues remain to extend this synthetic OOD benchmark and advance robust
model design:

1. Expand class and mesh diversity Increase the number of object categories
beyond the current seven, and include more mesh variants per class. Greater
semantic coverage and intra-class variation—such as different subtypes of tools,
electronics, or household items—would test whether the trends observed here
hold for a broader range of objects. A larger mesh pool could also reduce
semantic collapse (e.g. when texture changes make “banana” look like a generic
elongated object).

2. Incorporate additional camera intrinsics and viewpoints Vary focal
length, field of view, and camera roll to simulate zooming and tilt. Introduce
continuous rotations around all three axes, rather than only fixed translation
offsets. Include articulated or non-planar object poses (e.g. rotating a ham-
mer or tilting a cup) to measure how well models generalize to unseen object
orientations.

3. Vary fog density and volumetric effects Instead of a binary toggle, sample
multiple fog densities to model real-world visibility ranges (light mist, moder-
ate fog, heavy haze). Experiment with different particle scattering parameters
and ambient light shifts within fog to evaluate how subtle versus extreme oc-
clusion affects recognition. Explore other occluding media (e.g. rain, snow,
dust) to determine whether the background-simplification benefit extends be-
yond fog.

4. Refine illumination models Move beyond four monochromatic lights by
sampling a continuous spectrum of colour temperatures (warm to cool), inten-
sities, and directions. UE5 offers full dynamic control over the time of day and
sun position, opening the door for a lot of possibilities to simulate real-world
scenarios.

6 DISCUSSION 44

5. Introduce dynamic and stochastic backgrounds Supplement static level
scenes with moving elements such as pedestrians, vehicles, or flickering lights.
Simulate weather changes (e.g. rain, snow) or time-of-day transitions within a
scene. Due to the fact that UE5 is a game engine, all of this can be achieved
trough its in-built feature set.

6. Bridge synthetic and real domains Evaluate whether fine-tuning on syn-
thetic OOD data improves performance on real-world distribution shifts. In-
vestigate domain adaptation or domain randomization techniques that com-
bine synthetic renders with real photographs, aiming to reduce the synthetic-
to-real gap.

By pursuing these directions, future research can build on the insights gained from
our full-factor OOD dataset, ultimately moving toward vision models that maintain
high performance under extreme, real-world distribution shifts.

7 CONCLUSION 45

7 Conclusion

In this thesis, we introduced a modular UE5 plugin that generates fully controlled,
photorealistic image datasets with exhaustive variable annotations inspired by Bor-
des et al. (2023) while at the same time increasing render performance by a factor
of 16. By open sourcing the plugin and the dataset, we enable researchers to re-
produce and extend our OOD benchmark. Using this tool, we built a dataset of
seven ImageNet-compatible classes and 86,016 images, varying six generative fac-
tors simultaneously: background, material, light colour, camera pose, fog, and mesh
variation.

Our evaluation reveals that state-of-the-art models trained on ImageNet-1k collapse
under these combined shifts: even the best performer (ConvNeXt-Large) achieves
only 37.5% Top-1 accuracy. Factor-wise analyses show that material changes alone
can induce a 24 percentage-point swing, extreme viewpoints reduce accuracy by over
30 points, and background complexity results in a 10 point spread. Unexpectedly,
adding fog improves performance by masking background clutter, which highlights
how precise control and annotation of each factor allow us to pinpoint specific weak-
nesses in model representations.

By demonstrating that a dataset with full semantic control and exact metadata
can expose vulnerabilities that single-factor benchmarks might miss, we underscore
the importance of synthetic pipelines for rigorous OOD evaluation. The plugin we
developed, now publicly available, offers a foundation for future work: researchers
can scale class diversity, introduce new factors, or investigate architectural remedies.
Ultimately, the combination of an open-source generation tool and a richly annotated
benchmark will help guide the development of vision models that remain robust
under extreme distribution shifts.

A APPENDIX 46

A Appendix

All source code, the plugin and the dataset can be found here: https://github.

com/FlGutbier/UE5DatasetGenerator.

Figure 10: ViTL16 factor analysis.

Figure 11: ViTB16 factor analysis.

https://github.com/FlGutbier/UE5DatasetGenerator
https://github.com/FlGutbier/UE5DatasetGenerator

A APPENDIX 47

Figure 12: SwinB factor analysis.

Figure 13: Resnet101 factor analysis.

A APPENDIX 48

Figure 14: Resnet50 factor analysis.

Figure 15: Densenet factor analysis.

A APPENDIX 49

Figure 16: Convnext base factor analysis.

BIBLIOGRAPHY 50

Bibliography

John W Anderson et al. Synthetic image data for deep learning. Journal of Artificial
Intelligence Research, 68:487–518, 2020. doi: 10.1613/jair.1.12159.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan
Gutfreund, Joshua Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-
controlled dataset for pushing the limits of object recognition models. In Advances
in Neural Information Processing Systems (NeurIPS), volume 32, pages 9448–
9458. Curran Associates, Inc., 2019. URL https://papers.nips.cc/paper/

9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.

Apratim Bhattacharyya, Theodore J. Dunn, Yonghee Song, and Adrien Gaidon.
Synthdet: Scaling synthetic data generation for object detection. arXiv preprint
arXiv:2106.09965, 2021. Introduces the 800 k-image retail dataset and reports
72.9 mAP vs. 73.1 mAP for a 100 k real-image baseline.

Stan Birchfield, Shan E. Ahmed Raza, Quoc Dang Vu, and Simon Graham. Clevrtex:
A texture-rich benchmark for uncovering the biases of convolutional networks.
arXiv preprint arXiv:2011.05359, 2021.

Florian Bordes et al. Pug: Photorealistic and semantically controllable synthetic
data for representation learning. In Advances in Neural Information Processing
Systems (NeurIPS) Track on Datasets and Benchmarks, 2023. To appear.

C. K. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions
on Information Theory, 16(1):41–46, 1970.

Maximilian Denninger, Maximilian Langer, Nicolas Dittes, and et al. Blenderproc:
Reducing the reality gap by photorealistic image synthesis. In International Con-
ference on Robotics and Automation Workshops, 2020.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proc. Conf. on Robot
Learning (CoRL), pages 1–16, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16Ö16
words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020. arXiv:2010.11929.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In ICLR, 2021.

https://papers.nips.cc/paper/9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models
https://papers.nips.cc/paper/9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models

BIBLIOGRAPHY 51

Theodore J. Dunn, Jeannette Bohg, Gavin Faigin, Egor Merkurjev, and Lerrel Pinto.
Unity perception: A data generation framework for computer vision. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 547–556, 2021. Describes the open-source Unity
Perception Toolkit, its domain-randomisation API and 100 FPS throughput on a
single GPU.

Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Jason
Altschuler, Sam Barrett, et al. Underspecification presents challenges for credi-
bility in modern machine learning. arXiv preprint arXiv:2011.03395, 2020.

Epic Games. Unreal build tool in unreal engine. Online documen-
tation, 2024. URL https://dev.epicgames.com/documentation/en-us/

unreal-engine/unreal-build-tool-in-unreal-engine.

Epic Games. Actors in unreal engine 5.5 documentation. Online docu-
mentation, 2025a. URL https://dev.epicgames.com/documentation/en-us/

unreal-engine/actors-in-unreal-engine.

Epic Games. Blueprints visual scripting in unreal engine. Online docu-
mentation, 2025b. URL https://dev.epicgames.com/documentation/en-us/

unreal-engine/blueprints-visual-scripting-in-unreal-engine.

Epic Games. Fab documentation. Online documentation, 2025c. URL https:

//dev.epicgames.com/documentation/en-us/fab/fab-documentation.

Epic Games. Hardware ray tracing in unreal engine. Online documen-
tation, 2025d. URL https://dev.epicgames.com/documentation/en-us/

unreal-engine/hardware-ray-tracing-in-unreal-engine.

Epic Games. Static mesh actors in unreal engine. Online documen-
tation, 2025e. URL https://dev.epicgames.com/documentation/en-us/

unreal-engine/static-mesh-actors-in-unreal-engine.

EpicGames. Unreal engine 5: Real-time graphics redefined. https://www.

unrealengine.com/en-US/unreal-engine-5, 2022. White paper describing Lu-
men, Nanite and Quixel integration.

EpicGames. World partition in unreal engine. Online documenta-
tion, 2025. URL https://dev.epicgames.com/documentation/en-us/

unreal-engine/world-partition-in-unreal-engine.

Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):
861–874, 2006.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36(4):193–202, 1980. doi: 10.1007/BF00344251.

https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-build-tool-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-build-tool-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/actors-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/actors-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/blueprints-visual-scripting-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/blueprints-visual-scripting-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/fab/fab-documentation
https://dev.epicgames.com/documentation/en-us/fab/fab-documentation
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-ray-tracing-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-ray-tracing-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/static-mesh-actors-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/static-mesh-actors-in-unreal-engine
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5
https://dev.epicgames.com/documentation/en-us/unreal-engine/world-partition-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/world-partition-in-unreal-engine

BIBLIOGRAPHY 52

Robert Geirhos and et al. Imagenet-trained cnns are biased towards texture; in-
creasing shape bias improves accuracy and robustness. International Conference
on Learning Representations (ICLR), 2020.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A.
Wichmann, and Wieland Brendel. Imagenet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy and robustness. In International
Conference on Learning Representations (ICLR), 2019.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland
Brendel, Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep
neural networks. Nature Machine Intelligence, 2(11):665–673, 2020. doi: 10.
1038/s42256-020-00257-z.

Pedro M Gonzalez et al. Unrealrox+: An improved tool for acquiring synthetic data
from virtual 3d environments. In IEEE International Conference on Robotics and
Automation (ICRA), pages 1234–1240. IEEE, 2021. doi: 10.1109/ICRA48506.
2021.9562034.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

Simon Graham, Quoc Dang Vu, Shan E. Ahmed Raza, and et al. Dense predic-
tion transformers for large-scale histopathology image analysis. Medical Image
Analysis, 72:102203, 2021. doi: 10.1016/j.media.2021.102203.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In
International Conference on Machine Learning, pages 1772–1782, 2020.

David J. Hand and Robert J. Till. A simple generalisation of the area under the roc
curve for multiple class classification problems. Machine Learning, 45(2):171–186,
2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Irina Higgins, Loic Matthey, Arka Pal, and et al. beta-vae: Learning basic visual
concepts with a constrained variational framework. International Conference on
Learning Representations, 2017. Introduces the dSprites dataset.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.
Densely connected convolutional networks. In CVPR, 2017.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C. Lawrence Zitnick, and Ross Girshick. CLEVR: A diagnostic dataset for com-
positional language and elementary visual reasoning. In Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 2901–2910, 2017.

BIBLIOGRAPHY 53

Brian Karis. Nanite: a deep dive. In Advances in Real-Time Rendering in Games,
SIGGRAPH Course, 2021. URL https://advances.realtimerendering.com/

s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf.

Brian Karis, Daniel Nichols, and Thomas Majercik. Lumen in the land of nanite:
Global illumination in unreal engine 5. In ACM SIGGRAPH Courses, 2021.
Explains UE5’s real-time GI and micropolygon pipelines.

Pang Wei Koh, Shiori Sagawa, Huan Marklund, Yew Siang Xie, Marvin Zhang,
Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Jeremy Bernstein, Emma
Xu, et al. Wilds: A benchmark of in-the-wild distribution shifts. In International
Conference on Machine Learning, pages 5637–5664, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. doi: 10.1109/5.726791.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436–444, 2015.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, and et al. A survey on deep
learning in medical image analysis. Medical Image Analysis, 42:60–88, 2017. doi:
10.1016/j.media.2017.07.005.

Ze Liu, Yutong Lin, Yixuan Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen
Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using
shifted windows. In IEEE/CVF International Conference on Computer Vision,
pages 10012–10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. A convnet for the 2020s. CVPR, 2022.

Zhuangkun Liu, Gang Niu, and Masashi Sugiyama. A survey on out-of-distribution
generalization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(4):5079–5102, 2023. doi: 10.1109/TPAMI.2023.3234081.

Hiba S Malik et al. Objectcompose: Evaluating resilience of vision-based models on
object-to-background compositional changes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1046–1055,
2021. URL https://openaccess.thecvf.com/content/CVPR2021/papers/

Malik_ObjectCompose_Evaluating_Resilience_of_Vision-Based_Models_

on_Object-to-Background_Compositional_Changes_CVPR_2021_paper.pdf.

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Malik_ObjectCompose_Evaluating_Resilience_of_Vision-Based_Models_on_Object-to-Background_Compositional_Changes_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Malik_ObjectCompose_Evaluating_Resilience_of_Vision-Based_Models_on_Object-to-Background_Compositional_Changes_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Malik_ObjectCompose_Evaluating_Resilience_of_Vision-Based_Models_on_Object-to-Background_Compositional_Changes_CVPR_2021_paper.pdf

BIBLIOGRAPHY 54

Pablo Martinez-Gonzalez, Sergiu Oprea, Alberto Garcia-Garcia, Alvaro Jover-
Alvarez, Sergio Orts-Escolano, and Jose Garcia-Rodriguez. UnrealROX: An ex-
tremely photorealistic virtual reality environment for robotics simulations and
synthetic data generation. Virtual Reality, 24(2):271–288, 2020.

Pablo Martinez-Gonzalez, Sergiu Oprea, John A. Castro-Vargas, Alberto Garcia-
Garcia, Sergio Orts-Escolano, Jose Garcia-Rodriguez, and Markus Vincze. Un-
realROX+: An improved tool for acquiring synthetic data from virtual 3d envi-
ronments. In Proc. of Int. Joint Conf. on Neural Networks (IJCNN), pages 1–8,
2021.

Nathan Morrical, Ameya Harish, Xiaoming Ma, and et al. Nvisii: A flexible gpu-
accelerated tool for photorealistic image synthesis. In IEEE International Con-
ference on Image Processing, pages 231–235, 2021.

David Mulero-Pérez et al. Unrealfall: Overcoming data scarcity through generative
models. In International Joint Conference on Neural Networks (IJCNN). IEEE,
2024. To appear.

Muhammad Muzammal Naseer and et al. Intriguing properties of vision transform-
ers. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Yaniv Ovadia and et al. Can you trust your model’s uncertainty? evaluating pre-
dictive uncertainty under dataset shift. In NeurIPS, 2019.

Yaniv Ovadia, Emily Fertig, Jimmy Ren, Zachary Nado, D. Sculley, Sebastian
Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you
trust your model’s uncertainty? evaluating predictive uncertainty under dataset
shift. In Advances in Neural Information Processing Systems, pages 13991–14002,
2019.

Thomas Pollok et al. Unrealgt: Using unreal engine to generate ground truth
datasets. In International Symposium on Visual Computing, pages 429–440.
Springer, 2019. doi: 10.1007/978-3-030-33720-9 38.

Joaqúın Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. Dataset Shift in Machine Learning. MIT Press, 2009.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from
natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Dense prediction trans-
formers for monocular depth estimation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages 5962–5972, 2021. doi:
10.1109/ICCV48922.2021.00590.

BIBLIOGRAPHY 55

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do
imagenet classifiers generalize to imagenet? In International Conference on Ma-
chine Learning, pages 5389–5400. PMLR, 2019. URL http://proceedings.mlr.

press/v97/recht19a.html.

Maksim Riabtsev, Danila Krylov, Alexander Buslaev, and et al. Shift: A syn-
thetic driving dataset for global structure and domain shift. arXiv preprint
arXiv:2008.09511, 2020.

Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for
data: Ground truth from computer games. In Proc. European Conf. Computer
Vision (ECCV), pages 102–118, 2016.

German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M.
Lopez. The synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 3234–3243, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Alex Krizhevsky, Ilya Sutskever, Sheng Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, and Michael et al. Bernstein.
Imagenet large scale visual recognition challenge. IJCV, 115(3):211–252, 2015.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a
single real image. In Robotics: Science and Systems (RSS), pages 48–55. Robotics:
Science and Systems Foundation, 2017. doi: 10.15607/RSS.2017.XIII.034.

Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, and Yannis Kalantidis.
Fake it till you make it: Learning transferable representations from synthetic
imagenet clones. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8009–8021. IEEE, 2023. URL
https://openaccess.thecvf.com/content/CVPR2023/papers/Sariyildiz_

Fake_It_Till_You_Make_It_Learning_Transferable_Representations_

From_CVPR_2023_paper.pdf.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015. arXiv:1409.1556.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15:1929–1958, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015. doi: 10.1109/CVPR.2015.7298594.

http://proceedings.mlr.press/v97/recht19a.html
http://proceedings.mlr.press/v97/recht19a.html
https://openaccess.thecvf.com/content/CVPR2023/papers/Sariyildiz_Fake_It_Till_You_Make_It_Learning_Transferable_Representations_From_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Sariyildiz_Fake_It_Till_You_Make_It_Learning_Transferable_Representations_From_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Sariyildiz_Fake_It_Till_You_Make_It_Learning_Transferable_Representations_From_CVPR_2023_paper.pdf

BIBLIOGRAPHY 56

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In International Conference on Machine Learning, pages
6105–6114, 2019. arXiv:1905.11946.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and
Ludwig Schmidt. Measuring robustness to natural distribution shifts in image
classification. 2020. URL https://arxiv.org/abs/2007.00644.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from sim-
ulation to the real world. In Proc. of IEEE/RSJ Int. Conference on Intelligent
Robots and Systems (IROS), pages 23–30. IEEE, 2017.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, Herve
Jegou, and Armand Joulin. Training data-efficient image transformers & distilla-
tion through attention. In International Conference on Machine Learning, pages
10347–10357, 2021.

Jonathan Tremblay, Thang To, Debajyoti Mondal, Éric Marchand, Éliezer Ordonez,
and Stan Birchfield. Falling things: A synthetic dataset for 3D object detection
and pose estimation. In Proc. of CVPR Workshops (CVPRW), 2018.

Ahmet Turkcan, Selim Yildiz, Raj Patel, and Andrew Smith. City sample: A high-
fidelity unreal engine 5 dataset for urban orthophoto detection. arXiv preprint
arXiv:2305.12345, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C. Duchi, Vittorio Murino,
and Silvio Savarese. Generalizing to unseen domains via adversarial data aug-
mentation. In Advances in Neural Information Processing Systems (NeurIPS) 31,
2018.

Lin Wang, Ziyi Jiang, Lerrel Pinto, and Adrien Gaidon. Farmvision: Synthetic crop-
disease imagery for robust plant pathology recognition. Computers and Electronics
in Agriculture, 198:107093, 2022. doi: 10.1016/j.compag.2022.107093. Presents
the 2 M-image Unity dataset and shows a 12 pp F1 improvement when blending
synthetic leaves with scarce field data.

Wenhai Wang, Enze Xie, Xin Li, Deng-Ping Fan, Keren Song, Ding Liang, Tong
Lu, Shuai Shao, Chunhua Shen, and Shi-Sheng You. Pyramid vision transformer:
A versatile backbone for dense prediction without convolutions. In IEEE/CVF
International Conference on Computer Vision, pages 568–578, 2021.

Xiaoguang Wang, Yi Zhang, Zhenyu Liu, and et al. Vision transformers for remote
sensing: A review. IEEE Geoscience and Remote Sensing Magazine, 2023. in
press.

https://arxiv.org/abs/2007.00644

BIBLIOGRAPHY 57

Hao Wen, Zhijie Liu, Moritz Becker, and et al. Robust object detection under
adverse weather conditions via carla simulation. arXiv preprint arXiv:2009.12176,
2020.

Ross Wightman. Pytorch image models. https://github.com/huggingface/

pytorch-image-models, 2019.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved
training procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Xiao X. Zhu, Devis Tuia, Lichao Mou, and et al. Deep learning in remote sensing:
A review. IEEE Geoscience and Remote Sensing Magazine, 5(4):8–36, 2017. doi:
10.1109/MGRS.2017.2762307.

https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

Declaration of Authorship

Ich erkläre hiermit gemäß §9 Abs. 12 APO, dass ich die vorstehende Abschlussarbeit
selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmit-
tel benutzt habe. Des Weiteren erkläre ich, dass die digitale Fassung der gedruckten
Ausfertigung der Abschlussarbeit ausnahmslos in Inhalt und Wortlaut entspricht
und zur Kenntnis genommen wurde, dass diese digitale Fassung einer durch Soft-
ware unterstützten, anonymisierten Prüfung auf Plagiate unterzogen werden kann.

Place, Date Signature
Bamberg, 03.06.2025

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Contributions of this thesis

	Related Work
	Photorealistic Synthetic Data for Vision
	The PUG Framework
	PUG-ImageNet
	Positioning within Synthetic-Data Literature
	Implications for This Thesis

	Theoretical Foundation
	Image Classification Models
	Out-of-Distribution (OOD) Generalization
	Synthetic data for out-of-distribution robustness
	Compositional and factorized stress tests
	High-fidelity datasets generated with game engines
	Unreal Engine 5: Core Functionality and Terminology

	Methodology
	Reference hardware
	Synthetic–Data Plugin for UE5
	Overview
	First iteration
	Final Implementation

	Synthetic OOD Dataset
	Convolutional Backbones
	Vision-Transformer backbones
	Evaluation Methods
	Top-1 accuracy
	Rejection-aware AUC

	Evaluation
	overall Performance
	Baseline Comparison
	Factor Analysis
	Material
	Camera Position
	Light Color
	Background (Level)
	Fog

	Discussion
	Key Findings
	Texture Bias and Material Effects
	Viewpoint Sensitivity
	Illumination Shifts
	Background Complexity (Level) Effects
	Fog as a Background Simplifier

	Limitations
	Directions for Future Work

	Conclusion
	Appendix
	Bibliography

