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Abstract

This thesis explores the potential of generative data augmentation in the embedding
space of vision foundation models, aiming to address the challenges of long-tailed
learning and privacy constraints. Our work leverages Conditional Variational
Autoencoders (CVAEs) to enrich the representation space for underrepresented classes
in highly imbalanced datasets and to enhance data privacy without compromising
utility. We develop and assess methods that generate synthetic data embeddings
conditioned on class labels, which both mimic the distribution of original data
for privacy purposes and augment data for tail classes to balance datasets. Our
methodology shows that embedding-based augmentation can effectively improve
classification accuracy in long-tailed scenarios by increasing the diversity and volume
of minor class samples. Additionally, we demonstrate that our approach can generate
data that maintains privacy through effective anonymization of embeddings. The
outcomes suggest that generative augmentation in embedding spaces of foundation
models offers a promising avenue for enhancing model robustness and data security
in practical applications. The findings have significant implications for deploying
machine learning models in sensitive domains, where data imbalance and privacy are
critical concerns.
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Abstract

Diese Arbeit untersucht das Potenzial der generativen Datenaugmentation im
Embedding-Raum von Vision-Foundation-Modellen. Ziel ist es, die Herausforderun-
gen des Long-Tailed Learning und von Datenschutzbeschränkungen anzugehen. Un-
sere Arbeit nutzt Conditional Variational Autoencoders (CVAEs), um den Embedding-
Raum für unterrepräsentierte Klassen in stark unausgewogenen Datensätzen zu
erweitern. Gleichzeitig soll die Datensicherheit erhöht werden, ohne die Nützlichkeit
der Daten zu beeinträchtigen. Wir entwickeln und bewerten Methoden zur auf
Klassenlabels konditionierten Erzeugung synthetischer Embeddings. Diese imitieren
die Verteilung der Originaldaten zur Datenanonymisierung und augmentieren Min-
derheitsklassen, um Datensätze auszugleichen. Unsere Methodik zeigt, dass die auf
Embeddings basierende Augmentation die Klassifikationsgenauigkeit in Long-Tailed-
Szenarien effektiv verbessern kann, indem die Vielfalt und das Volumen in Minder-
heitsklassen erhöht werden. Zusätzlich demonstrieren wir, dass unser Ansatz Daten
generieren kann, die durch effektive Anonymisierung von Embeddings die Privatsphäre
wahren. Die Ergebnisse legen nahe, dass generative Augmentation im Embedding-
Raum von Foundation-Modellen eine vielversprechende Möglichkeit bietet, die
Robustheit von Modellen und die Datensicherheit in praktischen Anwendungen
zu verbessern. Die Ergebnisse haben bedeutende Implikationen für den Einsatz von
maschinellen Lernmodellen in sensiblen Bereichen, in denen Datenunausgewogenheit
und Datenschutz von entscheidender Bedeutung sind.
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1 INTRODUCTION 1

1 Introduction

Categorization is fundamental to human experience and the categories we learn
and encounter throughout our lives follow certain statistical patterns. One such
pattern is long-tailed imbalance: few categories have a very high frequency, while the
majority of categories only occur rarely. For example, word frequencies in natural
language are inversely proportional to their rank, approximating a power law known
as Zipf’s law (Zipf, 1935; Piantadosi, 2014). Categories of visual objects and object
subcategories (Salakhutdinov et al., 2011; Zhu et al., 2014), and therefore many
real-world datasets follow a similar long-tailed distribution (Van Horn et al., 2018;
Guo et al., 2016; Zhang et al., 2017; Ju et al., 2021; Galdran et al., 2021; Zhang
et al., 2023). Nevertheless, many common image classification datasets are artificially
class-balanced (Deng et al., 2009b; Krizhevsky and Hinton, 2009; Lecun et al., 1998),
and conventional empirical risk minimization algorithms perform poorly when trained
with imbalanced data (Van Horn and Perona, 2017; He and Garcia, 2009; Buda et al.,
2018; Zhang et al., 2023).

Among the most common methods to improve long-tailed classification are sampling
strategies (Chawla et al., 2002; He et al., 2008; Kang et al., 2019) and the use
of specially designed loss functions (Lin et al., 2017; Cao et al., 2019; Cui et al.,
2019; Ren et al., 2020; Tan et al., 2020). While these methods often improve upon
natural, instance-balanced sampling and a conventional cross-entropy loss function,
they focus solely on re-sampling and re-weighting, not on increasing diversity in
tail classes, which are the underrepresented categories in a dataset with a skewed
class distribution. One usually increases diversity of training samples with data
augmentation techniques and several such techniques have been developed for long-
tailed learning. However, they often either require the training of a feature encoder
(Yin et al., 2019; Liu et al., 2020; Wang et al., 2021; Chu et al., 2020), augment the
data at the input-level (Kim et al., 2020; Fajardo et al., 2021; Dablain et al., 2022),
or depend on the presence of a validation set (Zang et al., 2021; Li et al., 2021).

In this work, we focus on the setting of a frozen feature encoder and the absence
of a validation set, for the following reasons. Firstly, while some artificially created
long-tailed datasets include balanced validation sets (Liu et al., 2019b), real-world
applications with long-tailed datasets often do not provide this luxury, due to the
inherent difficulty in obtaining sufficient samples from underrepresented classes.
Secondly, we use frozen feature encoders, among other reasons because of a growing
interest in and availability of large-scale pretrained vision encoders. The embeddings
of these foundation models provide a basis for many down-stream tasks, often
without the need for fine-tuning (Bommasani et al., 2022; Caron et al., 2021; Oquab
et al., 2023; Radford et al., 2021). Usually based on the transformer architecture
(Vaswani et al., 2017; Dosovitskiy et al., 2020), vision foundation models inherit
their robustness to distribution shift, corruptions, and natural adversarial examples
(Paul and Chen, 2022). Furthermore, the number of domain-specific foundation
models has been increasing in recent years (Li et al.; Mai et al., 2022; Nguyen et al.,
2023; Tu et al., 2024; Zhou et al., 2023). This makes vision foundation models a
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natural choice when approaching long-tailed recognition by decoupling the processes
of representation learning and classifier training (Kang et al., 2019).

To address long-tailed classification in this setup, we train a Variational Autoencoder
(VAE) on the embeddings (i.e., encoded features) of a long-tailed dataset, conditioning
it on the class labels. This allows us to generate embeddings of arbitrary classes by
sampling from the autoencoder’s latent space. By combining generated embeddings
with the embeddings of the long-tailed dataset, we aim to increase the meaningful
diversity of tail classes in the feature space of a given vision foundation model.
While traditional interpolation-based techniques can also be applied in this setup
(Chawla et al., 2002; He et al., 2008; Chou et al., 2020), they presuppose specific
assumptions about the semantics of interpolation in high-dimensional embedding
spaces. For instance, one common assumption is that the linear interpolation between
two embeddings of the same class results in an embedding that is also a member of
this class. But while the true meaning of interpolation may be hidden in the feature
encoder’s weights, it is completely obscure to us. Therefore, this assumption might
be wrong in many cases. In contrast, we train a model to produce samples using
specific inductive biases by conditioning it on class labels and encouraging a normal
distribution of samples in the its latent space.

The proposed method of training a Conditional Variational Autoencoder (CVAE)
on the frozen embeddings of a given dataset is very general and can therefore be
applied to problems beyond long-tailed learning. One such challenge and a second
focus of this work lies in the domain of privacy and is concerned with anonymizing
data while preserving its usefulness (Sweeney, 2002; Newton et al., 2005; Meden
et al., 2018). This is particularly important when sharing sensitive data, such as
medical records or surveillance footage. Instead of sharing the raw data itself, a
naive solution might be to share the embeddings of a dataset (produced by encoding
it with a given feature encoder), or to only share a model trained on the data, such
as a classifier. However, attacks such as model inversion (Fredrikson et al., 2014,
2015) could still lead to the disclosure of the original data. Therefore, we propose to
first locally capture the distribution of the original data with a CVAE. In a second
step, only the frozen CVAE’s decoder needs to be shared, allowing the recipient
to generate samples according to the original distribution, without disclosing the
dataset. This not only enhances privacy, but also drastically decreases the required
amount of data to be exchanged. Figure 1 illustrates our proposed approach and its
applications in both long-tailed learning and privacy preservation.

The remainder of this work is structured as follows. Section 2 introduces the topics of
foundation models, long-tailed learning, and privacy as they relate to the generative
data augmentation approach, and discusses relevant literature. In Section 3, we
present our approach, introducing the relevant notation and detailing how we use
generative models to rebalance long-tailed datasets and anonymize training data.
Section 4 describes the setup and results of the experiments conducted to evaluate
our approach. This includes an exploratory analysis of the latent-space properties of
CVAEs, a quantitative evaluation of the quality of our generated samples, and their
potential to increase diversity in classes with few examples. Notably, this section also
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reports on experiments comparing the performance of our approach on long-tailed
classification with commonly used state-of-the-art methods and evaluations of our
anonymization technique using real-world medical datasets. In Section 5, we discuss
the broader impact and limitations of our work. Finally, Section 6 provides a brief
summary.

Figure 1: Overview of the proposed methods for long-tailed classification and data
anonymization using Conditional Variational Autoencoders (CVAEs). (1) Features
Z are extracted from the input data X using a pre-trained feature extractor. (2)
The extracted features zi, along with their corresponding labels yi, are used to train
a CVAE. (3) During the generation phase, new samples (aj, yj) are generated by
sampling lj ∼ N (0, σ2I) in the latent space of the CVAE and decoding it conditioned
on label yj. These generated samples form dataset A, that can be combined with
the original data Z for long-tailed classification (a) or used independently for data
anonymization (b).
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2 Background and Related Work

2.1 Foundation Models

2.1.1 Definition

The term ‘foundation model’ was coined in a report by the Stanford Center for
Research on Foundation Models, which defines it as “any model that is trained
on broad data (generally using self-supervision at scale) that can be adapted (e.g.,
fine-tuned) to a wide range of downstream tasks” (Bommasani et al., 2022). Their
significance can further be characterized by a trend towards homogenization: their
consolidation in numerous application domains. For example, Bommasani et al.
(2022) argue that training language models in a self-supervised fashion became the
norm in the field of Natural Language Processing, rather than just a sub-discipline,
after the appearance of foundation models, such as BERT (Devlin et al., 2019), GPT-
2 (Radford et al., 2019), RoBERTa (Liu et al., 2019a), or T5 (Raffel et al., 2019)
in 2019. They describe the beginnings of similar homogenization trends for other
domains including vision, tabular data, computational biology, and reinforcement
learning.

Foundation models do not only homogenize the training methods, such as the combi-
nation of language models and self-supervised learning at scale, but also the models
themselves. For example, GPT-3 represents a standardized approach to building
highly capable language models, demonstrating how the architecture and scale can
be uniformly applied across various tasks within a domain. This stands in contrast to
earlier paradigms in deep learning, which homogenized specific architectures such as
Convolutional Neural Networks (CNNs), and in machine learning, which standardized
learning algorithms such as logistic regression (Bommasani et al., 2022).

Another defining feature of foundation models is the emergence of functionalities
that the model has not been explicitly trained to exhibit. An example of emergence
is in-context learning, the ability of language models such as GPT-3 (Brown et al.,
2020) to be adapted via natural language prompting, enabling them to learn from
context by analogy (Bommasani et al., 2022).

Finally, foundation models can be characterized on a technical level. At this level,
Bommasani et al. (2022) highlight the importance of both transfer learning and
scale. Transfer learning in the context of foundation models refers to pre-training
on a surrogate task (e.g., language modeling, where the task is to predict the next
word in a sentence) and subsequent adaptation for a specific downstream task (e.g.,
text classification, sentiment analysis, or chatbots fine-tuned using Reinforcement
Learning from Human Feedback (RLHF)). The scale of foundation models, such
as GPT-3 with its 175 billion parameters, is made possible by improvements in
computer hardware, the development of the Transformer architecture (Vaswani et al.,
2017), and an abundance of training data (Bommasani et al., 2022). The resulting
capacity of foundation models to learn from large quantities of often unlabeled data
and the potential to integrate information from multiple modalities (Radford et al.,
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2021; Li et al., 2022; Aghajanyan et al., 2022; Girdhar et al., 2023) leads to a wide
range of potential application domains, including healthcare and biomedicine (Zhou
et al., 2023; Moor et al., 2023), law, and education (Bommasani et al., 2022). The
rest of this subsection describes developments leading to foundation-model-level
visual features that we use in this work.

2.1.2 Vision Architectures

Building on the mechanism of self-attention (Bahdanau et al., 2016), the Transformer
architecture (Vaswani et al., 2017) enables more flexible and general computation
than traditional Multi-Layer Perceptrons (MLPs) and CNNs. This flexibility allows
for increased expressivity and better scaling with large amounts of training data
(Bommasani et al., 2022). Unlike task-specialized architectures, the Transformer
trades off task-specific optimizations for a more general approach, making it suitable
for a wide range of applications. Furthermore, the Transformer architecture supports
greater parallelization compared to previous sequence model architectures, such as
Recurrent Neural Networks (RNNs), leveraging advances in AI accelerators (Shahid
and Mushtaq, 2020; Chen et al., 2020), and enabling models of unprecedented scale.

Dosovitskiy et al. (2020) adapted the Transformer architecture for computer vision,
resulting in the Vision Transformer (ViT), which was trained on a supervised image
classification task. The ViT represents a significant innovation by employing a
Transformer-only architecture for computer vision, which can outperform other
architectures when trained on large datasets. Figure 2 illustrates the architecture of
the ViT.

Figure 2: The architecture of the Vision Transformer. The image is divided into
patches, which are linearly embedded and combined with position embeddings. These
embeddings are processed by a Transformer Encoder comprising multiple layers of
multi-head attention and MLP blocks with normalization. The output is then used
for classification tasks.This figure is reproduced from Dosovitskiy et al. (2020)
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A notable feature of the ViT is its ability to flexibly attend to far-away pixels from
the first layer, unlike CNNs where receptive fields are predefined by the architecture.
This flexibility is illustrated in Figure 3, which shows the average attention distance
across the various layers of the ViT. This illustrates the weaker inductive bias and
therefore increased expressivity of the Transformer architecture compared to CNNs.

Figure 3: Mean attention distance by attention heads in ViT at different layers. This
figure is reproduced from Dosovitskiy et al. (2020)

Contrastive Language-Image Pretraining (CLIP) is one example of a foundation-
model architecture that leverages the ViT’s computational efficiency with a large
pre-training dataset (Radford et al., 2021). As Figure 4 shows, CLIP combines
an image encoder, such as a ViT, with a text encoder (also a Transformer) to
produce a multimodal embedding space, enabling text-guided visual representation
learning. Because CLIP is trained with a contrastive loss that minimizes the cosine
distances between pairs of image- and text-embeddings, it can be trained with weakly
supervised datasets of image-text pairs. This allows for training the model with
larger and potentially cheaper datasets in comparison to high-quality manually-
labeled datasets, such as ImageNet (Deng et al., 2009a) or MS-COCO (Lin et al.,
2015). As a frame of reference, while ImageNet and MS-COCO contain around 14
million and 328 thousand images, respectively, CLIP has been trained on 400 million
(Radford et al., 2021), and OpenCLIP (Cherti et al., 2022) models on up to around 2
billion (Schuhmann et al., 2022) image-text pairs scraped from the internet. Models
pretrained with CLIP can learn high-quality, robust, and general representations
that are useful across a wide range of computer vision tasks and domains. In
addition to its representational capacity, the CLIP architecture supports zero-shot
image classification by calculating distances in the embedding space between an
image-embedding and text-embeddings of arbitrary concepts. It is also an important
building block of the text-conditional image generation system DALL-E (Ramesh
et al., 2022). Despite these strengths, CLIP models struggle with more abstract
tasks, such as counting, or with generalizing classification performance to image
domains that are not represented in the training set (Radford et al., 2021; Cherti
et al., 2022).
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Figure 4: Illustration of the joint embedding space of CLIP, which combines text
and image encoders to enable text-guided visual representation learning. This figure
is reproduced from Radford et al. (2021)

While CLIP can be efficiently trained on very large datasets, it still relies on reasonably
accurate text descriptions to guide the learning of visual features. In contrast, self-
supervised training of Transformers has become the norm in language models such
as BERT (Devlin et al., 2019). Given the success of self-supervised pre-training in
NLP, Caron et al. (2021) extended this idea to Vision Transformers (ViTs). However,
the visual domain lacks the inherent sequential structure of language that forms the
basis for many common pre-training tasks.

To overcome the challenges posed by the absence of sequential structure in the visual
domain, DINO addresses reframes knowledge distillation (Hinton et al., 2015) as a
self-supervised pre-training task. As illustrated in Figure 5, various augmentations
of the inputs are presented to student and teacher networks. The difference in
output features is then computed using a loss function, such as cross-entropy loss.
Gradients are propagated back through the student network, and the parameters
of the teacher network are updated via an exponentially moving average of the
student’s network parameters. Oquab et al. (2023) trained DINO models using a
larger, curated dataset of 142 million images. The resulting DINOv2 features perform
comparably to weakly-supervised methods like CLIP across a variety of tasks and
domains, and do not require fine-tuning. Moreover, they learn abstract concepts
about parts of objects without explicit training, exhibiting an emergent property
that is characteristic of foundation models.
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Figure 5: The DINO self-supervised learning framework. This figure is reproduced
from Caron et al. (2021)

In summary, self-supervised and weakly supervised pre-training techniques have
resulted in powerful foundation models, such as CLIP and DINOv2, which produce
highly semantic, robust, and versatile embeddings. These embeddings can be used
directly for various downstream tasks without the need for fine-tuning, providing
grounds for further exploration on how to best utilize them in diverse applications.
In this work, we focus on the applications of long-tailed learning, and privacy,
particularly data anonymization within the field of privacy.

2.2 Long-Tailed Learning

Long-tailed learning is a sub-discipline within the field of Machine Learning that is
concerned with training datasets that follow a long-tailed class distribution (Zhang
et al., 2023). This definition lets us relate long-tailed learning to other common
disciplines within Machine Learning. As Figure 6 illustrates, a dataset with a long
tail implies a heavy class imbalance, with a few classes containing most of the
training samples and most classes consisting of only a few samples. Thus, algorithms
dealing with such datasets need to not only deal with bias due to class imbalance
but also with problems related to low data availability for most classes. The former
problem lets us categorize long-tailed learning as a sub-task of imbalanced learning
(He and Garcia, 2009; Wang and Yao, 2012), because a long-tailed distribution is a
specific type of imbalanced distribution. The latter problem of limited number of
samples for most classes implies that few-shot learning (Wang et al., 2020) must be
adequately addressed for an algorithm to successfully learn from a long-tailed dataset.
Another perspective from which to view long-tailed learning is out-of-distribution
generalization (Liu et al., 2021; Jamal et al., 2020). Here, an algorithm needs
to generalize beyond the long-tailed training distribution to balanced, differently
imbalanced, or unknown test distributions (Zhang et al., 2022a). Long-tailed learning
is relevant for many tasks in computer vision, such as multi-class and/or multi-label
classification (Liu et al., 2019b; Wu et al., 2020), object detection (Lin et al., 2017),
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and instance segmentation (Zang et al., 2021). In this work, we focus on multi-class,
single-label classification, as it provides the most straightforward way to evaluate the
approach we present. The following paragraphs provide an overview of the relevant
literature in long-tailed learning, offering a basis for the reader to contextualize our
proposed approach.

Figure 6: Class distribution of the iNaturalist species classification dataset,
illustrating the long-tailed nature of the dataset. The x-axis represents the sorted
species, and the y-axis represents the number of training images per species on a
logarithmic scale. A few species have a large number of training images, while most
species have significantly fewer images. This figure is reproduced from Van Horn
et al. (2018).

2.2.1 Cost-Sensitive Learning

The commonly used cross-entropy loss is heavily influenced by class imbalance in
training sets, leading to biased classifiers. Several methods have been proposed to
solve this issue by adapting and re-balancing the loss values for different classes. For
example, focal loss (Lin et al., 2017) lowers or increases the loss for well-classified
or less well-classified samples, respectively. LDAM loss (Cao et al., 2019) enforces
larger margins for tail classes than for head classes. Class-balanced losses (Cui et al.,
2019) reweight samples inversely to the effective number of samples in their classes.
Balanced softmax loss (Ren et al., 2020) is derived from explicitly modeling test-time
distribution shift and weights logits with label frequencies. Equalization loss (Tan
et al., 2020) is based on the idea that in conventional cross-entropy loss, rare classes
receive discouraging gradients from frequent classes more often than the other way
around. It therefore ignores discouraging gradients for rare classes from samples of
frequent classes. These techniques are both computationally light and often perform
well on benchmark datasets. However, they do not directly address the problem that
information about the tail classes is missing in long-tailed datasets. To mitigate this
drawback, they can in principle be combined with data augmentation techniques,
such as our approach.
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2.2.2 Re-Sampling

A very straightforward method to reduce classifier bias is random over- or under-
sampling of head classes or tail classes, respectively. When training a deep neural
network instead of only a classifier, oversampling can in some cases be beneficial
(Buda et al., 2018), but can also lead to overfitting on tail classes and hinder the
learning of generalizable features (Zhou et al., 2020; Kang et al., 2019). Instead of
re-sampling from tail classes until class balance is achieved, adjusting the sampling
frequency via square-root sampling or progressively balanced sampling (Kang et al.,
2019), or via monitoring model training (Feng et al., 2021), can mitigate these
problems. Also meta-learning has been employed to this end (Ren et al., 2020; Zang
et al., 2021), but requires validation sets. In our setting, with no validation set and
frozen features, training a classifier by simply oversampling from tail classes until
the classes are balanced can achieve competitive results (Kang et al., 2019). Yet, the
problem of missing diversity in tail classes remains.

2.2.3 Data Augmentation and Generative Modeling

Data augmentation and generation techniques transform or generate training data to
increase the diversity and information in tail classes. Here, it is useful to differentiate
between techniques that operate at the level of the input (i.e. images) and the
level of the features. At the input level, a popular method is Mixup (Zhang et al.,
2018), which can be beneficial for learning representations, but harmful to the
performance of classifiers in long-tailed settings (Zhong et al., 2021). While techniques
of augmentation (Kim et al., 2020; Chou et al., 2020) and generation (Dablain et al.,
2022; Fajardo et al., 2021) at the input level exist, the complexity in the pixel space
is significantly higher compared to the feature space. Furthermore, feature-level
augmentations are more relevant to our setting of frozen feature encoders.

In the feature space, head classes and tail classes differ in terms of distribution and
intra-class diversity (Liu et al., 2020). A common group of augmentations transfers
information from head classes to tail classes, often by estimating the variation of
head class features (Yin et al., 2019; Liu et al., 2020; Wang et al., 2021), or with
class activation maps (Chu et al., 2020). However, they are designed for deep neural
network training and involve learning features, not for training a classifier on features
of a frozen encoder. FASA (Zang et al., 2021) and MetaSaug (Li et al., 2021) both
generate new data points in feature space based on class-wise feature statistics, but
rely on the presence of validation sets.

In contrast, the traditional re-sampling-based methods SMOTE (Chawla et al., 2002)
and ADASYN (He et al., 2008), as well as the more recent adaptation of Mixup,
Remix (Chou et al., 2020), can be directly applied to the embeddings of frozen
feature encoders without a validation set. In contrast to our method, they do not
explicitly model the class distributions with conditional generative models. Instead,
SMOTE (Synthetic Minority Over-sampling Technique) generates synthetic samples
for minority classes by interpolating between existing minority samples. This helps
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to balance the dataset and improve the performance of classifiers on imbalanced data.
ADASYN (Adaptive Synthetic Sampling) is an extension of SMOTE that focuses on
generating synthetic samples for minority class instances that are harder to learn. It
adaptively shifts the decision boundary toward the difficult samples, improving the
classifier’s performance on these challenging cases. Remix is a Mixup-based (Zhang
et al., 2018) data augmentation method that combines samples from different classes
to create new training samples. It sets the mixing factors independently for samples
and labels, allowing to set higher weights to minority classes. A method similar to
ours is the delta-encoder (Schwartz et al., 2018), which trains the bottleneck of an
autoencoder to represent the difference between two examples from the same class. In
contrast, we use class labels to condition the decoder, use a Variational Autoencoder,
and focus on long-tailed classification, rather than few-shot recognition.

2.3 Privacy

Privacy in machine learning is a paramount concern, especially when dealing with
sensitive data such as medical records, financial transactions, or personal identifiers.
The increasing capabilities of deep learning models have heightened these concerns as
they can inadvertently memorize and reveal sensitive information. This vulnerability
has led to the development of various attack vectors, such as membership inference
attacks (Shokri et al., 2017), where an adversary can infer whether a given sample
was part of the model’s training data. Protecting against such privacy breaches is
crucial for maintaining user trust and complying with data protection regulations,
such as the EU’s General Data Protection Regulation, and the Health Insurance
Portability and Accountability Act in the United States.

Several strategies have been proposed to address privacy concerns in machine learning.
Differential privacy involves adding noise to the data or the learning process to ensure
that the presence or absence of any single data point does not significantly affect the
outcome, providing a mathematical guarantee of privacy (Dwork, 2006). However, this
technique can degrade model performance, and its applicability varies across different
model architectures (Abadi et al., 2016; Ziller et al., 2021). Federated learning allows
models to be trained across multiple decentralized devices holding local data samples,
without exchanging the data itself, significantly reducing the risk of data leakage
but introducing complexity in implementation and management (Kairouz et al.,
2021). Homomorphic encryption allows computations to be performed on encrypted
data, producing encrypted results that can only be decrypted by the data owner
(Acar et al., 2018). While it offers strong privacy guarantees, it is computationally
intensive and currently impractical for large-scale machine learning tasks (Lee et al.,
2022). Generative modeling offers another avenue for privacy-preserving machine
learning, with approaches based on Generative Adversarial Networks (GANs) and
autoencoders being particularly prominent in recent years.

Generative Adversarial Networks (GANs) consist of two networks, a generator and a
discriminator, that are trained together. The generator creates synthetic data, while
the discriminator attempts to distinguish between real and synthetic data (Goodfellow
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et al., 2014). This adversarial process leads to the generation of high-quality synthetic
data that can effectively anonymize the original dataset. GANs have been used to
generate synthetic datasets that protect privacy in various applications, including
medical imaging and healthcare (Beaulieu-Jones et al., 2019; Choi et al., 2017),
face anonymization (Hukkel̊as et al., 2019; Wu et al., 2019), and privacy-preserving
auto-driving (Xiong et al., 2019). Differentially private GAN models have also been
proposed (Xie et al., 2018; Jordon et al., 2018).

Autoencoders are encoder-decoder architectures that learn discriminative features
by first compressing the input into a lower-dimensional latent space and then recon-
structing it. Variants of the autoencoder have been employed in the anonymization of
faces (Nousi et al., 2020), speakers (Chouchane et al., 2023; Shamsabadi et al., 2022;
Espinoza-Cuadros et al., 2020), text (Weggenmann et al., 2022), and sensor data
(Malekzadeh et al., 2019; Hajihassnai et al., 2021; Malekzadeh et al., 2018). Some of
these works introduce differentially private versions of autoencoders (Chouchane et al.,
2023; Shamsabadi et al., 2022; Weggenmann et al., 2022). Of particular relevance
to our work are Conditional Variational Autoencoders (CVAEs) (Sohn et al., 2015),
which extend traditional VAEs (Kingma and Welling, 2013) by conditioning on
additional information, such as class labels, during the training and generation
processes. Hajihassnai et al. (2021) conditioned CVAEs on private attributes of
sensor data and modified these attributes during generation. They additionally
employed adversarial training to make the latent representation invariant to the
private attributes. In contrast, we condition the CVAE on class labels and train it
without adversarial objectives.
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3 Methods

3.1 Overview and Notation

As argued in section 2.1, the semantic richness of foundation model embeddings
makes them suitable features for various downstream tasks without the necessity to
fine-tune the feature encoder. Consider a training set X = {xi, yi}, i ∈ {1, . . . , n} of
images and their labels, with n =

∑C
j=1 nj training samples and C classes. Let f be

the frozen feature encoder of a vision foundation model. Then zi = f(xi) denotes the
embedding of image xi in the feature space of f , and Z = {zi, yi}, i ∈ {1, . . . , n} is
the set of all embeddings and their respective labels of the training set X . Let g be a
classifier with parameters θ. Training g on the embedding training set Z allows the
classifier in combination with the feature encoder to predict the label of any given
image xi, such that the prediction ŷi = g(f(xi)).

As illustrated in Figure 1, our approach comprises three main stages: feature
extraction, CVAE training, and data augmentation.

1. Feature Extraction: Given a training set X , we use the frozen feature encoder
to extract embeddings zi, resulting in the embedding set Z.

2. CVAE Training: We train a CVAE on the embedding set Z. The CVAE
consists of an encoder and a decoder. The encoder probabilistically maps the
embeddings zi, conditioned on their labels yi, to the CVAE’s latent space,
resulting in latent vectors li. The decoder reconstructs the embeddings from
the latent space, also conditioned on the labels.

3. Data Augmentation: This stage has two primary applications: (a) long-tailed
learning and (b) data anonymization.

(a) Long-Tailed Learning: We generate new embeddings A by sampling
from N (0, σ2I) in the latent space of the trained CVAE. These gener-
ated embeddings, combined with the original embeddings Z, form an
augmented, rebalanced training set. This augmented set is used to train a
classifier g. The generated embeddings aim to increase intra-class diversity,
particularly for underrepresented classes in long-tailed datasets.

(b) Data Anonymization: Alternatively, we can use the CVAE to generate
anonymized embeddings A by sampling from the latent space, similarly
to (a). These embeddings A can then be used to train a classifier g and
are different enough from Z to preserve the privacy of the original data.

The entire process is depicted in Figure 1, where each stage is visualized, demon-
strating the flow from raw images to augmented embeddings and the final classifier
training. In summary, the proposed method leverages the semantic richness of
foundation model embeddings and CVAE-based generative augmentation to address
both long-tailed learning and data anonymization. The remaining parts of this
section describe the method in more detail.
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3.2 Conditioning Variational Autoencoders on Class Labels

Because the embeddings of foundation models are rich in semantic information and
at the same time lower-dimensional than most images, training generative models
on them is more efficient than on the images themselves. Therefore, we generate
additional embeddings in the feature space. To this end, we train a Conditional
Variational Autoencoder (CVAE) on the embedding dataset Z of a given training
dataset X . We first describe the formulation and training of the CVAE, before
detailing its use for long-tailed classification and privacy-preserving classification in
the following subsections.

Similarly to the conventional Variational Autoencoder (VAE) (Kingma and Welling,
2013), the CVAE takes as input a training sample and probabilistically maps
it to a latent space following a prior which is usually a multivariate isotropic
normal distribution. It then attempts to reconstruct the sample from the latent
representation. The stochastic mapping into the latent space encourages the VAE to
learn a continuous latent space without large gaps. Additionally, the predetermined
prior distribution is a well-defined distribution that can be used for sampling from
the latent space after training. In this work, we furthermore condition the VAE
(Sohn et al., 2015) on the class labels of the training samples in order to generate
samples of arbitrary class membership.

We adapt the variational lower bound from Sohn et al. (2015) to our scenario, such
that

log pϕ(z | y) ≥ −DKL(qϕ(l | y, z) ∥ pϕ(l | y)) + Eqϕ(l|y,z)[log pϕ(z | y, l)], (1)

where z and y are variables representing the embedding of an image and its class
label, respectively, and l is the corresponding latent variable. Furthermore, qϕ(l | y, z)
can be interpreted as the encoder, pϕ(l | y) as the prior, and pϕ(z | y, l) as the
decoder. The prior of the latent variable l can furthermore be made statistically
independent of the labels y, such that pϕ(l | y) = pϕ(l) (Sohn et al., 2015).

We parameterize the model with deep neural networks with parameters ϕ, that
are optimized via mini-batch gradient descent. Because we train the CVAE end-
to-end, we use ϕ to denote all parameters of the model, and do not differentiate
between the parameters of the encoder and decoder. This leads to the specification
qϕ(l | y, z) = N (l;µ(y, z;ϕ),Σ(y, z;ϕ)), where µ and Σ are functions learned from
data. Because we select the prior to be the multivariate standard normal distribution
pϕ(l) = N (0, I), the KL-Divergence in Equation 1 can be computed in closed
form. To make the sampling process differentiable, we use the reparameterization
trick (Kingma and Welling, 2013). We approximate the expectation in Equation 1
with a Mean Squared Error (MSE) loss and add a scaling factor β to weight the
reconstruction and distributional alignment. This results in the following final form
of the loss we use to train the CVAEs:

LCV AE(y, z;ϕ) = MSE(z, z∗)− β ·KL(qϕ(l | y, z) ∥ pϕ(l)), (2)
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where z∗ denotes the reconstruction of z.

3.3 CVAEs for Long-Tailed Classification

Although most deep neural networks are trained end-to-end for specific tasks, they
notoriously struggle with imbalanced and especially long-tailed training data. This
usually takes the form of bias towards head classes and subpar performance on
tail classes. One response to this challenge has been to separately train the feature
encoder and the classifier (Kang et al., 2019, 2020). Both networks are usually trained
on X , but with different objectives for representation learning and the down-stream
task. We take this idea one step further and use a pre-trained foundation model as a
frozen feature encoder. Foundation models have been trained to produce powerful
and versatile features to be used in various settings without fine-tuning (see section
2.1). Here, we explore a way to leverage their embedding spaces using a CVAE in a
long-tailed setting.

To more formally introduce the problem of long-tailed classification, consider the
training set of images X , as defined in section 3.1. In a long-tailed setting, the
classes are sorted by cardinality in decreasing order, such that n1 ≥ n2 ≥ ... ≥ nC .
It follows from the long-tailed distribution of classes that n1 ≫ nC . Although this
definition does not exclusively describe long-tailed class distributions, it is common
in the literature (Zhang et al., 2023; Kang et al., 2019) and highlights the important
property of class imbalance. Like Cao et al. (2019), we define the imbalance ratio ρ
as the ratio of the cardinalities of the most frequent class to the least frequent class,
ρ = n1/nC .

To approach long-tailed classification, we first train a CVAE on the dataset Z,
consisting of foundation model embeddings of the long-tailed dataset of images and
labels, X . We then generate more embeddings with the CVAE in order to counter the
class imbalance. Due to the probabilistic reconstruction and the KL-divergence term
in Equation 2, the latent space of the CVAE is expected to have a smooth multivariate
standard normal distribution, making sampling from it a straight-forward process.
It is lower-dimensional than the foundation model’s embeddings and therefore, a
successful encoding by the CVAE should focus on the specific manifold in the
foundation model’s embedding space on which the training data lie, encoding its
most defining features. By providing the labels during training, we not only intend
to generate embeddings from arbitrary classes. Importantly, we also aim to create
a latent space that encodes the typical variation within classes in the training set.
Intuitively, the model does not need to learn to separate the classes in its latent space.
Instead, it only needs to learn to represent the variation within them, because the
class-specific information is given by the label. We hope that thereby, the model can
extrapolate from variation of head classes (i.e. classes with high cardinality, such as
the class with cardinality n1) to what more variation in tail classes (i.e. classes with
low cardinality, such as the class with cardinality nC) could look like. We explore
the validity of these assumptions in Sections 4.2 and 4.4.



3 METHODS 16

Because the trained CVAE allows us to generate any number of embeddings for
arbitrary classes, numerous possibilities of using them together with Z to train
classifier g exist. We look at this problem from the perspective of combining both
resampling and data augmentation, because both are common methods used when
training neural networks, particularly on long-tailed datasets (see section 2.2).

During classifier training, the usage of a generated sample can be viewed as a type
of data augmentation, where the sample to be augmented is simply replaced by a
generated sample of the same class. Specifically, in order to rebalance the classes in
Z, we sample each member of the training set zc ∈ Z of class c with probability

Psample(zc) =
1

C · nc

. (3)

Psample(zc) is inversely related to the number of samples in its class and ensures
sampling the same number of samples for each class, in expectation.

Additionally, we replace a sample with a generated one with the probability

Paugment(zc) = S

(
1

nc

)
, (4)

where

S(x) = max

(
Pmin,min

(
x− xmin

xmax − xmin

, Pmax

))
(5)

scales its argument to values between 0 and 1, and between a chosen minimum
Pmin and maximum Pmax. This increases the diversity of samples from tail classes
and avoids overfitting, provided the generative model has successfully learned to
generalize from sample diversity in head classes to tail classes.

Algorithm 1 describes this process of resampling and augmentation to create a
mini-batch with generated samples. When sampling from the CVAE’s latent space,
distributions other than the normal distribution are in principle possible. However,
since we used the standard normal distribution as a prior when training the CVAE,
it has learned to encode inputs close to mean zero and variance one. Therefore,
we sample only from normal distributions with mean zero. However, we leave the
variance σ2 as a parameter, in order to control the diversity of the generations.
The effects of different variances are explored in Sections 4.3, 4.4, and 4.5.1. Note
that sampling from the CVAE’s latent space could further be adjusted based on
sample or class statistics. Moreover, more involved functions to assign sampling and
augmentation probabilities could be useful, such as functions that adapt based on
training statistics. This, however, is beyond the scope of this work.
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Algorithm 1 Mini-Batch Sampling with Generative Rebalancing

1: Input: Dataset Z, Mini-batch size M , CVAE decoder CVAE, Variance σ2

2: Output: Mini-batch B
3: B ← ∅ ▷ initialize mini-batch
4: for each (z, y) ∈ Z do
5: Psample(z, y)← 1

C∗ny
▷ assign sampling probability based on 3

6: Paugment(z, y)← S
(

1
nc

)
▷ assign augmentation probability based on 4, 5

7: end for
8: while |B| < M do
9: Sample (z, y) from Z according to Psample ▷ sample according to Psample

10: a ∼ Bernoulli(Paugment(z, y)) ▷ determine if augmentation occurs
11: if a = 1 then
12: l ∼ N (0, σ2I) ▷ sample from normal distribution
13: z∗ ← CVAE(l, y) ▷ generate z∗ using CVAE with label y
14: z ← z∗ ▷ set z to generated sample z∗

15: end if
16: B ← B ∪ {(z, y)} ▷ add sample to mini-batch
17: end while
18: return B ▷ return the mini-batch

Using the CVAE’s decoder to generate new samples can be performed either online
(i.e. during training), or offline, where samples are generated and stored before
training the classifier. On the one hand, offline generation can in principle make
better use of parallel computation by generating large batches of samples at a time,
but has higher memory requirements, because the generated samples need to be
stored until the classifier has been trained. Online generation, on the other hand,
generates samples in memory on the fly, to be discarded after use. This reduces total
memory requirements and a potential overhead in disk access time, if the generated
samples are saved to disk during offline generation. Importantly, online generation is
more flexible with respect to the number of samples it generates. This is helpful in
cases where the exact number of samples to be generated for each class is unknown
before training, such as can be the case during online-, or lifelong learning. For
example, if the relative class sizes are unknown before training, they and therefore
also the number of samples to be generated can be estimated based on mini-batch
statistics. Similarly, if the total number of training epochs is not known before
training, online generation guarantees to generate enough samples. We use online
generation in our implementation and experiments.

3.4 CVAEs for Data Anonymization

In this subsection, we propose two methods for using CVAEs to anonymize datasets.
The first method generates a persistent anonymized replica of the data, while the
second method dynamically creates new data without the need for persistent storage.
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Our initial method for anonymizing datasets involves producing and storing synthetic
feature vectors that maintain the original dataset’s size and class distribution. This
anonymization method, outlined in Algorithm 2, utilizes a pre-trained CVAE decoder,
a specified number N of synthetic samples to be created, and a categorical distribution
K that mirrors the class probabilities of the original dataset. This ensures that the
synthetic dataset retains class proportions similar to the original dataset. When
sampling from the CVAE’s latent space, we use a standard normal distribution here,
in contrast to the application for long-tailed learning. As the data anonymization
method aspires to retain the statistical properties of the original dataset, it is sensible
to sample from the same distribution that was used as a prior distribution when
training the CVAE.

Algorithm 2 Anonymize Dataset with CVAE

1: Input: CVAE decoder CVAE, class distribution K, number of samples N
2: Output: Anonymized dataset A
3: A ← ∅ ▷ initialize anonymized dataset
4: while |A| < N do
5: y ∼ K ▷ sample class label from C
6: l ∼ N (0, I) ▷ sample from standard normal distribution
7: z ← CVAE(l, y) ▷ generate data point
8: A ← A∪ {(z, y)} ▷ add generated sample to dataset
9: end while
10: return A ▷ return the anonymized dataset

Our second anonymization strategy eliminates the need for persistent datasets by
using the pre-trained CVAE decoder to generate new data dynamically during task-
specific model training. This method, detailed in Algorithm 3, avoids storing or
transmitting large volumes of sensitive data and allows sharing the CVAE decoder to
reproduce the training data distribution without direct data sharing. In contexts like
federated learning, this enhances security. While federated learning trains models on
private data without sharing it, model weights can still reveal data characteristics.
Our iterative approach generates anonymized features directly, adding security and
reducing risks associated with traditional data-sharing methods.

Algorithm 3 Online Anonymization with CVAE

1: Input: CVAE decoder CVAE, class distribution K, task-specific model Model
2: Output: Trained model Model
3: while training not converged do
4: y ∼ K ▷ sample class label from C
5: l ∼ N (0, I) ▷ sample from standard normal distribution
6: z ← CVAE(l, y) ▷ generate data point
7: Model.train step(z, y) ▷ train model on generated data point
8: end while
9: return Model ▷ return the trained model
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4 Experiments

4.1 General Setup and Datasets

The experiments focused on training CVAEs using 768-dimensional ViT-B DINOv2
embeddings on various image datasets. We explored the CIFAR100 and CIFAR10
datasets (Krizhevsky and Hinton, 2009) and their long-tailed versions, highlighting
their class distributions, and included datasets from MedMNISTv2 (Yang et al.,
2023) to provide a comprehensive evaluation of our approach. We trained all CVAEs
for 500 epochs with a learning rate of 0.001, utilizing the Adam optimizer. The
latent dimension was set to 100, the batch size was 256, and the KL-Divergence
part of the loss was weighted with β = 0.01, unless otherwise specified. These
values led to stable training of CVAEs in preliminary experimentations and serve as
grounds for fair comparison across datasets, sampling variances, and different sizes
of CVAEs. We concatenated the one-hot encoded labels to the inputs for both the
encoder and decoder. To generate samples, we generally sampled latent vectors from
a multivariate standard normal distribution N (0, I), unless otherwise specified. We
used the PyTorch library (Paszke et al., 2019) to implement all neural networks and
ran all experiments on an NVIDIA A100 GPU.

We used the CIFAR datasets to evaluate the properties of CVAEs’ latent spaces and
our approach to long-tailed learning. CIFAR100 consists of 100 classes with 500
training images and 100 test images per class, and CIFAR10 comprises 10 classes
with 5000 training images and 1000 testing images per class. For the long-tailed
versions, we imbalanced the training datasets with an exponentially decaying sample
size across classes following Cao et al. (2019). We generally used an imbalance ratio
of ρ = 100, resulting in the largest class having 100 times more samples than the
smallest class. For CIFAR100 LT, the largest class contains 500 images, and the
smallest class has only 5 images. In CIFAR10 LT, the largest class has 5000 images,
while the smallest has 50 images. Figure 7 provides a visual representation of these
class distributions.
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Figure 7: Class distribution in CIFAR10 LT and CIFAR100 LT with imbalance ratio
ρ = 100.

In addition to the CIFAR datasets, we used the 2D multiclass classification datasets
from MedMNISTv2 to evaluate our anonymization approach. These datasets include
diverse medical images, each with unique challenges due to varying sizes and
complexities. The use of MedMNISTv2 is particularly significant because it tests
the CVAEs’ ability to generate high-quality, privacy-preserving data in a sensitive
domain. Ensuring data privacy in the medical field is crucial, and these datasets
allowed us to assess how well the CVAEs can anonymize data without compromising
its utility. By incorporating MedMNISTv2, we aim to demonstrate the robustness
and versatility of our approach across different types of data and application scenarios.
Table 1 gives an overview of the MedMNISTv2 datasets.

Dataset Data Modality # Classes # Samples

PathMNIST Colon Pathology 9 107,180

DermaMNIST Dermatoscope 7 10,015

OCTMNIST Retinal OCT 4 109,309

BloodMNIST Blood Cell Microscope 8 17,092

TissueMNIST Kidney Cortex Microscope 8 236,386

OrganAMNIST Abdominal CT 11 58,830

OrganCMNIST Abdominal CT 11 23,583

OrganSMNIST Abdominal CT 11 25,211

Table 1: MedMNISTv2 datasets used for evaluation (Yang et al., 2023).
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4.2 Distributions in the Latent Space of VAE and CVAE

In Section 3.3, we argued that, due to the combined effects of the KL-divergence loss
and the conditioning on the class labels, the CVAE’s latent space should encode intra-
class variation independently of the class labels. The CVAE receives all information
relevant to class separation as input to both its encoder and its decoder via the
labels. Moreover, the KL-Divergence part of its loss function discourages the CVAE
to encode samples in ways that deviate from a standard normal distribution. This
should result in a latent space that predominantly encodes variation between samples
within classes. To qualitatively test this assumption, we first trained both a CVAE
and a VAE with identical hyperparameters, β = 0.1 and 2-dimensional latent spaces
on DINOv2 embeddings of CIFAR10 LT. The encodings of the CIFAR-10 test set are
visualized in Figure 8. While the VAE has learned to separate the classes, there is
no such obvious distinction in the CVAE’s latent space, where samples of all classes
seem to be approximately normally distributed around mean zero and a similar
variance for all classes.

Figure 8: Visualization of CIFAR-10 test set in the latent space of VAE and CVAE.

For quantitative evaluation, we trained a pair consisting of a CVAE and a VAE
as described above, and then trained a two-layer dense classifier for each of the
generative models on the encoded latents of a random subset comprising 80% of
the CIFAR-10 test set. We used the remaining 20% to evaluate the accuracy of the
classifier. We repeated the experiment five times and report the average accuracies
and reconstruction errors in Table 2. As expected, the classes in the latent space of
the VAE are more separable compared to the those in the latent space of the CVAE.
However, the CVAE’s reconstruction error is generally lower than that of the VAE.
This suggests that providing the label during training allows the CVAE to learn
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more about the individual and intra-class variation of the training samples, rather
than the inter-class variation.

Accuracy MSE

CVAE VAE CVAE VAE

Mean 0.13 0.72 10.70 12.56

Std. Dev. 0.02 0.07 0.10 0.11

Table 2: Separability and reconstruction error in latent space of CVAEs and VAEs.
The Accuracy columns show the mean test set accuracy and standard deviation of a
classifier trained on latent representations of either a CVAE or a VAE. The Mean
Squared error (MSE) columns show the test set reconstruction errors. The results are
averaged over 5 runs. Each run consists of training generative models and classifiers.

We further tested with a Kolmogorov-Smirnov test whether the class-wise encoded
latents of the CIFAR-10 test set are distributed according to a standard normal
distribution for both CVAE and VAE. The results, shown in Table 3, are all highly
significant, indicating that neither generative model encodes the test classes according
to a standard normal distribution. This can be explained by the relatively low focus
on the KL-divergence loss during training (β = 0.1) and the high power of the tests
due to a sample size of 1000 for each class. Importantly, the test statistics for the
CVAE are consistently lower than those for the VAE, suggesting that conditioning
on the class labels allows the CVAE to more closely approximate a standard normal
distribution when encoding its inputs.

KS Statistic

label CVAE VAE

0 0.14* / 0.14* 0.24* / 0.61*

1 0.15* / 0.15* 0.59* / 0.42*

2 0.088* / 0.15* 0.28* / 0.34*

3 0.14* / 0.16* 0.55* / 0.45*

4 0.17* / 0.14* 0.69* / 0.56*

KS Statistic

label CVAE VAE

5 0.17* / 0.13* 0.45* / 0.52*

6 0.2* / 0.16* 0.48* / 0.43*

7 0.13* / 0.15* 0.47* / 0.64*

8 0.3* / 0.14* 0.4* / 0.4*

9 0.21* / 0.19* 0.47* / 0.48*

Table 3: Kolmogorov-Smirnov Statistics statistics for CVAE and VAE normality tests
on CIFAR-10 latent space. Each cell shows ’Dimension 1 / Dimension 2’ results, with
asterisks indicating significance at the 99% confidence level. Lower values indicate a
better fit to the normal distribution.
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In summary, samples from different classes are less distinguishable in the latent
space of CVAEs compared to VAEs. Moreover, CVAEs can more closely satisfy
the contraint of a standard normal distribution of data in their latent spaces, while
having lower reconstruction error than VAEs. While part of this difference is probably
attributable to the additional information that the CVAE is provided with in form
of the class labels, as well as the small number of additional parameters due to
the concatenation of labels to the input, the results suggest that the latent space
of CVAEs encodes mainly intra-class, rather than inter-class variation. In Section
4.4, we try to exploit this property to increase intra-class diversity for tail classes in
long-tailed datasets.

4.3 Quality of Generated Embeddings

In this experiment, we compared the quality of embeddings generated by two different
CVAE architectures and various sampling variances. The small CVAE has a single
dense hidden layer of 512 dimensions in both encoder and decoder and around 1
million parameters in total. The large CVAE has 6 hidden dense layers (4 with
512 dimensions and 2 with 256 dimensions) in both encoder and decoder, residual
connections, and around 3 million parameters. We used DINOv2 embeddings of
CIFAR10, CIFAR100, CIFAR10 LT, and CIFAR100 LT as training datasets. For
each of the 8 resulting CVAEs, we generated 6 datasets by sampling from a normal
distribution in the CVAE’s latent space with zero mean and different variances. We
evaluated the quality of the generated datasets by calculating the Fréchet Inception
Distances (FID) (Heusel et al., 2017) to the test sets of CIFAR10 and CIFAR100. We
used the test set of CIFAR10 for datasets generated by models trained on CIFAR10
or CIFAR10 LT and the test set of CIFAR100 for datasets generated by models
trained on CIFAR100 or CIFAR100 LT. The FID is commonly used to evaluate the
quality of generated images. It compares the distributions of generated data and
real data by extracting features from an Inception model and then calculating the
Fréchet distance, also known as the Wasserstein-2 distance (Heusel et al., 2017).

The FID is calculated using the following equation:

FID = ||µr − µg||2 + Tr(Σr + Σg − 2
√

ΣrΣg), (6)

where µr and Σr are the mean and covariance of the real data embeddings, and µg

and Σg are the mean and covariance of the generated data embeddings. The square
root of the product of the covariance matrices Σr and Σg is computed using the
matrix square root. Here, Tr denotes the trace of a matrix. Since the CVAEs are
directly generating feature vectors in the DINOv2 embedding space and not images,
we did not compute Inception features. Rather, we compared the generated vectors
directly with the DINOv2 features of the appropriate test set. To ensure a fair
comparison across different classes, we calculated the FID for each class separately
and then took the average. This approach accounts for the class-wise variations in
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the data distribution, providing a more robust and comprehensive evaluation of the
generative performance of the CVAEs.

Figure 9: Fréchet Inception Distance (FID) between DINOv2 embeddings of CIFAR
test sets and sets of embeddings generated by CVAEs. Plot titles denote the CVAE
training set. Sets of generated embeddings are equal to test sets in terms of sample
size and distribution across classes. They have been generated by sampling from a
normal distribution in the latent space of CVAEs. The x-axis shows the variance
used in the sampling process, the y-axis shows the FID score.

The results of our experiments, as illustrated in Figure 9, reveal several key insights
into the performance of the two CVAE architectures and the impact of sampling
variance. First, the large CVAE generally produced lower FID scores compared to
the small CVAE, indicating a higher quality of generated embeddings. However,
this trend tended to reverse at higher variances (above 2), where the small CVAE
mostly outperformed the large CVAE. Furthermore, the FID scores are lowest at
moderate variances (0.75 and 1), with both higher and lower variances leading to
increased FID scores. This suggests that moderate sampling variance, at values close
to what was used for the prior distribution when training the CVAE, strikes a balance
between diversity and fidelity in the generated embeddings. Notably, the large CVAE
appears to be more sensitive to changes in variance, showing greater fluctuation in
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FID scores across different variances compared to the small CVAE. Additionally,
FIDs were generally lower for CVAEs trained on balanced datasets compared to
those trained on long-tailed datasets, indicating the advantage of balanced training
data. However, variance appears to be the more critical factor in determining FID
scores. These findings highlight the importance of carefully tuning the sampling
variance and suggest that while the large CVAE generally produces higher quality
embeddings, it requires more precise control of the variance to maintain this quality.

4.4 Increasing Diversity in Tail Classes

We argued in sections 1 and 3.3 for the need of increased tail class (intra-class) diversity
via data augmentation or generation when resampling tail class samples. Here, we
explored to what extent a CVAE that has been trained on a long-tailed dataset of
foundation model embeddings could be used to meaningfully increase diversity in
tail classes. To this end, we first trained a CVAE on the DINOv2 embeddings of the
CIFAR100 LT dataset. We used CIFAR100 LT instead of CIFAR10 LT here because
it is more representative of long-tailed datasets due to the larger number of classes.
We then evaluated intra-class diversity using a coverage metric and the radius of a
minimum bounding sphere.

To measure the class-wise coverage of a reference set by samples generated with a
CVAE, we used a trained CVAE to generate a dataset with the same number of
samples per class as the reference set. For each of the generated samples in each
class, we then found its nearest neighbor within the set of samples of the same class
in the reference set. Finally, we calculated for each class the proportion of samples of
the reference set that is the nearest neighbor to at least one generated sample. We
used Euclidean distance to find nearest neighbors. The resulting class-wise coverage
metric measures diversity within classes with respect to a specific reference given
by the reference dataset. We used the original (balanced) CIFAR100 training set
as a reference set in this experiment. Because the CVAE has been trained with
a long-tailed subset of this reference set, coverage needs to be interpreted slightly
differently for different classes. For the first class, which is identical in the CIFAR100
and CIFAR100 LT datasets, coverage measures how closely the CVAE can reproduce
the distribution of samples within a class that it has seen during training. For the
other classes, which have increasingly fewer samples in the CIFAR100 LT dataset,
coverage measures the proportion of a combination of seen and unseen samples that
the generated samples cover.

We measured coverage of the CIFAR100 training set by four datasets for each of
the two CVAE architectures. As baseline comparisons, we used the CIFAR100 LT
set and the reconstruction of the CIFAR100 training set by the CVAE. The other
two datasets were generated by the CVAE by sampling from its latent space with
mean 0 and variance 1, or variance 2. Figure 10 presents the results. A first general
observation is that coverage for all datasets decreased with increasing class indices,
reflecting the decreasing class size of CIFAR100 LT, the CVAE’s training set. This is
expected even for the generated datasets, because the proportion of unseen samples
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increases with higher class indices. Furthermore, the coverage by CVAE-generated
datasets tended to be higher than the coverage by CIFAR100 LT, especially for
tail classes. Similarly, the datasets generated from randomly sampled latents had
higher coverage for tail classes than the reconstructions, suggesting that this method
of generation can increase diversity more than simple reconstruction. Overall, the
datasets generated this way had flatter curves, suggesting that their coverage of the
reference dataset was less dependent on the class size of CIFAR100 LT. A similar
trend of flattening can be seen for increasing the variance from 1 to 2. This result
was more pronounced in the small CVAE. The large CVAE produced higher coverage
by the reconstructed dataset for head classes than the small CVAE, which is less
suggestive of generalization ability and more indicative of memorization due to higher
capacity.

Figure 10: Nearest neighbor coverage of the balanced CIFAR100 training set.
CIFAR100 LT: coverage by CIFAR100 LT, the training set of the CVAEs. Generated:
coverage by samples generated via random sampling fromN (0, σ2I) in the latent space
of CVAEs and subsequent decoding. Reconstructed: coverage by reconstructions of
the reference set with CVAEs.

While high coverage is an indicator of diversity, it is always with reference to another
dataset, and the actual distance to the nearest neighbor might be long, favoring
datasets with many and diverse outliers. To assess class diversity from a different
angle, we calculated minimum bounding spheres. A minimum bounding sphere is a
multi-dimensional sphere with the minimum radius that spans a given set of vectors.
We calculated the radius of such a sphere for each class in a dataset. To calculate it,
we made an initial estimate of the class center with the feature-wise mean vector
and calculated the Euclidean distance to the furthest point from it. We then used
SciPy’s (Virtanen et al., 2020) optimization package and the L-BFGS-B algorithm
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to update the class center to minimize the distance to the furthest point. We used
the resulting radius as a metric for intra-class diversity.

Figure 11 shows the radii of minimum bounding spheres for the classes of CIFAR100
and different datasets. The balanced CIFAR100 training set served as a baseline and
the radii of its spheres did not change systematically across classes. However, the
spheres of the imbalanced CIFAR100 LT dataset decreased with decreasing class size,
indicating a reduction in intra-class diversity. We rebalanced the imbalanced dataset
with samples generated by the two different CVAE architectures. This generally
increased the radii, with higher sampling variance leading to larger radii. The smaller
model was more sensitive to changes in the sampling variance than the larger model,
and a variance greater than 1 could quickly lead to spheres far larger than those in
the balanced dataset. Notably, the reconstructed CIFAR100 dataset had smaller radii
compared to the other datasets, indicating that reconstructions had less intra-class
diversity. This suggests that while generating new embeddings via random sampling
from latent space can increase diversity, reconstructions tend to be more conservative
and closely replicate the training data, resulting in smaller bounding spheres.

Figure 11: Radii of minimum bounding spheres for classes of CIFAR100. Rebalanced:
Rebalanced CIFAR100 LT by samples generated via random sampling from N (0, σ2I)
in the latent space of the CVAE and subsequent decoding. Reconstructed: Encoding
and subsequent decoding by the CVAE of the balanced CIFAR100 training set.

4.5 Long-Tailed Classification with CVAEs

In this subsection, we examine the impact our generative data augmentation method
(Algorithm 1) on the performance of classifiers trained on long-tailed datasets. We
conducted experiments using both CIFAR10 LT and CIFAR100 LT datasets, to
evaluate the effectiveness of data augmentation using CVAEs in addressing the
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challenges of long-tailed distributions. We compared the performance of small
and large CVAE architectures across various sampling variances, alongside several
augmentation techniques and losses specially designed to tackle long-tailed learning.
For the comparisons with other techniques, we used the authors’ code where available
and easily compatible with our code, or implemented them ourselves. For techniques
that required hyperparameters to be set, we used the authors’ suggestions or best
performing settings found in the original papers for scenarios similar to ours.

The experimental setup for this subsection involved training four CVAEs in total:
large and small architectures (as described in 4.3), each trained on CIFAR10 LT
and CIFAR100 LT. For embedding generation, we sampled latents from a standard
normal distribution, if not specified otherwise. All classifiers consisted of a single
dense layer trained with a learning rate of 0.001 using the Adam optimizer for 10
epochs, ensuring convergence and fair comparison. Besides evaluating top-1 accuracy,
we report the accuracy of many-shot classes (over 100 training samples), medium-shot
classes (20 to 100 training samples), and few-shot classes (under 20 training samples),
following Liu et al. (2019b) and Wang et al. (2021).

4.5.1 Effect of Architecture and Sampling Variance

To assess the effect of CVAE architecture and sampling variance on long-tailed
classification accuracy, we trained five linear classifiers for each combination of CVAE
architecture and sampling variance. We averaged the accuracies over five runs for
both CIFAR10 LT and CIFAR100 LT.

For CIFAR100 LT (Table 4), the large CVAE generally outperformed the small
CVAE in overall and few-shot accuracies, except at higher variances (2 and 3). The
large CVAE exhibited slightly lower accuracy in the many-shot category and showed
no clear differences in the medium-shot category. The large CVAE was more sensitive
to changes in variance than the small CVAE. The highest overall accuracies were
observed at moderate variances of 0.71 and 1. They went hand in hand with the
highest or second highest few-shot accuracies and highest medium-shot accuracies,
highlighting the importance of high tail class accuracy in long-tailed learning when
the test set is balanced. Changes in variance had the largest effect on few-shot classes,
followed by medium-shot classes, and the smallest effect on many-shot classes.
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Small Large

σ2 O MA ME F O MA ME F

0.25 83.64 93.09 85.02 71.47 83.67 93.17 84.69 71.83

0.5 83.91 93.31 84.85 72.28 84.83 92.87 85.32 75.21

0.75 84.42 93.20 85.22 73.63 85.67 92.37 85.43 78.37

1 84.22 93.37 85.12 72.89 84.62 91.95 84.89 76.03

2 84.02 93.31 84.74 72.74 83.26 92.19 84.02 72.33

3 84.19 93.14 84.42 73.83 83.70 92.74 84.60 72.50

Table 4: Mean accuracies for Small and Large CVAE architectures and sampling
variances σ2 on CIFAR100 LT with ρ = 100, averaged over 5 runs. O: Overall, MA:
Many-shot classes, ME: Medium-shot classes, F: Few-shot classes.

A similar pattern of results was observed for CIFAR10 LT (Table 5). Note that there
are no few-shot classes in CIFAR10 LT at an imbalance rate of ρ = 100, because
the smallest class has 50 samples and we defined few-shot classes to have fewer than
20 samples. The large CVAE generally outperformed the small CVAE in overall
and medium-shot accuracies, while having slightly lower accuracies in the many-shot
category. The large CVAE was more sensitive to changes in variance than the small
CVAE. Changes in variance had a larger effect on medium-shot classes than on
many-shot classes. The highest overall accuracies were observed at variance levels of
0.75 and 1, which also had the highest or second highest medium-shot accuracy.

Small Large

σ2 O MA ME O MA ME

0.25 97.61 98.37 94.58 97.64 98.36 94.75

0.5 97.72 98.38 95.05 97.80 98.37 95.52

0.75 97.77 98.46 95.02 98.05 98.42 96.60

1 97.72 98.39 95.05 98.11 98.35 97.19

2 97.58 98.32 94.62 97.81 98.21 96.18

3 97.68 98.34 95.01 97.73 98.25 95.65

Table 5: Mean accuracies for Small and Large CVAE architectures and sampling
variances σ2 on CIFAR10 LT with ρ = 100, averaged over 5 runs. O: Overall, MA:
Many-shot classes, ME: Medium-shot classes, F: Few-shot classes.
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4.5.2 Comparison with Other Resampling and Augmentation Methods

We compared our CVAE-based data augmentation method with several baselines: no
augmentation, class-balanced sampling (CBS), which adjusts the sampling frequency
to ensure minority classes are sampled as often as majority classes, SMOTE (Chawla
et al., 2002), ADASYN (He et al., 2008), and Remix (Chou et al., 2020) (see Section
2.2 for descriptions of these methods). These comparisons were conducted on the
CIFAR100 LT and CIFAR10 LT datasets (Table 6). For each method and dataset,
accuracies were averaged over five runs.

Our method consistently achieved better overall accuracy than Baseline, CBS,
SMOTE, and ADASYN for both datasets. It showed similar performance to
Remix, with the best overall performance observed when combined with Remix.
High accuracies in few-shot and medium-shot groups corresponded to high overall
accuracies. Our method had the highest accuracies among single methods for the
low-shot groups (few-shot in CIFAR100 LT and medium-shot in CIFAR10 LT).

CIFAR100 LT CIFAR10 LT

O MA ME F O MA ME

Baseline 80.47 93.80 82.30 63.40 96.88 98.18 91.67

CBS 83.74 93.02 85.18 71.70 97.78 98.43 95.19

SMOTE 83.31 93.42 84.10 71.04 97.69 98.39 94.87

ADASYN 82.87 93.33 83.78 70.07 97.51 98.35 94.14

Remix 84.91 92.65 85.60 75.42 98.08 98.51 96.35

Ours 85.52 91.61 85.54 78.62 98.02 98.29 96.93

Ours + Remix 85.84 90.73 85.61 80.57 98.15 98.10 98.38

Table 6: Mean accuracies for different resampling and data augmentation techniques
on CIFAR100 LT and CIFAR10 LT with ρ = 100, averaged over 5 runs. Best and
second best results per column are in bold and underlined, respectively. O: Overall,
MA: Many-shot classes, ME: Medium-shot classes, F: Few-shot classes.

4.5.3 Comparison with Loss Functions for Long-Tailed Learning

We evaluated the performance of our generative data augmentation method in
combination with different loss functions designed for long-tailed learning (see Section
2.2): Balanced Softmax (Ren et al., 2020), Class Balanced Softmax (Cui et al., 2019),
Focal Loss (Lin et al., 2017), Equalization Loss (Tan et al., 2020), and LDAM Loss
(Cao et al., 2019). Accuracies were averaged over five runs for both CIFAR100 LT
and CIFAR10 LT.
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For CIFAR100 LT (Table 7), our method consistently improved the overall accuracy
of the loss functions, except for Balanced Softmax, which had a higher overall
accuracy without our method. However, Balanced Softmax accuracy on few-shot
samples improved drastically from 79.35 to 85.58 when used with our method. Class
Balanced Softmax performed best among the loss functions when combined with our
method.

O MA ME F

Softmax Cross Entropy 80.59 93.87 82.30 63.72

+ Ours 85.40 91.71 85.68 77.97

Balanced Softmax 86.26 92.26 86.38 79.35

+ Ours 84.09 82.83 84.02 85.58

Class Balanced Softmax 83.17 93.34 83.78 71.03

+ Ours 85.97 89.43 84.94 83.19

Focal 78.86 93.10 81.26 60.15

+ Ours 84.12 90.67 84.11 76.75

Equalization 82.41 93.83 82.04 69.92

+ Ours 84.52 88.76 82.19 82.30

LDAM 77.14 90.44 79.54 59.50

+ Ours 80.65 89.26 80.66 70.90

Table 7: Mean accuracies for different loss functions with CVAE data generation
(+Ours) and without CVAE data generation on CIFAR100 LT with ρ = 100, averaged
over 5 runs. Best results between the two methods are in bold. O: Overall, MA:
Many-shot classes, ME: Medium-shot classes, F: Few-shot classes.

For CIFAR10 LT (Table 8), a similar pattern was observed. Additionally, in contrast
to CIFAR100 LT results, adding our method also improved many-shot accuracy for
all losses except Balanced Softmax and LDAM.
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O MA ME

Softmax Cross Entropy 96.89 98.19 91.70

+ Ours 98.11 98.38 97.00

Balanced Softmax 98.26 98.42 97.63

+ Ours 95.74 94.80 99.47

Class Balanced Softmax 97.10 98.14 92.93

+ Ours 98.13 98.21 97.78

Focal 96.46 97.89 90.77

+ Ours 97.72 98.06 96.34

Equalization 96.90 98.15 91.92

+ Ours 98.09 98.34 97.06

LDAM 96.28 97.52 91.33

+ Ours 97.19 97.45 96.14

Table 8: Mean accuracies for different loss functions with CVAE data generation
(+Ours) and without CVAE data generation on CIFAR10 LT with ρ = 100, averaged
over 5 runs. Best results between the two methods are in bold. O: Overall, MA:
Many-shot classes, ME: Medium-shot classes.

In summary, our experiments demonstrate that CVAE-generated embeddings ef-
fectively augment long-tailed datasets, improving classification performance across
CVAE architectures and various sampling variances. Combining CVAE-generated
data with other feature augmentation techniques and specialized loss functions
further enhances performance, particularly for underrepresented classes in long-tailed
distributions.

4.6 Data Anonymization with CVAEs

In this subsection, we explore the effectiveness of CVAEs trained on foundation
model embeddings for anonymizing datasets while maintaining data utility. We
utilized the 2D multiclass classification datasets from MedMNISTv2 (Yang et al.,
2023). These datasets are ideal for our experiments due to their real-world nature
and the critical importance of data privacy in the medical domain.

We trained a large CVAE for each MedMNISTv2 dataset using the hyperparameters
as described in Section 4.1. We then employed Algorithm 2 (see Section 3.4), sampling
latents from a standard normal distribution, to generate privacy-preserving datasets
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that maintained the original number of samples per class. The evaluation of these
generated datasets was twofold: assessing performance and ensuring anonymity.

4.6.1 Performance Evaluation

To evaluate the performance of the generated datasets, we trained a linear classifier
with a single dense layer with a learning rate of 0.001 using the Adam optimizer and
early stopping based on validation set loss for each dataset. We repeated the training
process five times and reported the average metrics: accuracy, F1 score, and Cohen’s
Kappa. These metrics were chosen for their ability to provide a comprehensive
assessment of classifier performance. Accuracy indicates the overall correctness of the
classifier, the F1 score balances precision and recall, and Cohen’s Kappa measures the
agreement between predicted and true labels, adjusting for chance. The F1 score is
particularly beneficial for multi-class classification as it provides a single metric that
accounts for both false positives and false negatives, thus offering a balanced view of
performance across classes. Cohen’s Kappa is advantageous in multi-class settings
because it adjusts for chance agreement and provides a more balanced evaluation
across all classes, offering a more robust measure of the classifier’s true performance.

The results, presented in Table 9, demonstrate that the classifiers trained on the
generated datasets achieved reasonable performance, often comparable to those
trained on the original datasets. For example, the generated dataset for PathMNIST
achieved an accuracy of 92.72%, an F1 score of 0.928, and a Cohen’s Kappa of 0.916,
compared to 93.61%, 0.938, and 0.927 for the original dataset, respectively. However,
performance varied across datasets, with some generated datasets exhibiting a more
significant drop in performance, such as TissueMNIST, where the generated dataset’s
accuracy was 55.02% compared to 63.47% for the original.
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Accuracy F1 Score Cohen’s κ

PathMNIST 93.61 0.938 0.927

Generated 92.72 0.928 0.916

DermaMNIST 83.92 0.834 0.681

Generated 75.77 0.731 0.473

OCTMNIST 83.92 0.836 0.786

Generated 79.14 0.787 0.722

BloodMNIST 98.19 0.982 0.979

Generated 96.01 0.960 0.953

TissueMNIST 63.47 0.621 0.533

Generated 55.02 0.509 0.412

OrganAMNIST 91.81 0.917 0.908

Generated 89.19 0.890 0.879

OrganCMNIST 86.89 0.869 0.852

Generated 81.99 0.818 0.796

OrganSMNIST 76.25 0.758 0.728

Generated 70.29 0.700 0.660

Table 9: Mean test set performance of classifiers trained on embeddings of the original
versions and anonymized (Generated) versions of the 2D multi-class MedMNISTv2
datasets, averaged over 5 runs.

4.6.2 Anonymity Evaluation

To assess the anonymity of the generated datasets, we calculated the Euclidean
distance from every generated point to the nearest point in the original dataset. The
distribution of these distances provides insight into the separation between generated
and original data points, thereby indicating the level of anonymity.

Figure 12 shows the distributions of these distances. The plots on the left illustrate
distances from points in the generated dataset to the nearest neighbor in the original
dataset, while the plots on the right depict distances to nearest neighbors within
the original dataset as a reference. Notably, distances from generated embeddings
to original embeddings are never zero, indicating that the generated embeddings
do not overlap directly with any original embeddings, thus preserving anonymity.
Additionally, the distances from generated embeddings to original embeddings are
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generally larger than the distances within the original dataset, serving as a reference
point for comparison. This indicates that the generated embeddings are sufficiently
distinct from the original embeddings, thereby preserving anonymity.

Figure 12: Distributions of distances to nearest neighbors for 2D multiclass datasets
from MedMNISTv2. Plots on the left show distances from embeddings in the
generated dataset to their nearest neighbors in the original dataset. Plots on the
right show distances to nearest neighbors within the original dataset as a frame of
reference.

In conclusion, our experiments demonstrate that CVAEs can effectively anonymize
datasets, producing synthetic data that maintains reasonable classifier performance
while ensuring a significant level of privacy. The variability in performance across
different datasets highlights the importance of dataset-specific considerations when
applying such anonymization techniques. The distances to the nearest neighbors
confirm that the generated data points do not reveal information about individual
data points in the original dataset, thus providing a robust privacy-preserving solution
for sensitive data.
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5 Discussion

5.1 Main Findings and Interpretation

In this thesis, we explored the application of generative data augmentation techniques
in the embedding space of vision foundation models to address the challenges posed by
long-tailed learning and privacy constraints. The primary objective was to enhance
the performance of classifiers in scenarios with imbalanced data distributions and to
provide a method for data anonymization without compromising the utility of the
data.

Our approach utilized a Conditional Variational Autoencoder (CVAE) trained on the
embeddings produced by a vision foundation model. Specifically, we employed the
DINOv2 model, a state-of-the-art self-supervised vision transformer, to extract rich
and versatile features from images. The CVAE was then conditioned on class labels
and trained to generate new embeddings that could augment the existing dataset,
particularly focusing on underrepresented classes. The experiments were conducted
on several datasets, including CIFAR10, CIFAR100, and MedMNISTv2, with both
balanced and long-tailed versions of the CIFAR datasets.

The results from our CVAE-based approach indicated several key findings:

• CVAE Generated Embeddings: Our method increases tail class diversity
and achieves better quality with larger CVAEs, particularly when sampling
from the latent space with a variance of around 1.

• Long-Tailed Classification: Our method improves classification perfor-
mance on long-tailed datasets, evidenced by increased accuracy overall and
in tail classes, leading to more balanced performance across the entire class
distribution.

• Privacy Preservation: The method provides a robust means of anonymizing
data, with the generated samples being sufficiently distinct from the origi-
nal ones to prevent re-identification while retaining the utility for training
downstream models.

In terms of the quality of CVAE-generated embeddings, we found that smaller CVAEs
are more sensitive to changes in variance for the diversity metrics used, whereas larger
CVAEs are more sensitive to variance changes regarding FID quality and accuracy.
A possible explanation for these results is that the diversity metrics we used may be
insufficient to accurately capture diversity in high-dimensional feature spaces due to
the curse of dimensionality and their sensitivity to outliers. Importantly, with the
simple and reasonable sampling strategy of using the same distribution for sampling
that was used as the prior distribution during CVAE training (standard normal),
larger models consistently achieved better results than smaller models and most
other variance settings.
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For long-tailed classification, our method compares favorably to traditional resampling
and feature augmentation methods and shows great promise when combined with
Remix augmentation (Chou et al., 2020) and specialized loss functions for long-tailed
learning. Specifically, the Balanced Softmax loss function (Ren et al., 2020) had
better overall accuracy without our method but improved few-shot accuracy when
used in conjunction with our generative data augmentation. This indicates that
simply generating samples to rebalance a training set and using a special loss function
as if the training set were still long-tailed might not be optimal. Potential solutions
to achieve a better trade-off in performance between head and tail classes include
weighting generated samples differently from original samples in the loss function,
generating different numbers of samples (e.g., not completely rebalancing), and
adjusting the class weights used in the Balanced Softmax loss function.

In the context of privacy preservation, our method showed promising results. The
distances between generated and original samples were generally larger than those
between original samples, indicating effective anonymization. The generated em-
beddings preserved the statistical properties of the original dataset, ensuring that
the utility of the data was maintained while protecting individual data points from
re-identification. This approach is particularly advantageous in scenarios where
data privacy is paramount, such as in medical applications. The effectiveness of our
method is further corroborated by results from a paper by us, currently under review
(Di Salvo et al., 2024), which includes evaluations on more datasets and comparisons
to the k-Same approach (Newton et al., 2005).

5.2 Contributions to the Field

Our study makes several novel contributions to the fields of generative data augmen-
tation, long-tailed learning, and privacy preservation in machine learning. These
contributions enhance the state of knowledge by providing innovative methods and
insights that address persistent challenges in these areas.

One of the primary novel contributions is the application of Conditional Variational
Autoencoders (CVAEs) in the embedding space of vision foundation models for
data augmentation. Previous approaches often focused on augmenting data at the
input level (e.g., image pixels) or required expensive learning of feature spaces.
Our method leverages the rich, semantically meaningful embeddings generated by
foundation models, such as DINOv2 (Oquab et al., 2023), and applies generative
modeling techniques directly in this lower-dimensional, feature-rich space. This not
only reduces the computational complexity compared to pixel-level augmentation but
also capitalizes on the generalization capabilities of pre-trained foundation models,
which have been trained on vast and diverse datasets.

A key novelty lies in our approach to addressing long-tailed learning. By generating
embeddings for underrepresented classes, our method enhances the diversity within
these classes, leading to more balanced datasets and improved classifier performance.
The use of CVAEs allows for the generation of samples that capture intra-class
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variation, which is crucial for robust learning in long-tailed datasets. By directly
increasing the meaningful diversity of the training data, this method goes beyond
traditional resampling and reweighting techniques.

Additionally, our study highlights the sensitivity of CVAEs to sampling variance
and model size, providing new insights into the optimal conditions for generating
high-quality synthetic embeddings. While larger CVAEs generally produced better
results, they required conservative sampling strategies from their latent spaces to
create samples that contribute positively to the classifier’s performance. This finding
underscores the importance of balancing model complexity and sampling strategy to
achieve the best outcomes in generative data augmentation.

In the domain of privacy preservation, our work introduces a novel method for data
anonymization using generative modeling in the embedding space. Unlike traditional
anonymization techniques, which often rely on obfuscating or perturbing the data
at the input level, our approach generates entirely new embeddings that retain the
statistical properties of the original dataset while ensuring privacy. This method
effectively prevents re-identification of individual data points and offers a robust
solution for scenarios where data privacy is crucial.

5.3 Potential Avenues for Future Research

Our study opens up several promising avenues for future research, each aimed at
further enhancing the capabilities and applications of generative data augmentation
in the embedding space of vision foundation models. These directions can be explored
to address remaining challenges and extend the applicability of our methods.

One potential direction for future research is the exploration of different types of
generative models beyond Conditional Variational Autoencoders (CVAEs). While
CVAEs have proven effective in our experiments, other generative models such as
Generative Adversarial Networks (GANs) or Diffusion Models could offer different
advantages. GANs, for instance, are known for generating high-quality samples and
could be adapted to work in the embedding space of vision foundation models.
Diffusion models are already being successfully trained in the latent space of
pretrained autoencoders for the image generation method Stable Diffusion (Rombach
et al., 2022). Comparing these models with CVAEs in terms of performance,
computational efficiency, and quality of generated embeddings would provide valuable
insights.

Another area worth exploring is the use of more specialized foundation model
encoders. While we used the DINOv2 model due to its strong performance and
generalization capabilities, there are other models, particularly those trained on
specific domains such as medical imaging, that could offer enhanced performance for
certain applications (Zhang et al., 2022b; Zhou et al., 2023). Investigating how these
more specialized encoders interact with our generative data augmentation method
could lead to further improvements in performance, especially for domain-specific
tasks.



5 DISCUSSION 39

Additionally, future research could focus on refining the sampling strategies used
during the generation of embeddings. Our results showed that the variance in
the sampling process significantly affects the quality of the generated embeddings.
Developing more sophisticated sampling strategies that adaptively adjust the variance
based on the characteristics of the data could lead to better results. For example,
methods that dynamically adjust the sampling variance during training of a down-
stream task-specific network might produce embeddings that better balance diversity
and fidelity.

The integration of our generative data augmentation method with various loss
functions and other augmentation methods designed for long-tailed learning is
another promising research direction. While we demonstrated improvements using
our method, combining it with advanced loss functions, such as Balanced Softmax
loss (Ren et al., 2020), and data augmentation methods, such as Remix (Chou et al.,
2020), could yield even better results. Investigating how these methods interact with
the generated embeddings and which specific adjustments are needed for optimal
performance would be a valuable contribution.

Our approach to privacy preservation through generative modeling also suggests
several future research opportunities. One potential direction is to enhance the
anonymity of the generated data by developing more sophisticated techniques for
ensuring that generated samples are sufficiently distinct from original samples.
For instance, implementing mechanisms that enforce a minimum distance between
generated and original samples in the embedding space would be straightforward and
could further improve privacy guarantees. Additionally, exploring the integration
of differential privacy techniques or federated learning approaches with our gener-
ative model could provide robust frameworks that combine the strengths of these
approaches.

Finally, real-world testing and validation of our methods on larger and more complex
datasets, such as iNaturalist (Van Horn et al., 2018) for long-tailed learning, would
provide a deeper understanding of their practical applicability. Such experiments
could help identify any limitations or challenges that arise in real-world scenarios
and lead to the development of more refined and scalable solutions.

5.4 Strengths and Limitations

This study has several strengths that contribute to its impact and validity, as well as
some limitations that should be acknowledged.

Next to its practical effectiveness in long-tailed classification and data anonymization,
the primary strength of our approach is its generality and flexibility. By leveraging
vision foundation models and focusing on the embedding space rather than the raw
input space, we developed a generative data augmentation method that is broadly
applicable across various domains and datasets. This flexibility makes our approach
particularly valuable for practitioners who may not have the resources to fine-tune
large models but still need to improve performance on specific tasks.
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However, our study also has limitations that should be considered. One limitation is
the dependency on the quality of the embeddings produced by the foundation model.
While we used DINOv2, which provides robust and versatile features, the performance
of our generative data augmentation method is inherently tied to the quality of
these embeddings. If the foundation model’s embeddings are not well-suited for a
particular task or dataset, the effectiveness of our approach may be compromised.

Another limitation is the sensitivity of the CVAE to the variance used in the sampling
process. Our results indicated that the performance of the generative model could
vary significantly with different sampling variances, especially for larger CVAEs. This
sensitivity requires careful tuning and may pose a challenge in practical applications
where optimal variance settings are not known a priori. Further research into adaptive
sampling strategies could help address this limitation.

Additionally, while our method showed promising results in the datasets we tested,
its generalizability to more complex and larger-scale real-world datasets remains to
be fully validated. Testing our approach on such datasets would provide a more
comprehensive understanding of its scalability and robustness in diverse scenarios.

Finally, our privacy preservation method, while effective, does not offer formal
mathematical guarantees like differential privacy (Dwork, 2006). While the generated
embeddings are distinct enough to prevent re-identification in our experiments, formal
privacy guarantees would provide additional confidence in the robustness of our
approach. Integrating differential privacy techniques with our generative model could
be a future direction to strengthen the privacy aspects of our method.
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6 Conclusion

In this thesis, we proposed a novel approach to address the challenges of long-
tailed learning and privacy constraints by leveraging generative data augmentation
in the embedding space of vision foundation models. By training Conditional
Variational Autoencoders (CVAEs) on the embeddings of pre-trained vision models,
we demonstrated an effective method for generating synthetic samples that enhance
the diversity of underrepresented classes. Our experiments showed that this technique
not only improves classification performance on long-tailed datasets but also provides
a robust framework for anonymizing sensitive data, thereby preserving privacy
without compromising data utility. The results validate the potential of combining
generative modeling with foundation model embeddings to tackle key issues in modern
machine learning, offering a scalable and versatile solution for diverse real-world
applications. Future work could explore further optimization of CVAE architectures
and the integration of additional privacy-preserving mechanisms to enhance the
robustness and applicability of this approach.
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Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
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Johannes Kulick, Johannes L. Schönberger, José Vińıcius De Miranda Cardoso,
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