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Abstract

Over time, various environmental and mechanical factors a!ect the stability and in-
tegrity of historic timber structures. Despite their cultural and architectural signifi-
cance, these structures are often undervalued due to the lack of accurate assessments
of their mechanical strength and structural parameters. Traditional methods, which
rely on manual inspection and measurement, are time-consuming, prone to human
error and inadequate for challenging conditions such as poor lighting or inaccessible
areas.

Digitally documenting and monitoring the defects on historical wood surface, such
as knots, cracks, and other surface irregularities, is therefore critical to preserving
the structural condition of wood and ensuring the longevity and sustainability of
historic timber structures. By integrating modern computer tools and methods,
it is possible to overcome these limitations and provide a systematic and accurate
approach to the assessment and maintenance of these invaluable heritage assets.

The main objective of this master thesis is to develop an automated process for the
detection of wood knots. With the wide application of AI tools in di!erent fields,
this approach could help to provide an accessible, e”cient and accurate solution
for conservators, enabling them to perform detailed analysis and documentation of
historic wooden surfaces automatically. This system may not only make a significant
impact on the field of heritage protection but also o!ers the potential to reduce the
excessive consumption of historical resources.

The methods based on machine learning and deep learning will be discussed, de-
veloped and experimented with in this thesis. The main detection process on wood
knots is divided into two stages. In the first stage, a segmentation model such as
Detectron2 from Meta will be used to determine the target timber surface, while
in the second stage, Yolov8 will be tested to detect the wood knots. For further
research, the results from the preview stages will be used to build an abstract geo-
metric model that will combine the realistic measurements obtained by the mobile
phone sensors to estimate the dimension of detected wood knots.

The resulting fully automated system combines the results of the segmentation
model and the detection model. Various data from labelled datasets and unseen
collection were also tested to confirm the performance of the final models. There
are cases of inaccurate and unstable results during the testing process, which will
continue to be improved in future research. And the final system will be used as a
mobile phone application by heritage conservators.
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Abstract

Im Laufe der Zeit wirken sich verschiedene Umwelt- und mechanische Faktoren auf
die Stabilität und Integrität historischer Holzkonstruktionen aus. Trotz ihrer kul-
turellen und architektonischen Bedeutung werden diese Holzkonstruktionen oft un-
terschätzt, da es an genauen Bewertungen ihrer mechanischen Festigkeit und ihrer
strukturellen Parameter mangelt. Herkömmliche Methoden, die auf manuellen In-
spektionen und Messungen basieren, sind zeitaufwändig, anfällig für menschliche
Fehler und unzureichend für schwierige Bedingungen wie schlechte Beleuchtung oder
unzugängliche Bereiche.

Die digitale Dokumentation und Überwachung von Defekten an historischen Hol-
zoberflächen wie Ästen, Rissen und anderen Fehler ist daher von entscheidender Be-
deutung, um den strukturellen Zustand des Holzes zu erhalten und die Langlebigkeit
und Nachhaltigkeit historischer Holzkonstruktionen zu gewährleisten. Durch die In-
tegration moderner Computerwerkzeuge und -methoden ist es möglich, diese Ein-
schränkungen zu überwinden und einen systematischen und präzisen Ansatz für die
Bewertung und Erhaltung dieser unschätzbaren Kulturgüter zu bieten.

Das Hauptziel dieser Masterarbeit ist die Entwicklung eines automatisierten Ver-
fahrens zur Erkennung von Holzästen. Angesichts der weit verbreiteten Anwendung
von KI-Tools in verschiedenen Bereichen könnte dieser Ansatz dazu beitragen, eine
zugängliche, e”ziente und genaue Lösung für Restauratoren bereitzustellen, die es
ihnen ermöglicht, detaillierte Analysen und Dokumentationen von historischen Hol-
zoberflächen automatisch durchzuführen. Dieses System könnte nicht nur einen be-
deutenden Einfluss auf den Bereich der Denkmalpflege haben, sondern bietet auch
das Potenzial, den übermäßigen Verbrauch historischer Ressourcen zu reduzieren.

Methoden basiert auf maschinellen Lernens und Deep Learning werden in dieser
Arbeit diskutiert, entwickelt und getestet. Der Hauptprozess der Asterkennung ist
in zwei Schritte unterteilt. In der ersten Stufe wird ein Segmentierungsmodell wie
Detectron2 von Meta verwendet, um die Zielholzoberfläche zu bestimmen, während
in der zweiten Stufe YOLOv8 getestet wird, um die Holzäste zu erkennen. In der
weiteren Forschung werden die Ergebnisse der Voruntersuchungen verwendet, um
ein abstraktes geometrisches Modell zu erstellen, das die realistischen Messungen
der Handysensoren kombiniert, um die Größe der erkannten Holzäste zu schätzen.

Das resultierende vollautomatische System kombiniert die Ergebnisse des Segmen-
tierungsmodells und des Erkennungsmodells. Verschiedene Daten aus markierten
Datensätzen und nicht markierten Sammlungen wurden ebenfalls getestet, um die
Leistung der endgültigen Modelle zu bestätigen. Es gab Fälle von ungenauen und
instabilen Ergebnissen während des Testprozesses, die in zukünftigen Forschungsar-
beiten weiter verbessert werden sollen. Das endgültige System wird von Restaura-
toren als mobile Anwendung genutzt werden.
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Notation

Input and Features in ResNet

I → RH→W→3 Input image of height H, width W , and 3 color channels (RGB)

F2 → RH

4 →W

4 →C2 Feature map at Stage P2

F3 → RH

8 →W

8 →C3 Feature map at Stage P3

F4 → RH

16→
W

16→C4 Feature map at Stage P4

F5 → RH

32→
W

32→C5 Feature map at Stage P5

Convolution Operation

Fi,j,k Value of the feature map at position (i, j) in the k-th output channel

Ii+m,j+n,c Pixel values of input image at position (i+m, j + n)

Wm,n,c,k Convolutional kernel value at position (m,n) for the c-th input channel
and k-th output channel

Residual Block in ResNet

y Output from residual block

x Input features from the previous layer

F (x,Wi) Output from convolutional layers parameterized by weight Wi

Feature Pyramid Network (FPN)

Pl Feature map from the l FPN layer

Fl Feature map from ResNet at Stage l

Pl+1 Feature map from the previous FPN layer

Region Proposal Network (RPN)

p̂i Classification prediction in RPN

ω Sigmoid function

Wcls Weight matrix for the classification layer

Pi Feature vector for the corresponding anchor

t̂i Refined bounding box coordinates predicted by RPN

Wbbox Weight matrix for the regression layer
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ROI Head

V (x, y) Bilinear interpolation for feature alignment

x, y Coordinates in the feature map

wij Interpolation weights

xi, yj Nearest pixel coordinates

p̂i Class prediction in ROI head

Softmax Softmax function

Wcls Weight matrix for classification in ROI head

Falign,i i-th feature from the whole aligned feature maps Falign

t̂i Bounding box regression in ROI head

Wbbox Weight matrix for bounding box regression in ROI head

Maski,j Predicted Mask

Falign,i+m,j+n Value of the aligned feature map at position (i+m, j + n)

Wmask Weight matrix for mask prediction in ROI head

YOLO Architecture

FCSP Cross Stage Partial (CSP) feature fusion output

tx, ty O!set for the bounding box center prediction relative to the grid
cell

xi, yi Coordinates of bounding box center

wi, hi Width and height of bounding box
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1 Introduction

1.1 Motivation

The stability of timbers changes over time and needs to be monitored accordingly.
In timber production, new timbers are inspected and graded according to their
structural quality parameters (e.g. strength values). The existing criteria for wood
grading in Germany (DIN 40741, DIN EN 1995) cover only new timber and do
not contain any direct specifications for historic timber in existing buildings. The
exact strength values are usually not known for old wood. For safety reasons, very
low values are generally assumed for existing timber structures (which also means
low quality and grade), although the actual strength values may be higher. As a
result, more (waste) wood is sorted out and replaced than is technically necessary,
i.e. valuable natural resources are wasted unnecessarily.

However, it is still possible to transfer the used wood to a higher grade. Additional
methods can improve the quality of existing historic timber, enabling it to be used
for more cost-e!ective and value-added purposes. Such visually recognizable charac-
teristics, such as knots (knotholes and their diameter), serve as individual evidence
to estimate the wood strength and to adjust the sorting class. The waste timbers
recorded with optical measuring sensors are automatically analysed for knots. With
the help of this analysis, objective and comprehensible conclusions can be drawn
about strength and sorting class.

By automatic surface characteristic recognition, digital twins of timber construc-
tions (roof structures, individual timbers) can be significantly enriched with this
information. Such models are meaningful for objective monitoring and estimating
the need for renovation, energy e”ciency and conservation measures, without the
need for additional costly expertise. It is therefore essential to be able to auto-
matically identify, classify and thus objectively analyse corresponding wood surface
characteristics in order to observe and understand the condition and change of this
material.

1.2 Proposal of the Thesis

The primary aim of this thesis is to develop a comprehensive workflow that focuses
on the automated knots detection in historic timber structures. This workflow will
assess both the dimensions of the timber and the detected knots from digital 2D im-
ages using a variety of computer graphics and computer vision algorithms, including
state-of-the-art deep learning models.

To achieve this goal, several key aspects must be addressed. Before diving into
the practical research process, a thorough examination of current research on the
conservation of historic timber structures is essential, along with an exploration of

1DIN 4074 is a specification of the German Industrial Standard (Deutsches Institut für Nor-
mung, or DIN for short), which is dedicated to the grading of solid wood for structural purposes.
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how modern machine learning and deep learning methods can enhance traditional
workflows and accelerate conservation e!orts. Besides, due to the specialized task
of this research, it is anticipated that there will be a scarcity of useful resources,
such as operational datasets for machine learning tasks. Therefore, the creation of
well-defined datasets will be critical to provide a solid foundation for subsequent
experiments.

During the whole research process, the development of a robust and accurate system
for the automated detection and estimation of knots in historic timber structures
is crucial. This task involves several sub-tasks, including image acquisition, pre-
processing, and the application of advanced computer vision techniques. The goal
is to create a pipeline that can handle various conditions of the timber, such as
di!erent lighting or texture variations, while still providing reliable results. The al-
gorithm should be adaptable enough to work with di!erent types of historic wooden
structures, which often vary in size, shape, and various historical traces.

The thesis will also explore the optimisation of deep learning models specifically tai-
lored to this task, evaluating di!erent architectures such as Detectron2 and YOLO.
The challenge is not only to select the most appropriate model, but also to fine-tune
it to account for the unique characteristics of timber structures, such as irregular
surfaces, complex grain patterns and varying knot formations. The performance of
these models is rigorously tested and validated against manually annotated data to
ensure that the automated process achieves high levels of accuracy and reliability.

To conclude, this thesis aims to bridge the gap between traditional manual con-
servation methods and modern computational techniques. By developing a com-
prehensive, automated workflow, the research not only contributes to the academic
field, but also has practical value in helping to preserve cultural heritage for future
generations.
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2 Theoretical Foundation

As the most widely used building material, wood has demonstrated great value
throughout the architectural history of mankind. In Germany, the percentage of
approved buildings constructed predominantly with wood will exceed 20 percent
in 2023 for both new residential (22 percent) and non-residential (23.4 percent)
buildings2. This trend underlines the continuing importance of wood as a primary
material in contemporary architectural projects and highlights its long-standing use
as a fundamental building material. In the field of heritage conservation, historic
timber structures represent a significant challenge due to their susceptibility to envi-
ronmental degradation and ageing. The conservation and analysis of these historic
materials require both traditional manual methods and modern technological ad-
vances. This chapter aims to provide a comprehensive theoretical foundation for
related studies, focusing on two key aspects: the conservation and analysis of his-
toric timber using traditional techniques, and the application of machine learning
in related fields to enhance current practices.

2.1 Wood knots analysis in timber mechanical properties

2.1.1 The impact of wood knots on timber

In the research by Ramage et al. (2017), factors such as tree species, growing con-
ditions, wood processing and handling, natural defects (e.g., knots or spiral grain),
and processing-induced defects (e.g., cracks) significantly a!ect the mechanical prop-
erties of wood. Knots form as a result of knot growth; if the knot is alive during
knot growth, tightly bound ”live knots” are formed. Conversely, if the branch dies
before it grows, ”dead knots” are formed and these knots may be dislodged from
the wood during processing. Knots can change the grain direction of the surround-
ing wood, resulting in an interruption of fibre continuity and thus creating areas of
stress concentration. In the research by Saad and Lengyel (2022), the position and
dimensions of wood knots were found to significantly influence the ultimate load
capacity of timber structures.

There are several research methods for studying the e!ect of knots on the mechanical
properties of wood, the most prominent being mechanical testing of actual knotty
wood in laboratories and simulation experiments to model the impact of knots on
wood properties. Zhang et al. (2024) investigates the e!ect of knots on the me-
chanical properties of chinese fir using a three-point bending test, X-ray computed
tomography, and digital image correlation, revealing that knot size and position sig-
nificantly influence strain distribution and mechanical behaviour, particularly mod-
ulus of elasticity (MOE) and modulus of rupture (MOR). Hu et al. (2018) presents
a novel laboratory method combining optical and laser scanning to accurately map
growth layer geometry and 3D fiber orientation around knots in Norway spruce,

2Holzbau Deutschland, Lagebericht Zimmerer/Holzbau 2024

https://www.holzbau-deutschland.de/fileadmin/user_upload/eingebundene_Downloads/2024-05-06_Lagebericht_2024_lay11_web.pdf
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revealing the significant impact of knots on timber’s mechanical properties and pro-
viding essential data for modeling and strength prediction. Fan et al. (2023) models
the strength-reducing e!ects of knots on Douglas Fir lumber using tensile testing
and Bayesian analysis, o!ering a more precise method for evaluating lumber quality.

Further simulation studies have explored the impact of knots on the mechanical
properties of wood through advanced modeling techniques. Baño et al. (2011) de-
veloped a finite element model (FEM) to simulate the e!ects of knots and grain
deviation on the flexural strength of timber beams. The model was found to ac-
curately predict failure loads with an error of less than 9.7%, which highlights the
critical role of knots in stress distribution and structural failure. Similarly, Bu-
rawska et al. (2013) demonstrated that knots and equivalent openings of the same
shape, size, and position exhibit comparable e!ects on bending strength parame-
ters of structural timber. Expanding on this, Lukacevic et al. (2019) introduced a
3D model to simulate knots and related fiber deviations in sawn timber, accurately
predicting mechanical properties like bending sti!ness and strain distribution, while
highlighting the importance of pith reconstruction and fiber deviation patterns for
timber grading and structural analysis.

Laboratory analysis and simulation o!er valuable tools for further estimating the
impact of wood knots on mechanical properties, as demonstrated by Fink and Kohler
(2014), who developed a predictive model for tensile strength and sti!ness of knot
clusters within structural timber using destructive and non-destructive tensile tests
to uncover key relationships between knot morphology and mechanical performance.

2.1.2 Evaluation of wood knots on historical timber

However, for historical timber, accurately analysing the e!ects of knots on the me-
chanical properties of extant wood structures is challenging due to environmental
factors by historical wood structures such as temperature and humidity variations,
as well as potential insect damage. Consequently, conservators and engineers can
indirectly assess the impact of knots on the properties of historical timber by study-
ing surface features and wear patterns. By examining traces such as knots and their
proportions in relation to the overall timber structure, they can estimate how knots
may have a!ected the mechanical behaviour and stability of the wood over time,
aiding both conservation strategies and structural assessments.

The Figure 1 shows the determination of the largest single branch by the dimension
of knot and corresponding timber in DIN 4074. The master thesis by Frank Ebner
(Ebner, 2018), supervised by Prof. Dr. Thomas Eißing, involved detailed investiga-
tions and experiments to evaluate the strength of structural timbers. The research
included an in-depth study of the e!ect of knots on the strength of structural tim-
ber, focusing on how the size, frequency, and placement of knots within the timber
a!ect its load-bearing capacity. By examining di!erent types of knots and their
influence on stress distribution, it provides a more accurate assessment of timber
integrity in historic structures, where knots often contribute to variability in timber
strength. Traditional methods for measuring wood knots and other types of wood
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Figure 1: The determination of the largest single branch by the dimension of knot
and corresponding timber. A describes the ratio between the smallest diameter of
the largest individual knot and the corresponding height and width of the timber,
used for grading wooden components. d1, d2, d3, d4 denote the measured diameters of
the visible knots, while b stands for the width and h for the height of the timber.(DIN
4074:2012-06, S. 4, Bild 1)

Figure 2: The on-site sketch by Frank Ebner illustrates visual grading in accordance
with DIN 4074-1:2012-06. The grading class is designated as S10 for bar 2, primarily
due to the evaluation on observed wood knots according to the calculation Figure
1. The sketch was originally created during the manual measurement of wood knots
and will be further refined for more detailed analysis.(Ebner, 2018)

damage, such as cracks, are often time-consuming and susceptible to human er-
ror. These approaches typically involve direct measurement with calipers or similar
tools, followed by manual documentation and further improvements.(Figure 2) This
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documentation process, along with subsequent physical calculations, heavily relies
on mechanics theory to estimate the impact of knots on the structural properties of
wood.

Figure 3: Roof structure of the Dominican Church

Accurate measurement is particularly critical in heritage preservation, where the
variability in timber strength caused by knots, as described earlier, poses signif-
icant challenges. Assessing the stability of historical wooden structures, such as
the roof structure shown in Figure 3, is further complicated by safety concerns
and the inherent limitations of traditional methods. These methods, which rely on
manual measurement and documentation of knots and other wood damages, are
often time-consuming and prone to human error. Therefore, digital technologies
for detecting, measuring, documenting, and systematically analysing wood knots in
historical wooden structures are essential. These methods can significantly enhance
the e”ciency and accuracy of conservation strategies, enabling better assessment
and preservation of structural integrity.

2.1.3 The Expectation of AI-assisted system

To improve traditional manual processes for measuring wood knots, advanced com-
putational tools can replace or refine outdated practices. By using digital data, the
mechanical performance of wood can be analysed with greater accuracy, enabling
more reliable assessments of historical wood conditions. This improved approach fa-
cilitates the development of data-driven conservation strategies tailored to ongoing
analysis.

Building on the background discussed in Chapter 1.1, the introduction to the impact
of wood knots on timber in 2.1.1 and actual analysis on historical timber in 2.1.2, the
Figure 4 summarizes the key problems in evaluating historical timber, the current
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Figure 4: Pathway from Key Problems to AI-Assisted Solutions for historical timber
analysis and grading

solutions for analysing wood knots to estimate the strength of historical timber, the
practical challenges in implementation, and the proposed improvements through an
AI-assisted system aimed at enhancing e”ciency, accuracy, and resource utilization.

AI-based image recognition techniques can further streamline the process by detect-
ing and mapping wood knots systematically. This allows for a more detailed analysis
of their impact on the wood’s load-bearing capacity, providing valuable insights into
potential structural weaknesses. The integration of measurement, calculation, and
analysis supports a data-driven approach to conservation, ensuring that the struc-
tural health of heritage architecture is assessed and preserved with greater accuracy
and e”ciency.

Figure 5: Ideal Output: Geometric representation of wood knot and its relative
position within timber boundaries
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The expected final output from the complete AI-assisted system shown in Figure
5 illustrates the geometric representation of a wood knot and its relative position
within the timber boundaries. The outer yellow dashed quadrilateral ABCD de-
fines the segmented timber boundary, with AB ↑ DC, AD ↑ BC, and potentially
AD↓AB. The red dashed rectangle mnop represents the bounding box of the de-
tected wood knot, with mn ↑ AD and op ↑ BC. The midpoint x of mn defines the
line xx↑, which satisfies xx↑↓mn ↑ AD, while the midpoint y of op defines the line
yy↑, which satisfies yy↑↓op ↑ BC.

To evaluate the e!ect of knots on the surface of the wood, the ratios RatioA = x
→
x

x→y→

and RatioB = yy
→

x→y→ are calculated to represent the relative geometric relationship of
the knot to the boundaries of the wood. These ratios provide normalised metrics
that help to quantify the position and orientation of the knot within the timber,
enabling further structural analysis. By standardising the position and size of the
knot relative to the dimensions of the wood, these ratios support comparative studies
between di!erent samples and facilitate predictions of the mechanical properties of
the wood.

2.2 Artificial Intelligence

2.2.1 Machine learning and deep learning

As a subfield of artificial intelligence, machine learning focuses on using statistical
methods (algorithms) to enable computer systems to learn patterns from data and
generalize these patterns to unseen data, allowing them to solve specific tasks. This
process relies on manual feature extraction. Humans define and extract key pat-
terns or textures in an image (e.g., shape, size of wood knots, etc.) and then feed
these features into the classifier to complete the classification task. This approach
can be achieved through various learning paradigms, including supervised learn-
ing, unsupervised learning, and reinforcement learning (Goodfellow et al., 2016).
In supervised learning, the system is trained on labelled data, where each input is
associated with a known output. In this way, the model establishes a relationship
between inputs and outputs and uses this to predict the outcome of new inputs.
In contrast, unsupervised learning works with unlabelled data, allowing the sys-
tem to identify hidden patterns or groupings in the data. Reinforcement learning
works di!erently, as the system interacts with the environment, receives feedback
in the form of rewards or punishments, and adjusts its actions over time to improve
performance.

In the early work of Gu et al. (2010), the researchers addresses wood defect classifi-
cation using Support Vector Machines (SVMs, Cortes and Vapnik (1995)), focusing
on a tree-structured classifier to di!erentiate between wood knots types. SVM is a
widely used supervised machine learning that classifies data by finding an optimal
line or hyperplane that maximises the distance between each class. The further
study Muhammad Redzuan and Yuso! (2019) expands the pre-processing pipeline
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and adds Local Binary Patterns(LBP, Ojala et al. (1994)) descriptor to captures
local contrasts and patterns on wood knots based on enhanced SVM method.

Figure 6: Workflow di!erences between machine learning and deep learning

Deep learning is a specialized subfield of machine learning that focuses on using
neural networks3 with multiple layers to automatically learn feature representations
from raw data. While traditional machine learning requires manual definition and
extraction of features, deep learning models learn these features directly during the
training process without human intervention. The Figure 6 shows the di!erences
between machine learning and deep learning in the context of wood knot detection
and classification tasks.

2.2.2 Convolutional Neural Network

The two primary deep learning frameworks used in this master thesis, YOLOv8
and Detectron2, are fundamentally based on Convolutional Neural Network (CNN),
which was initially introduced by LeCun et al. (1989) and further optimized in LeCun
et al. (1998). The basic CNN framework consists of an input layer, which receives
and preprocesses the raw data, followed by convolutional and pooling layers, which
work together to extract important features. A fully connected architecture is then
typically used to combine the learned features and produce the final classification
or prediction results, as shown in Figure 7. In the convolutional layers, the network

3A neural network (S. and Walter, 1943) refers to a computational model inspired by the
structure and function of the human brain, which consists of interconnected nodes (or “neurons”)
organized in layers and process information by simulating how biological neurons communicate.
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applies filters (convolution kernels) to the input data by sliding them over the image,
capturing important features locally across the input. The subsequent pooling layers
help reduce the spatial dimensions of these feature maps, keeping the most critical
information and minimizing computational load. Pooling also reduces the risk of
overfitting by preventing the model from learning overly specific details that may
not generalize well to new data.

Figure 7: Example of a typical CNN structure

2.3 Further AI-based methods in related fields

In the preliminary research, several further valuable studies have applied machine
learning methods to detect wood knots and other defects, o!ering notable insights
for this master thesis.

In Qayyum et al. (2016), the researchers propose to use texture features extracted
from the Gray Level Co-Occurrence Matrix (GLCM, Haralick et al. (1973)) as input
parameters for a feed-forward neural network trained using Particle Swarm Opti-
misation (PSO, Kennedy and Eberhart (1995)) to classify di!erent types of wood
defects, focusing on wood knots. The GLCM transforms images into a matrix rep-
resentation that captures spatial relationships between pixel intensities, providing
features like contrast, correlation, energy, and homogeneity. The PSO algorithm
optimises the weights and biases of the neural network by mimicking the behaviour
of a swarm, such as birds or fish, allowing the system to e”ciently converge to
an optimal solution for accurate defect classification. He et al. (2019) introduces a
Mixed Fully Convolutional Neural Network for locating and classifying wood defects
based on self-made dataset with defects like live knots, dead knots and cracks. As
shown in Figure 8 and Figure 9 the researchers collected 1200 original images with
defects and established two datasets with data augmentation that dataset 1 contains
117,091 images within 6 classes to classify the defects and dataset 2 contains 3227
defect images and corresponding masks under more accurate labelling to segment
the defects.

In 2020, Ding et al. (2020) integrates the DenseNet (Huang et al., 2017) into the
single shot MultiBox Detector(SSD, Liu et al. (2016)) to enhance the feature ex-
traction process and accelerate the e”ciency of detection on wood knots. Thanks to
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Figure 8: Six common wood defects and data augmentation of dataset 1, six common
wood defects: a. a dead knot, b. a live knot, c. blue stain, d. crack, e. brown
stain, f. pitch streak. Original images and same data augmentation method: 0.
original images, 1. rotated by 180◦, 2. diagonal flip with 45◦ diagonal, 3. vertical
mirror, 4. increased the hue by 0.09, 5. added Gaussian noise to image, and 6.
polar coordinates are transformed with coordinates (200, 200) as the centre of polar
coordinates.(He et al., 2019)

the innovative Dense Blocks, where each slice is directly connected to all previous
slices (Figure 10), DenseNet e!ectively reuses features and ensures e”cient gradient
flow, resulting in superior performance in various applications such as image clas-
sification, object detection and medical imaging, which is a potential deep learning
model to be used in the future researches.

Further studies, such as Gao et al. (2021), proposed a migration-based residual
neural network (TL-ResNet34) built on ResNet34 to improve the accuracy of wood
knots detection. Their study used a timber knot dataset from the University of Oulu,
consisting of 448 images of spruce knots. After data augmentation, the dataset was
expanded to include 1,885 training images, 636 validation images, and 615 test
images. As illustrated in Figure 11, the dataset contains seven classes, with Row A
representing the original images for each class and Rows B-G showing augmented
samples. Although their method achieved relatively high accuracy, this dataset does
not align with the specific characteristics of the target scenario in this master thesis.

In the meanwhile, the YOLO model family has also been widely applied in research
related to wood defect detection. In 2020, Liu et al. (2020) used an early version,
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Figure 9: Defect images and corresponding label images in dataset 2. In label images
after visualization, black means background, yellow means crack, green means live
knot, red means dead knot, blue means blue stain, light blue means pitch streak,
and purple means brown stain.(He et al., 2019)

Figure 10: A deep DenseNet with three dense blocks.(Huang et al., 2017)

YOLOv3, to automatically detect timber cracks. Later, Fang et al. (2021) employed
the enhanced YOLOv5 model to detect surface knots on sawn timbers (Figure 12).
While this research task is similar to the focus of this master’s thesis, it emphasizes
fresh wood material, and the characterization of wood knots does not translate
well to historical timber structures. Cui et al. (2023) implements Spatial Pyramid
Pooling (SPP, He et al. (2015)) also in YOLO V3 to enhance the model performance
on real-time wood defects detection.

Wang et al. (2023b) adds a novel Omni-Dynamic Convolution Coordinate Atten-
tion(ODCA, Li et al. (2022)) mechanism in YOLOv7 to enhance feature extraction
and small-target detection. Similarly, the paper by Wang et al. (2023a) introduces
a series of enhancements to the YOLOv8n model also aimed at improving the de-
tection of small defects in sawn timber surfaces using a tiny target detection head.
Further studies, such as the use of the improved YOLOv8 for automatic wood sur-
face defect detection Xi et al. (2024) based on the dataset provided by Kodytek
et al. (2021), have also demonstrated valuable impact.
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Figure 11: Samples collected by Oulu University with data augmentations

Figure 12: Sawn timbers samples used in Fang et al. (2021)

Research in related fields clearly shows that applying machine learning and deep
learning for the automated identification of wood knots on historic timber surfaces
presents significant challenges. The first challenge lies in the quality of datasets,
which must be tailored to the unique characteristics of historic wooden structures.
Another challenge involves optimizing various models and mechanisms to achieve
accurate performance in practical scenarios. In the next section, the dataset-building
process will be further elaborated, followed by a discussion of the methodology in
subsequent sections.
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3 Dataset

As shown in Figure 5, the detection of timber boundaries mainly depends on accurate
segmentation results, while the precise location of wood knots relies heavily on the
performance of detection models. Therefore, reliable and robust model performance
depends heavily on high-quality, standardized labelled datasets, which are essential
during the planning stages to e!ectively support the supervised learning process
of these deep learning models. Supervised learning uses these labelled examples
to train the model, guiding it to accurately recognise patterns and make informed
predictions based on previously seen data. This structured labelling ensures that the
model learns e!ectively, improving its generalisation and accuracy on new, unseen
data.

Figure 13: The mechanical system to capture wood surfaces by
Kodytek et al. (2021)

In the early research phase, it is crucial to focus on identifying publicly available
open-source datasets for general detection on wood defects. There are several avail-
able datasets like ”A large-scale image dataset of wood surface defects for automated
vision-based quality control processes” (Kodytek et al., 2021). As showed in Fig-
ure 13 the images within the above dataset are captured through a specially designed
mechanical construction combining conveyor belts and vertical cameras. The whole
dataset contains 992 images of sawn timber with no defects and 18,283 images of
timber with one or more surface defects, the whole collection is classified into 10
types of wood surface defects. The exported images (Figure 14) shows some la-
belled images with live knot, dead knot and knot with crack. An initial experiment
with this dataset was conducted, but the model’s performance was suboptimal when
applied to detect knots in historic timber structures. The likely reason is that the
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dataset comprises only new timber, and the labelled masks encompass not just knots
but also other surface defects like cracks.

Figure 14: Some samples with live knot, dead knot and knot with
crack from the datasets presented in Kodytek et al. (2021)

Therefore, due to the specific challenges of identifying wood knots on historical
timber structures, it is necessary to construct one or several reasonably applicable
datasets. The target dataset should include several notable features:

1. Su!cient Data Volume: To comprehensively evaluate and test the potential
models of varying complexity, it is imperative that the dataset be of substantial
size with annotated wood knots. The annotated data should also be extended
through data augmentation, which helps to increase the variability of the dataset,
simulate di!erent real-world scenarios and improve the robustness of the model.
The size of the dataset is critical to ensure that both simple and complex models
can be adequately trained without su!ering from overfitting or underfitting.

2. High-Quality Image: All data should be captured in high resolution to enable
precise extraction of visual features from the annotated areas. Image quality
is crucial for preserving fine details like texture, grain orientation, and surface
irregularities in wood knots. This clarity ensures that machine learning models
can accurately detect intricate patterns that may a!ect the structural integrity
of historical timber.

3. Variety in Scale: The data set needs to include wood knots of di!erent sizes,
ranging from small, barely noticeable knots to large, visually prominent knots.
Ensuring this diversity in scale is crucial for developing a model that can gen-
eralise across di!erent knot types and wood structures, which will better under-
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stand the scale invariance of features, allowing for more accurate detection in
di!erent historical contexts.

4. Variety in Environmental Conditions: Given the suboptimal lighting con-
ditions of historical timber structures, the dataset must include images captured
in various environmental settings. These structures may be poorly lit, with sur-
faces showing variations in texture, colour, and aging. Capturing images under
di!erent lighting conditions ensures the model’s adaptability to real-world chal-
lenges, allowing it to accurately detect wood knots despite shadows, reflections,
and uneven illumination common in historical preservation work.

3.1 Data Sources and Acquisition

3.1.1 Wood Workshop in Schweinfurt

Figure 15: Image capture setup with softbox and camera in Schweinfurt

A first step in the early stages of data collection was the collection of wood knots
from a timber workshop in Schweinfurt for the detection task, in collaboration with
the conservator and engineer. These were mainly dismantled wooden posts4, aver-
aging 3-5 metres in length and 10-15 centimetres in width, which had been removed

4A wooden post is a vertical structural element used to support the weight of a building or
structure, transferring loads from above to the foundation below.



3 DATASET 17

from the old historic wooden house. The old wooden house is now being rebuilt
into a wood workshop. Those timber posts were carefully selected based on their
historical significance and the presence of visible wood knots, which are crucial for
understanding structural weaknesses.

Figure 16: Perform color calibration prior to capture to standardize
color accuracy

To ensure high-quality and accurate images of the wood knots, a constant artificial
lighting setup was implemented using multi-angle soft boxes and stabilized light
sources. These soft boxes provided di!used, even lighting to eliminate harsh shadows
and glare, which are common obstacles when capturing fine details on wood surfaces.
A Nikon D850 DSLR camera equipped with a 100 mmmacro lens and a ring flash was
used throughout the capture process in Schweinfurt, resulting in an image resolution
of 8256 × 5504 pixels in RGB colour space. This setup allowed for high-resolution
images to be captured, accurately capturing the intricate details of the wood knots
under standard capture conditions.

Since the wooden posts to be captured were removed from the old historic wooden
house, they are all lying on the side of the intern room so that they can be captured
separately with the help of two support stands. With the lighting angle and camera
setup remaining the same, all the wooden posts were photographed individually from
an angle that was perpendicular to the ground(Figure 15). The process of capturing
these posts focuses on the specific characteristics of the knots, and therefore on
capturing at di!erent scales.
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Figure 17: Image captured inside roof structure in Schweinfurt

In addition to the workshop area, where stacks of wooden posts have been carefully
arranged, there is an adjoining wooden house that is also being rebuilt. The roof of
the house, a particularly valuable wooden contruction, consists of intricate wooden
beams5 and joints. Given the importance of preserving these architectural features,
the wooden joints in the roof and surrounding areas were meticulously photographed.
Using the same camera setup and ring flash as in the workshop, high-resolution
images were captured without softbox and the artificial light.

Due to the limited number of wood posts, combined with the need for high detail
and tightly controlled acquisition conditions, a total of 209 high-quality, fine-grained
images were captured from the available wooden posts. Approximately half of these
images focused on close-up details of the wood knots, while the other half captured
the wood posts on a larger scale, providing a comprehensive visual record of both
intricate textures and the overall structural features. Meanwhile, due to the fast
freehand photography used, about 589 images were taken in the roof space. Despite
the challenging lighting conditions within the roof structure, the images captured
are still extremely valuable(Figure 17). They contribute also significantly to the
standard dataset for timber knot detection and meet the targeted requirements for
quality and detail.

3.1.2 Dominican Church in Bamberg

Following the data collection in Schweinfurt, the Dominican Church in Bamberg
was selected as the next research site to expand the data set. This provided an
opportunity to gather results under real-life conditions and to test di!erent models
and strategies. The Dominican Church, originally built by the Dominican Order
before 1400, is located in the heart of Bamberg’s historic city centre, a UNESCO
World Heritage Site. With its medieval architectural features, the church reflects

5A timber beam is a horizontal structural element designed to support and distribute loads
across openings by transferring weight to vertical supports such as posts or walls.
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the craftsmanship and religious significance of the late Middle Ages. Its vaulted
ceilings, pointed arches and timber roof structure are characteristic of the period.
Since 1803, following secularisation, it has ceased to function as a church and is now
used as the Aula of the University of Bamberg. The building, which has undergone
several restorations, continues to be an important historical landmark and provides
an insight into the conservation and adaptive reuse of heritage structures.

In particular, the roof structure of Dominican Church(Figure 18) is of significant
historic and structural value due to the preservation of its original finishes. Thorough
conservation has ensured that most of the original timber framing remains intact,
with carefully applied structural reinforcements to maintain the stability of the roof.
These interventions have been carried out with minimal invasiveness, preserving the
authenticity of the original materials.The roof represents a well-preserved example
of medieval timber construction, making it an ideal subject for advanced analytical
studies.

Figure 18: Roof structure of the Dominican Church

The roof structure of the Dominican Church consists of two primary sections: a
small tower loft, containing around 20 large wooden timber structures available for
data capture, and a vast, cavernous main roof space. The tower loft also serves as
an exhibition space for visitors, with various displays on the history of the church
and the conservation methods used. Therefore, this space will be the main space for
data collection as it is more artificially lighted and suitable for collecting high quality
images with wood knots. In the main roof space, the timber framework serves as the
primary load-bearing structure for the historic roof, supporting its overall integrity.

In addition to the data collected from the roof of the Dominican Church, the initial
survey of the church and surrounding outbuildings included a preliminary collection
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of timber knot data from the roof structure of a nearby outbuilding. Although
the roof structure of this outbuilding lacks adequate lighting and no artificial light
sources were available during the initial survey, the data collected is still valuable.
Despite the rough quality, the wood knots are still discernible to the human eye and
have the potential to increase the variety and robustness of the final dataset. For
the initial survey, a half-frame camera NIKON D3400 with and a full-frame camera
Sony A7R IV were used to capture the entire wooden roof of the outbuilding at an
appropriate scale, with a focus on the surrounding context of the wooden structure.
A total of 552 images with a resolution of 4000 × 6000 pixels were captured using
the Nikon camera(Figure 19), while 615 images with a resolution of 4160 × 6240
pixels were captured using the Sony camera(Figure 20). All of these images will be
added to the main dataset of the church’s roof structure and have undergone the
same subsequent processing as the primary data collection.

(a) (b)

Figure 19: Original images from the outbuilding using NIKON D3400

(a) (b)

Figure 20: Original images from the outbuilding using Sony A7R IV

Returning to the main roof structure of the Dominican Church, the primary data
were captured through multiple stages due to the design of the complete workflow
for detecting wood knots on the historic timber surface, each aligned with practical
application requirements. Further details on the practical application will be pre-
sented in Section 4, which covers the applied methods. In the room of the tower loft,
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there are about 296 original images for the detection task, which were taken with
NIKON D3400 following the similar guideline of the capture process in Schweinfurt,
that the wood knots were taken in close range to obtain precise details of the knots
and its surrounding wooden surface(Figure 21). Despite the fact that the room was
illuminated and the camera was equipped with a ring flash, the reflection of light on
the surface of the wood continues to vary from one area to another. The resulting
images have a more pronounced light and dark character on wood knots, which also
simultaneously meet the previous definition of an ideal dataset so that the model
can learn features under more diverse conditions.

(a) (b)

Figure 21: Close-range capture on wood surface in Dominican Church using
NIKON D3400

Meanwhile, due to the need for wood segmentation in the early stage of the workflow
(Section 4.2), additional images were acquired specifically for timber segmentation.
For this acquisition, the 3D Scanner App, installed on an iPhone 13 Pro Max, was
used. The goal is to eventually run the entire workflow on low-cost devices, and the
segmentation task focuses on isolating the main timber surfaces from unnecessary
surrounding areas. The use of this application and the iPhone ensures more consis-
tent results, as the capture conditions remain uniform across various data sources.
The app leverages the iPhone’s built-in sensors to capture data in multiple formats,
such as images and point clouds, using LiDAR or photogrammetry method. As a
result, 820 images at a resolution of 3024 × 4032 were taken in the tower loft on
a larger scale (Figure 22), with each image capturing both the main target timber
surface and adjacent connected timbers.

The process described above outlines the collection of raw data used for training
the machine learning and deep learning models in this thesis. In addition to the
previously mentioned data, a substantial amount of supplementary data, including
images of timber knots, was collected from the main roof structure of the Dominican
Church. This additional dataset will serve as test data to evaluate the performance
of the trained models and their combinations. Moreover, this data will provide a
foundation for future research. Approximately 1,500 images (Figure 23), captured
using the same 3D Scanner App installed on an iPhone 14 Pro, will be processed
and utilized in the continuation of this study. Unlike the earlier raw images, this
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(a) (b)

Figure 22: Timber structures captured through the 3D Scanner
App for segmentation task

dataset was captured at an unsystematic scale, containing both close-up images of
wood knots and wider shots of the timber structures, enabling a more comprehen-
sive analysis. This also implies further classification and processing steps will be
necessary to organize the data e!ectively for subsequent stages of the workflow.

(a) (b)

Figure 23: Close-range images captured through the 3D Scanner App

3.1.3 Summary of whole acquisated raw data

As outlined in the acquisition process, the entire set of captured raw data is summa-
rized in Table2. For the detection task, a total of 3,725 raw images were collected
through a variety of equipment, at di!erent scales of knots and under di!erent light-
ing conditions, out of which 2,225 images will be processed, and the wood knots in
these images will be manually annotated. As previously mentioned, the remaining
1,500 images will be reserved for the final testing of the model’s performance and
will be handled in subsequent steps. For the segmentation task, 820 raw images
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are available, which will also be standardised and manually annotated for model
training.

Table 2: Summary of Collected Data

Location Device Images Resolution Task Description

Schweinfurt
Workshop

Nikon D850 209 8256×5504 Detection

Close-ups and
large-scale images of
wooden posts and
knots

Roof Space
(Freehand)

Nikon D850 589 8256×5504 Detection
Freehand capture of
roof space for
detection tasks

Outbuilding
Roof

Nikon
D3400/Sony
A7R IV

552/615
4000×6000/
4160×6240

Detection
Images of the
outbuilding’s timber
roof

Dominican
Church – Tower

Loft
Nikon D3400 296 4000×6000 Detection

Close-ups of wood
knots in the tower loft

Dominican
Church – Roof

Space

iPhone 13 Pro
Max

820 3024×4032 Segmentation
Timber surface
segmentation using
3D Scanner

Dominican
Church – Main

Roof
iPhone 14 Pro 1,500 3024×4032 Detection

Mixed close-ups of
knots and large-scale
timber structure
images

Note: The resolution is represented as width × height in pixels.

3.2 Data Processing

After data acquisition, the images from each sub-collection, captured across di!erent
phases and for di!erent tasks, must be standardized to ensure consistent conditions.
For the detection task, this standardization process facilitates the integration of
data from multiple sources, thus expanding the overall dataset. Additionally, it
enables a comparative evaluation of model performance when using the combined
dataset versus data from individual sources. Similarly, the smaller dataset for the
segmentation task will be standardized, though with di!erent criteria and baselines
tailored specifically to the requirements of the segmentation task.

3.2.1 Data standardisation

In general, all raw images collected for both detection and segmentation tasks were
converted to JPG format and underwent a manual filtering process to select those
that clearly depicted distinctive wood knots or similar timber structures with the
target surface and its surroundings. Images were assessed based on the visibility
and clarity of the wood features, ensuring that only those with well-defined knots



3 DATASET 24

or comparable structural elements were retained for further analysis. Images with
minor focus imperfections were retained if the wood knots remained su”ciently
recognizable to the human eye.

The next step involves adjusting the filtered samples for detection task to an appro-
priate size that contains the ideal wood knots. Due to di!erences in capture scales,
each sub-collection will be processed separately. Collections containing close-range
images of wooden knots will be cropped into a square format, while collections with
larger-scale images will first be divided into several smaller sections and then further
filtered to obtain optimal samples. For instance, in the case of the extensive dataset
collected from the roofs of the outbuilding of Dominican Church, the images were
segmented from their original size into smaller tiles at a resolution of 640 ↔ 640, re-
sulting in a total of 3,767 tiles. This process was followed by an automatic selection
step using a brightness threshold filter to ensure that only samples meeting the min-
imum brightness requirement were retained, meaning images with lower threshold
values, containing excessive dark areas or lacking visible wood knots, were discarded.
After this automated process, all selected tiles were manually re-examined to ensure
that the final set of smaller clips were suitable for further use in model training
(Figure 24). For the unique collection for the segmentation task, the image size
will remain unchanged as the annotation for segmentation requires highly accurate
labelling and the image should preserve the original characteristics of the image.

(a) (b) (c) (d) (e)

Figure 24: Segmented tiles from the images captured in outbuilding

Although all the images were processed into a square format, the sizes of the images
in each sub-collection still vary. However, at this stage, the sizes will not be further
standardized. Instead, the data will be annotated based on the segmented images
from the original samples. This approach helps preserve the original characteristics
of the images to some extent and allows for flexibility in adapting input sizes for
di!erent models if needed.

3.2.2 Data annotation and augmentation

For data annotation and subsequent augmentation, the online platform Roboflow
was used to annotate each sub-collection individually, with di!erent tasks for seg-
mentation and detection assigned to the corresponding sub-collections. Roboflow is
a dataset management and annotation platform dedicated to computer vision tasks,
providing researchers with a set of tools to process, annotate, augment and manage
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image datasets. It also provides access to various public datasets uploaded by other
users through its Roboflow Universe platform. All sub-collections were individually
imported by Roboflow into a workspace according to the di!erent task. For the de-
tection task, once the sub-collections were imported into the workspace in Roboflow,
the primary class for the detection task was established as ”wood knot”. For each
sample, manual annotations were carried out, with bounding boxes used to label
the wood knots. In cases where wood knots overlapped or were close to complex
textures, extra care was taken to distinguish the knots from the surrounding features
in order to maintain the accuracy of the bounding box annotations. This thorough
approach was crucial to maximise the quality of the dataset and ensure that the
subsequent detection models could be trained on reliable, high quality labels. For
the segmentation task using the individual sub-collections, two classes were created
with ’main beam’ and ’side beam’6 to represent the target to detect the main surface
and its surrounding wood surface.

After the annotation was completed for each sample, the annotated data was saved
in a separate space for further processing. Once all samples in an individual sub-
collection were fully annotated, Roboflow’s “Generate” function was used to create
datasets tailored to specific requirements. This feature allows users not only to ex-
port the dataset with basic transformations, such as scaling from image dimensions,
but also to apply various data augmentation techniques to expand the dataset and
improve model performance (Figure 25).

For the wood knot detection task, the data augmentation strategy generates two to
three variants of each training sample. This is achieved by applying a ±15° shear
transform in both horizontal and vertical directions, adjusting luminance between
-50% and +50%, and adding noise to 5% of the image pixels. These augmentations
increase the dataset’s diversity, enabling the model to learn the characteristics of
wood knots under varying angles, lighting, and noise conditions, thereby enhancing
the model’s generalization and robustness.

For the timber surface segmentation task, only luminance adjustments between -59%
and +59% and noise to 2% of the image pixels are applied. This is because segmen-
tation tasks require precise edge and shape information, where excessive transfor-
mations could distort the object boundaries and degrade model performance.

As well as o!ering various data augmentation methods, Roboflow also provides the
option of automatically splitting the dataset into training, validation and test sets
based on specified percentages. In this work, all datasets were split into training,
validation and test sets using the following percentages: 80%-10%-10%.

6The segmented results include both wooden beams and wooden posts. For the sake of simplicity
and consistency, all such structural elements are referred to as ”wooden beams” in the following
texts, encompassing both vertical (posts) and horizontal (beams) wooden components.
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Figure 25: Interface of roboflow for data augmentation and export

3.2.3 Resulted Datasets

After the data formatting, normalisation and export steps, five datasets were finally
generated, namely Det-sf-v1, Det-dominik-v1, Det-dominik-v2, Det-dominik-v3, and
Seg-dominik-v1. These datasets support both detection and segmentation tasks, as
summarized in Table 3 below:

The Det-sf-v1 dataset, constructed from 640 annotated images with bounding boxes
captured in a standardized lighting environment at a wood workshop in Schweinfurt,
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Table 3: Summary of Established Datasets

Dataset Original annotations Amounts with data augmentation Resolution Task

Det-sf-v1 640 1536 640×640 Detection

Det-dominik-v1 632 2202 640×640 Detection

Det-dominik-v2 290 870 640×640 Detection

Det-dominik-v3 - - 640×640 Detection

Seg-dominik-v1 584 1330 1024×1024 Segmentation

Note: The resolution is represented as width × height in pixels.

was augmented to 1536 samples. This dataset, depicted in Figure 26, is tested
independently due to its standardized lighting conditions.

(a) (b) (c) (d) (e)

Figure 26: Data samples from dataset Det-sf-v1

The Det-dominik-v1 dataset, consisting of 631 annotated samples captured from
the outbuilding roof, was expanded to 2202 images through data augmentation, as
shown in Figure 27. Similarly, Det-dominik-v2 was created from 290 annotated
images captured in the tower loft and augmented to 870 samples, as illustrated in
Figure 28.

(a) (b) (c) (d) (e)

Figure 27: Data samples from dataset Det-dominik-v1

The further-captured data from the main roof, although standardized, has not yet
been labelled. This dataset, named Det-dominik-v3, will be used in future inspection
tasks and was included in the final testing stage to evaluate the performance of the
overall workflow which shown in Figure 29.

The only dataset dedicated to segmentation tasks is Seg-dominik-v1. It contains
584 annotated samples and is extended to 1330 samples. It focuses on wood surface
segmentation, with two classes: main beam and side beam(Figure 30), designed to
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(a) (b) (c) (d) (e)

Figure 28: Data samples from dataset Det-dominik-v2

(a) (b) (c) (d) (e)

Figure 29: Data samples from dataset Det-dominik-v3

distinguish the target wood surface from the surrounding areas. The higher resolu-
tion of 1024×1024 ensures accurate boundary segmentation, allowing the model to
accurately detect and locate knots and defects in the wood.

(a) (b) (c) (d) (e)

Figure 30: Data samples from dataset Seg-dominik-v1

In summary, the datasets Det-sf-v1, Det-dominik-v1 and Det-dominik-v2, all con-
taining annotated samples, were used to test the primary detection pipeline. While
Det-sf-v1 was tested individually, all three datasets were later combined to fur-
ther evaluate model performance on mixed datasets. The Det-dominik-v3 dataset
is used to test the performance of detection models in unfamiliar samples. The
Seg-dominik-v1 dataset is used to train and validate the segmentation model.
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4 Methodology

This chapter outlines the methodology used to detect wood knots in historic timber
structures. As already shortly mentioned in chapter 3, the whole process integrates
several key stages, including image pre-processing(segmentation), perspective cor-
rection and detection.(Figure 31) The primary objective is to ensure accurate de-
tection and classification of wood knots using advanced machine learning and image
processing techniques. By addressing various challenges such as image inconsisten-
cies, distortions and complex backgrounds, the proposed workflow aims to deliver
reliable results that contribute to the broader task of preserving and analysing his-
toric timber structures.

The following sections provide a detailed explanation of each stage in the work-
flow, along with in-depth introductions to YOLOv8 and Detectron2, including the
corresponding mathematical descriptions throughout the model processes.

4.1 General workflow

Ideally, the system will prioritise intact wood surfaces collected from either vertical
or horizontal orientations, deliberately excluding areas close to wood joints. The in-
herent complexity of wood joints poses a challenge to the current detection system,
making these regions di”cult to process accurately. Despite this limitation, ad-
dressing the intricacies of wood joints remains a critical area for future research and
development to improve the robustness of the system and extend its applicability.

Figure 31: General workflow for AI-assisted detection on wood knots (Higher reso-
lution in Appendix C)

To further focus on non-standard characteristics in the input images, such as vari-
ations in shooting angles and inconsistencies in the original input, preprocessing is
essential to ensure uniformity. This step is critical for achieving more consistent and
reliable results in the subsequent detection stage, ultimately improving the overall
robustness of the process. The first step involves applying a segmentation model
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to segment the entire input image, e!ectively dividing the wooden timber structure
into multiple regions. For the segmentation task, the state-of-the-art deep learning
framework Detectron2 and YOLO (you only look once) are used in experiments
within the unique dataset established for wood segmentation. Although the YOLO
model is widely known for its powerful detection capabilities, this study also tested
its performance in a segmentation task due to the convenient method it provides.
The results include both the primary area of interest, where the wood knots are
located, and the surrounding surfaces.

(a) (b) (c)

(d) (e)

Figure 32: Example test and outputs according to the pipeline in Figure 31 from
stage 1 to stage 3.
a:Original input image; b:Image with segmented timber surface (Stage 1); c:Image
with segmentation polygon (Stage 2); d:Perspectively corrected image (Stage 2);
e:Image with detected knot (Stage 3)

After segmentation, the boundary of the target area is simplified from a complex
polygon to a quadrangular polygon, so that the image can be further applied by
perspective transformation according to the quadrants. This transformation corrects
distortions caused by the original image’s viewpoint, ensuring that the target region
is properly aligned. Perspective correction is crucial for tasks requiring geometrically
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consistent input data, as it standardizes the representation of the target object,
enhancing the accuracy and reliability of detection in subsequent stages.

Next, the image is processed through the primary detection pipeline using the pre-
selected YOLO model. This model was chosen as a comparatively better option
based on prior experimentation, where di!erent versions of the YOLO model, vary-
ing in size and capacity, were trained and tested. These versions were evaluated on
multiple datasets, comparing their accuracy, recall, and detection speed. After a
comprehensive comparison, the model with relatively superior performance across
these metrics was selected for the detection stage.

In this stage, the detection process specifically focuses on identifying wood knots
in historical timber structures. The selected model was fine-tuned based on exten-
sive experimentation with the collected data, as described in the previous section.
Achieving accurate detection of wood knots is crucial for the subsequent assessment
of the timber’s condition, providing key data that supports further analysis and
future conservation e!orts.

Once the wood knots are detected, the final bounding boxes are combined with the
perspective-transformed polygon representing the target region. This step calculates
the ratio between the detected knots and the corresponding surface area of the
wood, adjusted for perspective distortion. The resulting ratio provides essential
information for assessing the condition of the timber, classifying the wood, and
recommending appropriate preservation methods.

This multi-step process, from image segmentation to post-recognition refinement, is
carefully designed to enhance the precision and e”ciency of wood knots detection
within the target regions of historical timber structures. By addressing challenges
such as geometric distortions and complex backgrounds, the approach ensures that
the detection system remains robust in a variety of real-world scenarios. The in-
corporation of perspective correction, along with the accurate selection of target
areas, guarantees that the recognition model operates with consistent, high-quality
input data. This refined workflow significantly improves the accuracy of wood knots
identification and provides critical data for subsequent analyses, such as assessing
timber condition and informing conservation strategies.

As outlined in the previous section on the general workflow, two deep learning frame-
work/model were employed to accomplish the segmentation and detection tasks.
The choice of model depended on the complexity of the model structure and the
specific requirements of each task. Detectron2 was primarily used for training and
testing in the segmentation task during the preprocessing of input images, while
YOLO was also explored in a limited number of experiments for comparison pur-
poses. For the primary detection pipeline, YOLO will be primarily experimented
with due to its lightweight model architecture and fast one-shot detection. It also
o!ers the potential to realise real-time detection in the future or to be integrated on
low-cost devices such as the iPhone.
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4.2 Detectron2

4.2.1 Introduction

Figure 33: Mask R-CNN, He et al. (2017)

Detectron2(Wu et al., 2019), which is based on a modular and flexible framework,
can be implemented with several state-of-the-art models such as Faster R-CNN(Ren
et al., 2015) model and Mask R-CNN(He et al., 2017) model. The employed models
based on the initial R-CNN(Region-based Convolutional Neural Networks, Girshick
et al. (2016)), which can be implemented with a two-stage process to classify the
objects. First, it extracts regions of interest (ROIs) from the input image using
selective search(Uijlings et al., 2013). These ROIs are then further classified using
convolutional neural networks to compute relevant features(Figure 34). Thanks to
its region-based classifier, the early R-CNN model performances competitively in
object detection task.

Figure 34: R-CNN, Girshick et al. (2016)

The Mask R-CNN models, primarily used in the Detectron2 model zoo for instance
segmentation, were tested and applied to segment target timber surfaces during the
preprocessing stage of input images. Compared to the earlier Faster R-CNN model,
which focuses solely on object detection, Mask R-CNN enhances instance segmen-
tation by incorporating an additional fully convolutional network (FCN) applied
to each region of interest (ROI).(Figure 33) This additional network enables Mask
R-CNN to predict precise pixel-level segmentation masks for each detected object,
o!ering significantly more granular control and accuracy over object boundaries.
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This improvement is particularly beneficial for segmenting complex structures, such
as wood knots and surface details, where fine pixel-level accuracy is crucial for
subsequent analysis. The ability to accurately delineate object contours at the pixel
level greatly enhances the quality of segmentation results, making it an ideal choice
for tasks requiring high precision.

Figure 35: Schematic architecture of Detectron2, Ackermann et al. (2022)

4.2.2 Model structures

In the general framework of Detectron2 like the example in Figure 35, the process
starts with a backbone network, typically using models such as ResNet (He et al.,
2016) or ResNeXt (Xie et al., 2017), to extract features from the input image.
ResNet primarily uses several residual blocks (Figure 36) to propagate both the
features extracted through convolutional kernels and the original features to deeper
layers in the network.

Figure 36: Residual block, He et al. (2016)

Assuming the input image is I → RH→W→3, the Stage 1 contains only a convolutional
layer followed by a pooling layer without residual block to extract the initial feature
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maps. Normally, a large filter (e.g. 7↔7) will be applied to quickly reduce the spatial
dimensions while capturing initial feature information. The following features can
be obtained in successive steps from the residual blocks in ResNet:

F2 → RH

4 →W

4 →C2 , for Stage P2

F3 → RH

8 →W

8 →C3 , for Stage P3

F4 → RH

16→
W

16→C4 , for Stage P4

F5 → RH

32→
W

32→C5 , for Stage P5

through the following convolutional calculation:

Fi,j,k =
∑

Ii+m,j+n,c ·Wm,n,c,k

where Ii+m,j+n,c is the pixel values of the input image at position (i + m, j + n),
Wm,n,c,k is the value of the convolutional kernel at position (m,n), for the c ↗ th
input channel, applied to produce the k ↗ th output channel. Roughly speaking,
the residual block of the ResNet will process the input features according to the
following equation:

y = F (x,Wi) + x

where x is the input features(I) from the previous layer, F (x,Wi) represents the
output of the residual block, which consists of convolutional layers parameterized by
weights Wi. This enables the network to propagate both the extracted and original
features to deeper layers, thereby facilitating the training of deeper networks by
mitigating issues such as vanishing gradients.

The features extracted from each block of the backbone network are fed into a
Feature Pyramid Network (FPN), which combines them to generate multi-scale
feature maps. These multi-scale feature maps enable the model to detect objects
of varying sizes. The FPN utilizes an up-sampling mechanism to compute feature
maps for higher-resolution inputs, which means the FPN process operates in the
reverse direction compared to the backbone architecture. The following equation is
used to compute the feature maps:

Pl = Fl + UpSample(Pl+1)

where Fl represents the features extracted from the corresponding layer of the
ResNet, while Pl+1 is the feature map from the previous (higher-level) FPN layer.
Accordingly, the feature maps for di!erent stages of the residual network are com-
puted as follows:

P5 = F5, for Stage P5
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P4 = F4 + UpSample(P5), for Stage P4

P3 = F3 + UpSample(P4), for Stage P3

P2 = F2 + UpSample(P3), for Stage P2

Typically, the P1 stage, which corresponds to the original resolution of the input
image, is not computed. Since the purpose of the FPN is to address the challenge of
multi-scale feature fusion, the P1 tends to contain redundant low-level information
and lacks strong semantic features. Therefore, starting the FPN from P2 ensures a
better balance between spatial resolution and semantic richness in the feature maps.

Next, a Region Proposal Network (RPN) utilizes features from both the last layer of
the backbone and the multi-scale feature maps generated by the FPN at each stage
to propose candidate regions that may contain objects. The RPN use k anchors
(typically 9 anchors per location, with various sizes and aspect ratios) to generate
a set of bounding box Bi → Rk→4, where k represents the number of anchors (or
candidate bounding boxes) defined by the coordinates (xmin, ymin, xmax, ymax).

For each anchor, the RPN predicts whether the anchor contains an object using the
following equation:

p̂i = ω(Wcls · Pi), p̂i → R1,Wcls → R1→d

where Wcls is the weight matrix for the classification layer in RPN and Pi represents
the feature vector for the corresponding anchor. The anchor is likely to contain an
object when the predicted value p̂i approaches 1. A sigmoid function ω is applied
to output a binary classification result.

In parallel, the RPN also performs bounding box regression to refine each anchor’s
coordinates. The bounding box adjustments are computed using the following equa-
tion:

t̂i = ω(Wbbox · Pi), t̂i → R4,Wbbox → R4→d

where Wbbox is the weight matrix for the regression layer in RPN and t̂i represents
the refined bounding box coordinates. The goal of this step is to accurately adjust
the candidate anchor’s bounding box to better fit the object. Finally, the RPN
applies non-maximum suppression (NMS) to filter the bounding boxes and retain
the top 1000 proposals with the highest likelihood of containing objects.

Following the region proposals, a ROI head processes each candidate region us-
ing the candidate bounding boxes B1, B2, . . . , BN and the multi-scale feature maps
P2, P3, P4, P5. Since the feature maps are extracted at various scale, so it is necessary
to align the size of those feature maps so that each candidate region can have the
corresponding feature map. This alignment step can be applied using the following
equation with bilinear interpolation:
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V (x, y) =
1∑

i=0

1∑

j=0

wij · P (xi, yj)

where the coordinate (x, y) represent the interpolated result within the feature map
of the candidate region, xi, yj are the nearest pixel coordinates in the feature map
and wij are the interpolation weights.

Within the ROI head, a box prediction branch (Box Head) predicts the class and
bounding box of the detected objects. The class prediction layer uses Softmax to
predict the class of each aligned feature Falign,i using the following equation:

p̂i = Softmax(Wcls · Falign,i), p̂i → RN→K ,Wcls → RK→d

where Wcls is the weight of the classification layer in ROI head and Falign,i represents
the i-th feature from the whole aligned feature maps Falign. The predicted bounding
boxes t̂i are obtained through following bounding box regression:

t̂i = Wbbox · Falign,i, t̂i → RN→4,Wbbox → R4→d

where Wbbox is the weight matrix of the bounding box regression layer in the ROI
head, which provides a more precise adjustment of the predicted bounding boxes
compared to the regression performed in the RPN.

In the meanwhile, the aligned feature maps Falign will be applied not only through
the box head but also through a mask head which can generate segmentation masks
for objects based on these feature maps in pixel-level. For the target feature Falign,i,j

in position (i, j), a convolutional kern will be applied through the whole feature
maps to calculate the weighted sum according to the size of kern size. The following
equation shows the resulted mask:

Maski,j = ω(
∑

m,n

Falign,i+m,j+n ·Wmask)

where Wmask is the weight of mask prediction layer in ROI head. The m,n are the
row and column o!sets used in the convolution operation to access nearby features
relative to the centre position (i, j).

4.2.3 Short summary

From the above introduction, it is clear that Detectron2’s architecture is highly
flexible, allowing for modular customization of di!erent components, such as the
backbone or ROI heads. The Detectron2 model zoo o!ers various pre-trained models
tailored to di!erent tasks, such as object detection using Faster R-CNN or RetinaNet
(Lin et al., 2018) as detection heads. This flexibility also provides models of varying
complexity and size, catering to diverse requirements and use cases.
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On the other hand, due to its two-stage structure, the training and inference pro-
cesses of models like Faster R-CNN are typically slower compared to single-stage
models such as YOLO. As a result, Detectron2 is often used for professional tasks,
such as medical image segmentation, where accuracy is a higher priority. However,
the modular structure of Detectron2 can be challenging for beginners to configure,
requiring a solid understanding of the overall model architecture, even though Meta
AI provides detailed tutorials for training on custom datasets.

Therefore, Detectron2 is mainly used in the pre-instance segmentation part of the
overall workflow, which helps to identify the boundaries of the target wood surface.
This step requires high accuracy to ensure accurate segmentation of the wood sur-
face, which is critical for subsequent perspective transformation and further wood
knots detection. Meanwhile, YOLO was also used to perform some tests for the
pre-segmentation, which will be further explained in the following sections on the
YOLO model and the corresponding experiments.

4.3 YOLOv8

4.3.1 Introduction

Compared to the two-stage region-based segmentation framework of Detectron2,
the YOLO framework featured a noticeably lighter structure, which employs a sin-
gle convolutional neural network to detect objects and predict their locations and
classes simultaneously. The original YOLO model (Redmon et al., 2016) divides the
input image into a S ↔ S grid, where each grid cell is passed through 24 convolu-
tional layers followed by 2 fully connected layers to detect objects within a single
grid cell(Figure 37). This structure transfers the detection problem to a single neu-
ral network regression problem. This approach reframed the detection task as a
single neural network regression problem. While this model achieved faster recog-
nition speeds than alternatives like R-CNN, its accuracy and multi-object detection
performance were suboptimal.

Figure 37: Process for gridding the input by YOLO, Redmon et al. (2016)
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In this thesis, the focus will be on YOLOv8, which was released in early 2023 and
follows a framework similar to Detectron2. YOLOv8 maintains a balance between
speed and accuracy with a streamlined architecture. However, in 2024, two notable
improvements to the YOLO framework emerged: YOLOv9(Wang et al., 2024b),
which integrates Vision Transformers (Dosovitskiy et al., 2021) to enhance feature
representation across the network, and YOLOv10(Wang et al., 2024a), which in-
troduces a dual-pathway approach (”one2one” and ”one2many”) to improve both
individual object and multi-object detection. Despite these advancements, YOLOv8
continues to o!er a fast and simplified approach, delivering stable performance for
many applications.

4.3.2 Model Structures

The architecture of YOLOv8 consists of three key modules (Figure 38): the Back-
bone, which extracts features from the input image at multiple scales; the Neck,
which aligns the feature maps across the di!erent stages; and the Prediction Head,
which classifies the target and regresses the bounding boxes. While maintaining a
streamlined structure like its predecessors, YOLOv8 introduces enhancements that
significantly improve both speed and accuracy.

Assuming the input image is I → RH→W→3, which is normaly in 640 ↔ 640 res-
olution, the feature extraction process involves progressively down-sampling and
feature propagation through multiple convolutional layers, which can be expressed
mathematically as follows:

Fi,j,k =
∑

Ii+m,j+n,c ·Wm,n,c,k

where Ii+m,j+n,c represents the input pixel at position (i+m, j+n) and Wm,n,c,k rep-
resents the convolutional kernel applied to the corresponding input feature channel.
Unlike the ResNet backbone typically used in Detectron2, YOLO adopts a custom
CSPDarknet53 backbone, which was initially introduced in YOLOv3 for feature ex-
traction as Darknet-53(Redmon and Farhadi, 2018)). The cross-stage feature fusion
in CSPDarknet53 allows the network to retain richer and more reliable informa-
tion across layers while maintaining computational e”ciency. A key innovation in
CSPDarknet53 is the C2f (Cross Stage Partial with Focused Fusion) module, which
serves as an optimized component of the architecture. The C2f module enhances
the network’s ability to balance feature retention and computational e”ciency by
focusing on selective feature fusion.

While both CSPDarknet53 and ResNet employ skip connections, they handle fea-
ture fusion di!erently. ResNet uses residual connections, where the output of the
convolutional layer is summed with the original input features. This additive op-
eration simplifies the learning of residual mappings and helps to solve the gradient
vanishing problem, but it does not preserve the original features as explicitly as
CSPDarknet53 does. CSPDarknet53 splits the input features into two parts: one
passes through the convolutional layers, while the other bypasses them. The two
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Figure 38: Detailed structure of Yolov8, King (2023)

output features are then merged using concatenation as the final export features,
which can be expressed as:

FCSP = Concat(Fconv, Fskip)

Then in the Backbone stage, the output F1, F2, . . . , F5 at various scales can be
represented as:

F1 → R320→320→C1

F2 → R160→160→C2
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F3 → R80→80→C3

F4 → R40→40→C4

F5 → R20→20→C5

These multi-scale outputs from the Backbone are then passed through the Neck
structure. In this stage, lower-resolution feature maps are upsampled to align with
the higher-resolution maps to ensure that multi-scale features are integrated e!ec-
tively. The upsampling process can be expressed as:

Pup = UpSample(Flow)

After upsampling, the feature maps are concatenated with the corresponding higher-
resolution feature maps to align features from both low and high resolutions, which
enhances detection performance:

Pcon = Concat(Pup, Fhigh)

In YOLOv8, the outputs from the stages P3, P4, P5 after feature alignment in the
Neck will be further passed to the Detection Head. These multi-scale feature maps
are crucial as they provide plenty of information across di!erent resolutions, en-
hancing object detection for both large and small objects. Unlike the anchor-based
structure used in Detectron2, YOLOv8 adopts an anchor-free approach for predict-
ing the bounding box, class, and confidence level of the detected object.

For each target, YOLOv8 predicts the bounding box using the following parameters:

b̂i = (xi, yi, wi, hi)

where (xi, yi) represents the coordinates of the target’s centre point in the feature
map. These coordinates are calculated by predicting the o!set(tx, ty) relative to the
upper-left corner of the grid cell(xgrid, ygrid):

xi = ω(tx) + xgrid, yi = ω(ty) + ygrid

and (wi, hi) are the width and height of the target, expressed as a ratio(tw, th)
relative to the predefined image dimensions (pw, ph):

wi = pw · exp(tw), hi = ph · exp(th)

For each predicted bounding box, YOLOv8 uses a classification layer to predict the
class of the detected object:

p̂i = Softmax(Wcls · Pi), p̂i → RK
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where Wcls is the weight matrix for the classification layer, and K is the total num-
ber of classes. The softmax function ensures that the model outputs a probability
distribution over the possible classes for each detected object.

Thus, the confidence score of the predicted object, which indicates the likelihood
that an object is present in the predicted bounding box, can be calculated using the
wight matrix Wconf as:

ĉi = ω(Wconf · Pi)

Where Pi represents the feature vector for the corresponding bounding box. This
confidence score helps determine the final detection by filtering out low-confidence
predictions.

Based on the detection structure in YOLO, the segmentation model YoloSeg shares
a similar architecture in both the backbone and neck. However, instead of solely
relying on the detection head, Yoloseg introduces an additional Mask Branch over
the detection head, specifically designed to generate segmentation masks for the
detected objects directly. This Mask Branch outputs pixel-level masks for each
object in addition to the bounding boxes and class predictions from the detection
head.

4.3.3 Short summary

Thanks to its one-stage feature extraction and object detection pipeline, YOLOv8
is ideal for real-time applications, such as processing video frames captured by a
camera. It can also be integrated into low-cost devices with limited processing
power, like smartphones, making fast and convenient detection processes feasible
for future applications. In general, it is also computationally e”cient due to its
global prediction of all bounding boxes simultaneously within the entire image and
the single forward pass through the entire network.

However, YOLO does have some limitations. It may struggle with accurately local-
izing small objects, as the grid system used for predictions assigns a fixed number
of bounding boxes. Small objects that span across multiple grid cells can be ignored
or poorly detected. Additionally, compared to models like Faster R-CNN, YOLO
tends to produce less precise bounding boxes, particularly for objects with irregular
shapes. Another challenge arises when YOLO encounters objects with aspect ratios
that di!er significantly from those it has been trained on, leading to suboptimal
detection results even for objects that appear similar to human vision. This aspect
ratio sensitivity remains a valuable issue to be addressed and will be further explored
in the analysis of the experimental results.

In summary, the single-pass detection mechanism of YOLO makes it one of the
fastest object detection models available. O”cial documentation highlights its bal-
anced performance in terms of accuracy and speed. Further optimizations of the
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YOLO architecture, specifically tailored for detecting wood knots on historical tim-
ber surfaces, are possible. For instance, adding additional detection heads to track
biological features along the growth of wood knots could enhance its e!ectiveness in
such specialized tasks.
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5 Experiments

The experiments using the deep learning frameworks Detectron2 and YOLOv8 will
focus on two main stages of the workflow: segmentation of the target timber surface
and the primary detection pipeline for identifying wood knots. As introduced in
Section 3, one dataset for segmentation task and three basic datasets for detection
task will be employed in the experiments. Additionally, the performance of both
the segmentation and detection models will be tested on an additional unanno-
tated dataset, which contains images captured from the main roof of the Dominican
church.

The evaluation standards for these experiments will include various loss functions
and performance metrics, such as accuracy, precision, and recall, along with visual
inspection of the results. The goal of these experiments is to comprehensively assess
the strengths and weaknesses of the models through both quantitative and qualita-
tive analyses on the collected dataset. Additionally, these evaluations will serve as
a reference point for subsequent in-depth optimizations, providing a benchmark for
improving model performance in future research.

For all experiments, a virtual machine with a CPU (62.5 GB RAM, 24 cores) and
GPU (24 GB RAM) will be utilized. The datasets will be stored on an 8 TB HDD,
while the training and evaluation tests will be executed on a 512 GB SSD for faster
processing.

5.1 Testing of Segmentation Models

5.1.1 Introductions of Model Setups

The Detectron2 model zoo o!ers a wide range of models for instance segmen-
tation. Based on the performance test data provided by Detectron2, the mod-
els mask rcnn R 50 FPN 3x and mask rcnn R 101 FPN 3x were selected for fur-
ther training and validation on wood timber surface segmentation. Both mod-
els are based on the Mask R-CNN architecture, which extends Faster R-CNN by
adding a branch for predicting segmentation masks, as introduced earlier. The
mask rcnn R 50 FPN 3x model uses ResNet-50 (denoted as R 50) with 50 layers
for hierarchical feature extraction from the input image. In contrast, the mask rcnn
R 101 FPN 3x model uses the deeper ResNet-101 backbone (denoted as R 101),
which has 101 layers, providing more depth and leading to better feature extraction
and overall accuracy, particularly for more complex datasets.

As mentioned in the previous section, both models utilize the Feature Pyramid Net-
work (FPN) to detect objects at multiple scales by combining high-level semantic
features with low-level spatial information. These pre-trained models were trained
with a 3x schedule, meaning they were trained for three times the default num-
ber of iterations, which corresponds to approximately 37 epochs on the COCO-seg
dataset. The COCO-seg dataset is derived from the original COCO dataset(Lin
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et al., 2014), which contains 330K images. For pre-training in Detectron2, two sub-
sets of the COCO-seg dataset were used: Train2017, consisting of 118K images for
instance segmentation, and Val2017, which contains 5K images with corresponding
annotations for evaluation.

For the YOLOv8 experiments, there are fewer pre-trained models available from
the o”cial model repository. YOLOv8 o!ers five di!erent models, each varying in
size and performance. The model YOLOv8m-seg was selected because it strikes
a good balance between mean Average Precision (mAP), inference speed, and the
number of parameters. While it is being used to compare results against Detectron2,
only the training results will be reported, as the focus here is on evaluating model
performance rather than direct comparison in testing.

The Figure 39 outlines the dataset preparation, augmentation process, and experi-
mental setup for training and evaluating segmentation models on the Seg-dominik-v1
dataset using di!erent models based on Detectron2 and YOLO.

Figure 39: Pipeline for dataset augmentation of Seg-dominik-v1 and experimental
evaluations of Detectron2 and YOLO models for timber surface segmentation

5.1.2 Experiments Results

In the training strategy using both mask rcnn R 50 FPN 3x and mask rcnn R 101
FPN 3x, the initial learning rate was set to 0.00025. The WarmupMultiStepLr
mechanism, which combines warm-up and multi-step learning rate decay, is em-
ployed to optimize the learning rate schedule. This approach can significantly im-
prove both model performance and convergence speed.

During the experiments in Detectron2, the warm-up phase linearly increases the
learning rate from 0.00000025 to 0.00025 over the first 1000 iterations. Since no
specific learning rate decay steps are defined, the learning rate will remain at 0.00025
after the warm-up phase. This decision was made because the model’s performance
on the dataset was unknown prior to the experiments. By setting a smaller learning
rate initially, the performance of Detectron2 on the dataset can be evaluated as
the number of training epochs increases. The batch size was set to 16, and with
1113 images in the training set, it takes approximately 70 iterations to complete one
epoch, where the entire dataset is processed once.
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Table 4: Segmentation tests using mask rcnn R 50 FPN 3x on augmented Seg-
dominik-v1 dataset

Tests Iterations Epoch Training Time Total loss Cls reg loss Box reg loss Mask loss Accuracy

M50 Test 1 700 10 0:12:38 0.7875 0.1577 0.1949 0.2993 0.865

M50 Test 2 1400 20 0:28:06 0.6332 0.1436 0.1608 0.2306 0.897

M50 Test 3 2800 40 0:55:14 0.5028 0.1102 0.1329 0.1955 0.911

M50 Test 4 4174 60 1:21:42 0.4179 0.09532 0.1169 0.1655 0.923

M50 Test 5 5565 80 1:54:54 0.3803 0.07595 0.1007 0.1583 0.929

M50 Test 6 6957 100 2:22:53 0.3669 0.06863 0.09949 0.1487 0.935

M50 Test 7 8348 120 2:51:26 0.3416 0.06461 0.1034 0.1435 0.938

The above Table 4 presents the training results using mask rcnn R 50 FPN 3x
model, demonstrating how di!erent loss components evolve with increasing iter-
ations. The total loss will be calculated through the loss cls, which evaluates the
model’s performance on the classification task, the loss box reg, which measures
the accuracy of the predicted bounding boxes relative to the ground truth, the
loss mask, which assesses how well the model predicts object masks, specific to
the Mask R-CNN framework, and the loss rpn cls and the loss rpn loc, which are
outputs from the Region Proposal Network (RPN) that measure how accurately
it classifies anchors and predicts the bounding box locations, can be calculated as
following:

total loss = w1 ↔ loss cls+ w2 ↔ loss box reg

+ w3 ↔ loss mask + w4 ↔ loss rpn cls

+ w5 ↔ loss rpn loc

where the w1, w2, . . . , w5 are weights to balance the contribution of each loss com-
ponent to the total loss.

The test results show a clear decrease in total loss, from an initial value of 0.7875
to 0.3416, indicating a steady improvement in the model’s performance as training
iterations and time increase. From Figure 40a, which represents the total loss at
epoch 20 (1400 iterations), to Figure 40b at epoch 60 (4174 iterations), the total loss
decreases rapidly, demonstrating significant learning progress in the early stages. As
seen in Figure 40c at epoch 100 (6957 iterations), the rate of loss reduction slows
down, although the model continues to improve. By epoch 120 (8348 iterations),
shown in Figure 40d, the learning curve begins to flatten, indicating that the model
is approaching convergence. This gradual flattening suggests that while further
training leads to slight improvements in accuracy, the returns are diminishing.

In Figure 41 (classification loss), Figure 42 (box regression loss), and Figure 43
(mask loss), the gradual flattening of the loss curves at 8348 iterations shows that
the model is progressively optimizing its parameters. However, each type of loss
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(a) Total Loss from M50 Test 2 with 1400
training iterations

(b) Total Loss from M50 Test 4 with 4174
training iterations

(c) Total Loss from M50 Test 6 with 6957
training iterations

(d) Total Loss from M50 Test 7 with 8348
training iterations

Figure 40: Total Loss from tests with di!erent training Iterations using
mask rcnn R 50 FPN 3x model from Detectron2

exhibits unique behaviour that highlights the di!erent complexities of the tasks
involved in training.

The classification loss decreases sharply in the early stages of training, forming a
convex curve. This indicates that the model learns to discriminate between the
two wood surface classes relatively quickly. As the classification task focuses on
identifying categorical di!erences, which are easier to separate than in regression
tasks, the model can make significant improvements in a short time. After the
initial rapid drop, the classification loss curve flattens, indicating that the model
has learned most of the features needed for classification.

Unlike the classification loss, the box regression loss shows a unique trend, starting
with a temporary increase during the warm-up period (first 1000 iterations). This
initial increase can be attributed to the model being cautious with its updates due
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Figure 41: Classification loss from M50 Test 7 with 8348 training iterations

Figure 42: Box regression Loss from M50 Test 7 with 8348 training iterations

to the low learning rate in the warm-up period. During these early iterations, the
model makes large adjustments to improve the bounding box predictions, which can
temporarily increase the loss. As the learning rate increases, the model begins to
learn more e!ectively, leading to a gradual reduction in the regression loss. The
consistent oscillations in box regression loss throughout training highlight the com-
plexity of accurately predicting continuous values such as bounding box positions.
Small deviations in object positioning can cause significant loss spikes, and the dif-
ferent sizes and shapes of the objects in di!erent mini-batches introduce additional
instability. Nevertheless, the overall downward trend indicates that the model is
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Figure 43: Mask Loss from M50 Test 7 with 8348 training iterations

improving, although the oscillations suggest that bounding box regression is a chal-
lenging task that takes longer to stabilise.

The mask loss decreases steadily, but at a slower rate than the classification loss.
This is expected because the segmentation task involves accurately predicting a
mask for each pixel of an object, which is inherently more complex than classifying
an entire image. The segmentation task requires precise accuracy at the pixel level,
which requires more iterations for fine-tuning. While the mask loss decreases over
time, the curve shows that it takes longer to achieve high segmentation accuracy.
As training progresses, the rate of decrease slows down, indicating that the model
is entering a more refined phase of optimisation, where the focus shifts from broad
improvements to fine-tuning the exact pixel-level segmentation.

The accuracy of the segmentation task, where positive samples are defined by an IoU
(Intersection over Union) threshold greater than 0.5, shows a consistent and gradual
improvement. After the warm-up stage, the accuracy increases steadily from 0.883
at 1000 iterations to 0.938 at the end of the training process. As the number of iter-
ations increases, both false negatives and false positives progressively decrease. This
indicates that the model is getting better at dealing with classification errors early in
the training, which in turn improves the instance segmentation performance. Addi-
tionally, both false positives and false negatives stabilise after about 1000 iterations,
indicating that the model has reached a more refined learning state.

To further evaluate the performance of the trained models, images from the test
dataset were evaluated using models at di!erent training iterations. Figure 45
presents results from the model after 4174 iterations, Figure 46 shows the results
after 6957 iterations, and Figure 47 displays the results from the model after 8348
iterations. While the model trained for a longer duration demonstrates improved
segmentation quality and accuracy, it still struggles with accurately segmenting com-
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Figure 44: Mask R-CNN accuracy from M50 Test 7 with 8348 training iterations

plex structures. However, as previously discussed, the primary application of this
segmentation task is focused on close-range, perpendicular segmentation of timber
surfaces, as illustrated in Figure 46d. Therefore, further evaluation of performance
using di!erent models under these specific conditions is required for a more compre-
hensive analysis.

(a) (b) (c) (d) (e)

Figure 45: Images tested on test set of augmented Seg-dominik-v1 with model from
M50 Test 4 with 4174 training iterations

In the next stage of experiments, the model mask rcnn R 101 FPN 3x was tested us-
ing a similar training strategy as in the previous experiments. However, the training
iterations for mask rcnn R 101 FPN 3x begins from 2800 iterations to 20,869 iter-
ations spanned from 2800 to 20,869 iterations, covering approximately 300 epochs.
Since ResNet-101 is a deeper architecture compared to ResNet-50, it typically re-
quires more training time to fully capture complex features and improve overall
accuracy. This is because the increased depth of ResNet-101 allows it to learn more
detailed hierarchical representations, but it also means the model needs longer train-
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(a) (b) (c) (d) (e)

Figure 46: Images tested on test set of augmented Seg-dominik-v1 with model from
M50 Test 6 with 6957 training iterations

(a) (b) (c) (d) (e)

Figure 47: Images tested on test set of augmented Seg-dominik-v1 with model from
M50 Test 7 with 8348 training iterations

ing periods to converge e!ectively and to generalize well across a variety of input
data. The training results were shown at Table 5.

Table 5: Segmentation tests using mask rcnn R 101 FPN 3x on augmented Seg-
dominik-v1 dataset

Tests Iterations Epoch Training Time Total loss Cls reg loss Box reg loss Mask loss Accuracy

M101 Test 1 700 10 0:16:34 0.6827 0.1565 0.1863 0.2544 0.891

M101 Test 2 2800 40 1:07:51 0.4008 0.09174 0.1089 0.1639 0.927

M101 Test 3 5565 80 2:15:30 0.3474 0.06191 0.08828 0.1442 0.939

M101 Test 4 6957 100 2:49:29 0.3036 0.05163 0.08733 0.1337 0.940

M101 Test 5 13913 200 5:41:13 0.2082 0.0284 0.05899 0.1012 0.954

M101 Test 6 20869 300 8:32:52 0.2101 0.0247 0.05628 0.1022 0.956

Compared to the training results from mask rcnn R 50 FPN 3x, the mask rcnn R
101 FPN 3x consistently demonstrates better overall performance at the same iter-
ation count, particularly in terms of box regression loss and mask loss. As expected,
the training took significantly longer due to the deeper architecture of the feature
extraction network, which requires more time to capture finer details from the input
images. Additionally, the loss trends observed with ResNet-101 exhibit similar os-
cillations to those seen in the previous experiments using mask rcnn R 50 FPN 3x,
including classification loss, box loss, and mask loss. For instance, the behavior of
the di!erent losses at 13,913 iterations (Figure 49) reflects these patterns.

When examining the results of the training, it is clear that the model achieves close
to optimal performance after 200 epochs, with only a minimal improvement ob-
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(a) Total Loss from M101 Test 2 with 2800
training iterations

(b) Total Loss from M101 Test 4 with 6957
training iterations

(c) Total Loss from M101 Test 5 with 13913
training iterations

(d) Total Loss from M101 Test 6 with 20869
training iterations

Figure 48: Total Loss from tests with di!erent training Iterations using
mask rcnn R 101 FPN 3x model from Detectron2

served when comparing the results between 200 and 300 epochs. This suggests that
the model is likely to have reached convergence at 200 epochs, and that extending
training for an additional 100 epochs resulted in only marginal performance gains.
This plateau in improvement suggests that additional training did not significantly
improve the model’s ability to generalise. At this stage, to avoid unnecessary con-
sumption of computational resources the early stopping mechanism is needed, as
further training beyond 200 epochs did not yield proportional benefits. Early stop-
ping could have been used to stop training when performance reached a plateau,
preventing overfitting and optimising resource e”ciency. Implementing this mecha-
nism in future experiments would help to avoid resource waste and increase training
e”ciency.
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(a) classification loss at 13913 iterations (b) Box regression Loss at 13913 iterations

(c) Mask Loss at 13913 iterations (d) Mask R-CNN ACC at 13913 iterations

Figure 49: Total Loss across Di!erent Iterations using mask rcnn R 101 FPN 3x
model from Detectron2

The performance of all models trained with mask rcnn R 101 FPN 3x was tested on
several images from the test set. Figure 50 displays the segmentation results for the
timber surface. Compared to the model trained with mask rcnn R 50 FPN 3x in
Figure 47 the segmentation edges produced by mask rcnn R 101 FPN 3x are notice-
ably more precise. However, in some instances, unwanted background areas or simi-
lar regions are still mistakenly included in the masks. Despite these occasional inac-
curacies, the overall model performance improved with mask rcnn R 101 FPN 3x,
particularly after su”cient training. Although some challenging areas still require
further refinement, the deeper ResNet-101 backbone allows for better feature ex-
traction, resulting in more accurate segmentation.

Following after the trainings experiments, the YOLOv8m-seg model is also used
to further evaluate the performance of a one-stage model, which has a balanced
model performance among all o!ered segmentation models. The Table 6 and Table
7 present the evaluation results for the predicted bounding boxes and masks over
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(a) (b) (c) (d) (e)

Figure 50: Images tested on test set of augmented Seg-
dominik-v1 using model from M101 Test 5 with 13913
training iterations

di!erent training epochs within all classes. In addition to training time, the evalu-
ation focuses on three key metrics: precision, recall, and mAP50, which are critical
for assessing model performance both by Segmentation tests and Detection tests.
Precision measures the proportion of positive predictions that are correct, which
emphasizes the correctness of the positive predictions and can be formulated as:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

Recall indicates the proportion of actual positive instances that are correctly iden-
tified by the model. It focuses on the model’s ability to detect all relevant instances
and is defined as:

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

And mAP50 (Mean Average Precision at IoU = 0.5) evaluates the model’s perfor-
mance by considering the precision and recall across multiple thresholds or cate-
gories. The value ”50” refers to the IoU (Intersection over Union) threshold, mean-
ing that a prediction is considered correct if the overlap between the predicted and
ground truth bounding boxes is greater than 50%.

mAP50 =
1

N

N∑

i=1

APi

These metrics provide a comprehensive understanding of the model’s e!ectiveness
in detecting objects and segmenting regions accurately. They will be evaluated
intensively by the experiments in YOLO, both for the Segmentation task and for
the further Detection experiments. Especially the test results from the individual
class main beam and side beam are also listed in Table 8 and Table 9, which can
also track the di!erent training results for each class since the used dataset are not
balanced in class amounts.
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Table 6: Segmentation tests using YOLOv8m-seg on augmented Seg-dominik-v1
dataset (Box metrics)

Tests Planned epochs(trained) Training Time Box precision Box recall Box mAP50

Yolo seg test 1 50(50) 0:20:09 0.733 0.771 0.787

Yolo seg test 2 100(100) 0:38:16 0.746 0.755 0.800

Yolo seg test 3 150(146) 0:55:44 0.744 0.745 0.798

Yolo seg test 4 200(154) 0:59:20 0.726 0.784 0.780

Table 7: Segmentation tests using YOLOv8m-seg on augmented Seg-dominik-v1
dataset (Mask metrics)

Tests Planned epochs(trained) Training Time Mask precision Mask recall Mask mAP50

Yolo seg test 1 50(50) 0:20:09 0.731 0.769 0.779

Yolo seg test 2 100(100) 0:38:16 0.744 0.749 0.787

Yolo seg test 3 150(146) 0:55:44 0.737 0.739 0.790

Yolo seg test 4 200(154) 0:59:20 0.720 0.778 0.769

Table 8: Segmentation tests using YOLOv8m-seg on augmented Seg-dominik-v1
dataset (main beam)

Tests Class Box precision Box recall Box mAP50 Mask precision Mask recall Mask mAP50

Yolo seg test 1 main beam 0.803 0.893 0.886 0.803 0.893 0.886

Yolo seg test 2 main beam 0.798 0.853 0.894 0.800 0.853 0.887

Yolo seg test 3 main beam 0.777 0.880 0.902 0.777 0.880 0.900

Yolo seg test 4 main beam 0.786 0.880 0.890 0.786 0.880 0.885

Table 9: Segmentation tests using YOLOv8m-seg on augmented Seg-dominik-v1
dataset (side beam)

Tests Class Box precision Box recall Box mAP50 Mask precision Mask recall Mask mAP50

Yolo seg test 1 side beam 0.663 0.648 0.688 0.660 0.645 0.672

Yolo seg test 2 side beam 0.694 0.657 0.706 0.688 0.645 0.687

Yolo seg test 3 side beam 0.711 0.610 0.695 0.697 0.597 0.681

Yolo seg test 4 side beam 0.667 0.689 0.670 0.654 0.677 0.653

From the general tests using YOLOv8m-seg, it is evident that the performance
trends are more complex compared to the steady improvements observed in the
Detectron2 tests. With increasing training epochs, the best general box precision
(0.746) and box mAP50 (0.800) are achieved in Yolo seg test 2 (100 epochs). Mean-
while, the highest box recall (0.784) is observed in Yolo seg test 4 after 154 training
epochs. This suggests that the model reaches optimal performance in bounding box
prediction around 100 epochs, and further training may lead to overfitting in the
timber surface detection task.
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For the class main beam, both box precision and box recall slightly decrease as train-
ing time increases, but there is a notable improvement in the mAP50 value. This
implies that although the overall detection accuracy of the bounding boxes slightly
drops, the model becomes better at identifying objects with higher confidence in
this class.

The results for the class side beam are more challenging to interpret. The best
box precision is 0.711 in Yolo seg test 3, while the highest box recall is 0.689 in
Yolo seg test 4, and the best mAP50 is 0.706 in Yolo seg test 2. These variations
suggest that despite potential overfitting with longer training times, the model is
still learning to distinguish features of this class, as indicated by the increase in box
precision. However, the unbalanced sample size of the side beam class may also have
significantly impacted the results, complicating the evaluation of model performance
for this specific class.

The evaluation metrics for mask generation in YOLO are influenced by the perfor-
mance of bounding box prediction because YOLO’s mask generation is dependent
on its one-shot detection process. In YOLO, the mask is generated based on the
detected bounding boxes, so any errors in box prediction can directly a!ect mask
accuracy. In contrast, Detectron2 generates masks from aligned feature maps after
region proposals, which makes its mask prediction process somewhat independent
of bounding box performance. This multi-stage approach in Detectron2 also allows
for separate optimization of detection and segmentation tasks.

(a) (b) (c) (d) (e)

Figure 51: Images tested on test set of augmented Seg-dominik-v1 using model from
Yolo seg test 4 with 154 training iterations

Figure 51 presents the test results using the Yolo seg test 4 model. Compared to
the results shown in Figure 50, which are based on the mask rcnn R 101 FPN 3x
model, the YOLO-based results are comparable with well-segmented timber sur-
faces and clear mask boundaries. Although some areas, such as the central area
in Figure 51b, have unclearly defined boundaries, considering the shorter training
time and lower resource consumption, the performance of the YOLOv8m-seg model
shows significant potential for real-time segmentation under limited computational
resources. Since YOLO’s segmentation results heavily rely on accurate detection,
future improvements could focus on enhancing the model’s detection capabilities to
further improve segmentation performance.



5 EXPERIMENTS 56

5.1.3 Summary of Segmentation tests

For the segmentation tasks, both Detectron2 and YOLOv8m-seg provide valuable in-
sights into training performance and testing on unfamiliar samples. Detectron2, with
its two-stage detection and segmentation process, o!ers greater flexibility in modular
architecture and can be easily integrated with additional mechanisms. Since its clas-
sification, detection, and segmentation processes are decoupled, improvements focus
primarily on the acquisition of appropriate aligned feature maps. For more complex
segmentation scenarios, the Detectron2 architecture can deliver more precise and
detailed segmentation results.

On the other hand, when real-time segmentation and detection are required, the
YOLOv8m-seg model o!ers a balanced solution, especially under limited local com-
puting resources. For instance, in applications deployed on low-cost devices like
smartphones, the lightweight architecture of YOLO provides significant benefits.
Its e”ciency and speed make it ideal for real-time processing, delivering solid per-
formance without the need for extensive computational power, which is crucial for
future mobile-based applications.

5.2 Testing of Detection Models

5.2.1 Introductions of model setup

As discussed in Section 3, a total of three basic datasets were collected, standard-
ized, and annotated for the primary detection pipeline. Both the Det-sf-v1 dataset
with only original annotated samples and with data augmentation were individually
trained using the YOLO framework due to its systematically controlled acquisition
conditions and high sample quality. Additionally, augmented mixed datasets cre-
ated from these three basic datasets were also trained and evaluated to assess model
performance.

Similar to the YOLOv8m-seg model for segmentation, the YOLOv8m model for
detection was chosen to run further tests on various datasets because of its balanced
performance (Figure 52). With an initial learning rate of 0.001 and a final learning
rate of 0.00001, the model uses the Adam optimiser and a weight decay of 0.0005
to avoid overfitting. Training time was used as the primary parameter to run tests
across di!erent datasets.

In addition to the recall, precision and mAP50 values, there are two other metrics
that can be used to further assess model performance. The mAP50-95 calculates
the average precision over several IoU thresholds (ranging from 0.5 to 0.95 in steps
of 0.05). This metric is more challenging for the evaluation because it requires the
model not only to have high precision at IoU 0.5, but also to perform well over a
range of IoU thresholds. In other words, the mAP50-95 metric measures the ability
of the model to accurately locate objects, even in cases where the prediction box
needs to overlap more closely with ground truth. The F1 score is a balanced metric
that considers both precision and recall. It is calculated as the harmonic mean of
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Figure 52: Performance metrics using YOLOmodels with various sizes on the COCO
dataset for the detection task.(Jocher et al., 2023)

precision and recall, providing a single score that balances the trade-o! between
these two metrics. This is particularly useful to assess how well the model balances
the need to avoid false positives (precision) and false negatives (recall). A high F1
score means that the model has both high precision and high recall, reflecting good
overall detection performance. The F1 score can be calculated as follows

F1 = 2↔ Precision↔Recall

Precision+Recall

Alongside the evaluation metrics, the Confidence value in a detection model such
as YOLO is a key parameter for assessing the model’s confidence in its predictions.
It is mainly derived from the Objectness Score, which is the probability that the
model determines whether a target exists in a given bounding box, and the Class
Confidence, which predicts the probability of the specific class of the detected target
in the bounding box. In YOLO, each grid cell predicts multiple candidate bounding
boxes. For each candidate bounding box, the model outputs an Objectness Score
indicating the probability that a target is present in that box, which can be written
as ObjectnessScore = P (Object). Then the class possibility of that object is calcu-
lated as P (Class|Object). The final confidence score is acquired as the product of
these two values: Confidence = P (Object)↔ P (Class|Object). In the experiment
analysis, this confidence score serves as a threshold. By incrementally adjusting
this threshold, the model filters out detections below a certain confidence level and
recalculates the corresponding evaluation metrics (e.g. precision, recall) to assess
the model’s performance at di!erent confidence levels.

5.2.2 Experiments results

The Figure 53 shows the Pipeline for dataset augmentation on Det-sf-v1 dataset and
experimental evaluation of YOLOv8m model in wood knots detection. The Table
10 and Table 11 presents the general training evaluation metrics include the recall,
precision, mAP50 value, mAP50-95 and di!erent loss values from both training and
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Figure 53: Pipeline for dataset augmentation on Det-sf-v1 dataset and experimental
evaluation of YOLOv8m model in wood knots detection

validation stage during the whole process. Schweinfurt-Yolo-Test-1 to Schweinfurt-
Yolo-Test-3 show the tests on original annotated images, while Schweinfurt-Yolo-
Aug-Test-4 to Schweinfurt-Yolo-Aug-Test-6 show the results using the extended Det-
sf-v1 dataset. The classification loss (cls loss) represents the model’s ability to
correctly classify detected features. The box loss measures how accurately the model
predicts the position and size of the bounding boxes, by comparing the predicted
boxes to the ground truth. Lastly, the DFL (distributional focal loss) evaluates the
model’s ability to distinguish between similar features among the detected objects.

From the training results, although both Schweinfurt-Yolo-Test-3 and Schweinfurt-
Yolo-Aug-Test-6 were trained for the longest number of epochs, they were stopped at
174 and 155 epochs respectively due to the early stopping mechanism. This resulted
in a decrease in box precision of 0.8298 for Schweinfurt-Yolo-Test-3, while recall
increased by 0.8483. This suggests that while additional training improves recall
to some extent, this may be at the expense of precision. This reflects the trade-o!
between precision and recall, indicating that longer training does not always improve
precision and may create an imbalance between the two metrics. This finding can
also be summarized from the Figure 54c.

Table 10: General metrics for testing with YOLOv8m on original Det-sf-v1 dataset
and augmented Det-sf-v1 dataset

Tests Planned Epoch(trained) Training time Box precision Box recall Box mAP50 Box mAP50-95

Schweinfurt-Yolo-Test-1 50(50) 0:09:33 0.8557 0.8181 0.8924 0.4997

Schweinfurt-Yolo-Test-2 100(100) 0:15:29 0.8818 0.8235 0.8864 0.4951

Schweinfurt-Yolo-Test-3 200(174) 0:23:59 0.8298 0.8483 0.8981 0.5015

Schweinfurt-Yolo-Aug-Test-4 50(50) 0:19:27 0.8448 0.8396 0.8762 0.4481

Schweinfurt-Yolo-Aug-Test-5 100(100) 0:37:08 0.8608 0.8396 0.8743 0.4611

Schweinfurt-Yolo-Aug-Test-6 200(155) 0:52:14 0.8457 0.8449 0.8727 0.4683

Despite the fact that Schweinfurt-Yolo-Test-3 had lower loss values on the training
set compared to other tests without data augmentation, its validation loss was higher
than Schweinfurt-Yolo-Test-2, which had fewer training epochs. This suggests that
increasing training time does not always lead to improved model performance and
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may even lead to overfitting, as indicated by the increasing gap between training
and validation loss.

Table 11: Loss values for tests with YOLOv8m on original Det-sf-v1 dataset and
augmented Det-sf-v1 dataset

Tests Train cls loss Train box loss Train dfl loss Val cls loss Val box loss Val dfl loss

Schweinfurt-Yolo-Test-1 0.5329 1.0125 1.2945 0.8222 1.6581 1.7956

Schweinfurt-Yolo-Test-2 0.4007 0.7899 1.1525 0.7820 1.7003 2.0299

Schweinfurt-Yolo-Test-3 0.3835 0.6460 1.0193 0.8062 1.7668 2.2130

Schweinfurt-Yolo-Aug-Test-4 0.3884 0.8790 1.1599 0.8133 1.8452 1.9719

Schweinfurt-Yolo-Aug-Test-5 0.2933 0.6826 1.0185 0.8139 1.8455 2.0276

Schweinfurt-Yolo-Aug-Test-6 0.3578 0.6710 1.0224 0.8950 1.8113 2.0475

(a) Precision-Confidence Curve (b) Recall-Confidence Curve

(c) Precision-Recall Curve (d) F1-Confidence Curve

Figure 54: Evaluation metrics for Schweinfurt-Yolo-Aug-Test-6 on augmented Det-
sf-v1 dataset

Similarly, tests with data augmentation show a similar trend. The training loss
values suggest that data augmentation improved generalisation performance on the
training set. However, higher validation loss values indicate that there may be an
imbalance in the validation set compared to the test set. As the validation samples
were randomly selected from both the original and augmented data, this is likely to
have resulted in a distributional discrepancy that a!ected the validation loss.
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Another potential reason, as Hernández-Garćıa and König (2020) points out, could
be that data augmentation acts as implicit regularisation by increasing data diver-
sity, indirectly improving generalisation without reducing the expressive power of a
model. However, it requires careful tuning, as improper use of data augmentation
together with explicit regularisation techniques (e.g. weight decay, dropout) can
degrade performance.

Figure 55: Pipeline for dataset augmentation on mixed datasets and experimental
evaluation of YOLOv8m model in wood knots detection

In the next phase of testing, the following experiments focus on testing augmented
mixed datasets derived from three primary datasets as shown in Figure 55, each with
data augmentation: Det-sf-v1, Det-dominik-v1, and Det-dominik-v2. Each dataset
is combined with the other two individually, with both the training and validation
sets mixed accordingly. The first three experiments are conducted with 200 epochs.
While previous tests on Det-sf-v1 indicated potential overfitting at 200 epochs, this
might di!er with the augmented mixed datasets due to the larger sample size. The
model requires more time to learn and converge e!ectively when dealing with an
increased variety of data. Therefore, two additional experiments with 200 epochs
and 300 epochs are conducted using the combination of all three datasets to further
compare model performance. The Table 12 and Table 13 present the overall training
results for the various augmented mixed datasets, along with the corresponding loss
values for both the training and validation sets.

When comparing the tests trained for 200 epochs, the box precision remains con-
sistently high across all tests, ranging from 0.9799 to 0.9863, indicating the model’s
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Table 12: General metrics for testing with YOLOv8m on augmented mixed datasets

Tests Dataset amount Planned Epoch(trained) Training time Box precision Box recall Box mAP50 Box mAP50-95

Mixed dom1+dom2 YOLO test 3072 200(200) 1:50:01 0.9862 0.9706 0.9857 0.8656

Mixed dom1+sf YOLO test 3738 200(200) 2:33:29 0.9819 0.9855 0.9886 0.8141

Mixed dom2+sf YOLO test 3406 200(200) 1:43:59 0.9799 0.9570 0.9725 0.8441

Mixed dom1+dom2+sf YOLO test 1 4608 200(200) 3:21:27 0.9863 0.9809 0.9915 0.8523

Mixed dom1+dom2+sf YOLO test 2 4608 300(300) 4:37:08 0.9907 0.9729 0.9921 0.8780

Table 13: Loss values for tests with YOLOv8m on augmented mixed datasets

Tests Train cls loss Train box loss Train dfl loss Val cls loss Val box loss Val dfl loss

Mixed dom1+dom2 YOLO test 0.2802 0.4435 0.9194 0.2751 0.5316 0.9602

Mixed dom1+sf YOLO test 0.3158 0.5530 0.9852 0.3554 0.7311 1.1618

Mixed dom2+sf YOLO test 0.2604 0.4675 0.9402 0.3167 0.5990 1.0261

Mixed dom1+dom2+sf YOLO test 1 0.2900 0.5202 0.9558 0.3003 0.6592 1.0706

Mixed dom1+dom2+sf YOLO test 2 0.2428 0.4221 0.8954 0.2914 0.5211 0.9624

ability to e!ectively recognize objects and minimize false alarms. Notably, the
Mixed dom2+s YOLO test has the lowest box precision at 0.9799 and the lowest
box recall at 0.9570, with the recall significantly lower than in other tests. This
suggests potential overfitting during training, and the dataset may contain samples
with highly similar features. Further evidence of this can be seen in the low overall
training losses for Mixed dom2+sf YOLO test, while the classification loss on the
validation set is much higher than in the training results. This indicates that the
mixed dataset from Det-dominik-v2 and Det-sf-v1 contributes less to improving the
model’s generalization performance in YOLOv8m.

The Mixed dom1+dom2+sf YOLO test 1, trained with all three basic datasets for
200 epochs, demonstrated a generally balanced performance. It achieved the high-
est box precision at 0.9863, the best mAP50 value at 0.9915, and a strong box
recall of 0.9809. Although its mAP50-95 value was slightly lower compared to
the Mixed dom1+dom2 YOLO test, the test results from Mixed dom1+dom2+sf
YOLO test 1 displayed a more consistent and balanced performance across all met-
rics at 200 epochs. The loss values suggest that the mixed dataset might have
underfitted the model, indicating the need for additional training.

In contrast, the Mixed dom1+dom2+sf YOLO test 2 with 300 epochs training time
achieved superior results with a box precision of 0.9907, a box mAP50 of 0.9921, and
an mAP50-95 of 0.8780. The slightly lower box recall suggests that the model may
have sacrificed some detection capability to improve overall accuracy. The highest
mAP50-95 value indicates that this model is more robust across di!erent IoU thresh-
olds. The training loss is significantly lower than the validation loss, particularly in
box loss and dfl loss, which may indicate some overfitting. However, despite these
losses, both recall and precision remain high, suggesting that the overfitting is not se-
vere. Further increasing data diversity or adjusting regularization parameters could
help reduce validation losses and improve model generalization. In the meanwhile,
the Figure 73 shows that during the training process, the loss function gradually
decreases with the increase of training rounds, indicating that the model gradually
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converges and the performance continues to improve. Although precision, recall and
mAP50 stabilise after about 200 rounds, the continued increase in mAP50-95 and
the continued decrease in losses on the validation set suggest that the model’s ability
to generalise continues to improve. This implies an improved performance of the
model under tighter IoU thresholds as well as a better adaptation to the di!erent
samples in the validation set.

(a) Precision-Confidence Curve (b) Recall-Confidence Curve

(c) Precision-Recall Curve (d) F1-Confidence Curve

Figure 56: Evaluation curves for Mixed dom1+dom2+sf YOLO test 2 on aug-
mented Mixed dom1+dom2+sf dataset

The figure 56 shows more concretely the di!erential changes through the variable
evaluation metrics for the Mixed dom1+dom2+sf YOLO test 2. The precision-
confidence curve shows that as the confidence increases, so does the precision, which
is close to 1.0 at a confidence of 0.85. This curve is generally steeper, indicat-
ing that the model has a lower probability of misclassification at medium to high
confidence levels. Unlike the precision-confidence curve, the recall-confidence curve
shows that the recall remains high at low confidence levels up to a confidence value
of around 0.8. As the curve drops rapidly at higher confidence levels, this means
that the model has a leakage problem in some cases, especially when the task re-
quires a higher confidence level. The Precision-Recall curve is essentially one that
rises quickly and flattens out at the top, suggesting that the model is maintaining
better performance at di!erent thresholds, which is already evidenced by the high
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mAP50 and mAP50-95 values. The final F1 confidence curve shows that at around
confidence 0.82, F1 peaks at around 0.98. This value means that at confidence 0.82
the model has the best balanced performance between precision and recall.

(a) (b) (c) (d) (e)

Figure 57: Images tested on Det-dominik-v3 dataset using model
from Mixed dom1+dom2 YOLO test

(a) (b) (c) (d) (e)

Figure 58: Images tested on Det-dominik-v3 dataset using model
from Mixed dom1+sf YOLO test

(a) (b) (c) (d) (e)

Figure 59: Images tested on Det-dominik-v3 dataset using model
from Mixed dom2+sf YOLO test

To further evaluate the models’ performance on unfamiliar samples, the models
were tested on standardized images from the Det-dominik-v3 dataset after using
Segmentation and Transformation processes. Figures 57 to 60 present the detection
results of various test models on the same samples. Unexpectedly, the results on
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(a) (b) (c) (d) (e)

Figure 60: Images tested on Det-dominik-v3 dataset using model
from Mixed dom1+dom2+sf YOLO test 2

Det-dominik-v3 showed that the model from Mixed dom1+sf YOLO test performed
the best, successfully detecting wood knots in 507 out of 1336 standardized images,
whereas Mixed dom1+dom2+sf YOLO test 2 detected only 373 samples with wood
knots. This suggests that the model trained with Mixed dom1+sf YOLO test has
better generalization performance on Det-dominik-v3.

The di!erences between training and testing results could stem from several factors.
First, the unbalanced mixture of the three base datasets may have introduced biases
in the learned features, which means that some features critical to Det-dominik-v3
may have been underrepresented in training. Additionally, the higher complexity in
the mixed dataset might have led the model to learn irrelevant or less useful features,
negatively a!ecting its performance on the Det-dominik-v3 dataset. Lastly, localized
overfitting could explain why the model performs well on some sub-datasets but
poorly on others with di!erent characteristics. This could also potentially lead to
the bad performance on specific dataset like Det-dominik-v3.

5.2.3 Summary of detection tests

The evaluation of YOLOv8m model for wood knot detection across various datasets
has provided several key insights, particularly regarding the challenges of general-
ization, dataset mixing, and overfitting. Theoretically, datasets containing mixed
samples from various subsets should lead to more robust model performance and
improved generalization to unfamiliar scenarios. The results were generally positive,
with mixed data sets yielding high precision and recall. However, when the models
were tested on real samples, it showed peculiar detection results across di!erent
samples. This required that the complexity and variety should be intensively con-
sidered for the future data collection process and dataset acquisition. The higher
complexity in the augmented mixed datasets may have caused the model to learn
irrelevant or less useful features, making it harder to generalise to new data sources
such as Det-dominik-v3.

In conclusion, the use of augmented mixed datasets and longer training epochs
did enhance precision and mAP50-95 for the detection task, as seen in tests such
as Mixed dom1+dom2+sf YOLO test 2. However, this improvement came at the
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expense of generalization, as evidenced by the model’s poorer performance on the
Det-dominik-v3 dataset. Despite these challenges, augmented mixed datasets still
have strong potential for achieving better generalization. Going forward, it will
be important to ensure that the critical features are balanced and well-represented
during dataset construction. Additionally, enhanced data augmentation strategies,
along with regularization adjustments, could help reduce overfitting and further
improve the model’s generalization capabilities.
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6 Analysis

This section provides a detailed analysis of specific subprocesses within the over-
all workflow, followed by potential improvement methods. The second part of the
analysis focuses on challenges related to datasets, models, experiments, and fur-
ther production. Additionally, various iterative approaches are discussed and tested
throughout the whole section to explore continuous improvements.

6.1 Potential improvements of general workflow

6.1.1 Image preprocessing

As mentioned in Section 3, there are several issues with the captured raw data that
make some images unsuitable for further processing. Common problems include
unclear image quality, such as blurriness or poorly defined boundaries of the wooden
timber surface. These issues can also arise during practical implementation of the
workflow, making it essential to first examine the images against specific standards.

The initial examination should assess key factors such as image clarity, global and
local contrast levels, lighting conditions, and the sharpness of the wood’s edges. This
pre-check ensures that the image meets the minimum quality required for further
segmentation. Figure 61 provides examples of images captured with insu”cient
overall quality during the raw data acquisition process and an appropriate captured
image which is ideal for further processing. Potential pre-processing discriminators
could be calculating the Laplace operator of the image to ensure that the captured
image has a high Laplace value, or using edge detection algorithms such as Canny
edge detection to detect the sharpness of wooden edges in images. Methods such
as Signal to Noise Ratio (SNR) and other metrics can also be helpful to quickly
determine the level of noise in an image, which also helps to filter images captured
under non-ideal conditions.

(a) Capture without
su!cient contrast

(b) Blurry captyre (c) Capture with
poor lighting

(d) Appropriate cap-
ture

Figure 61: Samples under insu”cient collection conditions
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6.1.2 Segmentation and transformation

Once image quality is ensured, the area captured within the image becomes crucial
for achieving more accurate results. As demonstrated in the segmentation experi-
ments, the captured area should include the two longest boundaries of the timber to
accurately calculate the ratio between the timber’s width and the detected bound-
ing box. Figure 62 illustrates an improper capture of the timber surface. Ensuring
proper capture of the entire timber surface, including its full boundaries, will be
critical in future applications.

(a) Obscured timber boundary (b) Distinct timber boundary

Figure 62: Comparison between images with obscured and distinct
boundaries of timber structure

The examples in the experiment section for segmentation focus on the vertical or
horizontal timber, which means that the sloping timber as shown in Figure 63a
could not be further processed at the moment, as the simplified polygon cannot be
transformed appropriately perspectively.

Future improvements should focus on segmenting various timber structures more
e!ectively and simplifying them to accommodate di!erent wood orientations. This
would enable detection of features such as wood knots and allow for a comprehensive
evaluation of the entire timber structure. Several potential methods have already
been investigated during workflow development. For example, extending the two
longest edges of the segmented area to form a potential outer quadrilateral (Figure
63b) can help correct perspective distortions and standardize the image.

6.1.3 Detection

In the detection experiments, there are several general issues that need to be ad-
dressed. By reviewing the testing results on Det-dominik-v3, some objects are in-
correctly detected as wood knots, as shown in Figure 64. Although future studies
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(a) (b)

Figure 63: Sloping timber structure

will aim to limit the detection area to within the main timber structure, these incor-
rect detections can still significantly a!ect the robustness of the results. To reduce
false positives and improve focus on wood knot features, a database with feature
space will be extracted from the annotated images. This feature space will be used
to distinguish the detected features more accurately with kNN method. The kNN
method (Cover and Hart, 1967) classifies a sample by calculating the distance be-
tween the sample and its K nearest neighbours in the training set, then determining
the sample’s class based on a majority vote of these neighbours’ classes.

Figure 64: False detection of wood knots within the dataset Det-dominik-v3

This method first extracted the annotated features from the mixed dataset from
all three base datasets for recognition using ResNet18 (Figure 65). The original
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ResNet18 contains 18 layers with four residual blocks (Figure 36). However, for
feature extraction, the last fully connected layer is removed, so that the output with
the shape (512, 1, 1) from the last convolution layer with high dimensional features
is stored. Once the database of extracted features is created, the high dimensional
feature from the detected object (bounding box) is also extracted using the same
modified ResNet18. The feature from the detected object will be discriminated
using the database with kNN method to further confirm whether the detected object
represents the feature of wood knots. Using this method, the bounding box in Figure
64 has been removed. The general results demonstrate that it significantly improves
the filtering of positive samples and e!ectively reducing false detections.

Figure 65: Structure of the Resnet-18 Model, Brown et al. (2022)

Apart from the problem of incorrect detections, the results of the detected bounding
boxes also highlight two additional issues regarding the accuracy of the bounding
boxes. The first issue is that a single wood knot may have overlapping bounding
boxes, as shown in Figure 66a. The possible reason for this could be that the YOLO
model makes multiple predictions at di!erent scales, feature map hierarchies, or
anchor boxes, resulting in multiple overlapping boxes. To address this problem,
Non-Maximum Suppression (NMS) is applied to reduce the bounding boxes with
lower confidence scores.

With NMS the bounding box with the highest confidence score in each image is
selected as the reference box. Then, the IoU (Intersection over Union) is calculated
between the reference box and the remaining bounding boxes, which is the ratio
of the intersection area to the union area. Assuming the image has n detected
bounding boxes, the IoU is calculated as follows:

IoU(Ref,Bn↓1) =
|Ref ↘ Bn↓1|
|Ref ≃ Bn↓1|

Based on the IoU, bounding boxes with an IoU greater than a certain threshold are
removed, while those with an IoU less than the threshold are retained. Once no
more bounding boxes are removed, the process repeats: the bounding box with the
highest confidence among the remaining boxes is selected as the new reference box,
and the same steps are followed until no more bounding boxes can be removed. The



6 ANALYSIS 70

(a) Detection with bound-
ing box overlapping

(b) Detection after NMS
refined

Figure 66: Bounding box reduction using NMS

figure 66b shows the results after the NMS method, which means that the NMS can
e!ectively reduce the bounding box overlap.

The second issue observed in the detection results is that the size of the bounding
boxes is larger than the actual wood knot dimensions. Even though the detection
is correct, since the task involves estimating the ratio between the timber boundary
and the bounding box, achieving more precise bounding boxes that closely fit the
wood knot will lead to more accurate results. To address this, Otsu’s Thresholding
is applied to the detected bounding boxes, converting the feature into a binary
feature space and segmenting the foreground from the background using an optimal
threshold.

Otsu’s Thresholding first calculates the histogram of grey values within the bounding
box. For each threshold t, the grey-level histogram is divided into two classes: pixels
with values less than t are classified as background, while pixels with values greater
than t are classified as foreground. For each possible threshold t, the inter-class
variance between the foreground and background is calculated using the following
equation:

ω2
b
(t) = w0(t) · w1(t) · [µ0(t)↗ µ1(t)]

2

while w0(t) and w1(t) are the weights (proportions) of the foreground and back-
ground pixels at threshold t, and µ0(t) and µ1(t) are the average grey value of fore-
ground and background pixels. are the average grey values of the foreground and
background pixels, respectively. The algorithm iterates over all possible thresholds
t to find the one that maximizes ω2

b
(t) value.

With this optimal threshold t, the bounding box is binarized and e!ectively seg-
mented into foreground and background, as illustrated in Figure 67. The resulting
refined bounding boxes, shown in Figure 68, demonstrate improved precision in
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comparison to the original detection results. Although some bounding boxes may
still be larger than the wood knot, the overall performance has improved and the
resulted bounding box is closer to the target wood knot dimension.

(a) Extracted annotated
feature

(b) Binary image using
Otsu threshold

Figure 67: Binarization of annotated feature using Otsu threshold

(a) Original detection results (b) Refined bounding box sizes us-
ing Otsu threshold

Figure 68: Comparison of the reduction of the size of detected
bounding boxes based on the Otsu threshold

6.1.4 Estimation

Although the primary focus of this master’s thesis is to describe the methods and
experiments using machine learning and deep learning techniques, the estimation of
the ratio between the wooden timber boundary and the bounding box can also be



6 ANALYSIS 72

further improved. Currently, the ratio is easily computed using the perspectively
corrected polygon and the bounding box of the detected wood knots, as shown
in Figure 69. However, this approach lacks comparison and adjustment between
image pixels and absolute values in real-world scenarios. There may be discrepancies
between the computer vision-based method and the actual physical measurements.

Figure 69: Schematic explanation of the radio export based on the
size and position of the detected bounding box and the perspec-
tively corrected polygon of the timber boundary

To improve the accuracy of these estimations, calibration between the digital process
and manual measurements should be considered. There could be several di!erential
values to assess how well the system performs compared to manual testing. For
example, the system could be designed to automatically adjust errors after several
manual calibrations. Although this problem has not been addressed in this thesis,
it is important to note for future optimization.

6.2 Challenges and further Optimisations

6.2.1 Datasets

The currently available datasets for detection are primarily captured from the Do-
minican Church. As shown by the experiments with various mixed datasets, the
Mixed dom1+sf YOLO test, which consists of samples from both the Dominican
Church and the wood workshop in Schweinfurt, delivers more robust detection re-
sults when tested on the Det-dominik-v3 dataset. This suggests that datasets from
multiple sources may help the model learn a richer and more diverse set of fea-
tures, thereby improving the model’s ability to generalize to di!erent scenarios. In
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contrast, using samples predominantly from a single source may cause the result-
ing model to become overly dependent on specific scenarios or data characteristics,
making it more likely to underperform in unfamiliar environments.

Although data augmentation can simulate more varied samples, building datasets
from multiple sources provides a more reliable approach to ensure diversity. While
standardizing samples from di!erent sources might pose challenges, the extraction of
high-dimensional features can help make these samples comparable. The reduction
in false detections through the use of kNN further supports this theory.

Additionally, annotation quality plays a critical role in detection performance. In-
correct or inappropriate annotations can lead to the exclusion of important features
or the inclusion of unnecessary ones, both of which can mislead the training pro-
cess. To address this, future experiments will involve expert review of the annotated
datasets, particularly by specialists in wood studies, to ensure a more reliable train-
ing process.

6.2.2 Models

At the moment, only the standard models based on Detectron2 and YOLO have
been tested. To further enhance model performance in both segmentation and de-
tection tasks, task-specific mechanisms should be considered, which means that both
processes need to be more attuned to the features of wood timber and wood knots.
As illustrated in Figure re!fig:analyse-model-edge, biological growth patterns could
also aid in more precisely locating wood knots. The combination of deep learning
models with feature-specific techniques has the potential to significantly improve
detection results.

It is also important to note that other wood damage, such as wood cracks or mould
on the surface of the wood, may also need to be identified as they are also parameters
that a!ect the mechanical performance of the timber structure. A deeper analysis
of the biological patterns on timber surfaces could make the detection process more
explainable. If wood knots can be tracked based on their growth patterns, the
model’s detection capabilities will likely become more robust and reliable.

Figure 70: Clear wood grain through the application of a threshold filter
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6.2.3 Experiments

In Section 5, the experimental hyperparameters primarily focus on training time,
di!erences in feature extraction using ResNet50 or ResNet101, and the use of mixed
datasets. Other important hyperparameters, such as learning rate, optimization
algorithms, and regularization methods, have not been thoroughly explored. Partic-
ularly for flexible frameworks like Detectron2, there is potential for more fine-tuning
of individual modules by adjusting diverse hyperparameters independently.

Validation methods such as cross-validation or k-fold validation could also be in-
troduced to yield more reliable experimental results. Running multiple experiments
on di!erent data splits helps avoid model dependence on specific data divisions and
produces more generalizable evaluation outcomes.

In general, these improvements in the experimental process aim to enhance the over-
all performance and stability of the model, making it more robust and e!ective in
real-world applications. Additionally, by iterating on the experimental design, the
model could achieve better accuracy and less overfitting, and improve its general-
ization capabilities across di!erent tasks and datasets.
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7 Conclusion

In conclusion, the primary objective of this master’s thesis is to develop an au-
tomated detection system for assessing wood knots and their proximity to timber
boundaries, thereby supporting the digital and automatic evaluation of the stability
of historic wooden structures. Throughout the project, multiple datasets were cre-
ated for detection and segmentation tasks, which were tested and evaluated using
models such as Detectron2 and YOLOv8m-seg for segmentation, and YOLOv8m for
primary detection.

The process of data collection and dataset creation posed several challenges, includ-
ing image clarity, contrast, brightness, and the visibility of wood knots and timber
structures. These factors are critical during dataset creation. Additionally, image
normalization, labelling, and export are essential steps in ensuring a high quality
dataset. These considerations will remain important as the datasets continue to
evolve.

Despite using pre-trained standard models for testing, the comparison of training
times, model architectures, and dataset usage yielded insightful results. The ro-
bustness of the models showed that their performance on unfamiliar data can di!er
significantly from the training process. This highlights the need for more precise
evaluation metrics and further informs the optimization of models and testing strate-
gies. The variation in model performance between training and real-world testing
scenarios requires ongoing attention and fine-tuning. Furthermore, aspects like exe-
cution time, resource consumption, and cost-e”ciency were not covered in this thesis
but will be addressed in future experiments to ensure reliable implementation on
low-cost devices.

As the entire workflow is designed to be implemented on low-cost devices such as
smartphones, integrating data from built-in sensors such as accelerometers, gyro-
scopes and level sensors can help improve stability and accuracy throughout the
whole process. These sensors can provide vital information about the orientation
and movement of the device, enabling more accurate data capture and reducing
errors caused by inconsistent positioning or movement during operation.

Although this thesis establishes a standard process for automated wood knot detec-
tion, as discussed in the previous section, the entire process, from dataset creation to
model performance, needs to be iteratively validated in real-life scenarios. Collabo-
ration with experts will be crucial in optimizing both the system and the datasets.
The datasets will be continuously expanded and tested for quality, while additional
mechanisms will be introduced to enhance the tracking of the unique characteristics
of historic timber. These improvements will ensure that the system becomes more
accurate and reliable over time.
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B Code Availability

The code used for this study is made freely available under the MIT licence. It can
be accessed at the following GitHub repository:
https://github.com/happy-panda-ops/xAI Masterthesis Pan.git

This repository contains all the code used for model training, along with some test
results. Thanks to the tutorial of Bhattiprolu (2023) the training code of Detectron2
is based on it. Test results based on YOLOv8, as well as other related models, can be
found in the corresponding subfolders. However, due to GitHub’s file size limitations
for model exports, tests conducted with Detectron2 have not been uploaded. If you
require access to these models, please submit a request in the Issues section of the
repository.

Please note that the datasets mentioned in this master thesis are not publicly avail-
able due to confidentiality. If access is needed, please contact the authors directly.

Additionally, the final production code for general test will also be provided. De-
tailed information regarding usage and setup will be included in the README file
in GitHub.

https://github.com/happy-panda-ops/xAI_Masterthesis_Pan
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C General workflow

Figure 71: General workflow of AI-assisted detection on wood knots
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D Figure

The following figures show the training and validation metrics during
the training processes for the Schweinfurt-Yolo-Aug-Test-6 test and the
Mixed dom1+dom2+sf YOLO test 2 test on the wood knot detection task based
on YOLOv8m.

Figure 72: Training and Validation Metrics for Schweinfurt-Yolo-Aug-Test-6 on aug-
mented Det-sf-v1 dataset

Figure 73: Training and Validation Metrics for Mixed dom1+dom2+sf YOLO
test 2 on augmented Mixed dom1+dom2+sf dataset
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