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Abstract

Over time, benchmarks have been instrumental in driving progress in Deep Learning
by offering consistent and reliable frameworks for model evaluation. They promote
scientific competition, inspire innovation, and provide researchers with an objective
means to assess advancements across various tasks.

This thesis introduces a benchmark specifically designed for image classification in
the biomedical domain, focusing on the Multidimensional MedMNIST+ Database.
The MedMNIST+ Database is a curated collection of preprocessed, lightweight 2D
medical image datasets that support 12 distinct machine learning classification tasks
in medical AI research.

The benchmark addresses the unique challenges of medical imaging and aims to drive
advancements in model generalization, robustness, and adaptability. It proposes two
key challenges. The first is the Generalization Challenge, which evaluates a single
model’s performance across all 12 classification tasks, emphasizing adaptability to
diverse medical imaging datasets. The second is the Robustness Challenge, which
assesses model performance on a corrupted version of the dataset (MedMNIST-C) to
test resilience against noisy and distorted input data. This challenge addresses issues
such as imperfections in data acquisition, processing errors, or real-world variability
in medical imaging.

This thesis introduces Dino, Dinov2, UNI, and Prov-GigaPath as baseline models to
establish performance standards. These are foundation models — large, pre-trained
machine learning models that serve as a versatile base for various downstream tasks
across different domains. While Dino and Dinov2 were pre-trained on highly versa-
tile, general-purpose data, UNI and Prov-GigaPath were specifically pre-trained on
medical domain data.

To evaluate baseline performance, different training approaches were compared con-
cerning generalization and robustness: Using the pre-trained backbones to evaluate
how well the models can perform out of the box without fine-tuning the backbone
by utilizing different classifiers. Additionally, two end-to-end training techniques
are introduced, utilizing multi-task learning to fine-tune the backbone across all 12
datasets simultaneously.

Pre-trained Dino is found to work best for the MedMNIST+ dataset, showcasing
strong generalization across diverse medical imaging tasks. On the other hand, Prov-
GigaPath, when fine-tuned with end-to-end training, proves to be the most robust
to distortions, demonstrating the most resilience to noisy or corrupted inputs.

The code supporting this thesis is available on GitHub1.

1https://github.com/ahaas99/ExploringGeneralizationPotential
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Zusammenfassung

Im Laufe der Zeit haben Benchmarks eine entscheidende Rolle bei der Förderung
des Fortschritts im Deep Learning gespielt, indem sie konsistente und zuverlässige
Rahmenwerke für die Modellbewertung bieten. Sie fördern den wissenschaftlichen
Wettbewerb, inspirieren Innovationen und bieten Forschern ein objektives Mittel,
um Fortschritte über verschiedene Aufgaben hinweg zu bewerten.

Diese Thesis führt einen Benchmark speziell für die Bildklassifikation im biomedi-
zinischen Bereich ein, wobei der Fokus auf der Multidimensionalen MedMNIST+
Datenbank liegt. Die MedMNIST+ Datenbank ist eine kuratierte Sammlung vorver-
arbeiteter 2D-medizinischer Bilddatensätze, die 12 verschiedene Klassifikationsauf-
gaben im Bereich der medizinischen KI-Forschung unterstützen.

Der Benchmark geht auf die einzigartigen Herausforderungen der medizinischen
Bildgebung ein und hat das Ziel, Fortschritte bei der Generalisierung, Robustheit
und Anpassungsfähigkeit von Modellen voranzutreiben. Er schlägt zwei zentrale
Herausforderungen vor. Die erste ist die Generalisierungs-Challenge, die die Leis-
tung eines einzelnen Modells über alle 12 Klassifikationsaufgaben hinweg bewertet
und die Anpassungsfähigkeit an verschiedene medizinische Bilddatensätze betont.
Die zweite ist die Robustheits-Challenge, die die Leistung des Modells auf einer ko-
rrumpierten Version des Datensatzes (MedMNIST-C) bewertet, um die Resilienz
gegenüber verrauschten und verzerrten Eingabedaten zu testen. Diese Heraus-
forderung adressiert Probleme wie Unvollkommenheiten bei der Datenerfassung,
Verarbeitungsfehler oder die Variabilität von Bilddaten in der realen Welt.

Diese Thesis stellt Dino, Dinov2, UNI und Prov-GigaPath als Basismodelle vor,
um Leistungsstandards festzulegen. Dies sind Foundation-Modelle — große, vor-
trainierte Maschinenlernmodelle, die als vielseitige Basis für verschiedene nachge-
lagerte Aufgaben in verschiedenen Bereichen dienen. Während Dino und Dinov2
auf hochgradig vielseitigen, allgemeinen Daten vortrainiert wurden, wurden UNI
und Prov-GigaPath speziell auf medizinische Domänendaten vortrainiert.

Um die Baseline-Leistung zu bewerten, wurden verschiedene Trainingsansätze hin-
sichtlich Generalisierung und Robustheit verglichen: Es wird das vortrainierte Back-
bone genutzt, um zu bewerten, wie gut die Modelle direkt ohne Feintuning mit
verschiedenen Klassifikatoren abschneiden. Zusätzlich werden zwei End-to-End-
Trainingstechniken vorgestellt, bei denen Multi-Task-Learning verwendet wird, um
das Backbone gleichzeitig über alle 12 Datensätze hinweg zu optimieren.

Es wurde festgestellt, dass das vortrainierte Dino-Modell am besten für den MedM-
NIST+ Datensatz funktioniert und eine starke Generalisierung über verschiedene
medizinische Bildklassifikationsaufgaben hinweg zeigt. Andererseits stellt sich her-
aus, dass Prov-GigaPath, wenn es mit End-to-End-Training feinabgestimmt wird,
am robustesten gegenüber Verzerrungen ist und die größte Resilienz gegenüber ver-
rauschten oder korrumpierten Eingaben zeigt.

Der Code dieser Thesis ist auf GitHub verfügbar2.

2https://github.com/ahaas99/ExploringGeneralizationPotential
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1 Introduction

1.1 Context and Motivation

The growth of Artificial Intelligence (AI) over the past few decades has been re-
markable. This growth is driven by advances in algorithms and machine learning
models (Krizhevsky et al., 2012), computational power (Hooker, 2020), and access
to large datasets (Manyika et al., 2011), (Brynjolfsson and McAfee, 2017). AI has
evolved from a theoretical research topic to a transformative technology that is now
embedded in countless industries, products, and services (Brynjolfsson and McAfee,
2017), (Jordan and Mitchell, 2015).

But what is AI exactly: Russell and Norvig (2010) defines it as “the study of agents
that receive percepts from the environment and perform actions”. McCarthy (2004)
defines AI as “... the science and engineering of making intelligent machines, espe-
cially intelligent computer programs”, while Kaplan and Haenlein (2019) defines AI
as following: “Artificial Intelligence is a system’s ability to interpret external data
correctly, to learn from such data and to use those learnings to achieve specific goals
and tasks through flexible adaptation”. So AI is a system that learns to do a specific
task and it achieves that by learning from a given data source.

There are many different subsets of AI, such as Machine Learning (ML), Natural
Language Processing (NLP), Robotics, and many more (Russell and Norvig, 2010).
Within the scope of this thesis, the primary emphasis is placed on ML. ML focuses
on developing algorithms and models that enable computers to perform a specific
task. The main idea is that, instead of being programmed manually to perform the
task, machines are trained to learn from data to perform their specific task (Mitchell,
1997). In the case of this thesis, the task is image classification. More precisely,
the task is to train one model on the MedMNIST+ dataset, a medical dataset that
contains 12 different types of biomedical images (Yang et al., 2023). All images are
labeled with the different diseases that are or are not shown in them. The goal is
to have one model that can classify all 12 classification tasks of the dataset and
achieve a good performance by doing so.

What is the motivation behind the idea of using only one model for all tasks instead
of a single model for every task specifically? Developing countries are struggling a
lot more with good health and medical resources than other countries. Not only do
developing countries represent the majority of the world population, but they also
host almost 90 % of global diseases (Alemayehu et al., 2018). So these countries
would benefit the most from models that can diagnose diseases based on images.
However, designing 12 models that can diagnose only their designated task is a lot
more expensive than designing one model that can classify all tasks at once. The
reason for this is higher computational costs and more storage to run all models
individually (Zhang and Yang, 2017). In addition, more development time is needed
to implement each model and train each model individually. So, there is a need for
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such models that learn using a “Multi-Task Learning”(MTL)-Technique and are
able to classify medical images.

But in real-world applications the data is often noisy or incomplete. That is be-
cause various factors, such as sensor malfunctions, data transmission errors, or poor
image quality, can lead to data corruption. Testing models on corrupted data helps
to evaluate the robustness and generalization potential of the model and provides
essential information on whether a model is capable of performing well on imperfect
and noisy inputs (Ciresan et al., 2011). Ciresan et al. (2011) also shows that the
evaluation of corrupted data is especially relevant in computer vision tasks such as
image classification. Hendrycks and Dietterich (2019) highlights that testing mod-
els on corrupted data improves the model stability. The paper shows how models
respond to unstable or missing input and help to handle unexpected data scenarios.
So both models on a clean as well as on a corrupted dataset are evaluated to improve
overall model quality.

The performance of the models should serve as a baseline of a newly created bench-
mark that is part of this thesis. Benchmarks play an enormous role in the realm of
machine learning. Since ML is a rapidly evolving field, benchmarks serve as a way
to measure, compare, and evaluate the performances of models across various differ-
ent tasks. Thiyagalingam et al. (2022) highlights how benchmarks are essential in
identifying the best ML algorithms for complex scientific datasets. This quote from
Zaharia et al. (2024) shows some important aspects of why benchmarks are needed
in ML: “Benchmarks allow us to quantitatively know the capabilities of different
models, software, and hardware. They allow ML developers to measure the infer-
ence time, memory usage, power consumption, and other metrics that characterize a
system. In addition, benchmarks create standardized measurement processes, allow-
ing fair comparisons between different solutions.” Thiyagalingam et al. (2022) and
Zaharia et al. (2024) show that benchmarks help drive progress in both industrial
and scientific applications by promoting improvements in model accuracy, efficiency
and, robustness.

The models this thesis suggests as a baseline are the so-called foundation models.
A foundation model refers to a large-scale, pre-trained model that serves as the
basis for various downstream tasks in ML. As Figure 1 shows, foundation models
can be pre-trained by different data sources like speech, texts, images, and so on.
This results in a pre-trained model on a large amount of diverse data. This model is
versatile and can be fine-tuned for a wide range of tasks, such as question-answering,
information extraction, object recognition, and more. So, these models are used
as a “Foundation” for creating new models for many different tasks (Bommasani
et al., 2021), (Radford et al., 2021b). In the case of this thesis, they are used as
a foundation for an image classification task. Since these models are already pre-
trained on a wide range of different data, they are able to perform the underlying task
with minimal modification using a smaller, domain-specific dataset, while having
a good performance (Bommasani et al., 2021). This is a great opportunity for
domains where task-specific data is limited, for example in healthcare (Bommasani
et al., 2021). That makes foundation models the perfect choice as a model for the
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underlying medical dataset and image classification tasks and further for the baseline
of the benchmark that this thesis introduces.

Figure 1: A foundation model and the tasks it can be generalized to (Bommasani
et al., 2021).

1.2 Related Work

This section reviews related work in the areas of benchmarks and Multi-Task Learn-
ing (MTL) within the field of machine learning. It begins by presenting an overview
of existing datasets and their associated benchmarks, followed by a discussion of
state-of-the-art MTL methods pertinent to this thesis.

1.2.1 Benchmarks

Wang et al. (2018) introduced General Language Understanding Evaluation (GLUE).
It is a benchmark that evaluates models in a suite of NLP tasks, such as sentiment
analysis, sentence similarity and natural language inference. Wang et al. (2019) de-
scribes GLUE´s successor: SuperGLUE. SuperGLUE includes more difficult tasks,
including reading comprehension and coreference resolution and is designed to be
more challenging for models that have excelled on GLUE. This also shows the need
for new and more challenging benchmarks to support and increase the rapid devel-
opment of new and innovative machine-learning models and algorithms. DecaNLP
is a multi-task benchmark that includes 10 different NLP tasks, such as machine
translation, summarization, and question answering. The goal is to evaluate mod-
els on their ability to handle diverse NLP tasks within a single architecture. This
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paper demonstrates the importance to “explore models that generalize to many dif-
ferent kinds of NLP tasks. decaNLP encourages a single model to simultaneously
optimize for ten tasks” (McCann et al., 2018). Although this quote highlights the
significance of NLP architectures, its relevance extends to other areas of machine
learning, such as image classification, as demonstrated in this thesis. These three
examples represent benchmarks in the NLP domain that utilize multiple tasks to
assess the performance of a single model.

But there are also examples of such datasets and benchmarks in the field of Com-
puter Vision: Visual Taks Adaptation Benchmark (VTAB) evaluates models’ gener-
alization ability across a wide variety of vision tasks. It includes datasets from areas
like natural images, specialized tasks, and real-world scenarios, making it a compre-
hensive benchmark for multi-task vision learning (Zhai et al., 2019). The Medical
Segmentation Decathlon emphasizes the importance of standardized assessments for
medical image segmentation tasks involving various anatomical structures. The re-
sults of this challenge demonstrate that the achievement of consistent performance
across multiple tasks is a strong indicator of overall robust generalizability (Antonelli
et al., 2022).

CheXpert is a large-scale dataset of chest radiographs labeled for the presence of
14 different conditions (Irvin et al., 2019). PADChest, for example, includes a wide
variety of labels for conditions detected on chest radiographs (Bustos et al., 2020).
Numerous individual datasets focus on specific diseases and conditions, such as the
two mentioned, which can be used to evaluate model performance. However, far
fewer datasets are designed for benchmarking a model across multiple datasets and
tasks, enabling the comparison of a model’s ability to generalize across diverse tasks.
MedFMC (Wang et al., 2023) is one of them. It presents a dataset, which was de-
veloped to address the challenge of adapting foundation models for the classification
of medical images. This dataset contains 22,349 images across five different medical
imaging tasks, collected from multiple healthcare institutions. These tasks include:

1. ChestDR: Thoracic disease screening using chest X-rays

2. ColonPath: Lesion detection in pathology images for cancer screening

3. Endo: Lesion detection in endoscopy images

4. NeoJaundice: Neonatal jaundice evaluation based on skin photos

5. Retino: Diabetic retinopathy classification using retinal images

The MedFMC dataset and its benchmarks aim to test the effectiveness of large-
scale foundation models when applied to real-world clinical tasks. It supports the
evaluation from both the accuracy and the cost-effectiveness perspective, providing a
robust framework for improving medical AI systems. The same can be said for Yang
et al. (2023). They introduce the MedMNIST v2 dataset, which is explained in detail
later since it is the foundational dataset for this thesis. A dataset consisting of 12 2D
classification tasks and 6 3D tasks. Furthermore, there are 4 different resolutions:
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28×28, 64×64, 128×128, and 224×224, which makes this dataset special. They
benchmark different models on each dataset individually.

Another benchmark worth noticing is the WILDS-benchmark: A benchmark of
in-the-Wild Distribution Shifts (Koh et al., 2021). It focuses on evaluating models
across diverse domains under realistic distribution shifts. The benchmark introduces
a wide range of diverse datasets, each of which captures real-world shifts in data
distribution. As a widely recognized and respected benchmark in the realm of ML,
the design of the website for our benchmark is highly influenced by this benchmark.

1.2.2 Multi-Task Learning

The following section introduces related work in regard to multi-task learning meth-
ods used to train different machine learning models.

Argyriou et al. (2007) proposed a technique to improve multi-task learning by en-
couraging tasks to share relevant features. This method identifies and learns a shared
set of features that are useful across different tasks, promoting efficient and collabo-
rative learning through shared representations. The approach is particularly useful
in scenarios where related tasks can benefit from overlapping input information.

Collobert and Weston (2008) introduced a deep neural network architecture that
jointly learns multiple natural language processing tasks, such as tagging part of
speech and recognition of named entities. By sharing representations across tasks,
their model leverages task similarities, improving performance on individual tasks.
This approach was remarkable for NLP as it demonstrated how multi-task learning
could streamline various NLP tasks into a single, efficient framework, reducing the
need for separate models.

Liu et al. (2019) proposed a multi-task learning model specifically designed for var-
ious natural language understanding tasks, such as sentiment analysis and natural
language inference. By sharing parameters across tasks, their model efficiently learns
both shared and task-specific features, resulting in improved performance on indi-
vidual tasks. This paper demonstrated the effectiveness of Multi-Task Learning
in NLP by enabling related tasks to reinforce each other, enhancing overall model
generalization and robustness.

He et al. (2021) and Graham et al. (2023) introduced models that use multi-task
learning in image classification tasks, demonstrating the advantages of the technique.
He et al. (2021) proposed a method to adaptively combine multiple convolutional
neural networks (CNNs) for large-scale image classification tasks. By grouping im-
age categories with semantic correlations into a hierarchical ontology, the model ef-
ficiently handles complex tasks while maintaining competitive accuracy on datasets
like ImageNet10K. This work highlights the scalability of deep-mixture models for
tasks with thousands of categories.

Graham et al. (2023) introduced the Cerberus model for MTL, which simultaneously
predicts multiple histological tasks, such as segmentation and classification, using
a shared ResNet34 encoder and independent decoders. The model demonstrates
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improved feature generalization and data efficiency, leveraging transfer learning to
boost performance for downstream tasks like object detection. This framework
addresses challenges like task-specific data variations and gradient conflicts during
optimization.

As these papers show, shared representations and multi-task learning can help en-
hance the overall performance of models in different fields of machine learning. Thus,
the multi-task learning approach is a suitable method to examine in this thesis and
to get the advantages this method brings with it. The multi-task learning approach
suggested by this thesis is from Woerner et al. (2024) and will be introduced later
on.

1.2.3 Introduction of the Benchmark

The benchmark of this thesis ties in on the MedMNIST+ dataset and work, since it
uses the 2D collection of datasets introduced by Yang et al. (2023). Therefore, the
proposed benchmark primarily emphasizes image classification within the biomed-
ical domain. A comprehensive description of the MedMNIST+ dataset collection
will be provided later. Notably, the MedMNIST+ collection encompasses images
from various biomedical domains, supporting diverse imaging tasks such as binary
classification, multi-class classification, multi-label classification, and ordinal logistic
regression.

This presents the challenge of developing a model that performs well across diverse
tasks. MedMNIST+ includes 12 datasets that span various imaging modalities
such as X-rays, microscopy, and CT, with tasks that cover different regions of the
body. Considering these variations in modalities, tasks, and medical domains, a key
objective of our benchmark is to assess a model’s generalization capability.

Another key aspect of the benchmark is the robustness to distortions. The bench-
mark also gives the opportunity to evaluate the models on a corrupted version of
the dataset: MedMNIST-C introduced by Salvo et al. (2024). This paper introduces
different corruptions on MedMNIST+ that can appear in real-world scenarios.

This thesis establishes a baseline using foundation models applied out of the box,
without fine-tuning, to evaluate their pre-trained capabilities. Additionally, these
models are fine-tuned using a Multi-Task Learning approach to investigate whether
fine-tuning enhances their generalization potential and robustness to distortions.

1.3 Contribution

Key Contributions of this thesis:

• Evaluation of foundation models:

– Investigate the performance of foundation models on multi-domain med-
ical image classification tasks.
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– Explore whether these models generalize across tasks with limited task-
specific data.

• Multi-task learning techniques:

– Evaluate the impact of fine-tuning foundation models on medical image
datasets using a Multi-Task Learning technique.

– Analyze changes in performance and robustness.

• Robustness to real-world distortions:

– Test model performance on distorted images (e.g., noise, blur) to simulate
real-world clinical scenarios.

– Emphasize the critical need for robustness of models when deploying
solutions in healthcare settings.

• Set a new benchmark:

– Establish a baseline for the MedMNIST+ dataset, facilitating model com-
parisons based on generalization performance.

– Establish a baseline for the MedMNIST-C dataset, allowing model com-
parisons on noisy or corrupted data.

– Encourag the development of more robust models for medical applica-
tions.

In summary, this thesis provides a comprehensive benchmark that evaluates models
for medical image classification, multi-task learning, and robustness to distortions,
offering valuable insights for the development of reliable AI in healthcare.

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 provides the tech-
nical foundation necessary for understanding the subsequent chapters. Chapter 3
outlines the methodology employed to train the models, while Chapter 4 describes
the datasets used for training and evaluation. Chapter 5 presents the performance
of the different models, and Chapter 6 compares and discusses these results. Chap-
ter 7 addresses the limitations and suggests future work, while Chapter 8 offers a
conclusion.
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2 Theoretical Background

This section gives an overview of the theoretical foundation needed to understand
this thesis. It starts by introducing machine learning and deep learning (DL) and ev-
erything that comes with it. After that, foundation models are generally explained,
and the four foundation models used in this thesis are introduced. This section
closes with the definition of the evaluation metrics used to measure the performance
of the models.

2.1 Machine Learning

ML systems automatically learn from data and experience without being specifically
programmed and allow the system “to function in an intelligent manner”(Sarker,
2021b). The effectiveness and efficiency of these models are based on the nature
and characteristics of the data the model learns from and the performance of the
learning algorithm used. Since there is a very wide range of different tasks, data,
and algorithms, it can be challenging to find a good algorithm for a specific domain
(Sarker, 2021b). The existing algorithms can be categorized into four categories

Figure 2: Categories of ML algorithms (Sarker, 2021b).

as shown in figure 2: Supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning.

Supervised Learning: Supervised learning is the most common form of ML. Usually,
it tackles the task, which maps input to output. It learns from labeled input-output
pairs. Common supervised learning tasks are classification tasks that separate the
data. A typical classification task can be the classification of an image into different
classes, e.g., into “pictures of a dog” and “not pictures of a dog”(Sarker, 2021b),
(LeCun et al., 2015).

Unsupervised Learning: Unlike supervised learning, unsupervised learning analyzes
unlabeled data and does not need human support. This mainly intends to extract
generative characteristics, identify meaningful trends and structures, groupings in
the results, and exploratory purposes (Sarker, 2021b).
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Semi-Supervised Learning: This technique can be defined as a hybrid form of the
two techniques just described since it can deal with both labeled and unlabeled
data. That is especially useful in real-world scenarios where the labeled data is
rare, and a semi-supervised model can be useful. It aims to outperform supervised
models restricted to learning only on the labeled data. Machine translation, fraud
detection, labeling data, and text classification are the main areas where semi-
supervised models find use (Sarker, 2021b).

Reinforcement Learning: According to Sarker (2021b) “Reinforcement learning is a
machine learning algorithm that enables software agents and machines to automat-
ically evaluate optimal behavior in a particular context or environment to improve
efficiency.” This learning method uses a reward and penalty system. It aims to take
an action that maximizes the reward or minimizes the risk. It is used in robotics, au-
tonomous driving tasks, manufacturing, and supply chain logistics (Sarker, 2021b).

Self-Supervised Learning: Self-supervised learning is an additional machine learning
approach, not included in the figure, where models learn to extract meaningful
features from unlabeled data. This can, for instance, be achieved by solving pretext
tasks, which generate supervisory signals directly from the data itself, removing the
need for manually annotated labels (Jaiswal et al., 2021).

Although there are different learning techniques, the main focus of this thesis is
Supervised Learning since the observed task is image classification. Three common
classification problems are explained in the following paragraph. All three problems
are part of the dataset used in this thesis.

The first classification problem is binary classification. It is a classification task
with exactly two class labels, e.g., “yes” and “no”, “true” and “false” or “ill” and
“healthy”. One of the classes can be considered the normal state while the other
class can be the abnormal class (Sarker, 2021b).

Multiclass classification describes those classification tasks that have more than two
class labels. It does not work after the principle of normal and abnormal. Instead,
it operates in a range of specified classes, while an example is categorized as one of
these classes (Sarker, 2021b). It can be such a task to classify various types of disease
in a sample, e.g., “normal”, “COVID-19”, “Other pneumonia”and “Tuberculosis”
as in Punn and Agarwal (2020).

Multi-label classification describes a problem where an example is relevant to several
classes or labels. It is a matter of generalization of the multiclass classification. In
this problem, the classes involved are hierarchically structured, and each sample can
belong to more than one class (Sarker, 2021b).

However, machine learning algorithms for image classification cannot classify the
input immediately. There is a step called feature extraction in between, as Figure 3
demonstrates. In the top half of the figure, the typical workflow of machine learning
is depicted. An input is provided for the model to classify; in this case, an image of
a car is used. This image must be preprocessed, and its features must be extracted.
Feature extraction is a step where raw data is transformed into a more manageable
and meaningful form. In machine learning, feature extraction aims to enhance
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Figure 3: Typical workflow of machine learning and deep learning (Turing, 2024).

the predictive accuracy of models by selecting or deriving new features that better
capture the underlying patterns in the data. Methods for feature extraction range
from statistical approaches (like principal component analysis) to machine learning-
specific techniques such as autoencoders (Li et al., 2016), (Berahmand et al., 2024).
Then, these features are passed into the machine learning algorithm that gives an
output prediction. In this example, a binary classification decides if this image is
an image of a car or not. In the bottom half of figure 3, you can see the workflow
of a deep learning model. As you can see, it only needs the image as input since it
can extract the features of the images by itself. The machine learning algorithms
this thesis uses get their feature extractions from foundation models, which are deep
learning architectures. Deep learning and foundation models are introduced in the
next chapter.

2.2 Deep Learning

Deep learning and deep neural networks (DNN) have emerged as an important
branch of machine learning. They find use in various domains like healthcare, vi-
sual recognition, text analytics, and many more, particularly in tasks that require
complex pattern recognition and data representation (Sarker, 2021a). As the term
neural networks suggests, its origin is in neuroscience, and parallels can be drawn
between the human brain’s decision-making and DNNs (Hassabis et al., 2017). In
figure 4, the architecture of a DNN is shown. DNNs have a multi-layer architec-
ture. Each of these layers is designed to process different aspects of the input data,
while the collection of all layers determines the final output together (LeCun et al.,
2015). A typical DNN has an input layer, multiple hidden layers, and an output
layer. Each of the layers is composed of many simple processing elements or neurons.
These neurons are connected to neurons in other layers. Each neuron generates a
series of activations for the target outcome.
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Figure 4: Architecture of a deep neural network (Parmar, 2018).

Figure 5: Schematic representation of the mathematical model of an artifcial neuron
(LeCun et al., 2015).

Figure 5 shows the schematic representation of the mathematical model of such a
neuron. There is the input(x), the weight(w), a bias(b), a summation function(

∑
),

an activation function(f ), and an output signal(y). Each neuron gets the outputs
of the neurons of the previous layer as input x if they are connected. This input
is weighted with w. That means each neuron weights the information (input) from
previous neurons differently. After that, a bias b is added to the weighted sum of
the input and the weights. That together gives the activation z as shown in equation
1 (Zhang et al., 2023a), (Montavon et al., 2018).

z = xw + b (1)

This activation z goes into an activation function f, and the output of this function
is the output of the neuron that is given to the subsequent neurons. This shows
that the weights and biases of the neurons are crucial for the network’s output and,
therefore, for the model’s performance. So, these DNNs are iteratively trained, and
the weights and biases are updated to minimize errors. The error or loss of a DNN is
the difference between the true output and the actual output that the model gives.
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There are many loss functions, each suiting different data types and tasks (Zhang
et al., 2023a). This thesis mainly uses cross-entropy loss (Doerrich et al., 2024b).

It is applied to the logits and is defined as follows:

CE = − 1

N

N∑
n=1

log

(
exp(zn,yn)∑C
c=1 exp(zn,c)

)
(2)

Where:

• N is the number of samples in the current batch,

• C is the total number of classes,

• zn,c represents the logit for class c of the n-th sample and

• zn,yn corresponds to the logit of the target class for the n-th sample.

For binary classification, where C = 2, this equation reduces to the binary cross-
entropy loss (Doerrich et al., 2024b).

Another significant loss for this paper is the binary cross-entropy with logits (BCE-
withLogits) loss. One of the classification problems of this thesis is a multi-label
classification task. This thesis reframes it as a multi-label binary classification prob-
lem, where the objective is to predict the presence or absence of each class label c
for a given sample n, similar to Doerrich et al. (2024b). The Binary Cross-Entropy
with Logits (BCEwithLogits) loss function is applied across all class labels c ∈ C.
The loss function is defined as:

BCEwithLogits = − 1

N

N∑
n=1

C∑
c=1

[yn,c log σ(zn,c) + (1− yn,c) log(1− σ(zn,c))] (3)

where N represents the number of samples in the current batch, zn,c is the logit
corresponding to sample n and class c, yn,c is the binary label for sample n and
class c, indicating the presence (1) or absence (0) of class c, and σ(·) is the sigmoid
activation function applied to the logit zn,c (Doerrich et al., 2024b).

To minimize the network loss, it is necessary to understand how the loss function
is affected by the current weights and biases of the model. This information is
contained in the gradient (Zhang et al., 2023a). Here comes backpropagation into
play. Backpropagation is a technique used to compute the parameters’ gradients
in a neural network. It works by moving backward through the network, starting
from the output layer and proceeding to the input layer, following the chain rule
from calculus. During this process, the algorithm saves intermediate values (such
as partial derivatives) needed for gradient calculation concerning the parameters
(Zhang et al., 2023a). For example, if we have functions y = f(x) and z = g(y),
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we can use the chain rule to determine the derivative of y concerning x with this
equation:

∂y

∂x
=

∂g

∂f

∂f

∂x
(4)

Backpropagation computes the gradients of the neurons’ parameters and their im-
pact on the loss. These gradients guide optimization algorithms, such as gradient
descent, as they train neural networks.

This leads to the next important topic in Neural Networks: Optimization Algo-
rithms. An optimization algorithm is a method used to adjust the parameters of a
model. Optimization algorithms work by using the gradients of the loss function con-
cerning the model’s parameters to update these in the direction that reduces the loss
(Loshchilov and Hutter, 2017). This is often done through iterative updates, mean-
ing the algorithm repeatedly adjusts the parameters step by step, moving toward
an optimal solution. This thesis uses the AdamW optimization algorithm. AdamW
is an optimization algorithm that improves upon the Adam optimizer by address-
ing the issue of weight decay regularization. In deep learning, weight decay (L2
regularization) is commonly used to prevent overfitting by penalizing large weights,
thereby encouraging smaller and more generalizable model parameters (Loshchilov
and Hutter, 2017).

All these techniques can now be combined to train the models. The following four
steps are here to summarize the learning of a model:

1. Forward Pass: Input data is passed through the network layer by layer,
where each neuron applies a weighted sum of its inputs followed by a nonlinear
activation function. This produces an output from the network.

2. Loss Calculation: The output is compared to the actual target values using
a loss function, quantifying how far off the predictions are from the actual
values (Zhang et al., 2023a).

3. Backward Pass: This is where backpropagation comes into play. The algo-
rithm calculates the gradient of the loss function with respect to each weight
in the network by applying the chain rule of calculus. It determines how the
error changes with small changes in the weights (Zhang et al., 2023a).

4. Weight Update: The weights are updated to minimize the loss. A learning
rate dictates here the size of the steps the algorithm takes when moving toward
the minimum of the loss function. Selecting an appropriate learning rate is
crucial for effective model training, as it balances the speed of convergence
with the risk of overshooting the global minimum (Bishop, 2006; Kingma and
Ba, 2015).

These four steps are repeated until a termination criterion is met. An epoch is one
complete cycle through the training dataset. One termination criterion can be a
predefined number of epochs. Usually, the dataset is split into training, validation,
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and test sets. The training set is the most significant portion of the dataset and
is used to train the model. The validation set helps monitoring the model’s per-
formance and ensures it does not overfit the training data. The test set assesses
the model’s final performance after training is complete (Nielsen, 2015). The test
set must be kept entirely separate from both the training and validation sets to
provide an unbiased evaluation of how well the model generalizes to new, unseen
data. Overfitting in this context is a problem where a model learning learns the
data too well instead of capturing the underlying structures. This results in a model
that performs very well on the training data but poorly on the validation and test
set. To prevent overfitting, models can implement different strategies, e.g., Early
Stopping (Nielsen, 2015).

When training large models with enough representational capacity to overfit the
task, it is common to see a steady decline in training error over time while the
validation set error increases again. This implies that a model with improved val-
idation set error (and potentially better test set error) can be trained by reverting
to the parameter configuration when the validation set error is lowest. Each time
the validation set error improves, a copy of the model parameters gets saved. Upon
completing the training algorithm, these saved parameters are restored instead of
using the most recent ones. An Early Stopping criterion can be defined as a fixed
number of epochs during which the model fails to improve its validation set error. If
a model trains for n epochs without improvement in the validation loss, the training
gets stopped, and the parameters of the best-performing model get saved (Nielsen,
2015).

In practice, calculating the gradients for the entire dataset is typically avoided due to
memory constraints. So, the dataset gets split into batches. The batch size refers to
the number of training samples utilized in a single iteration of model training during
mini-batch gradient descent, where the training data is divided into random mini-
batches for iterative parameter updates. Larger batches yield a more precise estimate
of the gradient but demand more memory during training. Conversely, smaller
batches may improve the model’s generalization capabilities due to the regularizing
effect of the noise present in smaller batches. However, they can also slow down the
overall training process (Goodfellow et al., 2016).

2.3 Data Augmentations

Since good, diverse, and large training data is essential for training machine learn-
ing models, data augmentations are critical for ML. It involves generating additional
training data from an existing dataset by applying transformations, effectively ex-
panding the dataset’s diversity. These modifications help prevent overfitting and
improve a model’s ability to generalize to new data by exposing it to varied exam-
ples during training.

Figure 6 overviews fundamental transformations. Geometric data augmentation in-
volves altering an image’s geometric properties, such as its position, orientation, and
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Figure 6: Overview over basic data augmentation techniques (Kumar et al., 2023).

aspect ratio. This can include transformations like rotation, translation, scaling, and
flipping, which adjust the spatial layout of objects within the image to increase data
variability and improve model robustness to changes in viewpoint and alignment.

Rotation. Rotation is a geometric transformation applied to images to turn them
around a specific point, usually the image’s center. The angle of rotation can vary,
often measured in degrees, to simulate different viewpoints or perspectives of the
objects within the image. For instance, rotating an image by 90 degrees clockwise
changes its orientation without altering the content itself (Kumar et al., 2023).

Translation. Translation data augmentation involves shifting an image in any
direction — upward, downward, left, or right — by a certain number of pixels. This
technique alters the object’s position within the frame while preserving its original
appearance, helping the model learn to recognize objects regardless of where they
appear within the image (Kumar et al., 2023).

Shearing. Shearing data augmentation involves shifting one part of an image in
a specific direction while the opposite part shifts in reverse, creating a slanted or
skewed effect. This transformation provides new and varied perspectives of the
image data (Kumar et al., 2023).

Non-geometric data augmentation emphasizes enhancing an image’s visual proper-
ties — such as color balance, brightness, contrast, saturation, or noise — without
changing its spatial structure or layout. This approach diversifies the dataset by
introducing variations in visual appearance, helping the model become resilient to
changes in lighting, color shifts, and other visual conditions that can occur in real-
world scenarios. (Kumar et al., 2023).
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Flipping. Flipping is an image data augmentation technique that involves mir-
roring an image horizontally (left to right) or vertically (top to bottom). This
transformation creates a reversed version of the original image (Kumar et al., 2023).

Cropping and Resizing. This technique involves cropping a portion of the image
and then resizing it to its original dimensions while maintaining the original label.
Cropping as a data augmentation method introduces variety by zooming into differ-
ent parts of an image, which can help the model become more robust to partial views
of objects. However, improper cropping might result in missing essential features
(Kumar et al., 2023).

Noise Injection. Noise refers to random variations in brightness or color informa-
tion that are often unwanted distortions (Kumar et al., 2023).

Color Space. This data augmentation adjusts the image’s brightness and overall
color balance (Kumar et al., 2023).

Jitter. Jitter is used for changing image features like brightness, contrast, satura-
tion, and hue (Kumar et al., 2023).

Kernel Filtering. Kernel filtering is a technique used in data augmentation that
enhances or softens the image. An example of such an augmentation is Gaussian-
blur (Kumar et al., 2023).

There are also image erasing data enhancements. As the name suggests, these
augmentations remove specific parts of a picture by replacing them with either 0,
255, or the mean of the dataset. Cutout, random erasing, and grid mask data
augmentation are examples (Kumar et al., 2023).

Figure 7 shows examples of rotation, flipping, cropping & resize, and noise injection,
which are the most important augmentations for this thesis. In addition, there are
a lot more data augmentations that are more advanced that involve, for example,
image mixing, multi-image mixing, or reinforcement learning data augmentations,
to name a few (Kumar et al., 2023). These are not specified further since they are
not part of the scope of this thesis.

2.4 Vision Transformer

Before foundation models are introduced, the transformer architecture, more pre-
cisely vision transformers (ViTs), are shortly introduced since they make big known
foundation models possible.

Figure 8 shows the architecture of a vision transformer (Dosovitskiy et al., 2020).

Here, the input image, shown at the bottom left of the figure, is first divided into
smaller, equally sized patches. Each of these patches is flattened into a 1D vector of
pixel values. Position embeddings are added to each patch embedding to give the
model an understanding of the position of each patch in the image. This ensures
that the model can distinguish between patches in different locations. A special
“class” embedding token is included, which will eventually carry the information
needed to classify the entire image (Dosovitskiy et al., 2020).
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Figure 7: Examples of rotation, flipping, cropping & resize, and noise injection
applied (Kumar et al., 2023).

Figure 8: Architecture of a vision transformer (Dosovitskiy et al., 2020).

Each patch (with its position embedding) is then passed through a linear projection
layer. This step transforms the flattened patch vectors into a uniform embedding
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size suitable for processing in the transformer. These embedded patches are stacked
to create a sequence.

The sequence of patch embeddings is fed into a transformer Encoder, which consists
of multiple layers of:

• Multi-Head Attention: This component allows the model to understand
relationships between patches by looking at how each patch “attends” to every
other patch. It can learn which patches are significant relative to others.

• Normalization Layers: These layers help stabilize the training and ensure
the outputs from each layer are standardized.

• MLP (Multi-Layer Perceptron): After the attention mechanism, the out-
put goes through an MLP to capture additional patterns and features.

This process is repeated for a set number of layers (represented by “L ×” on the
right side of the figure 8), enabling the model to learn complex representations of
the image (Dosovitskiy et al., 2020).

After passing through the transformer encoder, the “class” token contains informa-
tion representing the entire image (Dosovitskiy et al., 2020). This token is then
processed by an MLP Head (a simple neural network) to make the final prediction
or classification, such as identifying whether the image shows a bird, ball, car, etc.

In summary, a vision transformer splits an image into patches, embeds them with
positional information, and processes them using attention mechanisms in the trans-
former encoder to understand the relationships between patches. The ”class” token
accumulates this information and predicts the image’s category. This approach
leverages the powerful self-attention mechanism of transformers to capture both
local and global patterns within an image (Dosovitskiy et al., 2020).

Dosovitskiy et al. (2020) also show that, unlike CNNs, ViTs are better at leveraging
large datasets for high accuracy, which leads to foundation models. ViTs help lay
the groundwork for visual foundation models by making transformers applicable to
images. Still, foundation models, in general, aim to be universal and capable of
handling multiple data types and tasks across domains.

2.5 Foundation Models

Bommasani et al. (2021) defines the term foundation model as “any model that is
trained on broad data (generally using self-supervision at scale) that can be adapted
(e.g., fine-tuned) to a wide range of downstream tasks”. Examples of foundation
models are BERT (Devlin et al., 2018) , CLIP (Radford et al., 2021a), and GPT-3
(Brown et al., 2020). So technically, the concept of foundation models is nothing
new since they are based on deep neural networks and self-supervised learning,
which were researched long before foundation models emerged. The vast scale and
scope of foundation models developed have expanded massively. An example of this
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is GPT-3, which has 175 billion parameters. So these models are enabled by the
advancements in computational resources (Brown et al., 2020).

Emergence is an essential aspect of foundation models. It refers to the phenomenon
where a system’s behavior arises naturally rather than being explicitly designed. It
is a source of scientific excitement and concern due to the potential for unexpected
outcomes (Brown et al., 2020).

Homogenization is also a significant aspect of foundation models. Homogenization
refers to the process of creating a unified model architecture or framework. This
approach enables handling various tasks across different domains, eliminating the
need for specialized models for each task. This approach generalizes learning across
diverse datasets and tasks by training on vast amounts of heterogeneous data, pro-
ducing a model that performs well in multiple areas. Figure 1 shows that a founda-
tion model can learn from various data sources like images, text, speech, and other
structured data sources and can be adapted to different tasks like object recognition,
sentiment analysis, and image classification. It can be adapted not only to many
different tasks but also to other domains such as healthcare, law, and education only
to name a few (Brown et al., 2020), (Moor et al., 2023).

The healthcare domain is particularly interesting in the realm of this thesis. Al-
though DL advances in many fields rapidly, it cannot keep up in this domain. That
is primarily explained by the lack of appropriate datasets in this context (Stacke
et al., 2021). Here comes transfer learning into play.

Transfer learning is a technique in ML where a model developed for one task can
be adapted to solve a different but related task. So, instead of training a new
model from scratch, transfer learning allows models to leverage knowledge gained
from a previous task to improve performance on a new task. This is particularly
useful when the designated task has limited data. Since the foundation models
are pre-trained on broad data from different domains, they can be fine-tuned to
a domain like healthcare with only small data through transfer learning. So this
makes foundation models the perfect models to evaluate the underlying medical
dataset of this thesis (Brown et al., 2020). In the following subsections, the four
distinct models explored in this thesis are introduced: Dino, Dinov2, UNI, and
Prov-GigaPath. Table 1 provides an overview of the evaluated model architectures,
highlighting their number of parameters and the feature dimensions prior to the
final classification layer. Parameter counts are expressed in millions (M) for clarity.
Additionally, the used backbone for the ViTs is named (ViT-B/16, standing for the
base backbone with a patch size of 16, L stands for Large, and g for giant).

2.5.1 Dino

Dino (Distillation with No Labels) is a foundation model used for self-supervised
learning without labels. Figure 9 shows Dino´s architecture. The model uses an
input picture. It is randomly transformed in two ways, resulting in two views: x1

and x2. These augmented views are fed into a student network and a teacher
network.
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Model Params (M) # Output Dimension
Dino ViT-B/16 85.8 768
Dinov2 ViT-B/14 86.6 768
UNI ViT-L/16 303 1024
Prov-GigaPath ViT-g/14 1100 1536

Table 1: Overview of the evaluated model architectures, highlighting their parameter
counts, and feature dimensions before the final classification layer. Parameter counts
are expressed in millions (M).

The student network, represented as gθs , processes one of the augmented views x1 to
produce a feature representation. This representation goes through a softmax layer,
which gives the output probability distribution p1 (Caron et al., 2021).

The teacher network, represented as gθt , processes the other augmented view x2 of
the image. It applies centering (to normalize outputs) and then passes the features
through a softmax layer, producing p2. The symbol “sg” (stop gradient) indicates
that gradients are not backpropagated through the teacher network. This keeps
the teacher network stable and helps avoid collapse (where both networks produce
identical, non-informative outputs) (Caron et al., 2021).

The loss function is a cross-entropy loss between the probability distributions of the
student and teacher networks: −p2 log p1. The goal is to align the student’s output
distribution p1 with the teacher’s output distribution p2, encouraging the student
to mimic the teacher (Caron et al., 2021).

The teacher network’s parameters θt are updated as an exponential moving average
(EMA) of the student network’s parameters θs. This EMA update helps the teacher
network evolve slowly based on the student, keeping it stable and progressively
improving its representations (Caron et al., 2021).

Each network g consists of a vision transformer backbone and an MLP as head in this
thesis. However, they could be implemented with other architectures like a ResNet
(He et al., 2015). The Dino model pre-trained on the ImageNet-1k dataset is used
(Deng et al., 2009). ImageNet-1K is a widely used subset of the ImageNet database
for image classification tasks. It consists of over 1.2 million labeled images divided
into 1,000 classes, each representing a unique object category. The dataset was cre-
ated as part of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
an annual competition that significantly advanced image recognition research. Each
image in ImageNet-1K is labeled with one of the 1,000 object categories, which range
from animals and everyday objects to scenes and abstract categories (Deng et al.,
2009).

In summary, Dino uses a student-teacher framework, where the teacher helps guide
the student’s learning without labels. By augmenting the same image differently, it
encourages the student to produce similar outputs for different views, improving the
robustness of the network. The exponential moving average update mechanism al-
lows the teacher to accumulate knowledge over time, creating a stronger supervisory
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signal for the student. This approach enables Dino to learn meaningful represen-
tations in a self-supervised manner (Caron et al., 2021). This thesis utilizes the
pre-trained student framework for further fine-tuning to the given task.

Figure 9: Simplified architecture of Dino. The teacher parameters get updated by
an exponential moving average (ema), and the gradients are not backpropagated
(sg=stop gradient) to keep the teacher framework stable (Caron et al., 2021).

.

2.5.2 Dinov2

As the name suggests, Dinov2 is the successor of Dino. Dinov2 also uses a self-
supervised learning method for training vision transformers, but several architectural
differences try to improve the performance, stability, and generalization (Oquab
et al., 2024).

Dinov2 introduces more stable and effective training for diverse and complex data.
Dinov2’s loss functions improve upon Dino by focusing less on instance-level contrast
and more on robust features (Oquab et al., 2024).

Dinov2 expands to support larger transformer backbones (Oquab et al., 2024). Di-
nov2’s architecture is also optimized for efficiency, especially in handling large-scale
datasets like ImageNet-21k (Deng et al., 2009) and LAION-400M (Schuhmann et al.,
2021).

Dino uses fixed or learnable positional embeddings, while Dinov2 incorporates flex-
ible positional embeddings, allowing the model to perform well across varied resolu-
tions and input sizes without retraining (Oquab et al., 2024).

Dinov2 is trained on more diverse and larger datasets. It is optimized for multi-scale
feature learning and supports larger, more diverse data, making it more robust for
various downstream tasks. It is pre-trained with the LVD-142M dataset, or Large
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Visual Dataset with 142 million images, specifically designed to train Dinov2 (Oquab
et al., 2024). These pictures are selected for their diversity in visual content, context,
and quality. Unlike web-scraped datasets like LAION-400m, LVD-142M was care-
fully curated to avoid noisy labels and low-quality images, which are common issues
in web-scraped datasets (Oquab et al., 2024). This curation process ensures that
images are diverse but also relevant and high-quality, which aids in more effective
feature learning. Since the dataset is unlabeled, it allows Dinov2 to learn without
supervised labels, making it more versatile for applications where annotated data is
scarce. The diversity and scale of LVD-142M make it especially suitable for training
a model that can generalize across various downstream tasks (Oquab et al., 2024).

2.5.3 UNI

UNI is a large foundation model pre-trained in histopathology images, which outper-
forms other encoders in different clinical tasks. It is pre-trained on the Mass-100K
dataset using the Dinov2 self-supervised training algorithm (Chen et al., 2023).
MASS-100K is a large-scale data set designed explicitly for self-supervised learning
of medical image representations. This data set contains around 100,000 pathological
images from different types of tissues and organs, offering diversity in visual pat-
terns and textures. This diversity enables models to generalize well to other types of
medical images. Although general-purpose self-supervised learning models like Di-
nov2 are trained on datasets such as ImageNet (Deng et al., 2009) and LAION-400m
(Schuhmann et al., 2021), MASS-100K is tailored to medical data. This specializa-
tion enables models trained on MASS-100K to capture domain-specific features that
would not be learned from general datasets. This makes it a promising candidate
for this thesis (Chen et al., 2023).

Figure 10 gives an overview of the UNI model. An original patch (an input image)
is transformed into multiple views 1 and 2. View 1 and 2 are two different random
transformations of the original patch, creating varied perspectives of the same image
content to improve robustness and generalization (Chen et al., 2023).

From each view, the image is divided into different types of crops:

• Masked global crops: These are larger patches where some regions are
masked (occluded). This masking helps the model learning to predict missing
parts and encourages contextual understanding.

• Global crops: Large, unmasked sections of the image.

• Local crops: Small, unmasked image sections, capturing finer details.

The cropped image patches are fed into the UNI model, which learns to extract
features from each crop type. It processes each crop individually and aggregates the
features to capture global and local representations (Chen et al., 2023).

The features extracted from the UNI model and the global crops are fed into a UNI
teacher model. This teacher model generates high-quality, stable representations,
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Figure 10: Architecture of UNI (Chen et al., 2023).

which guide the learning of the primary UNI model in a student-teacher fashion like
Dino and Dinov2.

The model uses two different losses:

• Reconstruction Loss: This loss is applied to the UNI model to encourage
it to reconstruct missing (masked) parts in the global crops based on the
aggregated and individual features. The reconstruction task helps the model
learn meaningful representations even without complete information.

• Alignment Loss: This aligns the aggregated features of the UNI model with
those from the UNI Teacher model. The UNI model’s features are adjusted to
match the teacher’s high-quality features, enhancing consistency and stability
in feature extraction.
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UNI achieves strong performance in downstream tasks without needing large labeled
datasets. This is useful in fields like medical imaging, natural scene understanding,
and any area where labeled data is limited and a reason it could perform well on
the medical classification task of this thesis (Chen et al., 2023)

2.5.4 Prov-GigaPath (Prov)

The last foundation model used is Prov-GigaPath. A model pre-trained on pathology
image slides. It is pre-trained on 171189 whole slides, divided into 1.3 billion image
slides from Providence. Providence is a large health network in the United States.
Prov-GigaPath achieves state-of-the-art performances on different digital pathology
tasks, making it suitable as a model for this thesis (Xu et al., 2024).

Figure 11 shows the architecture of Prov-GigaPath. a shows that a histopathol-
ogy slide is divided into a sequence of smaller image tiles, each of size 256×256
pixels. These tiles serve as input to a tile-level encoder, which consists of a vision
transformer. The encoder processes each tile independently to generate image-level
embeddings (Xu et al., 2024). The image-level embeddings from each tile go into
a slide-level encoder. In this case, a LongNet model (Ding et al., 2023) is used
to capture the long-range dependencies between tiles throughout the slide through
dilated attention. The slide-level encoder generates slide-level embeddings for fur-
ther processing (Xu et al., 2024). In b, the tile-level encoder is shown. It uses the
Dinov2 pre-training algorithm with a student and a teacher framework as described
in 2.5.2. The teacher model processes global crops of the tile without masks, while
the student model processes local crops and masked versions of the global crop.
A contrastive loss is applied to align the representations produced by the student
model with those from the teacher model (Xu et al., 2024).

A LongNet-based decoder then processes the input embeddings with masks to recon-
struct the missing or masked parts of the embeddings. The reconstruction process
involves matching the target tile embeddings with the embeddings generated by the
student model. Reconstruction loss is computed as the difference between the target
tile embeddings and the reconstructed embeddings. This encourages the model to
learn accurate representations of the tiles, even when data is missing (regions are
masked), similar to the UNI framework in Section 2.5.3 (Xu et al., 2024).

The foundation models utilized in this thesis are the student models. How the
models are utilized is shown in the methodology later on. All models were sourced
from the “Pytorch Image Models (timm)” library (Wightman, 2019) at Huggingface
3.

2.6 Evaluation Metrics

Evaluation metrics play a crucial role in assessing the performance of classification
models, providing quantitative insights into their predictive capabilities. Among the

3timm at Hugginface: https://huggingface.co/timm
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Figure 11: Flow chart of the architecture of Prov-Gigpath. a, Prov-GigaPath first
transforms each input into 256x256 image tiles and converts each image tile into an
embedding. b, Image tile-level pre-training using the Dinov2 learning algorithm. c,
Slide-level pre-training with a LongNet (Xu et al., 2024).

various available metrics, accuracy, area under the curve (AUC), balanced accuracy,
and Cohen’s kappa are used due to their ability to capture different aspects of model
performance. Each metric has unique strengths and limitations, making it essential
to understand their characteristics when interpreting results or comparing models.

Accuracy (Acc). The accuracy is the most intuitive metric, as it is defined as the
ratio between correctly classified samples to the total number of samples shown in
the following equation:

Accuracy =
TP + TN

TP + TN+ FP + FN
(5)

In the context of classification problems, TP, TN, FP, and FN refer to the classifier’s
outcomes compared to the actual labels.

True Positive (TP): Cases where the model correctly predicts the positive class.

True Negative (TN): Cases where the model correctly predicts the negative class.
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False Positive (FP): Cases where the model incorrectly predicts the positive class
when the actual class is negative, also referenced as Type I error.

False Negative (FN): Cases where the model incorrectly predicts the negative
class when the actual class is positive, also referenced as Type II error.

In a multiclass classification problem, the accuracy is calculated in the same way,
but by summating all classes, taking into account the true positives, false positives,
true negatives, and false negatives for each class.

The accuracy provides a straightforward measure of a model’s performance but may
not be reliable in the presence of imbalanced datasets.

Area Under the Curve (AUC). The Area under the Curve refers to the Area
under the Receiver Operating Characteristic (ROC) Curve and quantifies a model’s
ability to distinguish between classes. The AUC measures the trade-off between
True Positive Rate and False Positive Rate in different threshold values. The True
Positive Rate measures the proportion of actual positive cases the model correctly
identifies. It reflects the model’s ability to detect positive instances. On the other
hand, the False Positive Rate measures the proportion of actual negative cases that
are incorrectly classified as positive by the model. The following two equations show
True Positive Rate (TPR) and False Positive Rate (FPR):

TPR =
TP

TP + FN
(6)

FPR =
FP

FP + TN
(7)

For multiclass classification tasks, the AUC is calculated for each class by treating
it as the “positive” class and combining all other classes as the “negative” class.
This process is repeated for each class, and the AUC scores for each class are then
averaged.

The following values help us understand and interpret the AUC as a metric:

AUC = 1.0: Perfect classifier.

AUC = 0.5. Random guess.

AUC < 0.5. Worse than random guessing.

In summary, the AUC is a robust metric for class imbalance since it considers both
sensitivity and specificity. It also provides a holistic view of a classifier’s perfor-
mance, making it a good addition to accuracy.

Balanced Accuracy (Bal Acc). Balanced accuracy is a modification of standard
accuracy that accounts for class imbalance by averaging the true positive rate, as
shown in this equation.

Balanced Accuracy =
1

C

C∑
i=1

TPi

TPi + FNi

(8)
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Let C be the total number of classes. TPi represents the True Positives for class
i, i.e., the number of correctly predicted instances of class i. And FNi represents
the False Negatives for class i, i.e., the number of instances of class i that were
incorrectly predicted as other classes.

As the name suggests, the balanced accuracy accounts for class imbalance, ensuring
that the performance of minority classes is considered.

Cohen’s Kappa (Co). Cohen´s kappa κ is a statistical measure of agreement
extended to evaluate classification models. It quantifies the degree to which the
model’s predictions align with the ground truth beyond what is expected by random
chance. Cohen´s kappa is calculated like this:

κ =
po − pe
1− pe

(9)

Cohen´s kappa is the difference between the observed and expected agreement,
normalized by the maximum possible agreement. The observed agreement po is the
proportion of instances where the classifier and the ground truth agree divided by the
total number of samples, shown in equation 10. Equation 11 displays the Expected
Agreement pe. It is the proportion of agreement expected by chance, assuming a
model and the ground truth are making their classifications independently.

po =

∑C
i=1 TPi

N
(10)

pe =
C∑
i=1

(
TPi + FPi

N
× TPi + FNi

N

)
(11)

TPi is the number of true positives for class i, FPi is the number of false positives
for class i, FNi is the number of false negatives for class i, C is the total number of
classes, N is the total number of instances (samples).

The following values help to understand and interpret the Cohen kappa as a metric:

κ ≥ 0.81 : Almost perfect agreement

0.61 ≤ κ ≤ 0.80 : Substantial agreement

0.41 ≤ κ ≤ 0.60 : Moderate agreement

0.21 ≤ κ ≤ 0.40 : Fair agreement

κ < 0.20 : Poor agreement

κ = 0 : No agreement better than chance

κ < 0 : Worse than random agreement

In summary, Cohen´s kappa is also a suitable metric for imbalanced datasets and
can provide a realistic assessment of model performance by accounting for the ex-
pected agreement. However, it is less intuitive than the other metrics introduced.
Combining the four metrics gives a good overview of the model’s overall performance.
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3 Methodology

3.1 Benchmark

The benchmark evaluates model performance on the MedMNIST+ dataset using
AUC, balanced accuracy, and Cohen’s kappa metrics. All metrics are averaged
across the 12 datasets to produce a single performance value. These same met-
rics are applied to assess robustness to distortions on the corrupted MedMNIST-C
dataset. Additionally, this thesis includes accuracy as a supplementary metric for
comparison of the results of this thesis. The technical concept and methodology
for the benchmark and its associated website were collaboratively developed in a
bachelor’s thesis by Bachmeier (2024), where further details can be found regarding
the website. This work extends the existing benchmark by introducing the capabil-
ity to evaluate and compare results on the corrupted dataset version. The models
introduced by Bachmeier (2024) and the models trained in this thesis work as a
baseline.

The following sections outline the various training paradigms used to train the foun-
dation models.

3.2 Training Methods

This topic is divided into two sub-fields. The first one (Training only the classifica-
tion head) describes two training techniques that do not train the whole model but
only classifiers to categorize the tasks with the features of the pre-trained backbones.
The second describes two approaches that simultaneously train the entire network
end-to-end on all 12 datasets. The used dataset has resolutions of 28×28, 64×64,
128×128 and 224×224. To ensure compatibility with the pre-trained models while
retaining the unique characteristics of each resolution, all images were padded to
224×224 pixels using zero-padding, if necessary. That is needed since all models
expect an input resolution of 224 x 224. Dinov2 is an exception since it requires
images of 518×518. The images were padded to 518×518. This was done since zero-
padding has minimal impact on classification accuracy while significantly decreasing
training time compared to image resizing (Doerrich et al., 2024b). Zero-padding
prevents neighboring zero-value input pixels from activating their corresponding
convolutional units in the next layer. This minimizes the need for synaptic weight
updates on outgoing connections, maintaining strong feature integrity during image
reshaping (Doerrich et al., 2024b). The training was conducted on a single NVIDIA
RTX™ A5000 GPU or NVIDIA L40 GPU, with the random seed set to 9930641,
ensuring reproducibility.
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3.2.1 Training only the Classification Heads

Xu et al. (2024) states the slide-level embeddings from Prov-Gigapath “can be used
as features for diverse clinical applications.” This is also true for the other foundation
models introduced in this thesis. This work employs a training methodology where
a single pre-trained backbone model is used to generate feature embeddings of the
images. These embeddings are then fed into 12 different classification heads, each
corresponding to one of the 12 tasks in the dataset. The backbone remains fixed, and
only the heads are trained, allowing the model to train classifiers without retraining
the whole model.

The classifiers used in this study include Support Vector Machines, LightGBM, Ran-
dom Forest, k-Nearest Neighbors, and Linear Probing. For instance, when referring
to the Support Vector Machine for the Dino backbone, it means that embeddings
generated by the Dino model are passed through 12 different Support Vector Ma-
chines, each trained to solve one of the 12 tasks in the dataset, with training con-
ducted across all four resolutions the dataset comes in (28×28, 64×64, 128×128,
224×224).

The five used Machine Learning classifiers are introduced in the following, starting
with Support Vector Machines.

Support Vector Machines (SVMs)

Support Vector Machines are one of the most popular, if not the most popular,
algorithms used to tackle classification. Figure 12 shows how the support vector

Figure 12: Explanation of support vector machines (Javatpoint, 2023).

machine for classification works. The green circles and blue squares represent two
different classes. SVM aims to separate these two classes with a clear boundary.

In SVM, a hyperplane is a decision boundary that separates data points from dif-
ferent classes. In this 2D case, the hyperplane is a line. The SVM algorithm aims
to find the best hyperplane that maximizes the margin between the two classes.
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The support vectors are the data points closest to the hyperplane from both classes.
These points are crucial in defining the margin and, hence, the position of the
optimal hyperplane. The line in the center is the maximum margin hyperplane.
This is the line that SVM selects as the decision boundary for separating the two
classes with the biggest margin possible (Javatpoint, 2023), (Noble, 2006).

The dashed lines in the figure show the maximum margin, which is the distance
between two hyperplanes closest to the data points from each class. The SVM
algorithm maximizes this margin, ensuring the classes are as distinct as possible.

The figure shows a problem in a two-dimensional feature space. However, this also
applies to the foundation models’ multi-dimensional feature space. Further, the
picture shows a perfect scenario where the two classes are linear and separable.
However, this is most likely not the case in real-world scenarios, so the algorithm
needs to address this. This is achieved by adding a “soft margin”. This allows data
points to cross the separating hyperplane (Noble, 2006).

Support Vector Machines have a regularization parameter C that controls the trade-
off between maximizing the margin (generalization) and minimizing the classifica-
tion error (training accuracy). A low C allows more misclassified points but seeks
to maximize the margin between the support vectors and the decision boundary,
thus prioritizing generalization and making the model less sensitive to noise but po-
tentially underfitting. With a high C, the model tries to classify all training points
correctly, even at the cost of having a smaller margin, which can lead to overfitting.
The goal is to find the optimal value for C (Javatpoint, 2023).

The figure shows an SVM with a linear kernel, which means the problem is linearly
separable, and the decision boundary is a straight line. Non-linear kernels exist and
allow SVMs to create more complex non-linear decision boundaries by mapping data
into a higher-dimensional space (Noble, 2006).

The following values for the C-parameter were tested: 1, 0.1, 0.01, and 0.001. The
results showed that the best value was 0.01. Therefore, the SVM used in this thesis
has a linear kernel and a C value of 0.01.

To choose a better C-parameter, various methods can be employed, such as grid
search, random search, or the genetic algorithm (Liashchynskyi and Liashchynskyi,
2019). However, this study did not use these methods due to their time consumption.
They could, nevertheless, be utilized to enhance the performance of the training
algorithms further.

This also applies to the other classification heads introduced later in this chapter.
A suitable hyperparameter combination was determined and used, but it could be
further optimized using optimization algorithms when time is not a factor.

A non-linear kernel could potentially capture the non-linear relationships present in
the data and might yield better results than a linear kernel. However, the linear
kernel also provides comparable results while requiring significantly less training
time, making it the more feasible choice within the thesis’s time constraints.
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k-Nearest-Neighbors (kNN)

Figure 13 illustrates how the kNN algorithm works for classification. This classifi-
cation is straightforward. In this example, the red squares and the green triangles
represent two different classes of data points, and the yellow circle with a question
mark represents a new point whose class is unknown. The goal is to classify this
new point by looking at the “k” nearest data points in the feature space around
it. Different distance metrics measure the distance between the data points, e.g.,
Euclidean distance and Manhattan distance.

Figure 13: Illustration of the kNN algorithm. In this example, the red squares and
green triangles represent two different classes of data points, and the yellow circle
with a question mark represents a new point whose class is unknown (Imandoust
and Bolandraftar, 2013).

Panel (a) shows the kNN-Integration for k=1 Neighbors. Here, only the single closest
data point (1-Nearest Neighbor) is considered for classification. The yellow point
connects to one red square, the nearest neighbor, suggesting the data point belongs
to the red class.

Panel (b) shows the case for k=4. In this case, the algorithm considers the four
nearest data points. The yellow point is connected to four data points: three red
squares and one green triangle. With k=4, the majority class among the four near-
est neighbors would determine the classification. In this case, three red squares
indicate the yellow point is classified as the red class (Imandoust and Bolandraftar,
2013). This also works for non-binary classification problems, making it suitable as
a classification head for the tasks of this thesis.

Doerrich et al. (2024a) explores combining kNN with large foundation models. For
example, this can enhance image classification tasks by using kNN on top of foun-
dation models. The system can adapt to new classes or domain shifts with minimal
additional training, enhancing its adaptability and flexibility. The paper also states
that kNN can quickly classify new or rare categories using only examples with few
labels (few-shot classification). kNN is also easily interpretable, as predictions are
based on specific nearby examples, making it easier to understand why a classifica-
tion was made.
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All these points make kNN a suitable method to try on the specific classification
tasks of this paper. k is set to 11 for all for the kNN approach as suggested by
Doerrich et al. (2024b).

Random Forest (RF)

Figure 14 shows the classification of an image with a random forest. The random
forest forms multiple decision trees while training. Each decision tree predicts a
class for the input data based on the feature vector. And a majority vote predicts
the final class.

Figure 14: Illustration of the random forest algorithm (Liu et al., 2022b).

The following five steps from Azhari et al. (2019) explain how decision trees in the
training stage are formed:

1. Randomly select k features from a total of m features, where k ≪ m.
At first, at each node in a decision tree, instead of considering all m features,
k features are randomly selected as candidates for splitting. k is smaller than
m, this gives randomness and reduces overfitting.

2. Among the k features, calculate the node d using the best split
point. For the selected k features, the potential splits are evaluated based on
a criterion such as Gini impurity. The feature and the split point that best
improves the splitting criterion are chosen to define the node d.

3. Split the node into daughter nodes using the best split. The selected
feature and its optimal split divide the dataset into two subsets (daughter
nodes), each containing data points that match either side of the split. For
example, given a feature “age” and a split point 30, the dataset is splitted into
age smaller than 30 and greater than or equal to 30.

4. Repeat steps 1 to 3 until l number of nodes has been reached.
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5. Build the forest by repeating steps 1 to 4 for n trees. This process
is repeated recursively for each daughter node until a pre-defined depth(l) is
reached or other stopping conditions are met: E.g., Minimum number of sam-
ples in a node is reached, or no further improvement in the splitting criterion
can be achieved.

This entire process (steps 1–4) is repeated n times to build a forest of n trees. Each
tree is constructed using a random subset of the training data and a random subset
of characteristics at each split.

As a result, you get a classification forest similar to LightGBM. The difference is in
the way forests are formed.

The random forest as a classifier has high accuracy, provides insides of the signifi-
cance of features and is resilient to missing values, making it versatile for real-world
data and a suitable experiment for this thesis.

The following hyperparameters were used to train the different RF heads:

• Max Depth (7): Limits tree depth to prevent overfitting.

• Estimators (50): Number of trees; more trees improve performance but
increase training time.

• Min Samples Split (5): Minimum samples needed to split a node, avoiding
small subgroups.

• Min Samples Leaf (3): Minimum samples per leaf, reducing overfitting.

Light Gradient Boosting Machine (LightGBM)

LightGBM is, as the name suggests, a variant of a Gradient Boosting Machine. It
uses the technique of gradient boosting, which builds decision trees to improve a
model’s performance by sequentially reducing errors from previous trees. The term
Light highlights the efficiency and speed of LightGBM. It is designed to be faster and
more memory efficient. The original paper that introduced LightGBM first shows
it (Ke et al., 2017): “LightGBM speeds up the training process of conventional
Gradient Boosting Decision Trees by up to over 20 times while achieving almost the
same accuracy.”

Figure 14 shows the classification of an image with a random forest. LightGBM
works after a similar concept. The input is a feature vector from the given image.
In this case, the LightGBM classifier gets this feature vector from the underlying
backbone, one of the foundation models.

LightGBM has multiple decision trees. Each decision tree predicts a value for the
input data based on the feature vector. After all trees have made their predictions,
LightGBM aggregates these predictions to determine the final class the classifier
predicts and does not use a majority vote like RF (Ke et al., 2017).
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Figure 15: Forming of the decision trees in gradient boosting methods (Zhang et al.,
2023b).

Figure 15 shows how decision trees are formed in classifier training. Traditional
gradient boosting methods typically use level-wise growth, shown in the top part
of the figure, where each level of the tree is fully expanded before moving to the
next. LightGBM, on the other hand, uses leaf-wise growth. It grows the tree by
splitting the leaf with the maximum potential reduction in loss. This can lead to
deeper, more accurate trees with fewer splits but, at the same time, to potentially
unbalanced trees. Setting different hyperparameters, like a tree’s maximum depth,
can prevent this.

To reduce the number of samples used in the tree construction, LightGBM also
uses Gradient-based One-Side Sampling (GOSS). This technique selects a subset of
data samples based on their gradient values. It keeps samples with large gradients
since this indicates samples that are hard to predict and randomly samples from
those with smaller gradients. By doing so, LightGBM reduces computational costs
without losing much accuracy (Ke et al., 2017).

LightGBM also makes use of Exclusive Feature Bundling (EFB). LightGBM uses
EFB to deal with high-dimensional data (feature vectors with many features). If
two features are rarely non-zero at the same time, they are converted into a single
feature, which reduces the number of features and the complexity. This helps speed
up the training and reduce the memory usage (Ke et al., 2017).

LightGBM is an accurate and lightweight classifier for the given task. The Light-
GBM heads are trained with the following configuration:

• Max Depth (5): Limits tree depth to control overfitting.

• Num Leaves (31): Sets max leaves per tree; higher values increase capacity
but risk overfitting.

• Learning Rate (0.05): Adjusts weight updates; lower values improve preci-
sion but slow training.
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• Estimators (500): Number of trees; more trees enhance learning but increase
training time.

• Reg Alpha (0.1): L1 regularization encourages sparsity.

• Reg Lambda (0.1): L2 regularization reduces overfitting.

• Min Split Gain (0.1): Minimum gain for a split, avoiding insignificant splits.

• Min Child Samples (20): Minimum samples per leaf to prevent overfitting.

These parameters balance complexity, regularization, and learning speed, helping to
optimize the model’s performance for a given dataset.

Linear Probing

Linear probing is a method in machine learning, especially within transfer learning,
used to fine-tune a pre-trained model. It involves replacing the model’s final clas-
sification layer(s) with a simple linear layer and training only this new layer while
keeping the pre-trained model’s weights fixed. This approach enables the model to
apply its learned features to a new task without extensive retraining (Doerrich et al.,
2024b). So linear probing, in the case of this thesis, is training 12 different linear
layers as classifiers on the given embeddings of the different foundation models.

The following are the parameters and configurations used for training the 12 linear
classifiers independently, adopted from (Doerrich et al., 2024b).

The training process is configured with specific parameters to enhance performance.
A learning rate of 0.0001 is used to control the step size for parameter updates, and
the batch size is set to 64. The AdamW optimizer is applied across all datasets.
For loss functions, cross-entropy loss is used for binary and multiclass classification
tasks, while BCEWithLogits loss is applied for the multi-label binary classification
task. Sigmoid and softmax serve as activation functions, with sigmoid used for
multi-label binary classification and softmax for binary and multiclass classification.
Additionally, an early stopping criterion is implemented to halt training after five
epochs without improvement in validation loss.

3.2.2 Training End-to-End

This section explains the two training methods used to train the networks in an
end-to-end manner.

Multi-domain multi-task pre-training (mm-PT)

Pre-training on a dataset without medical images, such as ImageNet, may lack rele-
vance for the medical domain. Instead, incrementally pre-training on a sequence of
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available datasets could enable learning from multiple related datasets rather than
relying on a single one. However, this approach may face challenges such as catas-
trophic forgetting of previous tasks. To address this issue, Woerner et al. (2024)
proposes a multi-domain multi-task pre-training approach in which each model up-
date involves sampling a batch from a randomly selected source task. This strategy
aims to promote the learning of representations that are applicable across a broad
range of tasks.

Figure 16: Illustration of the multi-domain multi-task pre-training algorithm intro-
duced in Woerner et al. (2024).

Figure 16 shows this multi-domain multi-task pre-training algorithm, in which the
model is concurrently pre-trained on all datasets within their meta-dataset. In the
case of this thesis, the dataset is replaced with the MedMNIST+ dataset (Yang
et al., 2023). This indicates the model will be trained concurrently across various
heterogeneous domains and tasks. The network is split into a backbone and a
classification head to facilitate this. The backbone is formed by removing the last
linear layer of the network, while a new linear layer is initialized as the head for
each specific task. The algorithm involves randomly sampling batches from each
task and training the model on these batches. Each batch is associated with the
appropriate head and loss function (Woerner et al., 2024). For example, a dataset
with two different subsets (sets A and B) and two batches each is given. This training
technique takes a random batch from sets A and B. Since A and B are of the same
size, the chance of both is 50%. For example, the algorithm chooses a batch from A.
Now, the classification head (a linear layer) from A is put onto the backbone, and
the model trains with this batch end-to-end with A’s loss functions and activations.
Now, one batch is left for A and 2 left for B. Now, the chances are 33.3% to train on
the remaining batch of A and 66.6% to train on one of the two batches of B. If B is
selected, the respective head is again changed to the classification head from B and
the model is now trained with the loss function and activation from the classification
head B. This is a simplified presentation of the workflow of this training approach.
In the case of this thesis, there are 12 different datasets that differ in the number of
batches, the activations for each task, and the loss of each task.

The hyperparameters for this approach are the same as those used for linear prob-
ing in section 3.2.1, with the key difference being that all 12 heads are now trained
together with a single optimizer rather than with 12 independent optimizers. Ad-
ditionally, a cosine annealing learning rate scheduler was used similar to Doerrich
et al. (2024b).
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Multi-domain multi-task pre-training with data augmentation
(mm-PT aug)

This subsection focuses on a training method were the model sees in each epoch the
same number of samples for each class. That could boost the overall performance
of the model. This thesis uses two data augmentation techniques to balance the
datasets: Flipping and Rotating. These are two augmentation methods that do
not corrupt the image. This is important since this work aims to compare the
training techniques fairly. A model that trains on corrupted data would have an
advantage in evaluating the robustness to distortions compared to one on a non-
corrupted database. Another augmentation that would be suitable for this case
would be cropping. It is not known where the important part is in each image - the
part of the image that indicates the disease. It is possible to crop out the image’s
most important part for the classification task without knowing. This would make
the image counterproductive for the model’s training since the model trains on the
wrong knowledge base. That is why cropping is not used. So, only flipping and
rotation are used since they do not change the knowledge gained from a picture.
Figure 17 shows the eight unique transformations possible by only using flipping

Figure 17: All possible augmentations with flipping and rotation (Sonogashira et al.,
2020).

and rotation as augmentation techniques. One of these is the original image. The
figure indicates how the image is augmented by referring to the corners as numbers
1 to 4.

The augmentations are only used on the training data. Since the smallest dataset has
546 training samples, we get a maximum of 4368 images for this dataset by using
the augmentations. The second smallest dataset has 1080 samples, which means
this dataset also has to be augmented. Every other dataset from the MedMNIST+
database has more training samples than 4368, which means no extension of the



3 METHODOLOGY 38

data is needed for training. The complete MedMNIST+ dataset is introduced in
the next chapter.

The training method remains the same as the multi-domain multi-task pre-training
from section 3.2.2. But instead of training the model with all the data, the data is
reduced to 69 batches per dataset. This approach ensures that the model processes
the same number of images from each dataset in every epoch, preventing any dataset
from being favored. With a batch size of 64 used in this thesis, the smallest dataset,
containing 4,368 samples, results in approximately 69 batches (68.25) that are, at
best, available for any dataset. For each epoch, the algorithm randomly selects
batches from each task to train the specific head and its backbone, and 69 batches
from each dataset are chosen randomly. The remaining samples are excluded from
that epoch.

This training technique aims to improve the model’s overall performance by ensuring
no tasks are favored and that all tasks have an equally weighted impact on training
and performance. For larger datasets, the model sees a diverse subset of data in
each epoch by randomly sampling batches, which helps maintaining fairness and
prevents over-reliance on any specific dataset.

Here is a simplified explanation using datasets A, B, and C:

With only 546 images, dataset A uses augmentation techniques like flipping and
rotation to increase its total to 4,368 images, equivalent to 69 batches (64 images
per batch). Larger datasets B and C contain more than 4,368 samples and do not
require augmentation.

The model processes 69 randomly selected batches from each dataset in each epoch,
ensuring equal representation. Extra samples from larger datasets B and C are
excluded for that epoch, meaning the model only trains on a portion of their data
while it sees dataset A fully. The validation loss is weighted to ensure that all
datasets A, B, and C contribute equally to the evaluation, avoiding dominance by
any single dataset.

This training technique aims to improve overall model performance by ensuring
tasks from datasets A, B, and C are equally weighted.

The hyperparameters for this approach are identical to those used for linear probing
in section 3.2.1. Additionally, a cosine annealing learning rate scheduler was used
similar to (Doerrich et al., 2024b).
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4 Used Dataset

This paper uses two datasets. The first one is the MedMNIST+ dataset, which in-
cludes 12 different 2D datasets of medical images. These datasets have a predefined
split into Training, Validation and Test. It is used to train and evaluate the used
models. The second one is the MedMNIST-C dataset. It applies different corrup-
tions in 5 different severities on the Test Split of the MedMNIST+ dataset. This
dataset is used to evaluate the robustness of the models in relation to distortion. In
the following chapter the two datasets are shortly introduced.

4.1 MedMNIST+

MedMNIST v2 is a collection of 12 2D and 6 3D standardized biomedical image
datasets, labeled and resized to resolutions of 28×28 and 28×28×28, respectively
(Yang et al., 2023). The 3D images, however, are not relevant to this thesis. The
MedMNIST+ collection builds on this by including higher resolutions of 64×64,
128×128, and 224×224 pixels. The dataset is diverse in size, with subsets ranging
from a few hundred images to over 200,000, and features various data modalities,
including Computed Tomography, Ultrasound, X-ray, and more. It supports four
task types: binary classification, multi-class classification, multi-label classification,
and ordinal regression (treated as multi-class classification for simplicity). The col-
lection is standardized, with each subset pre-processed into a uniform format, and it
includes colored images. Additionally, the dataset has a predefined split into train-
ing, validation, and test sets, ensuring consistency in model training across different
experiments (Yang et al., 2023). These points make it a perfect dataset to evaluate
the generalization potential of ML models.

The following figure provides an overview of the different datasets, which are sub-
sequently described in detail.

Figure 18: An overview over MedMNIST+ (Yang et al., 2023).

PathMNIST: The PathMNIST dataset contains 107,180 hematoxylin-eosin-stained
tissue slide images (3×224×224). Tissue samples were collected from the Na-
tional Center for Tumor Diseases (Heidelberg) and the University Medical Center
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Mannheim, Germany. More than 100,000 image patches were generated by hand-
delineating tissue regions in 86 colorectal cancer slides, supplemented by 7,180 im-
ages from 25 patients in the DACHS study. The dataset features 9 tissue classes:
adipose tissue, background, debris, lymphocytes, mucus, smooth muscle, normal
colon mucosa, cancer-associated stroma, and colorectal adenocarcinoma epithelium
(Kather et al., 2019).

ChestMNIST: ChestMNIST (Wang et al., 2017), derived from the NIH ChestXRay
dataset, contains 112,120 frontal-view chest X-ray images from 30,805 patients. It
supports multi-label binary classification across 14 thoracic disease categories, in-
cluding atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia,
pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thickening, and
hernia. The original images have a resolution of 1024×1024 pixels and were resized
to fit into the resolutions of MedMNIST+ (Wang et al., 2017), (Yang et al., 2023).

DermaMNIST: DermaMNIST comprises 10,015 dermatoscopic images from di-
verse sources, illustrating common pigmented skin lesions. It covers seven dis-
eases: actinic keratoses, basal cell carcinoma, benign keratosis, dermatofibroma,
melanocytic nevi, melanoma, and vascular skin lesions, designed for a multi-class
classification task. Over 50% of diagnoses were pathology-confirmed, with others
based on expert consensus or follow-up. Images collected over 20 years from Aus-
tria and Australia were digitized from various formats and cropped to focus on skin
lesions (Tschandl et al., 2018).

OctMNIST: OctMNIST contains 109,312 optical coherence tomography images of
the retina, sourced from retrospective cohorts of adult patients, aimed at study-
ing age-related macular degeneration and diabetic macular edema. The dataset
includes four diagnostic categories: choroidal neovascularization, diabetic macular
edema, drusen, and normal, making it a multi-class classification task. The images,
originally ranging in resolution from (384–1,536) × (277–512), were center-cropped
for the usage in MedMNIST+ (Kermany et al., 2018), (Yang et al., 2023).

PneumoniaMNIST: PneumoniaMNIST focuses on pediatric pneumonia, contain-
ing 5,856 chest X-ray images from children. The dataset is a binary classification
task, distinguishing between pneumonia and normal. The source images, with di-
mensions ranging from (384–2,916) × (127–2,713). The image got center-cropped
to fit the resolutions of MedMNIST+ (Kermany et al., 2018), (Yang et al., 2023).

RetinaMNIST: The RetinaMNIST dataset focuses on diabetic retinopathy, di-
agnosed through retinal fundus images. It classifies diabetic retinopathy into five
levels based on the International Clinical Diabetic Retinopathy scale: Grades 0 to
4, indicating increasing severity of the disease. The dataset contains 1,600 images,
originally sized 3 × 1,736 × 1,824, which were center-cropped (Liu et al., 2022a),
(Yang et al., 2023).

BreastMNIST: BreastMNIST comprises 780 grayscale ultrasound images (500 ×
500 pixels) collected in 2018 from 600 women aged 25–75 at Baheya Hospital in
Cairo, Egypt. Captured using LOGIQ E9 systems, the images were initially stored in
DICOM format and later converted to PNG. The dataset simplifies the original three
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classes (normal, benign, malignant) to distinguish between benign (or no tumor) and
malignant breast tumors (Al-Dhabyani et al., 2020).

BloodMNIST: BloodMNIST consists of 17,092 microscopic peripheral blood cell
images collected at the Core Laboratory of the Hospital Clinic of Barcelona using
the CellaVision DM96 analyzer. The dataset includes eight classes: neutrophils,
eosinophils, basophils, lymphocytes, monocytes, immature granulocytes, erythrob-
lasts, and platelets. The blood samples were from individuals without infections,
hematologic or oncologic diseases, or pharmacologic treatment, which could have
contaminated the image (Acevedo et al., 2020).

TissueMNIST: TissueMNIST consists of 236,386 images of human kidney tissue,
captured with an upright Leica SP8 Confocal Microscope. Grayscale images are
categorized into eight types: epithelial cells of the proximal tubules, thick ascend-
ing limbs, distal convoluted tubules, and collecting duct, together with other cells
such as leukocytes, podocytes, endothelial cells in glomeruli, and peritubular space
cells (Ljosa et al., 2012). 2D maximum projections were generated by extracting
the highest pixel value from each pixel along the axial axis to fit the dataset into
MedMNIST+ (Yang et al., 2023).

Organ(A,C,S)MNIST: MedMNIST+ obtains the OrganMNIST datasets by uti-
lizing 3D CT images from the Liver Tumor Segmentation Benchmark (Bilic et al.,
2023). MedmNIST+ generated organ labels using bounding-box annotations for 11
body organs from a separate study. The Hounsfield units of these 3D images were
converted to grayscale with an abdominal window, and 2D images were cropped
from the central slices of the 3D bounding boxes in the axial, coronal, and sagittal
views (Yang et al., 2023). This process resulted in the creation of the OrganAM-
NIST, OrganCMNIST, and OrganSMNIST datasets, where the letters A, C, and
S represent the axial, coronal, and sagittal views, respectively. However the three
different datasets differ in the total number of samples, as the following table shows.
Table 2 summarizes the 12 datasets, including their data modality, task, number of
samples, predefined split, and the number of samples in each split.

4.2 MedMNIST-C

Salvo et al. (2024) introduces MedMNIST-C, a corrupted version of the 12 2D
datasets of the MedMNIST+ collection. The corruptions are specifically designed for
each dataset to mimic the types of artifacts that may arise during image acquisition
and processing, spanning five severity levels. This simulates real-world anomalies or
potential shifts in the data distribution. The augmentations proposed by the paper
are applied only to the test split of the MEDMNIST+ database, creating corrupted
images that help to measure the robustness of distortions. The models are trained
on the training data of the clean data set. The corrupted data set is used to evalu-
ate the performance and robustness of models trained on clean data against possible
real-world corruptions.
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Name Data Modality Task (# Classes / Labels) # Samples # Training / Validation / Test

PathMNIST Colon Pathology MC (9) 107,180 89,996 / 10,004 / 7,180

ChestMNIST Chest X-Ray ML (14) BC (2) 112,120 78,468 / 11,219 / 22,433

DermaMNIST Dermatoscope MC (7) 10,015 7,007 / 1,003 / 2,005

OCTMNIST Retinal OCT MC (4) 109,309 97,477 / 10,832 / 1,000

PneumoniaMNIST Chest X-Ray BC (2) 5,856 4,708 / 624 / 624

RetinaMNIST Fundus Camera OR (5) 1,600 1,080 / 120 / 400

BreastMNIST Breast Ultrasound BC (2) 780 546 / 78 / 156

BloodMNIST Blood Cell Microscope MC (8) 17,092 11,959 / 1,712 / 3,421

TissueMNIST Kidney Cortex Microscope MC (8) 236,386 165,466 / 23,640 / 47,280

OrganAMNIST Abdominal CT MC (11) 58,850 34,581 / 6,491 / 17,778

OrganCMNIST Abdominal CT MC (11) 23,660 13,000 / 2,392 / 8,268

OrganSMNIST Abdominal CT MC (11) 25,221 13,940 / 2,452 / 8,829

Table 2: Details of the MedMNIST+ dataset, including the data modality, classifi-
cation task type (with the number of classes), and data splits. (ML: Multi-Label,
MC: Multi-Class, BC: Binary-Class, OR: Ordinary Regression) (Yang et al., 2023).

Figure 19: Four examples of MedMNIST-C. Four distinct corruptions applied to
PathMNIST, ChestMNIST, DermaMNIST, and RetinaMNIST, listed from top to
bottom. Severity level 1 indicates the lowest level of corruption, while severity level
5 signifies the highest level of distortion (Salvo et al., 2024).

.

Table 3 gives an overview of which corruption is applied to which dataset. The
symbols [+/-] indicate whether the intensity of corruption is increased, decreased,
or both, resulting in different forms of corruption. Figure 19 provides examples of
four distinct corruptions applied to PathMNIST, ChestMNIST, DermaMNIST, and
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Corruption categories

Dataset Digital Noise Blur Color Task-specific

PathMNIST
BloodMNIST

JPEG
Pixelate

- Defocus
Motion

Brightness[+/-]
Contrast[+/-]

Saturate

Stain deposit
Bubble

ChestMNIST
PneumoniaMNIST
OrganAMNIST
OrganCMNIST
OrganSMNIST

JPEG
Pixelate

Gaussian
Speckle
Impulse
Shot

Gaussian Brightness[+/-]
Contrast[+/-]

Gamma corr.[+/-]

DermaMNIST JPEG
Pixelate

Gaussian
Speckle
Impulse
Shot

Defocus
Motion
Zoom

Brightness[+/-]
Contrast[+/-]

Black corner
Characters

RetinaMNIST JPEG
Pixelate

Gaussian
Speckle

Defocus
Motion

Brightness[-]
Contrast[-]

-

TissueMNIST JPEG
Pixelate

Impulse Gaussian Brightness[+/-]
Contrast[+/-]

-

OCTMNIST JPEG
Pixelate

Speckle Defocus
Motion

Contrast[-] -

BreastMNIST JPEG
Pixelate

Speckle Motion Brightness[+/-]
Contrast[-]

-

Table 3: This table summarizes the chosen types of image corruptions, each imple-
mented at five progressively increasing severity levels. The symbols [+/-] indicate
whether the intensity of corruption is increased, decreased, or varied in both direc-
tions, resulting in distinct forms of corruption (Salvo et al., 2024).

.
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RetinaMNIST, listed from top to bottom. The picture also indicates that there
are five different severity levels. Severity level 1 indicates the lowest corruption,
while severity level 5 signifies the highest level of distortion (Salvo et al., 2024). All
specified corruptions are applied to every possible resolution of the MedMNIST+
database at all five severity levels. The 28×28 resolution is a small exception. All
the corruptions are used except for characters, bubble, and stain deposit, as the
images are too small to apply. Characters are also not applied on images of size
64×64. Motion blur is only used for images with a size of 224×224. This is because
the application programming interface introduced in Salvo et al. (2024) is primarily
designed for images of size 224×224.
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5 Experiments and Results

This section presents the results from the trained models. Table 4 shows the accuracy
of all datasets if only the majority class is predicted.

Dataset Value

bloodmnist 0.195
breastmnist 0.731
chestmnist 0.947
dermamnist 0.669
octmnist 0.250
organamnist 0.185
organcmnist 0.223
organsmnist 0.235
patmnist 0.186
pneumoniamnist 0.625
retinamnist 0.435
tissuemnist 0.321

Table 4: Accuracy values for each dataset of MedMNIST+ on the test split if only
the majority class gets predicted.

The performance of the training methods and backbones this thesis implemented
is now shown in greater detail, beginning with the results from the MedMNIST+
database.

5.1 Results for the MedMNIST+ Dataset

Table 5 shows the overall accuracies and AUCs for every training method with every
backbone across the four image resolutions: 28×28, 64×64, 128×128, and 224×224.
The overall value in the table is shown as the mean over all classes ± the standard
deviation of the 12 different datasets. The best metric for every resolution for a
training method is highlighted in bold. The best metric for a resolution for all
training methods is highlighted with a background color. Dino SVM, for example,
stands for Dino as the backbone and 12 different SVMs as the classification head
for each of the 12 datasets and different resolutions independently. The accuracy is
the mean accuracy of all 12 data modalities in the given resolution. The standard
deviation is the standard deviation for all 12 datasets. The tables for all metrics for
every dataset independently can be found in the Appendix A.2. The same goes for
the plots shown in this section. Only a few plots are shown that give insight into the
results. The Appendix A.1 contains every plot for every metric, every resolution,
and every training technique.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224

Classifier

Dino SVM 79.12 ± 13.8 82.59 ± 13.4 84.21 ± 13.2 84.52 ± 12.3 91.13± 9.4 92.61± 9.1 93.69± 8.1 94.45± 7

Dino LightGBM 78.5± 13.55 82.3± 13.1 84.1± 11.9 84.18± 11.6 91.33 ± 9.6 93.18 ± 8.8 94.24 ± 7.4 94.75 ± 6.8

Dino RF 70.13± 15 73.5± 14.7 75.37± 14.7 75.89± 14.1 89.13± 10.1 88.09± 9.9 91.47± 8.6 92.1± 8

Dino kNN 73.61± 15.5 79.41± 14.4 81.17± 14.2 81.9± 12.9 - - - -

Dinov2 SVM 78.55± 13.7 81.91± 12.7 83.03± 12.3 84.37± 11.1 90.73± 9.3 92.52± 8.5 93.67± 7.4 94.29± 6.7

Dinov2 LightGBM 76.75± 13.8 79.79± 12.6 81.57± 11.7 82.54± 10.9 89.81± 10.1 92.38± 8.5 93.65± 7.6 93.88± 7.1

Dinov2 RF 66.92± 14.5 69.78± 14.8 70.95± 15 72.61± 14 86.29± 9.7 88.41± 8.9 89.94± 8.2 90.32± 8.1

Dinov2 kNN 70.89± 14.5 74.7± 14.2 76.36± 14.1 78.13± 13.1 - - - -

UNI SVM 78.93± 13.7 81.63± 12.9 83.3± 11.6 83.05± 12.6 90.92± 9.4 92.6± 8.8 93.69± 7.7 94.03± 7.2

UNI LighGBM 77.26± 13.9 80.62± 12.5 81.55± 11.8 82.55± 11.4 90.67± 10.0 92.68± 8.8 93.33± 8.0 93.85± 7.4

Uni RF 69.51± 15.2 72.75± 15.4 74.13± 15.4 74.21± 15.7 86.99± 10.3 89.3± 9.6 90.71± 8.8 91.06± 8.5

Uni kNN 71.39± 16 75.85± 25.5 77.55± 14.9 78.22± 14.5 - - - -

Prov SVM 78.87± 13.7 82.78± 12.1 83.7± 12.1 83.93± 11.2 90.8± 9.5 92.96± 8.7 93.94± 7.5 94.18± 7.0

Prov LightGBM 77.42± 14.3 81.45± 12.5 81.92± 12.1 83.03± 11.3 90.44± 10.2 93.01± 8.7 94.07± 7.2 94.34± 6.9

Prov RF 69.56± 15.4 72.67± 15.7 74.25± 15.5 75.35± 15.2 87.21± 10.2 89.42± 9.4 90.88± 8.4 91.01± 8.3

Prov kNN 71.88± 16.2 76.69± 15.2 77.74± 14.7 78.27± 13.8 - - - -

Linear Probing

Dino 78.49 ± 13.3 82.74 ± 12.4 84.51 ± 12.2 84.89 ± 12.1 91.07 ± 9.6 93.38 ± 8.3 94.59 ± 6.9 95.07 ± 6.4

Dinov2 77.49± 13.3 81.26± 12.1 83.06± 11.9 83.65± 11 90.25± 9.6 92.71± 8.2 93.98± 7.3 94.44± 6.7

UNI 77.49± 13.6 81.29± 12.4 82.25± 11.5 82.65± 11.9 90.12± 10 92.69± 8.3 93.76± 7.3 93.97± 6.8

Prov 77.71± 13.4 82.11± 12 83.32± 11.2 83.75± 11.2 90.33± 9.9 93.17± 8.3 94.34± 6.9 94.37± 6.7

mm-PT

Dino 74.51± 12.6 81.36± 13 82.43± 13.1 83.7± 13.3 88.82± 10.4 91.2± 10.3 92.08± 9.9 92.8± 9.6

Dinov2 75.17± 12.2 77.94± 13 80.28± 13.1 81.02± 12.8 89.65± 9.4 90.15± 10.4 91.19± 10.8 91.08± 10.6

UNI 76.1± 12.8 80.2± 13.7 82.6± 13.5 81.97± 13.3 88.63± 10.6 91.35± 10.2 92.29± 9.7 92.03± 10.3

Prov 78.08 ± 13.5 82.87 ± 12.8 84.88 ± 12.6 85.27 ± 13 90.0 ± 10.4 92.32 ± 9.5 92.98 ± 9.3 93.48 ± 9.1

mm-PT

Dino 73.75± 14.4 76.55± 14.6 76.84± 16 76.93± 15.6 88.06± 10.7 88.88± 12 89.77± 12.5 89.3± 12.5

Dinov2 70.4± 15.2 73.17± 14.8 73.23± 15.9 74.7± 15.7 85.25± 12.3 87.33± 12.3 86.87± 12.6 87.94± 12.4

UNI 73.51± 15.4 75.89± 14.5 77.85± 14.7 77.81± 14.5 87.77± 11.7 88.8± 12 89.74± 12.5 89.53± 12.8

Prov 74.99 ± 15.5 77.05 ± 14.7 79.94 ± 14.6 81.99 ± 13.7 88.45 ± 11.3 89.26 ± 12 90.54 ± 12 92.2 ± 11

Table 5: Summary of benchmark results presenting the average mean and standard
deviation for accuracy and the area under the receiver operating characteristic curve
(AUC) across all datasets, covering all combinations of training schemes, models,
and image resolutions. Since the k-NN algorithm lacks a training phase, it is not
influenced by the stochasticity inherent in model training and reports only the overall
accuracy. The best result for each resolution across all training schemes and models
is highlighted with a background color, while the best result for each training scheme
and resolution is highlighted in bold.
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Linear probing emerges as the top-performing method, followed by Support Vector
Machines (SVM) and LightGBM, with Dino as the best backbone overall. Table 5
highlights the following insights about model performance:

Impact of Image Resolution: Performance steadily improves as image resolution
increases from 28×28 to 128×128 for accuracy and AUC. However, beyond 128×128,
this trend plateaus, with little to no additional gains observed at 224×224.

Classifier Performance: SVM and LightGBM outperform kNN and random forest
across most configurations. Among all training schemes, linear probing achieves the
best results overall, followed by SVM and LightGBM.

Backbone Performance: Dino is the best-performing pre-trained backbone, while
Prov is the best backbone for the mm-PT and mm-PT aug techniques.

mm-PT Approaches: Prov stands out as the top performer for mm-PT training
schemes, achieving the highest accuracy and AUC. While most models experience
performance drops when transitioning from linear probing to mm-PT, Prov is an
exception, showing slight improvement in accuracy but a decline in AUC. The Prov
backbone with mm-PT is the best model for accuracy in three resolutions. However,
the mm-PT augmentation (mm-PT aug) approach performs significantly weaker
than all other methods.

Table 6 shows similar tendencies for the balanced accuracy and Cohen´s kappa
metrics:

Impact of Image Resolution: Performance improves steadily as image resolu-
tion increases from 28×28 to 128×128 for balanced accuracy and Cohen´s kappa.
However, beyond 128×128, this trend plateaus, with minimal to no additional gains
observed at 224×224.

Classifier Performance: SVM and LightGBM consistently outperform kNN and
random forest across most configurations. Linear probing achieves the best overall
results among all training schemes, closely followed by SVM and then LightGBM.

Backbone Performance: Dino emerges as the best-performing pre-trained back-
bone overall, while Prov excels as the top backbone for mm-PT and mm-PT aug-
mentation (mm-PT aug) techniques.

mm-PT Approaches: Prov stands out as the top performer within mm-PT train-
ing schemes, achieving the highest balanced accuracy and Cohen’s kappa. While
most models show performance declines when transitioning from linear probing to
mm-PT, Prov is an exception, demonstrating partial improvements in balanced
accuracy and Cohen’s kappa. However, the mm-PT augmentation (mm-PT aug)
approach underperforms significantly compared to other methods.

The following section gives more profound insights into the different training tech-
niques and the performance of the different datasets. Since SVM and LightGBM
have proven overall that they perform much better than Random Forest and kNN,
the focus is on SVM and LightGBM. For every training method, one plot for one
resolution and one metric for all backbones are shown. The plots for every other
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224

Classifier

Dino SVM 67.85± 19.7 72.66± 19.6 75.25 ± 18.8 75.62 ± 17.9 60.41 ± 26.5 65.35 ± 27.4 68.72 ± 26.9 69.48 ± 25.5

Dino LightGBM 67.14± 18.6 71.31± 19.8 73.95± 18.4 74.13± 17.6 60.06± 25.6 65.03± 26.9 68.45± 25.9 68.86± 25.1

Dino RF 55.12± 18.4 58.04± 20.6 60.48± 21.6 61.36± 21.8 46.83± 23.5 50.29± 26.0 53.36± 27.0 54.47± 27.1

Dino kNN 61.37± 19.8 68.09± 20.9 70.29± 21.4 71.3± 20 51.93± 26.9 60.99± 27.2 63.59± 27.8 65.02± 26.2

Dinov2 SVM 67.48± 18.7 71.49± 18.9 72.94± 18.3 74.66± 17.1 59.39± 26.3 64.63± 26.3 66.07± 26.5 69.09± 24.7

Dinov2 LightGBM 65.39± 17.9 68.4± 18.4 70.84± 17.5 71.89± 16.8 57.45± 25.2 61.31± 25.8 64.46± 24.9 66.08± 24.3

Dinov2 RF 50.99± 17.0 54.03± 18.7 55.64± 20.2 57.68± 19.6 41.74± 21.5 45.72± 23.3 47.14± 24.8 49.29± 24.6

Dinov2 kNN 58.03± 17.8 61.98± 19.5 64.11± 20.4 66.33± 19.7 48.38± 24.9 53.24± 26.3 55.46± 27.2 58.92± 25.7

UNI SVM 67.94 ± 18.7 71.43± 18.5 73.99± 17.1 73.96± 17.3 60.21± 26.0 63.67± 26.7 67.12± 25.2 67.53± 25.0

UNI LightGBM 66.12± 18.2 69.57± 18.0 70.75± 17.3 72.04± 17.1 58.41± 25.3 62.58± 25.7 64.21± 25.1 66.04± 24.8

Uni RF 54.49± 18.6 57.69± 20.8 59.13± 21.7 59.37± 22.7 45.72± 23.5 48.98± 26.8 51.0± 27.4 50.95± 28.2

Uni kNN 58.79± 19.4 64.21± 19.9 66.12± 20.5 66.55± 20.6 49.7± 25.2 55.91± 26.9 59.02± 26.6 59.88± 26.5

Prov SVM 67.94± 18.9 72.78 ± 18.1 74.33± 17.8 75.01± 16.8 59.64± 26.6 65.48± 26.3 67.89± 25.6 68.64± 24.6

Prov LightGBM 66.61± 18.6 70.69± 18.1 71.29± 17.7 72.91± 17.1 58.39± 25.9 64.22± 25.6 65.04± 25.2 67.16± 24.5

Prov RF 54.56± 19.0 57.54± 21.0 59.4± 21.9 60.97± 22.0 45.32± 24.0 48.65± 27.5 51.34± 27.4 53.75± 27.1

Prov kNN 59.31± 19.8 64.45± 20.6 65.76± 21.2 66.69± 20 49.71± 26.2 57.0± 26.9 58.32± 27.3 60.02± 25.6

Linear Probing

Dino 66.8 ± 19.2 73.27 ± 18.2 75.23 ± 18 76.27 ± 17.6 59.45 ± 25.9 65.91 ± 26.5 69.04 ± 26.1 70.02 ± 25.6

Dinov2 66.66± 18.6 70.53± 18.3 73.42± 17.7 74.13± 16.2 57.59± 25.8 63.5± 26 66.7± 25.9 67.74± 24.8

UNI 66.1± 18.2 71.33± 17.6 72.74± 16.6 73.13± 16.7 57.84± 25.7 63.25± 26.4 65.4± 25 66.59± 25

Prov 66.55± 18.5 72.06± 17.7 74.05± 16.8 74.58± 16.9 57.76± 26.2 64.56± 26 67.18± 24.9 68.23± 24.7

mm-PT

Dino 61.5± 18.5 71.25± 19.6 72.2± 19.5 74.45± 19.4 51.54± 26.1 63.17± 27.8 63.93± 28.5 67.37± 27.8

Dinov2 65.0± 71.3 66.68± 18.7 70.37± 19.3 70.45± 19.6 56.55± 23.4 58.09± 26 61.89± 27.2 61.65± 28.9

UNI 63.91± 17.7 69.11± 20.7 71.92± 20.9 70.34± 21.2 55.06± 25.6 60.29± 29.5 63.42± 30.6 61.38± 31.9

Prov 65.76 ± 20.8 72.34 ± 19.4 75.13 ± 19.3 75.18 ± 20.6 57.8 ± 27.1 64.12 ± 29.2 67.69 ± 28.4 67.24 ± 30.6

mm-PT aug

Dino 62.66± 18.9 65.01± 19.6 65.42± 21.3 65.52± 21.3 53.38± 0.25 56.79± 0.26 57.15 ± 0.28 56.63± 0.28

Dinov2 57.27± 18.7 61.91± 19.6 61.31± 19.8 62.99± 20.2 48.59± 23.3 52.11± 25.8 52.16± 26 54.86± 26.2

UNI 62.32± 19.2 65.02± 19.6 67.03± 19.6 66.12± 20.1 53.96± 24.8 56.33± 25.6 59.05± 26.6 58.68± 26.6

Prov 62.84 ± 20.7 65.17 ± 20.5 69.85 ± 21.2 73.27 ± 19 54.5 ± 26.6 57.03 ± 26.7 62.53 ± 27.2 65.24 ± 27.2

Table 6: Summary of benchmark results presenting the average mean and standard
deviation for balanced accuracy and Cohen´s kappa across all datasets, covering
all combinations of training schemes, models, and image resolutions. Furthermore,
since k-NN directly uses embeddings and labels for classification, it does not provide
a reliable AUC score. The best result for each resolution across all training schemes
and models is highlighted with a background color, while the best result for each
training scheme and resolution is highlighted in bold.
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resolution and metric and the missing plots for not-shown classifiers can be found
in Appendix A.2.

5.1.1 Training without the Backbone

Support Vector Machines (SVMs)

This section shows the results of the SVM as a classifier in more detail. Figure 20
shows the accuracies for Dino, Dinov2, Uni, and Prov as backbone with an SVM-
classifier.

The x-axis represents the different datasets, while the y-axis corresponds to their
respective accuracy values. The color coding provides additional information: green
denotes the accuracy of the training data, orange represents the validation data, and
blue corresponds to the test data. Since test data accuracy is of primary interest, the
blue points are annotated with their actual values, rounded to two decimal places.

Each subplot’s title specifies the backbone model used and the average test accuracy
across 12 classifications. For example, the label TestAcc Dino indicates using Dino
as the backbone, with a mean test accuracy of 84.21% and a standard deviation of
13.2%. Dino exhibits the highest test accuracy among the backbones, while other
configurations demonstrate slightly lower performance.

Accuracy values vary substantially between tasks, with some datasets showing sig-
nificant discrepancies between training, validation, and test accuracies. Across most
tasks, the four backbones yield comparable results, except for breastMNIST and reti-
naMNIST, where Dino outperforms the others by at least three percentage points.

Additionally, the figure highlights two key trends: training accuracies (green line)
tend to be consistently higher, whereas test accuracies (blue line) often exhibit more
significant variability.

LightGBM

This section shows the results of LightGBM as a classifier in more detail. Figure 21
shows the accuracies for Dino, Dinov2, Uni, and Prov as backbone with a LightGBM-
classifier.

The highest test accuracy is achieved using the Dino backbone, with a mean accuracy
of 84.14% and a standard deviation of 11.9%. Other configurations exhibit lower
performance, reducing at least two percentage points, similar to the performance
observed with the SVM classifier. Accuracy values vary considerably across tasks,
with notable gaps between training, validation, and test accuracies. These gaps are
more pronounced compared to those observed when using the SVM classifier.

For most datasets, the accuracies across tasks are comparable among the four back-
bones, with Dino consistently demonstrating the best performance in most cases.
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Figure 20: Accuracies for SVMs in 128×128 size for every backbone. Training,
validation, and test performance are indicated in green, orange, and blue. The title
of each plot shows the average and standard deviation over all 12 datasets. The test
data is annotated.

Linear Probing

The following examines the AUC as an example metric for linear probing in depth.
Figure 22 shows the AUC for Dino, Dinov2, Uni, and Prov as the backbone with
a linear layer as a classifier. None of the trained models trained for the maximum
number of epochs since the early stopping criterion was triggered every time before
reaching the 100th epoch.

Again, the different splits are shown in green (train), orange (validation), and blue
(test).
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Figure 21: Accuracies for LightGBM in 128×128 size for every backbone. Training,
validation, and test performance are indicated in green, orange, and blue. The title
of each plot shows the average and standard deviation over all 12 datasets. The test
data is annotated.

The Dino backbone achieves the highest mean AUC, averaging 93.38% with a stan-
dard deviation of 8.3% across all 12 tasks. The other backbones exhibit slightly
lower average AUC values, but the difference is marginal.

The orange (validation) and blue (test) lines are closely aligned, suggesting that
the models perform similarly on validation and test data. For most datasets, the
training performance closely matches the validation and test sets. However, excep-
tions include breastMNIST, dermaMNIST, retinaMNIST, and chestMNIST, where
the training AUC is consistently higher than the validation and test AUC for all
backbones.
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Figure 22: AUCs for linear probing in 64×64 resolution for every backbone. Train-
ing, validation, and test performance are indicated in green, orange, and blue. The
title of each plot shows the average and standard deviation over all 12 datasets. The
test data is annotated.

Overall, the models demonstrate comparable performance across the various tasks,
with minimal variation between backbones.

For the subsequent discussion on multi-domain multi-task pretraining, the balanced
accuracies for the 224×224 resolution are also presented in figure 23. In this context,
the Dino backbone consistently outperforms the others by at least 1.5 percentage
points. Notably, the validation set often performs better than the test set.

This metric also highlights significant discrepancies between training and valida-
tion/test performances for specific datasets such as breastMNIST, dermaMNIST,
and retinaMNIST, similar to the trends observed in AUC. Additionally, it reveals
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instances where test set performance falls below validation performance, as observed
for datasets like octMNIST, organCMNIST, organAMNIST, and organSMNIST.

Figure 23: Balanced accuracies for linear probing in 224×224 resolution for every
backbone. Training, validation, and test performance are indicated in green, orange,
and blue. The title of each plot shows the average and standard deviation over all
12 datasets. The test data is annotated.
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5.1.2 Training End-to-End

Multi-domain multi-task pre-training

The following figure 24 shows the balanced accuracies for multi-domain multi-task
pre-training in the 224×224 resolution. Early stopping is triggered every time after
3 to 15 epochs, depending on the resolution and the backbone.

Figure 24: Balanced accuracies for multi-domain multi-task pre-training in 224×224
resolution for every backbone. Training, validation, and test performance are indi-
cated in green, orange, and blue. The title of each plot shows the average and
standard deviation over all 12 datasets. The test data is annotated.

The models demonstrate varying performance depending on the backbone used.
Prov achieves the highest balanced accuracy, with an average of 75.18% and a stan-
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dard deviation of 20.6%, followed by Dino, with an average balanced accuracy of
74.45% and a standard deviation of 19.4%. In contrast, Dinov2 and Uni exhibit
significantly lower performance.

Balanced accuracies vary markedly across tasks, with substantial gaps between train-
ing, validation, and test sets. Among these, test data consistently shows the low-
est performance. Notably, there is considerable variation in performance across
datasets. Prov performs best in most categories, such as organAMNIST, organCM-
NIST, and organSMNIST, but struggles with breastMNIST classification, where
Dino demonstrates superior performance.

Overall, the performance of smaller datasets like breastMNIST and retinaMNIST
drops, while the biggest datasets, octMNIST, and tissueMNIST, improve compared
to linear probing.

Multi-domain multi-task pre-training with data augmentation

Figure 25 shows the balanced accuracies for multi-domain multi-task pre-training
with data augmentations in the 224×224 resolution. Early stopping is triggered
every time after 9 to 25 epochs, depending on the resolution and the backbone.

The models exhibit significant performance differences depending on the chosen
framework. Prov emerges as the best-performing model, achieving a balanced accu-
racy of 73.27% with a standard deviation of 19%. Uni ranks second with a balanced
accuracy of 66.12% and a standard deviation of 20.1%. The results again highlight
the discrepancies between the performance of the training, validation, and test data.

Prov dominates in 9 of 12 tasks, often by a substantial margin. The exceptions
are bloodMNIST, breastMNIST, and chestMNIST. Although Prov performs nearly
on par with the best models for chestMNIST and bloodMNIST, it falls short by
three percentage points on breastMNIST, consistent with its underperformance in
breastMNIST classification observed during multi-domain multi-task pre-training.

Compared to multi-domain multi-task pre-training, improvements are observed for
breastMNIST and retinaMNIST across all backbones, while chestMNIST perfor-
mance remains unchanged. Prov also shows enhanced performance on dermaM-
NIST. However, for most other datasets, balanced accuracies decline relative to the
multi-domain multi-task pre-training results, most of the time even by a lot.

5.2 Results for the MedMNIST-C Dataset

This section presents the results of the models evaluated on MedMNIST-C. All
models were trained on the MedMNIST+ dataset and are now evaluated on the
same test splits but with the corrupted versions from MedMNIST-C to assess their
robustness to distortions. Additional plots for the different training schemes’ perfor-
mance and other resolutions can be found in the Appendix A.3. Table 7 shows the
general accuracies and AUCs on the corrupted dataset for every training method
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Figure 25: Balanced accuracies for multi-domain multi-task pre-training with data
augmentation in 224×224 resolution for every backbone. Training, validation, and
test performance are indicated in green, orange, and blue. The title of each plot
shows the average and standard deviation over all 12 datasets. The test data is
annotated.

with every backbone in the four image resolutions. The overall value in the table is
shown as the mean over all classes ± the standard deviation. The best metric for
every resolution for a training method is highlighted in bold. The best metric for
a resolution overall training methods is highlighted with a background color. kNN
and random forest were not evaluated since they performed worse than LightGBM
and SVM on MedMNIST+.

Table 7 reveals several significant findings. It summarizes benchmark results showing
the mean ± standard deviation for accuracy and AUC across corrupted datasets,
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224

Classifier

Dino SVM 65.16± 16.9 71.8± 14.8 74.01± 15.3 73.06± 16.2 84.44 ± 11.6 87.84± 10.8 89.46± 10.6 89.74± 9.8

Dino LightGBM 65.66 ± 16.3 71.97 ± 14 74.47 ± 14.6 74.25 ± 15.6 84.43± 11.3 88.37 ± 10 90.2 ± 9.9 90.21 ± 9.9

Dinov2 SVM 65.34± 15.9 68.34± 14.7 73.52± 15.6 75.83± 15.4 83.8± 11.4 86.03± 10.9 88.67± 10.6 89.78± 9.8

Dinov2 LightGBM 63.78± 15.7 67.01± 14.4 72.59± 14.6 74.43± 14.4 82.65± 11.2 85.07± 10.8 88.51± 10.6 89.9± 9.9

UNI SVM 63.41± 16.1 65.47± 15.9 67.19± 16.6 65.37± 17.7 83.31± 11.2 84.88± 11.5 86.0± 10.9 85.4± 11

UNI LighGBM 61.67± 14.7 65.2± 15.5 65.7± 16.1 66.4± 17.2 82.01± 11.3 84.83± 11.1 84.82± 10.7 85.62± 10.7

Prov SVM 64.4± 16.1 67.59± 15.3 69.19± 15.1 68.71± 15.2 82.53± 11.0 85.86± 10.7 86.83± 10.3 86.53± 10.2

Prov LightGBM 62.35± 15.0 65.97± 15.0 67.15± 15.7 67.59± 15.4 92.12± 0.09 94.13± 0.09 94.55± 0.08 95.37± 0.07

Linear Probing

Dino 65.63 ± 15.7 71.8 ± 14.9 74.27 ± 15.4 74.11± 16.9 85.64 ± 10.5 89.02 ± 9.7 90.95 ± 9.3 91.04 ± 9

Dinov2 65.48± 15.4 67.9± 14.7 74.27± 15.0 76.15 ± 15.0 84.37± 10.6 86.76± 10.1 89.86± 9.8 91.0± 9.1

UNI 63.47± 15.3 65.79± 15.4 67.62± 16.4 67.95± 16.9 84.05± 10.3 86.43± 10.3 87.39± 10.0 86.39± 10.4

Prov 64.34± 15.2 67.65± 14.9 69.74± 15.1 68.43± 16 84.3± 10.3 87.61± 10.1 88.57± 9.6 87.88± 9.6

mm-PT

Dino 63.0± 14.9 69.27± 12.2 72.79± 12.5 74.43± 12.8 82.86± 10 86.64± 9.6 88.35± 9.9 89.33± 9.8

Dinov2 62.46± 15.4 64.84± 13.9 68.66± 12.2 71.29± 12.3 82.27± 9.5 84.29± 9.4 86.51± 10.1 86.74± 9.9

UNI 65.16± 15.3 68.44± 15.3 73.73± 12.7 73.79± 12.1 83.5± 10.4 86.35± 9.4 89.14± 9.7 88.99± 9.9

Prov 68.69 ± 14.6 73.91 ± 12 78.1 ± 12.1 80.73 ± 12.9 85.03 ± 10.6 88.57 ± 9.3 90.64 ± 9.8 91.91 ± 9.6

mm-PT aug

Dino 63.06± 16.3 63.22± 14 66.47± 14 67.37± 14.8 82.87± 10.6 83.03± 11 84.96± 11.8 85.11± 12.2

Dinov2 61.33± 16.6 61.53± 14.3 63.09± 15.1 64.07± 14.6 80.81± 11.6 82.25± 11.3 82.48± 11.7 83.27± 11.6

UNI 63.21± 16.4 63.26± 14 65.59± 14.2 67.72± 14.2 82.41± 11.3 83.25± 11.3 84.46± 11.8 85.27± 12.2

Prov 64.91 ± 15.9 65.91 ± 13.6 70.78 ± 13.4 75 ± 15.2 83.49 ± 11.3 84.57 ± 11 87.05 ± 11.8 89.54 ± 11.7

Table 7: Summary of benchmark results presenting the average mean and standard
deviation for accuracy and the area under the receiver operating characteristic curve
(AUC) across the 12 corrupted datasets of MedMNIST-C, covering all combinations
of training schemes, models, and image resolutions. The best result for each res-
olution across all training schemes and models is highlighted with a background
color, while the best result for each training scheme and resolution is highlighted
in bold. kNN and random forest were not evaluated because they performed worse
than LightGBM and SVM on MedMNIST+.

covering all training schemes, models, and image resolutions. The best result per
resolution is highlighted with a background color, while the best per training scheme
and resolution is in bold. kNN and random forest were excluded due to inferior
performance compared to LightGBM and SVM on the clean dataset.

Impact of Image Resolution: Performance steadily improves as image resolution
increases from 28×28 to 128×128 for accuracy and AUC. However, beyond 128×128,
this trend plateaus, with little to no additional gains observed at 224×224 for most
of the pre-trained backbone. Dinov2 is an exception since it shows noticeably better
performance on 224×224 than on 128×128.

Classifier Performance: Among all training schemes, linear probing, SVM, and
LightGBM are at the same level for accuracy, while linear probing shows better
results for the AUC.
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Backbone Performance: Dino is the best performing pre-trained backbone for
the image resolutions, while Dinov2 is on eye level for 128×128 and surpasses Dino
on 224×224. Prov is the best backbone for the mm-PT and mm-PT aug techniques.

mm-PT Approaches: Prov consistently stands out as the top performer for mm-
PT training schemes, achieving the highest accuracy across all resolutions and the
best AUC at 224×224. Mm-PT training shows clear improvements with higher
resolutions, solidifying its position as the leading approach for accuracy with the
Prov backbone. While mm-PT achieves comparable AUC to the Dino backbone
under linear probing, Dino outperforms in AUC at 28×28, 64×64, and 128×128
resolutions. However, at 224×224, the Prov backbone with mm-PT surpasses Dino
in AUC. In contrast, the mm-PT augmentation (mm-PT aug) approach performs
significantly weaker, with Prov still maintaining dominance in this context.

Table 8 shows the overall balanced accuracies and Cohen’s kappa values on the
corrupted MedmNIST-C dataset for each training method with every backbone in
the four image resolutions: 28×28, 64×64, 128×128, and 224×224. The total value
in the table is shown as the mean over all classes ± the standard deviation. The best
metric for every resolution for a training method is highlighted in bold. The best
metric for a resolution for all training methods is highlighted with a background
color. Since there was no time to evaluate all models, kNN and random forest were
not evaluated because they performed worse than LightGBM and SVM on the clean
dataset.

Table 8 presents several key insights. The Dino backbone delivers the best over-
all performance across all classifier-based training methods among the pre-trained
models. For both balanced accuracy and Cohen’s kappa, the performance of linear
probing is better than LightGBM and SVM.

Table 8 supports the findings from the accuracy and AUC for the performance on
the MedMNIST-C dataset. It summarizes benchmark results showing the mean ±
standard deviation for balanced accuracy and Cohen´s kappa across the corrupted
datasets, covering all training schemes, models, and image resolutions. The best
result per resolution is highlighted with a background color, while the best per
training scheme and resolution is in bold. kNN and random forest were excluded
due to inferior performance compared to LightGBM and SVM on the clean dataset.

Impact of Image Resolution: Performance steadily improves as image resolu-
tion increases from 28×28 to 128×128 for balanced accuracy and Cohen´s kappa.
However, beyond 128×128, this trend plateaus, with little to no additional gains
observed at 224×224 for most of the pre-trained backbone. Dinov2 is an exception
since it shows noticeably better performance on 224×224 than on 128×128.

Classifier Performance: Among all training schemes, linear probing slightly out-
performs SVM, while LightGBM falls somewhat off.

Backbone Performance: Dino is the best performing pre-trained backbone for
the image resolutions, while Dinov2 is on eye level for 128×128 and surpasses Dino
on 224×224. Prov and UNI as backbones fall off in comparison.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224

Classifier

Dino SVM 55.28 ± 17.7 61.51 ± 18.4 64.93 ± 19 64.51± 19.4 43.01 ± 23 50.46 ± 24.8 54.57 ± 25.9 53.6± 26.1

Dino LightGBM 54.19± 17 59.98± 17.9 62.99± 18.5 62.72± 19 42.45± 22 49.9± 24.1 53.55± 25 53.14± 25.6

Dinov2 SVM 54.76± 17 57.85± 16.8 64.23± 18.3 66.48 ± 19 42.44± 22.1 46.24± 22.6 53.86± 25.9 57.49 ± 26.1

Dinov2 LightGBM 51.58± 15.8 54.62± 15.9 61.64± 17.7 63.46± 18.3 38.83± 20.6 42.31± 22.0 51.77± 24.6 54.38± 25.3

UNI SVM 52.88± 15.9 55.9± 16.2 57.62± 17.7 56.64± 18.8 40.04± 21 42.2± 23.2 45.03± 23.6 43.09± 25.7

UNI LighGBM 50.45± 15 53.3± 16.4 54.23± 17.4 54.49± 18.8 37.25± 19.7 40.17± 22.4 41.53± 23.3 41.61± 24.9

Prov SVM 54.04± 16.1 58.27± 16.4 59.94± 17.3 59.71± 17.7 41.23± 21.7 45.26± 23.4 47.86± 24.0 47.69± 24.2

Prov LightGBM 51.13± 14.7 54.65± 15.4 55.53± 17.1 55.25± 18.1 37.98± 19.4 42.0± 21.3 43.5± 22.8 43.08± 24.0

Linear Probing

Dino 55.29 ± 16.7 62 ± 17 65.15 ± 18.3 66.16± 18.8 43.67 ± 21.5 50.9 ± 24.1 55.15 ± 25.2 55.62± 26.4

Dinov2 53.88± 16.0 56.84± 16.0 64.63± 17.6 66.67 ± 17.9 41.43± 20.9 44.85± 22.1 54.35± 25.4 57.49 ± 25.7

UNI 51.89± 15.4 55.62± 15.5 56.87± 17 57.71± 18.1 938.83± 20.3 41.75± 23.1 43.76± 23, 4 44.92± 25.3

Prov 53.37± 15.3 57.91± 15.5 60.55± 16.8 60.11± 17.5 40.84± 20.1 45.04± 22.5 48.36± 23.9 48.27± 24.5

mm-PT

Dino 51.04± 14.9 59.16± 15.2 61.81± 15.7 65.87± 16.4 37.67± 20.1 47.54± 21.4 50.81± 23.4 55.53± 24.3

Dinov2 52.59± 15.2 54.28± 14.1 59.21± 14.5 61.18± 15.4 40.35± 19 41.88± 18.8 47.23± 21.3 49.86± 23

UNI 53.54± 15.2 57.52± 15.4 62.87± 17.1 62.06± 17.2 41.55± 21.2 45.41± 21.9 52.31± 25.1 51.21± 25.3

Prov 56.43 ± 18.2 62.97 ± 15.9 68.27 ± 17.3 70.8 ± 19.2 45.49 ± 22.9 52.52 ± 24 58.55 ± 25.7 61.75 ± 27.6

mm-PT aug

Dino 52.71± 17.1 52.71± 14.1 55.48± 16.3 56.41± 17.3 40.42± 21.2 40.15± 18.6 43.53± 21.4 44.04± 23.8

Dinov2 48.85± 15.9 51.2± 14.2 52.14± 15.1 53.54± 15.4 36.85± 18.7 38.19± 18.3 39.61± 19.5 41.5± 20

UNI 52.83± 16.7 53.33± 14.3 55.75± 14.9 56.77± 16.5 40.83± 20.4 40.64± 19.3 43.8± 20.6 45.41± 22.2

Prov 53.68 ± 17.7 55.09 ± 15.5 61.09 ± 17.3 66.29 ± 18.4 41.98 ± 22 43.13 ± 20.8 50.47 ± 22.3 55.98 ± 26

Table 8: Summary of benchmark results presenting the average mean and standard
deviation for balanced accuracy and Cohen´s kappa across the 12 corrupted datasets
of MedMNIST-C, covering all combinations of training schemes, models, and image
resolutions. The best result for each resolution across all training schemes and
models is highlighted with a background color, while the best result for each training
scheme and resolution is highlighted in bold. Since there was no time to evaluate all
models, kNN and random forest were not evaluated because they performed worse
than LightGBM and SVM on the clean dataset.

mm-PT Approaches: For mm-PT training schemes, Prov consistently excels,
achieving the highest balanced accuracy and Cohen’s kappa across all resolutions.
It outperforms all other training schemes in every category, solidifying its position
as the top-performing model on MedMNIST-C. Mm-PT training demonstrates clear
improvements with higher resolutions, further reinforcing the dominance of the Prov
backbone. In contrast, the mm-PT augmentation (mm-PT aug) approach shows
significantly weaker performance, though Prov remains the dominant backbone.

Since balanced accuracy at the 224×224 resolution is the most relevant metric for
the corrupted dataset, we focus our analysis exclusively on this metric.

Figure 26 compares the balanced accuracies of two of the best training methods on
MedMNIST-C - Dino linear probing and Prov mm-PT— at a resolution of 224×224.
The top plots show results for the Dino backbone, while the bottom plots present
those for the Prov backbone. Performance on the clean MedMNIST+ dataset is
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Figure 26: Balanced accuracies for two of the best training methods at a resolution
of 224×224 on the two datasets are illustrated. The top plots represent Dino Lin-
ear Probing, while the bottom plots correspond to Prov mm-PT. Performance on
MedMNIST+ is shown in the left column, whereas performance on MedMNIST-C
is depicted in the right column.

displayed on the left, and performance on the corrupted MedMNIST-C dataset is
shown on the right.

The figure reveals that the Dino backbone with linear probing achieves noticeably
better performance on non-corrupted datasets such as breastMNIST, dermaMNIST,
retinaMNIST, and pneumoniaMNIST, which are the four smallest datasets in terms
of training samples. ChestMNIST shows similar performance for both backbones.
The Prov backbone with the mm-PT training scheme outperforms Dino for all other
datasets.
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Prov with mm-PT dominates in nearly all categories when evaluating the corrupted
dataset. Notably, it performs significantly better on the two largest datasets re-
garding training samples, tissueMNIST and octMNIST. However, the performance
of the two smallest datasets, breastMNIST and retinaMNIST, is considerably worse
compared to the pre-trained Dino backbone. For chestMNIST and dermaMNIST,
the performance is almost identical between the two methods, with chestMNIST
maintaining the same balanced accuracy as observed on the clean dataset.
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JPEG 96.02±3.1 60.04±1.7 50.76±0.1 52.65±4.2 82.50±6.4 95.55±0.2 93.88±0.4 77.73±0.3 88.63±6.3 84.10±1.4 32.23±0.4 55.38±6.2

Pixelate 97.77±0.5 77.38±2.5 50.68±0.3 55.58±2.0 71.66±9.5 95.48±0.2 94.25±0.1 78.12±0.2 94.17±1.7 82.18±1.8 31.35±0.8 61.77±1.5

Gaussian Noise - - 50.32±0.3 53.51±6.2 - 93.49±2.4 91.72±2.4 74.52±3.1 - 85.34±0.4 34.24±0.8 -

Speckle Noise - 61.08±0.7 50.36±0.3 51.97±6.7 73.32±11.5 93.62±2.6 91.98±2.7 74.80±3.5 - 85.24±1.1 32.40±0.6 -

Impulse Noise - - 50.27±0.3 53.11±5.9 - 94.60±0.9 93.00±1.1 76.08±1.8 - 84.66±0.5 - 54.50±2.8

Shot Noise - - 50.12±0.2 48.33±6.6 - 94.40±1.5 92.68±1.5 75.37±2.8 - 85.24±1.1 - -

Defocus Blur 90.59±7.8 - - 43.40±4.6 82.62±4.8 - - - 73.69±17.0 - 28.28±1.4 -

Motion Blur 94.05±3.8 71.84±4.4 - 45.56±6.1 67.82±12.7 - - - 83.71±8.4 - 26.74±1.2 -

Gaussian Blur - - 51.01±0.0 - - 83.06±7.1 79.14±9.7 58.95±7.3 - 72.97±6.7 - 60.89±1.4

Zoom Blur - - - 51.05±2.5 - - - - - - - -

Brightness Up 93.97±4.0 58.16±1.9 50.71±0.1 47.49±7.5 - 86.42±6.1 82.11±8.2 61.20±8.9 88.95±3.4 77.35±7.5 - 57.32±2.6

Brightness Down 87.17±14.2 78.28±3.5 50.50±0.2 41.51±13.2 - 90.07±4.2 87.03±4.0 73.06±3.3 92.64±1.4 72.79±8.9 30.96±1.7 50.16±7.7

Contrast Up 97.10±0.9 - 50.72±0.1 54.94±3.4 - 90.96±3.9 87.31±4.2 68.87±5.6 92.08±3.3 89.05±0.6 - 58.16±4.9

Contrast Down 94.01±6.6 69.21±5.8 50.63±0.2 48.26±8.5 71.58±11.5 93.93±1.3 91.69±1.8 76.22±1.9 90.50±4.0 73.27±10.7 31.94±2.6 56.44±6.1

Saturate 97.36±0.7 - - - - - - - 94.63±1.8 - - -

Stain Deposit 91.16±3.4 - - - - - - - 91.01±1.9 - - -

Bubble 94.91±1.6 - - - - - - - 94.48±1.1 - - -

Gamma Corr. Up - - 50.80±0.1 - - 91.84±3.1 89.34±3.1 74.61±2.8 - 89.36±0.7 - -

Gamma Corr. Down - - 50.70±0.2 - - 90.65±6.8 88.44±7.8 69.91±9.0 - 71.67±11.9 - -

Black Corners - - - 47.51±1.9 - - - - - - - -

Characters - - - 57.56±0.9 - - - - - - - -

Table 9: A detailed summary of benchmark results showing balanced accuracy for
each dataset in MedMNIST-C and each type of corruption, with the average and
standard deviation calculated across all severity levels. The results are based on the
best training scheme: Prov mm-PT at resolution 224×224.

Table 9 emphasizes that different types of corruptions affect datasets in varying ways,
with the extent of the impact mainly depending on the characteristics of the specific
dataset. For instance, a corruption that results in a significant performance decline
in one dataset might have only a minor effect on another. For example, when com-
paring bloodMNIST and breastMNIST, Brightness Down is the worst-performing
corruption for bloodMNIST but the best-performing one for breastMNIST. This
pattern is consistent across all datasets. Notably, corruption has no observable im-
pact on chestMNIST. The varying severities have different impacts on performance.
For example, in the case of bloodMNIST, the standard deviation for the “Contrast
Up” corruption is 0.9%, whereas for the “Brightness Down” corruption, the standard
deviation is 14.2%. This demonstrates a significant difference in how the severity
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levels influence the dataset. The tables for the five different severities independently
can be found in the appendix A.4.
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6 Comparison and Discussion

This section provides context for the results and begins the discussion with the
results of the clean dataset. Since the results show that Random Forest and kNN
are significantly weaker, they get no further attention.

6.1 Performance on MedMNIST+

Different performance on the 12 different tasks

The trends observed across different training methods suggest that some datasets
are inherently easier to classify while others pose more significant challenges. For
example, BloodMNIST and PathMNIST consistently demonstrate high performance
across all metrics and training schemes. In contrast, RetinaMNIST represents the
opposite extreme, exhibiting the lowest performance among the datasets. This dis-
parity may be attributed to the limited number of training samples in RetinaMNIST
and its focus on ordinal regression, a unique characteristic of the dataset. Various
performance levels can be influenced by several factors, including the number of
training samples, the nature of the data modalities, the underlying tasks, and, most
significantly, the varying difficulty levels of these tasks.

Majority class vote for chestMNIST

ChestMNIST yields some interesting results. The dataset achieves an accuracy of
approximately 95% (the same as a classifier that would only predict the majority
class), a balanced accuracy of around 50%, and a Cohen´s kappa close to 0 for all
training schemes and resolutions. Notably, it is also the only dataset unaffected
by corruption. These findings suggest that the model predominantly predicts the
majority class, resulting in high overall accuracy. However, this behavior indicates
that the classifier fails to differentiate between classes as intended.

Improvement with higher resolution

The results indicate that the model performance improves as the image resolution
increases from 28×28 to 64×64, and 128×128. However, this improvement levels off
when increasing the resolution from 128×128 to 224×224. That is because an image
size of 224×224 is generally better for classification tasks than 28×28. The larger
size retains more detailed features and finer spatial information, allowing the model
to better capture the complexities of the data. The smaller 28×28 images may
lose essential details, reducing the ability to distinguish between different classes,
especially for tasks that require recognizing intricate patterns or textures.
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Influence of the backbone

Dino is pre-trained on a broad range of data, which likely enhances its generalization
capabilities. In contrast, Prov and UNi are pre-trained on medical images, which
may give them a deeper understanding of domain-specific features in the medical
field but could limit their adaptability to other medical data modalities or more
general datasets. Additionally, Dinov2, which has a higher input resolution, re-
quired more zero padding, and this additional padding could negatively influence its
performance.

Comparison between linear probing and SVM and LightGBM

As the results show, linear probing slightly outperforms both SVMs and LightGBM.
This is primarily because linear probing exhibits the least overfitting, with smaller
gaps between training and validation performance than the other models.

Foundation models map input images to a high-dimensional feature space, enabling
classifiers to extract patterns. However, SVMs with linear kernels and linear clas-
sifiers struggle to capture the non-linear relationships in this space. Despite their
strength in handling high-dimensional data and maximizing margins, the linear ker-
nel limits SVMs to linear patterns, underutilizing rich feature representations.

In contrast, LightGBM is designed to model non-linear relationships, leveraging
gradient boosting to combine multiple weak learners (trees) into a strong predictive
model. However, its performance in this context falls short compared to SVM and
linear probing, primarily due to insufficient hyperparameter tuning and a tendency
to overfit. LightGBM has the potential to outperform linear classifiers and SVMs
when adequately fine-tuned. Optimizing hyperparameters such as learning rate,
tree depth, and regularization techniques can significantly reduce overfitting and
improve its generalization ability, enabling it to better capture the complex, non-
linear patterns within the feature space.

LightGBM’s overfitting is evident in its significantly better performance on the train-
ing data compared to validation and test sets, particularly on smaller datasets like
breastMNIST, retinaMNIST, and dermaMNIST. These datasets, being among the
smallest in MedMNIST, are more susceptible to overfitting. For example, breastM-
NIST and retinaMNIST, the two smallest datasets, see LightGBM overfitting most
severely. In contrast, although the linear SVM and the linear classifier cannot model
non-linear relationships effectively, they exhibit smaller training-validation gaps,
benefiting from their more straightforward structure and fewer degrees of freedom.
However, if such patterns exist, their linear nature can limit their ability to fully
exploit the rich, non-linear patterns in the feature space generated by foundation
models.

Since LightGBM shows the most significant overfitting, effective hyperparameter
optimization could enhance its performance, allowing it to outperform SVM and
linear classifiers. Additionally, experimenting with SVM using non-linear kernels
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is worthwhile, as they better capture non-linear patterns in the data, leading to
improved results.

Comparison between linear probing and multi-domain multi-task pre-
training

When comparing linear probing with multi-domain multi-task pre-training as train-
ing methods, linear probing outperforms in 3 out of 4 backbones: Dino, Dinov2,
and Uni. Prov is a notable exception, as it shows partially better results with
multi-domain multi-task pre-training across various metrics.

An analysis of the metrics reveals a notable trend: The two largest training datasets,
octMNIST and tissueMNIST, demonstrate performance improvements across all
backbones. In contrast, three of the four smallest datasets — breastMNIST, der-
maMNIST, and retinaMNIST — show significant performance declines. This in-
dicates that larger datasets disproportionately influence the backbone’s training in
multi-domain multi-task pre-training. In comparison, smaller datasets contribute
minimally or not at all, resulting in an imbalance in performance. This occurs
because the larger datasets receive significantly more attention during training.

For Dinov2 and UNI, the performance of all other datasets worsens, while for Dino,
the results remain relatively stable. Prov, however, shows improvements across most
datasets, making it the best-performing model under the multi-domain multi-task
pre-training scheme. This success may be attributed to Prov’s significantly larger
number of parameters, which likely enables it to better leverage the information
provided by the mm-PT training technique.

Comparison between multi-domain multi-task pre-training and multi-
domain multi-task pre-training with data augmentation

When comparing the two training methods, mm-PT outperforms mm-PT aug in
nearly every category. Mm-Pt aug performs significantly worse for the three largest
datasets: tissueMNIST, octMNIST, and pathMNIST. Although most other datasets,
except for retinaMNIST and breastMNIST, also perform worse, the decline is less
pronounced. Notably, breastMNIST, the smallest dataset, performs better across
all backbones, and retinaMNIST, the second smallest dataset, shows slight improve-
ment for all backbones except Dino. This indicates a reversed weighting effect in
mm-PT, where smaller datasets receive too much emphasis while larger datasets
receive too little.

In addition, the training process itself contributes to this imbalance. The model
processes only 69 batches (4,416 images) per dataset per epoch and trains for 9 to
25 epochs – depending on the backbone and resolution – before early stopping is
triggered. As a result, larger datasets like octMNIST and pathMNIST are not fully
utilized, which explains their poorer performance under this training scheme.
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An attempt was made to weight each dataset equally in mm-PT, ensuring that
every dataset contributed the same to the model’s learning. However, this approach
yielded similar results to mm-PT aug, placing excessive emphasis on the smaller
datasets and thus reducing the performance of the bigger datasets. This also shows
that different datasets require different weights to achieve optimal performance when
training end-to-end.

6.2 Performance on MedMNIST-C

Influence of image size

When analyzing the clean dataset, the improvement from 128×128 to 224×224
resolution was minimal, if any. However, the difference between the two resolutions
was observable for the corrupted datasets, with the 224×224 resolution performing
notably better, especially with the mm-PT approach from Prov. This is likely
because corruptions significantly impact smaller resolutions, as the alterations are
more pronounced in smaller images. Larger image sizes, such as 224×224, allow
for more detailed feature extraction, making them more effective for classification,
mainly when dealing with corrupted data.

Influence of the applied corruptions

The impact of different corruptions on performance varies depending on the dataset.
This is because datasets can differ significantly in their modality, structure, and the
nature of the information they contain. Each dataset interacts uniquely with various
corruptions, leading to differences in how much a particular corruption affects its
performance. This variation could be influenced by factors such as the dataset’s
inherent complexity, the robustness of the features it relies on, or its sensitivity
to particular perturbations. For example, datasets with fine-grained textures may
be more susceptible to blurring, as this corruption removes critical high-frequency
details. Conversely, datasets that rely more on color or coarse shapes might be more
affected by color distortions or pixelation.

Influence of the different severities of the corruptions

The varying severities of corruption can have a different impact on performance
because the extent of the corruption directly affects the degree to which critical
information in the dataset is altered. The corruption may only slightly distort the
data at low severities, potentially allowing the model to recover or ignore minor
changes, resulting in minimal performance loss. However, as the severity increases,
the corruption becomes more pronounced, leading to more significant disruptions in
the data, which can hinder the model’s ability to interpret or classify the information
correctly.



6 COMPARISON AND DISCUSSION 67

For example, in image datasets, a low-level blur may only obscure fine details, but
a higher-level blur could distort key features essential for classification or segmenta-
tion. Similarly, with pixelation or color distortions, low severity might only affect a
small portion of the image. In contrast, higher severities could result in substantial
loss of critical visual cues, making it harder for the model to differentiate between
categories.

The model’s robustness and ability to generalize also play a role. Models that
learn invariant features may perform reasonably well under moderate corruption
levels. Still, as the severity of corruption surpasses the model’s capacity to handle
distortions, its performance degrades sharply. Thus, understanding the relationship
between corruption severity and model performance is crucial for evaluating how
resilient a model is to real-world challenges.

Influence of the backbone

Dino demonstrates the best performance when comparing pre-trained models where
only the classifier is fine-tuned. This superiority can be attributed to two key rea-
sons:

Strong Backbone Performance on MedMNIST+: The Dino backbone already ex-
hibits the best performance on clean datasets, providing a solid foundation for the
classifier to build upon. This indicates that Dino’s pre-trained features are the most
transferable and robust across the different tasks.

Diverse pre-training data: Dino is pre-trained on a wide variety of data, which
likely improves its generalization capabilities and robustness to different corruptions.
Dinov2 is also trained on diverse data but with higher input size, making its impact
more apparent at higher resolutions. Prov and UNi, on the other hand, are pre-
trained exclusively on medical images, potentially giving them a firmer grasp of
medical domain-specific features but possibly limiting their adaptability to other
medical data modalities or more general datasets.

Influence of training the backbone

When examining the impact of training the backbone, the Prov backbone demon-
strates superior performance with the mm-PT training scheme, surpassing all other
models. This is attributed to the Prov backbone’s ability to learn more effectively
under this specific training method compared to alternative backbones. The mm-
PT training scheme appears particularly well-suited to unlocking the potential of
the Prov backbone, allowing it to develop stronger feature representations.

Training the backbone improved the overall performance and significantly enhanced
the model’s robustness to distortions. By fine-tuning the backbone, the model be-
comes better equipped to handle various data corruptions or perturbations, ensuring
more consistent performance across diverse and noisy datasets. This highlights the
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importance of aligning the training strategy with the backbone architecture to max-
imize learning efficacy and resilience to challenging data conditions.

Prov with the mm-PT training scheme outperforms the pre-trained Dino backbone,
which ranks as the second-best model across 9 out of the 12 datasets. An exception
is ChestMNIST, where classification relies solely on predicting the majority class,
resulting in no performance differences between the models. On the other hand,
BreastMNIST and RetinaMNIST exhibit poorer performance. This is likely due to
their small dataset sizes, which limited the attention they received during training
with the mm-PT scheme, preventing the model from fully leveraging its potential
on these datasets.
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7 Limitations and Future Work

This section discusses the methods’ limitations and proposes ideas to address these
limitations. It begins with suggestions for improving training schemes that incorpo-
rate future embeddings of pre-trained models.

7.1 Training Methodology

Due to time constraints, all training schemes were trained and evaluated using a
single random seed. However, submissions to the benchmark introduced in this
thesis will require at least three seeds, as utilizing multiple seeds reduces variance
in the results and facilitates a more reliable comparison of the models.

7.1.1 Training only the Classification Heads

Because of the limited time and since the results of this thesis should only function
as a reference point, the thesis opted to find a hyperparameter configuration that
works well for every dataset. However, since the different datasets are very diverse
regarding the classification task, the data modalities, the number of samples, and the
balancing of the different classes within the individual datasets, they need different
hyperparameters to optimize the results. So, to improve the performance of all
datasets, every dataset needs its own individual hyperparameter optimization. As
mentioned, various methods, such as Grid Search, can be used to identify better
hyperparameter settings.

Since the training data for isolated datasets is limited and the classes are often
imbalanced, expanding the datasets within this training scheme is a logical step.
This approach increases the volume and balance of the training data, ensuring more
diverse datasets. As a result, it can enhance the overall performance of individual
models.

7.1.2 Training End-to-End

The results from the multi-domain multi-task pre-training approaches, with and
without data augmentations, indicate that larger datasets either receive too much
or too little weight. Some datasets are more straightforward to classify and require
less weight, while others are more challenging and require more weight. Therefore,
it would be beneficial to assign the weights of the dataset independently under
the supervision of a supervisor. Although this approach could improve the overall
performance of the models, it demands a deeper understanding of the datasets and
their interactions, making it a time-consuming attempt for optimization.

Another potential limitation of this training method is using a single optimizer for
all 12 datasets combined. When the model is exposed to a sample from dataset



7 LIMITATIONS AND FUTURE WORK 70

A, optimized through the chosen optimizer, and then sees a significant amount of
data from other datasets before returning to dataset A, the optimizer and learning
rate may no longer be suitable for adjusting the classification head of dataset A.
A possible solution would be to use 12 separate optimizers for the 12 different
classification heads, allowing the learning rate and optimizer to be tailored to the
specific data modalities of each head.

7.1.3 Combination of both Approaches

Another possibility for improving the performance of the models could be a combina-
tion of both approaches. The backbones of the multi-domain multi-task pre-training
are used to train 12 new classifiers independently on the feature space of these mod-
els. That gives the advantage of having a backbone already trained on the training
data and the advantage that the 12 different classification heads can train indepen-
dently. This has the advantage that classification heads can train a different number
of epochs since they are not forced to learn at the same speed. In addition, differ-
ent classification heads can be trained in this setting in different hyperparameter
settings, which can also be a way to improve performance.

7.2 Usage of an additional Metric to evaluate the Robust-
ness to Distortions

The metrics utilized in this thesis primarily assess the overall performance of the
models, which is suitable for evaluating the characteristics of the clean dataset.
However, it is valuable to examine the model performance on the corrupted dataset
in relation to their performance on the clean dataset. For example, if two models (A
and B) achieve the same balanced accuracy, such as 75%, on the corrupted dataset,
they may appear equally robust to distortions. However, when considering their
respective performances on the clean dataset, 85% balanced accuracy for model A
versus 75% for model B, it becomes evident that model B demonstrates greater
robustness to distortions, as its performance is less affected by the introduction of
corruption. This is essential for evaluating the model’s performance, as the goal is
usually to achieve minimal performance degradation under distribution shifts.

Hendrycks and Dietterich (2019) and Salvo et al. (2024) introduce two metrics that
solve this problem by comparing the robustness of the model to the robustness of
an AlexNet. Additionally, a metric is introduced to measure robustness by com-
paring the performance of corrupted data relative to clean data: The metric uses
the balanced error, which is calculated by 1 - 1-balanced accuracy. The evaluation
begins with the calculation of the clean, balanced error, BEclean

f , for each model f
using the corresponding MedMNIST+ test set. Following this, the balanced error,
BEf,s,c, is determined for each corruption c ∈ Cd and severity level s (ranging from
1 to 5). Here, Cd represents the set of all corruptions associated with a dataset d
(e.g., Cblood = {JPEG, . . . , bubble}). The errors are then averaged across severity
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levels and normalized using AlexNet errors to produce BEf,c. This process, defined
in Equation 12, accounts for the various effects of corruption on classification per-
formance. The final balanced error BEf is calculated by averaging BEf,c on all
corruptions (Salvo et al., 2024).

BEf,c =

∑5
s=1 BEf,s,c∑5

s=1 BEAlexNet,s,c

(12)

To assess performance degradation under distribution shifts, the relative balanced
error (rBE) is introduced. This metric evaluates robustness by quantifying the
performance drop in relation to the clean test set. The calculation of rBEf,c extends
Equation 12 by subtracting the clean performance:

rBEf,c =

∑5
s=1(BEf,s,c − BEclean

f )∑5
s=1(BEAlexNet,s,c − BEclean

AlexNet)
(13)

The general value rBEf is obtained by averaging rBEf,c across all corruptions. The
metrics are averaged across labels for multi-label tasks, such as ChestMNIST, to
ensure consistency (Salvo et al., 2024).

These metrics would be suitable for evaluating the robustness of the models, but
they were not in this thesis´s time budget since an additional AlexNet model needs
to be trained and evaluated with the same training methodologies.
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8 Conclusion

This thesis introduced a novel benchmark for MedMNIST+, an extension to the
MedMNIST dataset family, designed to facilitate standardized and efficient evalua-
tion of medical image classification tasks. By incorporating diverse imaging modal-
ities, expanded task definitions, and state-of-the-art baseline results across multiple
models and methods, the MedMNIST+ benchmark provides a comprehensive plat-
form for assessing model performance in medical scenarios. Through this bench-
mark, we aim to accelerate the development and comparison of machine learning
methods in the medical imaging domain, fostering reproducible research and driving
progress toward practical clinical applications.

Evaluating various machine learning approaches on foundation models established
a baseline for the challenge. The pre-trained models achieved the highest overall
performance, while the mm-PT and mm-PT aug training methodologies fell short of
surpassing them. Among the models, the Dino backbone delivered the best results,
benefiting from pre-training on various tasks, whereas Prov and UNI, pre-trained
on specific medical domains, lagged behind.

Additionally, a novel benchmark for MedMNIST-C was introduced to evaluate model
robustness on corrupted data and distorted medical images, extending the MedM-
NIST dataset family. MedMNIST-C facilitates a standardized and efficient assess-
ment of model performance under challenging conditions by simulating real-world
degradation through diverse corruption types and severity levels. This benchmark
aims to advance the development of robust machine learning methods for medi-
cal imaging, fostering reproducible research and improving reliability in practical
clinical scenarios.

A baseline for this challenge was established by evaluating the machine learning ap-
proaches trained on MedMNIST+. The mm-PT training methodology, which trains
the model end-to-end, demonstrated the highest robustness to distortions, outper-
forming the pre-trained models when using the Prov backbone. This highlights that
a well-trained backbone, exposed to the data during training, exhibits greater re-
silience to distortions. The Dino and Dinov2 backbones demonstrated superior per-
formance among the pre-trained models, benefiting from their pre-training across
various tasks. In contrast, Prov and UNI, pre-trained on specific medical domains,
showed significantly lower robustness to corrupted inputs.

In conclusion, the introduction of the MedMNIST+ and MedMNIST-C benchmarks
represents a significant step forward in evaluating medical image classification and
robustness in the face of real-world data challenges. These benchmarks provide a
comprehensive, standardized platform for assessing model performance across vari-
ous tasks, fostering reproducible research and accelerating advancements in the field.
The insights gained from the baseline evaluations further highlight the importance
of pre-training and task diversity in enhancing model performance and robustness,
paving the way for developing more reliable machine learning methods for practical
clinical applications.
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A Appendix

A.1 Every Plot for the Performance on MedMNIST+

This section of the appendix has every plot for every metric, every backbone, every
training method and every resolution on MedMNIST+.

Figure 27: Every metric for 28×28 resolution with SVM as classification head on
the pre-trained backbones. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.
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Figure 28: Every metric for 64×64 resolution with SVM as classification head on
the pre-trained backbones. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.
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Figure 29: Every metric for 128×128 resolution with SVM as classification head
on the pre-trained backbones. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.



A APPENDIX 76

Figure 30: Every metric for 224×224 resolution with SVM as classification head
on the pre-trained backbones. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.
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Figure 31: Every metric for 28×28 resolution with LightGBM as classification head
on the pre-trained backbones. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.
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Figure 32: Every metric for 64×64 resolution with LightGBM as classification head
on the pre-trained backbones. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.
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Figure 33: Every metric for 128×128 resolution with LightGBM as classification
head on the pre-trained backbones. Training, validation, and test performance in-
dicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.
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Figure 34: Every metric for 224×224 resolution with LightGBM as classification
head on the pre-trained backbones. Training, validation, and test performance in-
dicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.
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Figure 35: Every metric for 28×28 resolution with random forest as classification
head on the pre-trained backbones. Training, validation, and test performance in-
dicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.
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Figure 36: Every metric for 64×64 resolution with random forest as classification
head on the pre-trained backbones. Training, validation, and test performance in-
dicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.
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Figure 37: Every metric for 128×128 resolution with random forest as classification
head on the pre-trained backbones. Training, validation, and test performance in-
dicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.



A APPENDIX 84

Figure 38: Every metric for 224×224 resolution with random forest as classification
head on the pre-trained backbones. Training, validation, and test performance in-
dicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.
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Figure 39: Every metric for 28×28 resolution with kNN as classification head on the
pre-trained backbones.Test performance indicated in blue color. The average and
standard deviation over all 12 datasets is shown by the title of each plot. The test
data is annotated.
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Figure 40: Every metric for 64×64 resolution with kNN as classification head on the
pre-trained backbones. Test performance indicated in blue color. The average and
standard deviation over all 12 datasets is shown by the title of each plot. The test
data is annotated.
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Figure 41: Every metric for 128×128 resolution with kNN as classification head on
the pre-trained backbones. Test performance indicated in blue color. The average
and standard deviation over all 12 datasets is shown by the title of each plot. The
test data is annotated.
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Figure 42: Every metric for 224×224 resolution with KNN as classification head on
the pre-trained backbones. Test performance indicated in blue color. The average
and standard deviation over all 12 datasets is shown by the title of each plot. The
test data is annotated.
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Figure 43: Every metric for 28×28 resolution with a a linear classifier as classifica-
tion head on the pre-trained backbones. Training, validation, and test performance
indicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.
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Figure 44: Every metric for 64×64 resolution with a linear classifier as classification
head on the pre-trained backbones. Training, validation, and test performance in-
dicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.
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Figure 45: Every metric for 128×128 resolution with a linear classifier as classifica-
tion head on the pre-trained backbones. Training, validation, and test performance
indicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.
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Figure 46: Every metric for 224×224 resolution with a linear classifier as classifica-
tion head on the pre-trained backbones. Training, validation, and test performance
indicated in green, orange and blue color. The average and standard deviation over
all 12 datasets is shown by the title of each plot. The test data is annotated.
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Figure 47: Every metric for 28×28 resolution with multi-domain multi-task pre-
training for every backbone. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.



A APPENDIX 94

Figure 48: Every metric for 64×64 resolution with multi-domain multi-task pre-
training for every backbone. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.
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Figure 49: Every metric for 128×128 resolution with multi-domain multi-task pre-
training for every backbone. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.
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Figure 50: Every metric for 224×224 resolution with multi-domain multi-task pre-
training for every backbone. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.
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Figure 51: Every metric for 28×28 resolution with multi-domain multi-task pre-
training for every backbone. Training, validation, and test performance indicated
in green, orange and blue color. The average and standard deviation over all 12
datasets is shown by the title of each plot. The test data is annotated.
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Figure 52: Every metric for 64×64 resolution with multi-domain multi-task pre-
training with data-augmentation for every backbone. Training, validation, and test
performance indicated in green, orange and blue color. The average and standard
deviation over all 12 datasets is shown by the title of each plot. The test data is
annotated.
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Figure 53: Every metric for 128×128 resolution with multi-domain multi-task pre-
training with data-augmentation for every backbone. Training, validation, and test
performance indicated in green, orange and blue color. The average and standard
deviation over all 12 datasets is shown by the title of each plot. The test data is
annotated.
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Figure 54: Every metric for 224×224 resolution with multi-domain multi-task pre-
training with data-augmentation for every backbone. Training, validation, and test
performance indicated in green, orange and blue color. The average and standard
deviation over all 12 datasets is shown by the title of each plot. The test data is
annotated.
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A.2 Performance Metrics for every Dataset on MedMNIST+

Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 91.87 97.28 98.25 99.01 99.2 99.84 99.9 99.94
Dino LightGBM 89.89 95.88 97.52 97.9 99.12 99.81 99.9 99.92
Dino RF 80.44 85.79 91.06 90.79 97.31 98.56 99.33 99.4
Dino KNN 85.24 93.04 96.67 96.81 - - - -
Dinov2 SVM 91.0 96.35 98.04 98.48 99.16 99.73 99.89 99.92
Dinov2 LightGBM 87.43 93.1 95.44 96.58 98.68 99.56 99.85 99.89
Dinov2 RF 69.95 76.38 84.33 88.45 94.76 96.42 98.48 99.15
Dinov2 KNN 77.87 84.36 92.11 93.92 - - - -
UNI SVM 93.39 98.28 98.92 98.48 99.53 99.92 99.93 99.94
UNI LightGBM 92.63 97.34 98.39 97.84 99.47 99.88 99.94 99.93
UNI RF 83.37 91.14 93.72 93.66 97.99 99.35 99.67 99.52
UNI KNN 87.99 94.18 96.55 96.52 - - - -
Prov SVM 94.65 98.01 98.28 98.71 99.65 99.9 99.91 99.93
Prov LightGBM 93.98 96.76 96.78 98.1 99.59 99.87 99.9 99.93
Prov RF 86.35 89.92 92.22 93.66 98.44 99.07 99.48 99.65
Prov KNN 90.5 92.58 94.94 96.96 - - - -
Linear Probing
Dino 89.83 97.19 98.1 98.51 99.01 99.87 99.92 99.94
Dinov2 87.99 95.41 97.02 97.81 98.77 99.78 99.92 99.93
UNI 91.96 97.84 98.51 98.39 99.41 99.9 99.94 99.95
Prov 93.83 97.75 97.78 98.86 99.62 99.92 99.92 99.94
mm-PT
Dino 84.71 94.65 95.7 97.02 98.41 99.67 99.8 99.9
Dinov2 86.29 94.39 94.39 96.84 98.44 99.66 99.72 99.86
UNI 85.56 94.01 96.52 97.08 98.58 99.59 99.87 99.88
Prov 88.54 94.36 97.75 98.07 98.89 99.77 99.91 99.93
mm-PT aug
Dino 86.06 92.84 95.38 96.14 98.53 99.54 99.77 99.83
Dinov2 81.64 90.21 92.98 93.95 97.62 99.26 99.47 99.68
UNI 85.33 90.85 94.94 94.94 98.34 99.3 99.8 99.83
Prov 87.23 90.7 95.32 94.48 98.49 99.3 99.76 99.7

Table 10: Performance for accuracy and AUC for BloodMNIST across different
resolutions, backbones, and training schemes.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 90.42 97.09 98.38 99.13 90.5 96.82 97.95 98.84
Dino LightGBM 87.59 95.1 97.41 97.78 88.16 95.18 97.1 97.54
Dino RF 73.85 80.39 88.49 87.99 76.89 83.23 89.49 89.18
Dino KNN 82.83 92.09 96.64 96.8 82.73 91.86 96.1 96.28
Dinov2 SVM 89.45 96.15 98.16 98.49 89.47 95.73 97.71 98.22
Dinov2 LightGBM 84.99 92.26 95.23 96.24 85.27 91.93 94.67 96.0
Dinov2 RF 61.76 71.03 81.01 85.44 64.25 72.05 81.54 86.42
Dinov2 KNN 74.57 82.41 91.47 93.32 74.03 81.64 90.76 92.88
UNI SVM 92.34 98.27 99.05 98.65 92.28 97.98 98.74 98.22
UNI LightGBM 91.17 97.16 98.41 97.95 91.38 96.89 98.12 97.47
UNI RF 77.17 88.18 91.68 92.3 80.37 89.6 92.63 92.57
UNI KNN 85.31 92.99 96.19 96.21 85.94 93.19 95.97 95.93
Prov SVM 94.1 98.07 98.43 98.87 93.75 97.68 97.98 98.5
Prov LightGBM 92.97 96.34 96.64 98.3 92.96 96.21 96.24 97.78
Prov RF 81.5 86.45 90.15 92.54 83.94 88.13 90.88 92.57
Prov KNN 88.92 91.68 94.48 96.85 88.89 91.31 94.09 96.45
Linear Probing
Dino 88.31 96.89 98.15 98.58 88.11 96.72 97.78 98.26
Dinov2 85.48 94.66 96.87 97.6 85.92 94.63 96.52 97.44
UNI 90.4 97.65 98.62 98.46 90.6 97.47 98.26 98.12
Prov 93.1 97.48 97.68 98.95 92.79 97.37 97.4 98.67
mm-PT
Dino 80.69 94.12 95.04 97.35 82.09 93.75 94.97 96.52
Dinov2 82.16 93.9 93.85 96.59 83.89 93.44 93.44 96.31
UNI 80.45 92.88 95.9 97.39 83.04 92.99 95.93 96.59
Prov 87.19 92.74 97.76 98.27 86.65 93.4 97.37 97.75
mm-PT aug
Dino 85.43 90.95 95.1 96.24 83.78 91.61 94.61 95.49
Dinov2 79.06 89.65 91.85 94.05 78.57 88.58 91.79 92.94
UNI 81.53 89.16 94.4 94.69 82.79 89.3 94.09 94.09
Prov 83.6 89.15 95.72 95.25 85.0 89.14 94.54 93.56

Table 11: Performance for balanced accuracy and Cohen´s kappa forBloodMNIST
for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 85.26 85.9 91.03 87.18 88.99 90.79 91.81 92.98
Dino LightGBM 87.82 88.46 89.74 88.46 92.92 93.92 92.25 93.11
Dino RF 81.41 82.05 82.05 85.9 89.45 90.73 90.12 89.68
Dino KNN 78.21 86.54 85.26 87.18 - - - -
Dinov2 SVM 83.97 85.9 83.33 87.18 86.15 90.73 91.4 90.56
Dinov2 LightGBM 83.97 83.33 87.18 86.54 82.5 90.08 93.42 89.2
Dinov2 RF 76.92 80.77 82.69 79.49 83.27 86.15 90.18 85.44
Dinov2 KNN 74.36 79.49 78.85 82.69 - - - -
UNI SVM 84.62 82.69 84.62 87.18 88.53 90.43 92.29 91.08
UNI LightGBM 84.62 83.33 83.33 83.97 91.77 90.6 91.69 90.6
UNI RF 80.77 79.49 80.77 81.41 85.88 83.63 89.77 87.36
UNI KNN 81.41 81.41 82.69 82.05 - - - -
Prov SVM 81.41 84.62 87.18 85.26 86.05 92.31 91.98 90.12
Prov LightGBM 83.97 87.18 85.9 85.9 88.45 93.21 93.69 90.71
Prov RF 78.85 78.21 80.13 81.41 85.09 87.09 89.39 85.32
Prov KNN 79.49 83.33 80.77 82.05 - - - -
Linear Probing
Dino 83.97 83.97 88.46 87.82 88.49 91.73 93.15 94.32
Dinov2 82.69 83.33 88.46 88.46 84.09 88.62 91.33 90.94
UNI 82.69 80.77 84.62 84.62 82.92 86.78 90.18 87.89
Prov 79.49 84.62 85.26 86.54 82.04 91.0 92.15 89.08
mm-PT
Dino 80.13 85.26 80.77 83.97 81.24 85.61 86.28 87.36
Dinov2 76.92 80.77 81.41 78.85 86.72 80.87 85.46 80.95
UNI 79.49 83.97 78.21 75.64 75.38 85.59 85.84 85.9
Prov 82.69 78.85 82.69 78.21 86.88 87.26 86.34 87.59
mm-PT aug
Dino 73.72 83.33 84.62 80.13 82.54 86.11 89.1 83.63
Dinov2 81.41 71.15 80.77 86.54 77.44 79.2 80.99 86.61
UNI 83.97 83.97 83.97 82.69 90.06 85.74 89.87 86.34
Prov 82.69 82.69 85.9 83.97 87.61 85.71 89.33 89.26

Table 12: Performance for accuracy and AUC for BreastMNIST across different
resolutions, backbones, and training schemes.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 76.38 79.82 85.59 81.45 58.47 62.47 75.73 65.88
Dino LightGBM 79.64 80.08 83.96 81.58 65.69 67.23 72.27 68.29
Dino RF 67.73 68.17 69.67 74.56 42.88 44.34 46.31 57.82
Dino KNN 64.04 78.01 77.88 80.7 33.63 62.08 59.81 65.33
Dinov2 SVM 74.0 78.32 72.06 78.45 54.1 61.25 51.01 63.59
Dinov2 LightGBM 74.0 72.81 78.45 78.01 54.1 51.85 63.59 62.08
Dinov2 RF 58.65 65.04 70.11 64.91 22.77 38.1 47.77 36.39
Dinov2 KNN 59.15 64.16 65.23 72.37 21.92 35.2 36.16 50.42
UNI SVM 72.93 72.37 77.44 81.45 53.98 50.42 58.4 65.88
UNI LightGBM 75.94 73.56 73.56 74.0 57.02 52.66 52.66 54.1
UNI RF 65.79 63.41 66.54 67.73 39.25 33.97 40.37 42.88
UNI KNN 69.99 69.99 76.88 73.43 45.83 45.83 55.0 50.68
Prov SVM 70.74 75.19 79.95 80.14 46.75 56.3 64.77 61.67
Prov LightGBM 76.25 78.45 76.82 77.57 56.32 63.59 59.94 60.61
Prov RF 63.72 62.53 66.1 67.73 33.8 31.15 38.94 42.88
Prov KNN 64.91 70.55 71.05 75.69 36.39 49.25 46.28 52.97
Linear Probing
Dino 74.0 76.25 80.83 82.64 54.1 56.32 67.77 67.84
Dinov2 70.11 75.06 81.58 80.08 47.77 54.2 68.29 67.23
UNI 69.36 70.3 76.69 76.69 46.82 45.38 57.72 57.72
Prov 67.92 74.44 77.88 80.26 40.74 55.56 59.81 63.89
mm-PT
Dino 66.1 75.63 66.54 74.0 38.94 57.77 40.37 54.1
Dinov2 78.95 70.3 79.01 63.72 49.68 45.38 55.12 33.8
UNI 64.91 74.0 64.04 55.51 36.39 54.1 33.63 15.12
Prov 69.36 61.47 68.61 60.28 46.82 29.9 45.83 27.06
mm-PT aug
Dino 72.24 73.56 79.7 78.13 39.98 52.66 60.31 52.7
Dinov2 66.23 71.99 69.55 79.51 40.72 37.5 44.44 63.31
UNI 75.5 78.51 74.75 73.87 55.6 58.33 54.86 52.05
Prov 76.13 73.12 79.82 77.01 54.3 51.25 62.47 57.01

Table 13: Performance for balanced accuracy and Cohen´s kappa for BreastM-
NIST for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 94.74 94.77 94.76 94.77 71.34 72.59 76.2 77.62
Dino LightGBM 94.75 94.76 94.76 94.77 69.41 73.24 76.07 77.33
Dino RF 94.74 94.74 94.74 94.74 66.3 68.77 70.84 72.28
Dino KNN 94.63 94.66 94.67 94.64 - - - -
Dinov2 SVM 94.73 94.74 94.73 94.76 71.91 73.98 75.46 77.4
Dinov2 LightGBM 94.74 94.75 94.76 94.74 70.33 73.11 74.12 75.85
Dinov2 RF 94.74 94.74 94.74 94.74 65.96 69.0 69.34 70.82
Dinov2 KNN 94.63 94.67 94.68 94.67 - - - -
UNI SVM 94.73 94.74 94.75 94.77 71.0 72.4 75.17 77.04
UNI LightGBM 94.73 94.75 94.76 94.75 68.68 71.73 74.31 75.97
UNI RF 94.74 94.74 94.74 94.74 65.05 67.81 70.65 71.38
UNI KNN 94.67 94.66 94.66 94.67 - - - -
Prov SVM 94.73 94.76 94.77 94.76 70.83 71.69 75.56 76.67
Prov LightGBM 94.73 94.74 94.76 94.76 68.35 71.9 75.62 76.28
Prov RF 94.74 94.74 94.74 94.74 65.87 68.92 71.08 71.23
Prov KNN 94.66 94.67 94.65 94.67 - - - -
Linear Probing
Dino 94.74 94.75 94.76 94.77 70.98 74.59 77.89 78.92
Dinov2 94.76 94.73 94.73 94.73 72.03 74.49 75.61 77.5
UNI 94.74 94.75 94.77 94.76 69.46 73.92 76.43 77.94
Prov 94.74 94.75 94.78 94.77 70.22 74.09 77.24 78.12
mm-PT
Dino 94.74 94.74 94.73 94.74 67.53 70.25 72.07 71.7
Dinov2 94.74 94.74 94.75 94.75 69.65 68.25 67.57 68.08
UNI 94.74 94.74 94.75 94.75 69.92 70.19 72.28 69.55
Prov 94.74 94.76 94.78 94.78 71.24 74.75 75.6 76.65
mm-PT aug
Dino 94.74 94.74 94.74 94.74 64.64 59.91 57.96 57.43
Dinov2 94.74 94.74 94.74 94.74 56.88 58.93 56.71 57.24
UNI 94.74 94.74 94.74 94.74 61.16 59.56 58.42 57.27
Prov 94.74 94.74 94.73 94.74 62.78 60.14 60.26 63.41

Table 14: Performance for accuracy and AUC for ChestMNIST for every resolu-
tion, every backbone, and every training scheme.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 50.38 50.67 51.26 51.84 1.24 2.14 4.09 5.87
Dino LightGBM 50.23 50.48 50.79 51.09 0.78 1.53 2.53 3.52
Dino RF 50.0 50.0 50.0 50.0 0.0 0.0 0.0 0.0
Dino KNN 50.24 50.26 50.36 50.51 0.76 0.81 1.18 1.67
Dinov2 SVM 50.42 50.51 51.09 51.52 1.31 1.62 3.51 4.88
Dinov2 LightGBM 50.23 50.35 50.65 50.75 0.75 1.13 2.14 2.48
Dinov2 RF 50.0 50.0 50.0 50.0 0.0 0.0 0.0 0.0
Dinov2 KNN 50.19 50.19 50.24 50.2 0.58 0.6 0.78 0.66
UNI SVM 50.36 50.63 51.24 51.81 1.14 2.03 4.03 5.88
UNI LightGBM 50.14 50.37 50.7 50.99 0.48 1.21 2.35 3.32
UNI RF 50.0 50.0 50.0 50.0 0.0 0.0 0.0 0.0
UNI KNN 50.16 50.21 50.24 50.35 0.52 0.67 0.77 1.14
Prov SVM 50.37 50.66 51.16 51.69 1.18 2.08 3.71 5.49
Prov LightGBM 50.19 50.41 50.7 50.98 0.66 1.32 2.23 3.21
Prov RF 50.0 50.0 50.0 50.0 0.0 0.0 0.0 0.0
Prov KNN 50.16 50.24 50.33 50.44 0.52 0.77 1.06 1.41
Linear Probing
Dino 50.14 50.74 51.22 51.52 0.46 2.23 3.91 4.77
Dinov2 50.14 50.31 50.37 50.67 0.49 1.01 1.19 2.22
UNI 50.01 50.31 50.81 50.98 0.05 1.04 2.73 3.29
Prov 50.14 50.41 51.01 51.27 0.45 1.32 3.24 4.15
mm-PT
Dino 50.07 50.09 50.21 50.55 0.25 0.29 0.69 1.54
Dinov2 50.19 50.06 50.1 50.12 0.63 0.19 0.33 0.41
UNI 50.15 50.3 50.5 50.09 0.49 0.97 1.5 0.3
Prov 50.07 50.23 50.54 50.87 0.23 0.79 1.78 2.74
mm-PT aug
Dino 50.02 50.0 50.0 50.0 0.08 0.0 -0.0 -0.0
Dinov2 50.0 50.01 50.0 50.0 -0.0 0.03 0.0 -0.0
UNI 50.0 50.0 50.0 50.0 0.0 -0.01 -0.0 -0.0
Prov 50.0 50.0 50.0 50.08 -0.0 0.0 0.01 0.28

Table 15: Performance for balanced accuracy and Cohen´s kappa forChestMNIST
for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 76.26 78.45 80.75 84.99 92.67 94.67 95.72 96.56
Dino LightGBM 77.41 79.4 81.35 84.04 93.45 94.79 95.87 96.52
Dino RF 71.17 71.02 70.77 71.17 89.2 89.29 90.44 89.59
Dino KNN 73.97 75.91 76.51 78.35 - - - -
Dinov2 SVM 77.16 79.55 81.5 83.19 93.36 94.06 95.13 95.66
Dinov2 LightGBM 76.96 78.25 80.4 81.25 92.94 93.55 94.72 95.39
Dinov2 RF 71.67 71.52 69.98 71.47 87.52 87.18 88.06 88.19
Dinov2 KNN 73.02 73.07 73.27 74.76 - - - -
UNI SVM 77.76 80.35 82.74 84.09 92.76 94.59 95.85 96.18
UNI LightGBM 77.46 80.2 81.95 82.74 93.16 95.1 95.4 96.13
UNI RF 71.27 70.12 70.42 69.23 89.35 88.75 89.89 90.5
UNI KNN 73.32 74.86 76.66 77.21 - - - -
Prov SVM 78.0 80.3 82.94 84.24 93.77 95.13 96.2 96.58
Prov LightGBM 78.8 80.9 81.1 83.54 93.66 95.49 95.8 96.75
Prov RF 71.17 70.42 70.62 71.32 89.64 90.14 89.56 88.44
Prov KNN 72.87 74.76 74.66 76.46 - - - -
Linear Probing
Dino 75.71 79.95 81.65 84.09 91.9 95.47 96.18 96.79
Dinov2 76.11 78.65 80.8 82.54 91.97 93.92 95.13 96.01
UNI 76.56 79.9 82.34 84.79 91.98 94.71 96.01 96.3
Prov 77.51 80.4 82.44 83.64 93.26 95.36 96.4 96.51
mm-PT
Dino 72.22 74.91 76.01 78.55 87.02 92.37 92.8 94.85
Dinov2 69.33 73.72 76.01 76.16 88.68 90.9 93.16 93.09
UNI 72.97 76.36 78.3 79.0 89.67 92.75 94.33 94.45
Prov 74.26 78.75 80.95 80.15 89.43 93.26 95.58 95.37
mm-PT aug
Dino 74.41 73.82 75.81 77.51 88.82 90.71 93.14 94.27
Dinov2 71.52 74.66 72.47 75.06 87.29 91.35 90.96 92.16
UNI 71.82 74.61 75.21 75.91 89.21 91.19 92.87 93.23
Prov 73.47 75.61 75.36 79.15 88.45 91.22 93.32 95.78

Table 16: Performance for accuracy and AUC for DermaMNIST for every resolu-
tion, every backbone and every training scheme.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 43.38 52.19 59.08 66.03 48.13 54.06 59.9 69.21
Dino LightGBM 45.19 46.81 52.68 57.17 51.54 56.34 60.98 67.2
Dino RF 24.07 21.38 21.24 21.76 28.11 25.91 24.4 24.18
Dino KNN 36.61 39.81 40.43 45.67 43.89 47.35 49.08 53.57
Dinov2 SVM 45.72 51.81 58.14 62.59 51.09 55.89 61.33 65.29
Dinov2 LightGBM 43.62 42.27 50.33 51.12 50.3 53.12 57.94 60.06
Dinov2 RF 23.26 22.63 20.24 23.27 29.57 28.35 21.44 27.47
Dinov2 KNN 33.54 32.13 31.42 35.23 41.93 40.9 39.2 43.06
UNI SVM 51.16 57.24 63.01 65.14 52.37 58.61 64.58 67.4
UNI LightGBM 48.19 48.55 52.82 54.26 52.35 58.05 62.36 64.26
UNI RF 23.04 20.3 20.06 18.09 27.19 20.56 20.42 14.3
UNI KNN 35.43 38.46 40.43 42.66 41.79 45.49 49.91 51.34
Prov SVM 50.58 56.3 60.6 65.29 53.42 58.6 65.0 67.65
Prov LightGBM 50.83 49.9 51.92 57.54 54.97 59.45 60.53 65.93
Prov RF 22.96 19.87 19.98 22.78 26.67 21.0 22.8 26.03
Prov KNN 35.78 34.06 35.41 37.94 41.71 44.06 43.99 48.23
Linear Probing
Dino 42.38 57.11 61.29 66.96 47.66 58.78 62.68 68.12
Dinov2 43.28 49.53 58.55 63.26 48.83 55.1 60.45 64.67
UNI 49.84 58.3 63.01 66.33 50.69 58.69 64.42 69.51
Prov 51.09 59.75 63.9 64.59 52.27 60.47 65.03 67.34
mm-PT
Dino 31.22 52.1 51.5 58.73 39.32 52.31 46.85 58.45
Dinov2 38.33 39.28 48.76 49.5 43.19 41.71 49.55 50.73
UNI 38.85 47.23 52.49 50.39 46.54 52.07 55.23 55.21
Prov 33.68 54.95 59.5 58.72 40.48 56.18 59.1 58.89
mm-PT aug
Dino 40.61 41.7 40.78 50.19 45.32 45.29 45.19 53.34
Dinov2 29.86 39.44 40.52 48.52 38.08 46.35 43.79 50.77
UNI 40.54 44.61 50.2 43.82 42.8 49.03 50.88 49.73
Prov 34.28 40.78 47.89 66.71 40.03 46.08 53.0 62.62

Table 17: Performance for balanced accuracy and Cohen´s kappa for DermaM-
NIST for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 64.9 70.8 75.4 73.4 91.51 95.8 97.79 98.66
Dino LightGBM 61.3 71.5 75.8 73.2 90.15 96.1 98.3 98.98
Dino RF 44.4 48.1 52.0 50.5 83.23 88.45 94.96 97.42
Dino KNN 46.5 61.1 72.2 74.1 - - - -
Dinov2 SVM 62.0 72.9 78.1 76.9 90.62 94.93 97.23 97.84
Dinov2 LightGBM 59.3 68.9 74.9 73.0 89.17 94.54 97.7 98.24
Dinov2 RF 46.2 45.7 47.8 52.5 81.18 83.98 90.04 93.75
Dinov2 KNN 46.8 54.8 63.5 66.8 - - - -
UNI SVM 61.9 69.6 74.2 66.3 91.22 95.3 97.2 97.77
UNI LightGBM 59.6 69.7 73.3 76.3 89.21 95.02 96.91 98.16
UNI RF 43.6 46.6 49.2 50.1 82.06 86.49 92.52 94.07
UNI KNN 44.0 52.0 61.4 67.8 - - - -
Prov SVM 62.9 74.4 75.2 77.5 91.16 96.14 97.59 98.35
Prov LightGBM 61.2 70.1 73.1 77.3 90.21 95.26 97.24 98.56
Prov RF 43.4 44.8 47.7 53.1 82.57 82.14 91.76 93.94
Prov KNN 44.0 52.0 61.9 64.6 - - - -
Linear Probing
Dino 62.1 72.3 75.9 74.8 92.16 96.2 97.72 98.3
Dinov2 61.7 72.9 78.8 75.3 90.76 95.61 98.03 98.15
UNI 58.1 69.5 74.9 66.4 89.72 95.25 97.22 96.89
Prov 61.8 72.9 75.5 77.5 91.15 96.02 97.27 98.15
mm-PT
Dino 64.7 83.1 82.2 82.0 90.45 96.94 97.59 98.72
Dinov2 63.0 67.4 81.5 76.7 89.1 92.51 97.7 97.43
UNI 64.5 77.9 79.8 82.0 89.43 95.95 96.74 98.37
Prov 65.8 84.8 85.6 88.6 90.72 97.5 97.98 98.82
mm-PT aug
Dino 55.8 62.6 55.5 61.5 87.03 91.36 95.38 95.4
Dinov2 44.7 55.1 46.7 52.9 78.26 84.37 84.09 88.49
UNI 54.8 59.2 66.6 68.4 85.74 88.76 93.64 95.44
Prov 50.9 59.2 75.6 76.7 86.43 92.09 96.58 98.89

Table 18: Performance for accuracy and AUC for OctMNIST for every resolution,
backbone, and training scheme.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 64.9 70.8 75.4 73.4 53.2 61.07 67.2 64.53
Dino LightGBM 61.3 71.5 75.8 73.2 48.4 62.0 67.73 64.27
Dino RF 44.4 48.1 52.0 50.5 25.87 30.8 36.0 34.0
Dino KNN 46.5 61.1 72.2 74.1 28.67 48.13 62.93 65.47
Dinov2 SVM 62.0 72.9 78.1 76.9 49.33 63.87 70.8 69.2
Dinov2 LightGBM 59.3 68.9 74.9 73.0 45.73 58.53 66.53 64.0
Dinov2 RF 46.2 45.7 47.8 52.5 28.27 27.6 30.4 36.67
Dinov2 KNN 46.8 54.8 63.5 66.8 29.07 39.73 51.33 55.73
UNI SVM 61.9 69.6 74.2 66.3 49.2 59.47 65.6 55.07
UNI LightGBM 59.6 69.7 73.3 76.3 46.13 59.6 64.4 68.4
UNI RF 43.6 46.6 49.2 50.1 24.8 28.8 32.27 33.47
UNI KNN 44.0 52.0 61.4 67.8 25.33 36.0 48.53 57.07
Prov SVM 62.9 74.4 75.2 77.5 50.53 65.87 66.93 70.0
Prov LightGBM 61.2 70.1 73.1 77.3 48.27 60.13 64.13 69.73
Prov RF 43.4 44.8 47.7 53.1 24.53 26.4 30.27 37.47
Prov KNN 44.0 52.0 61.9 64.6 25.33 36.0 49.2 52.8
Linear Probing
Dino 62.1 72.3 75.9 74.8 49.47 63.07 67.87 66.4
Dinov2 61.7 72.9 78.8 75.3 48.93 63.87 71.73 67.07
UNI 58.1 69.5 74.9 66.4 44.13 59.33 66.53 55.2
Prov 61.8 72.9 75.5 77.5 49.07 63.87 67.33 70.0
mm-PT
Dino 64.7 83.1 82.2 82.0 52.93 77.47 76.27 76.0
Dinov2 63.0 67.4 81.5 76.7 50.67 56.53 75.33 68.93
UNI 64.5 77.9 79.8 82.0 52.67 70.53 73.07 76.0
Prov 65.8 84.8 85.6 88.6 54.4 79.73 80.8 84.8
mm-PT aug
Dino 55.8 62.6 55.5 61.5 41.07 50.13 40.67 48.67
Dinov2 44.7 55.1 46.7 52.9 26.27 40.13 28.93 37.2
UNI 54.8 59.2 66.6 68.4 39.73 45.6 55.47 57.87
Prov 50.9 59.2 75.6 76.7 34.53 45.6 67.47 68.93

Table 19: Performance for balanced accuracy and Cohen´s kappa for OctMNIST
for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 90.85 94.06 95.13 94.9 99.05 99.68 99.72 99.73
Dino LightGBM 89.0 93.31 93.69 93.31 99.22 99.71 99.72 99.69
Dino RF 74.45 81.83 83.69 85.89 96.34 97.96 98.19 98.42
Dino KNN 84.59 90.75 91.25 90.69 - - - -
Dinov2 SVM 89.16 91.26 92.23 92.88 98.79 99.26 99.44 99.56
Dinov2 LightGBM 85.14 88.06 88.9 89.89 98.66 99.21 99.29 99.41
Dinov2 RF 66.18 71.93 73.34 75.81 94.45 96.19 96.43 96.99
Dinov2 KNN 75.13 82.39 83.28 84.42 - - - -
UNI SVM 88.05 89.94 90.04 91.74 98.6 99.11 99.17 99.42
UNI LightGBM 83.23 85.74 84.77 87.29 98.39 98.88 98.74 99.08
UNI RF 67.98 73.16 73.7 75.55 95.28 97.27 97.18 97.47
UNI KNN 73.46 77.24 77.04 78.32 - - - -
Prov SVM 87.9 91.34 91.62 91.09 98.59 99.35 99.35 99.32
Prov LightGBM 83.88 86.91 87.3 86.95 98.35 99.11 99.1 99.09
Prov RF 67.77 75.2 76.27 74.27 95.12 97.32 97.66 97.21
Prov KNN 75.11 80.91 81.26 77.07 - - - -
Linear Probing
Dino 89.74 94.12 95.09 94.83 99.27 99.75 99.8 99.79
Dinov2 87.28 90.22 92.08 92.32 98.88 99.4 99.58 99.63
UNI 84.62 88.05 87.59 89.98 98.64 99.08 99.06 99.3
Prov 85.53 90.09 90.12 89.82 98.61 99.37 99.33 99.31
mm-PT
Dino 87.01 92.53 93.98 93.58 98.7 99.61 99.69 99.72
Dinov2 84.25 88.18 89.44 89.9 98.29 98.98 99.12 99.28
UNI 89.22 92.03 93.23 90.54 99.11 99.51 99.72 99.42
Prov 89.7 95.21 94.63 96.06 99.14 99.74 99.65 99.86
mm-PT aug
Dino 87.06 89.03 87.43 88.47 98.83 99.25 99.19 99.34
Dinov2 75.36 82.41 81.29 82.81 96.5 98.07 98.17 98.54
UNI 85.57 87.3 87.25 83.88 98.59 99.03 98.96 98.74
Prov 87.8 89.19 88.2 94.45 99.04 99.17 99.18 99.79

Table 20: Performance for accuracy and AUC for OrganaMNIST for every reso-
lution, every backbone and every training scheme.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 90.01 92.99 94.47 94.45 89.73 93.33 94.54 94.28
Dino LightGBM 87.74 92.04 92.57 92.13 87.63 92.48 92.91 92.49
Dino RF 69.67 76.58 78.61 82.46 70.98 79.48 81.61 84.11
Dino KNN 84.05 89.96 90.52 89.87 82.65 89.62 90.18 89.55
Dinov2 SVM 88.31 90.15 91.31 92.07 87.82 90.19 91.28 92.01
Dinov2 LightGBM 83.36 86.33 87.14 88.16 83.29 86.59 87.53 88.64
Dinov2 RF 60.42 65.89 67.87 71.4 61.47 68.22 69.89 72.72
Dinov2 KNN 72.58 80.19 80.96 82.46 71.94 80.22 81.22 82.5
UNI SVM 87.12 89.1 89.44 91.13 86.58 88.72 88.83 90.73
UNI LightGBM 81.23 83.07 82.8 85.59 81.15 83.99 82.91 85.74
UNI RF 64.33 67.78 68.66 71.02 63.69 69.72 70.38 72.48
UNI KNN 71.17 74.5 73.96 75.59 70.09 74.44 74.21 75.65
Prov SVM 87.07 90.48 90.91 90.37 86.41 90.28 90.6 90.0
Prov LightGBM 82.52 85.1 85.57 85.77 81.88 85.3 85.74 85.36
Prov RF 64.78 71.19 72.05 70.42 63.48 72.05 73.28 71.04
Prov KNN 73.55 78.64 78.79 75.61 71.97 78.57 78.95 74.25
Linear Probing
Dino 88.87 93.05 94.35 94.22 88.47 93.39 94.49 94.19
Dinov2 86.55 88.85 91.14 91.36 85.72 89.03 91.11 91.38
UNI 83.74 86.89 86.85 89.1 82.74 86.6 86.08 88.75
Prov 84.71 89.1 89.39 89.22 83.76 88.89 88.91 88.58
mm-PT
Dino 86.33 91.42 92.96 93.22 85.43 91.61 93.24 92.8
Dinov2 83.4 87.49 88.82 89.52 82.31 86.74 88.15 88.67
UNI 88.38 91.13 92.48 89.3 87.89 91.05 92.4 89.38
Prov 88.97 94.47 94.14 95.66 88.43 94.62 93.97 95.58
mm-PT aug
Dino 85.41 87.77 86.39 87.45 85.46 87.68 85.91 87.05
Dinov2 74.61 81.57 81.2 81.97 72.37 80.24 79.03 80.72
UNI 85.21 87.49 86.12 81.42 83.83 85.77 85.68 81.9
Prov 87.3 88.51 87.75 93.79 86.33 87.88 86.78 93.77

Table 21: Performance for balanced accuracy and Cohen´s kappa for OrganAM-
NIST for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 89.7 92.2 92.56 91.36 98.92 99.34 99.45 99.26
Dino LightGBM 87.94 90.23 89.44 88.57 99.05 99.47 99.44 99.35
Dino RF 73.7 77.8 76.69 78.21 96.68 97.63 97.37 97.54
Dino KNN 83.63 87.52 87.13 86.0 - - - -
Dinov2 SVM 88.51 89.34 88.69 88.11 98.45 98.92 98.88 98.9
Dinov2 LightGBM 84.06 83.8 82.87 83.93 98.36 98.74 98.61 98.74
Dinov2 RF 63.88 67.19 68.01 70.42 94.6 95.71 95.78 96.24
Dinov2 KNN 74.81 78.61 78.76 79.54 - - - -
UNI SVM 86.42 86.84 86.76 86.2 98.33 98.64 98.74 98.71
UNI LightGBM 82.12 82.21 81.71 81.3 98.3 98.64 98.51 98.41
UNI RF 67.67 71.56 72.86 71.06 95.36 96.87 97.01 96.75
UNI KNN 73.38 76.38 76.3 75.51 - - - -
Prov SVM 87.99 88.47 87.09 85.02 98.56 98.82 98.77 98.45
Prov LightGBM 83.43 84.3 83.23 81.3 98.45 98.84 98.64 98.52
Prov RF 67.33 73.62 72.65 72.07 95.35 97.07 96.88 96.85
Prov KNN 75.52 78.35 78.82 75.17 - - - -
Linear Probing
Dino 88.21 92.02 92.16 91.72 99.1 99.6 99.61 99.55
Dinov2 86.08 87.49 87.33 87.35 98.55 99.08 99.12 99.12
UNI 84.25 85.19 84.51 83.41 98.5 98.89 98.78 98.71
Prov 85.93 86.83 85.75 83.67 98.64 98.99 98.93 98.71
mm-PT
Dino 85.11 90.76 90.82 92.39 98.57 99.37 99.35 99.56
Dinov2 86.03 88.32 88.85 88.77 98.51 98.98 99.17 99.15
UNI 87.61 89.81 92.41 89.86 98.73 99.15 99.61 99.23
Prov 89.3 92.82 94.02 94.69 98.96 99.58 99.65 99.66
mm-PT aug
Dino 87.38 85.74 86.31 87.43 98.72 98.74 99.06 99.01
Dinov2 80.49 83.58 83.12 84.18 97.64 98.55 98.47 98.69
UNI 85.32 85.21 87.06 84.74 98.45 98.73 98.99 98.9
Prov 88.23 87.33 85.59 91.74 98.9 99.02 99.0 99.6

Table 22: Performance for accuracy and AUC for OrgancMNIST for every reso-
lution, every backbone and every training scheme.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 88.48 91.16 91.39 90.07 88.36 91.18 91.59 90.23
Dino LightGBM 86.4 88.37 87.03 86.24 86.35 88.95 88.04 87.06
Dino RF 69.32 73.15 70.77 73.3 69.79 74.67 73.41 75.18
Dino KNN 81.85 85.52 84.87 83.99 81.42 85.9 85.45 84.18
Dinov2 SVM 87.01 87.64 86.89 85.89 87.01 87.95 87.22 86.55
Dinov2 LightGBM 81.74 81.27 79.84 81.01 81.94 81.67 80.62 81.82
Dinov2 RF 57.56 61.34 61.39 64.7 58.15 62.28 63.31 66.15
Dinov2 KNN 72.17 75.78 75.82 76.42 71.23 75.8 75.98 76.83
UNI SVM 84.51 84.52 83.86 83.53 84.64 85.13 85.01 84.38
UNI LightGBM 79.19 78.9 77.09 77.25 79.75 79.88 79.28 78.81
UNI RF 62.11 65.01 66.06 63.42 62.91 67.54 69.06 66.98
UNI KNN 70.1 72.68 71.2 70.57 69.79 73.3 73.13 72.25
Prov SVM 86.23 86.7 84.95 82.23 86.42 86.97 85.4 83.05
Prov LightGBM 80.95 81.31 79.71 77.75 81.25 82.24 81.02 78.83
Prov RF 62.11 67.72 66.1 65.68 62.54 69.94 68.84 68.15
Prov KNN 72.78 74.56 74.88 71.0 72.22 75.52 76.04 71.83
Linear Probing
Dino 86.87 90.65 90.72 90.35 86.66 90.98 91.14 90.64
Dinov2 84.05 85.57 85.24 85.02 84.24 85.86 85.68 85.7
UNI 82.05 82.55 81.0 79.93 82.19 83.27 82.47 81.21
Prov 83.87 84.83 83.28 80.82 84.08 85.12 83.89 81.52
mm-PT
Dino 84.31 89.95 89.71 91.11 83.22 89.57 89.62 91.4
Dinov2 84.6 86.83 87.78 86.89 84.22 86.79 87.4 87.29
UNI 86.53 88.95 91.47 88.13 86.01 88.49 91.42 88.53
Prov 88.18 92.01 93.34 94.22 87.9 91.89 93.25 94.01
mm-PT aug
Dino 86.02 85.18 84.41 85.34 85.72 83.93 84.55 85.76
Dinov2 77.81 81.94 80.22 81.31 77.92 81.45 80.88 82.08
UNI 84.0 84.14 85.37 81.54 83.44 83.33 85.38 82.76
Prov 86.69 85.63 84.62 90.42 86.69 85.68 83.76 90.65

Table 23: Performance for balanced accuracy and Cohen´s kappa for OrganCM-
NIST for every resolution, every backbone and every training scheme.



A APPENDIX 115

Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 75.48 78.67 79.98 78.7 96.41 96.89 97.38 97.0
Dino LightGBM 74.34 79.08 79.66 78.08 96.94 97.87 97.92 97.65
Dino RF 58.42 65.39 66.67 65.84 94.17 95.81 95.93 95.63
Dino KNN 70.69 76.64 77.7 74.82 - - - -
Dinov2 SVM 74.43 77.16 77.13 77.49 96.05 96.56 96.83 96.96
Dinov2 LightGBM 70.64 75.86 74.9 75.16 95.99 97.04 97.17 97.29
Dinov2 RF 53.59 58.5 59.44 61.36 91.43 93.78 94.02 94.51
Dinov2 KNN 61.91 71.21 70.36 71.2 - - - -
UNI SVM 75.21 78.33 78.55 78.14 96.47 97.24 97.19 97.02
UNI LightGBM 72.65 76.13 76.59 76.72 96.58 97.54 97.28 97.33
UNI RF 60.85 64.72 67.25 66.34 93.05 95.43 95.73 95.3
UNI KNN 66.65 72.73 71.07 71.27 - - - -
Prov SVM 76.2 79.59 79.65 78.23 96.57 97.44 97.34 97.06
Prov LightGBM 73.59 77.72 76.36 75.81 96.64 97.75 97.4 97.27
Prov RF 59.56 66.34 66.49 66.78 93.48 95.77 95.52 95.63
Prov KNN 68.2 74.32 72.8 71.1 - - - -
Linear Probing
Dino 74.83 78.96 80.58 79.49 97.09 97.9 98.07 97.9
Dinov2 71.67 76.36 76.92 76.74 96.25 97.34 97.56 97.6
UNI 72.54 77.76 76.58 77.51 96.73 97.72 97.35 97.39
Prov 73.37 78.57 78.54 77.48 96.79 97.9 97.76 97.54
mm-PT
Dino 70.23 77.97 79.25 78.85 95.58 97.44 97.55 97.46
Dinov2 70.17 73.81 75.52 78.11 95.45 96.48 96.66 97.0
UNI 72.32 76.23 80.37 77.36 95.7 96.88 97.64 97.22
Prov 75.38 80.23 82.62 83.27 96.69 97.86 97.9 98.29
mm-PT aug
Dino 72.79 74.71 74.1 70.24 96.01 96.79 97.02 95.69
Dinov2 65.15 69.46 69.56 73.35 94.65 95.72 96.12 96.61
UNI 69.84 73.73 74.75 74.11 95.39 96.85 97.0 97.08
Prov 75.38 75.99 76.38 78.81 96.6 97.26 97.28 97.83

Table 24: Performance for accuracy and AUC for OrganSMNIST for every reso-
lution, every backbone and every training scheme.
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Balanced Accuaracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 70.85 74.32 75.23 73.53 71.89 75.62 77.1 75.63
Dino LightGBM 68.71 74.39 73.6 71.98 70.49 76.03 76.67 74.86
Dino RF 48.69 56.57 56.92 56.12 50.56 59.37 61.01 60.07
Dino KNN 65.08 71.83 72.74 70.06 66.14 73.22 74.46 71.19
Dinov2 SVM 69.05 72.15 71.6 71.65 70.63 73.85 73.81 74.22
Dinov2 LightGBM 64.13 70.04 68.78 68.86 66.15 72.28 71.19 71.47
Dinov2 RF 42.97 48.01 48.42 50.84 44.48 50.85 52.06 54.47
Dinov2 KNN 55.21 65.7 64.53 64.91 55.62 66.91 66.01 66.91
UNI SVM 70.55 73.51 73.08 72.61 71.58 75.22 75.44 74.98
UNI LightGBM 66.86 70.2 70.03 70.28 68.53 72.6 73.1 73.28
UNI RF 51.87 55.32 57.41 56.54 54.0 58.64 61.85 60.77
UNI KNN 60.73 67.36 65.01 65.59 61.45 68.73 66.79 67.07
Prov SVM 71.09 74.45 74.62 73.26 72.66 76.65 76.72 75.09
Prov LightGBM 68.0 71.89 69.7 69.73 69.6 74.44 72.84 72.24
Prov RF 49.97 56.73 56.45 57.41 52.23 60.6 60.91 61.28
Prov KNN 62.56 68.75 67.62 66.47 63.24 70.51 68.83 66.88
Linear Probing
Dino 70.2 74.86 75.52 74.29 71.14 75.96 77.76 76.54
Dinov2 65.84 71.35 71.61 70.98 67.4 72.92 73.58 73.35
UNI 67.16 72.81 70.45 71.29 68.45 74.54 73.15 74.21
Prov 68.14 73.34 73.12 72.45 69.43 75.46 75.41 74.2
mm-PT
Dino 66.35 74.12 74.4 74.04 66.04 74.81 76.26 75.8
Dinov2 66.54 69.38 70.11 72.5 65.93 69.99 71.89 74.92
UNI 67.76 72.14 75.16 71.15 68.33 72.85 77.51 73.96
Prov 70.89 76.6 77.79 78.1 71.84 77.43 80.13 80.84
mm-PT aug
Dino 67.4 70.49 68.78 61.89 68.77 71.05 70.33 65.4
Dinov2 60.23 64.39 64.57 66.97 59.97 64.92 65.24 69.4
UNI 66.75 70.46 69.19 68.16 65.66 70.01 71.0 70.29
Prov 70.99 72.58 70.87 72.86 71.8 72.57 72.85 75.74

Table 25: Performance for balanced accuracy and Cohen´s kappa for OrganSM-
NIST for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 85.77 94.0 94.86 94.86 97.96 99.43 99.55 99.65
Dino LightGBM 85.33 93.84 95.15 95.81 98.32 99.62 99.71 99.72
Dino RF 78.22 88.16 90.46 90.18 96.46 98.61 99.04 99.02
Dino KNN 80.54 90.39 93.72 94.32 - - - -
Dinov2 SVM 87.41 91.62 93.23 93.79 98.35 99.15 99.35 99.42
Dinov2 LightGBM 86.94 91.57 93.26 93.4 98.69 99.31 99.45 99.36
Dinov2 RF 76.82 85.14 86.74 86.62 96.42 98.22 98.65 98.62
Dinov2 KNN 82.16 87.79 89.5 90.22 - - - -
UNI SVM 88.8 95.61 95.5 95.89 98.55 99.64 99.51 99.43
UNI LightGBM 87.56 95.49 96.13 96.71 98.77 99.77 99.48 99.45
UNI RF 82.53 92.45 95.35 96.75 97.38 99.47 99.48 99.78
UNI KNN 82.66 94.69 96.66 96.57 - - - -
Prov SVM 88.72 94.83 96.43 95.31 98.53 99.39 99.53 99.41
Prov LightGBM 88.25 95.31 96.71 96.98 98.86 99.71 99.72 99.55
Prov RF 83.29 91.45 95.84 96.07 97.71 99.35 99.68 99.71
Prov KNN 83.16 93.26 95.91 96.35 - - - -
Linear Probing
Dino 84.74 94.01 94.09 96.07 97.95 99.6 99.63 99.75
Dinov2 87.31 91.23 92.79 93.33 98.61 99.27 99.42 99.47
UNI 88.89 95.75 94.72 95.25 98.93 99.75 99.55 99.5
Prov 87.83 94.29 96.6 96.1 98.92 99.54 99.63 99.73
mm-PT
Dino 76.91 86.13 92.13 94.58 96.57 98.47 99.2 99.59
Dinov2 74.16 80.01 88.61 88.9 95.89 97.35 98.48 98.78
UNI 81.62 86.94 92.72 93.57 97.0 98.39 99.38 99.34
Prov 83.45 90.49 95.13 96.81 97.86 99.13 99.58 99.81
mm-PT aug
Dino 65.29 80.65 87.02 90.42 93.1 97.39 98.95 99.18
Dinov2 62.06 80.78 76.81 74.86 91.98 96.81 95.88 93.97
UNI 67.33 80.91 85.43 89.47 93.75 97.9 98.52 99.24
Prov 77.55 85.61 92.99 93.45 95.71 98.37 99.6 99.44

Table 26: Performance for accuracy and AUC for PathMNIST for every resolution,
every backbone and every training scheme.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 81.5 91.66 92.88 93.21 83.66 93.1 94.09 94.09
Dino LightGBM 81.11 91.71 92.8 93.88 83.15 92.93 94.43 95.18
Dino RF 72.34 84.02 87.16 87.05 74.78 86.36 89.02 88.71
Dino KNN 77.14 88.48 92.08 93.11 77.7 88.98 92.79 93.48
Dinov2 SVM 84.09 88.63 90.76 91.26 85.54 90.37 92.23 92.87
Dinov2 LightGBM 84.14 88.65 91.06 91.07 85.0 90.33 92.26 92.42
Dinov2 RF 72.57 80.57 83.69 84.34 73.29 82.89 84.78 84.61
Dinov2 KNN 78.99 84.9 87.86 88.66 79.55 86.01 87.98 88.79
UNI SVM 85.7 94.12 94.28 94.11 87.14 94.96 94.84 95.28
UNI LightGBM 84.44 94.08 95.06 95.81 85.72 94.82 95.56 96.23
UNI RF 78.3 90.03 93.37 95.94 79.84 91.33 94.66 96.28
UNI KNN 79.58 93.33 95.29 95.1 80.12 93.91 96.16 96.06
Prov SVM 85.73 93.27 95.45 94.21 87.05 94.07 95.91 94.62
Prov LightGBM 85.64 93.95 95.71 95.88 86.52 94.61 96.23 96.53
Prov RF 79.32 87.27 94.41 94.63 80.73 90.16 95.22 95.49
Prov KNN 79.83 91.41 94.61 94.88 80.7 92.27 95.3 95.81
Linear Probing
Dino 79.65 91.87 91.46 94.44 82.46 93.12 93.21 95.49
Dinov2 84.14 87.97 90.48 90.92 85.43 89.93 91.72 92.34
UNI 85.94 94.52 93.75 93.77 87.24 95.12 93.95 94.55
Prov 84.81 92.77 95.6 94.83 86.03 93.45 96.1 95.52
mm-PT
Dino 72.92 84.32 90.65 93.28 73.58 84.15 90.98 93.78
Dinov2 70.07 75.41 84.83 86.4 70.38 77.07 86.91 87.24
UNI 77.6 84.15 91.22 92.5 78.91 85.01 91.64 92.62
Prov 80.24 87.75 93.56 95.73 81.04 89.07 94.4 96.34
mm-PT aug
Dino 59.96 74.55 81.69 85.3 60.53 77.79 85.05 88.94
Dinov2 58.13 75.28 71.99 67.31 56.28 77.82 73.49 71.16
UNI 61.52 76.99 80.37 84.78 62.41 78.08 83.21 87.87
Prov 71.86 81.32 92.32 91.49 74.17 83.47 91.97 92.47

Table 27: Performance for balanced accuracy and Cohen´s kappa for PathMNIST
for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 86.38 88.14 89.58 91.19 97.77 97.87 98.81 98.63
Dino LightGBM 84.29 85.1 88.94 89.58 96.28 97.1 98.46 98.6
Dino RF 83.49 80.77 86.38 85.42 94.56 95.04 97.37 97.41
Dino KNN 85.74 87.82 90.54 89.74 - - - -
Dinov2 SVM 84.78 87.98 90.22 91.83 95.92 97.69 98.43 98.81
Dinov2 LightGBM 85.26 86.54 86.38 88.62 94.97 97.13 97.14 97.6
Dinov2 RF 84.29 83.33 81.57 82.05 94.17 95.45 93.8 93.83
Dinov2 KNN 87.82 87.18 88.14 88.46 - - - -
UNI SVM 86.38 85.58 89.1 89.9 96.62 97.54 98.44 99.21
UNI LightGBM 85.42 84.62 86.22 88.94 95.14 97.13 97.94 98.66
UNI RF 81.41 82.05 82.37 83.49 91.87 95.78 96.03 97.06
UNI KNN 83.17 87.02 90.22 91.51 - - - -
Prov SVM 84.62 86.22 89.1 90.87 95.94 97.24 98.87 98.9
Prov LightGBM 82.69 85.42 87.34 90.06 94.9 97.06 98.26 98.7
Prov RF 80.77 83.01 83.65 88.46 92.75 95.34 96.26 96.98
Prov KNN 83.01 89.1 90.54 90.87 - - - -
Linear Probing
Dino 87.18 87.02 90.71 91.51 97.47 97.62 98.92 98.75
Dinov2 84.94 87.34 87.66 87.34 94.73 97.47 98.13 98.28
UNI 85.26 86.06 85.26 90.06 96.25 97.02 97.85 98.78
Prov 83.17 84.62 87.5 90.22 95.53 97.19 98.54 98.71
mm-PT
Dino 72.28 83.65 87.66 91.19 94.63 93.36 96.96 97.71
Dinov2 85.58 83.01 82.05 87.82 95.44 96.41 96.06 94.55
UNI 77.56 81.73 89.74 89.1 93.21 96.64 97.45 97.16
Prov 86.06 86.86 88.14 89.42 95.67 95.7 97.3 98.32
mm-PT aug
Dino 84.94 81.57 82.69 77.24 94.96 93.77 94.82 92.97
Dinov2 86.22 79.17 81.57 80.61 94.44 94.38 92.5 93.89
UNI 86.7 79.97 84.46 84.78 94.28 95.13 95.44 95.28
Prov 83.01 82.21 87.34 86.86 95.52 94.72 96.27 98.63

Table 28: Performance for accuracy and AUC for PneumoniaMNIST for every
resolution, every backbone, and every training scheme.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 81.92 84.27 86.2 88.33 68.72 73.04 76.51 80.3
Dino LightGBM 79.49 80.38 85.51 86.2 63.77 65.65 75.07 76.51
Dino RF 78.76 74.87 82.01 80.9 62.03 54.8 68.78 66.51
Dino KNN 82.69 84.87 87.91 87.18 68.24 72.86 78.98 77.26
Dinov2 SVM 80.21 84.32 87.05 89.1 65.04 72.8 78.04 81.77
Dinov2 LightGBM 81.2 82.56 82.09 84.91 66.48 69.4 68.84 74.21
Dinov2 RF 80.34 78.46 76.11 76.41 64.43 61.55 57.05 57.97
Dinov2 KNN 85.13 83.85 85.38 85.9 73.0 71.22 73.67 74.47
UNI SVM 82.26 80.85 85.56 86.71 68.95 66.73 75.36 77.32
UNI LightGBM 81.15 79.83 81.79 85.34 66.7 64.51 68.38 74.98
UNI RF 76.41 76.58 76.75 78.42 57.12 58.13 58.72 61.75
UNI KNN 79.36 83.89 88.16 89.7 62.06 70.99 78.54 81.42
Prov SVM 80.0 81.97 85.73 87.99 64.64 68.5 75.45 79.59
Prov LightGBM 77.61 80.81 83.21 86.84 59.93 66.45 71.09 77.66
Prov RF 75.3 77.69 78.55 84.79 55.22 60.45 62.08 73.87
Prov KNN 79.23 86.5 88.25 88.5 61.73 75.84 79.13 79.81
Linear Probing
Dino 83.08 82.86 87.78 88.76 70.75 70.36 79.21 81.05
Dinov2 80.94 83.46 83.63 83.29 65.82 71.25 71.87 71.14
UNI 80.77 81.58 80.68 86.84 66.18 67.99 66.11 77.66
Prov 78.25 79.74 83.42 87.05 61.15 64.44 71.48 78.04
mm-PT
Dino 63.03 78.72 84.15 88.85 30.59 62.22 72.18 80.51
Dinov2 81.03 77.35 76.5 87.18 66.85 60.15 58.05 74.11
UNI 70.09 75.64 86.67 85.81 45.63 56.82 77.02 75.5
Prov 82.35 83.16 84.53 86.24 68.51 70.29 73.19 76.26
mm-PT aug
Dino 80.17 75.68 77.61 70.09 65.25 56.64 59.93 45.28
Dinov2 82.74 72.39 76.54 74.74 69.01 50.19 57.45 54.47
UNI 82.69 73.38 79.53 80.3 69.74 52.24 64.04 65.11
Prov 77.95 76.45 84.23 82.74 60.67 58.23 71.71 70.02

Table 29: Performance for balanced accuracy and Cohen´s kappa for Pneumoni-
aMNIST for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 50.25 54.0 54.75 60.25 72.54 74.51 77.6 83.03
Dino LightGBM 51.75 53.25 59.5 62.75 73.48 75.91 82.2 85.25
Dino RF 51.75 56.5 59.0 60.5 71.99 72.05 79.13 84.18
Dino KNN 48.0 52.5 51.0 59.0 - - - -
Dinov2 SVM 50.25 54.75 56.25 64.5 72.06 76.02 82.07 86.1
Dinov2 LightGBM 48.5 52.75 57.75 64.75 69.6 77.08 82.28 85.18
Dinov2 RF 50.5 52.25 53.25 58.75 70.48 75.74 81.03 82.56
Dinov2 KNN 51.0 49.0 49.25 56.0 - - - -
UNI SVM 52.75 54.0 60.0 60.25 72.65 75.92 80.13 81.98
UNI LightGBM 49.75 54.5 58.0 61.5 71.53 77.14 79.0 82.08
UNI RF 51.25 55.0 58.0 57.75 69.98 76.01 76.88 80.49
UNI KNN 45.75 48.75 52.25 53.0 - - - -
Prov SVM 51.5 56.75 58.25 62.0 72.64 77.61 81.81 84.72
Prov LightGBM 46.75 55.0 57.75 62.75 70.41 77.4 83.12 86.08
Prov RF 52.75 53.75 61.0 62.5 70.26 76.66 81.11 84.48
Prov KNN 46.0 51.75 53.0 59.0 - - - -
Linear Probing
Dino 53.25 57.75 59.0 61.0 72.14 77.61 83.18 85.85
Dinov2 51.0 56.25 57.25 64.25 70.41 78.08 83.45 85.85
UNI 54.25 56.25 59.25 63.75 72.56 78.35 81.88 84.41
Prov 52.75 56.75 62.0 62.0 72.3 77.83 84.03 85.55
mm-PT
Dino 48.25 48.75 49.25 49.5 69.75 69.9 71.2 73.98
Dinov2 53.25 49.75 46.75 49.25 72.25 71.83 69.8 72.54
UNI 49.25 45.0 48.25 49.0 69.14 70.36 72.29 71.67
Prov 48.5 50.25 51.5 51.25 66.54 70.9 72.02 72.84
mm-PT aug
Dino 51.5 48.5 51.25 52.5 70.9 69.79 73.12 74.54
Dinov2 54.0 49.5 51.75 52.75 70.71 71.22 70.78 72.0
UNI 47.5 49.5 47.75 50.0 67.68 70.56 69.45 70.92
Prov 51.0 50.75 51.0 54.5 70.68 70.92 72.35 76.6

Table 30: Performance for accuracy and AUC for RetinaMNIST for every resolu-
tion, every backbone, and every training scheme.
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Balanced Accuracy Cohen´s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 33.14 36.91 41.47 44.6 25.47 28.92 32.56 41.42
Dino LightGBM 34.39 34.6 43.37 46.76 28.58 29.39 40.0 45.67
Dino RF 33.93 35.53 37.81 40.13 28.37 32.56 36.41 39.03
Dino KNN 31.2 33.68 33.79 40.93 20.83 27.55 26.7 37.57
Dinov2 SVM 33.96 37.13 40.14 47.48 23.87 31.64 33.42 47.3
Dinov2 LightGBM 33.9 38.06 42.51 49.85 24.33 29.29 36.59 47.37
Dinov2 RF 31.18 31.34 33.1 40.1 24.42 24.56 25.75 36.7
Dinov2 KNN 32.76 31.04 33.13 38.86 25.24 20.49 20.94 32.8
UNI SVM 34.76 36.04 44.56 45.22 30.18 31.42 40.13 41.69
UNI LightGBM 33.21 38.35 42.32 47.61 26.76 33.36 38.06 43.86
UNI RF 33.32 37.03 38.39 38.61 28.93 33.88 37.17 36.78
UNI KNN 27.01 32.42 34.61 33.2 19.07 24.41 27.26 29.45
Prov SVM 33.6 40.22 43.05 47.06 27.39 34.66 38.33 43.83
Prov LightGBM 29.92 39.27 42.42 47.55 22.81 33.98 38.17 45.39
Prov RF 33.94 34.44 41.56 42.98 30.2 30.23 40.71 43.88
Prov KNN 27.56 33.55 33.65 42.22 19.43 27.56 27.18 37.96
Linear Probing
Dino 33.53 41.0 42.98 46.04 28.98 36.93 38.97 42.82
Dinov2 31.32 38.31 42.14 48.69 24.22 33.8 35.51 46.62
UNI 34.95 38.94 43.48 47.5 31.91 35.66 39.18 46.22
Prov 32.57 37.95 45.41 45.21 29.23 34.96 43.98 43.21
mm-PT
Dino 29.17 29.09 33.61 34.52 19.79 19.65 28.27 28.35
Dinov2 38.18 33.79 29.63 29.95 34.09 28.04 21.94 20.09
UNI 34.07 21.89 26.69 27.42 28.43 4.49 13.49 16.94
Prov 27.95 32.83 34.39 32.43 20.29 27.6 29.24 27.98
mm-PT aug
Dino 36.29 34.57 37.79 34.48 31.08 28.93 30.26 29.69
Dinov2 35.74 33.41 34.59 34.11 34.19 27.44 31.69 32.17
UNI 36.24 34.79 33.89 35.23 29.01 29.08 26.97 28.24
Prov 34.66 32.05 36.07 38.53 29.7 28.33 30.88 34.16

Table 31: Performance for balanced accuracy and Cohen´s kappa for retinaMNIST
for every resolution, every backbone and every training scheme.
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Accuracy Area Under the ROC Curve (AUC)
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 57.94 62.84 63.45 63.65 87.18 89.94 90.37 90.34
Dino LightGBM 58.19 62.84 63.65 63.73 87.64 90.58 91.07 90.93
Dino RF 49.38 49.86 50.98 51.59 81.41 84.3 84.89 84.68
Dino KNN 51.56 56.1 57.39 57.12 - - - -
Dinov2 SVM 59.21 61.36 62.87 63.4 87.96 89.23 89.95 90.31
Dinov2 LightGBM 58.07 60.55 62.11 62.63 87.83 89.25 90.07 90.44
Dinov2 RF 48.34 49.92 49.55 49.61 81.19 83.1 83.46 83.69
Dinov2 KNN 51.16 53.84 54.64 54.9 - - - -
UNI SVM 57.22 63.54 64.41 63.65 86.83 90.44 90.7 90.52
UNI LightGBM 57.31 63.43 63.41 62.48 87.01 90.73 90.75 90.43
UNI RF 48.66 51.94 51.22 50.41 80.58 84.8 83.74 83.04
UNI KNN 50.17 56.24 55.09 54.2 - - - -
Prov SVM 57.82 64.03 63.86 64.15 87.26 90.55 90.41 90.61
Prov LightGBM 57.71 63.12 62.71 62.95 87.42 90.54 90.32 90.64
Prov RF 48.69 50.63 49.68 49.78 80.32 84.13 82.16 82.7
Prov KNN 50.08 55.26 53.58 55.0 - - - -
Linear Probing
Dino 57.61 63.2 63.67 64.03 87.23 90.57 90.95 90.96
Dinov2 58.32 61.19 62.94 63.61 87.92 89.51 90.44 90.83
UNI 56.03 63.61 63.96 62.93 86.35 90.87 90.84 90.58
Prov 56.64 63.74 63.61 64.36 86.89 90.8 90.85 91.12
mm-PT
Dino 57.78 63.85 66.69 67.99 87.41 91.37 92.46 93.01
Dinov2 58.37 61.24 64.05 66.15 87.42 89.59 91.32 92.23
UNI 58.37 63.71 66.94 65.72 87.65 91.14 92.37 92.14
Prov 58.49 67.13 70.73 71.95 87.98 92.4 94.22 94.58
mm-PT aug
Dino 51.29 51.05 47.23 46.85 82.59 83.14 79.74 80.29
Dinov2 47.46 47.27 46.98 44.71 79.53 80.12 78.31 77.37
UNI 49.24 50.64 52.06 50.01 80.55 82.79 83.88 82.06
Prov 47.91 50.54 50.88 55.02 81.15 83.21 83.54 87.47

Table 32: Performance for accuracy and AUC for TissueMNIST across various
resolutions, backbones, and training schemes.
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Balanced Accuracy Cohen’s Kappa
Methods

28 × 28 64 × 64 128 × 128 224 × 224 28 × 28 64 × 64 128 × 128 224 × 224
Classifier
Dino SVM 42.85 50.04 51.61 51.41 45.59 52.47 53.32 53.53
Dino LightGBM 43.95 50.27 51.88 51.55 46.18 52.64 53.71 53.79
Dino RF 28.64 27.7 31.05 31.6 31.75 31.99 33.89 34.85
Dino KNN 34.27 41.5 44.02 42.72 36.46 43.52 45.37 44.71
Dinov2 SVM 45.53 48.14 49.93 50.56 47.45 50.45 52.5 53.19
Dinov2 LightGBM 44.03 47.31 49.14 49.68 46.09 49.56 51.67 52.38
Dinov2 RF 27.0 28.33 27.93 28.27 29.81 32.23 31.66 31.89
Dinov2 KNN 35.29 38.62 39.78 40.78 36.49 40.18 41.44 41.96
UNI SVM 41.74 50.89 52.17 50.9 44.51 53.39 54.52 53.5
UNI LightGBM 42.28 51.1 51.15 49.15 44.98 53.38 53.33 52.06
UNI RF 27.94 32.01 31.44 30.28 30.58 35.63 34.44 33.13
UNI KNN 32.6 42.63 40.1 38.39 34.38 43.93 41.92 40.5
Prov SVM 42.88 51.68 51.88 51.46 45.49 54.04 53.81 54.18
Prov LightGBM 43.3 50.78 49.95 49.71 45.58 52.93 52.34 52.71
Prov RF 27.73 31.81 29.77 29.58 30.49 33.7 32.21 32.29
Prov KNN 32.39 41.43 38.2 39.37 34.42 42.33 39.73 41.85
Linear Probing
Dino 42.48 51.69 52.6 52.66 45.12 53.09 53.65 54.15
Dinov2 44.32 48.4 50.59 52.35 46.26 50.45 52.77 53.73
UNI 40.83 52.64 52.64 50.34 43.07 53.91 54.25 52.65
Prov 42.21 52.06 52.39 52.77 44.16 53.8 53.62 54.69
mm-PT
Dino 43.17 52.4 55.42 55.76 46.29 54.44 57.47 59.2
Dinov2 43.61 48.92 53.59 56.34 46.78 51.08 54.57 57.35
UNI 43.65 53.11 56.64 54.34 46.36 54.05 58.16 56.43
Prov 44.47 57.08 61.74 63.08 47.03 58.59 63.25 64.59
mm-PT aug
Dino 32.57 33.11 27.35 25.59 35.96 35.78 29.06 27.26
Dinov2 28.19 27.73 27.96 24.51 29.73 30.64 29.18 24.12
UNI 29.11 31.52 33.97 31.25 32.52 35.21 37.01 34.25
Prov 29.78 33.26 33.26 43.64 30.79 36.08 34.98 43.2

Table 33: Performance for balanced accuracy and Cohen´s kappa for TissueM-
NIST across various resolutions, backbones, and training schemes.
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A.3 Plots for Performance on MedMNIST-C

This section of the appendix has every plot for every metric, every backbone, every
training method and every resolution on MedMNIST-C.

Figure 55: Every metric for 28×28 resolution with SVM as classification head for
every backbone. The average and standard deviation over all 12 datasets is shown
by the title of each plot.
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Figure 56: Every metric for 64×64 resolution with SVM as classification head for
every backbone. The average and standard deviation over all 12 datasets is shown
by the title of each plot.
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Figure 57: Every metric for 128×128 resolution with SVM as classification head for
every backbone. The average and standard deviation over all 12 datasets is shown
by the title of each plot.
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Figure 58: Every metric for 224×224 resolution with SVM as classification head for
every backbone. The average and standard deviation over all 12 datasets is shown
by the title of each plot.
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Figure 59: Every metric for 28×28 resolution with LightGBM as classification head
for every backbone. The average and standard deviation over all 12 datasets is
shown by the title of each plot.
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Figure 60: Every metric for 64×64 resolution with LightGBM as classification head
for every backbone. The average and standard deviation over all 12 datasets is
shown by the title of each plot.
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Figure 61: Every metric for 128×128 resolution with LightGBM as classification
head for every backbone. The average and standard deviation over all 12 datasets
is shown by the title of each plot.
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Figure 62: Every metric for 224×224 resolution with LightGBM as classification
head for every backbone. The average and standard deviation over all 12 datasets
is shown by the title of each plot.
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Figure 63: Every metric for 28×28 resolution with linear probing for every backbone.
The average and standard deviation over all 12 datasets is shown by the title of each
plot
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Figure 64: Every metric for 64×64 resolution with linear probing for every backbone.
The average and standard deviation over all 12 datasets is shown by the title of each
plot.
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Figure 65: Every metric for 128×128 resolution with linear probing for every back-
bone. The average and standard deviation over all 12 datasets is shown by the title
of each plot.



A APPENDIX 136

Figure 66: Every metric for 224×224 resolution with linear probing for every back-
bone. The average and standard deviation over all 12 datasets is shown by the title
of each plot.
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Figure 67: Every metric for 28×28 resolution with multi-domain multi-task pre-
training for every backbone. The average and standard deviation over all 12 datasets
is shown by the title of each plot.
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Figure 68: Every metric for 64×64 resolution with multi-domain multi-task pre-
training for every backbone. The average and standard deviation over all 12 datasets
is shown by the title of each plot.
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Figure 69: Every metric for 128×128 resolution with multi-domain multi-task pre-
training for every backbone. The average and standard deviation over all 12 datasets
is shown by the title of each plot.
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Figure 70: Every metric for 224×224 resolution with multi-domain multi-task pre-
training for every backbone. The average and standard deviation over all 12 datasets
is shown by the title of each plot.
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Figure 71: Every metric for 28×28 resolution with multi-domain multi-task pre-
training with data augmentation for every backbone. The average and standard
deviation over all 12 datasets is shown by the title of each plot.



A APPENDIX 142

Figure 72: Every metric for 64×64 resolution with multi-domain multi-task pre-
training for every backbone. The average and standard deviation over all 12 datasets
is shown by the title of each plot.
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Figure 73: Every metric for 128×128 resolution with multi-domain multi-task pre-
training for every backbone. The average and standard deviation over all 12 datasets
is shown by the title of each plot.
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Figure 74: Every metric for 224×224 resolution with multi-domain multi-task pre-
training for every backbone. The average and standard deviation over all 12 datasets
is shown by the title of each plot.
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A.4 Balanced Accuracy Values for mm-PT with Prov-backbone
at a Resolution of 224×224 across different severity
Levels of MedMNIST-C
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JPEG 98.38 61.47 50.85 56.55 88.5 95.67 94.2 78.01 95.45 85.38 31.88 61.94
Pixelate 98.15 75.31 50.97 58.13 84.2 95.56 94.33 78.26 95.76 84.1 31.24 63.06
Gaussian Noise - - 50.8 58.81 - 95.72 94.17 78.01 - 86.03 34.14 -
Speckle Noise - 61.47 50.84 59.27 88.4 95.62 94.21 78.12 - 86.24 32.43 -
Impulse Noise - - 50.73 58.39 - 95.52 94.01 77.87 - 84.74 - 58.78
Shot Noise - - 50.44 57.05 - 95.62 94.09 78.11 - 86.45 - -
Defocus Blur 97.84 - - 50.31 88.4 - - - 90.25 - 30.23 -
Motion Blur 97.88 72.81 - 51.44 84.4 - - - 89.57 - 27.46 -
Gaussian Blur - - 50.95 - - 91.67 90.36 68.74 - 81.97 - 62.36
Zoom Blur - - - 55.07 - - - - - - - -
Brightness Up 98.19 60.71 50.9 58.1 - 93.56 91.94 73.78 93.97 86.24 - 60.96
Brightness Down 98.39 74.75 50.77 58.69 - 94.43 91.83 77.09 94.62 84.53 32.27 59.65
Contrast Up 98.06 - 50.89 59.4 - 95.32 92.32 76.11 95.45 87.95 - 62.96
Contrast Down 98.36 62.66 50.85 58.63 86.6 95.49 93.95 78.42 95.42 83.25 31.88 62.13
Saturate 98.17 - - - - - - - 96.14 - - -
Stain Deposit 95.89 - - - - - - - 93.46 - - -
Bubble 96.83 - - - - - - - 95.7 - - -
Gamma Corr. Up - - 50.85 - - 94.96 93.03 77.56 - 88.38 - -
Gamma Corr. Down - - 50.89 - - 95.38 93.91 77.1 - 83.68 - -
Black Corners - - - 50.31 - - - - - - - -
Characters - - - 58.23 - - - - - - - -

Table 34: A detailed summary of benchmark results showing balanced accuracy for
each dataset and each type of corruption for severity 1. The results are based on
the best training scheme: Prov mm-PT at a resolution of 224×224.
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JPEG 98.02 62.66 50.83 55.67 86.4 95.67 94.16 77.95 94.61 84.96 32.52 60.9
Pixelate 98.03 80.58 50.82 56.79 71.5 95.71 94.27 78.38 95.42 83.89 32.79 63.11
Gaussian Noise - - 50.53 59.88 - 95.52 93.77 77.1 - 85.6 34.1 -
Speckle Noise - 60.28 50.57 57.82 81.8 95.62 94.09 77.87 - 86.03 31.6 -
Impulse Noise - - 50.42 58.53 - 95.28 93.91 77.62 - 85.17 - 56.4
Shot Noise - - 50.11 52.61 - 95.66 93.64 77.56 - 86.24 - -
Defocus Blur 96.95 - - 46.26 86.4 - - - 87.54 - 29.45 -
Motion Blur 96.29 78.82 - 51.56 79.0 - - - 89.26 - 28.32 -
Gaussian Blur - - 50.97 - - 88.21 86.47 63.99 - 77.82 - 61.98
Zoom Blur - - - 52.69 - - - - - - - -
Brightness Up 97.68 59.52 50.84 52.14 - 91.47 88.84 68.02 91.47 83.25 - 59.14
Brightness Down 97.54 78.2 50.65 52.76 - 93.37 90.22 75.84 93.72 80.0 32.17 56.15
Contrast Up 97.85 - 50.84 57.51 - 94.69 91.25 74.11 94.47 89.02 - 62.06
Contrast Down 98.3 63.41 50.79 54.48 79.9 95.12 93.25 78.03 93.93 80.81 33.47 60.95
saturate 97.91 - - - - - - - 95.96 - - -
Stain Deposit 93.37 - - - - - - - 92.26 - - -
Bubble 95.99 - - - - - - - 95.37 - - -
Gamma Corr. Up - - 50.85 - - 94.42 92.02 77.15 - 89.23 - -
Gamma Corr. Down - - 50.85 - - 94.85 93.34 76.0 - 80.81 - -
Black Corners - - - 48.56 - - - - - - - -
Characters - - - 58.94 - - - - - - - -

Table 35: A detailed summary of benchmark results showing balanced accuracy for
each dataset and each type of corruption for severity 2. The results are based on
the best training scheme: Prov mm-PT at a resolution of 224×224.



A APPENDIX 147

b
lo
o
d
m
n
is
t

b
re
a
st
m
n
is
t

c h
e
st
m
n
is
t

d
e
rm

a
m
n
is
t

o
ct
m
n
is
t

o
tg

a
n
a
m
n
is
t

o
rg

a
n
cm

n
is
t

o
rg

a
n
sm

n
is
t

p
a
th

m
n
is
t

p
n
e
u
m
o
n
ia
m
n
is
t

re
ti
n
a
m
n
is
t

ti
ss
u
e
m
n
is
t

JPEG 97.41 59.09 50.76 54.64 84.8 95.64 93.92 77.86 89.54 84.74 31.71 57.05
Pixelate 98.07 80.26 50.91 56.09 75.7 95.52 94.16 77.99 94.58 82.39 30.62 62.2
Gaussian Noise - - 50.24 55.71 - 94.37 92.49 75.31 - 85.17 34.88 -
Speckle Noise - 61.47 50.33 54.27 75.2 95.03 93.1 76.17 - 85.6 32.1 -
Impulse Noise - - 50.13 55.34 - 95.02 93.47 76.63 - 84.96 - 54.13
Shot Noise - - 50.05 49.42 - 95.09 93.41 76.3 - 85.38 - -
Defocus Blur 94.47 - - 42.84 83.5 - - - 80.94 - 28.21 -
Motion Blur 96.18 69.49 - 47.49 68.1 - - - 88.95 - 26.92 -
Gaussian Blur - - 51.03 - - 84.03 81.39 59.52 - 73.46 - 61.48
Zoom Blur - - - 50.05 - - - - - - - -
Brightness Up 94.75 58.33 50.71 48.62 - 87.73 83.73 60.9 88.21 79.53 - 57.5
Brightness Down 95.26 83.58 50.49 41.7 - 91.62 87.7 73.53 92.35 72.95 31.95 51.37
Contrast Up 97.31 - 50.73 54.81 - 91.39 87.45 68.12 93.21 89.44 - 59.65
Contrast Down 97.84 69.36 50.69 50.9 74.1 94.08 91.69 76.32 90.76 76.58 33.82 58.54
Saturate 97.57 - - - - - - - 95.42 - - -
Stain Deposit 90.38 - - - - - - - 91.11 - - -
Bubble 95.12 - - - - - - - 94.8 - - -
Gamma Corr. Up - - 50.85 - - 92.9 89.84 75.39 - 89.74 - -
Gamma Corr. Down - - 50.75 - - 93.86 92.1 73.75 - 76.45 - -
Black Corners - - - 47.92 - - - - - - - -
Characters - - - 57.27 - - - - - - - -

Table 36: A detailed summary of benchmark results showing balanced accuracy for
each dataset and each type of corruption for severity 3. The results are based on
the best training scheme: Prov mm-PT at a resolution of 224×224.
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JPEG 96.4 59.09 50.7 51.49 82.5 95.54 94.07 77.56 85.24 83.89 32.37 51.89
Pixelate 97.74 76.0 50.59 54.56 72.0 95.35 94.28 78.19 94.14 81.11 31.44 61.55
Gaussian Noise - - 50.03 50.01 - 92.46 90.54 72.61 - 85.17 32.84 -
Speckle Noise - 60.28 50.03 46.33 64.7 93.02 91.48 73.08 - 85.09 32.42 -
Impulse Noise - - 50.05 50.56 - 94.16 92.6 75.29 - 84.74 - 52.34
Shot Noise - - 50.0 44.44 - 93.87 92.29 74.46 - 84.74 - -
Defocus Blur 86.41 - - 40.59 79.8 - - - 65.25 - 26.59 -
Motion Blur 92.45 72.74 - 41.54 56.0 - - - 83.23 - 26.1 -
Gaussian Blur - - 51.05 - - 80.09 74.76 55.01 - 68.46 - 60.08
Zoom Blur - - - 49.67 - - - - - - - -
Brightness Up 92.06 56.7 50.61 41.85 - 82.37 76.81 54.01 86.59 71.79 - 55.41
Brightness Down 83.94 80.64 50.36 31.92 - 87.93 84.63 70.9 91.55 66.67 30.49 45.42
Contrast Up 96.76 - 50.66 53.5 - 88.56 84.66 64.77 91.01 89.23 - 56.64
Contrast Down 94.52 72.49 50.53 42.2 61.9 93.13 90.69 75.02 88.05 72.52 33.65 55.5
Saturate 97.09 - - - - - - - 94.27 - - -
Stain Deposit 90.35 - - - - - - - 90.22 - - -
Bubble 94.33 - - - - - - - 93.95 - - -
Gamma Corr. Up - - 50.77 - - 90.28 87.17 72.93 - 90.38 - -
Gamma Corr.Down - - 50.64 - - 91.81 89.61 70.26 - 66.32 - -
Black Corners - - - 45.46 - - - - - - - -
Characters - - - 56.43 - - - - - - - -

Table 37: A detailed summary of benchmark results showing balanced accuracy for
each dataset and each type of corruption for severity 4. The results are based on
the best training scheme: Prov mm-PT at a resolution of 224×224.
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JPEG 89.9 57.89 50.64 44.88 70.3 95.24 93.05 77.24 78.34 81.54 32.65 45.12
Pixelate 96.86 74.75 50.1 52.34 54.9 95.27 94.21 77.81 90.96 79.4 30.66 58.92
Gaussian Noise - - 50.01 43.17 - 89.36 87.63 69.58 - 84.74 35.23 -
Speckle Noise - 61.9 50.0 42.14 56.5 88.82 87.03 68.77 - 83.25 33.43 -
Impulse Noise - - 50.0 42.75 - 93.0 91.01 72.96 - 83.68 - 50.83
Shot Noise - - 49.99 38.11 - 91.77 89.98 70.4 - 83.38 - -
Defocus Blur 77.27 - - 37.01 75.0 - - - 44.48 - 26.93 -
Motion Blur 87.43 65.35 - 35.77 51.6 - - - 67.56 - 24.91 -
Gaussian Blur - - 51.07 - - 71.28 62.74 47.51 - 63.12 - 58.55
Zoom Blur - - - 47.77 - - - - - - - -
Brightness Up 87.18 55.51 50.49 36.74 - 76.96 69.23 49.29 84.54 65.94 - 53.61
Brightness Down 60.74 74.25 50.2 22.47 - 83.0 80.79 67.94 90.93 59.83 27.91 38.2
Contrast Up 95.5 - 50.48 49.47 - 84.86 80.85 61.25 86.24 89.62 - 49.5
Contrast Down 81.02 78.13 50.26 35.09 55.4 91.84 88.87 73.3 84.37 53.21 26.85 45.07
Saturate 96.07 - - - - - - - 91.36 - - -
Stain Deposit 85.8 - - - - - - - 88.02 - - -
Bubble 92.27 - - - - - - - 92.61 - - -
Gamma Corr. Up - - 50.69 - - 86.63 84.65 70.0 - 89.06 - -
Gamma Corr. down - - 50.36 - - 77.35 73.22 52.45 - 51.07 - -
Black Corners - - - 45.28 - - - - - - - -
Characters - - - 56.94 - - - - - - - -

Table 38: A detailed summary of benchmark results showing balanced accuracy for
each dataset and each type of corruption for severity 5. The results are based on
the best training scheme: Prov mm-PT at a resolution of 224×224.
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ware unterstützten, anonymisierten Prüfung auf Plagiate unterzogen werden kann.

Place, Date Signature


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Context and Motivation
	Related Work
	Benchmarks
	Multi-Task Learning
	Introduction of the Benchmark

	Contribution
	Outline

	Theoretical Background
	Machine Learning
	Deep Learning
	Data Augmentations
	Vision Transformer
	Foundation Models
	Dino
	Dinov2
	UNI
	Prov-GigaPath (Prov)

	Evaluation Metrics

	Methodology
	Benchmark
	Training Methods
	Training only the Classification Heads
	Training End-to-End


	Used Dataset
	MedMNIST+
	MedMNIST-C

	Experiments and Results
	Results for the MedMNIST+ Dataset
	Training without the Backbone
	Training End-to-End

	Results for the MedMNIST-C Dataset

	Comparison and Discussion
	Performance on MedMNIST+
	Performance on MedMNIST-C

	Limitations and Future Work
	Training Methodology
	Training only the Classification Heads
	Training End-to-End
	Combination of both Approaches

	Usage of an additional Metric to evaluate the Robustness to Distortions

	Conclusion
	Appendix
	Every Plot for the Performance on MedMNIST+
	Performance Metrics for every Dataset on MedMNIST+
	Plots for Performance on MedMNIST-C
	Balanced Accuracy Values for mm-PT with Prov-backbone at a Resolution of 224×224 across different severity Levels of MedMNIST-C

	Bibliography

