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Abstract

Domain shift remains a major challenge in deploying machine learning (ML) models
for medical imaging in real-world settings. Among its many other forms, scanner-
induced domain shift—caused by differences in image acquisition across digitisation
devices—can be particularly subtle yet impactful. This thesis investigates how such
scanner-induced variability can be measured and interpreted using a same-anatomy,
multi-scanner histopathology dataset comprising 44 samples scanned by five different
devices.

Three complementary shift detection techniques are evaluated: BBSD, which anal-
yses softmax output distributions of task-specific classifiers; MMD, which measures
distances between feature vector distributions; and a multi-class variant of PAD*,
which trains domain discriminators on both task-specific and task-agnostic features.
These methods are applied across different representational levels using simple neu-

ral networks, a fine-tuned ResNet18, and off-the-shelf foundation models such as
DINO and DINOv2.

The results suggest that task-specific methods like BBSD and PAD* are influenced
by the behaviour of the underlying classifiers and are best interpreted as proxies
for performance degradation on unseen domains. In contrast, task-agnostic meth-
ods such as MMD may detect shifts that are not always relevant to downstream
performance. While more robust architectures like ResNet18 generalised well across
scanner domains, foundation models showed limited ability to extract task-relevant
features without fine-tuning—suggesting that their generalisability to histopathol-
ogy remains an open question.

Overall, this work emphasizes that scanner-induced domain shift must be assessed
with contextual understanding. The evaluated methods serve as lightweight, com-
plementary tools for estimating and interpreting shift rather than providing absolute
or objective measures.



Abstract

Doménenverschiebung ist nach wie vor eine grofle Herausforderung beim Einsatz
von Modellen des maschinellen Lernens (ML) fiir die medizinische Bildgebung in
realen Umgebungen. Unter den vielen Formen der Domanenverschiebung, kann
Scanner-induzierte Domanenverschiebung—die durch Unterschiede in der Bilderfas-
sung zwischen verschiedenen Digitalisierungsgeraten verursacht werden—besonders
subtil, aber dennoch wirkungsvoll sein. In dieser Arbeit wird untersucht, wie eine
solche Scanner-induzierte Variabilitat gemessen und interpretiert werden kann, in-
dem ein Histopathologie-Datensatz mit gleicher Anatomie und mehreren Scannern
verwendet wird, der 44 Proben umfasst, die mit fiinf verschiedenen Geraten gescannt
wurden.

Es werden drei komplementare Verfahren zur Erkennung von Verschiebungen be-
wertet: BBSD, das Softmax-Output-Verteilungen von aufgabenspezifischen Klas-
sifikatoren analysiert; MMD, das Abstande zwischen Merkmalsvektorverteilungen
misst; und eine Mehrklassenvariante von PAD*, die Doménendiskriminatoren sowohl
auf aufgabenspezifische als auch aufgabenagnostische Merkmale trainiert. Diese
Methoden werden auf verschiedenen Reprasentationsebenen unter Verwendung ein-
facher neuronaler Netze, eines fein abgestimmten ResNet18 und gebrauchsfertiger
Grundmodelle wie DINO und DINOv2 angewandt.

Die Ergebnisse deuten darauf hin, dass aufgabenspezifische Methoden wie BBSD und
PAD* durch das Verhalten der zugrundeliegenden Klassifikatoren beeinflusst wer-
den und am besten als Indikatoren fiir eine Leistungsminderung auf unbekannten
Domanen interpretiert werden konnen. Im Gegensatz dazu konnen aufgabenun-
abhangige Methoden wie MMD Verschiebungen erkennen, die fiir die nachgelagerte
Leistung nicht immer relevant sind. Wahrend robustere Architekturen wie ResNet18
gut iiber Scanner-Doménen hinweg generalisierten, zeigten Basismodelle nur be-
grenzte Fahigkeit, aufgabenrelevante Merkmale ohne Feintuning zu extrahieren -
ein Hinweis darauf, dass ihre Generalisierbarkeit fiir die Histopathologie eine offene
Frage bleibt.

Insgesamt unterstreicht diese Arbeit, dass scannerinduzierte Doméanenverschiebun-
gen mit kontextuellem Verstandnis bewertet werden miissen. Die bewerteten Meth-
oden dienen als leichtgewichtige, sich erganzende Werkzeuge zur Abschéitzung und
Interpretation der Verschiebung, statt absolute oder objektive Mafle zu liefern.
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1 INTRODUCTION 1

1 Introduction

Over the last years, machine learning (ML) models have become increasingly ef-
fective in medical imaging tasks, but their performance can degrade unexpectedly
when deployed in real-world settings that differ from the training environment (Guo
et al. 2024; |[Pooch et al. 2020; [Lafarge et al. 2017). A key reason for this drop
is domain shift, a mismatch in the statistical properties of data between training
and deployment environments. Such shifts can result from differences in imaging
devices, acquisition protocols, or patient populations.

More specifically, scanner-induced domain shift occurs when the same tissue sam-
ple, scanned using different devices or settings, produces visually and statistically
distinct image representations. This acquisition-induced variability can significantly
impair the performance and reliability of ML models in clinical workflows. While
there are many types of shift that affect the medical domain, scanner-induced do-
main shift may pose an underestimated issue (Aubreville et al.,[2021)). The challenge
posed by scanner variability has been widely acknowledged in the literature (Khan
et al, 2022; Madabhushi and Lee, [2016; Stacke et al., [2020; Aubreville et al., |2021)
and performance degradation has been quantitatively assessed for different medical
scanner modalities and reported to consistently deteriorate when affected by this
type of shift (Guo et al., 2024; Wilm et al., 2023c¢). To mitigate domain shift, a
lot of research has been done in the field of domain adaptation (DA) which aims
to harmonize feature distributions between domains (Farahani et al., 2021). Alter-
natively, domain generalisation (DG) has introduced methods to train models that
generalise well and remain robust to shifts (Zhou et al., 2022). However, relatively
little attention has been paid to the underlying nature of the shifts and how they
manifest and impact the data and downstream task models.

This work investigates scanner-induced domain shift using a same-anatomy, multi-
scanner histopathology dataset. The focus is on evaluating how such shifts can
be identified and interpreted in both the input- and latent space, and on how
different methodological perspectives—such as task-specific and task-agnostic ap-
proaches—affect the detection process. These considerations are especially relevant
for assessing whether visually subtle acquisition shifts translate into meaningful
changes in model behaviour. By comparing existing methods across different repre-
sentational levels and learning objectives, this study aims to provide a clearer un-
derstanding of how scanner-induced domain shift can be measured and interpreted
in the context of medical imaging.

2 Related Work

This section provides an overview of selected research on domain shift detection that
is particularly relevant to this paper. Rather than being a comprehensive survey, it
highlights key methods that give insight to the methodological choices made here
and illustrates how they complement each other or motivate further investigation.
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Furthermore, the related work section sets the stage for the subsequent contribution
section.

2.1 Black Box Shift Detection (BBSD)

BBSD was first introduced by |[Lipton et al.| (2018) as part of a broader framework
called Black Box Shift Estimation (BBSE), which is designed to detect and quantify
label shift. The method involves using an existing, pre-trained label classifier and
measuring the distance between the distributions of its outputs — either hard clas-
sification outputs (BBSE-hard) or softmax probabilities (BBSE-soft) — on source
and target data. The authors showed that this approach can be effective even if
the classifier is inaccurate, biased, or uncalibrated, as long as its confusion matrix
is invertible. This makes BBSD a flexible and practical tool since it does not re-
quire retraining the classifier on source data and can be applied without needing
labels in the target domain. Additionally, the authors found that BBSD offers more
statistical power than kernel-based two-sample tests that operate directly on the
input space. They also emphasised the advantage of using the classifier to reduce
dimensionality before testing, which is especially helpful because two-sample tests
struggle in high-dimensional settings (Ramdas et al., 2015). While the original fo-
cus of BBSD was on detecting label shift, the authors explicitly noted its broader
applicability “to detect covariate shift, concept shift, and more general forms of
nonstationarity” [Lipton et al. (2018). In this Bachelor thesis, BBSD is applied in
the context of a type of covariate shift, using the distributions of model outputs to
detect changes in the input data distribution across different scanner domains.

Building on these theoretical foundations, Rabanser et al.| (2019)) conducted an ex-
tensive empirical evaluation of various shift detection methods, including BBSD,
on standard computer vision datasets such as MNIST (LeCun et al., [2010) and
CIFAR-10 (Krizhevskyl, [2009). They found that BBSD “works surprisingly well un-
der a broad set of shifts, even when the label shift assumption is not met” (Rabanser
et al., 2019). Their experiments tested both hard and soft classifier outputs across
multiple types of synthetic distribution shift, including covariate shift. Among the
methods evaluated, BBSD using softmax outputs consistently performed the best for
detecting shifts. Furthermore, they emphasised the practical value of this finding,
noting that it enables a classifier that was trained for a downstream classification
task to be repurposed as a shift detector after training, without significant additional
effort. This makes BBSD a convenient and lightweight tool that looks promising
with regard to application in real-world scenarios (Rabanser et al., 2019).

Recently, Roschewitz et al. (2024) introduced a framework for real-world shift identi-
fication, based on the comprehensive empirical validation by [Rabanser et al.| (2019).
As part of this framework, they proposed a dual shift detector that combines BBSD
and Maximum Mean Discrepancy (MMD) to leverage the strengths of output-based
and feature-based detection methods, with the goal of achieving more robust and
reliable results. This combined approach was applied to several prominent med-
ical datasets across different imaging modalities, making it particularly relevant
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for identifying distribution shifts in medical image analysis. In their evaluation,
BBSD alone was found to be less reliable for detecting covariate shifts, including
acquisition-related shifts. Instead, feature-based methods—such as MMD applied to
encoder-derived representations—proved to be more effective and consistent. How-
ever, the effectiveness of these feature-based approaches was shown to depend heav-
ily on the choice of encoder used to extract the lower-dimensional representations,
highlighting the importance of selecting appropriate feature extractors in practice
(Roschewitz et al., [2024]).

While these three papers form a logical and developmental timeline of the BBSD
method, there is another related method that should be mentioned in this context.
Released just one year after the BBSD paper by Lipton et al.| (2018)), in 2019, |Alberge
et al.| (2019) proposed a similar black-box shift detection approach focused on detect-
ing covariate shift using a black-box setup. Both methods share the core principle
of using the outputs of a pre-trained classifier to reduce the dimensionality of the
data and avoid dependence on raw feature spaces, which are often high-dimensional
and harder to compare statistically. However, instead of directly comparing the
softmax outputs of the predictor, Alberge et al. compute the negative log-likelihood
values (also called coding length) of the classifier’s predictions and discretize them
into bins. Finally, they employ a Pearson’s Chi-squared test to compare the binned
likelihood distributions, testing whether the model exhibits significantly different
confidence behaviour under the new input distribution. This stands in contrast
to BBSD, which compares the raw output distributions (softmax probabilities or
hard predictions) using two-sample tests such as the Kolmogorov—Smirnov test or
Maximum Mean Discrepancy (Alberge et al., [2019).

Although the approach of |Alberge et al. (2019) offers a targeted formulation for
detecting covariate shift, it was not used in this thesis. Instead, the BBSD method,
as proposed by Lipton et al. (2018), was chosen due to its broader recognition and
continued validation within the literature. Lipton et al.’s work was presented at
the renowned International Conference on Machine Learning (ICML) and has since
been cited extensively. It forms the basis for the subsequent studies by Rabanser
et al.| (2019) and |[Roschewitz et al.| (2024)), who have further refined the BBSD
framework and confirmed its strong performance across various types of distribution
shift, including covariate shift. This lineage of validation and adoption, along with
the lightweight nature of the method and its continuous development, makes BBSD
a suitable choice for the purposes of this thesis.

Further empirical evidence for the applicability of BBSD in medical imaging settings
is provided in recent work by Kore et al.| (2024]), who studied data drift in chest radio-
graph classification. Unlike the earlier works by |[Lipton et al.| (2018) and [Rabanser
et al.| (2019), which primarily focused on synthetic or benchmark datasets, Kore et
al. examined real-world temporal distribution shifts—specifically, the introduction
of COVID-19-era chest X-rays—and tested the ability of BBSD to detect them. Us-
ing a fine-tuned TorchXRayVision model to predict 14 pathologies, they evaluated
four drift detection strategies: tracking model performance, image-based detection
(via a TorchXRay autoencoder), BBSD, and a hybrid image-and-output method.
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In addition to the real-world drift, they evaluated the robustness and sensitivity of
the employed strategies to synthetical drifts in different categories. Their findings
confirmed that BBSD performs competitively, nearly matching the sensitivity of
the combined method, especially under realistic distribution shifts. Notably, they
treated drift detection as a statistical hypothesis test and reported only p-values, em-
phasizing detection over quantification. They also highlighted key limitations, such
as the dependency of BBSD’s sensitivity on sample size and patient-specific features.
Crucially, they also discuss the poor performance of traditional performance metrics
like AUC-ROC for detecting drift—although frequently utilised for this purpose in
practice—and highlight the need for dedicated shift detection strategies (Kore et al.,
2024).

These insights align with and extend earlier claims about BBSD’s flexibility and
practical utility, particularly in the medical imaging domain, while also underscoring
some of the challenges when applying it to real-world clinical data.

2.2 PAD and PAD*

Originally introduced by Ben-David et al. (2006)), the Prozy A-Distance (PAD) mea-
sures the divergence between domains by training a binary classifier to distinguish
between samples from each domain. The misclassification rate of this domain dis-
criminator is then used as a proxy for the distance between the source and target
distributions in a given representation space. However, PAD is not sufficient on its
own but should be interpreted alongside the performance of a model trained on the
downstream classification task, particularly by considering the source error. The au-
thors argue that when both the source error and PAD are low, the model is likely to
generalise well to the target domain—provided that the labelling function is shared
across domains (Ben-David et al., [2006]).

Crucially, PAD only reflects how distinguishable the domains are within the rep-
resentation space—it does not account for whether the source domain provides
sufficient support in the regions of the input space that the target domain occu-
pies. As a result, PAD can be misleadingly low if the domain discriminator relies
on features that are irrelevant to the classification task. In such cases, even if
source error and PAD are low, generalisation to the target may fail due to covariate
shift—especially when the task-relevant features differ significantly across domains
(Elsahar and Gallé, 2019).

To overcome this issue, [Elsahar and Gall¢ (2019) proposed a refinement of this
approach by introducing PAD*, a variation that computes domain divergence using
task-specific representations. PAD* leverages the hidden representations of a model
trained on the original classification task, making it more sensitive to differences
that matter for the task and less influenced by irrelevant domain-specific features.
This improves robustness and makes the metric more reflective of actual transfer
performance, though it also introduces model dependence.
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Building on this refined method, |Aubreville et al. (2021) applied PAD* to mitotic
histopathology figures from the MICCAI-MIDOG challenge 2021 data set which
contains human breast cancer cases digitised by four scanners. Curiously, they
found the PAD* results to be unrelated to the downstream performance on the
mitosis object detection task. Notably, although the dataset contains an equal
number of samples from four scanners, these samples do not necessarily originate
from the same anatomical source. In other words, the same physical tissue sample
was not digitised across all scanners.

This inconclusive relationship between PAD* scores and task performance highlights
the need for further evaluation of the method and comparison to other approaches,
particularly in settings with more controlled anatomical consistency across scanners.

2.3 Representation Shift

Stacke et al. (2020) proposed a representation-learning-based approach to quantify
domain shift by analysing the internal representations learned by convolutional neu-
ral networks (CNNs), introducing a model-centric metric called representation shift.
This method examines the CNN’s internal feature space by statistically compar-
ing the distributions of mean activation values from individual convolutional filters
across source and target domains. Specifically, for each filter in a given convolutional
layer, the mean activation is computed across all images in a dataset, and the result-
ing distributions are compared using discrepancy metrics such as the Wasserstein
distance, Kullback-Leibler (KL) divergence, and the Kolmogorov-Smirnov statis-
tic. This layer-wise analysis provides valuable insights into how domain shifts af-
fect different stages of the feature hierarchy, revealing that discrepancies in earlier
convolutional layers often correlate more strongly with performance degradation.
A key advantage of this method is that it does not require labelled target data,
although—in contrast to BBSD—it does require access to the model’s internal acti-
vations. The authors evaluated their method across multiple CNN architectures and
observed that the extent and nature of representation shift varied by model, em-
phasizing the model-specific nature of domain shift. The representation shift metric
consistently showed a strong correlation with accuracy drops on unseen domains,
particularly when measured in early layers, highlighting the importance of low-level
feature consistency for generalisation. Furthermore, they applied their framework
to histopathology data, the medical modality used in this thesis. By focusing on the
medical imaging context, where prior work has shown that models behave differently
than those trained on natural images (Raghu et al. 2019), they demonstrated the
practical relevance of their approach. (Stacke et al., [2020)

2.4 Other work

Guo et al.| (2024) conducted a broad and systematic investigation into scanner-
induced domain shift using medical imaging data, making it the first large-scale
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study to span multiple modalities and anatomical regions. Through extensive ex-
periments, they show that model performance consistently drops when evaluated on
data from scanners not seen during training, and that the severity of this shift varies
across imaging modalities. Overall, the study highlights the need to account for
scanner heterogeneity in medical imaging applications and emphasizes the practical
challenges of deploying deep learning models in real-world clinical settings. Notably,
their work focuses primarily on quantifying the impact of scanner variability through
the performance of deep learning models, rather than attempting to analyse domain
shift directly at the level of input distributions or latent representations, as explored
in the following sections of this thesis.

Wilm et al. introduced the Multi-Scanner Canine Cutaneous Squamous Cell Car-
cinoma Histopathology Dataset used in this work (Wilm et al. |2023c)). Using this
dataset, they proposed a supervised pre-training approach to learn domain-invariant
representations using “Barlow Triplets”, an extension of another self-supervised ap-
proach called “Barlow Twins” (Zbontar et al., 2021). The Barlow Triplet method
processes input tuples of corresponding image patches from multiple training scan-
ners, thereby extending the original Barlow-Twin loss to ensure consistency across
these diverse scanner views. While their method effectively harmonised representa-
tions across different scanners, it yielded only limited improvements on the down-
stream segmentation task. The authors suggest that scanner-specific characteristics
may influence model performance in unexpected ways and emphasize that meth-
ods developed for natural images may not directly translate to the medical imaging
domain (Wilm et al., 2023b)).

3 Contribution

While numerous methods have been proposed for detecting domain shifts in medical
imaging, they are often assessed only in terms of their ability to predict downstream
performance degradation. However, scanner-induced domain shift remains compar-
atively understudied, particularly in terms of how it manifests and can be measured
independently of task performance. Despite advances in domain adaptation and gen-
eralisation, relatively little work has focused on systematically analysing the shift
itself across different stages of the machine learning pipeline.

This bachelor’s thesis addresses this gap by systematically evaluating existing shift
detection methods on a same-anatomy, multi-scanner histopathology dataset. The
core objective is to investigate how scanner-induced variability—often visually sub-
tle—can be detected and interpreted using a range of methodological perspectives.

To this end, several domain shift detection techniques are applied and compared,
including BBSD (which leverages task-specific classifier outputs), MMD (which mea-
sures distances between feature distributions), and a multi-class extension of PAD*
(which learns to discriminate domains based on input or latent features). These
methods are evaluated in both the input space and latent space, using representa-
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tions from a simple neural network, a fine-tuned ResNet18, and off-the-shelf foun-
dation models such as DINO and DINOv2.

A key contribution of this work lies in comparing task-specific and task-agnostic
approaches to shift detection, and in analysing how their behaviour is influenced by
the underlying feature representations and model architectures. By applying these
methods across models with different levels of complexity and training, the study
aims to support a better understanding of how measurable shift relates to model
behaviour, and how reliably different techniques can be used to assess acquisition-
induced domain shift in practice.

4 Theoretical Background

This theoretical background section aims to introduce the key concepts, methods,
and evaluation metrics that are essential for understanding the design, interpreta-
tion, and significance of the experiments presented in the subsequent sections.

4.1 Whole Slide Imaging in Histopathology

Microscopic Whole Slide Tmages (WSIs) are high-resolution digital scans of histo-
pathology tissue sections, typically stained with hematoxylin and eosin (H&E) to
highlight cellular structures and tissue morphology. Staining is a chemical process
that adds contrast to biological tissues, making relevant features visible under a
microscope (Feldman and Wolfe, 2014)). The resolution of a WSI is often given in
micrometers per pixel (e.g., 0.23pm/pixel), indicating the real-world size each pixel
represents. Thus, lower values mean higher detail. Since WSIs are often extremely
large, sometimes exceeding 100,000 x 100,000 pixels, they are typically divided
into smaller, fixed-size patches for efficient machine learning processing (Afshari
et al., 2023; Koohbanani et al.; 2021). In this work, staining variation is not a
shift factor, as each physical tissue sample was stained once and then digitised
using multiple scanners—ensuring that any observed variation arises solely from
differences in scanner hardware or configuration.

4.2 Relevant Shift Terms

Let p(x,y) and ¢(x,y) denote the joint distributions of input-label pairs in the
source (training) and unseen target (testing) domains, respectively. From these, one
can derive the marginal distributions p(x), ¢(z) (input distributions) and p(y), ¢(y)
(label distributions), as well as the conditional distributions p(x|y), q(z|y) (how
inputs manifest given labels) and p(y|z), q(y|x) (how labels are predicted from
inputs). It is essential to distinguish between the conditional distributions p(x | y)
and p(y | ). The distribution p(z|y) describes how features typically appear for a
given class—i.e. the “manifestation” of a target. In contrast, p(y | =) represents
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the model’s predictive objective: the probability of a label given a particular input.
Under label shift, p(z | y) remains stable, meaning that features for each class
look the same across domains, while the model may still face degraded performance
because the prior probabilities of classes p(y) have changed.

It should be noted that there are a lot of different shift terms circulating in the field
and sometimes even the definitions of the same terms differ. For example, |Farahani
et al.| (2021) introduce a definition for prior shift—also known as label shift/prior
probability shift/target shift—that does not align with most other sources. Here,
we adopt the most conceptually coherent definition, which is supported by most
sources (Huyen, 2022; Moreno-Torres et al., [2012; [Storkey et al.| [2009; |Lipton et al.,
2018; |Roschewitz et al., [2024]).

4.2.1 Covariate Shift

In machine learning, covariate shift refers to a specific type of distributional shift
where the input distribution changes between training and testing, but the condi-
tional distribution of the output given the input remains the same. Formally, follow-
ing the notation introduced above, covariate shift occurs when p(z) # ¢(z) while the
conditional distribution p(y|z) = ¢(y|z) remains unchanged (Huyen| |2022; Farahani
et al., 2021; Moreno-Torres et al.,[2012)). In the context of scanner-induced shift, this
means that when a scanner changes the contrast of an image, it affects how the pixel
values in the image are distributed. However, the way image inputs relate to their
labels—Ilike which patterns indicate a tumor—stays the same. Furthermore, note
that when p(z) # ¢(x) under the covariate shift assumption, the class-conditional
distribution p(z|y)—i.e. how features manifest for a given class—may change.

4.2.2 Acquisition Shift and Scanner-Induced Shift

Acquisition shift is a subtype of covariate shift that encompasses all shift phenomena
originating from data collection processes that lead to changes in the input distribu-
tion. This includes differences in sensor type, resolution, lighting conditions, imaging
protocols, patient positioning, and—particularly in histopathology—staining proto-
cols. Furthermore, scanner-induced shift is a more specific form of acquisition shift
that occurs in medical imaging when the same tissue or structure is digitised using
different scanners. These differences can introduce systematic variability in the re-
sulting images—such as colour balance, contrast, or noise characteristics—without
altering the underlying pathological features, thereby possibly affecting the model’s
generalisation across domains despite the task remaining unchanged. It should be
noted that covariate shift can arise from different causes, such as sampling bias,
which pertains to the selection of data rather than how it was collected, but also
affects the marginal distribution of the inputs while the conditional distribution re-
mains unchanged (Farahani et al., 2021 |Moreno-Torres et al., 2012 [Stacke et al.|
2020; |[Roschewitz et al., [2024]).
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4.2.3 Label Shift

Label shift, also referred to as prior shift (Farahani et al., [2021) refers to a type of
distributional shift where the label distribution differs between training and testing,
while the conditional distribution of features given a label remains unchanged. For-
mally, label shift occurs when p(y) # q(y) but p(x | y) = ¢(z | y). This means that
the way a class or target manifests in the input data stays the same, even though
the prevalence of classes changes (Lipton et al., |2018)).

One common cause of label shift is sampling bias. This occurs when the data used
to train a model is collected in a way that overrepresents or underrepresents certain
classes. For instance, a dataset may be artificially balanced to contain equal numbers
of tumor and non-tumor cases, even if tumors are rare in reality. As a result, the
model encounters a different class distribution during deployment than it saw during
training, leading to a label shift.

4.3 Domain Adaptation and Domain Generalisation

Domain adaptation (DA) and domain generalisation (DG) are two strategies aimed
at addressing performance drops caused by distribution shifts between training and
testing data. In recent years, a lot of research has been dedicated to this field,
because in real-world scenarios, models frequently encounter inputs that differ from
data seen during training.

Firstly, domain adaptation (DA) aims to align feature distributions between a
labelled source domain and an unlabelled or sparsely labelled target domain—for
example, histopathology images acquired from different scanners. In medical imag-
ing, where annotated data is often limited, DA techniques help models retain their
performance across such domain gaps.

Shallow methods include instance-based approaches like Kernel Mean Matching
(KMM), which reweight source samples under covariate shift, and feature-based ap-
proaches like Transfer Component Adaptation (TCA), which learn domain-invariant
representations by minimizing distributional discrepancies in RKHS. Deep DA meth-
ods build on these ideas using neural networks, such as Deep Adaptation Networks
(DAN), which align feature distributions via Multiple Kernel MMD, or adversarial
strategies like Domain-Adversarial Neural Networks (DANN), which promote do-
main invariance through a gradient reversal layer that confuses a domain classifier
during training (Farahani et al., 2021)).

Domain generalisation (DG), on the other hand, aims to train models that
perform robustly on unseen domains, without requiring any access to target domain
data during training. Unlike domain adaptation, which allows for some form of
target supervision or alignment, DG assumes only access to one or more related
source domains and seeks to learn representations that generalise beyond them.
This is particularly relevant in medical imaging, where deployment environments
(e.g., unseen scanners or hospitals) may differ from those in the training set.
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To address this, DG methods employ strategies such as domain alignment (e.g.,
matching distributions across source domains using MMD or adversarial training),
meta-learning (simulating domain shift during training), data augmentation (gen-
erating diverse training examples to mimic unseen domains), and self-supervised
learning (using pretext tasks to learn domain-agnostic features). These approaches
aim to reduce reliance on scanner-specific features and encourage high-level, in-
variant representations that support robust generalisation without retraining (Zhou
et al., 2022).

In the context of scanner—induced domain shift—where variations in medical image
appearance arise from a wide range of causes—both approaches are highly relevant.
However, they are mitigation strategies designed to improve model robustness after
a domain shift has occurred and are therefore related but not directly subject of
this work, which focuses on detecting, quantifying, and characterizing the scanner-
induced shift itself.

4.4 Relevant Deep Learning Concepts and Architectures

Generally, deep learning models learn by optimizing a set of parameters to minimize
a predefined loss function, which quantifies how far the model’s predictions are from
the true targets. During training, an input is passed through multiple layers of a net-
work architecture in a process known as forward propagation, resulting in an output
such as a class label or regression value. The loss is then computed, and the model
uses backpropagation to calculate the gradients of the loss with respect to each pa-
rameter. These gradients indicate how the parameters should be adjusted to reduce
the loss. An optimisation algorithm—e.g. stochastic gradient descent—updates the
parameters incrementally. Through repeated iterations over the training data, the
model improves its internal representations. The specific structure of a model’s ar-
chitecture significantly influences the types of representations it can learn and the
range of tasks it can generalise to (Goodfellow et al. 2016; Schmidhuber, [2015).

4.4.1 Hidden Representations and Feature Extraction

While processing input data through multiple layers, deep learning models gener-
ate intermediate outputs at each stage of the network. These intermediate outputs
are also referred to as hidden representations because they are not directly visible
in the final prediction, but play an important role in how the model processes the
data internally (Goodfellow et al., [2016). Typically, each layer transforms its input
into increasingly abstract representations, allowing the model to capture low-level
patterns—e.g., edges in images—in earlier layers and more complex, high-level fea-
tures—e.g., parts of objects or even semantic categories—in deeper layers (Yosinski
et al., 2014). The quality and structure of these hidden representations are essential
to the performance and transferability of a model.

Building on this concept, feature extraction refers to the process of using the internal,
hidden representations learned by a model—usually from its intermediate layers—as
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compact summaries of the input data that capture important patterns or structures
(Pan and Yang, 2010)). Which information and patterns the model deems relevant
is, of course, highly dependent on the learning goal of the model—i.e., how the
model calculates its loss. In practice, feature extraction allows a model trained on
one dataset or task to be reused for another by keeping its learned weights fixed
and using its internal outputs as input for a new classifier or task-specific module
(Yosinski et al., 2014). This is especially helpful when labelled data is limited,
as it enables transfer learning—relying on general-purpose features learned during
large-scale pre-training. In this work, these reduced representations are used to
reduce the complexity of high-dimensional image data to enable the application of
distance metrics for shift detection. Models like ResNets and Vision Transformers
are commonly used for feature extraction, with different layers offering varying levels
of abstraction depending on what the task requires (Dosovitskiy et al., |2020; |Caron
et al., 2021)).

4.4.2 Multi-Layer Perceptrons (MLPs)

Multi-Layer Perceptrons (MLPs) are one of the most fundamental types of deep
neural networks. They are made up entirely of fully connected layers, meaning that
each neuron in one layer is connected to every neuron in the next. MLPs operate on
fixed-size inputs that are represented as one-dimensional vectors, which means the
input data must be flattened before being processed (Goodfellow et al., 2016)). These
networks learn by applying a series of linear transformations followed by non-linear
activation functions—e.g. the ReLu function |[Nair and Hinton| (2010)—allowing
them to build increasingly abstract representations across multiple layers. In the-
ory, this layered structure enables MLPs to approximate a wide variety of complex
functions. However, they do not take advantage of any specific structure in the input
data—such as the spatial layout in images or the sequential nature of time series.
Because of this, they often need more training data and parameters to perform as
well as architectures that include built-in assumptions about the data, such as con-
volutional or attention-based models (LeCun et al., 2015). Still, MLPs remain a key
building block in deep learning and are especially useful in situations where inputs
are already vectorised, or when model simplicity and interpretability are priorities.

4.4.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a class of deep learning models specifi-
cally designed to process grid-like data, such as images (LeCun et al., [2015]). Unlike
traditional multilayer perceptrons (MLPs), which rely on fully connected layers,
CNNs use convolutional layers that apply learnable filters to local regions of the
input. These filters function as feature detectors, capturing low-level patterns like
edges and textures in the initial layers, and progressing to more abstract representa-
tions such as shapes and objects in deeper layers (Goodfellow et al., 2016} |Schmid-
huber}, 2015)). This hierarchical representation is key to CNNs’ success in computer
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vision tasks, as it allows them to effectively model the spatial relationships within
data. Pooling layers are commonly employed to reduce the spatial dimensions of the
feature maps, improving computational efficiency and helping the model recognize
patterns regardless of their position in the image while keeping important details
(LeCun et al., 2015} |Goodfellow et al.,2016). The combination of convolutional and
pooling layers enables CNNs to learn robust, multi-scale features from raw pixel
data. As a result, CNNs have become foundational models in many vision-related
tasks, including image classification, object detection, and semantic segmentation
(He et al., 2016; Dosovitskiy et al., [2020)).

4.4.4 Residual Networks (ResNets)

Originally introduced by [He et al.| (2016)), ResNets extend the MLP idea by incor-
porating convolutional layers and introducing skip connections. This architecture
enables the training of very deep networks by mitigating the vanishing gradient
problem, which occurs when gradients—used to update the model’s weights dur-
ing training—become increasingly small as they are backpropagated through many
layers, effectively preventing the earlier layers from learning. By using skip connec-
tions that bypass one or more layers, ResNets preserve the flow of gradients and help
ensure that all layers receive meaningful updates. Like MLPs, ResNets learn hierar-
chical representations, but are better equipped for high-dimensional structured data
such as images due to their spatial awareness in the convolutional operations.

4.4.5 Foundation Models and Self-Supervised Vision Transformers

In recent years, foundation models (FM) have become a popular and powerful ap-
proach across many areas of machine learning. These models are typically large neu-
ral networks trained on broad and diverse datasets using self-supervised or weakly
supervised learning objectives (Bommasani et al., 2021)). The idea is to learn general-
purpose representations that can be easily adapted to different downstream tasks
with minimal additional training. While this approach was initially applied to nat-
ural language processing, it has since made significant contributions to computer
vision as well.

Among the most notable vision FMs are DINO and DINOwv2. These models move
away from traditional supervised learning toward self-supervised methods, where
models learn directly from raw image data without the need for manual labels.
Both are built on the Vision Transformer (ViT) architecture (Dosovitskiy et al.
2020), which divides an image into small patches and treats them like words in a
sentence. It then uses a mechanism called self-attention to learn how different parts
of the image relate to each other, allowing the model to understand both local details
and global context. A special [CLS] token is added to the sequence and used to
summarize the entire image, providing a compact representation that can be used
for classification.
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DINO and DINOv2 are trained with contrastive self-distillation, which encourages
the model to produce consistent representations across different views of the same
image (Caron et al., [2021} Oquab et al) 2023). While DINO is typically trained
on ImageNet-1k (without labels), DINOv2 uses a much larger and more diverse
dataset called LVD-142M—a curated collection of 142 million images from various
sources. This broader dataset helps DINOv2 learn more robust and generalisable
visual features (Oquab et al.; 2023). These models are now widely used as pre-
trained backbones in vision tasks and often outperform supervised models, especially
in terms of generalisation and scalability (Parvaiz et al., 2023]).

4.4.6 ImageNet-1k and LVD-142M

The ImageNet-1k dataset is a widely used benchmark dataset in computer vision,
containing approximately 1.28 million labelled images across 1,000 object categories
(classes). It is frequently used for evaluating and training supervised models due

to its high-quality annotations and broad coverage of natural image classes (Deng
et al., 2009).

In contrast, LVD-142M is a much larger and more diverse collection of about 142 mil-
lion curated images, assembled by selecting samples from an uncurated pool of web
images that were visually similar to those in datasets like ImageNet-1k, ImageNet-
22k, Google Landmarks, and other fine-grained sources. Unlike ImageNet-1k, LVD-
142M does not have specified classes and is designed for self-supervised learning. It
was developed to support the pre-training of large-scale vision transformers such as
DINOv2, with a focus on representational richness rather than explicit classification
(Oquab et al.| 2023).

4.4.7 Hyperparameters

In machine learning, hyperparameters influence how a model learns and can have
a big impact on its final performance. Unlike parameters that are learned during
training, hyperparameters are set beforehand and control the optimisation process.

Two key hyperparameters are the number of epochs and the learning rate. The
number of epochs controls how many times the model iterates over the training
data. With too few epochs, the model might not learn enough to effectively handle
the task, while too many epochs may cause the model to overfit (Goodfellow et al.,
2016). Overfitting means that the model is too overtuned to the data—including
its noise—and will thus fail to generalise to unseen data. The learning rate, on the
other hand, determines how big the parameter updates are during training. If it’s
too high, the model may never converge, while setting it too low can make training
unnecessarily slow or make it get stuck in poor local minima because the weight

updates in any direction are too small to cause improvements to the loss (Bengio,
2012).

Finding the right balance for these settings is a non-trivial task and often crucial to
getting high-performing classifiers.
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4.5 Black Box Shift Detection (BBSD)

BBSD is a method to identify and measure domain shift between datasets. This is
accomplished by leveraging the outputs—either hard predictions or softmax prob-
abilities—of an existing black-box classifier, which is trained on the source data,
to detect shifts in the distribution of the target domain data. While originally de-
signed for label shift, it has been shown to also reflect different types of shift, such
as covariate shift, of which scanner-induced shift is a subtype. The underlying idea
of this method is that shifts in the label distribution or even feature distribution
will influence the behaviour of the black box classifier and thus be measurable in its
outputs.

4.5.1 Key Theoretical Components and Assumptions

Label Shift Assumption: Formally, as introduced by Lipton et al. (2018), BBSD
relies on the assumption of label shift, where the class-conditional distribution p(z|y)
remains invariant across domains, and only the marginal distribution of labels p(y)
changes. This assumption allows BBSD to focus on changes in the label distribution
between the source and target domains without needing to account for changes in the
feature distribution. Under this assumption, label shift can be measured without
the need for labelled target data. However, Lipton et al. (2018) and |[Rabanser
et al.| (2019) have also applied BBSD on other types of shifts, including covariate
shift, where the conditional distribution p(y|z) remains the same across domains but
the input distribution p(x) changes. Furthermore, in real-world scenarios, multiple
types of distribution shifts frequently affect the data simultaneously, and even slight
changes in the input space can affect the classifier’s outputs on the target data —
particularly when using an imperfect classifier, which BBSD is specifically designed
to accommodate.

Black Box Predictor: The method assumes access to a pre-trained label classifier
f X — Y, which can be any machine learning model, such as deep neural networks,
support vector machines, or decision trees, trained on the source data. The classifier
acts as a “black box,” meaning that the internal workings of the classifier do not
need to be understood or accessible for BBSD to operate. The method focuses only
on the classifier’s output, i.e., the predicted labels or probabilities for the source and
target datasets.

Invertible Confusion Matrix: A key requirement for BBSD’s effectiveness is
that the expected confusion matrix of the classifier must be invertible on the source
data distribution. Invertibility A=1 of the confusion matrix implies that the classi-
fier’s outputs are linearly independent, which is the case if the determinant det(A)
of the matrix is # 0. Intuitively, the confusion matrix is typically invertible where
the classifier predicts the true class more often when the input actually belongs to
this class than when the input belongs to any other class (i.e. more true positives
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than false positives) (Lipton et al., 2018]). Conversely, if the confusion matrix is not
invertible, it means that the predictor’s behaviour for some classes is not sufficiently
distinct from its behaviour for other classes. This would make it impossible to ad-
equately determine the underlying shift in the label distribution from the observed
changes in the predicted label distribution.

Shift Detection as Hypothesis Testing: BBSD detects distribution shifts by
formulating the detection process as a hypothesis test on the classifier’s output
distribution. The null hypothesis H, assumes that there is no shift affecting the
classifier’s outputs, i.e., the output distributions are identical across domains,

p(f(@)) = q(f(x)).

The alternative hypothesis H; assumes that the distributions differ,

p(f(x)) # q(f ().

If a significant difference is detected between the classifier’s output distributions on
the source and target data, BBSD rejects the null hypothesis, indicating that a shift
has occurred. The significance is determined by the p-value during the test and
defined by the significance threshold o which is typically set to a = 0.05, meaning
that there is a 5% chance of incorrectly rejecting the null hypothesis when it is
actually true—i.e., a 5% risk of a false positive (also called Type I error).

4.5.2 Variations: Hard and Soft Predictions

The detection of label shifts using BBSD involves comparing the classifier’s outputs
between the source and target domains using two-sample statistical tests. The
method can be applied to both hard and soft predictions generated by the classifier.

1. Soft Predictions (BBSDs):

When the classifier produces soft predictions (e.g., probabilities via softmax
outputs), BBSD applies two-sample tests, such as the Kolmogorov-Smirnov
(KS) test, to compare the predicted probabilities between the source and target
domains per class. Since multiple classes are typically involved, a Bonferroni
correction is used to control the error rate across multiple tests. If the corrected
p-value is below a specified significance threshold, the null hypothesis of “no
shift” is rejected. This approach has been shown to generally produce more
reliable results and is used in the methodology of this work.

2. Hard Predictions (BBSDh):

When the classifier produces hard class labels, BBSD uses statistical tests like
Pearson’s chi-squared test to compare the frequency distributions of predicted
labels between the source and target datasets. However, Rabanser et al.| (2019))
found that BBSD on soft predictions (i.e. softmax outputs) was the best-
performing overall method of dimensionality reduction for univariate testing.
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BBSD on Covariate Shift

Although BBSD primarily focuses on label shift, |[Rabanser et al.| (2019) found BBSD
to be effective even for other types of shifts, where the label shift assumption is not
met. It can be argued that in the case that the true label distributions of the target
data were known to be equal, i.e. p(y) = q(y), then shifts in the observed label
distributions of the classifier’s output, i.e. p(f(z)) # q(f(x)), should reflect shifts
in the input distributions p(z) and ¢(z), as long as the conditional distributions
p(y|z) = q(y|r) remain invariant across domains. In such scenarios, the changes in
the feature space may be reflected in the output distribution of the classifier.

However, Roschewitz et al.| (2024)) reported BBSD and other output-based methods
in isolation to have limited effectiveness at detecting covariate shifts, including acqui-
sition shifts. In these cases, BBSD alone may fail to detect shifts, and feature-based
methods might be required for more comprehensive shift detection.

4.5.3 Kolmogorov-Smirnov (KS) Test

As early as 1933, Andrey Kolmogorov’s foundational work derived the theoretical
distribution of the maximum difference between empirical and theoretical cumula-
tive distribution functions (CDFs). Nikolai Smirnov extended this work in 1939,
developing the two-sample version of the test to compare whether two empirical
distributions differ significantly. Today, computational implementations like the
scipy.stats.ks_2samp test—based on the later work of [Hodges Jr| (1958)—make the
test efficient and accessible.

Conceptually, the Kolmogorov-Smirnov (KS) two-sample test is a non-parametric
test, meaning it assesses whether two independent samples originate from the same
underlying distribution without making any assumptions about the shape (e.g., nor-
mal, exponential) of that distribution. [Rabanser et al.[(2019) define the test statistic
as the maximum absolute difference Z between the empirical cumulative distribution
functions (CDFs or ECDFs) of the two samples, given by:

Z = Sl:p |Fp(z) - Fq(z)|

where F,(z) denotes the CDF of the source and F,(z) denotes the CDF of the source
and target distributions. It returns a value between 0 and 1: 0 if the distributions
are identical and 1 if the distributions are completely non-overlapping.

Generally, the KS test doesn’t require equal dataset sizes, but when one dataset
is much smaller, the associated CDF will be less fine-grained and the measured
maximum absolute distance between the CDFs will be less precise, as exemplarily
visualised in Appendix Figure [33]

Application to BBSD In the context of BBSD, the KS test is applied as multiple
univariate tests, meaning it is run independently for each class-specific softmax
output. For example, to test for distributional shift in class 0, we compare the
distribution of softmax probabilities assigned to class 0 for source domain data
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(e.g., scanner A) against the same for target domain data (e.g., scanner B). The
test statistic reflects the largest difference between these two CDFs. Under the
null hypothesis that both samples come from the same distribution, the KS test
provides a p-value indicating the probability of observing such a large difference just
by chance. If this p-value falls below a pre-defined threshold, the null hypothesis is
rejected, suggesting a statistically significant distribution shift.

Bonferroni Correction:

However, performing multiple tests—one per class—raises the risk of false posi-
tives due to the increased number of comparisons. To address this, a Bonferroni
correction is applied to control the overall type I error rate (Bland and Altman,
1995)). The corrected significance level is given by Qcorrected = @/m, where « is the
original significance level (e.g., 0.05) and m is the number of tests. For instance,
if two independent KS tests are conducted (because there are two classes), then
Qcorrected = 0.05/2 = 0.025. This means that each individual test must produce a
p-value below 0.025 in order to be considered statistically significant at the overall
5% level. Alternatively, the original significance threshold can be retained and each
p-value can be multiplied by the number of tests to obtain the corrected p-value
(Rabanser et al., 2019; |Roschewitz et al., [2024]).

4.6 Maximum Mean Discrepancy (MMD) Permutation Test

The Mazimum Mean Discrepancy (MMD) is another non-parametric test used to
compare whether two samples—typically from a source and a target domain—are
drawn from the same underlying distribution. It is a common distance metric and
has been used extensively in DA and DG techniques (Yan et al., 2017; Long et al.,
2013)—in DA, to align source and target domain distributions (e.g., in Kernel Mean
Matching and Deep Adaptation Networks), and in DG, to align feature distribu-
tions across multiple source domains—with the common goal of learning domain-
invariant representations by minimizing distributional discrepancy in a reproducing
kernel Hilbert space (RKHS)—a high-dimensional space induced by a kernel func-
tion (Farahani et al., 2021; Zhou et all [2022). Conceptually, MMD measures the
distance between two probability distributions by comparing their mean embeddings
in the RKHS. A mean embedding is a representation of an entire distribution as a
single point in the RKHS, computed by averaging the mapped feature vectors of
samples from that distribution. MMD quantifies the distance between these mean
embeddings, and thus provides a non-parametric estimate of how different the two
underlying distributions are (Rabanser et al.| 2019; Zhou et al.| 2022)). In contrast
to the Kolmogorov-Smirnov test, which is applied univariately to one dimension at
a time, MMD is a multivariate test that compares the full joint distributions of
multidimensional data, making it suitable for application on high-dimensional data
and potentially allowing for the measurement of shifts that only manifest across
combinations of features, although computational costs increase quickly with higher
dimensionality.
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An unbiased estimate of the squared Maximum Mean Discrepancy (MMD) between
two distributions p and ¢ can be computed using the following formula originally
proposed by |Gretton et al.|(2012)) and applied by Rabanser et al. (2019) and [Rosche-
witz et al.| (2024) in the context of shift detection:

2 - / ! /
MMD* = mZ —m ;;Fé(% zj) + N2 —n ;; k(2 Zj) T 222 k(zi, zj)

where:

o {zi}i) ~ pand {#/}7_ | ~ q are samples drawn from distributions p and ¢,
respectively.

e x is a positive semi-definite kernel function that defines similarity in the em-
bedding space (e.g. the Radial Basis Function).

e The first term measures average similarity within distribution p.
e The second term measures average similarity within distribution g.

e The third term measures similarity between distributions p and q.

Simply put, the MMD statistic captures how different two distributions are by com-
paring intra- and inter-distribution similarities. A larger MMD value indicates a
greater dissimilarity between p and q.

A commonly chosen kernel x for MMD is the Radial Basis Function (RBF) kernel,

defined as:
212
k(z,Z) = exp (_—Hz dl )

o
(Rabanser et al., [2019; Roschewitz et al., 2024)

where:

e > and Z are feature vectors representing two data points in the embedding
space.

e ||z — Z||? is the squared Euclidean distance between the two feature vectors z
and Z, calculated as the sum of squared differences in each dimension of the
vectors.

e 0 (sigma) is a parameter that represents the width of the kernel. It controls
the sensitivity of the kernel to the distance between the points. Smaller values
of ¢ make the kernel sensitive to local distances, while larger values make it
more global and less sensitive to individual differences. Rabanser et al. (2019)
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derived o as the median of the pairwise Euclidean distances between all data
points in the feature space. This adaptive selection ensures that the kernel
is appropriately scaled to the data distribution, making it robust to varying
densities across different datasets.

e The term exp (—2||z — Z||?) is the kernel function itself, which computes a
similarity score between the vectors z and Z. The closer the two vectors are,
the higher the similarity score (close to 1), and as the distance between them
increases, the score decreases exponentially, approaching 0.

Permutation Testing

To assess the significance of an observed test statistic like Maximum Mean Dis-
crepancy (MMD), a permutation test can be used to compute a p-value. The null
hypothesis assumes that the two samples, X and Y, are drawn from the same dis-
tribution—implying that any observed difference could be due to chance.

The process begins by computing the observed MMD between X and Y. If the
null hypothesis holds, this value should be similar even after randomly reassigning
the samples to the sets. The permutation test proceeds as follows:

1. Combine X and Y into a single dataset.

2. Randomly shuffle the combined data.

3. Split it into two new sets with the same sizes as X and Y.
4. Compute the MMD between these two subsets.

5. Repeat steps 24 many times (e.g., 1000 permutations) to generate a distri-
bution of MMD values under the null hypothesis.

The p-value is calculated as the proportion of permutations in which the MMD is
greater than or equal to the observed value. For example, if this occurs 25 times
out of 1000 permutations, the p-value is:

1 25 0.025
p-value = -5 =0.
A small p-value (e.g., below 0.05) suggests that the observed MMD is very unlikely
under the null hypothesis, indicating a significant difference between the distribu-
tions. Conversely, a large p-value suggests that the observed discrepancy could
actually have occurred by chance. This method provides a statistical way to de-
termine whether a measured distance between datasets reflects a real distributional
shift (Pesarin and Salmaso, 2010).
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4.7 Proxy A-Distance*

In its original formulation, Prozy-A-Distance (PAD) evaluates the error of a binary
domain classifier trained on raw input features. However, this approach can be overly
sensitive to superficial domain differences that may not impact task performance. To
address this, a modified version known as PAD* has been proposed. PAD* assesses
the distinguishability of domains based on intermediate representations learned by a
task-specific model, rather than raw inputs. Specifically, after training a task model
composed of a feature extractor Gy and a label predictor GG, on source domain data,
the feature extractor is frozen. A separate domain classifier G is then trained to
discriminate between—i.e. distinguish—the intermediate features G¢(z) from source
and target examples. It will subsequently be referred to as domain discriminator.
The PAD score is calculated based on the generalisation error E(G5(G(x))) of this
domain classifier on held-out intermediate features of the original task classifier,
using the formula:

PAD* = 1 — 2E(G5(G())).

A PAD* value of 0 corresponds to a random classifier (i.e., no domain discrepancy),
while a value of 1 indicates perfect discrimination between domains. This makes
PAD* a more targeted measure of domain shift, focusing on the task-relevant rep-
resentations rather than superficial input differences.

To extend the PAD* to scenarios involving more than two domains, a multi-class
version is proposed for this work, denoted as PAD; ... This variant quantifies the
overall domain shift across multiple scanner domains. Instead of a binary domain
classifier, a multi-class discriminator is trained to predict the domain label (e.g., one
of five scanners) based on the intermediate representations extracted by a frozen
feature extractor Gy, which was previously trained on the primary classification
task. The mean absolute error (MAE) of this domain classifier—which is essentially

the aforementioned generalisation error—is computed as:

n

MAE = =" 145 £ i}

i=1

where n denotes the number of samples, y; the true domain label, and g; the pre-
dicted domain label for sample i. The multi-class PAD* score is then calculated by
normalizing this error against the expected error of a random classifier, MAE, ..dom,
using the formula:

MAE

PAD? =1-—
MAErandom

multi
In the case of balanced domain classes, the random error is given by MAE, ..dom =
1 - %, where K represents the number of domain classes (e.g., K = 5 results in
MAE,andom = 0.8). This normalisation ensures that PAD}, .. = 1 indicates perfect

multi
discrimination between domains, while PAD} .. = 0 corresponds to performance
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at chance level. This version of the method provides a straightforward metric for
quantifying domain shift in a multi-class context.

4.8 Principal Component Analysis

Principal Component Analysis (PCA) is a frequently used statistical technique for
dimensionality reduction of data by identifying its most essential features. This
can be useful when working with high-dimensional data, such as hidden feature
embeddings extracted from machine learning models (Roschewitz et al., [2024)), to
reduce computational overhead, filter out noise, or enable visualisation, e.g. by
projecting the data into a 2D space.

It works by projecting several original variables into a smaller number of new, uncor-
related variables—called principal components—that retain as much of the original
data’s variance as possible. Essentially, PCA looks for linear combinations of the
original variables that preserve the underlying variance structure. The principal
components are ordered by the amount of variance they explain, with the first
capturing the greatest variance, the second capturing the next greatest, and so on.
Usually, most of the variance is expressed by the first few top components, but there
is generally a trade-off between simplicity and information preservation. (Greenacre
et al., |2022)

In the first step, PCA computes the covariance matrix of the data, which describes
how much each pair of features varies together. This matrix captures relationships
between features, including correlation. Then the so-called eigenvectors and eigen-
values of this covariance matrix are calculated. The eigenvectors represent directions
in the feature space—i.e. new axes along which the data varies the most—while the
eigenvalues indicate how much variance is captured in each direction. Finally, by
selecting the top k eigenvectors (those with the largest eigenvalues), the data is
projected into a lower-dimensional space that retains the most significant variance
characteristics of the original dataset (Abdi and Williams, 2010; Ringnér], [2008}
Greenacre et al., 2022)

4.9 Performance Metrics
4.9.1 F1 Score

In binary classification tasks, two fundamental metrics for evaluating model perfor-
mance are precision and recall. These metrics are based on the concepts of true
positives (TP), false positives (FP), and false negatives (FN). Precision measures
the proportion of positive predictions that are correct and is defined as:

TP

reclsion TP+ FP
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Recall, also referred to as sensitivity or the true positive rate (TPR), measures the
proportion of actual positive instances that are correctly identified by the model. It
is defined as:

TP

Recall (TPR) = m—m

While precision focuses on the correctness of positive predictions, recall emphasizes
the model’s ability to identify all positive cases.

The F1 score, also known as F-measure, combines both metrics into one value by
computing their harmonic mean. It provides a balance between precision and recall
and is particularly useful when the class distribution is imbalanced or when both
false positives and false negatives carry significant consequences (Manning et al.|
2008} Hossin and Sulaiman, 2015)).

The F'1 score is given by:

Precision - Recall

F1=2.
Precision + Recall

The value of the F1 score ranges from 0 to 1, with higher values indicating better
overall performance in terms of both capturing relevant instances and avoiding false
positives.

4.9.2 Reciever Operating Characteristic (ROC)

The Receiver Operating Characteristic (ROC) curve is a graphical representation of
a binary classifier’s performance across a range of threshold values. It plots the true
positive rate (TPR), also known as or sensitivity, against the false positive rate
(FPR), which is defined as the proportion of negative instances incorrectly classified
as positive. The false positive rate is computed as:

FP

FPR= —
R=Tp7n

By varying the decision threshold applied to the model’s output, which is continu-
ous (i.e. softmax probabilities), different trade-offs between TPR and FPR can be
visualised on the ROC curve.

The Area Under the ROC Curve (AUC-ROC) summarises this trade-off as a single
value ranging from 0 to 1. A value of 1.0 indicates perfect discrimination between the
positive and negative classes, while a value of 0.5 corresponds to random guessing.
AUC-ROC is widely regarded as a robust and threshold-independent performance
measure, particularly useful in situations with imbalanced class distributions. Intu-
itively, the AUC-ROC value represents the probability that, if you randomly select
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one positive instance and one negative instance, the classifier will assign a higher
probability score to the positive instance than to the negative instance. The theoret-
ical foundations of ROC analysis and its application in diagnostic systems have been
widely discussed in the literature (Metz, 1978; Hanley and McNeil, (1982} |Fawcett,
20006)).

4.9.3 False Negative Rate (FNR)

The False Negative Rate (FNR) represents the proportion of instances from a class
that are incorrectly predicted as belonging to a different class. In the context of
domain discrimination in PAD*, it reflects how often samples from a particular
scanner domain are misclassified. The FNR is computed as:

FN;
FNR; = ~—— = 1 — [Recall,

TP; + FN;
where TP; and FN; represent the number of true positives and false negatives for
class 7, respectively (Powers, [2011)). For a domain discriminator model, a high FNR
indicates that samples from domain 7 are frequently confused with others, suggesting
low distinguishability in the learned representation space.

4.9.4 False Discovery Rate (FDR)

The False Discovery Rate (FDR) measures the proportion of instances predicted to
belong to a given class that actually originate from a different class. In other words,
it captures how often predictions for domain ¢ are incorrect. The FDR is defined as:

where TP; and FP; are the number of true positives and false positives for class i,
respectively (Powers, 2011)). Receiving a high FDR in the domain discrimination
context suggests that many samples are falsely assigned to domain ¢, potentially
indicating either class bias or feature overlap with other domains.

4.9.5 Pearson Correlation Coeflicient

The Pearson correlation coefficient is a statistical measure of the linear relationship
between two continuous variables (Pearson, 1896). Given two vectors of paired
observations = = (1, xs,...,%,) and y = (y1, Y2, - - ., Yn), the Pearson correlation r
is computed as

= > i (i — ) (yi — )
V= 2 (i = 9)7
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where T and g are the means of x and y, respectively. The coefficient r ranges from
—1 (perfect negative correlation) to +1 (perfect positive correlation), with a value
of 0 indicating no correlation.

In the context of model evaluation, the Pearson correlation is particularly useful
for detecting trends or patterns within results (Kuhn et al., |2013). For instance,
in BBSD, it can be applied to KS distances across different model architectures to
assess the consistency in how models capture distributional differences.

4.9.6 Coeflicient of Variation

The coefficient of variation (CV) measures how much a set of values varies relative
to its mean. It is defined as the ratio of the standard deviation o (also called STD)
to the mean pu:

cv=2

i

(Everitt, [1998))

Because it expresses variability relative to the average, the CV is especially useful
for comparing variation across different scales or measurement units (Abdi, |2010)).
For example, a CV of 0.2 means the standard deviation is 20% of the mean, while
a CV of 1.0 means the spread is as large as the average value itself.

In this work, the CV is used to summarize how much domain shift metrics—such as
KS distances—fluctuate across scanner pairs. A high CV suggests that the results
vary a lot depending on the scanner pair, while a low CV points to more consistent
behaviour.

5 Methodology

This section provides details about the procedures and methods used in the ex-
periments to ensure reproducibility, support critical assessment of the findings, and
provide a foundation for future research. Each methodological step is fully described,
including how the different domain shift detection approaches were applied. For ad-
ditional clarity, visual representations of the experimental setups are provided in
Appendix Figures 22| (input-space BBSD + MMD), [23| (latent-space MMD), and
(multi-class PAD*).

To improve comprehensibility given the complex experimental setup, each classi-
fier model is denoted by the scanner identifier from which its training data origi-
nates, using the format scanner model (e.g., cs2 model, nz20 model, nz210 model,
p1000_model, gt450 model). Similarly, test sets are denoted as scanner_test, in-
dicating that the data was acquired using the respective scanner. The general terms
scanner_model and scanner_test refer to any model or test set associated with a
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given scanner. Full, explicit descriptions are alternatively used where this is deemed
beneficial for understanding.

Additionally, the terms source-centric and target-centric are used to describe the
direction of evaluation. A source-centric view focuses on the results of a single
scanner model or reference domain across multiple test sets, while a target-centric
view centers on a single scanner_test evaluated using multiple scanner models or
source domains.

5.1 Dataset and Preprocessing
5.1.1 Dataset

The dataset employed for all subsequent experiments is the Multi-Scanner Canine
Cutaneous Squamous Cell Carcinoma Histopathology Dataset introduced by [Wilm
et al.| (2023c), which is “a multi-scanner version of the SCC subset of the publicly
available CATCH dataset” (Wilm et al., |2023al).

It comprises 220 Whole Slide Images (WSIs), derived from 44 canine histopathology
samples, each digitised using five different microscopic whole slide scanners: Aperio
ScanScope CS2 (Leica, Germany, 0.25 um/pixel), NanoZoomer S210 (Hamamatsu,
Japan, 0.22 pm/pixel), NanoZoomer 2.0-HT (Hamamatsu, Japan, 0.23 pm/pixel),
Pannoramic 1000 (3DHISTECH, Hungary, 0.25 um/pixel), and Aperio GT 450 (Le-
ica, Germany, 0.26 pm/pixel) (Wilm et al., 2023a). For simplicity reasons, these
scanners will be referred to as “cs2”, “nz210”, “nz20”, “p1000” and “gt450” re-
spectively. They represent the domains between which the scanner-induced shift
is supposed to be measured. Figure (1| displays sample 01 as digitised by the five
different scanners.

Aperio ScanScope CS2 NanoZoomer 2.0-HT NanoZoomer S210 Pannoramic 1000 Aperio GT 450
“cs2” “nz20” “nz210” “p1000” “gt450”

Figure 1: Tissue sample (ID 01) by all five scanners side-by-side. Slides were down-
scaled without cropping and size ratios between slides were preserved.
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Figure 2: Label mask visualisation on example slide (ID 10 of cs2).

This dataset was selected because it isolates scanner-induced acquisition shifts while
minimizing anatomical variability, making it well-suited for the subsequent exper-
iments. However, it is important to note that in practice, multiple types of shifts
that apply to different characteristics often occur at the same time Roschewitz et al.|
(2024) and same-anatomy samples are not the rule.

The WSIs were accompanied by segmentation polygons providing the coordinates
of labelled regions, from which pixel-wise label masks were derived. These masks
annotated each pixel with one of the following 14 classes: Background (0), Unas-
signed (-1), Bone (1), Cartilage (2), Dermis (3), Epidermis (4), Subcutis (5), In-
flammation/Necrosis (6), Melanoma (7), Plasmacytoma (8), Mast Cell Tumor (9),
Peripheral Nerve Sheath Tumor (10), Squamous Cell Carcinoma (11), Trichoblas-
toma (12), and Histiocytoma (13). Of these 15 different possible label values, labels
7 through 13 correspond to tumor tissue classes (positive class 1). The label mask
is visualised in Figure [

5.1.2 Preprocessing

The dataset split used in the experiments was directly adopted from
(2023b) to ensure consistency with prior work and to avoid potential sampling bias
due to lacking domain-specific medical expertise.

The WSIs vary significantly in spatial dimensions, with the smallest slide measur-
ing 3,712 x 2,789 pixels and the largest reaching 12,288 x 6,560 pixels. With
the exception of scanner “pl1000”, slide dimensions are inconsistent even intra-
scanner. The slide with the largest absolute deviation from a square aspect ratio is
“scc_35_nz210.tif 7, which has a width of 9600 pixels, a height of 3872 pixels, and
an aspect ratio of 2.48. In contrast, the image with an aspect ratio closest to 1
is “scc_04_cs2.tif 7, measuring 5849 x 5850 pixels, nearly resulting in a perfect 1.00
ratio. To illustrate this further, Table [2| shows the average image dimensions per
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Table 1: Assignment of slides to training, validation, and test splits.

Dataset Split | Slide IDs

Train {01, 02, 04, 05, 06, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23,
24, 27, 28, 29, 30, 31, 35, 36, 38, 39, 40, 41, 42, 43}

Validation {03, 09, 25, 26, 37}

Test {07, 08, 10, 11, 16, 32, 33, 34, 44}

scanner and Appendix Figure [34] visualises the width and height distributions of the
slides per scanner as histograms.

Table 2: Average image dimensions (width + height) and average aspect ration
(width /height) for each scanner.

Scanner Avg. Size Avg. Ratio (width / height)

cs2 11056.11 1.36
nz20 14108.36 1.48
nz210 14317.45 1.46
p1000 15341.00 0.41
gt450 12583.18 1.52

To accommodate these size differences while retaining relevant histological context,
all WSIs were subdivided into patches of size 224 x 224 pixels while preserving the
3 RGB channel dimensions. Patches were extracted by calculating a patch grid,
visualised in Figure Minimal patch overlap was dynamically calculated based
on height and width to ensure full slide coverage. The resulting patches of size
224 x 224 x 3 are directly compatible with the ResNet18, as well as the DINO-base
and DINOv2-base models that were chosen for the experiments.

For the binary classification task, all patches that contained any tumor-associated
labels (classes 7 through 13) were labelled as class 1 (tumor). Non-tumor tissue
types (classes 1 through 6) were assigned to class 0 (non-tumor). Patches labelled
as Background (0) or Unassigned (-1) were excluded entirely from both the training
and evaluation phases, in order to avoid model overfitting on information-empty
regions. No additional preprocessing was applied beyond patch extraction and label
filtering. Preprocessing of the patches was intentionally kept minimal to preserve
the naturally occurring shifts present in the original images.

Table [3| shows the class distribution of the patches for each split subset per scanner.



5 METHODOLOGY 28

Grid of patches on slide: scc_10 cs2.tif
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Figure 3: Patch grid visualisation on example slide (ID 10 of scanner cs2).

Table 3: Number of patches per data split and scanner. The first row of each subset
shows the total number of patches; the second row shows the percentage of class 1
(tumor) samples.

Subset cs2 nz20 nz210 pl000 gt450
Train 11,623 13,966 14,773 10,824 10,735
Class 1 (%) 38.41 37.52 3722 40.46  38.29
Validation 1,845 2,253 2,355 1,831 1,710
Class 1 (%) 42.66  43.45  42.63  42.49  43.74
Test 2,807 3,367 3,519 2,592 2,627
Class 1 (%) 40.04 38.73 38.87 40.08 39.70

5.2 BBSD for Input Space

To evaluate domain shifts in input space, a Kolmogorov—Smirnov (KS) test was
applied to softmax outputs of neural network classifiers trained on the image patches
of the histopathology slides as part of the BBSD method. The following subsections
provide a detailed description of the methodology used. Additionally, Appendix
Figure 22 visualises the BBSD setup for the input-space-based shift detection.

5.2.1 Architecture of the TwoLayerNN

In order to allow for a more educated evaluation of the results and to enable compa-
rability of the input- and latent-space models, a separate model was trained for each
scanner’s data, although the BBSD method explicitly doesn’t demand the training
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of a dedicated predictor on the source domain. For this purpose, a simple two-layer
neural network (multi-layer perceptron, MLP) was trained as a classifier on the tu-
mor task for each scanner separately using only that scanner’s training data. This
TwoLayerNN model is a simple feed-forward neural network that begins with an
input layer that takes the 224*224 image with three channels (RGB) as a flattened
vector. The first fully connected layer projects this input to a hidden representation
of size 512, followed by a ReLU activation function to introduce non-linearity. The
transformed features are then passed through a second fully connected layer, which
maps the hidden representation to the final output layer of size two. The model
outputs two raw scores (logits) from this final layer—one for each class, i.e. tumor
tissue and normal tissue. This simple architecture was chosen not only to keep com-
putational overhead low, but also to minimize the influence of the generalisation
capabilities of more sophisticated models, which could obscure the shift we aim to
measure. After all, the BBSD method is explicitly designed to work with imperfect
classifiers.

5.2.2 Classifier Training and Hyperparameters

For each of the five scanners, a separate model scanner _model was trained on that
scanner’s training data for the original tumor classification task. This was done for
the and a pre-trained ResNet18—resulting in a total of 10 models.
The ResNet18 serves primarily as a more complex reference model alongside the
TwoLayerNN. It may later be used to assess the impact of classifier complexity and
resulting performance differences.

The training process for the TwoLayerNN models follows a simple supervised learn-
ing pipeline. The loss function used is “CrossEntropyLoss”, suitable for multi-class
classification, and the “Adam” optimizer, which adapts the learning rate of each
parameter for efficient training (Goodfellow et al., |2016; Kingma and Baj [2014).
Training was conducted for a fixed 12 epochs using a learning rate of 0.0001 across
experiments to support comparability and reproducibility. Note that the values of
the hyperparameters were determined empirically and are not optimised for peak
performance, as the main goal was not to develop a highly accurate classifier, but
to provide a consistent basis for shift detection.

The ResNet18 model was initialised with weights pre-trained on the ImageNet-1k
natural image dataset and fine-tuned using the same training pipeline for just 8
epochs. This number of epochs was chosen empirically, as it indicated convergence.

In each epoch, the inputs undergo a forward pass through the network to produce
predictions. These predictions are compared to the ground truth using the loss
function, and the gradients are computed via backpropagation. The optimizer then
updates the model’s parameters based on these gradients. Throughout this phase,
the number of correct predictions is tracked to monitor training accuracy.

Then, to conclude each epoch, the model switches to evaluation mode, where no
weights are updated. The validation data is passed through the model, and the pre-
dictions are compared with the true labels to calculate validation accuracy as well as
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the F1 score. Because the TwoLayerNN model failed to learn in some runs—possibly
because of a bad weight initialisation that led to vanishing gradients—this training
process is repeated on three individual model instances, and the one with the high-
est F'1 score on the last epoch’s validation phase is finally saved as the designated
classifier model for BBSD.

The training pipeline thus leaves us with 5 separate classifier/predictor model in-
stances per architecture, each trained on the data of one of the five scanners on the
same task and using the same hyperparameters.

Class Balancing:

Due to the class imbalance in the patch distributions of each subset (see Table [3]
the dataloader was modified to approximately balance the classes using a weighted
random sampler without replacement. For each subset, this sampler generates a new
dataset per epoch, containing a roughly equal number of unique samples from each
class. Class weights are computed as the inverse of their frequency, increasing the
sampling probability of underrepresented classes. The sampler draws samples from
both classes until the original, unbalanced dataset size is reached, ensuring approxi-
mately balanced classes. Although sampling is done with replacement—allowing the
same sample to appear more than once—it is repeated independently each epoch.
This approach balances class distribution while maintaining dataset size, trading off
some data diversity for class-bias mitigation. For training, the inputs are then fed
to the network in batches of size 64 with 4 workers for parallelised processing under
moderate memory load.

5.2.3 BBSD

After training, each model scanner model was used to compute softmax outputs
for the test data scanner test from all scanners—including the scanner it was
trained on (source domain data). The softmax values were computed separately
using the raw logits produced by the model’s final layer. Notably, the TwoLayerNN
and the ResNet18 themselves do not include a softmax activation at the end, as
the used training loss function (CrossEntropyLoss) internally applies softmax during
optimisation. This ensures numerical stability during training and allows for explicit
control over softmax computation during evaluation.

Subsequently, to quantify distributional differences, the two-sample KS test was
applied in a pairwise manner. For each pair of scanners, the test compared the
distribution of softmax outputs from the model’s source domain test set against the
outputs from each of the five other test sets. One of these test sets is the source
domain test set itself, which should return zero distance, while four of the test sets
are from unseen (target domain) scanners. Since each model was trained on only
one scanner’s data, scanner pairs were treated as directional: for example, softmax
outputs for the test set of scanner A scannerA_test and test set of scanner B
scannerB_test obtained from a model trained on scanner A scannerA_model are
distinct from those obtained when extracting softmax outputs for the same test sets
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using a model that was trained on scanner B scannerB model. Consequently, the
test was applied to each scanner pair in both directions.

To ensure robustness, the KS test was bootstrapped with 100 iterations per scanner
pair. In each iteration, softmax outputs were resampled to generate comparable
subsets. This was necessary because the number of softmax outputs varied across
scanners, reflecting differences in the number of patches per slide and therefore in the
size of each test set. Repeated resampling mitigated the impact of these disparities
and enabled stable statistical comparisons across scanner domains. For each class
in the binary classification task, the resulting KS distance (ranging from 0 to 1) and
the associated p-value were computed for every bootstrap iteration, and the final
reported values were taken as the median across all iterations.

5.3 BBSD for Latent Space

In addition to the input-space shift analysis, a similar procedure was conducted for
the latent space to investigate whether scanner-induced domain shifts persist after
representation learning through foundation models. Feature vectors were extracted
from each image patch using pre-trained DINO-base and DINOv2-base models with-
out any fine-tuning. These representations were then used to train instances of the
aforementioned two-layer neural network separately for each scanner. Appendix
Figure 23| visualises the latent-space BBSD and MMD experiments.

5.3.1 Feature Extraction

Hidden representations of all patches were extracted using a DINO (ViT-Base/16,
224) and a DINOv2 (ViT-Base/16, 224) model instance, with the former being pre-
trained on ImageNet-1k and the latter on the larger LVD-142M dataset. They serve
as prominent and well-established examples of Vision Transformer-based founda-
tion models and are publicly accessible. The models were not fine-tuned to the
downstream task in order to assess their adaptability to the medical domain and
minimize computational overhead—thus maintaining the lightweight, flexible nature
of the BBSD approach.

Importantly, both models expect inputs of size 224 x 224 x 3, allowing the patches
defined by the patch grid to be directly fed into the foundation models without resiz-
ing or flattening. From each model, only the global CLS token was used as the patch
representation for the downstream classification task. Both models produce feature
vectors of size 768, which were subsequently used to train the latent-space classifiers.
Matching output dimensionality was deemed essential to ensure the comparability
of the experimental results.
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5.3.2 Training and Hyperparameters

To ensure comparability with the input-space analysis and to isolate the effect of the
feature space alone, the exact same neural network architecture and training config-
uration were used: The TwoLayerNN featured a hidden layer with 512 neurons, was
trained for 12 epochs, and used a learning rate of 0.0001. As before, “CrossEntropy-
Loss” was used as a loss function and “Adam” as the optimizer. The only difference
in this setting is that the inputs are no longer raw 224 x224x3 image patches, but
768-dimensional feature vectors extracted by the foundation models. Accordingly,
the input size of the two-layer neural network is adjusted to 768. Since the rest
of the training procedure remains identical to the [input-space pipeline]
it is not elaborated further to avoid redundancy. This consistency in model
design ensures that any observed differences in performance can be attributed to
the input representation rather than changes in architecture or optimisation.

For clarity and simplicity in terminology, the TwoLayerNNs trained on DINO and
DINOv2 features are referred to as using the DINO and DINOv2 architectures,
respectively. While this naming is technically imprecise—since the classification
heads are TwolLayerNNs—the architectural labels refer to the backbone responsible
for feature extraction, which plays the primary role in determining the model’s
representational power. Thus, we distinguish between TwoLayerNN and ResNet18
for input space, and DINO and DINOv2 for latent space.

As in the previous experiment, a weighted random sampler with replacement was
used to approximately balance the classes in each subset while preserving the original
size of each subset. Class weights were computed as the inverse of class frequency,
and a new balanced set of samples was drawn for each epoch. Batches of size 64
were processed using 4 parallel workers.

5.3.3 BBSD

Analogously to the input-space experiment, after training, softmax outputs were
computed for the latent features corresponding to the test data from all scanners us-
ing the previously trained classifier. As before, the two-sample Kolmogorov—Smirnov
test was applied pairwise to compare the distributions of source domain and target
domain softmax outputs. The test was bootstrapped with 100 iterations to account
for variations in test set sizes across scanners due to differences in the number of
patches per slide. For each class in the binary classification task, the KS test re-
turned a p-value and a KS distance metric ranging from 0 to 1, both of which were
aggregated using the median across bootstraps to produce stable, comparable shift
estimates in latent space.

5.4 MMD for Latent Space

To further quantify distributional differences across scanners, the Maximum Mean
Discrepancy (MMD) was applied directly to the previously extracted feature vec-
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tors from the pre-trained DINO and DINOv2 foundation models, as visualised in
the latent-space experiment visualisation in Appendix Figure [23| This follows the
“Duo” methodology proposed by Roschewitz et al.| (2024), who demonstrated the
value of combining output-based and feature-based shift detection methods. The
implementation of the MMD permutation test used here was largely adapted from
their work. The entire procedure was performed separately for features derived from
DINO and DINOv2, allowing for a comparison of their sensitivity to domain shifts.
Prior to MMD computation, Principal Component Analysis (PCA) was applied to
the combined feature vectors of each scanner pair, reducing dimensionality to 32
components in order to retain the most relevant information while simplifying the
comparison.

The MMD statistic was computed using a kernel-based approach with a Radial Ba-
sis Function (RBF) kernel. The kernel bandwidth (o) was selected adaptively based
on the median of all pairwise Euclidean distances between samples, as proposed by
Rabanser et al. (2019)), which adapts the kernel’s sensitivity to the scale of the data.
The MMD statistic itself is derived from the difference between intra-distribution
similarities (within each scanner) and inter-distribution similarities (between scan-
ners), providing a quantitative measure of how dissimilar the two distributions are
in the latent space.

To assess the statistical significance of the observed MMD values, [permutation test-|
was employed. Samples from both scanner distributions were pooled and ran-
domly shuffled, and the MMD statistic was recalculated for each of 1000 permuta-
tions to simulate the null hypothesis that the distributions are identical. The p-value
was then calculated as the proportion of permuted MMD values that exceeded the
observed value.

MMD was computed for each scanner pair. In contrast to the KS test, the order
of scanner pairs is irrelevant, and reversing it will return the same value. This is
because MMD calculates the distance between distributions in the feature space
without involving any trained models, making the test symmetric with respect to
the input distributions. By comparison, the KS test was asymmetric, since the first
scanner name in each pair represented the source domain test data, and the second
scanner represented any of the five test sets, of which four are target domain data.
As a result, reversing the order of scanners in the KS test will likely lead to different
results due to differences between model instances trained on different domains.

5.5 PAD* (multi-class)

PAD* was chosen as an additional metric to enable a more differentiated and mean-
ingful evaluation of the potential domain shift. While PAD* was originally de-
signed to measure the shift between two domains, an adapted multi-class variant
(PAD™ i) is proposed here. In this setting, the domain discriminator G is trained
to distinguish among all five scanner domains, providing a single aggregated measure
that quantifies the overall distributional shift across domains. This experimental
setup is visualised in Appendix Figure
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5.5.1 Training of the Feature Extractor

A dedicated ResNet18 model, pre-trained on ImageNet-1k, was fine-tuned on the
tumor classification task to obtain task-specific hidden representations for use in the
PAD* method. The model was trained for 8 epochs using a learning rate of 0.0001.
These values were selected empirically and provided stable convergence in practice.
To prevent scanner-specific biases from influencing the reduced representations, the
training data from all five scanners was combined into a single dataloader. After
training, the classification head was removed from the network by discarding the
final fully connected layer. The resulting model was then used as a feature extractor
to generate 512-dimensional hidden representations for each sample patch.

In addition to this dedicated fine-tuned ResNetl8, two more off-the-shelf models
were used as feature extractors as reference. Namely, a ResNetl8, pre-trained on
ImageNet-1k, without fine-tuning to observe the potential impact of task-specific
features versus general image features on the downstream domain discriminator
performance and subsequently PAD* results. The third model is a DINO model,
also pre-trained on ImageNet-1k and chosen to inspect potential differences in the
ability to extract domain-independent features between DINO and ResNetl8 off-
the-shelf.

Analogous to the class balancing approach used for training the task classifiers in
BBSD, a random weighted sampler with replacement was employed to balance the
class distribution within each training, validation, and test subset to mitigate class
bias.

5.5.2 Training the Domain Discriminator

The fine-tuned and the off-the-shelf pre-trained ResNet1l8 models returned 512-
dimensional feature vectors, which were then used to train a simple two-layer neural
network (TwoLayerNN]). It is the same architecture previously used in the BBSD
experiments. However, the size of the hidden layer was reduced to 256 neurons to
better match the lower input dimensionality. Thus, the first fully connected layer
projects the 512-dimensional input to a hidden representation of size 256, followed
by a ReLU activation function for non-linearity. The transformed features are then
passed through a second fully connected layer, which maps the hidden representa-
tion to an output layer of size 5. This final layer produces five raw scores (logits),
one for each class—corresponding to the five scanners.

Unlike in the earlier setup, this TwoLayerNN was not trained to classify tumors.
Instead, it was trained for domain discrimination. For this purpose, the original
class labels were replaced with scanner identifiers. This allowed the model to learn
to distinguish samples based on the scanner used for digitisation, relying on features
relevant to the original classification task. This means that instead of the original
tumor/non-tumor medical classification task with two classes, the model is now
tasked to tell apart the different scanner domains, i.e. 5 classes.
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Since the DINO model produces 768-dimensional feature vectors (as opposed to
512), the input size of its TwoLayerNN classification head was adjusted accordingly.
Aside from this change, the training procedure remained identical.

As aresult, three TwoLayerNN multi-class PAD* domain discriminators were trained:
one using the pre-trained and fine-tuned ResNetl8 features, one using the pre-
trained ResNet18 features, and one using the pre-trained DINO features.

Balancing Class Distributions

As previously mentioned, scanners differ in slide sizes and thus the total number
of extracted patches per scanner varies. Note that for the domain discriminator
task, the class labels are the scanners from which the data originates. In a recent
paper, Kunte et al. (2023) reported the reliability of the domain discriminator in
PAD to be significantly diminished by class imbalance. To avoid such potential class
bias, each group of subsets (training, validation, and test) was separately balanced
by randomly downsampling all scanner-specific subsets to match the size of the
smallest corresponding subset. In other words, all training subsets were sampled
to the size of the smallest training subset among the scanners. The same was done
independently for the validation and test subsets, yielding 10735 patches per training
set, 1710 patches per validation set, and 2592 patches per test set.

This balancing is necessary to ensure that each scanner contributes the same amount
of samples to the training so that the model learns the features of each scanner
equally and doesn’t overfit the domain with the most samples. Generally, the test
and validation subsets do not influence the training and thus would not necessarily
have to be balanced. Especially test sets are typically left unbalanced to retain
real-world class prevalence. Since the scanner discrimination is an artificial task and
balancing makes simple accuracy values and confusion matrices more interpretable,
balancing was also applied to the test set in this case.

5.6 Evaluation Framework

To enable a consistent and interpretable presentation of results, the conventions
used throughout the results section are introduced in the following.

Most metrics are computed for each combination of a trained model and an inde-
pendent test set, resulting in matrices where each entry corresponds to a specific
source domain and target domain pair.

For the original classification task, the distinction between models trained on a
given scanner’s data (scanner model) and the scanners’ test sets (scanner_test) is
explicitly maintained. In all relevant result matrices, scanner model is consistently
placed on the y-axis and scanner_test on the x-axis. Each axis is clearly labelled
to reflect this arrangement.

For the BBSD-based evaluation using the Kolmogorov—Smirnov (KS) test, a slightly
different interpretation is required. Here, the y-axis refers not directly to the
scanner model, but to the softmax outputs corresponding to the model’s source
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domain test set—i.e., the in-domain data used as the reference distribution in the
KS test. The x-axis, by contrast, represents the softmax outputs from the same
model evaluated on each target domain (scanner_test). While the softmax values
are derived from a model trained on the scanner indicated on the y-axis, the axis
label in this context denotes the domain of the test set from which the softmax
outputs were extracted.

5.6.1 Cross-Scanner Meta-Evaluation

In addition to the matrix-level results, a cross-scanner meta-evaluation is per-
formed to reveal broader patterns in scanner behaviour. This analysis is structured
along two complementary axes: the source-centric view, which considers each
scanner in the role of the source domain (represented by matrix rows), and the
target-centric view, which considers each scanner as the target domain (repre-
sented by matrix columns). In classifier performance evaluations, the source domain
corresponds to the origin of the trained model (scanner model), while in BBSD-
based shift detection it refers to the softmax outputs from a model’s in-domain test
set. Conversely, the target domain (scanner_test) refers to the scanner providing
the test set or comparison data.

To quantify trends under each of these perspectives, several summary statistics
are computed across the rows and columns of the result matrices. These include
the mean values to reflect overall performance or shift sensitivity, as well as the
coefficient of variation (CV) to assess variability across scanners. Finally, to
evaluate the influence of different model architectures, the Pearson correlation
is calculated between the per-scanner results across architectures for each source
domain (scanner model).

5.6.2 Classifier Performance Evaluation

As described in the corresponding methodology subsections, a separate model was
trained on each of the five scanners’ training data for the original tumor classification
task, serving as a foundation for BBSD-based shift detection.

In the input space, this involved training both a TwoLayerNN and a ResNet18
architecture per scanner, yielding a total of 10 models trained directly on raw image
patches.

In the latent space, an equivalent setup was applied: TwoLayerNNs were trained on
feature vectors extracted from a pre-trained DINO model and a pre-trained DINOv2
model, respectively, resulting in another 10 models. These latent-feature-based mod-
els are referred to as DINO and DINOv2, denoting the architecture responsible for
feature extraction. Each of these 20 scanner-specific models is then evaluated on
the test sets of all five scanners to naively detect scanner-induced class biases and
confirm that the models are adequate for subsequent domain shift measurements.
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To ensure the suitability of the original task classifiers—later used to extract soft-
max outputs for BBSD—the of the confusion matrix is verified on the
source domain test data. Subsequently, the performance of the classifiers is further
evaluated using accuracy, F1 score, the AUC-ROC and the class distributions of
the classifier’s predictions on the balanced binary test sets of each scanner. The
F1 scores are used as the primary measure for adequate classifier performance, and
their scores are compared across and within architectures.

As part of thelcross-scanner meta-evaluation], source-centric and target-centric means
and coefficients of variation (CVs) are computed based on the F1 scores. For each
scanner_model, the source-centric mean summarises its performance across all five
scanner_test sets, including its in-domain test set. Conversely, the target-centric
mean captures how a given test set performs across models trained on each of the
five scanners. To complement these averages, the corresponding CVs quantify the
variability of the F1 scores that constitute each mean—indicating how consistent a
model’s performance is across test sets (source-centric) or how consistently a test set
is handled by different models (target-centric). Additionally, scanner-wise Pearson
correlation coefficients are calculated to assess architectural agreement. Specifically,
for each scanner, the source-centric F1 scores of its corresponding models across
different architectures are compared. For instance, the F1 scores of the cs2 model
when implemented as a ResNet are correlated with those of the cs2 model when im-
plemented as a TwoLayerNN. This pairwise analysis quantifies the extent to which
different architectures yield similar cross-scanner performance patterns when trained
on the same source domain.

5.6.3 BBSD Results Evaluation

For each of the 20 original task classifiers described previously, softmax outputs are
extracted by evaluating the model on all five scanner-specific test sets. These outputs
are then used to compute the Kolmogorov—Smirnov (KS) distance between 0 and 1
along with a p-value that expresses significance, following the BBSD methodology.
Specifically, for a given classifier, the KS test quantifies the distance between the
softmax distribution on its in-domain reference test set and that on each of the four
out-of-domain target test sets. Notably, the Kolmogorov—Smirnov (KS) test, being
a univariate test, yields a separate KS distance and p-value for each class. To control
for multiple testing, the two p-values are [Bonferronilcorrected by multiplying each
by two—the number of tests performed. A KS test is considered significant if at
least one of the corrected p-values falls below the significance threshold of 0.05. If
both p-values are below the threshold, the smaller p-value and its corresponding KS
distance are retained for the final result. These resulting distance values are then
organised into matrices, where each row corresponds to a source domain (reference
test set) and each column corresponds to a target domain, facilitating the dual
source- and target-centric view, respectively.

The [cross-scanner meta-evaluation| for the KS results follows the same conceptual
framework as the classifier performance evaluation, but with slight differences in
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how the metrics are computed. In particular, both the mean and the coefficient
of variation (CV) of the KS distances are computed from a reduced set of test set
pairs: only those involving one of the four out-of-domain test sets are included,
while the same-scanner (in-domain) test set is excluded. This applies to both the
source-centric and target-centric perspectives. The exclusion is necessary because,
for example, when using the cs2 softmax outputs from the cs2_model as the refer-
ence, comparing them to the cs2 test set outputs will trivially yield a KS distance
of zero. Including these values would skew the results, artificially lowering the mean
and distorting the CV. Thus, they are omitted to better capture meaningful cross-
domain differences. The computation of these aggregate metrics is visualised on the
example of mean BBSD values in Appendix Figure [32] It shows which values from
the original result matrices correspond to which mean value and how the diagonal
values (same-scanner values) are omitted from the mean. This same exclusion of
diagonal entries is also applied when computing scanner-wise Pearson correlation
coefficients across different architectures, in order to avoid trivial correlations that
would bias the results.

For the class-wise p-values returned alongside the KS distance, a standard signif-
icance threshold of 0.05 is applied. Under this threshold, a measured distance is
considered statistically significant unless the corresponding p-value exceeds 0.05, in
which case the null hypothesis of equal distributions cannot be rejected. It is im-
portant to note that the p-values have already been Bonferroni-corrected prior to
evaluation, so no further adjustment to the significance threshold is required.

5.6.4 MMD Results Evaluation

As described earlier, the Maximum Mean Discrepancy (MMD) values are com-
puted between the hidden representations of pairs of scanner domains. These val-
ues are symmetric, meaning the order of the scanner pair does not affect the re-
sult—comparing scanner A to scanner B yields the same value as comparing B to
A. Accordingly, the results are visualised as symmetric heatmaps.

Since MMD does not have a fixed upper bound, the maximum value of the heatmap
colour scale is determined empirically. This ensures that the full range of observed
values is accommodated while maintaining visual clarity and contrast. In general,
MMD values should be interpreted in a relative sense and absolute values carry less
meaning than their comparative differences across scanner pairs or model architec-
tures.

MMD serves as a complementary metric for identifying domain shift patterns across
scanner domains and model architectures. The values obtained from DINO and
DINOv2 feature representations should be directly comparable, as both models pro-
duce feature vectors of identical size (768), and the same kernel with the same
parameters is applied to both.

To support a more comprehensive analysis, mean MMD values, coefficients of vari-
ation (CV), and Pearson correlation coefficients are also computed. Unlike the
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source- and target-centric meta-analysis performed for classifier and BBSD results,
these statistics are all calculated along a single axis. This is because MMD values
are solely defined by domain pairings, and flipping axes yields the same result due
to symmetry.

To ensure the statistical significance of the observed distance values, all p-values
from the permutation test with 1000 iterations are recorded to ensure that they lie
below the significance threshold set at 0.05. To avoid plain zero values in the results,
the index of the instances where the permutation MMD is higher than the observed
MMD is set to a minimum of 1. Thus, all p-values should be > 0.001.

5.6.5 PAD* (multi-class)

First, the feature extractor, trained on the original tumor task using all five scanners’
data, is evaluated on a combined validation set of all scanners. The F1 score should
be at least adequate for the feature extraction to be effective.

In the next step, the scanner discriminators, trained to differentiate between the five
scanner domains, are evaluated using the extracted features of all five corresponding
test sets, each downsampled to match the size of the smallest set to ensure balance.
The primary evaluation metric is the normalised multi-class PAD* (PAD* ,,.14;) score,
which yields a value of 0 for random guessing and 1 for perfect discrimination.
Additionally, overall accuracy and mean absolute error across all predictions are
computed.

To complement the aggregated PAD* ;i score and recover some of the granularity
lost in moving from a binary to a multi-class setup, additional class-wise metrics
are computed. Specifically, the F1 score, the false negative rate (FNR) and false
discovery rate (FDR) are reported for each domain class. The FNR captures how
often samples from a given domain are misclassified as belonging to another, while
the FDR indicates how often predictions for a domain class are incorrect. These
metrics enable a deeper analysis of which domains are more easily confused and
which dominate the learned representation space, providing valuable insight into
the asymmetries and structure of the domain shift that are not visible in the single
scalar PAD*, 4 value.

6 Results

The following section presents the results of all conducted experiments. Details
about the methodological |evaluation framework| are presented in the methodology
section.

Analogous to the methodology section, in the following results, the terms DINO and
DINOv2 refer to TwoLayerNN classifiers trained on features extracted by DINO
and DINOv2 backbones, respectively. While the classification heads are identical,
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the backbone architecture—responsible for feature extraction—is the key differen-
tiator. Accordingly, TwoLayerNN and ResNet18 denote input-space (raw input
image-trained) models, while DINO and DINOv2 refer to models that have been
trained on DINO and DINOv2 features (latent-space representations).

Furthermore, to support more effective evaluation and identification of shift pat-
terns, results for input- and latent-space models are typically presented side by side
throughout the section.

6.1 Classifier Performance and Predictions

For the TwoLayerNN classifiers, all models returned an invertible confusion matrix
on the balanced test set of their own data (source domain data). For the data
of other scanners (target domain data), most of the confusion matrices were also
invertible, except for:

e gt450 data tested on the nz20 model — confusion matrix C not invertible:

det(C) =0

e cs2 data tested on the p1000 model — confusion matrix C not invertible:
det(C) =0

o gt450 data tested on the p1000 model — confusion matrix C not invertible:
det(C) =0

To further investigate the behaviour of the responsible classifiers that returned these
degenerate confusion matrices, the predicted class distributions are presented in
Appendix Table [7| along with the naive accuracy scores and the F1 scores.

As the primary performance results, Table [6] shows the F1 scores of all five scanner-
specific classifiers on all five scanners’ test sets. To boost interpretability and high-
light patterns and similarities, a side-by-side global view of heatmap matrices is
shown in Figure [

The F1 scores show that from a source-centric perspective (per scanner model),
models trained on nz20 and p1000 data (nz20_model and p1000_model) consistently
achieve lower performance scores than models trained on the other three scanners
across all architectures. The p1000_model, in particular, is the only one to produce
scores below 0.5 with the ResNet18 architecture when evaluated on cs2, nz210, and
gt450 domains. In contrast, nz20_model and p1000_model achieve relatively higher
scores when evaluated on each other’s data. Models trained on the remaining source
domains generally perform better on nz20 and p1000 test data than the nz20 and
p1000 models perform on theirs.

The AUC-ROC of all models on their respective source domain test data was also
determined and plotted as a heatmap for visualisation in Figure 5] Note that ROC
curves of the ResNet18 models, evaluated on their respective test sets, show sig-
nificantly higher performance across all thresholds than those of the TwoLayerNN.



6 RESULTS 41

Original Tumor Task Classifier Performance

F1-Score heatmap: TwoLayerNN 10 F1-Score heatmap: dino 10
9 0.71 0.60 0.66 0.56 P 0.79 0.56 0.68 0.52 0.72
= 0.9 % 0.9
K °
o
g £
€ |
o 5o -0.8
g8 0.36 0.66 0.68 -038 gy 0.75 0.35 0.74 0.34
c c ©
o v
I L
H -0.7 o -0.7
gs 0.55 0.61 0.55 0.59 £q 0.52 0.69 0.72 0.66 0.58
© B o3
& o6 | 2 -0.6
g o
I ig
28 034 0.59 0165 s £8 033 0.69 0.43 0.75 0.35 Los
-] : F e
= e =
: 3
g 04 L) 0.4
o o n
2 o062 057 058 052 0.69 g | 0se 0.63 0.70 oS8 o2
&
0.3
0.3 cs2 nz20 nz210 p1000 gta50
cs2 nz20 nz210 pl000 gt450

Data from Scanner... (scanner_test)

Input Space | Latent Space

Data from Scanner... (scanner_test)

F1-Score heatmap: resnet F1-Score heatmap: dinov2

1.0 10
% % 076 0.58 0.66 0.52 0.71
= 0o ff = 0.9
[T [
o o
o o
E| EI
_ C
g8 -os  I8] 0.70 0.39 0.69 035 o8
c & c &
©
3 2
K -07 -07
[T=] [T =]
gz EX 069 0.71 0.75 0.65 0.63
SR 5N
o < 51
0 -0.6 Gl -0.6
5 s
o To
] £8 0.62 0.75 0.36 L os
‘T o ~-0.5 [ .
= E o
T o]
3 3
Y 0.4 =5 0.4
2 2 073 0.63 0.65 055 0.73
3 4
o
03 03
cs2 nz20 nz210 p1000 gtaso cs2 nz20 nz210 p1000 gaso

Data from Scanner... (scanner test) Data from Scanner... (scanner_test)

Figure 4: Overview of classifier F1-score heatmaps of input-space (left) and latent-
space (right) classifiers.

In some cases, the ROC curves of a TwoLayerNN model tested on test data from
all scanners exhibited unnaturally linear segments, as shown by the example in
Appendix Figure 26| —warranting further investigation.

Mean F1 Scores. For the source-centric analysis, the left heatmap in Figure [
presents the mean F1 score per training scanner across all test sets per architecture,
while the right heatmap shows the target-centric mean F1 score per test scanner
across classifiers.

The left heatmap matrix in Figure [6] illustrates that models based on the ResNet18
architecture achieve the highest mean F1 scores across all test sets, ranging from
0.53 to 0.81. In contrast, TwoLayerNN models utilizing DINO and DINOv2 as
feature extractors yield comparable performance, with F1 scores ranging from 0.49
to 0.66, though these scores are notably lower than those of the ResNet18-based
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Figure 6: Mean F1-score heatmap matrices: source-centric (left) and target-centric
(right).

models. The TwoLayerNN trained on the raw image data consistently records the
lowest mean F1 scores, with values ranging from 0.45 to 0.60 across the different
scanner_models. Furthermore, on the source-domain level, the mean F1 scores also
show a clear pattern of inferior performance of the nz20 and p1000 source domain
models when evaluated on all test datasets.

The right heatmap in Figure[6] on the other hand, presents the target-centric mean
F1 scores per scanner_test set within each model architecture. The nz20_test and
p1000_test sets consistently achieve higher scores than the remaining three test sets
when evaluated on all models. Additionally, for the latent-space models DINO and
DINOv2, each scanner_test set yields comparable performance scores ranging from
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F1 Score Variability
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Figure 7: Coefficient of Variation heatmap matrices of F1 scores: source-centric
(left) and target-centric (right).

0.51 to 0.66. The input-space TwoLayerNN generally shows lower F1 scores than
the other architectures, with values ranging from 0.48 to 0.61. Meanwhile, with
values ranging from 0.68 to 0.77, ResNet18 consistently achieves the highest scores
with low variability across all scanner test sets. From a domain-level view, the
target-centric results show higher F'1 mean values for cs2 and p1000 test data than
for the other domain data.

CV of F1 Scores. The dual approach of analysing the F1 scores from a source-
centric and target-centric view is also used to measure variability in terms of the
coefficient of variation across F1 scores per scanner_model and per scanner_test
for each architecture in the left and right heatmap in Figure [7| respectively. For
example, cell A, ; in the left heatmap matrix A of the figure represents the coefficient
of variation of the F1 scores of all five scanners’ test sets on the TwoLayerNN
model trained on scanner cs2 training data (cs2.model). On the other hand, cell
B, in the right heatmap matrix B represents the coefficient of variation of the
F1 scores of all five TwoLayerNN models on the cs2 test set (cs2_test). The
former captures the extent to which the F1 scores of a given scanner model vary
across different scanner_test sets, while the latter shows how much the F1 scores
of a specific scanner _test vary across different scanner models. This analysis is
valuable because the preceding figures, which present mean F1 scores, mask this
variability by averaging the values.

In the source-centric view, illustrated by the left heatmap matrix in Figure [7], mod-
els trained on nz20 and p1000 exhibit substantially higher variance in F'1 scores
compared to models trained on the other three scanners. Although ResNet18-based
models consistently show slightly lower variance than same-scanner models built
with other architectures, overall variance tends to be higher across scanner models
than across architectures.
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In contrast, the target-centric view, represented by the right heatmap matrix of
the same figure, reveals lower variance in F1 scores for test sets nz20_test and
p1000_test when evaluated across different scanner model configurations within
each architecture. Notably, in this target-centric view, ResNet1l8 models do not
consistently yield the lowest variance scores.

Pearson Correlation of F1 Scores The Pearson correlation coefficients between
the F'1 scores of a scanner’s classifier across different model architectures exhibit sig-
nificant variability. Additionally, the values appear to be influenced by the respec-
tive scanner’s training data used to train each model, further contributing to the
observed differences. Although the observed patterns are described in detail below,
the heatmap visualisations for all five domains can be found in Appendix Figure
due to space constraints.

e cs2: Models trained on scanner cs2 exhibit high pairwise Pearson correlation
coefficients for F1 scores—mostly close to 1—except for the TwoLayerNN,
which shows substantially lower correlations to the other architectures, with
values around 0.3.

e 1nz20 and p1000: For scanners nz20 and p1000, the F1 scores of the TwoLay-
erNN, DINO, and DINOv2 models are highly correlated (near 1), while corre-
lations involving the ResNet18 architecture are notably lower.

e nz210: Models trained on scanner nz210 show no consistent correlation pat-
tern. The highest observed correlation is 0.84 between TwoLayerNN and
ResNet18, while the lowest correlations involve DINOv2 with values of 0.53
when paired with ResNet18 and 0.5 when paired with DINO.

e gt450: Lastly, models from scanner gt450 demonstrate generally high F1
score correlations across architectures, except for DINO, whose scores are less
aligned with those of the other models.

6.2 BBSD Results

Recall that for each classifier, softmax values for all five test sets were computed
from the classifier’s raw logit outputs. In each pairwise comparison, the test set
corresponding to the scanner used to train the classifier was designated as the source
domain reference (test set A), while the other (test set B) was selected from any of
the five available scanner test sets—including the reference domain set itself as well
as the four target domain sets. Fach pairwise KS test yields two distance values and
two p-values, corresponding to the two output classes in the binary classification
task. The p-values are [Bonferroni-corrected and the lowest of the two along with
its corresponding KS distance value is selected for the final results. Further analysis
revealed that the KS distances for the two classes are very similar (See Appendix

2).
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KS Distance (BBSD)
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Figure 8: Overview of classifier KS-test-distance heatmap matrices of input-space
(left) and latent-space (right) classifiers.

BBSD Values. The KS distances reported by the BBSD method are shown in
Table[8] To boost comprehensibility, Figure [§ladditionally presents the KS distances
as side-by-side heatmap matrices and gives a global overview of the BBSD results,
highlighting patterns across architectures.

When examining the KS distance scores across architectures side by side, a distinct
pattern emerges: using nz20 as the reference set results in elevated scores for all tar-
get sets except p1000. The inverse also holds—when p1000 is used as the reference,
the KS distances for nz20 are mostly lower compared to those for the other target
domains. Domains cs2 and nz210 seem to form a similar pair, with low distance
values across all architectures.

Another interesting observation can be made when switching reference and target
domains — e.g. in the result matrix of the TwoLayerNN (top-left heatmap). While
nz20 yields high KS distance values for both nz210 and cs2, the inverse pairing
exhibits noticeably lower values.
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Overall, models based on ResNet18 and those trained on DINOv2 features yield
lower KS distance scores compared to models trained in input space using a TwolLay-
erNN and those trained on DINO features. As shown in Table[§] among all ResNet18-
based models, none of the pairwise comparisons exceed a KS distance of 0.4. Across
all architectures and model comparisons, a total of 18 KS distance values exceed 0.5.
Of these, only two originate from models trained on DINOv2 features, indicating
that this architecture is rarely associated with particularly high domain shifts.

Mean BBSD Values. This pattern is consistent with the source-centric mean
KS distances shown in the left heatmap matrix in Figure [9] where models based on
ResNet18 and DINOv2 exhibit consistently lower mean scores across source scanners
than those based on the TwoLayerNN or DINO. The same trend holds for the
target-centric mean distances shown in the right matrix, reinforcing the observed
performance differences across architectures.

Mean KS Distance

Mean KS-distance per Source Domain Across Test Sets Mean KS-distance per Target Domain Scanner Across Models 10

1.0

0.33

cs2

0.47

nz20

0.36

0.41

0.28

0.17

0.17

0.30

0.42

0.54

0.31

0.42

0.33

0.36

0.22

0.36

- 0.8

-0.6

Model Architecture

Dino

Resnet TwolLayerNN

0.43

0.18

0.54

0.36 0.40 0.47

0.25 0.24 0.22

0.36 0.40 0.47

0.43

0.19

0.36

- 0.8

-0.6

Source Domain Scanner
nz210

p1000

-0.2 -0.2

0.52 017 0.43 0.35 0.32 0.30 @5 0.39 0.29

gtas50
Dinov2

- 0.0 - 0.0
TwolLayerNN Resnet Dino Dinov2 cs2 nz20 nz210 p1000 gta50
Model Architecture Target Domain Scanner

Figure 9: Mean KS-test-distance heatmap matrices: source-centric (left) and target-
centric (right).

CV of BBSD Values. The coefficients of variation (CV) for the KS distance
values reveal less distinct patterns compared to the mean values. In the source-
centric view, presented on the left in Figure DINOv2 stands out with a CV of
0.51 for the cs2 source domain—this is the highest overall value across all scanners
and architectures. DINOv2 also yields the highest CV values for the nz20 and gt450
source domains, with scores of 0.43 and 0.46, respectively. In contrast, the CVs for
nz210 and p1000 as source domains are both 0.24, indicating substantially lower
variation.

DINO shows generally moderate variability, with CV scores ranging between 0.28
and 0.44. While these values do not reflect particularly low variation, they are more
consistent than those observed with DINOv2.

Regarding the input-space architectures, the CV for the gt450 source domain of
the TwolLayerNN is 0.21, which is notably lower than the other scores for this
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KS Distance Variability
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Figure 10: Coefficient of Variation heatmap matrices of BBSD KS-tests: source-
centric (left) and target-centric (right).

architecture. For ResNetl8, the p1000 and gt450 source domains yield the two
lowest CVs overall, with values of 0.16 and 0.14, respectively.

When examining the results row-wise—i.e., from the perspective of each source do-
main—some interesting differences emerge. For p1000, the CVs for TwoLayerNN
and DINO are similar, as are those for ResNet18 and DINOv2, though the differ-
ences between the two pairs are substantial. In the case of the gt450 source domain,
the contrast between input-space and latent-space architectures is even more pro-
nounced, with input-space models showing considerably lower variability.

Switching to the target-centric perspective, illustrated by the right heatmap matrix
in Figure [10] few values stand out, and no consistent or pronounced pattern can be
observed across architectures. The p1000 target domain is notable for producing
the two highest overall CV scores—0.51 and 0.50—indicating substantial variation
in KS distance values across source domains for this target domain. On the opposite
end, the nz20 target domain yields the lowest CV score of 0.21, which is associated
with the ResNet18 architecture.

In comparison to the source-centric view, the target-centric results are characterised
by a more uniform distribution of CV values across architectures and scanner do-
mains. The relatively narrow range of CV values in the target-centric view makes
it more difficult to isolate specific trends or attribute variation to particular archi-
tectures or domains.

Pearson Correlation of BBSD Values. Analogous to the approach used in the
classifier performance evaluation, Pearson correlation heatmaps are generated to
analyse the consistency of KS distance patterns across different architectures. The
results reveal substantial variation in correlation depending on the source domain
scanner and the compared architectures. Due to space constraints, the correlation
heatmaps can be found in the Appendix Figure
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e cs2: For the cs2 scanner source domain, KS distances exhibit strong corre-
lation across architectures. The value between DINO and DINOv2 is nearly
perfect. ResNet18 also shows high correlation with all other models, with val-
ues around 0.95. TwoLayerNN shows slightly lower but still strong correlations
with both DINO and DINOv2, each approximately 0.8.

e nz20: Similarly, for the nz20 source domain, DINO and DINOv2 again dis-
play an almost perfect correlation. When paired with either TwoLayerNN or
ResNet18, both DINO-based models maintain high correlation values ranging
from 0.83 to 0.92. The only particularly lower correlation is observed between
ResNet18 and TwolLayerNN, with a value of 0.58.

e 1nz210: Correlation results for the nz210 scanner domain differ from the more
consistent patterns observed in the other domains. The strongest correlation
is found between the TwoLayerNN and DINO architectures, with a value of
0.90. The pairing of TwoLayerNN and ResNetl8 yields a moderately high
correlation of 0.67, while the correlation between TwoLayerNN and DINOv2
is lower at 0.58. The correlation between DINO and DINOv2 is 0.70, which
also falls below the levels seen in most other domains. Notably, the ResNet18
and DINOv2 pairing stands out with a low negative correlation of —0.21. In
total, the nz210 domain exhibits more variability and less consistent inter-
architecture agreement compared to the other scanner domains.

e p1000: For the p1000 source domain, DINO and DINOv2 once again show a
near-perfect correlation. The TwoLayerNN also aligns closely with DINOv2,
yielding a similarly high score. The correlation between the TwoLayerNN and
DINO is slightly lower at 0.91 but remains strong. In contrast, ResNet18 ex-
hibits significantly weaker correlations with all other architectures, with values
ranging only between 0.30 and 0.41.

e gt450: In the case of the gt450 source domain, DINO exhibits an unexpect-
edly low correlation with all other architectures, with values ranging from 0.24
to 0.42. This stands in contrast to the other source domains, where DINO gen-
erally aligned more closely with the remaining models—making this divergence
a notable observation in the overall results. Meanwhile, the remaining three
architectures—TwoLayerNN, ResNet18, and DINOv2—correlate very strongly
with one another, indicating a high degree of alignment in their KS distance
values.

Summary: Overall, DINO and DINOv2 KS distance results correlate almost per-
fectly for scanner domains cs2, nz20, and p1000. For gt450, this near-perfect cor-
relation happens in input space, between the TwoLayerNN and the Resnet18, while
for nz210 no such high correlation values are achieved. Furthermore, ResNet18 ex-
hibits relatively lower correlation to other architectures of domains nz20, nz210,
and p1000. Lastly, the low correlations between distance values from DINO and
other architectures represent an unexpected divergence from the rest of the results.
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P-Values of BBSD. The Bonferroni-corrected p-values take the value of 2 along
the diagonal of each architecture’s heatmap matrix, reflecting comparisons of a do-
main with itself. Aside from these, all corrected p-values fall far below the signifi-
cance threshold of 0.05. The highest non-diagonal p-value—1.6 x 10~!%—is observed
for the KS test between nz20 as the reference domain and p1000 as the target do-
main, using the ResNet18 architecture.

In summary, despite some KS distances being relatively small, all observed values
are reported as statistically significant. An overview of the p-values can be found in
Appendix Figure [28|

6.3 MMD Results

The Maximum Mean Discrepancy (MMD) is applied to the latent-space represen-
tations extracted from an off-the-shelf foundation model. It yields a distance value
and a p-value for each pair of scanner domains, quantifying distributional differences
in the corresponding feature spaces. Since MMD operates symmetrically on feature
distributions, there is no designated source or target domain—each pair is treated
with equal status. As a result, the corresponding heatmap matrices are symmetric
and thus only evaluated along one axis. The two matrices are presented in Figure
for the two feature extractors used in this experiment: DINO and DINOv2.
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Figure 11: MMD-distance heatmap matrices for DINO and DINOv2.

MMD Values. As expected, the MMD between a domain and itself is always
zero, as reflected by the main diagonal of the heatmaps. Beyond the diagonal, a
notable difference in value ranges can be observed between the two architectures.
DINOv2 yields comparatively low MMD values, ranging from 0.013 to 0.11, while
DINO produces substantially higher distances, spanning from 0.032 up to 0.22.
Particularly striking are the pairings involving the gt450 scanner domain, which
consistently result in the highest MMD values across both architectures—although



6 RESULTS 50

with different magnitudes. A pattern that is present in the DINO results but not
as pronounced in DINOv2 is the slight elevation in MMD values for the scanner
pairings (nz210, nz20) and (nz210, p1000) compared to the surrounding values.

Mean MMD Values. The mean MMD values, as shown on the left in Figure[12]
support the initial observation of differing magnitudes between the two architectures:
on average, DINO values are approximately twice as large as the corresponding
DINOv2 values for each scanner domain. Additionally, for both architectures, the
mean MMD values associated with the gt450 domain are nearly twice as high as
those of the other scanner domains within the same architecture.
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Figure 12: Mean MMD-distance (left) and mean CV-value (right) heatmap matrix.

CV of MMD Values. Regarding the coefficients of variation per domain—also
presented in Figure [I2}—, the results are mixed and show no consistent pattern.
For four of the five domains—cs2, nz20, nz210, and p1000—variation is generally
high across both architectures, with values ranging from 0.47 to 0.91. The lowest
of these is 0.47 for nz210 on DINO, while the highest is 0.91 for cs2 on DINOv2.
In contrast, the domain gt450 stands out, where both DINO and DINOv2 yield a
particularly low variation of just 0.10.

Pearson Correlation of MMD Values. In addition, Pearson correlation scores
per scanner domain show consistently high values for four out of the five domains
(see Appendix Figure . For nz20 and p1000, the correlations are strong, with
values of 0.90 and 0.91, respectively. Even higher correlations are observed for cs2
and nz210, with values of 0.98 and 0.96, indicating very strong agreement between
architectures for these domains. In contrast to this, the correlation for gt450 is
notably different between the two models—showing a clear negative value of -0.29.
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P-Values of MMD. Importantly, all p-values obtained from the permutation
test with 1000 iterations yield the minimum possible value of 0.001, indicating the
statistical significance of all observed MMD distance values. Since there are no
deviations from this minimum value across any of the domain pairs or architectures,
no further analysis of the p-values was conducted. For the sake of completeness, an
overview of the p-values can be found in Appendix Figure [31]

6.4 multi-class PAD* Results

The fine-tuned ResNetl8 that was used to extract task-specific features for the
subsequent training of the domain discriminator achieves an F1 score of 0.88 in the
last epoch on the held-out validation set, indicating adequate classification ability.

For the domain discriminator, Figure 13| displays the [false negative rate| (FNR) for
each domain, grouped by discriminator model. Note that while all discriminators
share the same TwoLayerNN architecture, their names reflect the backbone model
used to extract the feature vectors on which they were trained.
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Figure 13: PAD* ;i FNR per discriminator model by domain. Higher means less
distinguishable (lower relative shift).

It illustrates how the models rank the domains in terms of distinguishability, where
higher FNR implies that a given domain is less distinguishable from the other do-
mains and thus exhibits lower relative shift. Several observations can be made: The
off-the-shelf ResNet18- and DINO-based models yield the highest value for domain
cs2 and then rank domains nz20, nz210, p1000, and gt450 descendingly. In con-
trast, the task-specific ResNet18 TwoLayerNN ranks cs2 only in third place with a
relatively low FNR. Additionally, the model shows a slightly elevated FNR for the
domain gt450 in comparison to the other models.
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Table 4: Class-wise (domain-wise) metrics for each domain discriminator model.

Model Domain FNR FDR F1 Score
cs2 0.1806 0.1729  0.8233
nz20 0.3067 0.2187  0.7347

ResNet18fine-tuned 12210 0.2373  0.2152  0.7736

pl000  0.0621 0.1556 0.8887

gt450  0.1227 0.1559 0.8604

cs2 0.5089 0.1352 0.6265

nz20 0.3399 0.2469 0.7035

ResNet18p e trained 12210 0.2840 0.3348 0.6897
pl000  0.0691 0.1853 0.8689

gt450  0.0714 0.3051 0.7949

cs2 0.3924 0.0848 0.7304

nz20 0.1620 0.0368 0.8962

DINOyyre-trained nz210  0.1003 0.2374 0.8255
pl000  0.0772 0.0768 0.9230

gt450  0.0721 0.2789 0.8115

Complementarily, Figure [14] reorganises the same FNR values by grouping them by
domain. This allows the performance of the different discriminator models on each
domain to be compared directly.

It can be seen that for three domains—namely cs2, nz20, and nz210—the off-the-
shelf ResNetl18-feature based model shows the highest FNR. Domains nz20 and
nz210 show similar FNRs for both the task-specific fine-tuned ResNet18 as well as
the off-the-shelf ResNet18. Notably, the p1000 domain consistently achieves very
low FNR between 0.6 and 0.8 across all models, as does gt450 with the exception
of a slightly elevated FNR for the fine-tuned ResNet18.

To enable a deeper analysis of model behaviour, Table [4] shows the class-wise FNR,
FDR and F1 scores for each domain and for each discriminator, denoted by the
backbone feature-extractor architecture.

Finally, the metrics in Table [5| summarize the overall performance and cross-domain
variability of the domain discriminator models. Notably, the task-specific ResNet18
outperforms its off-the-shelf counterpart across all reported metrics: it achieves

higher F1 and PAD*,,,1; scores, along with a lower mean absolute error (MAE) and
lower FNR standard deviation (FNR STD). While the DINO-based model slightly
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Figure 14: PAD* . FNR per domain by discriminator model. Higher means less
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Table 5: Aggregate performance metrics for each domain discriminator model, de-
noted by the feature extraction backbone. F1 Score represents the mean F1 score
across all classes. MAE denotes the mean absolute error. FNR STD is the standard
deviation across the domain-wise FNR values. PAD* ;i is the aggregate PAD*
metric score.

Model F1 Score MAE FNR STD PAD* ui
ResNet18gne-tuned 0.8161 0.1819 0.098 0.7727
ResNet18,e-trained 0.7367  0.2546 0.188 0.6817
DINOpre-trained 0.8373  0.1608 0.133 0.7990

surpasses even the task-specific ResNet in F1 and PAD* .;; and MAE, its elevated
FNR STD indicates greater performance variability across domains—caused by the
cs2 domain FNR visualised in Figure [13]

6.5 PCA Data Visualisation

For further analysis, PCA was applied to reduced representations from three different
stages: (1) the hidden representations of the input-space TwoLayerNN (i.e., after
the first linear + ReLU layer), (2) the feature vectors extracted from the pre-trained
DINO and DINOv2 models, and (3) the hidden representations of the latent-space
TwoLayerNNs trained on those features. The resulting 2D visualisations aim to
reveal how the data is structured within each representational space and whether
domain-specific patterns or separations become visible. To enable meaningful visual
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comparison, all PCA plots use a consistent scale for the same representational level,
allowing not just the shape but also the compactness of cluster formations to be
directly contrasted across architectures within a level.

These visualisations help to qualitatively assess the separability of domains and
the potential impact of shifts. For practical reasons, only PCA plots that exhibit
interpretable clustering or visible structure are shown, as including all visualisa-
tions—especially those that do not reveal any clear patterns—would be redundant
and would obscure rather than support the interpretation. Firstly, reduced represen-
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Figure 15: 2D PCA visualisation of reduced representations of the input-space
TwoLayerNN trained on cs2 data.

tations from the hidden layer of the TwoLayerNN were reduced to 2D using PCA.
Figure [L5| shows the resulting distribution for the cs2 domain as a representative
example. The corresponding visualisations for the other four domains are omitted,
as they exhibit a very similar overall structure. On the right side of the figure, the
domains gt450, cs2, and p1000 form relatively distinct clusters, standing out from
the remaining data points, which are more loosely distributed and tend to overlap.

For the latent space, PCA was applied to both, directly to the hidden representations
output by the DINO and DINOv2 models, as well as to the hidden representations of
the downstream task classifiers that were trained using these features. As shown in
Figure the gt450 domain forms a visibly tighter cluster than the other domains
for both DINO and DINOv2. In the DINOv2 representation, the domain clusters
also show more overlap overall, but gt450 remains the most compact.
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Figure 16: 2D PCA visualisations of feature vectors extracted using DINO (left)
and DINOv2 (right).
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Figure 17: 2D PCA visualisations of reduced representations of the latent-space
TwoLayerNNs trained on DINO (left) and DINOv2 (right) features extracted from
gt450 data.

Finally, the hidden layer representations of the latent classifiers trained on DINO
and DINOv2 features were reduced using PCA to examine their internal structure.
As shown in Figure [I7], for DINO-based classifiers, some instances from cs2, nz20,
and p1000 appear as distinct clusters separated from a central overlapping region.
In contrast, such domain-specific clustering is less apparent in the DINOv2-based
representations.
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6.6 Intra-Architectural Metric Alignment

As a visual aid, four figures are provided to enable a side-by-side comparison of the
domain rankings of the applied methods for each architecture.

TwolLayerNN Source-Centric Results by Metric
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Figure 18: TwoLayerNN (input space) source-centric aggregate results for each do-
main, grouped by metric.

ResNet18 Source-Centric Results by Metric
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Figure 19: ResNet18 (input space) source-centric aggregate results for each domain,
grouped by metric.

A separate plot for each architecture compares the scores of all domains across the
evaluated metrics (See Figures TwoLayerNN: ResNet18: DINO: , DINOv2:

Each plot includes only the metrics available for the respective architecture.
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DINO Source-Centric Results by Metric
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Figure 20: DINO (latent space) source-centric aggregate results for each domain,

grouped by metric.

DINOv2 Source-Centric Results by Metric
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Figure 21: DINOv?2 (latent space) source-centric aggregate results for each domain,

grouped by metric.

While the absolute scores are not directly comparable across metrics, these visuali-
sations help identify the relative ranking of domains and assess whether consistent

patterns emerge across metrics within the same architecture.

This analysis is exploratory and should be interpreted with caution, as the met-
rics differ in meaning and the role of the architecture varies between them. For
example, in the case of DINO and DINOv2, the 1 — MeanBBSD values reflect
domain similarity based on KS distances derived from classifier outputs, whereas
MMD scores are computed directly on the feature representations without using a
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classifier. Similarly, for the ResNet18 PAD* FNR, the architecture refers to the task-
specific feature extractor that determines the result, rather than the TwoLayerNN
domain discriminator used in the PAD* computation.

7 Discussion

This section analyses the most prominent patterns observed in the results, aiming to
interpret their significance and implications. It begins by examining the behaviour of
the underlying classifiers, outlining their limitations and potential factors influencing
their performance. Next, a domain-level analysis explores how the different shift
assessment methods align or diverge in detecting scanner-induced shifts. Based on
these findings, broader, dataset-independent insights and hypotheses are proposed.
The discussion then addresses dataset-specific limitations and challenges that may
have influenced the outcomes. Finally, the section closes with an outlook on future
directions to overcome current limitations and advance the development of more
robust and interpretable methods for assessing scanner-induced domain shifts.

7.1 Model Behaviour

The following model behaviour subsection is divided into two parts: (1) a discussion
of the performance behaviour of input-space classifiers, (2) an analysis of latent-
space classifiers using features from foundation models. They offer insight into how
the classifiers and feature extractors may have influenced the results, and what this
implies for interpreting the observed domain shifts.

7.1.1 Classifier Behaviour in Input Space

When analysing the performance results of the original tumor task classifiers, trained
to serve as softmax output extractors for BBSD, the focus does not lie on discov-
ering the best model for tumor classification. Rather, the performance metrics
were mainly employed to observe the behaviour of the classifiers on various scan-
ner domains before applying BBSD. Together with other metrics, they can boost
interpretability by highlighting domain- or architecture-related patterns.

First and foremost, it is not surprising that the advanced ResNet18 architecture
model achieves much higher performance scores than the TwoLayerNN classifier
across all performance metrics. ResNet18 is architecturally better suited for pro-
cessing raw 224 x 224 x 3 image data than a simple two-layer linear network because it
leverages convolutional layers to exploit spatial hierarchies and local patterns inher-
ent in image structures. In contrast, the TwoLayerNN flattens the image into a 1D
vector, thereby losing spatial relationships and treating every pixel independently.
This limits its ability to learn meaningful visual features, especially in complex
image domains like histopathology. Additionally, ResNet18 benefits from residual
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connections, more layers, and more parameters, enabling it to model more intricate
patterns and generalise more effectively across domains.

However, in the context of BBSD-based shift detection, the TwoLayerNN was inten-
tionally used to avoid exactly these strong generalisation capabilities. Since BBSD
relies on comparing softmax output distributions between in-domain and out-of-
domain samples, a highly robust classifier may produce overly uniform or over-
calibrated outputs across domains—potentially masking the domain shifts that are
being measured. A simpler, less powerful classifier was deemed more likely to reflect
distributional changes in the input data. To ensure these TwoLayerNN classifiers
are still functionally adequate, the invertibility of their confusion matrices was ver-
ified on their respective source domain test sets. This confirms that the models
are performing better than random guessing and are capable of distinguishing be-
tween classes at a minimal level necessary for BBSD application. This was only
the case on the source domain though, as the confusion matrices of models trained
on problematic domains yielded non-invertible confusion matrices, often completely
overpredicting one class as seen in Appendix Table [7]

Another indication that the TwoLayerNN’s decision boundary may be overly sim-
plistic and overconfident appears in the form of the linear segments observed in
some of the ROC curves (See Appendix Figure . These segments suggest that
the model assigns extreme softmax probabilities—close to 0 or 1—for most samples,
such that varying the decision threshold has little effect on classification outcomes
over wide intervals. This behaviour was verified by inspecting the distribution of
softmax outputs, which showed a strong skew towards the extremes. This indicates
a lack of meaningful uncertainty. As such, these patterns in the ROC curves provide
additional insight into how the TwoLayerNN tends to oversimplify the complex task
of tumor classification from raw input images, failing to account for fine-grained
distinctions, which leads to failure on more challenging or shifted data.

It should be noted that during the experiments, an alternative architecture, denoted
as ThreeLayerNN, was also evaluated. This variant introduced an additional fully
connected layer with a ReLLU activation, aiming to support the compression from
the high-dimensional 224 x 224 x 3 input space by introducing an intermediate
representation. The hypothesis was that a more gradual dimensionality reduction
might help the network capture more informative features early on. However, this
modification did not lead to a measurable improvement in performance, suggesting
that the added capacity or depth did not meaningfully enhance feature extraction
in this setting.

7.1.2 Foundation Model Features and Latent-Space Behaviour

With regard to the DINO- and DINOv2-feature trained latent-space classifiers, it
is not overtly surprising that the ResNet18 outperforms them, as the architecture
of the classifier itself is really a simple TwoLayerNN that uses the task-agnostic
features extracted by pre-trained but not fine-tuned DINO and DINOv2 models.
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It essentially functions like a classifier head, mapping the latent features to final
predictions.

It is noteworthy, however, that these latent-space TwoLayerNNs consistently out-
perform their input-space counterparts for each source domain and on average also
on target domains, although the latent-space models have to rely on task-agnostic
features from the FMs. Multiple factors could be at play here: as mentioned before,
the TwoLayerNN is likely too simple to effectively process the large image data.
Even though the features extracted by the foundation models are task-agnostic,
the provided dimensionality reduction presumably puts the latent-feature trained
models at an advantage.

Another reason for improved performance could lie in the ability of foundation mod-
els to extract robust general image features, filtering out most of the noise, while
the input-space TwoLayerNN may be more sensitive to noisy image data. However,
if this alone characterised the main difference between the input-space and latent-
space models, one would expect a more stable performance of the feature-trained
classifiers across target domain test sets, as partially observed for the ResNet18
model. This is not really the case for the DINO- and DINOv2-based classifiers,
which show similar sensitivity to out-of-domain data as the input-space TwolLay-
erNN. The same can be observed for BBSD where the latent-space models detect
similar shifts as the task-specific TwoLayerNN, showing that those shifts persist in
the extracted features. While it is undoubted that foundation models excel at gen-
eralising and extracting robust features, their lack of success in this setting could
indicate a limitation. Specifically, it may suggest that the features they extract are
not sufficiently task-relevant and are affected by domain shift, meaning the shift
propagates into the latent space and negatively impacts downstream performance.
A possible explanation for this is that these FMs were pre-trained on natural image
datasets and therefore may struggle to generalise on medical images, such as micro-
scopic histopathology slides, which differ substantially in texture and structure of
the task-relevant features. It is also possible that the limited performance is partly
due to the simplicity of the classification head. The TwoLayerNN may lack the ca-
pacity to effectively utilize the foundation model features, especially under domain
shift where more expressive decision boundaries could be beneficial.

Curiously, while DINOv2 achieves lower shift magnitudes in MMD compared to
DINO, this is not necessarily reflected as improved downstream classification per-
formance. One possible explanation for the similarity in performance is that for
classification, only the global [CLS] token was used as the image representation.
This choice aligns with standard practice in transformer-based models, where the
[CLS] token is designed to capture global semantic context suitable for classification
tasks. However, although both DINO and DINOv2 produce [CLS] and patch tokens,
DINOv2 introduces architectural and training improvements that better preserve
spatial structure and semantic detail across the patch tokens. These advantages
are particularly beneficial in tasks involving fine-grained spatial features. By rely-
ing solely on the global [CLS] token—which aggregates image information into a
single vector—the experimental setup may have underutilised DINOv2’s improved
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spatial representations, which are better preserved in its patch tokens. This design
choice could partially explain why DINOv2 did not outperform DINO in down-
stream classification, despite architectural advantages. The observed difference in
MMD magnitudes between the two architectures may be due to the tighter feature
clustering exhibited by DINOv2, as reflected in the PCA analysis (see Figure .

These findings highlight an important limitation of generic vision foundation mod-
els: even when self-supervised, they may not provide optimal representations for
specialised domains like medical imaging. Their ability to generalise across natural
image tasks does not necessarily extend to complex biomedical data, where relevant
features are often subtle and domain-specific. As such, relying solely on off-the-shelf
foundation models may lead to suboptimal performance in medical applications.
This underscores the need for either fine-tuning these models on domain-relevant
data or developing foundation models trained directly on large-scale medical image
datasets.

7.2 Empirical Patterns and Domain-Level Observations

Classifier generalisation and Source-Domain Sensitivity of BBSD. Clas-
sifiers trained on domains such as nz20 and p1000 exhibited poor generalisation
to most other domains, as reflected in low F1 scores, and in some instances, even
non-invertible confusion matrices when tested on the other three domains. In con-
trast, models trained on other domains achieve more robust performance on these
two domains, indicating that the source domain influences the generalisation abil-
ity. Additionally, these two domains still performed relatively well on each other,
suggesting a certain degree of mutual compatibility. For ResNet18, only the p1000
model stood out as generalising especially poorly to other domains. BBSD (the KS
test) reflects similar patterns: models trained on nz20 or p1000 exhibit low KS dis-
tances when evaluated on each other, but significantly higher distances when tested
on cs2, nz210, or gt450. This indicates that nz20 and p1000 may share similar
feature characteristics and thus form a distinct pair.

Notably, the BBSD matrices themselves lack strict symmetry,—distances from a
given source domain to others are not always equal in the reverse direction, sug-
gesting that not only performance but also shift magnitude is influenced by the
choice of source domain. This asymmetry was present even for classifiers like the
ResNet18, which otherwise exhibited strong generalisation ability. This observation
is also reflected in the CV results, which showed more uniform variability for the
target-centric view than for the source-centric view. This observation suggests that
in this context the choice of source domain has a more pronounced influence on the
variability of KS distances than the choice of target domain or rather that some
domains provide features that generalise better to other domains.

Divergent Shift Patterns in MMD. MMD and BBSD do not always agree
on which domain pairs exhibit the largest shifts. For example, the BBSD classifier



7 DISCUSSION 62

using DINO features reports high KS distances for cs2 paired with nz20 and p1000
in both directions, yet MMD assigns low distances to those same pairs. Conversely,
MMD consistently flags gt450 as a strong outlier: both DINO and DINOv2 fea-
ture spaces exhibit significantly elevated MMD distances for gt450 compared to
any other domain. In contrast, BBSD only occasionally reports high KS distances
involving gt450—and primarily when gt450 serves as the reference domain. For
instance, neither DINO- nor DINOv2-based BBSD assigns a high KS distance to
the gt450-nz210 pair, despite MMD indicating a substantial shift between these
two domains. The PCA visualisations in Figure [16] indicate that gt450 data points
form a more compact cluster with less overlap to those of the other domains in both
DINO and DINOv2, which could explain the overall pronounced shift observed in
MMD for this scanner domain.

Finally, the strong coupling between nz20 and p1000 previously observed in both
BBSD and classifier performance is not consistently reflected in the MMD results:
under DINO, comparisons between cs2 and both nz20 and p1000 yield low MMD
scores. Furthermore, under DINOv2, the shift between nz20 and p1000 is not ranked
particularly low relative to other domain pairs, despite BBSD consistently indicating
minimal shift between them.

Multi-class PAD*: Agreement and Architectural Influence. When inter-
preting the performance of domain discriminators, it is important to note that a
higher false negative rate (FNR) for a given domain indicates that its features are
less distinguishable from those of other domains—suggesting a lower degree of do-
main shift. PAD* ., consistently yields low FNR for p1000, implying that this
domain is easily separable from the rest and thus exhibits high shift, which aligns
with the patterns observed in BBSD. Conversely, the high FNR for cs2 in both
domain-agnostic models corresponds to low shift, matching the low values reported
by the MMD method, which is also domain-agnostic in nature. When comparing
the domain-wise F1 scores with the PAD*,1; class-wise results, notable discrepan-
cies emerge. While both p1000 and nz20 exhibit similarly poor F1 performance,
the PAD* ,1; metrics indicate a high degree of shift for p1000 but significantly
lower shift for nz20. This may reflect similar inconsistencies between PAD* and
downstream performance observed by Aubreville et al.| (2021)).

Issue of Domain Interdependencies:

The ability of the domain discriminator to distinguish between domains depends
heavily on the encoder used—that is, the classifier responsible for extracting task-
specific representations. If these representations encode domain-specific features,
PAD* will detect a stronger domain shift. Conversely, if the representations are
more invariant to domain characteristics, the discriminator will struggle to separate
domains, resulting in a lower measured shift. Ideally, task-relevant features should
not overlap with domain-specific artifacts—such as scanner-induced variations or
acquisition noise—but in practice, this separation is unlikely to hold. The PAD* 1
extension presented in this work exhibits a more severe limitation in its results: For
the fine-tuned ResNet18 domain discriminator, most error values align well with



7 DISCUSSION 63

the BBSD results—except for nz20, which shows a surprisingly high classification
error. This would suggest low domain shift for nz20, directly contradicting the
strong shift patterns observed in BBSD. However, examining the false negative rate
(FNR) and false discovery rate (FDR) offers a potential explanation: while FNR
and FDR are generally consistent across domains, nz20 stands out with a notably
higher FNR than FDR, whereas p1000 shows the opposite trend. This suggests
the model may have developed a bias toward p1000, leading it to misclassify some
nz20 instances as p1000, thereby inflating nz20’s FDR. This discrepancy reveals
domain interdependencies as a possible vulnerability of the multi-class version of the
PAD* metric, which may skew the result and obscure true shift patterns. Although
the class-wise metrics used in the experiments retain much of their interpretability
despite these limitations, training separate discriminators for each domain pair, as
done in the original PAD*, is likely more robust and yields results that allow more
straightforward interpretation.

DINO and DINOv2: Shift Discrepancy. For MMD, DINO and DINOv2 sur-
prisingly exhibit some level of disagreement with regard to the overall magnitude of
the MMD values as well as the domain pairs that exhibit shift. For BBSD, a notable
exception is the gt450—-cs2 pair, where the DINO-based model reports a pronounced
KS distance, while the DINOv2-based model does not. This discrepancy is likely
reflected in the 2D PCA visualisations, where the gt450 model’s representations
differ notably between the two models, particularly in the clustering patterns of the
cs2 data points[I7] Despite being tested using the same kernel and the models gen-
erating features of same dimensionality, this phenomenon, along with the generally
lower MMD scores observed for DINOv2, may be explained by differences in feature
geometry, i.e., the spatial arrangement of feature vectors. This interpretation is
supported by Figure where DINOv2 shows greater domain overlap than DINO,
potentially leading to smaller kernel distances and thus lower MMD values.

Distortion of Correlation. Although not domain-related, it is important to note
some limitations concerning the correlation values that were calculated through-
out the experiments to measure the agreement of architectures. When computing
Pearson correlations between DINO and DINOv2 MMD values, gt450’s extreme
outlier distances inflate the correlation coefficient, masking the fact that their rela-
tive rankings often diverge. As a result, gt450’s large MMD values both drive up
the coefficient of variation for the other domains and dominate the Pearson metric,
suggesting that the architectures show a high level of agreement.

Alternative correlation measures like Spearman’s rho might better capture agree-
ment between the extractors. However, since the correlations throughout the results
are computed over very small vectors (size 4 or 5), the resulting values have generally
limited interpretability.

It is important to note that these findings reflect the behaviour of specific model
architectures under the conditions tested. Caution is advised when generalising to



7 DISCUSSION 64

other architectures or pre-training strategies, especially those optimised for different
domains or using different objectives.

7.3 General Insights and Hypotheses

Robust Models May Obscure Shifts. Substantial differences were observed in
the magnitude of detected shift between the simple TwoLayerNN and the more ad-
vanced ResNet18 classifiers in input space. The ResNet18 consistently yields signif-
icantly lower KS distances and demonstrates both higher and more stable F1 scores
across target domains, suggesting stronger generalisation. However, this robustness
appears to limit its ability to reveal distributional shifts. In the experiment results,
some of the shifts that are clearly reflected in the performance of the TwoLayerNN
are not mirrored in the ResNet18’s performance. This suggests that the magnitude
of detected shift may not reflect objective shift severity, but rather the vulnerability
of a given classifier to that shift.

While Kore et al.| (2024) argued that aggregate performance metrics such as AUC-
ROC are generally unreliable for shift detection, the results in this context reflect
this mainly for more advanced and complex architectures like ResNet18. The simpler
TwoLayerNN models, in contrast, exhibited closer alignment between performance
degradation and BBSD-detected shifts. In view of the emergence of highly perfor-
mant and robust architectures in practice, these findings underscore that traditional
performance metrics alone may be insufficient for detecting or quantifying domain
shifts.

BBSD Asymmetry Highlights Source Domain Influence BBSD exhibited
directional asymmetry. Measured shifts between domain pairs varied depending on
which domain the classifier was trained on. In other words, the measured shift from
the reference domain A to the target domain B was not always equal to the shift from
reference domain B to the target domain A. While most domain pairs exhibit roughly
similar values in both directions, several show substantial discrepancies, indicating
that the choice of source domain can significantly influence the measured shift. This
asymmetry was observed consistently across all architectures, including those with
strong generalisation such as ResNet18, suggesting that it is an inherent property
of the BBSD method and not necessarily a result of poor classifier performance.

Conceptually, one would expect domain shifts to be symmetric, as the shift between
two domains should not depend on direction. Since BBSD relies on a trained clas-
sifier, the results indicate that both the model architecture and the choice of source
domain can significantly affect the resulting KS distances. The observed asym-
metries suggest that classifiers trained on certain source domains may generalise
better, potentially due to those domains exhibiting more domain-invariant features
or containing less noise, subsequently impacting the measured shift.

Regarding architectural dependency, ResNet18 reflects some of the shift patterns
identified by other classifiers but also shows notable discrepancies. These differences
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are evident not only in the magnitude of detected shifts but also in which domains
are identified as exhibiting a shift.

If this behaviour generalises beyond the studied domains, it has important practical
implications. In real-world settings where the source domain is fixed and labelled
target data is limited, such directionality could impair reliable shift detection or
quantification. Additionally, the observed disagreements between architectures raise
questions about the consistency of BBSD results with regard to its black-box design.
However, this limitation mainly applies when BBSD is used as an objective shift
quantification tool. When used to estimate how a shift might affect a specific pre-
existing classifier, the alignment of BBSD results with the classifier’s performance
suggests that BBSD is effective for this application use case. This flexibility could
be valuable in practice, where shift detection is often intended for assessing risks to
a given deployed model.

Task Awareness Is Crucial for Interpreting Shift Magnitude. MMD did
not always reflect the same shift patterns identified by BBSD or classifier-based
performance. This discrepancy likely stems from a fundamental distinction: MMD
is symmetric and task-agnostic, comparing global differences in feature distribu-
tions without considering how these differences influence model decisions. In con-
trast, BBSD is task-aware and surfaces shifts that affect a model’s predictive be-
haviour—such as changes in class probability distributions or decision boundaries
—which MMD might overlook. Consequently, BBSD is more likely to highlight
shifts that are relevant to downstream performance, while MMD may capture fun-
damental, but potentially task-irrelevant distributional differences.

This distinction is further supported by the PAD* ,1; results, which explicitly com-
pare how task-specific and task-agnostic domain discriminators rank the difficulty
of each domain. Interestingly, the task-agnostic models show strong agreement
in their rankings despite using different feature extractors (DINO vs. ResNet18),
suggesting they capture consistent structural differences in the data. In contrast,
the fine-tuned ResNet18—although architecturally identical to the pre-trained ver-
sion—produces a markedly different domain ranking, underscoring how task-specific
fine-tuning changes the feature space to suit the class characteristics that matter for
classification.

Overall Implications: Taken together, these findings suggest that shifts iden-
tified by task-agnostic methods like MMD are not necessarily aligned with shifts
that impact task performance. Therefore, relying solely on task-agnostic measures
may lead to overestimating the practical effect of domain shifts. This reinforces
the importance of selecting appropriate feature encoders for MMD and highlights
the complementary value of combining task-aware and task-agnostic methods, as
advocated by |[Roschewitz et al.| (2024). It is also important to note that while some
methods reported relatively severe shifts for certain domains, these results should
not be interpreted as absolute measures of shift severity, since the magnitude of the
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reported values was shown to depend strongly on the architecture used to extract the
features. Moreover, in the absence of ground truth for real-world (non-synthetic)
domain shifts, it remains unclear how a “true” shift is quantified. Beyond basic
visual inspection of the input images, there are no clear criteria for how different
shifts should manifest in the outputs of shift assessment methods.

7.4 Dataset-Specific Challenges and Limitations

The chosen “Multi-Scanner Canine Cutaneous Squamous Cell Carcinoma Histopa-
thology Dataset” is well-suited for investigating scanner-induced data shift, as it
comprises 44 anatomical samples, each digitised using five different scanners. This
setup ensures that anatomical content remains identical across scans, allowing scan-
ner-specific differences to be isolated more reliably. However, several practical limita-
tions should be noted that may, to some extent, account for the observed variability
in model behaviour across different source domains:

Unaligned training set sizes. The varying slide size, pixel ratio, and sample
placement within each slide pose significant challenges. The preprocessing method
divides each whole slide image into 224 x 224 pixel patches to ensure complete
coverage and enable their direct use in training. As a result, the number of patches
per slide varies, leading to differences in split set size across scanners

Thus, while class distributions were balanced before training the BBSD classifiers to
mitigate class bias, the total training set sizes differed between scanners. Since each
classifier is trained solely on one scanner’s data, this does not directly affect the class
distribution of model predictions. However, varying training set sizes may influence
the classifier’s behaviour and its ability to detect shifts. If this has a significant
impact remains speculative because, given the simplicity of the TwoLayerNN and the
fact that all datasets exceed 10,000 samples (see table [3), moderate size differences
are unlikely to have a major effect.

Imprecision in Labelling. A further issue lies in how patches are labelled: any
patch containing even a small portion of tumor tissue is labelled as a tumor patch.
This rough labelling approach may introduce considerable label noise, as patches
are labelled positive even if they contain only a minimal amount of tumor tissue.
Such weakly informative or ambiguous samples can negatively impact a model’s
ability to learn meaningful, class-specific features, potentially leading it to overfit
irrelevant visual patterns. This can degrade both performance and generalisation
ability. However, it’s important to note that optimal classification performance
was not the primary objective of these experiments. Crucially, the classifiers still
produced invertible confusion matrices, fulfilling the necessary condition for applying
BBSD.
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Sampler-induced duplicates. Another concern is the behaviour of the weighted
random sampler. Since the percentage of tumor-patches out of all patches is roughly
40% for each unbalanced subset across scanners (see table, the sampler draws sam-
ples with replacement from both classes to restore the original unbalanced dataset
size, likely resulting in duplicate samples. For a simple architecture like the TwolLay-
erNN, this duplication may cause overfitting to repeated samples or lead to unstable
training dynamics. As mentioned in the methodology section, some training runs
failed to learn effectively from the outset and showed no improvement over addi-
tional epochs. However, the classifier’s limited performance may also be attributed
to the simplicity of the architecture relative to the task complexity, rather than
sampling issues alone. Furthermore, balancing the classes in this way still proved
advantageous compared to training on the unbalanced data, as the simple TwoLay-
erNN architecture showed a strong tendency to overpredict the majority class, likely
because this was an easier or perhaps the only viable strategy for minimizing overall
error, given the difficulty of the task and the model’s limited ability to reliably learn
and interpret tumor-specific features, as discussed previously.

Rotation as a shift that most models seem sensitive to. The tissue samples
from the p1000 scanner appear to be consistently rotated by 90 degrees in the
original dataset. This rotation could pose a challenge for the classifier, particularly
if it lacks rotation-invariant representations and could also explain why the p1000
domain consistently showed high shift values across methods. Rotation is often used
as a data augmentation method, introducing variation that models can learn from.
In the context of the conducted experiments, it is likely that the rotation altered
spatial structure in a way that set it apart from the other scanner domains. When
such variation is consistently associated with a particular domain, it may act as a
form of scanner-specific shift.

Overall, the data handling decisions were influenced by practical constraints such
as complexity and time. The methodology prioritised a balanced and representative
sampling of each domain, while maintaining compatibility with the chosen model
architectures. Optimizing classification performance was not the primary objective.
Rather, the focus was on creating a consistent base for evaluating domain shifts.

7.5 Future Work

While this study explored several domain shift quantification methods, the focus
was on comparing the behaviour of the different methods and implications on prac-
tical application remain limited. Future work should investigate the effectiveness of
foundation models when fine-tuned on large-scale medical imaging datasets to as-
sess whether task-specific adaptation improves their robustness to scanner-induced
shifts. Additionally, evaluating models specifically developed for medical imaging
could offer deeper insights into their sensitivity to domain shifts, especially in com-
parison to general-purpose architectures. Until recently, access to such specialised
models was limited. However, this landscape is changing, with initiatives like the
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Health AT Developer Foundations (HAI-DEF) suite, that now provide pre-trained,
open-weight foundation models for various medical imaging domains—including ra-

diology, dermatology, and pathology—as well as other healthcare modalities (Kiraly
et al., 2024)).

Another important direction involves developing more explainable and interpretable
shift detection methods. Given BBSD’s sensitivity to the choice of underlying
classifier and its limitations as a black-box approach, incorporating explainable
AT techniques—such as the representation shift method proposed by |Stacke et al.
(2020)—may help clarify the sources of domain shifts and guide appropriate mitiga-
tion strategies. This approach may prove more insightful than evaluating synthetic
shifts, as there is a vast number of different shift sources and previous work has
shown them to have varying impact (Kore et al., [2024).

Although the patch-grid approach enabled simple and lightweight slide preprocess-
ing, it also introduced some variability that may have affected the experiments in
unintended ways. To address these histopathology-specific data-preprocessing chal-
lenges in future work, it will be important to adopt stricter labelling criteria—such
as requiring that the proportion of class-relevant content in a patch exceeds a de-
fined threshold before assigning a label. Even more impactful may be adjustments
to the preprocessing pipeline itself, particularly how patches are extracted. Ensur-
ing that anatomically corresponding regions are captured across all scanners—e.g.,
through segmentation—would improve label quality, better isolate scanner-induced
shifts, and subsequently enable fine-grained measurement of domain shift at the
level of individual slides or patches. This would significantly enhance the precision
and reliability of shift detection and analysis.

8 Conclusion

This work explored methods to assess scanner-induced domain shifts using a dataset
of 44 histopathology samples, each digitised by five different whole slide scanners
to isolate acquisition-related variability. The main objective was to investigate how
such scanner-induced variability—which may be visually subtle—can be detected
and interpreted across both input and latent feature spaces, using a range of method-
ological perspectives.

Three complementary domain shift detection techniques were evaluated: BBSD,
which compares softmax output distributions of task-specific classifiers; MMD, which
measures distances between feature vector distributions; and a multi-class variant of
PAD*, which trains domain discriminators on both task-specific and task-agnostic
features. These methods were applied to classifier outputs and feature representa-
tions from simple neural networks, a fine-tuned ResNet18, and off-the-shelf founda-
tion models such as DINO and DINOv2.

The results indicate that task-specific approaches like BBSD and PAD* are heavily
influenced by the behaviour of the underlying classifiers. BBSD showed directional
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asymmetry in measured shifts, varying depending on the domain used for training
the classifier, suggesting these methods are better interpreted as proxies for estimat-
ing performance degradation on unlabelled target data rather than objective quan-
tifiers of domain shift. In contrast, task-agnostic methods such as MMD highlighted
differences that may not always have practical relevance for downstream tasks, em-
phasizing that shift detection is not inherently objective and must be interpreted in
the context of specific use cases.

From a model perspective, more advanced architectures such as ResNet18 exhibited
robust generalisation across scanner domains, with limited performance degradation
despite measurable shifts. This finding highlights a critical distinction: a detectable
domain shift does not necessarily imply compromised model performance, partic-
ularly for well-trained, robust models. Off-the-shelf foundation models, however,
showed limited effectiveness in extracting task-relevant features without fine-tuning,
indicating that their assumed generalisability may not yet fully extend to specialised
histopathology tasks.

It is important to note that while this study deliberately isolated scanner-induced
domain shift, real-world shifts often involve multiple interacting factors such as bio-
logical variability, staining differences, and annotation inconsistencies. Additionally,
some aspects of the preprocessing pipeline—such as patch extraction, labelling cri-
teria and dataset balancing—may have influenced the manifestation or detectability
of shift and should be considered when interpreting results. Moreover, none of the
evaluated methods provide a fully objective or direct quantification of how much
downstream performance will degrade due to shift. As such, the practical impact of
scanner-induced domain shift—and thus the relevance of detecting it—varies con-
siderably depending on the model, task, and context.

In practice, the development of machine learning models for medical imaging is
advancing, and ongoing progress in domain generalisation and domain adaptation
provides researchers with increasingly powerful tools for mitigating distributional
shifts. However, the effectiveness of these methods often depends on how well they
align with the specific type of shift encountered. In light of these findings, the
methods studied here should be understood as lightweight estimators that capture
complementary aspects of domain shift, rather than definitive quantification tools.
Future work integrating explainable Al techniques may improve both the accuracy
and interpretability of shift detection, enabling better identification of the underlying
sources of shift and more informed model development.

Overall, these results underscore that understanding and assessing scanner-induced
domain shift requires a nuanced approach that balances methodological thorough-
ness with context-aware interpretation—validating the focus of the thesis on ex-
ploring and evaluating shift detection methods beyond absolute quantification and
towards practical insights on model behaviour and reliability.
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Input Space BBSD
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Figure 22: Visualisation of the input-space BBSD experiment. For simplicity, only
the version with TwoLayerNN as the task classifier is visualised here.
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Latent Space BBSD and MMD
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ROC Curve for model trained on cs2
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Figure 26: ROC curve of cs2-trained classifier evaluated on each scanner’s test set.
Linear segments are clearly visible for some target domains.
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Table 6: F1 scores of models trained on one scanner (Model) and tested on another
(Test), across different model architectures (input and latent separated by the ver-
tical line). Same-scanner (source domain) F1 scores are highlighted in yellow. F1
scores < 0.5 are coloured red.

F1 Scores

Model Test | TwoLayerNN ResNetl8 DINO DINOv2
cs2 cs2 0.71 0.84 0.79 0.76
cs2 nz20 0.61 0.71 0.56 0.58
cs2 nz210 0.66 0.83 0.68 0.66
cs2 p1000 0.56 0.63 0.52 0.52
cs2 gt450 0.47 0.81 0.72 0.71
nz20 cs2 0.33 0.66 0.34 0.34
nz20 nz20 0.65 0.85 0.75 0.70
nz20 nz210 0.35 0.55 0.35 0.39
nz20 p1000 0.68 0.78 0.74 0.69
nz20 gt450 0.35 0.77 0.34 0.35
nz210 cs2 0.58 0.77 0.52 0.69
nz210 nz20 0.58 0.79 0.69 0.71
nz210 nz210 0.68 0.85 0.72 0.75
nz210 p1000 0.55 0.80 0.66 0.65
nz210 gt450 0.58 0.79 0.58 0.63
p1000 cs2 0.34 0.46 0.33 0.36
p1000 nz20 0.61 0.53 0.69 0.62
p1000 nz210 0.34 0.39 0.43 0.46
p1000 p1000 0.66 0.84 0.75 0.75
p1000 gt450 0.36 0.45 0.35 0.36
gt450 cs2 0.60 0.83 0.56 0.73
gt450 nz20 0.56 0.80 0.63 0.63
gt450 nz210 0.59 0.79 0.70 0.65
gt450 p1000 0.52 0.79 0.56 0.55
gt450 gt450 0.66 0.84 0.73 0.73
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Table 7: Predicted class distributions in percent (%), Accuracy, and F1 scores of
TwoLayerNN models trained on data from one scanner (e.g. cs2_model) and eval-
uated on test data from all five scanners (cs2, nz20, nz210, p1000, gt450).

Train Test | Class 0 / 1 (%) Accuracy (%) F1 Score
cs2 cs2 58.18 / 41.82 70.25 0.714
cs2 nz20 33.17 / 66.83 61.18 0.597
cs2 nz210 45.64 / 54.36 66.07 0.659
cs2 p1000 24.96 / 75.04 59.76 0.564
cs2 gt450 92.31 / 7.69 56.19 0.463
nz20  cs2 99.93 / 0.07 52.01 0.355
nz20 nz20 68.52 / 31.48 66.44 0.657
nz20  nz210 99.69 / 0.31 49.96 0.357
nz20  pl000 56.87 / 43.13 68.60 0.675
nz20  gt450 100.00 / 0.00 49.52 0.319
nz210 cs2 84.97 / 15.03 60.81 0.545
nz210 nz20 30.95 / 69.05 59.43 0.606
nz210 nz210 60.22 / 39.78 70.50 0.683
nz210 pl1000 20.87 / 79.13 57.72 0.552
nz210 gt450 82.34 / 17.66 61.90 0.589
pl000  cs2 99.82 / 0.18 49.52 0.343
pl000 nz20 76.12 / 23.88 65.58 0.594
pl000 nz210 99.35 / 0.65 49.99 0.348
p1000 pl1000 61.27 / 38.73 65.70 0.651
pl000 gt450 100.00 / 0.00 49.56 0.328
gt450  cs2 31.07 / 68.93 61.81 0.617
gt450  nz20 25.93 / 74.07 59.22 0.572
gt450  nz210 27.93 / 72.07 60.81 0.575
gt450  p1000 18.06 / 81.94 58.33 0.518
gt450  gt450 55.39 / 44.61 68.67 0.686
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Table &: KS distance scores between softmax distributions for each model architec-
ture across scanner pairs. Values > 0.5 are highlighted in red.

Reference Target

TwoLayerNN ResNetl18

DINO DINOv2

cs2 cs2 0.000 0.000 0.000 0.000
cs2 nz20 0.352 0.332 0.531 0.396
cs2 nz210 0.157 0.166 0.268 0.206
cs2 p1000 0.496 0.404 0.662 0.574
cs2 gt450 0.319 0.221 0.212 0.149
nz20 cs2 0.593 0.193 0.733 0.488
nz20 nz20 0.000 0.000 0.000 0.000
nz20 nz210 0.538 0.258 0.710 0.489
nz20 p1000 0.140 0.096 0.207 0.105
nz20 gt450 0.596 0.125 0.514 0.371
nz210 cs2 0.228 0.096 0.284 0.226
nz210 nz20 0.403 0.257 0.322 0.161
nz210 nz210 0.000 0.000 0.000 0.000
nz210 p1000 0.558 0.194 0.430 0.302
nz210 gt450 0.240 0.140 0.187 0.189
p1000 cs2 0.494 0.291 0.614 0.433
p1000 nz20 0.139 0.246 0.167 0.225
p1000 nz210 0.436 0.373 0.406 0.360
p1000 p1000 0.000 0.000 0.000 0.000
p1000 gt450 0.580 0.281 0.509 0.442
gt450 cs2 0.388 0.136 0.515 0.136
gt450 nz20 0.547 0.179 0.406 0.427
gt450 nz210 0.465 0.164 0.217 0.274
gt450 p1000 0.678 0.202 0.590 0.569
gt450 gt450 0.000 0.000 0.000 0.000
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Figure 30: Pearson Correlation values between architecture pairs for MMD distances
per scanner domain.
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Figure 31: MMD p-value heatmap matrix per feature extractor. Maximum of the
y-axis (0.05) denotes the used significance threshold.
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Figure 32: Visualisation of how the source- and target-centric mean BBSD values
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Example Comparison of CDFs with KS Statistic Highlighted
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Figure 33: Exemplary visualisation of the comparison of empirical CDFs of two
datasets with largely different number of samples.
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Figure 34: Height and width distributions of slides for scanners cs2, nz20, nz210 and
gt450. Scanner p1000 was excluded because the aspect ratio of its slides is uniform.
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