
Evaluation and feasibility of selected
data-driven Machine Learning

approaches for Production Planning
to enhance Order Sequencing and to

improve OEE in Manufacturing

Master Thesis

Master of Science in Information Systems

Nicolai Christian Frosch

September 16, 2024

Supervisor:

1st: Prof. Dr. Christian Ledig
2nd: Sebastian Gocker

Chair of Explainable Machine Learning
Faculty of Information Systems and Applied Computer Sciences
Otto-Friedrich-University Bamberg

Abstract

The manufacturing industries are under pressure to enhance their productivity and effi-
ciency in their operations due to the rising competition and market risks. Overall Equip-
ment Effectiveness (OEE) measures the effectiveness of the equipment in use during the
production process and helps in identifying the losses that occur. Despite the fact that
OEE depends on several operational factors including production scheduling, machine
downtime and performance, there is a lack of research on the use of Machine Learning
(ML) in predicting and enhancing OEE especially in the context of production planning
and control. This thesis aims at identifying how the use of ML algorithms can improve the
production scheduling in the pharmaceutical manufacturing industry. The objective is to
find out whether the ML models can predict OEE and other Key Performance Indicators
(KPI) and how these predictions can help the human planners to create better schedules.
Together with Dr. Pfleger Arzneimittel GmbH, the project includes work in the fields of
data integration, feature engineering, model training and validation, and the design of a
user interface that is focused product changeover simulations and generating scheduling
proposals. The findings show that the ML models can predict OEE with a certain level
of accuracy and low error margin. However, subcomponents of OEE and production
process times observe larger errors or lower determination coefficients. Through com-
paring and contrasting different experimental configurations, this thesis tests the effects
of feature scaling and encoding, as well as hyperparameter optimization on the model’s
performance. Among the various ML algorithms used, ensemble methods, especially gra-
dient boosting, emerged as the best performing models. Furthermore, explainability of
the models was improved to company’s stakeholders by using SHAP (SHapley Additive
exPlanations) values. The best performing trained models per target KPI were incorpo-
rated into a web-based user interface prototype. This thesis proves that the use of ML
for predicting production process KPIs is a viable method for enhancing the effectiveness
of production planning. Although the development of fully autonomous scheduling is not
within the scope of this research, the application of ML models as a decision support
tool can greatly contribute to the minimization of operational losses and improvement of
overall equipment effectiveness.

i

Abstract

Die verarbeitende Industrie steht unter dem Druck, ihre Produktivität und Effizienz
in ihren Betrieben aufgrund des zunehmenden Wettbewerbs und der Marktrisiken zu
verbessern. Die Gesamtanlageneffektivität (Overall Equipment Effectiveness, OEE) misst
die Effektivität der während des Produktionsprozesses eingesetzten Anlagen und hilft
bei der Ermittlung der auftretenden Verluste. Trotz der Tatsache, dass die OEE von
verschiedenen betrieblichen Faktoren wie Produktionsplanung, Maschinenstillstand und
Leistung abhängt, gibt es einen Mangel an Forschung über den Einsatz von maschinellem
Lernen (ML) bei der Vorhersage und Verbesserung der OEE, insbesondere im Zusammen-
hang mit der Produktionsplanung und -steuerung. In dieser Arbeit soll untersucht wer-
den, wie der Einsatz von ML-Algorithmen die Produktionsplanung in der pharmazeutis-
chen Fertigungsindustrie verbessern kann. Ziel ist es, herauszufinden, ob die ML-Modelle
die OEE und andere Key Performance Indicators (KPI) vorhersagen können und wie
diese Vorhersagen den menschlichen Planern helfen können, bessere Pläne zu erstellen.
Gemeinsam mit der Dr. Pfleger Arzneimittel GmbH umfasst das Projekt Arbeiten in
den Bereichen Datenintegration, Feature-Engineering, Modelltraining und -validierung
sowie den Entwurf einer Benutzeroberfläche, die auf Produktumstellungssimulationen
und die Erstellung von Planungsvorschlägen ausgerichtet ist. Die Ergebnisse zeigen,
dass die ML-Modelle die OEE mit einem gewissen Genauigkeitsgrad und einer geringen
Fehlerspanne vorhersagen können. Allerdings weisen Teilkomponenten der OEE und der
Produktionsprozesszeiten größere Fehler oder geringere Bestimmungskoeffizienten auf.
Durch den Vergleich und die Gegenüberstellung verschiedener experimenteller Konfigura-
tionen werden in dieser Arbeit die Auswirkungen der Merkmalsskalierung und -kodierung
sowie der Optimierung der Hyperparameter auf die Leistung des Modells getestet. Unter
den verschiedenen verwendeten ML-Algorithmen erwiesen sich Ensemble-Methoden, ins-
besondere Gradient Boosting, als die leistungsfähigsten Modelle. Außerdem wurde die
Erklärbarkeit der Modelle für die Stakeholder des Unternehmens durch die Verwendung
von SHAP-Werten (SHapley Additive exPlanations) verbessert. Die leistungsfähigsten
trainierten Modelle pro Ziel-KPI wurden in einen Prototyp einer webbasierten Benutze-
roberfläche integriert. Diese Arbeit beweist, dass der Einsatz von ML für die Vorhersage
von Produktionsprozess-KPIs eine praktikable Methode ist, um die Effektivität der Pro-
duktionsplanung zu verbessern. Obwohl die Entwicklung einer vollständig autonomen
Planung nicht in den Rahmen dieser Forschungsarbeit fällt, kann die Anwendung von
ML-Modellen als Entscheidungshilfe einen großen Beitrag zur Minimierung von Betrieb-
sverlusten und zur Verbesserung der Gesamteffizienz der Anlagen leisten.

ii

Acknowledgements

I want to thank my supervisors, Prof. Christan Ledig and Sebastian Gocker, who were
always available to support me in the project, whenever questions occurred. Furthermore,
I would like to thank Christian Stemper, who started the project with his initial ideas
and support, even though he left the company throughout the projects timeline.

Furthermore, many thanks to the cooperation company, Dr. Pfleger Arzneimittel GmbH,
and all stakeholders in the project for the great cooperation and support throughout the
timeline of the thesis project, especially to the Cloud and Datateam, who supported me
in topics of data exploration, understanding and validation.

Next, I give special thanks Valentin Lange, Sebastian Falkner, Max Holz and Andre
Theumer who supported me in proofreading the thesis and discussing ideas related to
the thesis practical project.

Finally, I want to thank my friends, family and girlfriend for supporting me throughout
the time of writing this thesis and in general my educational career.

iii

Contents

List of Figures vi

List of Tables vii

List of Acronyms viii

1 Introduction 1
1.1 Project Motivation . 2

1.2 Research methodology . 2

1.3 Thesis Structure . 4

2 Theoretical Background 6

2.1 Basic definitions . 6
2.2 Production Planning and Control . 7

2.3 Overall Equipment Effectiveness . 8

2.4 Machine Learning . 11

2.4.1 Regression Problems and Models 12

2.4.2 Loss Functions for Regression Problems 13

2.4.3 Linear, Polynomial and Ridge Regression 15

2.4.4 Decision Tree Regression . 16

2.4.5 Support Vector Regression . 17

2.4.6 Neural Networks for Regression 18

2.4.7 Early Stopping . 19

2.4.8 Ensemble Learning . 19

2.4.9 Data Encoding and Standardization 20

2.4.10 k-Fold Cross Validation . 21
2.4.11 Hyperparameter Optimization Methods 22

2.4.12 Model Explainability with SHAP-Values 23

2.5 Machine Learning in Production Planning and Control 24

3 As-Is Analysis and conceptual design 26

3.1 Business Environment . 26
3.1.1 Order Planning Process . 27

3.1.2 Business Problem Definition . 29
3.1.3 Technical Project Setup . 29

3.2 Conceptualization of the ML-based OEE prediction tool 30

3.2.1 Project Goals and Solution Concept 30

3.2.2 Requirements Creation . 31

4 Data and Feature Engineering 34

4.1 Data Modelling . 34

4.2 Data Aggregation and Preparation . 36

4.3 Data Quality Issues . 37

4.4 Feature Creation . 38
4.5 Dataset Description . 40

iv

5 Model Development 44

5.1 Model Targets . 44

5.2 Selection of models for evaluation . 45
5.3 Dataset Splits . 46

5.4 Data Encoding and Scaling . 47

5.5 Hyperparameter Optimization . 47

5.6 Data, Training and Evaluation Pipeline 49

5.7 Model Ensembling and Explainability . 50

5.8 Web-based User Interface . 51

6 Evaluation 54
6.1 Experiment - Validation Set Ratios . 54

6.2 Experiment - Scaling and Encoding Effects 55

6.3 OEE Models . 56
6.4 OEE Submetrics Models . 58
6.5 Experiment - OEE Composite Metric . 59

6.6 Planning Time Models . 60

6.7 Error Correlation Analysis . 62

6.8 OEE Model Explainability . 63

6.9 Project Requirement Satisfaction . 65

7 Discussion 67

8 Future Work 70

9 Conclusion 71

A Appendix 72

A.1 Code Repository . 72

A.2 Requirement Descriptions . 73

A.3 Technical Feature Descriptions . 75

A.4 KPI Descriptions . 75

A.5 Algorithm Implementation used by Package and Class 76

A.6 Optimized Hyperparameters per Model Target 77

Bibliography 80

v

List of Figures

1 Design Science Research Process after Pfeffers (Holzweißig, 2019) 3

2 Structure of the paper based on Holzweißig (2019, p. 40) 4

3 OEE Calculation (Industries, 2024b) . 9

4 Overview of time losses measured by OEE subcomponents (Industries, 2024a) 10

5 OEE Six big losses after Industries (2024c) 10

6 Decision Tree Concept (Goodfellow et al., 2016, p. 145) 17

7 K-fold cross-validation concept (Fadheli, 2024) 21

8 Share of the analyzed sample by proposed use case (Usuga Cadavid et al.,
2020, p. 17) . 24

9 Number of uses by learning type (Usuga Cadavid et al., 2020, p. 14) . . . 25

10 Number of uses by technique family (Usuga Cadavid et al., 2020, p. 13) . 25

11 Number of papers by I4.0 characteristic (Usuga Cadavid et al., 2020, p. 18) 25

12 Pharmaceutical production and packaging machines 26

13 Production Schedule Planning Board in SAP at Dr. Pfleger 28

14 Long Term Vision of Dr. Pfleger (Stemper et al., 2022) 31

15 Solution Idea of Dr. Pfleger (Stemper et al., 2022) 31

16 Requirements towards a Software System after Braun (2016) 31

17 MES Raw Data Tables in Model Viewer 35

18 OEE Submetrics Hierarchy Structure . 36

19 Product Changeover Times - Percentiles and Original Distribution 39

20 GMM Product Changeover - Primary and Secondary Time Clusters . . . 40

21 Dataset Filtering Logic . 40

22 Dr. Pfleger - OEE and Components - Distribution pre Filter 41

23 Dr. Pfleger - OEE and Components - OEE Distribution post Filter . . . 41

24 Dr. Pfleger - Target Values - Time Distributions 42

25 Dr. Pfleger - Orders per Production Line Distribution 42

26 Dr. Pfleger - Orders per Product Distribution 42

27 Final Project Data Pipeline Overview . 49

28 User Interface for single order prediction 51

29 Example of a generated scheduling proposal 53

30 OEE Models Performance Evaluation - CatBoost and Neural Network Charts 57

31 OEE Sample Error Correlation Matrix 62

32 OEE Model Catboost - SHAP Summary Plots 63

33 OEE Model Catboost - SHAP Feature Depency Plots 64

vi

List of Tables

1 Key Definitions from Literature . 6

2 Comparison of Loss and Performance Metrics for Regression Problems . . 15

3 Planned Setup Times for Different Product Changes 27

4 List of Project Requirements . 32

5 Differing Orders in Percent of Total Dataset 38

6 KPI Difference in Percentage Points Against Manual Validation Export . 38

7 Descriptive Statistics for OEE and Components 41

8 Features Overview and Description . 43

9 Model Target Values Overview . 44

10 Applied Machine Learning (ML)-algorithms by their technique family after
Usuga Cadavid et al. (2020) . 45

11 Validation Set Ratio - Experiments . 46

12 Applied Encoding Method per Categorical Feature 47

13 Hyperparameter Grids for Optuna Tuning 48

14 Model Performance per Validation Ratio Experiment 54

15 OEE Model Performance: With vs. without Scaling 55

16 Mean Performance Across Multiple Targets: With vs. without Scaling . . 55

17 OEE Model Performance: Ordinal vs. Label Encoding 55

18 Mean Performance Across Multiple Targets: Ordinal vs. Label Encoding 56

19 OEE Models Performance Evaluation - Model Type Comparison 56

20 OEE Models Performance Evaluation - Model Family Comparison . . . 57

21 AR Models Performance Evaluation - Model Type Comparison 58

22 PE Models Performance Evaluation - Model Type Comparison 58

23 QR Models Performance Evaluation - Model Type Comparison 59

24 OEE Composite Performance Evaluation - Model Type Comparison . . . 60

25 PPT Models Performance Evaluation - Model Type Comparison 60

26 OT Models Performance Evaluation - Model Type Comparison 61

27 DT Models Performance Evaluation - Model Type Comparison 61

28 Project Requirements Satisfaction and Dissatisfaction 65

29 Satisfaction and Dissatisfaction by Completion Status 65

30 Satisfaction and Dissatisfaction by Primary Flag 66

31 Satisfaction and Dissatisfaction by Requirement Type 66

32 Satisfaction and Dissatisfaction by Area of Pipeline 66

vii

List of Acronyms

AI Artificial Intelligence
AR Availability Rate
DTR Decision Tree Regression Regression
DSR Design Science Research
DT Down Time
GMM Gaussian Mixture Model
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
k-NNR K-Nearest Neighbors Regression
KPI Key Performance Indicator
LGBM Light Gradient-Boosting Machine
LIME Local Interpretable Model-Agnostic Explanations
LR Linear Regression
MAE Mean Average Error
MES Manufacturing Executive System
ML Machine Learning
MLP Multi Layered Perceptron
MSE Mean Squared Error
NN Neural Network
OEE Overall Equipment Effectiveness
OFE Overall Factory Effectiveness
OT Operating Time
PE Performance Efficiency
PEE Production Equipment Effectiveness
PPC Production Planning and Control
PPT Planned Production Time
PR Polynomial Regression
QR Quality Rate
R2 R2 Coefficient of Determination
RF Random Forest
RL Reinforcement Learning
RMSE Root Mean Squared Error
RR Ridge Regression Regression
SA Simulated Annealing
SHAP SHapley Additive exPlanations
SL Supervised Learning
SQL Structured Query Language
SVR Support Vector Regression
SVM Support Vector Machine
TEEP Total Equipment Effectiveness Performance
UI User Interface
USL Unsupervised Learning
XGB eXtreme Gradient Boosting
xAI Explainable Artificial Intelligence

viii

Notation

a A scalar (integer or real)

x A vector representing the input features in machine learning models

w A vector representing the weights in machine learning models

w⊤ The transpose of the weight vector

ŷ The predicted target value (output)

y The actual target value (output)

a A vector (generic)

xi The i-th example (input) from a dataset

yi or yi The target associated with xi for supervised learning

∥w∥22 The squared L2 norm of the weight vector

b The bias term in linear regression and other models

n The number of samples in the dataset

p The number of predictors in a model

d The degree of the polynomial in polynomial regression

ϵ Epsilon-tube in SVR, defining the margin of tolerance

f(x) A function mapping input vector x to an output

f : A → B The function f with domain A and range B

σ Standard deviation

µ Mean

{0, 1} The set containing 0 and 1

ai Element i of vector a, with indexing starting at 1

||x||p The Lp norm of vector x

ix

1 INTRODUCTION 1

1 Introduction

”The current manufacturing environment is characterized by high complexity, dynamic
production conditions, and volatile markets” (Usuga Cadavid et al., 2020, p. 1531). Man-
ufacturing companies strive to optimize their productivity and profits in this competitive
environment. One of the primary factors of production, and consequently one of the
most significant cost shares in manufacturing companies, are the machines used in the
production process. To achieve productivity increases multiple approaches are used by
manufacturing companies like smart or predictive maintenance, smart production plan-
ning and scheduling, process control and monitoring, quality control, as well as smart
design of products and processes (Usuga Cadavid et al., 2020).
Due to this drive for optimization, numerous Key Performance Indicator (KPI)s have
been developed to measure production performance. One of the most commonly used
KPIs and tools to gauge operational excellence in manufacturing is the Overall Equipment
Effectiveness (OEE) (Pintelon and Muchiri, 2008). The OEE ”measures different types
of production losses and indicates areas of process improvement” (Pintelon and Muchiri,
2008, p. 2). Its subcomponents combine information about the quality of the production
process, the performance of machine usage, and the availability or downtime of produc-
tion machines into a single value ranging from zero to one hundred. This breakdown of
operational excellence into a single KPI allows for easy comparisons between companies
and situations as well as evaluation of analysis of potential actions to improve operational
excellence. Because OEE summarizes the efficiency of machine usage and therefore has a
strong effect on profitability of companies operations, manufacturing companies strive to
achieve the highest possible OEE. While OEE can be influenced by operational processes
like production scheduling and control, selection of appropriate machines, or raw mate-
rial selection, it is also susceptible to external factors like employee engagement, worker
productivity, staff sickness, experience, supply chain issues, and many more (Pintelon
and Muchiri, 2008).
The present thesis explores whether OEE can be increased with the help of ML tech-
niques. In a practical implementation project, in cooperation with Dr. Pfleger Arzneimit-
tel GmbH, a medium-sized German pharmaceutical company, various machine learning
methods will be implemented to predict several different KPIs. Dr. Pfleger aims to im-
prove its operational excellence by improving the availability component of the OEE with
the help of smart production planning and scheduling. These machine learning methods
are used to predict KPI related to the production planning process and enable the simu-
lation of product changeovers regarding their effectiveness. In practice, these predictions
allow human planners always to choose the most efficient product sequence regarding a
chosen KPI with the hope of reducing losses in the production process and increasing
efficiency.
The project in the present thesis can be classified in the framework of Usuga Cadavid
et al. (2020)’s meta-analysis as a ”Smart Planning and Scheduling” use case. The project
spanned about one year, with the first months revolving around data exploration and in-
tegration, gathering business knowledge, and finally conceptualizing a final tool with de-
fined business requirements. Afterward, an implementation phase of about nine months
followed by a loose structure and rapid development iterations in a prototyping style.
Finally, the implementation results and trained ML-models were evaluated against the
defined requirements.

1 INTRODUCTION 2

The following subchapters will outline the business project motivation, explain the re-
search methodology used, and describes the further thesis structure.

1.1 Project Motivation

Human planners often make decisions in production planning and scheduling, sometimes
without a factual or data basis — in other words, by human gut feeling. This focus on
human decision-making is the case at Dr. Pfleger. In a case study, this thesis aims to
evaluate whether the decision-making process in production planning can be made more
efficient using machine learning methods to predict the OEE. The primary motivation of
Dr. Pfleger is their general goal of transforming into a data-driven company and gathering
first experiences in the realm of Artificial Intelligence (AI) and ML. Additionally, creating
a data basis and tooling to predict the OEE would allow for evaluating the current
planning process. If a sufficiently performant solution is reached, machine learning models
provided via a web-based user interface will support the humans in the product planning
process. A fully autonomous production planning system based on AI and machine
learning is a long-term vision of Dr. Pfleger but seems out of reach due to missing factors
on OEE in the available data. Therefore, the focus of this case study and implementation
project is set to the prediction of individual production orders and the calculation of
scheduling proposals with the help of trained ML models. The business perspective and
problem is discussed in more detail in Chapter 3.

1.2 Research methodology

This chapter outlines the research approach and methodology of this thesis. Generally,
the thesis aims to answer whether the OEE can be predicted with the help of machine
learning methods and evaluate which machine learning methods are suitable to the task
and data at hand. Therefore, the approach and goal of the thesis are to conduct a practical
implementation of a functional ML-based tool for the cooperation partner, including data
processing, feature creation, model training, and evaluation, as well as creating a simple
user interface to interact with the models trained. The following research questions
describe the research employed in this thesis:

1. ”Which machine learning algorithms are suitable for predicting the OEE?”

2. ”Which loss function are suitable for training models predicting the OEE?”

3. ”Is it possible to predict the OEE using ML-algorithms with the data available at
Dr. Pfleger with reasonable performance?”

4. ”Which of trained model and technique family performs best to predict the OEE?”

5. ”Is it possible to predict further OEE related KPIs with using ML-algorithms with
the data available at Dr. Pfleger with reasonable performance?”

6. ”How can the prediction of the OEE be used to enhance order sequencing?”

7. ”Is it possible to generate reasonable scheduling proposals for human planners with
the help of the models trained?”

1 INTRODUCTION 3

The thesis aims to answer the above research questions by providing a theoretical back-
ground (Questions 1 & 2) and implementing a machine learning tool for Dr. Pfleger
(Questions 3-6). It should be noted that this would be an exemplary answer, especially
questions 3 to 6, whose results can hardly be generalized from this thesis as it highly
depends on the specific data and circumstances at the site of Dr. Pfleger. Generally, the
ratio of theoretical to implementation-related research questions highlights the focus on
the practical application of machine learning methods.
This thesis follows the methodology of action research. Wilde and Hess (2007) describes
action research as solving a practical problem using scientific and practical methods in
multiple cycles of analysis, action, and evaluation steps. Additionally, the methodology
and structure of the present thesis are inspired by the technique of Design Science Re-
search (DSR) as outlined by Holzweißig (2019) (compare Figure 1). The DSR approach
is designed to provide a structured methodology when creating new software artifacts in
a research context. Even though the DSR methodology is focused on classical software
development, it can also be applied to this context of data science and machine learn-
ing. In the framework of DSR, this thesis starts at the research entry point ”Design
& Development centered initiation”. The reason for this entry point is that the prob-
lem identification was done by Dr. Pfleger beforehand, and motivation, as well as the
general objectives of a solution, were already defined by or together with Dr. Pfleger be-
fore the actual implementation project began. Therefore, this thesis is mainly concerned

Figure 1: Design Science Research Process after Pfeffers (Holzweißig, 2019)

with the implementation conceptualization, development, and evaluation of iteratively
creating a ML-based tool to predict the OEE. Over the nine months of the implemen-
tation phase, which were preceded by three months of concept discussions and work on
data integration, weekly or bi-weekly meetings with the responsible from the company
have been conducted. Each week, the project’s current goals and status were discussed
with the company’s stakeholders, results were presented, feedback was given, and fur-
ther implementation iterations were planned. After each finished implementation goal
and evaluation of the results, design discussions for further improvements were done.
The process described above resembles the general concept of the design science research
methodology with a focus on short-cycle implementation. Finally, after the conclusion of
the entire project, an overall evaluation against the initially proposed goals and defined
business requirements was conducted together with the stakeholders at Dr. Pfleger to
judge the project’s outcome.

1 INTRODUCTION 4

The following subchapter will briefly describe the structure of the thesis, which is based
on the above-described methods by Wilde and Hess (2007) and Holzweißig (2019).

1.3 Thesis Structure

The present thesis is orienting itself after the DSR methodology proposed by Holzweißig
(2019) as discussed in the previous chapter. To follow the DSR process Holzweißig (2019)
provides a structure recommendation for scientific papers. The structure proposal by
Holzweißig (2019) splits the main part of common thesis structures into four chapters:
As-Is analysis, target concept, implementation, and evaluation. Additionally, he proposes
the chapter’s introduction and theory at the beginning and critical reflection and outlook
at the end of the thesis. The present thesis uses a version of the structure proposals
with adjustments to the recommendation to account for the data-oriented nature and the
business environment in which the thesis is created.

This thesis follows the recommendation for the first two chapters. The chapter Intro-
duction provides the motivation and introduces the research methodology and structure.
The Theoretical Background provides the necessary knowledge to understand the further
chapters of the thesis and introduces important concepts used in the implementation like
loss function, machine learning algorithms, or how the OEE is calculated. The theoretical
background is not going into technical and theoretical depth in most topics because it
assumes that the reader has prior knowledge about machine learning and data-related
topics as well as a basic understanding of programming and algorithms.

Figure 2: Structure of the paper based on Holzweißig (2019, p. 40)

The thesis deviates from the structure proposal primarily in the main part. The As-Is
analysis and target concept have been combined into one chapter ”As-Is Analysis and
conceptual design” because the business environment had no tooling similar to the one
developed in this project that could have been analyzed. Instead the business environ-
ment and production planning processes have been described. Additionally, the chapter

1 INTRODUCTION 5

contains a description of the defined target concept and the formalized business require-
ments. The proposed implementation chapter has been split into several thematic areas,
which represent different parts of the tooling or data pipeline. First, there is the chapter
”Data and Feature Engineering”, which describes the implementation of a pipeline for
data gathering, modeling, and integration of the provided raw data. The aggregated data
result of this pipeline is then used for further feature engineering steps, which are also
described in this chapter. Furthermore, the fourth chapter discusses the data quality is-
sues throughout the data integration implementation and how they have been dealt with.
Finally, a description of the resulting dataset, the distribution characteristics of certain
features and target values are provided. The chapter ”Model Development” gives insights
into the process and techniques used for model training, validation, and explanation. The
chapter discusses the chosen loss functions, which dataset splits have been applied, how
ML models were selected, which target values were predicted, used data encoding and
scaling methods, and how hyperparameter optimization was employed. Additionally, the
chapter defines certain experimental training setups that will later be evaluated. The
chapter also discusses how models can be explained using ML-Explainability methods. A
further part of the model development chapter is the model provision in a user interface.
This part of the chapter explains how the trained models have been stored, managed, and
finally provided to the company’s internal users via a developed web-based user interface.
Furthermore, the chapter explains how the trained models can be used to generate plan-
ning proposals with different search algorithms. In addition to the proposed chapter on
critical reflection and outlook, a chapter, ”Evaluation,” has been added. It provides the
results of the model training and proposed experimental setups as well as the evaluation
of customer requirement fulfillment satisfaction. The initially proposed chapters have
been slightly split and renamed as ”Discussion”, ”Future Work”, and ”Conclusion”. The
overall thesis structure can be seen in Figure 2, inspired by a similar figure provided by
Holzweißig (2019) for his structure recommendation.

2 THEORETICAL BACKGROUND 6

2 Theoretical Background

The following chapter provides the theoretical background necessary to understand the
further chapters of the thesis. Note that this chapter means to give a high-level overview
of concepts used in the practical and evaluation part of this thesis, like KPI definitions,
high-level explanation of used machine learning algorithms and methods, as well as loss
functions employed to evaluate model performance. Therefore, the chapter creates an the-
oretical basis to explain technical methods used and choices made in the implementation
process. This chapter is not meant to provide the reader with a fundamental under-
standing of how machine learning, its mathematical operations, or its various algorithms
work or to explain all terms related to the technical area of data science. Therefore,
the thesis expects the reader to have basic knowledge of programming and technical and
mathematical concepts in machine learning.

First, this chapter will provide a list of basic definitions of frequently used terms in the
further thesis. Secondly, the environment where the thesis topic revolves, Production
Planning and Control (PPC), is discussed shortly. Then, the main KPI, which is to be
predicted in this thesis, the OEE, its calculation, its sub metrics, and related KPIs, will be
described. Furthermore, machine learning concepts and methods, such as loss functions,
learning methods, and model explainability options, are briefly introduced and explained.
Finally, after providing an introduction and explanation of the essential terms, chapter
2.5 highlights the research environment in which this thesis is located.

2.1 Basic definitions

A list of basic definitions is provided below to help readers understand the following
chapters of the thesis, related concepts, and frequently used terms in the machine learning
and data context. This list is supposed to create a shared understanding of what specific
terms and abbreviations used within the paper mean. Several terms in the definition list
will be discussed further in the coming subchapters.

Table 1: Key Definitions from Literature

Term Definition

Industry 4.0 Refers to the fourth industrial revolution, integrating cyber-physical systems, IoT, and
automation to create smart, real-time optimized manufacturing processes (Oztemel and
Gursev, 2020, p. 127-128).

Production Planning &
Control

Refers to the planning, scheduling, and monitoring activities in the production process
to ensure efficient use of resources and timely delivery of products (Chapman, 2005, p.
12).

Information Information is the usable answer to a concrete question (Zehnder, 1998, p. 14).

Redundancy Redundancy describes multiple occurrences of the same statement (Zehnder, 1998, p.
27).

Consistency Data is called consistent if it satisfies the consistency conditions specified for a dataset
(Zehnder, 1998, p. 27).

Database An independent, permanent organization form designed for flexible and secure use, usu-
ally consisting of the database itself and associated data management (Zehnder, 1998, p.
35).

Structured A database is called structured when systematic subdivisions and links are possible (Zehn-
der, 1998, p. 26).

2 THEORETICAL BACKGROUND 7

Term Definition

Machine Learning ML is a field of study where algorithms learn from data to improve performance on tasks
without being explicitly programmed to solve them (Goodfellow et al., 2016, p. 98-107).

Artificial Intelligence The broader concept of machines or systems mimicking human-like intelligence and be-
havior (Goodfellow et al., 2016, p. 98-107).

Neural Networks NN are a class of machine learning models composed of multiple layers of interconnected
nodes with its structure being inspired by the human brain’s neural architecture (Good-
fellow et al., 2016, p. 13).

Deep Learning DL is a subset of machine learning that uses neural networks with a high number of layers
to model complex patterns in data (Goodfellow et al., 2016, p. 98-107).

Training Error Errors occurring when training a model on a training data set are called training errors
(Goodfellow et al., 2016, p. 110).

Test Error (Generaliza-
tion)

Errors occurring on unseen inputs from the test set are called test or validation errors
and describe the models generalization capability (Goodfellow et al., 2016, p. 125).

Capacity The capacity describes a ML-model’s ability to fit to the complexity of functions, with
low-capacity models underfitting and high-capacity models overfitting (Goodfellow et al.,
2016, p. 111-113).

Underfitting Underfitting describes when a model is too simple to capture the complexity in the
training data resulting in high training error (Goodfellow et al., 2016, p. 112-115).

Overfitting Overfitting describes when a model is too complex, capturing the noise in the training
data, leading to a large differences between training and test errors (Goodfellow et al.,
2016, p. 112-115).

2.2 Production Planning and Control

Production Planning and Control (PPC) is a core methodology used in managing produc-
tion operations in both manufacturing and service industries. PPC deals with planning,
scheduling, and control of production-related activities in a company to ensure that oper-
ations run smoothly, meet customer demands, and in order to maintain efficiency within
the company. According to Chapman (2005) PPC is used to balance demand and resource
availability, optimize usage of the available resources, and finally ensure that production
activities are in line with business goals (Chapman, 2005, p. 12).

To achieve this goal, PPC uses several tools and activities like forecasting demand, creat-
ing efficient production schedules, managing inventory, and controlling the flow of materi-
als, goods, and information throughout a company’s production process. These activities
are crucial for manufacturing companies to maintain their competitive edge in today’s
highly dynamic business environment, where customer demands, and production tech-
nologies are continuously evolving (Chapman, 2005, p. 2).

One key challenge in research about PPC is addressing the differences between service
and manufacturing operations. Manufacturing companies typically deal with physical
goods and products, which can be stored as inventory to buffer against fluctuations in
supply or demand. In contrast, most service companies often lack these options because
their products are intangible and cannot be stored. This leads to a greater focus on
timing, customer involvement, and quality in service industries (Chapman, 2005, p. 3).

In terms of the process categories within production planning and control, different pro-
duction environments, like make-to-stock, make-to-order, and assemble-to-order, require
different planning and control approaches. Each production environment has its own
challenges regarding the activities discussed before (Chapman, 2005, p. 3-4). A make-
to-stock environment refers to producing goods based on assumed or forecasted demand
and storing them until customer orders are placed. This allows for quicker fulfillment

2 THEORETICAL BACKGROUND 8

but requires efficient inventory management. On the other hand, make-to-order starts
production only after receiving a customer order therefore reducing inventory levels while
increasing lead times. In an assemble-to-order environment, pre-manufactured compo-
nents are assembled once a customer order is placed, which allows to strike the balance
between flexibility in the production process and inventory management (Chapman, 2005,
p. 3-5).

A medium-sized pharmaceutical manufacturing company like Dr. Pfleger can be catego-
rized in different ways. Most appropriately it might fall under the make-to-stock category,
as pharmaceutical products are typically produced in large batches based on forecasted
demand to ensure availability and compliance with stringent regulatory requirements.
This is only true for the company’s own products and not for commissioned production.
The latter might be considered into the assemble-to-order category as products are only
manufactured when an order is received, with input materials being already in stock most
of the time.

The above-discussed concepts and activities summarized as PPC are essential in deter-
mining a manufacturing company’s financial performance and market competitiveness.
Efficient scheduling of production activities ensures optimized use of a company’s re-
sources. It minimizes potentially existing production bottlenecks, which reduces losses in
the process and, therefore, reduces costs and improves overall profitability. Insufficient
production scheduling can result in excess production materials, product inventory, and
underutilized resources or might cause delays in order fulfillment. All of these problems
negatively affect a company’s profitability and its market position (Chapman, 2005, p.
46). Finally, efficient production schedules also improve a company’s speed and flexibility
in responding to unexpected market fluctuations and changing customer demands and
are therefore able to provide a competitive edge (Chapman, 2005, p. 92). This com-
petitive edge gained by PPC is significant in industries and markets where just-in-time
production is commonly applied (Chapman, 2005, p. 151).

In conclusion, understanding the various production environments within production
planning and control is essential for designing effective strategies for a company’s specific
needs. It is vital to know how production planning and scheduling work based on the
environment in which the company is situated. As we move forward to the next chap-
ter the focus shifts to operational efficiency measured in its performance using the OEE
metric. OEE plays a critical role in linking the production planning and control context
with real-time performance monitoring by providing real-time and on-a-glance insights on
the effectiveness of the production process. Regarding the topics of PPC, the activity of
creating production schedules and enhancing the human-based creation of such schedules
with the help of ML-methods will be the focus throughout the rest of the thesis.

The following section will explore the OEE metric and its calculation in detail and discuss
its relevance for optimizing production processes within the PPC framework.

2.3 Overall Equipment Effectiveness

The OEE is one of the most widely used metrics to measure and track operational perfor-
mance in production processes (Pintelon and Muchiri, 2008). It can be considered a tool
in the context PPC to monitor operational efficiency and highlight areas of improvement.
”The OEE tool is designed to identify losses that reduce the equipment effectiveness.

2 THEORETICAL BACKGROUND 9

These losses are activities that absorb resources but create no value.” (Pintelon and
Muchiri, 2008, p. 6). Losses in the context of OEE refer to time lost due to different
issues in the production process.

OEE is a compound KPI, which consists of the three metrics referred to as availability
rate, performance efficiency, and quality rate (Pintelon and Muchiri, 2008). As Figure 3
shows, the OEE is defined as the result of the multiplication of the three sub-metrics.
Per definition, OEE ranges from zero to one in the decimal space or from 0% to 100%
percent. An OEE value of 100% is considered optimal operational performance with no
losses, while an OEE close to 0% resembles a production process prone to high losses.

Figure 3: OEE Calculation (Industries, 2024b)

Scheduling losses refer to times lost from the total available time, usually measured
against 24 hours a day, in which machines are unused due to times not assigned in the
production schedule. This loss, therefore, means the machine was not planned to be
used for production even though it could have been produced due to reasons like order
shortages, material shortages, or similar issues. These scheduling losses are usually not
considered when calculating the OEE (Pintelon and Muchiri, 2008).

Availability Rate =
Operating Time (hrs)

Loading time (hrs)
× 100 (1)

The Availability Rate (Eq. 1) measures the downtime losses in the production process
depending on the specific definition. Downtime losses refer to planned or unplanned stops
of the production process, which are the times the machine is meant to be producing but
does not due to more significant issues in the machine’s operation. Planned stops are times
required to prepare and start the machines for production. Unplanned stops are related to
unexpected and extended equipment failures that are not easily fixable. The availability
rate is calculated from two subcomponents. First, the loading time, sometimes called
Planned Production Time (PPT), refers to the time the equipment is planned to operate.
Second is the operating time when the production equipment is running productively. It
is calculated by subtracting the downtime losses from the loading time (Eq. 2) (Pintelon
and Muchiri, 2008; Industries, 2024a; REFA, 2024).

Operating Time = Loading Time−Downtime (2)

Performance efficiency (Eq. 3) shows smaller time losses in the production process. It
can be described as the difference between the optimal or expected production speed and
the actual production speed. Losses here include minor production speed losses, low-scale
idle times (up to a few minutes), and minor machine or production process faults that
can be fixed quickly. The performance efficiency is calculated from the Theoretical cycle
time, the actual output, and the operating time. The Theoretical Cycle time is the ideal
time required to manufacture one product under perfect conditions, assuming there are
no interruptions in the production process at all. The Actual Output is just the amount
of units produced during a given period. (Pintelon and Muchiri, 2008; Industries, 2024a;
REFA, 2024).

2 THEORETICAL BACKGROUND 10

Performance =
Theoretical Cycle time (hrs)× Actual Output (Units)

Operating Time (hrs)
(3)

Finally, the Quality rate (Eq. 4) describes the time loss caused by producing faulty
products. It is the ratio of good produced products to total produced products. Higher
rates of faulty production mean a lower quality rate of the production process, and more
time is required to fulfill the necessary order amount of good quality products (Pintelon
and Muchiri, 2008; Industries, 2024a; REFA, 2024).

Quality Rate =
Total Production - Defect Amount

Total Production (Units)
× 100 (4)

To summarize, the OEE is a KPI that allows companies to monitor the effectiveness of
their equipment usage at a glance. Its subcomponents highlight specific areas for potential
optimization of the production process and can, therefore, be very useful to understand
where inefficiencies are created. As Figure 4 highlights, calculating the OEE is always
done against a specific period. The basis for the calculation is the loading time, also called
planned production time, which is the time after subtracting the scheduling loss from the
whole 24 hours in a day. With other KPIs, it is possible to take the scheduling loss into
account, meaning 24 hours a day as a basis. The losses described above are referred to
as the traditional six big losses (Pintelon and Muchiri, 2008; Industries, 2024a; REFA,
2024). A breakdown of the six-big losses can be seen in Figure 5 and summarizes the
previously discussed losses associated with each subcomponent of the OEE.

Figure 4: Overview of time losses measured by OEE sub-
components (Industries, 2024a)

Figure 5: OEE Six big losses after Industries (2024c)

According to Industries (2024d), an OEE value above 85% is considered a world-class
OEE. They also state that most companies, in reality, have OEE scores of about 60% or
even lower than 45%. Generally, they explain that it is more important for a company
to focus on improving its current score than on the absolute value (Industries, 2024d).

Lastly, it should be noted that out of the OEE, a system of further KPIs relevant to
describe the internal and external factors on a company’s production effectiveness de-
veloped as described by Pintelon and Muchiri (2008). In Pintelon and Muchiri (2008)
classification, OEE describes the internal, operations-related influences on production
losses, excluding the planned downtime. The Total Equipment Effectiveness Perfor-
mance (TEEP) includes the planned downtime, and the Production Equipment Effec-
tiveness (PEE) additionally includes commercial-related external reasons for no or low

2 THEORETICAL BACKGROUND 11

demand for the product. Finally, the Overall Factory Effectiveness (OFE) takes internal
and external business factors into account like stock control, internal/external logistic
and supply problems, regulation, organizational problems, and natural causes Pintelon
and Muchiri (2008).

From this classification by Pintelon and Muchiri (2008), it can be concluded that the
present thesis, with its focus on the OEE, is related primarily to improving operational
effectiveness with the help of machine learning. This focus means that the influence of an
operational improvement might be influenced or even overshadowed by the worsening of
the general economic situation, organizational issues, or numerous other problems inside
and outside the company. In the next chapter, the background concepts of machine
learning, related methods, and algorithms used in this thesis will be explained.

2.4 Machine Learning

”Machine learning is a branch of artificial intelligence that enables computers to learn
from data and improve their performance on specific tasks without being explicitly pro-
grammed.” (Kumar et al., 2023, p. vii). It can be described as teaching a computer to
recognize and understand patterns in the data that even humans might not recognize and
make decisions based on what it has learned from the data. The data used for machine
learning can be anything from text to images to videos to more complex high-dimensional
datasets. Machine learning as a research field has evolved a lot over the last two decades,
and ML has become a widely used method to tackle everyday problems in almost any
field of business and human activities. This development was fueled by the availability of
more (cheap) computational power and the collection of ever more extensive (training)
datasets (Haenlein and Kaplan, 2019; Jordan and Mitchell, 2015).

A machine learning algorithm is learning from a given experience in the form of given
data to solve a specific class of task, and some performance metric measures its learning
performance (Goodfellow et al., 2016, p. 99-105). Experience in this context means
a dataset containing many examples of the task to solve (Goodfellow et al., 2016, p.
104-105). These algorithms are used to solve various tasks like classification, regression,
clustering, translation, detection of data anomalies, and many more. Similarly, many
different learning algorithms and performance measures can be imagined (Goodfellow
et al., 2016, p. 99-103).

ML algorithms can be divided into three different learning methods: Supervised Learning
(SL), Unsupervised Learning (USL), and Reinforcement Learning (RL) (Goodfellow et al.,
2016). The most commonly used learning method is supervised learning, which provides
the algorithm with labeled training and certain target data. Generally, SL and USL can
be differentiated primarily due to what experience or data they use to learn, where the
former, as mentioned, uses labeled training data, while the latter uses unlabeled training
data. The algorithm shall then learn the patterns in the data connecting training and
target data (Goodfellow et al., 2016). This thesis will use supervised learning to solve
the regression task to predict the OEE.

In ML, three essential concepts are used to evaluate a model’s learning performance. First
is the error function, which refers to a mathematical formula used to compute the error
between a model’s prediction and the actual target value. It is applied to each individual
prediction and usually measures the difference between prediction and actual. The loss

2 THEORETICAL BACKGROUND 12

function refers to the aggregation of the outcome of the error function on all individuals
across the entire dataset. This aggregation is commonly done by averaging the errors
over all individuals, but sometimes weighting is applied. The loss function is used as the
objective value for the model to minimize while training. Finally, performance measures
allow for evaluating a model’s overall performance after finishing training. Often, per-
formance measures and loss functions are the same mathematical function where one is
applied while training and the other after training solely for validation Goodfellow et al.
(2016).

This chapter does not aim to explore all possible or available methods and measures but
focuses on the subset most relevant to the regression task at hand. The next subchap-
ter will briefly explain a regression problem or task and what models are available and
commonly used to solve it.

2.4.1 Regression Problems and Models

A regression problem or task asks the algorithm to predict a numerical value given some
data input (Goodfellow et al., 2016, p.101 & 107). To solve this task a learning algorithm
is asked to output a function f : Rn → R (Goodfellow et al., 2016, p.101), which means
predicting or calculating one value out of a multitude of given numeric input values, given
in the form of a vector x ∈ Rn. Generally, learning behavior is emulated by most ML
algortihms by searching for the optimal set of weights or rules to minimize the prediction
error measured, which is done with the chosen error and loss function (Goodfellow et al.,
2016, p. 107-109).

The learning algorithm called linear regression is the most commonly known and most
straightforward way to solve a regression problem (compare chapter 2.4.3). Like many
learning algorithms, linear regression learns by fitting the model’s weights, sometimes also
referred to as parameters, such that the loss function on the training set is minimized.
As the name says, linear regression aims to find a linear function f that calculates the
prediction based on a vector multiplication between the transposed weight vector and
the input vector (Eq. 5). Due to this, it cannot learn non-linear relationships, which
are pretty standard in real-world data. More complex models are required (Goodfellow
et al., 2016, p. 109 & 110).

ŷ = wTx = w1x1 + w2x2 + · · ·+ wnxn (5)

Polynomial Regression (compare Chapter 2.4.3) extends linear regression by being able
to learn a polynomial function, which allows for modeling non-linear relationships in the
original dataset. A linear regression model is considered a polynomial regression with a
degree of one. The Support Vector Machine (SVM) algorithm searches the hyperplane
that maximally separates the given data instances, and they use the kernel trick to
handle non-linearly separable data by transforming it into a higher-dimensional space,
where a linear separation is possible without explicitly computing the transformation.
They can be used for Support Vector Regression (SVR) to solve regression problems
(compare Chapter 2.4.5). K-Nearest Neighbors Regression (k-NNR) is another simple
regression algorithm that predicts an instance’s target value by averaging the outcomes
of the instance’s nearest neighbors in the feature space (Goodfellow et al., 2016).

2 THEORETICAL BACKGROUND 13

Furthermore, machine learning algorithms based on decision trees can be used to solve
regression problems. These algorithms can use only a single decision tree like Decision
Tree Regression Regression (DTR) (compare Chapter 2.4.4) or ensembling methods uti-
lizing a multitude of different decision tree models and combining their predictions to im-
prove performance (compare Chapter 2.4.8). Neural Networks (compare Chapter 2.4.6),
especially deep learning models, capture complex non-linear relationships by adjusting
multiple layers of neurons based on the input data (Goodfellow et al., 2016).

Whichever algorithm is used to solve the regression task, the performance metric and
loss function must be appropriately chosen to guide the model’s training process toward
the desired outcome. The next subchapter will discuss which loss functions apply to
regression tasks and, more specifically, to the prediction of KPIs like the OEE. Afterward,
the machine learning algorithms mentioned above will be explained in more detail.

2.4.2 Loss Functions for Regression Problems

Selecting an appropriate loss function for a learning task is critical in developing ML-
models, which is especially true for regression tasks predicting KPIs due to the high
sensitivity of KPIs like the OEE to even minor prediction errors. The selection of the
error loss not only determines the optimization process during model training but also
significantly impacts the accuracy and generalization of the model’s later predictions.
Among the various loss functions available, the Mean Squared Error (MSE) and its close
derivation, the Root Mean Squared Error (RMSE), is one of the most commonly used
in regression tasks across different domains (Bajaj, 2022; Goodfellow et al., 2016; Allen,
1971). Furthermore, the Mean Average Error (MAE) and the R2 Coefficient of Determi-
nation (R2) are frequently used to analyze errors and performance of regression models.
Each loss function has advantages and disadvantages based on its mathematical proper-
ties. It should be noted that the loss function and the performance metric are usually the
same for regression tasks. This subchapter briefly evaluates the suitability of the various
loss functions for models for predicting KPIs, motivating the choice of loss function for
the present project.

The MAE, MSE, and RMSE are most effective when the prediction errors follow a normal
distribution (Goodfellow et al., 2016). In many regression tasks, including those involved
in KPI prediction, it is reasonable to assume that the errors are normal distributed. Under
this assumption, they provide an accurate measure of model performance, ensuring the
model is optimized to minimize the typical deviations from the actual values. This char-
acteristic of MAE, MSE, and RMSE is well-documented in the literature, among others
discussed by Patton and Timmermann (2007) in their evaluation of forecast optimality.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (6)

RMSE =
√
MSE (7)

The defining characteristic of the MSE is its sensitivity to larger errors and outliers. This
sensitivity exists because the MSE squares the prediction error before averaging them,
which amplifies larger errors over than smaller ones, as can be seen in the Equations 6
and 7 (Bajaj, 2022; Goodfellow et al., 2016). In the equations, yi represents the actual

2 THEORETICAL BACKGROUND 14

value, while ŷi represents the predicted value for the i-th data point. This sensitivity
characteristic of MSE makes those two loss functions particularly effective in identifying
and penalizing models that exhibit many more significant prediction errors or outliers,
which is valuable in KPI prediction tasks where differences between target and predicted
values can have substantial implications for the later decision-making process.

The main difference between the MSE and RMSE is that the latter measures the loss in
the same units as the target and prediction values, while the former measures the loss in
squared units (Bajaj, 2022). This difference in measurement has no impact on the model
training itself. However, it is relevant for the interpretation of results and explainability
of a model’s performance to the customer, which is especially true in the present task
because the error values of predictions for KPIs like OEE would become smaller due to
the squaring operation, which is counter-intuitive for non-technical stakeholders in the
project.

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

In opposition to the (R)MSE, the MAE (Eq. 8) is robust against outliers due to not
amplifying large errors by squaring them. The interpretation of MAE is intuitive and
gives an easy understanding of how far predictions deviate from the actual target values.
One key disadvantage of the MAE is that, unlike the (R)MSE, it is not differentiable and,
therefore, not well optimizable. Therefore, it is not used as a primary loss function in
this project but as a support metric to better understand the model performance, which
is more robust towards outliers that data quality issues might cause (Bajaj, 2022).

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(9)

R2
a = 1−

(
(1−R2)(n− 1)

n− p− 1

)
(10)

The R2 coefficient of determination (Eq. 9) is a common metric for assessing regres-
sion model performance, indicating how much of the variance in the target variable y
is explained by the model. If R2 = 1, the model explains all variability; if R2 = 0, it
explains none. A negative R2 suggests the model performs worse than a simple mean-
based prediction. However, R2 can be misleading, as adding more predictors increases it,
even if they do not improve the model. Adjusted R2 (Eq. 10) accounts for the number
of predictors, providing a better comparison between models with different numbers of
variables. It penalizes the inclusion of unnecessary predictors, only increasing if a new
variable improves model performance. Unlike R2, adjusted R2 does not automatically
rise with more predictors, making it a more reliable measure, although it is always lower
than R2 and slightly harder to interpret (Bajaj, 2022).

In Table 2, the available loss functions and performance metrics discussed in this chapter
are briefly summarized by their characteristics.

This chapter and the previous introduction chapters answers the second research question
defined in chapter 1.2 with the theoretical foundation. The MAE was considered unsuit-
able to optimize models in this context because KPIs are very sensitive to even small
changes. Larger errors are penalized by the (R)MSE which is considered advantageous

2 THEORETICAL BACKGROUND 15

Table 2: Comparison of Loss and Performance Metrics for Regression Problems

Loss Function Sensitivity towards
Outliers

Optimizable? Intuitive Inter-
pretation?

Explanation
Only?

MSE Yes Yes No No

RMSE Yes Yes Yes No

MAE No No Yes No

R2 No Yes Yes Yes

R2
a No Yes No Yes

by the author for this use case. The RMSE is considered the most suitable loss func-
tion by the author to predict the OEE because its more intuitive interpretability for the
stakeholders and developers in this use case compared to the MSE. The MSE would be
similarly suitable for the sole purpose of model training and optimization as the RMSE.

Now the next chapters will describe the functioning of various ML-algorithms and tech-
niques to solve regression problems. Together with a overview of previous research about
machine learning applied in PPC, these chapters will provide an answer the first research
question.

2.4.3 Linear, Polynomial and Ridge Regression

The introduction of several less complex regression algorithms in this chapter follows the
work and notation of Goodfellow et al. (2016). Linear regression is one of the simplest
algorithms of the supervised learning paradigm and has roots in the statistical field.
Linear regression is the most basic type of regression analysis, and the goal of the model
is to find a linear function of the inputs x ∈ Rn for a scalar target y. Mathematically,
the predicted output ŷ is given by:

ŷ = w⊤x+ b

where w is the weight vector and b is the bias. The model learns these parameters by
minimizing the MSE between the model’s predicted values and actual target values in the
training dataset. When the MSE is minimized, this problem has a closed-form solution
for the normal equations.

Polynomial regression models are an extension of linear regression models because they
include polynomial terms for the input features and enable those models to learn non-
linear relationships between the input features and the output. Some are non-linear
and cannot be modeled by linear regression, proving that this polynomial regression is a
higher-capacity model. A polynomial regression of degree d can be expressed as:

ŷ =
d∑

i=0

wix
i

While this polynomial transformation enhances the modeling capacity, it also comes with
the added risk of overfitting. These risks are especially so when the polynomial degree is

2 THEORETICAL BACKGROUND 16

too high. Such overfitting happens when the model is trained with excessive precision so
that it captures noise in the data set rather than the pattern.

Some methods used to reduce overfitting include regularization, where one of the most
popular techniques is ridge regression, also known as L2 regularization. Ridge regression
introduces a penalty term to the chosen loss function, typically the MSE. This penalty
J(w) is proportional to the squared magnitude of the weights:

J(w) = MSE + λ∥w∥22

where the regularization parameter λ that determines the degree of the regularization
penalty; the higher λ, the model tries to achieve simpler solutions with smaller weights
to avoid overfitting.

By incorporating higher-level mathematical features such as polynomials, balancing the
model, and regularizations, one can perform better on unseen data depending on the
model’s capacity for the given problem. In the present project, all the techniques men-
tioned above are used, and the basic and simplest one is linear regression, which acts as
a benchmark for all the other used algorithms.

2.4.4 Decision Tree Regression

Initially, the decision tree was a simple graph-based way to manually implement AI with
predefined decision thresholds by humans. Decision trees today refer to non-parametric
algorithms that work by repeatedly splitting the feature space of the given training dataset
into ever smaller regions based on feature values. Each split results in a node potentially
with its subtree or leaves. At each created node, the algorithm chooses a feature and a
threshold value for this feature to split the data so that the output within each resulting
subtree is as homogeneous as possible. This decision process continues until the created
decision tree meets some initially defined stopping criterion. Commonly for decision
trees, a maximum depth or minimum number of nodes per leaf is chosen as the stopping
criterion (Goodfellow et al., 2016, p.145-146).

”Each node in the tree represents a decision or prediction based on a particular input
variable and the tree branches represent the possible outcomes”(Kumar et al., 2023, p.
189). The so-called leaf nodes at the end of the tree, which are those nodes that do not
have their own children nodes or subtrees, contain the predicted values for a provided
input individual that falls into this region of the feature space. Those predicted values
are, therefore, associated with the decisions made on the way to the leaf. In summary, the
decision tree algorithm creates a piecewise constant approximation to the searched target
function of a given classification or regression task (Goodfellow et al., 2016, p.145-146).

Even though decision trees can model non-linearity in data and target function, overfitting
is also present in this case, especially when the tree is grown very deep. There are two
ways to avoid such overfitting problems in decision trees: Pruning, which involves the
removal of some branches in the decision tree after it has been developed, OR using
regularization parameters to limit the development of the tree. This regularization works
similarly to the regularization used for the previously discussed simple regression models.
Visual representation of decision trees makes them highly interpretable, as one can trace
the decisions made at each node based on the learned threshold values to understand

2 THEORETICAL BACKGROUND 17

Figure 6: Decision Tree Concept (Goodfellow et al., 2016, p. 145)

the final prediction made by the model (Goodfellow et al., 2016, p.145-146). Figure 6
presents an example of a decision tree with binary decision boundaries and includes only
zeros and ones at each decision step.

While trees can be as simple as this figure, they are usually significantly deeper and can
have more leaves than just one per node. Despite their simplicity and interpretability,
decision trees have their inbuilt limitations, including sensitivity to small changes in the
data and a general tendency to create overly complex trees, which leads to higher com-
putational costs. The latter issue can be prevented by choosing suitable hyperparameters
for modern implementations of the decision tree algorithm.

Ensemble learning methods like random forests or boosting algorithms like XGBoost can
resolve many weaknesses of single decision tree models by combining the predictions of
multiple learned decision trees to reduce variance and improve predictive performance
(Goodfellow et al., 2016, p.145-146). Such ensembling methods will be discussed shortly
in the chapter 2.4.8.

2.4.5 Support Vector Regression

SVR is a modification of the SVM, which is mainly used for classification but also used
for regression problems. SVR, in its essence, determines the function that differs from
the actual observed values not more than ϵ and, at the same time, is as flat as possible to
generalize on unseen data which is especially important in regression tasks (Goodfellow
et al., 2016, p. 141-142).

SVR’s structure is relatively simple. They create a decision boundary that partitions data
points without regard to its class but rather by the distance to the regression hyperplane.
The concept is to reduce the prediction error for data points within a margin while
overlooking the errors within the ϵ-tube. The error is deemed acceptable if the predicted
value falls within this range. This is because the model should not be penalized for close
values of the actual values (Goodfellow et al., 2016, p. 141-142).

Another essential feature of SVR is the application of the so-called kernel trick. This
trick enables the algorithm to work in high-dimensional feature space by substituting a
dot product with a kernel function. This kernel trick uses the Gaussian kernel, or radial
basis function since it enables the algorithm to model the non-linear relation between
features and outputs. The kernel function works out the similarity of the data points
in this transformed space, and thus, the model can perform optimally given highly non-
linear data. The dependency of the input features on the prediction function in this

2 THEORETICAL BACKGROUND 18

transformed space is linear, making it computationally efficient to optimize (Goodfellow
et al., 2016, p. 141).

Nevertheless, SVR has a major drawback regarding computational complexity, which
becomes a big issue when working with big data. The disadvantage is that the kernel
function must be computed for every pair of training samples during the training and
prediction processes. To this end, the model utilizes a portion of the training set referred
to as the support vectors, which are the data points outside the ϵ-tube. The support
vectors determine the position and direction of the regression hyperplane. As such, by
only focusing on these vectors, the model can achieve efficiency while at the same time
maintaining accuracy (Goodfellow et al., 2016, p. 142).

In conclusion, SVR is a very useful and versatile technique for regression problems, espe-
cially when the data is not linear, as seen with the kernel trick. Nevertheless, due to its
high computational complexity, it can be slower when processing large amounts of data
is required.

2.4.6 Neural Networks for Regression

Neural networks have become popular in regression tasks due to their capability of captur-
ing non-linear relationships in the data. The explanation of the neural network’s working
principle and the subsequent introduction provided here are taken from Goodfellow et al.
(2016) chapter six.

Simply put, a neural network is a structure with layers of nodes or neurons that are
connected in some way. Every neuron takes the input data, performs a weighted sum, and
then applies an activation function to it. Multi Layered Perceptron (MLP) is a popular
architecture for neural networks. MLPs consists of an input layer, one or multiple hidden
layers and the output layer; this makes it a basic structure for regression models.

The network is trained to change weights between neurons in a manner called back-
propagation to learn from given data. Backpropagation, together with gradient descent,
enables the network to adjust the weights to reduce the error between the network’s
output and the expected output. Every iteration of the model helps it get closer to the
optimal solution, which is why neural networks are very efficient for problems with large
data and complex relations between features.

A major strength of neural networks is their ability to capture non-linear relationships,
which is something that linear regression models cannot do. In the real-world dataset,
this flexibility enables neural networks to learn many dependencies that would have oth-
erwise been overlooked. Furthermore, the neural networks are not limited to the shallow
architecture such as MLP; the deep learning architectures, where there are many hidden
layers, increase the ability of the network to learn from the data and thus increase the
regression performance.

For instance, deeper networks can grasp more abstract features than shallow ones and
are suitable for complex data sets. However, deeper networks may consume more com-
putational power and are vulnerable to overfitting; however, techniques such as dropout
and regularization can be used to prevent these problems, thus making neural networks
suitable for regression problems.

2 THEORETICAL BACKGROUND 19

Hence, the neural networks, through multiple layers of abstraction and non-linear trans-
formations, provide a flexible and effective tool for solving regression problems, especially
in complex relationships.

2.4.7 Early Stopping

Early stopping is a way of stopping the training process of the neural networks in order to
prevent overfitting of the model especially when the model is large and complex. The idea
behind early stopping is simple: during training a model is evaluated using the training
set and a separate validation set. Typically, when training continues, the error rate of
the training set will reduce, but the error rate of the validation set will rise at some point
due to overfitting of the training set (Goodfellow et al., 2016, p. 246-247).

Early stopping works by checking the model’s performance on the validation set in each it-
eration or epoch and stopping the model training when the performance on the validation
set does not continue to increase further. This method enables the model to stop when it
has picked up enough information to predict new data without being overly complex and
memorizing the training data. This technique benefits neural networks with numerous
layers or parameters because overfitting is a frequent problem (Goodfellow et al., 2016,
p. 246-247).

Thus, early stopping serves as a preventative measure for stopping the model training
at the right time to learn the essential patterns of the data without overfitting and thus
enhance the model’s performance.

2.4.8 Ensemble Learning

Ensemble learning is a fundamental machine learning method that involves using multiple
models to make predictions to improve the overall performance of the models. Ensemble
methods are different from traditional learning algorithms as they combine the predictions
of several algorithms to give more accurate and reliable results. Otherwise, several models
of the same algorithm with different initializations, training sets, or parameters can be
used. The concept is that the different models used in the ensembling process will have
different errors; hence, the overall error will be reduced, and the predictions will be
accurate.

Two of the most common techniques of creating an ensemble are called bagging and
boosting. Bagging is a method that can be described as Bootstrap Aggregating, which
means that several models are created via training on different subsets of the overall
training data set, which can be obtained by bootstrapping. The predicted outputs of
each trained model are then combined in the following manner: the predicted outputs
are averaged in regression problems, and the predicted outputs are voted in classification
problems. Ensembling is especially useful in minimizing the variance in the predictions
made and avoiding overfitting. An example of bagging is the Random Forest, where
several decision trees are used to make a prediction to increase the model’s accuracy
(Goodfellow et al., 2016, p. 256-258).

On the other hand, boosting ensembling operates in a different way. It operates on
a concept of training models in a sequential manner where each subsequent model is
trained to correct the mistakes of the preceding model. Boosting techniques help decrease

2 THEORETICAL BACKGROUND 20

the model’s bias, which enables the ensemble to correct its mistakes in successive steps.
AdaBoost is one of the most famous boosting algorithms, which uses the strategy of
adjusting the weights of the misclassified instances so that they will gain more focus in
the subsequent rounds. However, overfitting is a common problem that occurs if the
boosting is not appropriately controlled (Goodfellow et al., 2016, p. 256-258).

Ensemble learning can be beneficial in production planning and predicting KPIs. In
this way, the ensemble methods can improve the accuracy and decrease the error of the
KPI predictions, and thus, the decisions made on their basis will be more justified. The
bagging is used to stabilize the predictions, and the boosting is used to fine-tune the
predictions, which is more efficient than the individual models when it comes to real-
world data with complex and non-linear relationships.

2.4.9 Data Encoding and Standardization

In machine learning, it is crucial to deal with categorical features since these features
should be presented in a numerical form suitable for most machine learning algorithms.
This is especially true for regression tasks because these features can have several types of
representation, for example, binary, nominal, or ordinal. Binary data is a form of binary
decision, that is, a decision between two options; these options can be yes or no but can
also be any two options, for instance, day or night. Nominal data are categorical data
that have no order. Ordinal data is characterized by the fact that it has a certain order
of categories inherent in it. For example, color (red, blue, green) is a nominal feature
while education level (high school, bachelor’s, master’s) is ordinal.

Most machine learning algorithms work with numerical data, so categorical features
should be converted into numbers. Some machine learning algorithms are specifically
designed to work with categorical variables or have inbuilt encoding functions. This
thesis mainly employs algorithms that take numerical data as input without any other
information. Some standard encoding methods are label encoding, ordinal encoding, and
One Hot Encoding. Categorical features are often converted into the values of zero and
one and, therefore, do not need special encoding methods. Of course, they can also be
encoded with any other methods if desired.

Label encoding assigns a new integer to each category of the given nominal or ordinal
feature without consideration for their actual order. For instance, in a color feature, ’red’
may be assigned the code 1, ’blue’ the code 2, and ’green’ the code 3. Ordinal encoding
is ideal for data with a particular order, as the name suggests. For example, speed levels
can be represented with ’slow’ as 1, ’moderate’ as 2, and ’fast’ as 3. The assignment
of the concrete value can be necessary for the real-world representation of the machine
learning model as, in most cases, the algorithms consider two instances as more different
if the numerical representation is quite different.

One-hot encoding generates a binary column for every category in a feature. For instance,
if the color feature has ’red’, ’blue’, and ’green’, then three binary columns will be gen-
erated, and each row will have 1 in the column corresponding to the data point’s color.
One hot encoding is a very effective data representation method since it can represent
any data and cause large feature spaces when dealing with categorical features with many
categories. This could affect the rate of convergence of the model, the memory used by
the model, or the efficacy of the produced model.

2 THEORETICAL BACKGROUND 21

After data is numerically encoded, it is usually standardized or scaled, particularly when
working with algorithms sensitive to the range of input variables, such as SVM or neural
networks. The most popular method is Standard Scaling, which ensures that all the
features have a mean of zero and a standard deviation of one. The formula for standard
scaling is: The formula for standard scaling is:

z =
x− µ

σ

where x is the feature value, µ is the mean of the feature and σ is the standard deviation
of the feature. Using the formula for each example of feature the whole dataset can be
scaled to eliminate the differences in scaling of all features. Thus, by normalizing the
data, we can ensure that every feature will be equally important for the model’s learning
process.

Thus, data encoding and standardization are crucial preprocessing steps that help ma-
chine learning models work with categorical data and enhance the results for datasets
where feature scaling is crucial for models like SVM and NN.

2.4.10 k-Fold Cross Validation

The popular k-fold cross-validation strategy is in machine learning for training and testing
models. Cross-validation is a process that is based on k subgroups, which are derived
from the original data set and are referred to as ”folds”. The cross-validation algorithm
iterates k times over the entire dataset. In each iteration k-1 folds will be used as trainig
sets, while the remaining fold can be used for validation of the model. Furthermore,
model’s performance after training with k-fold cross-validation is calculated by averaging
the results of all the k folds to get a more precise and reliable assessment of the model’s
performance and its capability of generalization (Fadheli, 2024). The other reason why k-

Figure 7: K-fold cross-validation concept (Fadheli, 2024)

fold cross-validation is essential is because it helps make the best use of the data, especially

2 THEORETICAL BACKGROUND 22

when the data set is small. In contrast, the hold-out method can be very unstable due
to the somewhat ad hoc way the data is split into training and validation sets. The
k-fold cross-validation helps mitigate this problem by ensuring that each data point is
used for training and validation (Jung, 2018). Furthermore, this technique can give a
better idea about the model’s performance on the unseen data, especially when applied
to classification or regression problems Wong and Yang (2017). K fold cross-validation
is one of the simplest and most effective methods of cross-validation of the model and,
in many cases, eliminates extra computational cost and is therefore used extensively for
model training in the present project.

2.4.11 Hyperparameter Optimization Methods

One of the interesting tasks in machine learning is hyperparameter tuning, which is
indispensable to achieving the highest accuracy of the model. Hyperparameters are a
form of adjustment mechanism within models that help identify the best results with
unseen data. There are several hyperparameter tuning techniques, such as grid search,
random search, and more advanced search techniques like Optuna.

The basic grid search method is the exhaustive or permutational search, where all pos-
sible combinations of the set hyperparameters are tested. The technique goes through
every hyperparameter defined in the search space and trains the model in each possible
hyperparameter combination. Although grid search is easy to apply and guarantees the
selection of the best combination of parameters within the search space, the amount of
calculations grows fast with the number of hyperparameters. This inefficiency makes grid
search less usable, especially for problems or models that have numerous hyperparameters
and usually occur on a large scale (Bergstra and Bengio, 2012).

An alternative to grid search is the so-called random search. It is less time-consuming be-
cause it randomly chooses hyperparameter values and their combinations for assessment.
Compared to grid search, random search may not necessarily search the entire solution
space but may concomitantly offer a higher-performing approximation in less time. It
has been revealed in the experiment of Bergstra and Bengio (2012) that random search is
usually more effective than grid Search, mainly when only a few hyperparameters define
model performance. Generally, the random search method helps search large solution
spaces and is more performant than a grid Search, though it depends on the model and
implementation (Bergstra and Bengio, 2012).

Optuna is a second-generation hyperparameter optimization method that utilizes Bayesian
optimization and makes efficient pruning to improve hyperparameters. While Grid Search
and Random Search provide a fixed search space, Optuna adaptively constructs the space
by using the “define-by-run” type of API to construct search space as trials go on. Those
that do not perform well are pruned by Optuna’s mechanism early, which is a good way
of preserving computational costs. Due to the second property, Optuna is particularly ef-
fective in large-scale models, for example, neural networks, in which training is costly. In
some of them, Optuna surpasses other methods, such as Random Search and Grid Search,
particularly in intricate procedures like neural architecture search and hyperparameters
optimization for deep learning models (Akiba et al., 2019).

In summary, though Grid Search helps thoroughly search hyperparameter space, it is
much too demanding regarding computational costs. Random search is useful because

2 THEORETICAL BACKGROUND 23

it works by picking combinations of hyperparameters at random, decreasing computa-
tion costs and usually still finding very good parameter values. However, Optuna is a
next-generation approach that dynamically optimizes hyperparameters based on Bayes
optimization and uses efficient pruning strategies. Therefore, it works with larger and
more complex machine-learning tasks. For the task at hand all methods have been tested
and due to performance limitations only random search and optuna were applicable to
the practical problem in this thesis.

2.4.12 Model Explainability with SHAP-Values

The term explainability in the context of machine learning refers to making decisions
made by a model understandable to human stakeholders. It is particularly important in
domains where human trust, transparency, and accountability are critical, like healthcare,
finance, or in the case of this thesis production planning. The latter requires human trust
as production planning is one of the most critical business decisions for manufacturing
companies with high influence on financial success. Without providing explainability,
models often act as ”black boxes,” where it is difficult to know for a human why a certain
prediction was made leading to distrust in the models abilities and its practical usage
(Merrick and Taly, 2020).

There are numerous techniques within the field of, so called, Explainable Artificial In-
telligence (xAI) aimed at making models more interpretable. One of these xAI tech-
niques, which is widely used and also applied in this thesis is SHapley Additive exPla-
nations (SHAP). SHAP values provide a way to break down a model’s predictions into
different contributions values calculated from each feature. This technique is based on
the mathematical theory of cooperative game theory and more specifically the Shapley
value which is a method of fairly dividing the payoff of any cooperative game (Merrick
and Taly, 2020).

SHAP values work by assigning each feature a specific value in a given prediction. This
calculation of the contribution involves retraining the model with and without a given
features, hence determining the extent of contribution of each feature in the prediction.
This process enables one to determine the extent of the feature in reducing the model’s
prediction or increasing it or the overall impact of the feature on the average prediction.
The computation of SHAP values may be computationally expensive since it entails
averaging over all possible feature interactions in a given data set. However, this high
complexity guarantees game theoretical fairness and thus makes SHAP values a reliable
method for feature explanation. In practice, SHAP values can be visualized through
several plots that help to understand the contribution of each feature for an individual
prediction or across the entire model, which is both local and global explanations (Merrick
and Taly, 2020).

In the context of production planning and this present project, SHAP values can assist in
the enhancement of human confidence in the trained models through the understanding
of the learning process of the model and the effects it has on the outcome as well as the
directions of the chosen features. Therefore, SHAP values are a useful tool to explain
the decision-making process of a model and its features to the users, thus increasing the
model’s interpretability.

2 THEORETICAL BACKGROUND 24

2.5 Machine Learning in Production Planning and Control

As discussed briefly in the Introduction and in more detail in the further chapters, this
thesis evaluates whether machine learning can help improve the OEE at the site of Dr.
Pfleger as a cooperation partner. The OEE as an operational metric can primarily be
influenced by production planning and control (PPC) measures (compare chapter 2.2 &
2.3). Attempts to improve PPC through the application of ML methods have been widely
studied in research, as shown by the meta-analysis by (Usuga Cadavid et al., 2020).

The research into ML applied topics in the area of PPC has been done extensively, explor-
ing a variety of use cases and using a multitude of ML techniques, each offering different
benefits and drawdowns depending on the goal and context of the case study. Some used
machine learning methods in production planning and control settings include neural
networks (NN), decision trees, reinforcement learning (RL), and ensemble methods like
random forests according to Usuga Cadavid et al. (2020). These methods have been used
in this context because they can effectively manage the complexity and variability inher-
ent in modern production environments and their related datasets, characterized by high
uncertainty, machine breakdowns, and dynamic and rapid changes in demand. Today,
many companies try to optimize their OEE with various approaches like predictive main-
tenance, smart production scheduling, smart product or process design (Usuga Cadavid
et al., 2020; Zubair et al., 2021; Chikwendu et al., 2020; El Mazgualdi et al., 2021).

As Figure 8 shows that the use case of the plurality of papers related to ML in PPC
focused on ”Smart Planning and scheduling” according to Usuga Cadavid et al. (2020). In
addition to the classification of the use cases in the above categories, Usuga Cadavid et al.
(2020) determined the learning type and application of ML of the analyzed papers. The
result is that the vast majority of studies use supervised learning methods like in the order
of occurrence neural networks, decision trees, regression, ensemble learning, SVM, kNN,
among others (Figure 9 & 10). These are the same methods discussed in the previous
chapters and selected for evaluating methods in this thesis. Furthermore, each use case
has been annotated with different characteristics by Usuga Cadavid et al. (2020), which
determines how the ML models are applied. These characteristics are derived from the
classical theory of Industry 4.0 and include self-organization of resources, self-regulation
and self-learning of the production process, knowledge discovery and generation, as well
as smart human interaction.

Figure 8: Share of the analyzed sample by proposed use case (Usuga Cadavid et al., 2020, p. 17)

2 THEORETICAL BACKGROUND 25

As Figure 11 describes, the majority of papers could satisfy the characteristics connected
to autonomous machine learning systems that do self-learning, self-regulation, and self-
execution of self-organization within the production process. Only a minority of cases
are characterized as customer, human, or environment-centric. The present paper can
satisfy the characteristic smart human interaction primarily. Secondly, the characteristics
of knowledge discovery and generation and self-learning of the production process are
satisfied.

Usuga Cadavid et al. (2020) also provides a cross-analysis between the use case and the
industry 4.0 characteristics of the paper and recognizes that most papers related to smart
planning and scheduling are related to self-organization of resources, self-regulation and
self-learning of the production process. Only a small minority of papers on the use case
satisfied the characteristic of smart human interaction as this thesis does. Therefore, it
fills a gap in this research area. Furthermore, this analysis highlights that the vision of
Dr. Pfleger, which is an autonomous production planning process, aligns with the general
direction of research in this area.

Finally, like the present paper, Usuga Cadavid et al. (2020) recognizes that artificial and
management data dominate the research landscape in this field and disregards other data
sources either due to limited availability, data quality issues, or difficulty in collecting or
using further data sources. Like in this present thesis, the second most commonly used
data source is product data, which describes the characteristics of the products produced
Usuga Cadavid et al. (2020); El Mazgualdi et al. (2021).

Figure 9: Number of uses by
learning type (Usuga Cadavid
et al., 2020, p. 14)

Figure 10: Number of uses by technique
family (Usuga Cadavid et al., 2020, p. 13)

Figure 11: Number of papers by I4.0 characteristic
(Usuga Cadavid et al., 2020, p. 18)

It can be concluded that the present thesis resides in the same area of research as analyzed
by Usuga Cadavid et al. (2020) but focuses on one of the rarer characteristics of industry
4.0 researched so far. The next chapter will outline the business environment, define
the business problem and requirements based on the analysis provided, and discuss the
characteristics of machine learning in production planning and control. Furthermore, this
chapter and the previous chapters briefly explained several machine learning algorithms,
which are considered the answer to the first research question outlined in chapter 1.2. It
should be noted that this is not an entirely conclusive answer and that several missing
algorithms could likely be used and be suitable to predict the OEE. The author aimed
to select a variety of algorithms from different technique families that are suitable for
the task at hand in order to provide a base for evaluation. This base should provide
an understanding of which technique family is suitable by example algorithms in each
family.

3 AS-IS ANALYSIS AND CONCEPTUAL DESIGN 26

3 As-Is Analysis and conceptual design

Now that the previous chapter provided the theoretical basis for the thesis, this chapter
marks the start of the structure outlined in chapter 1.3 based on the DSR framework
(Holzweißig, 2019). This exploratory prototype project is developing an entirely new tool
with no predecessor. Therefore, only the human-driven process with the MES and SAP
system can be described in an As-Is analysis. Additionally, this chapter will describe the
project goals, the solution concept by Dr. Pfleger and requirement definition process.

3.1 Business Environment

The cooperation partner for the present thesis is a medium-sized company, Dr. Pfleger
Arzneimittel GmbH, focused on the manufacturing of pharmaceutical products and lo-
cated in Germany. It manufactures both its original and commissioned products and sells
them primarily to pharmacies within Germany and Austria or to distributors all over the
world (Pfleger, 2024b). The company provides over 60 different pharmaceutical products
(Pfleger, 2024a), of which there are three general categories of products: Pills in blisters,
(lozenges) tablets in tins, and ointment in tubes. Each product category is associated
with different production lines in the company’s production hall. All production lines
consist of a clean room containing the actual production machine and a packaging ma-
chine outside the clean room that puts the actual pills, tables, or ointments into their
respective packaging.

Figure 12: Pharmaceutical production and packaging machines

All production lines, furthermore referred to as lines, packaging sections are connected
to a central Manufacturing Executive System (MES). The cleanroom production area
is not connected to the central MES. The MES semi-automatically collects data about
the packaging process after human action starts the process. This data collection is done
via sensors and time trackers built into the packaging machines. Because the clean room
production machines are not connected to the MES, they do not produce easily available
data for further analysis. Due to this limited data availability, the project focuses only
on the packaging area of the lines.

The packaging of products is mostly automatically done by the machines. The blister
lines’ process will be described as an example. First, the machine packs individual blisters
coming out of the clean room section of the production line on an assembly line into a
folding box. Then, a leaflet containing information about the medicine is added into the

3 AS-IS ANALYSIS AND CONCEPTUAL DESIGN 27

folding box. Afterward, the final folding box containing the blisters and leaflet is weighed
to check if it contains the right amount of individual pills or tablets to ensure product
quality. If there is a deviation of more than a few grams, the product is not considered
for sale but is scrapped. Now, a set of folding packages is wrapped in foil packaging into
larger chunks. Finally, these product chunks are packed into a larger shipping box. These
boxes are then stored and used for shipping and sales.

Even though the production lines run automatically, before production can be started,
human staff needs to adjust and potentially clean the machines before a new product
is produced. The effort caused by these adjustments and the cleaning process depends
highly on the type of product changeover. For similar products, only minimal adjustments
and no cleaning are necessary, usually taking only a few hours.

Table 3: Planned Setup Times for Different Product Changes

Type of Product
Changeover

Description Assumed
Worktime

Ingredient Change Full Line Cleaning and adjustment required 15 hours

Cartoner & Film
Change

Packaging size and wrapping foil adjustments 6 hours

Film Change Wrapping foil changes, machine adjustments 4 hours

Cartoner Change Packaging size changes, machine adjustments 4 hours

Batch Change Everything the same, minor adjustments 2 hours

For very different products, a complete cleaning and readjustment process of the en-
tire line is required, which can take an entire workday or even longer if there are staff
shortages. The company considers five types of product changeovers caused by different
characteristics of the products. The different types of product changeovers are described
in Table 3. Due to the potentially vastly different efforts depending on the time of prod-
uct change, choosing a production order and minimizing these efforts becomes essential
to optimize machine usage, resource efficiency, and therefore, the financial returns for the
company.

3.1.1 Order Planning Process

Several human planners manage the operations of the company’s production lines. Their
main task is planning the order in which specific products are manufactured, taking
various factors into account like material, staff, and line availability, required delivery
times, and optimal order of production to minimize effort and time losses. Additionally,
they need to decide which production line to use for each specific order. Some lines can
only manufacture certain products. For example, there are three blister lines where each
can produce roughly the same set of products. The tube production line is the only one
that can manufacture the ointments in tubes though and the canning line is the only one
that can produce certain pills stored in tins. Therefore, line decision-making is primarily
relevant for products that can be produced on several lines, usually blister-based products.

3 AS-IS ANALYSIS AND CONCEPTUAL DESIGN 28

The production schedule is planned long term, about half a year up to a year in advance.
Orders are added to the schedule based on an internal sales plan for the company’s prod-
ucts or an external manufacturing request to deliver certain products. Human planners
structure the production schedule into bigger sets of orders, producing similar products
and having similar delivery dates, which are so-called production campaigns. One cam-
paign can contain five up to roughly twenty orders, but there is no rigid definition of
a campaign’s size. Regularly short-term adjustments to the plan must be made due to
shifting delivery expectancy, material or staff shortage, or new short-notice external pro-
duction requests. These can affect the production process a few weeks, one week, or even
just one day ahead of the workday. To modify the production schedule, the planners

Figure 13: Production Schedule Planning Board in SAP at Dr. Pfleger

rely on an SAP-based interface. An example of this interface can be seen with redacted
product names in Figure 13 for the three blister production lines. The tool displays all
currently scheduled orders in a waterfall diagram, where the x-axis represents the pro-
duction timeline. The length of each order in the diagram is calculated using a predefined
time assumption for each product, the order quantity, and the assumed machine set-up
time. The interface is split into three views: the top part line timeline view, which shows
the current planning per line; the middle planned orders view, showing all scheduled
orders in the waterfall diagram; and finally, the bottom order backlog view, showing
all orders to be scheduled. The order backlog is the collection from which the planners
must schedule each order into the overall timeline in the most time-efficient way possible.
Short-term production schedule adjustments become costly because they usually involve
putting products with different characteristics and small orders in short order. Therefore,
short-term planning would benefit from more efficient planning and data-driven decision
support.

Primarily, the work of human planners relies on human knowledge and experience rather
than data-based decisions. Therefore decisionmaking behind the production scheduling
follows trivially known rules, like scheduling the same products one after another to mini-
mize losses or to prioritize larger orders, which tend to have a lower ratio of unproductive
to productive time. Several simple analyses have been conducted to determine specific
characteristics of the production process, like which type of product changeover requires

3 AS-IS ANALYSIS AND CONCEPTUAL DESIGN 29

what amount of time. However, none of these analyses has been connected or combined
into a single source of knowledge or decision support for the planners. The present project
is part of a bigger drive to transform into a data-driven company and aims to provide a
ML and data-based tooling to support planners in their daily work.

3.1.2 Business Problem Definition

An efficient production schedule is vital for efficient machine and staff usage to maximize
the productivity and profitability of a manufacturing company. Several types of losses can
occur in the production process at Dr. Pfleger, usually measured in lost time: Machine
setup time losses, machine cleaning times, production volume losses due to more scrapped
units, or performance losses caused by machines producing slower than expected. All
these losses can be summarized in the KPI OEE and cause direct financial losses to the
company, which the company wants to minimize (compare chapter 2.3).

The company has identified three areas of optimization to reduce losses in the produc-
tion process: The order production sequence, the machine selection for production, and
finally, the material selection for production. Due to high data availability and previous
experience, optimizing the production schedule was chosen as a goal for this project. It
is supposed to ground the decisionmaking of human planners in existing data by sup-
porting and validating their decisions with the help of machine learning models capable
of predicting the OEE.

Primarily, such a ML-based optimization tool would be relevant for the previously men-
tioned short-term adjustments to the schedule or the production sequence within one
campaign because the long-term plan is usually structured in big chunks of the same
or very similar products, which should be the optimal order. However, within a shorter
timeframe or due to disturbances in the process causing a need for rescheduling lies the
primary optimization potential. Such disturbances happen frequently at Dr. Pfleger
due to staff shortages caused by sickness or vacations, material shortages, or changes in
delivery dates.

The underlying assumption behind the above described goals is that a production schedule
more efficient than the human plan is both possible and resulting in an increased OEE,
which would symbolize a reduction in financial losses. This assumption shall be analysed
and answered with the help of this thesis.

3.1.3 Technical Project Setup

Technically, the project is executed within Microsoft’s Azure environment using the Azure
Machine Learning Studio for the development of a data integration and model training
pipeline. The company had no previous experience with the environment because its
efforts previously focused on data integration and analytics tasks, as well as providing and
describing data to company internal users and pharmacy customers. The data engineers of
Dr. Pfleger created a connection between their Azure Storage Delta Lake, internally called
”Data Factory”, and the underlying database behind the MES system of the production
lines. Additionally, they provided some data about product characteristics from the
company’s SAP system in the same Azure Storage. Data is generally provided and stored
as parquet delta files, which can be loaded from Azure Storage using native environment
methods.

3 AS-IS ANALYSIS AND CONCEPTUAL DESIGN 30

Azure ML-Studio has extensive capabilities to train, register, and deploy ML-models
and register particular predefined data storage and sources. It allows the creation of
pipelines for automatic model retraining and validation. Most of these advanced capa-
bilities were not used within the project. All code development was done with the help
of native Python and standard packages like Pandas, Numpy, and Scikit-Learn. The Py-
torch package was also used to develop and train a simple neural network. Furthermore,
packages for more complex machine learning models that do not exist in the Scikit-Learn
learn package have been used. The project focused on developing an initial codebase as
an object-oriented Python package that allows for data integration and model training
in the company’s context. Since the primary method of execution in Azure ML-Studio
is Jypyther notebooks, these have been developed as well in order to install, initialize,
and run the methods within the programmed Python package. The author chose the
object-oriented approach because it was unclear in which environment the models would
be potentially deployed in the future. Therefore, a method executable not just within the
original Azure ML Studio environment was desired. The implemented Python package
is available in the thesis’ Appendix.

3.2 Conceptualization of the ML-based OEE prediction tool

Now that the previous chapters have explained the situation, business process, and the
business problem to be solved, the coming subchapters will describe the process of creating
a concept for a ML-based tool to solve the problem. First, the process of the concept
creation together with Dr. Pfleger is described and why this was the chosen path of action.
Afterward, the official requirements for the projects will be defined and provided based on
the framework for software system requirements by Braun (2016). These requirements
are briefly evaluated in the evaluation chapter with a customer survey based on the
requirements snow cards fields proposed by Braun (2016) satisfaction and dissatisfaction.

3.2.1 Project Goals and Solution Concept

The project’s primary goal is to find a way to increase the overall OEE score at Dr.
Pfleger. As discussed in Chapter 2.3, that means to either improve the Availability
Rate (AR), the Performance Efficiency (PE), or the Quality Rate (QR). In Chapter 4.5,
the data distributions of the OEE components are shown. These distributions conclude
that the primary lever needing improvement at Dr. Pfleger is the AR. Because the
availability rate is primarily influenced by production planning and control methods, the
stakeholders at Dr. Pfleger decided to try to optimize the production planning or schedule
with a ML-based tool. In summary, the project’s goal in the present thesis is to develop
a tool that allows Dr. Pfleger to base order planning decision-making on historical data.

The initial idea proposed by Dr. Pfleger to solve the problem was something they called
the ”Digital Twin” of the production lines. Throughout the initial discussions, it be-
came clear that they described a tool capable of simulating product changeovers on their
production lines by predicting their core reporting KPI in manufacturing, the OEE. An
initial concept was provided by Stemper et al. (2022) including potential inputs and out-
puts of such a tool (compare Figure 15). Such a tool wants to predict one or multiple
continuous variables, which, as discussed in Chapter 2.4.1, is considered a regression prob-
lem. In Figure 14, Stemper et al. (2022) outlines the long-term vision for such a tool of

3 AS-IS ANALYSIS AND CONCEPTUAL DESIGN 31

creating an automated production and personal planning system for the company. This
project focuses primarily on the first step outlined in the figure, forecasting individual or-
ders. Additionally, methods to generate first planning proposals have been explored and
are described in the chapter 5.8. After further talks with the company’s project stake-
holders and the company’s production planners, it became clear that an initial proof of
concept should first be developed as a decision support system for the human planners,
helping the company to evaluate the quality of the present planning decision-making and
potentially optimizing it to improve the OEE.

Figure 14: Long Term Vision of Dr. Pfleger (Stemper et al., 2022) Figure 15: Solution Idea of Dr. Pfleger (Stemper et al., 2022)

Due to the nature of a decision-support tool, the explainability of models is crucial, as
discussed in Chapter 2.4.12. To provide model explainability, stakeholders decided not
only to try to predict the OEE itself but also its subcomponents. Additional explainability
was provided by analyzing model decision-making with the help of ML explainability
methods like SHAP-Values. Finally, a finished proof of concept was to have a maximum
average error margin in predicting the OEE of 10% to be considered successful. This
high error marring target is because the present data for the project does not include
information on all relevant influences on the OEE as discussed in previous chapters.

3.2.2 Requirements Creation

In order to guide and evaluate a software development process, defined requirements are
commonly used. This section briefly describes the requirement creation and evaluation
process throughout the project’s timeline. The project started with several discussions
and meetings to determine what a tool for solving the business problem should look like.
Throughout talks, vague documents and notes with requirements were taken. Finally,

Figure 16: Requirements towards a Software System after Braun (2016)

more concrete concepts were created by the author and the company’s stakeholders af-
ter the first three months of data exploration and requirements discussions. Generally,

3 AS-IS ANALYSIS AND CONCEPTUAL DESIGN 32

no rigid requirements setup was used in this project. Requirements have been created,
reformulated, evaluated, and started from scratch for each prototyping iteration. Each
week, a review status meeting with the involved stakeholders was done, evaluating the
progress in certain areas of the pipeline and discussing and adjusting requirements where
needed. Table 4 provides a final list of the requirements in a short format. A description
of each requirement is provided in the Appendix. The company’s stakeholders did not
formally define the requirements list at the beginning of the project. It was derived and
formulated from the results of dozens of talks throughout the one-year implementation
timespan. It follows the requirement structure given by Braun (2016) and the division
between functional and non-functional requirements towards a software system (compare
Figure 16). In this project’s context, stakeholders defined primary requirements as vital
for a functional proof of concept tool. These primary requirements have been discussed
and defined in the beginning stages of the project. Throughout the development phase,
further ideas for improvement and requirements emerged, including topics in the realm
of ML-Operations and Deployment. These topics have been outside the project scope
and could not be fulfilled. Nonetheless, for completeness, they were formulated in the
table as a requirement for the desired software package. Each requirement was assigned
a priority and connected to a part of one area of the data pipeline. Stakeholders have not

Table 4: List of Project Requirements

Number Short Name Area of Pipeline Type Primary Priority

1 Data Exploration and Business Knowledge Collection Non-
functional

Yes 1

2 Implementation of Database Connection Data Integration Functional Yes 1

3 Data Integration and Aggregation of MES Raw Data Data Integration Functional Yes 1

4 Processing of static product and packaging
information

Data Integration Functional Yes 2

5 Data Validation and Quality Checks Data Integration Functional Yes 1

6 Feature Engineering for Model Training Data Integration Functional No 2

7 Training of ML Models to predict the OEE Model Training Functional Yes 1

8 Training of ML Models to predict additional KPIs Model Training Functional No 3

9 Hyperparameter Tuning and Model Optimization Model Training Functional No 3

10 Model Versioning and Experiment Tracking Model Training Non-
functional

No 2

11 Model Evaluation and Selection of Best Approach Model Evaluation Functional Yes 1

12 Evaluate Method for Explainability of Model
Decisions

Model Evaluation Functional Yes 3

13 Average OEE Prediction error of below 10
percentage points

Model Evaluation Non-
functional

Yes 1

14 Implementation of User Interface Prototype for
Planner Interaction

Frontend Functional No 4

15 Implementation of methods to allow planners to get
optimized production sequences

Frontend Functional No 5

16 Real-World Performance Evaluation in Production
Planning

Model Evaluation Non-
functional

No 2

17 Integration with Existing Production Planning Tools Frontend Non-
functional

No 5

18 Scalability and Performance Optimization of Pipeline Data Integration Non-
functional

No 5

19 Continuous Monitoring and Feedback Loop Model Evaluation Functional No 5

3 AS-IS ANALYSIS AND CONCEPTUAL DESIGN 33

explicitly assigned those priorities. Therefore, they have been approximated throughout
the requirements talks and regular evaluation meetings and are subjective. Requirement
one in the table is an anomaly against the usual requirement structure as it is more a
requirement towards the project itself or the developer than towards the software system.
It shows the primary task in the project’s first week and has been added to the table for
the sake of completeness. Braun (2016) describe using Snowcards with each requirement
characteristic for defining and evaluating requirements. Snowcards can be a valuable tool
in software development but have been unsuited for this project’s fast-paced prototyping
development cycles. Nevertheless, the requirements are evaluated against one element
provided by the Snowcard definition: Customer Satisfaction and dissatisfaction. The au-
thor requested feedback on the satisfaction and dissatisfaction scores from the company’s
stakeholders at the end of the project. The evaluation chapter will analyze the overall
satisfaction with the customer project based on the requirement fulfillment

4 DATA AND FEATURE ENGINEERING 34

4 Data and Feature Engineering

As described in the previous chapter, the core dataset for analyzing and predicting the
OEE relies on semi-automatically recorded data from the company’s MES. The MES
is used to monitor the packaging process of pharmaceutical products across different
production lines. Additionally, MES external data sources have been used and added
to the dataset manually to provide more information about the products and package
characteristics. These characteristics have been used for logic-based assumptions of pre-
defined machine adjustment times, which depend on product changeover characteristics.
As discussed before, the MES data was provided as delta parquet files, stored in Azure
Storage, while external data was manually created by the company’s responsible as Excel
worksheets. Since the latter are prone to errors when humans adjust their content, they
were only updated and reviewed once at the beginning of the project. In contrast, the
MES data was regularly updated with new data from the live production process. The
raw dataset of the MES contains data from the installation date of the system in late
2017 until now, representing roughly 4000 orders across the different production lines. It
should be noted that each production line technically records its data individually, but
the resulting data is stored in a common database with a common data model. This
shared storage allows data analysis across the entire production facility, including all
production lines. Therefore, all tables discussed in the next section contain data across
all production lines, where the production line is filterable via a connected dimensional
table.

The next subchapters will outline the concrete process of aggregating and preparing these
datasets into a dataset usable for model training. Additionally, the steps taken for feature
creation and selection will be explained. Finally, the resulting training dataset will be
described and analyzed for feature balancing and characteristics.

4.1 Data Modelling

The MES data is provided as a raw data table set containing very low-level information.
By the producer of the MES system, a predefined data model and associated Structured
Query Language (SQL) statements for the KPI aggregation were provided to make the
data usable. The data model consists of three contexts represented by their respective
fact and dimensional tables (compare Figure 17). All raw data tables are connectable
via predefined id fields, which were transformed into hashkeys for performance reasons
in the data load step.

The first and central context within the model is the MES booking table. Each row in this
table represents a work shift for the production staff when combined with the dimensional
shift table. Each row can represent a morning, afternoon, or night shift and has a defined
start and end time. The production counter is the second context of the data model.
The counter of the packaging machine records each item it processes by using sensor
detection and weighing each product. The products are then automatically classified as
”good” or ”scrap” to determine the QR based on their dimensions and weight. In the final
dataset we end up with one row counting all products per classification category per shift.
Scrapped products are items produced with quality that are considered insufficient for
customer sales. Finally, the third context is the production state data, which refers to the
state in which a machine is at a given time. There are various states a machine can have.

4 DATA AND FEATURE ENGINEERING 35

”Order change” state records the times revolving around machine cleaning and adjusting
to prepare the machine for the next production phase. In the primary or secondary error
state minor problems with the machine halt the production process. Lastly, the state
production, which collects all times the machine is productively working. The states are
changing semi-automatically, sometimes requiring specific actions from the production
staff. For example, primary and secondary error states are usually automatically recorded,
changed, and subsequently resolved by humans, afterward automatically changing the
state again. Meanwhile, order change times get started and finished only with human
input.

Figure 17: MES Raw Data Tables in Model Viewer

As seen in Figure 17, the context state and counter are connected via a 1:N relationship
towards the MES context, which describes that shifts can be connected to various counter
elements or can contain multiple production states. However, each counter or state event
can only be related to a single shift. Each shift is connected to a specified operation, which
is another name for a production order. Each operation contains information about the
order, the product to be produced, which quantity shall be produced, and the expected
processing time. Additionally, each shift is connected to a work center, a technical term
for the production line or machine. Each production line has specific settings about which
KPIs are tracked and what data is recorded regarding the different components of the
OEE. Only lines that enabled the OEE and its sub-metrics tracking have been used for
further analysis and model training. For Dr. Pfleger, all productive lines have enabled
the tracking of all of the OEEs subcomponents, and only test lines are not automatically
tracking KPIs.

To solve the business problem and fulfill the requirements, that were derived in third
chapter, an aggregation of the three data contexts is necessary in order to calculate the
KPIs on the order level and use the result as training datasets for machine learning
models. This aggregation is needed because the company wants to use ML to simulate
production changeovers by predicting the OEE and its subcomponents for the next order,
depending on the previous one. The steps taken to perform this aggregation are described
in the following subchapter.

4 DATA AND FEATURE ENGINEERING 36

4.2 Data Aggregation and Preparation

The previously discussed data model can transform the MES data into a usable feature
set. Due to the nature of the data model differing from usual star schema models,
which have only one fact table and multiple dimensional tables, more complex joins and
combinations of tables are required. The MES supplier company provided the necessary
data transformation steps in the form of SQL statements. Therefore, the original idea
behind the aggregation logic was provided by the producer of the MES system and is not
a result of this project. These SQL statements have been replicated using the Pandas
package in the Python context in which the project was developed. Nonetheless, for
further understanding in the coming chapters, the functionality of the data integration
steps will be briefly explained.

First, an aggregation table for both the counter and the state context is generated, which
is done by joining the respective fact table with the MES fact table via the MesHashKey.
Afterward, the dimensional tables related to the respective context, the operation, and
the work center dimensional tables are joined into the previous result via their respective
identifying columns. Now that the raw data tables have been combined into a single
table, we can perform aggregations with a group by statement on a unifying key. Here,

Figure 18: OEE Submetrics Hierarchy Structure

the MesHashKey is used for all aggregations because it is the central key combining all
contexts. This central key is relevant primarily due to combining the results of these
lower-level aggregations into a single aggregated table later. Please read the Appendix
table for more details on the KPIs and their calculation logic.

After the first aggregation is done for the counter and state contexts, both result tables
can be joined via the MesHashKey, and the remaining KPIs are calculated on the basis
of the unique order code. As figure 18 shows, each aggregation step from right to left
calculates certain sub-metrics of the OEE, where the counter context is related to the
quality metric and the production state context is related to the performance, availability,
and their respective sub-metrics. Vivid data quality tests have been required to validate
the results of each transformation step because each step further along in the hierarchy
requires correct results from the previous levels for the final result to be correct. The
following subchapter will briefly detail the data quality issues and the exclusion of data
caused by it.

4 DATA AND FEATURE ENGINEERING 37

After aggregating the MES data, two external data sources are added, which contain more
information about the specific product’s packaging, like package dimension, amount of
blisters per package, what the active ingredient is, and similar things. Because this data
is not available in the MES or the SAP systems of the company, they have been provided
as Excel files and joined into the aggregated dataset via the material number, known
as product code in the MES system. The data quality of these product characteristics
has been validated, but because humans manually create the source, it might be prone to
error. The input Excel files were stored at the beginning of the project and validated once,
and in the further implementation steps, the same version was used to ensure consistency
between the results of different model training.

4.3 Data Quality Issues

The quality of the training data has a significant impact on the potential outcome of
training ML models. The cooperation partner decided that in-depth data validation was
necessary because the models to be trained in this project should be used in a critical
business process. The primary method to validate the data aggregation step was to
compare its result against exporting KPIs directly from the MES’s user interface. When
attempting to validate the aggregated data against reports visible in and manual exports
from the MES system, it became apparent that the aggregation steps only based on
the provided SQL code had many orders differing in the KPI values. Initially, roughly
every fifth order had differing values in at least one of the calculated metrics. Therefore,
employing manual data exploration and analysis of the differing order, the root causes
for the differences had to be found and, if possible, solved.

First, the SQL code provided did different calculation steps in multiple cases than the
manual export. Usually, the difference was explainable by small error handlings or re-
moval of faulty data before the data export to Excel happened, which was not explained
in the provided SQL code. For example, any negative KPI values can be set to zero for
export. The code in the data integration module was adjusted to account for all errors
found, which were deemed related to such background functionalities of the MES front
end.

Secondly, issues with the raw data have been found and handled differently by the front
end of the MES tool than by the database from which the data load was executed. For
example, the database still contained many rows in the fact tables of the data model
regarding no longer existing or unused production lines. However, the respective dimen-
sion tables were missing some dimensional data related to these lines, which led to many
errors in calculating KPIs of orders related to these production lines. The data about
these lines could not be recovered and had no relevance for future prediction; because the
lines were no longer existing, it was decided to remove all related entries from the dataset.
About 22 of 70 thousand MES shift entries had to be omitted from further processing,
significantly reducing the potential size of the training data.

Additionally, some rows or characteristics that were manually deleted from dimensional
tables caused logic issues within the SQL scripts. By omitting such faulty data rows,
many issues in the data quality were resolved. Furthermore, the raw dataset of the
productive MES system contained several orders, either just test orders created to test
the functionality of the MES or orders created but never executed in production due
to cancellation or rescheduling. These orders usually resulted in an OEE value of zero

4 DATA AND FEATURE ENGINEERING 38

Table 5: Differing Orders in Percent of Total Dataset

Precision Threshold 0.01 0.001 0.0001

Differing Orders (%) 5.4% 9.3% 12.1%

or sometimes even faulty calculation, leading to negative values in one of the KPIs.
Therefore, all data related to these tests or unused orders was removed from the result
dataset. Finally, precision problems were caused by loading and transforming the data

Table 6: KPI Difference in Percentage Points Against Manual Validation Export

Precision Threshold

Median Total Maximum

0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

OEE 0.07 0.008 0.0073 19.54 20.12 20.13 2.51 2.51 2.51

Availability 0.08 0.009 0.0086 19.26 19.91 19.92 0.99 0.99 0.99

Performance 0.00 0.000 0.0000 164.24 164.26 164.27 117.30 117.30 117.30

Quality 0.00 0.000 0.0000 8.06 8.06 8.06 1.00 1.00 1.00

from the original database over the Azure storage to the final machine learning Python
environment. It is unclear what caused these precision problems. The assumption is that
the databases have different field precision when storing the state timestamps. These
precision problems caused minuscule deviations under the fourth decimal digit in the
KPIs of some orders. Because such high precision was deemed irrelevant for the further
prediction or learning process, the company’s responsible decided to evaluate the data
quality tests with a precision threshold of 0.01. As can be seen in Table 6 and Table 5,
even with all measures to remedy the differences, at the precision threshold of 0.01, 5,4%
of the total dataset had differences in at least on of the KPIs, usually the availability. It
was decided to omit all differing orders from the final training dataset due to a potential
adverse influence on the model’s training behavior.

The following subchapter briefly explains how the features were created and selected for
the model training. The data integration steps partially describe and analyze the final
feature set’s characteristics.

4.4 Feature Creation

Most of the data aggregation steps described in the previous chapters should be seen as
feature creation steps, as they strongly reduce the complexity of the original raw data by
aggregating it to fit the business problem. Because this logic was inbuilt in the provided
MES and necessary even to obtain the OEE values, which shall be predicted in the
project, the aggregation result is considered as baseline data and not as feature creation.
In addition to the predefined data aggregation steps to obtain the OEE related KPIs,
further features were created based on the raw data. Primarily, these are related to the
characteristics of the order itself or the product change.

Crucially, for each order in the MES dataset, the previous order was calculated based on
the order’s start times. This calculation was done by taking all orders in the dataset,
obtaining the minimum of their shift’s start times, and sorting the list by the minimum

4 DATA AND FEATURE ENGINEERING 39

start times for each row using the order code in the previous row as the previous order
code. Naturally, this can not create a result for all orders that have no previous order at
the beginning of the timeframe.

Next, a boolean flag was calculated to determine whether or not an order is a maintenance
order. The MES contains entries for orders that do not refer to production processes but
are only internal orders for machine maintenance. These are irrelevant to the machine
learning task at hand and should, therefore, either be filtered out or ignored by the model.
The flag was calculated using simple logic based on the product code associated with the
maintenance orders. The product code of the maintenance orders always starts with the
number eight and is one digit longer than regular product codes.

As discussed in section 2.3, the machine setup and adjustment times in the MES, referred
to as order change times, significantly impact the availability rate. Similarly, the primary
and secondary error times greatly impact the performance efficiency. However, these
times would not be known at the time of prediction for the model. Therefore, it was
decided to create features from historical times, assuming that the future characteristics
and distribution of the times would be similar to those of the past. To do this, features
on the dimensional level of a product changeover, which is defined as the change of
one product to the next one of the next order on one production line, were calculated.
Two approaches have been used: A simple mathematical or statistical approach and an
approach based on unsupervised machine learning clustering the product changeover by
their respective times.

Figure 19: Product Changeover Times - Percentiles and Original Distribution

Figure 19 shows the statistical approach that calculates various percentiles of each time
value per distinct product changeover and stores them as features. Here, the minimum
(zero percentile), the 10th, and the 25th percentile were used. These percentiles have
been chosen because the company assumed and decided that the determining character-
istic of a product changeover lies in the minimum time boundary rather than potential
outliers of very long times. This characteristic exists because the changeover involves
different human work, which always requires the same amount of time, but sometimes is
executed very slowly due to missing staff, organizational problems, or other similar prob-
lems. In addition to the percentile features, time-based clusters have been calculated
with various unsupervised learning approaches like k-Nearest-Neighbor, Gaussian Mix-
ture Model (GMM), DBSCAN, and similar models. This cluster creation was inspired by
a manual analysis done by the production staff to categorize certain product changeovers
into complete machine adjustment, partial adjustment, and no adjustment. After testing
various methods, the GMM was chosen due to its high overlap with the manual human

4 DATA AND FEATURE ENGINEERING 40

evaluation time boundaries. An example result of the clustering of the GMM can be seen
in Figure 20.

Figure 20: GMM Product Changeover - Primary and Secondary Time Clusters

Finally, features based on the external data sources have been calculated. Primarily,
this was a transformation of the representation of features. The packaging dimensions
in the Excel files were stored as strings, including height, width, and sometimes depth.
One example of the dimensions of a product folding box is as follows: ”75x40x105mm”.
Initially, this string was directly used in a label-encoded format for the model input,
which resulted in poor model performance. A better approach was to split all dimensional
strings into various numeric feature columns like folding box width, height, and depth,
which creates a higher dimensional representation of this future. Besides the folding box
dimensions, there are the dimensions of the package leaflet, which only consist of width
and height. For tube products, the additional dimensions are the tube diameter and
height. All created features are added based on the order code to the initially aggregated
dataset and form the final integrated feature dataset together.

4.5 Dataset Description

The final integrated dataset contained 38 columnn with 4170 historical orders as rows.
The intergated dataset contained historical orders from the end of 2017 until the end of
July 2024 and six different production lines. Seventeen columns are considered

Figure 21: Dataset Filtering Logic

feature columns and seven are target value columns. The target
values were the OEE, its subcomponents as well as related times
for planning. Another set of columns in the aggregated dataset
are columns, which were just necessary in the calculation of the
OEE and the other target values, but not usable as features,
because they would be unknown at the time of prediction. As
discussed before orders certain ones have been removed from the
dataset due to either being a test order, a maintenance order
or having an OEE value being considered invalid. Figure 21
shows the filtering logic in the order it is applied. The filtered
dataset used for model development contained 3777 historical
orders. The impact of the filtering step can be seen visually
by comparing Figure 22 and Figure 23. Both figures show the
distribution of the OEE and its components in histograms with
100 buckets, where the x-axis is the bucket range against the KPI

4 DATA AND FEATURE ENGINEERING 41

and the y-axis is the order amount per bucket. The data quality issues are visible in all
charts pre-filtering by either having a significant bucket of zero values or, in the case of
performance and OEE, a value range significantly larger than the defined 0 to 1.25 range.
The filtering removes the high value ranges for performance and OEE, but still, some
orders with an OEE or Performance Efficiency higher than one are present in the dataset,
which means that that the performance of the machines has been faster than the defined
machine speed. Usually, these faster speeds result from misdefined expected machine
speeds, but they can also happen naturally in the production process. Most orders at Dr.
Pfleger still have a performance efficiency below or close to one. The distributions show
visually that the different components of the OEE have quite different characteristics
in their mean and variance. The descriptive statistical values can be seen in Table 7.

Figure 22: Dr. Pfleger - OEE and Components - Distribution pre Filter

Figure 23: Dr. Pfleger - OEE and Components - OEE Distribution post Filter

OEE and the AR have similarly high variance and standard deviation. In comparison,
the performance observes less variance, and the quality shows close to no variance. The
latter is because Dr. Pfleger’s operations and production process are optimized to obtain
a near-perfect quality rate, while the primary operational problem lies in the mediocre
availability rate. Due to these different distributions in the target values, it can be
expected that models for the quality will be able to make more accurate predictions
than models for availability rate or the OEE. Figure 24 highlights the distribution of

Table 7: Descriptive Statistics for OEE and Components

Mean Variance Standard Deviation

OEE 0.457 0.062 0.249

AR 0.524 0.056 0.236

PE 0.847 0.039 0.197

QR 0.987 0.001 0.032

4 DATA AND FEATURE ENGINEERING 42

the model target values, which are time KPIs subcomponents of the OEE. All times
seem to be distributed with characteristics close to a normal distribution. Figure 25

Figure 24: Dr. Pfleger - Target Values - Time Distributions

shows the characteristics and features related to the order or operation. It shows that
for the blister lines ”V-Linie6”, ”V-Linie7” and ”V-Linie8” the latter tends to process
significantly fewer orders. The average order quantity on the blister lines ranges between
20 and 40 thousand units. The order quantity distribution highlights that Dr. Pfleger
primarily has orders with a size between 10 and 60 thousand units. There are a smaller
amount of orders with larger average volumes on the lines that produce the company’s own
products, ”V-PAST-2” and ”P-SARO-2”, while lines primarily used for external order
production like the blister lines and the tube line tend to have smaller average order
sizes. The small volume of data for the tube production line might be problematic for

Figure 25: Dr. Pfleger - Orders per Production Line Distribution

later model training. Generally, it might be concluded from different usage characteristics
in the lines that training line-specific models might yield better performance results. In
the present project, only models across the entire set of production lines are trained
due to the requirement to support human planners within the line selection process.
Finally, Figure 26 shows the distribution of products sorted by the amout of associated

Figure 26: Dr. Pfleger - Orders per Product Distribution

4 DATA AND FEATURE ENGINEERING 43

orders. The figure shows only the top 150 products by the amount of orders, but in
total there are 299 distinct products in the filtered dataset. Due to disclosure agreements
the individual product names cannot be shown in this paper, but it is still clear from
the figure that the production frequency and average order sizes vary greatly between
the different products. Some orders are produced very frequently but with very small
average order volumes, others are produced rarely but with high unit volumes and rarely
products are produced frequently with high average order volumes.

After exploring and discussing some of the characteristics of the final dataset for model
training, it should be noted that, of course, there are many more minor nuances and
characteristics not discussed in this chapter. The chapter was primarily meant to give
readers an idea of the environment at Dr. Pfleger and the underlying distributions of the
used features and target values. Furthermore, the chapter provides an understanding of
the distribution characteristics of the various features and target values, which is necessary
for further model development and evaluation steps. An overview over all columns in the
final feature set is shown in Table 8.

Table 8: Features Overview and Description

Technical Feature Name Description Data
Type

Feature
Type

ProductCode The product code of the product to be produced in the
associated order.

String Categorical

Previous ProductCode The product code of the product produced in the previous
order.

String Categorical

Code The production line as string on which the order is pro-
duced.

String Categorical

CALC WIRKSTOFF Calculated feature describing the primary ingredient of the
product.

String Categorical

CALC ALUFOLIE Calculated feature describing the packaging foil used for
the product.

String Categorical

OrderQuantity The amount of product units to be produced in this order. Integer Numeric

FS Breite Product Folding box (Faltschachtel) width in mm. Integer Numeric

FS Länge Product Folding box (Faltschachtel) length in mm. Integer Numeric

FS Tiefe Product Folding box (Faltschachtel) depth in mm. Integer Numeric

PBL Breite Product Package leaflet (Packungsbeilage) width in mm. Integer Numeric

PBL Länge Product Package leaflet (Packungsbeilage) length in mm. Integer Numeric

Tuben Durchmesser Product Tube diameter in mm. Integer Numeric

Tuben Länge Product Tube length / height in mm. Integer Numeric

CALC PACKGROESSE Calculated feature describing the amount of units per prod-
uct package.

Integer Numeric

10th Percentile Auftragswechsel Calculated feature of the 10th percentile of the product
changeover time (Auftragswechseldauer).

Float Numeric

10th Percentile Primär Calculated feature of the 10th percentile of the primary
error time (Primärfehlerzeit).

Float Numeric

10th Percentile Sekundär Calculated feature of the 10th percentile of the secondary
error time (Sekundärfehlerzeit).

Float Numeric

5 MODEL DEVELOPMENT 44

5 Model Development

The training of machine learning models involves different algorithms, interfaces, and
data preparation methods. This fact was discussed in the theoretical background. In the
present project, the supervised learning technique family algorithms were used to solve the
present regression problem of predicting several KPIs related to the OEE. Furthermore,
as shown visually in the chapter 4.5 distribution charts and statistical characteristics of
the target values, they are approximately normally distributed, which is a requirement
for the MAE and (R)MSE to yield good results as shown in chapter 2.4.2. Therefore, the
MAE and (R)MSE are suitable loss functions for the task at hand. Because the to-be-
predicted KPIs are very sensitive to large errors and outliers, the RMSE was chosen as the
primary loss function for the model training in the present project. The following chapters
will describe the ML-methods and algorithms used to train several models for different
target values. Briefly, those prediction target values will be described, the selection
of used algorithms motivated, the chosen dataset splits, and the encoding and scaling
methods discussed. Next, the results of the model training in different setups are given
and analyzed. Finally, the last subchapter discusses some examples for the explainability
of ML-models.

5.1 Model Targets

Target value columns are called training or model targets from here on out. In the present
project, there are two types of model targets. Firstly, the KPIs OEE and its direct com-
ponents, which are percentage values represented in a decimal range of {0, 1}. Secondly,
the three planning related time KPIs, (unscheduled) downtime, the operating time, and
the planned production time, which are represented in decimal hour range of {0,∞}.
These model targets have been selected based on the need to solve the business problem
formally defined in the project requirements. The OEE and its KPIs are necessary in
order to fulfill the primary objectives of the project and answer the research questions
defined in chapter 1.2. At the same time, the time-related targets have been primarily
used for additional requirements and the frontend user interface.

Table 9: Model Target Values Overview

Target Long Name Primary Unit Range

OEE Overall Equipment Effectiveness yes percent {0, 1}

PE Performance Efficiency yes percent {0, 1}

AR Availability Rate yes percent {0, 1}

QR Quality Rate yes percent {0, 1}

DT (Unscheduled) Downtime no hours {0,∞}

OT Operating Time no hours {0,∞}

PPT Planned Production Time no hours {0,∞}

All model targets are predicted on the order level. In practice, this means predicting
the OEE, its components, and the time KPIs for a not yet executed production order
with the given input characteristics. The same loss function RMSE is used to train all
model targets. Furthermore, all models are trained with the same input data and feature

5 MODEL DEVELOPMENT 45

sets. Finally, each target’s models of different types are trained to determine the best
performant model type for the present task.

As discussed extensively in previous chapters, the OEE is a composite or compound
metric calculated by multiplying the availability rate, the performance efficiency, and the
quality rate. Therefore, it was deemed interesting by the stakeholders, Dr. Pfleger and
the author, to test if the predictions of models for the respective submetric target values
could be multiplied to obtain a similar result as the directly learned OEE model, which
can be considered an experiment and validation of the performance of the submetric
models. This composite calculation is an artificial target value.

5.2 Selection of models for evaluation

For each model target several types of ML-algorithms, from here on out referred to
as just models, are trained. As discussed in the second chapter, an extensive body
of literature revolves around using machine learning techniques to improve production
planning and control and more specific research on improving the OEE. The selection of
models was inspired by the existing literature and similar case studies related to improving
the OEE with the help of machine learning algorithms. Primarily, the meta-study of
Usuga Cadavid et al. (2020), and the case study of El Mazgualdi et al. (2021) was used
as inspiration for choosing a set of algorithms. Additionally, other related case studies and
papers not necessarily doing a regression-based OEE prediction, but other approaches to
using machine learning to improve OEE or production planning and control have inspired
the set of selected model types (Senapati et al., 2024; Vilela De Souza et al., 2022; Dobra
and Jósvai, 2022a,b; Lucantoni et al., 2023).

The final selection of methods is shown in Table 10 and has been sorted into the tech-
nique families defined by Usuga Cadavid et al. (2020) in their meta-analysis. They are
either simple statistical learning or supervised machine learning models. The algorithms
applied in this paper range from very simple regression techniques, like linear, polyno-
mial, and ridge regression, to more complex algorithms like SVR, ensemble boosting
learners, and simple multi-layered Neural Network (NN). The more straightforward re-
gression methods are included in the set to provide a baseline against which the more
complex techniques can be evaluated. Various techniques with different complexities and

Table 10: Applied ML-algorithms by their technique family after Usuga Cadavid et al. (2020)

Short Name Long Name Technique Family Technique

LR Linear Regressions Regression Simple Regression

RR Ridge Regression (L2) Regression Simple Regression

PR Polynomial Regression (Degree 2) Regression Simple Regression

DTR Decision Tree Regression Decision Trees Decision Tree

RF Random Forest Regressor Ensemble Learning Bagging

XGB eXtreme Gradient Boosting Ensemble Learning Boosting

CatBoost CatBoost - Gradient Boosting Ensemble Learning Boosting

LGBM Light Gradient-Boosting Machine Ensemble Learning Boosting

SVR Support Vector Regression Support Vector Machines Support Vector Machine

NN 3-Dense Layer a 20 Neurons Neural Network Neural Networks Neural Network

5 MODEL DEVELOPMENT 46

approaches have been chosen to provide a proper base for evaluating the best method
to solve the present regression task. Chapter 2 provided a background understanding of
all algorithm technique families, but not in detail for each algorithm. For detailed docu-
mentation the author refers to the algorithm packages used and stated in the Appendix.
Most models have been used in their implementation by the Sci-Kit Learn Python pack-
age. All techniques have been trained using either the models’ standard parameters or
hyperparameter tuning, where applicable, as described in chapter 5.5.

The neural network is a straightforward 3-layered network consisting only of dense layers
with 20 neurons each. No more complex model architectures have been attempted because
this standard setup worked well or better than the other algorithms and seemed primarily
limited by the available data. The neural network uses the Adam optimizer and RMSE
as a criterion.

All of the selected methods require purely numeric inputs. Therefore different methods
of encoding the categorical features had to be used. The SVR and the NN standard
normalization was applied on the training data as briefly discussed in chapter 5.4.

5.3 Dataset Splits

This project uses a commonly applied technique in machine learning to split the available
dataset into different subsets for training and validation. This split improves model
generalization and allows for model validation on a model-unknown dataset to improve
the validity of the findings and check for overfitting.

In the present project, a twofold approach was used to split the dataset. First, the data
was split into a training and validation set with a given ratio. The training dataset is
split into five folds using the K-fold cross-validation technique within the model training
and optimization process. At the end of the model training pipeline, the performance
evaluation of each trained model is done against the unseen validation set.

Different ratios for the validation set size have been selected to perform an experimental
test. The chosen ratios are shown in Table 11. This experiment aims to evaluate which
ratio of data for training versus validation results in the best model performance. The
hypothesis behind these experiments is that a higher validation set ratio might result in
lower model performance due to the limited number of available training examples. A
ratio that is too low might, on the other hand, cause overfitting or similar issues.

Table 11: Validation Set Ratio - Experiments

Experiment Number Ratio Validation Set

1 30%

2 25%

3 20%

4 15%

5 10%

6 5%

A randomized shuffle with the same functional implementation is used for each dataset
split to ensure statistical validity across models and not introduce bias into the training

5 MODEL DEVELOPMENT 47

or evaluation due to the method used for the dataset split. Furthermore, to ensure that
each model training result is comparable, a fixed random state for the dataset split was
used in the training pipeline and for all experiments. This fixed random state results in
randomization, always creating the same output of dataset split.

5.4 Data Encoding and Scaling

In order to make the machine learning algorithms trainable on the available dataset,
feature columns in categorical form, in this case strings, need to be encoded. As discussed
in chapter 2.4.9, multiple available encoding methods exist. The encoding methods have
been selected based on the nature of each feature. Only the standard and straightforward
encoding methods have been tested and applied. The selection of features to be encoded
and the respectively used method are shown in Table 12.

Table 12: Applied Encoding Method per Categorical Feature

Feature Categorical Type Encoding Method

Product Code Ordinal Label / Ordinal Encoding

Previous ProductCode Ordinal Label / Ordinal Encoding

Active ingredient Ordinal Label / Ordinal Encoding

Packaging Foil Ordinal Label / Ordinal Encoding

Production Line Nominal One-Hot-Encoding

The (previous) product code is the unique identifier for each type of product stored
as a string of a six-digit number. Product codes are ordered by the type of product,
where similar products have similar identifying numbers. The more similar the product
codes are, the more similar the products usually are. Though it is not a perfect ordinal
representation, it was decided that the product codes are considered ordinal features
and, therefore, encoded using ordinal encoding. Label encoding was also tested for the
product code, but no relevant performance differences were found (compare chapter 6.2).
The active ingredient and packaging foil similarly refer to identifying material numbers
and exhibit the same characteristics as the product codes. The production line, on the
other hand, is simply a string containing the short form name of the line, which makes
it a nominal categorical feature and is represented with the one-hot-encoding technique.

As mentioned, the models for SVR and NN have problems training on datasets with vastly
different column scalings, which can be remedied with feature scaling. Standard scaling
is applied to all features in the training pipelines of these models, which zero-centers
and standardizes the data (compare chapter 2.4.9). Scaling adjustments are only applied
after the features have been encoded. Only the features have been standard scaled, not
the target values. In another experiment, the standard scaling was applied to all model
types, even those that do not require it, to test for a potential positive or negative effect
on the model performance.

5.5 Hyperparameter Optimization

In improve the models’ performance further, the method of hyperparameter optimization
was used to enhance the model setup. Three types of hyperparameter tuning methods

5 MODEL DEVELOPMENT 48

have been employed throughout the one-year implementation timeframe: classic grid
hyperparameter search, random hyperparameter search, and distribution-based hyperpa-
rameter search. These concepts have been briefly introduced in chapter 2.4.11, and due to
similar optimization outcomes and significantly faster execution times, the final optimiza-
tion run only used the distribution-based hyperparameter search. The hyperparameter
search was done by implementing the Optuna package of Akiba et al. (2019), which they
describe as an advanced and efficient framework to optimize hyperparameters.

Table 13: Hyperparameter Grids for Optuna Tuning

Algorithm Hyperparameter Grid

RR alpha: FloatDistribution(0.01, 10)

PR degree: IntDistribution(2, 4)

DTR max depth: IntDistribution(10, 40)

min samples split: IntDistribution(2, 11)

min samples leaf: IntDistribution(1, 5)

RF n estimators: IntDistribution(50, 500)

max depth: IntDistribution(10, 50)

min samples split: IntDistribution(2, 11)

min samples leaf: IntDistribution(1, 5)

bootstrap: CategoricalDistribution([True, False])

XGB n estimators: IntDistribution(50, 500)

max depth: IntDistribution(3, 10)

learning rate: FloatDistribution(0.01, 0.2)

subsample: FloatDistribution(0.6, 1.0)

colsample bytree: FloatDistribution(0.6, 1.0)

gamma: FloatDistribution(0, 0.5)

SVR C: FloatDistribution(0.1, 10, logT̄rue)

epsilon: FloatDistribution(0.01, 0.5, logT̄rue)

kernel: CategoricalDistribution([’rbf’, ’linear’])

LGBM n estimators: IntDistribution(50, 500)

learning rate: FloatDistribution(0.01, 0.2)

num leaves: IntDistribution(31, 255)

boosting type: CategoricalDistribution([’gbdt’, ’dart’, ’goss’])

colsample bytree: FloatDistribution(0.6, 1.0)

reg alpha: FloatDistribution(0, 1)

reg lambda: FloatDistribution(0, 1)

CatBoost iterations: IntDistribution(100, 500)

learning rate: FloatDistribution(0.01, 0.2)

depth: IntDistribution(4, 10)

l2 leaf reg: IntDistribution(1, 9)

border count: IntDistribution(32, 255)

grow policy: CategoricalDistribution([’SymmetricTree’, ’Depthwise’, ’Lossguide’])

NN num epochs: IntDistribution(100, 2000)

learning rate: FloatDistribution(0.001, 0.1)

early stop patience: IntDistribution(25, 500)

5 MODEL DEVELOPMENT 49

Table 13 shows Optuna was used to check an extensive set of hyperparameter distributions
for most employed algorithms. For linear regression, no specific hyperparameters can be
tuned, and therefore, no optimization is to be done. Similarly, polynomial regression has
no classical hyperparameters, but its capacity can be optimized for the underlying by
attempting different polynomial bases.

For the defined neural network, only the number of epochs, the learning rate, and the
early stopping patience have been optimized with hyperparameter grids. The architecture
of the network was not changed in the optimization process; neither were the network
optimizer, the activation functions, or potential dropout layers. It should be noted that
multiple simple NN architectures have been tested in the implementation process with
no noticeable performance differences between them. Therefore, it was decided to use
the most straightforward setup.

The parameter grids have been chosen based on the proposed most important param-
eters in each algorithm’s implementation documentation and on the authors’ previous
experience and therefore are not objectively defined. They are not meant to represent
a complete optimization of all possible parameters but the most crucial ones for each
algorithm.

In chapter 6 the results of the hyperparameter optimization will be shown for each model.
These results will be shown only for one setup of training and validation run with the
setup yielding the best performant result from the other previously discussed experiments.

5.6 Data, Training and Evaluation Pipeline

The previous chapters outlined the entire data pipeline, from raw data loading to data
integration to model training processes. The development of this pipeline followed a
modular and object-oriented programming approach, combining Python classes to im-
plement the pipeline functions while a Jypyter notebook executes them. Figure 27 gives
an overview of the finally created pipeline and the complete test setup used for the eval-
uation. Please note that this pipeline was executed for each experiment with the same
input data but using the settings outlined in each experiment.

Figure 27: Final Project Data Pipeline Overview

It should be noted that the pipeline can either be triggered in its entirety, or each pipeline
step can be executed individually by triggering each notebook separately. The first
pipeline steps regarding data loading, integration, and feature creation are triggered once
in this specified order for the test and validation setup. Each pipeline step that generates
or transforms data stores its results as timestamped parquet files in a respective named

5 MODEL DEVELOPMENT 50

folder, shown as database slices in the figure. The subsequent processing step loads the
file with the latest timestamp from the respective folders. Finally, the user interface draws
from the generated data slices and the stored trained models to allow users interaction
with the system (compare chapter 5.8).

For the evaluation setup, the model training process is executed several times with dif-
ferent setup parameters to obtain different results for each experimental setup and one
final evaluation setup. Within each process execution, all models for the specified target
value and model type are trained, evaluated, and stored. The models are stored as files
inside a specified folder, inserting the name of the training run, the model’s performance
as RMSE, the model target, and the type inside the filename. This naming convention al-
lows for easy sorting and loading of models of certain types or with the best performance
for a specific target, a functionality used for the front end. Additionally, the pipeline
provides validation and explainability charts for each model trained based on a provided
verbose setting, which will be shown in chapter 6.

This pipeline setup is intuitive and easy for the company to use in productive operations.
However, it is still crude due to its reliance on simple Jypyter notebooks triggering each
other. It could be optimized using the Azure in-built pipeline feature and feature set stor-
age. Furthermore, ideally, the models would be registered in the Azure ML environment
with their respective characteristics to allow access to models from outside endpoints.
These topics of deployment and maintenance have not been the focus of this project and,
therefore, have not been implemented.

5.7 Model Ensembling and Explainability

The present project has trained numerous models using different machine learning algo-
rithms. All models inherently make some prediction errors. In order to test if ensembling
different model types can improve performance, an error correlation analysis was done.
This test evaluates whether or not the models make the same errors or if they make
different errors by calculating the correlation coefficient between each model’s errors.
Depending on the analysis’s outcome, different models could potentially be ensembled if
they tend to make different errors. In the other case that the models make the same errors
overall ensembling is no viable strategy to enhance performance. If this were the case,
it would indicate that the available data is the limiting factor for further performance
improvements.

As discussed in chapter 2.4.12, explainability is critical for stakeholder acceptance of
machine learning models. Therefore, the best-performing model was analyzed using the
explainability method of SHAP after training the models. This exploration of the ex-
plainability method was not a focus of the research in this thesis but part of the practical
project. It will, therefore, be briefly described as the example of the best performing
OEE model. For this, the respective validation dataset of the model was used to the ap-
propriate SHAP explainer class and generate the SHAP-values. These values were then
displayed in several charts to answer the stakeholders’ questions. Firstly, a bar chart
that shows the average absolute impact of each feature on the model output explains the
average influence of features on the model’s predictions. Secondly, a scatter plot is used
to show a feature’s directional (instead of absolute) impact based on its value. Lastly, a
more detailed analysis was done on the critical features to understand the direct learning

5 MODEL DEVELOPMENT 51

behavior in relation to that feature’s values. The results of the explainability approach
will be briefly outlined in the explainability section.

5.8 Web-based User Interface

For practical usage of the model inside the production planning process, it was decided
to build a User Interface (UI) mockup for the planners. This interface was decided to
be web-based, as most modern data tools are, and provide the ability to use the models
to predict new, unplanned orders. This chapter will briefly explain the idea behind the
UI, the implemented functionalities, and the technical tools used. It will not provide
a detailed technical discussion about the UI’s inner workings or web technologies used
in creating it. It will especially explain how the user interface can be used to generate
planning schedules even though the models can only predict the level of single orders.
Please note that in figure 28 and 29, the user interface is in German because that is Dr.
Pfleger’s internal language.

For the mockup user interface, the Python package Flask was used. Flask is a Python
package that implements a simple server-client architecture on a local computer or server
compute instance. It allows to call Hypertext Transfer Protocol (HTTP) endpoints with
get and post methods. In its standard functionality, Flask allows the use of a predefined
Hypertext Markup Language (HTML) document that can be enriched with data from the
backend element of Flask and return user inputs to the Flask backend with the HTTP
post method (Flask, 2024).

In the present mockup, the Flask backend was used to load trained models and reference
datasets and allow users to interact with the models by providing the required inputs
using a combination of user inputs and reference data to predict the KPIs. Reference
data here means features used for training, not input by the user because they are not
commonly changed or unknown at the time of prediction. Examples for the first are the
packaging dimensions, which are loaded from the reference dataset based on the product
code provided by the user. Features unknown at the time of prediction are, for example,
the order changeover time for which assumptions have to be made.

Figure 28: User Interface for single order prediction

The first iteration of the web interface allowed the user to execute a single order prediction
by providing the inputs: previously produced product (id), production line, product to be

5 MODEL DEVELOPMENT 52

produced (id), and the order quantity. As described above, these provided user inputs are
insufficient to predict with the trained models as they do not contain all features used for
training. Therefore, the backend of the UI loaded all necessary features for a prediction:
the product information, the packaging dimensions, the (historical) order changeover,
and error time percentiles. The base assumption of the front end and the models is that
the characteristics of future product changeovers are similar to the past. Not all potential
combinations of product changeovers happened historically. For those with no historical
reference data, the company predefined machine setup matrix has been used, which has
been discussed in chapter 3.1 and the predefined times shown in Table 3. A limitation of
this setup matrix is that it only includes products deemed necessary by the planners. For
all product changeovers not present in the historical data or the setup matrix, the average
times over all products were used as input for the models. These average times might
differ greatly from reality and, therefore, triggers the UI to give the user an appropriate
warning message. Finally, the display would show the user the predictions for all model
targets defined in chapter 5.1 resulting from the best-performing model for the respective
target.

After the first iteration of the mockup was completed and presented to the planners, it
became clear that their priorities were diverging from the original requirement. New ideas
and requirements were discussed about providing planners with scheduling proposals. As
discussed in chapter 3.2.1, this represents the second step in Dr. Pfleger’s vision towards
a fully autonomous resource planning system. The company’s stakeholders prioritized
the topic over further optimization of the existing models. Therefore, an initial imple-
mentation was created within the mockup that allows the user to input a set of planned
orders, where each order is given in the form of a product code and an order quantity.
Additionally, the user must provide, as before, a previously produced product code and
a line on which to produce. The set of to-be-scheduled orders is sent to the backend, and
a finished planning proposal is returned and displayed by the system to the user.

Generating such a planning proposal is a challenging task. Initially, a simple greedy
search was implemented, which was given the set of to-be-planned orders and iterated as
long as any order remained to be planned. The provided order planning set resembles
one production campaign discussed in chapter 3.1.1. At each iteration, each order in the
set to be planned was predicted based on the previously produced product. The best
order by the chosen KPI in each iteration is chosen as the next order, and the product
of the current order is saved as a previously produced product. According to the model
predictions, this greedy search was set to maximize the OEE to reach the most efficient
production schedule. This search type was deemed insufficient for practical application
because it tends to find only local optimal points in the solution space and, therefore,
might not find the globally optimal solution. For this purpose, further methods of gen-
eration were developed. First is the permutational search, which is trivial to implement
but very costly in computation. It generates all possible order permutations in the pro-
vided planning set, then generates the predictions for all permutations and chooses the
permutation with the overall highest total metric. Predicting all permutations here be-
comes impractical performance-wise with a planning set larger than five elements. Since
production campaigns or planning sets typically are about ten to fifteen orders large,
predicting all permutations becomes unfeasible. To solve this problem, a more efficient
search algorithm was required and found in the Simulated Annealing (SA) algorithm.

5 MODEL DEVELOPMENT 53

Figure 29: Example of a generated scheduling proposal

The chosen Simulated annealing (SA) is a probabilistic optimization algorithm which
is derived from metallurgy annealing process, in which the metals are cooled slowly to
reach a stable, low-energy state. The SA algorithm mimics this natural and physical
behavior by exploring the solution space of an optimization problem, in this case, our
proposal generation problem, allowing both uphill and downhill moves to escape local
optima while iteratively and slowly reducing the probability of accepting a worse solu-
tion as the algorithms ”temperature” decreases. This approach makes SA particularly
useful for finding near-global optima in complex, multimodal solution space, where all
possible permutations of a given planning set are present. One key advantage of SA is its
ability to avoid getting trapped in local minima, making it highly effective for combina-
torial optimization problems such as this present scheduling problem. Even with the SA,
searching the entire solution space for the near-optimal solution takes about one minute
for a campaign of 10-15 orders. Still, that is a bearable performance that the stakehold-
ers accept for such a system. As with the other algorithms, greedy and permutational
search, the SA returns the best-found production schedule to maximize a chosen metric
to the user. Here, two metrics have been tested. First again, the OEE and, secondly, the
PPT. The latter is chosen as, for the planners, the time planned for production is most
crucial in their everyday work, while for the company, an optimal OEE is most relevant
for financial success. The optimization process of these two metrics can lead to slightly
different results. However, according to manual validation, more OEE efficient schedules
also require less production time and vice versa.

Generally, all the development revolves around generating production schedules; an ad-
ditional effort was made as a prototype and included in the thesis to give the reader an
idea of how such models can be employed in praxis. It is a partially completed work or
solution requiring further research, more profound design concepts, and further imple-
mentation efforts. Finally, the quality of the generated scheduling proposals is hard to
judge and depends highly on the overall model performance and discussed assumptions
about historical continuity. Impression of the results of scheduling proposal generation
will be briefly provided in chapter 7. This explanation above about the possible algo-
rithms to generate scheduling proposals is considered an anecdotal answer to the sixth
research question from section 1.2. Further research on the topic would be necessary to
answer this question correctly. How this topic could be researched and developed further
will be discussed in the chapter 8.

6 EVALUATION 54

6 Evaluation

The present chapter provides the result of the model development to answer the remaining
research questions stated in chapter 1.2. All models are trained with the dataset described
in chapter 4.5 without any additional exclusions or transformation of data besides the
encoding and scaling methods discussed. The linear regression models are considered
the baseline for comparing the different models. The primary performance metric used
in training, validation, and evaluation is the RMSE. The MAE and R2 coefficients are
provided for additional context. Furthermore, some experimental setups will be described
in detail, as outlined in the previous section. Finally, the chapter will first provide the
results of the models for the primary prediction target OEE and afterward the secondary
target values described in section 5.1. All results of performance metrics shown are
calculated on the validation dataset.

6.1 Experiment - Validation Set Ratios

As discussed in chapter 5.3, before further training of models for evaluation, an experi-
ment was conducted to determine the optimal dataset split. The result of this experiment
can be seen in Table 14, which contains the RMSE values for the OEE and its subcom-
ponents in an aggregated form. The min, mean, and max values refer to an aggregation
of all model types trained in the experiment with the validation setting for the respective
model. In each column, the lowest value is underlined for ease of interpretation. As the

Table 14: Model Performance per Validation Ratio Experiment

Validation
Set Ratio

OEE PR AR QR

min mean max min mean max min mean max min mean max

30% 0.1256 0.1384 0.1636 0.1072 0.1227 0.1516 0.1209 0.1359 0.1594 0.0201 0.1262 0.9876

25% 0.1265 0.1399 0.1646 0.1053 0.1199 0.1452 0.1226 0.1360 0.1582 0.0203 0.0321 0.0798

20% 0.1288 0.1418 0.1692 0.0996 0.1207 0.1745 0.1220 0.1372 0.1583 0.0210 0.0308 0.0800

15% 0.1292 0.1421 0.1690 0.1039 0.1220 0.1563 0.1224 0.1375 0.1632 0.0205 0.0318 0.0845

10% 0.1062 0.1242 0.1575 0.1017 0.1194 0.1580 0.1109 0.1273 0.1612 0.0281 0.0357 0.0813

5% 0.1100 0.1325 0.1625 0.1044 0.1209 0.1413 0.1152 0.1347 0.1620 0.0277 0.0418 0.0850

table shows, there is no intuitive result for which experiment results in the overall best
performance because different model targets show different behaviors. By majority vote
of the mean RMSE values, the validation ratio of 10% yields the best results. Only for
the QR are there larger deviations. The minimum value would show the actual perfor-
mance boundary determined by the ratio. Here the 10% validation ratio still yields the
best performance for OEE and AR, while the PE and the QR yield the lowest minimum
values with the 20% and 30% validation set ratio respectively. Since the prediction and
optimization of the OEE is the primary focus, the 10% ratio was chosen for the final
model training round evaluated in the next chapter. It should be noted that generally,
the differences between the various ratios are not large, and differences in performance
might also be explained by the validation set not losing certain outliers due to different
dataset splitting. The same validation set ratio will be used for all model targets to
ensure comparability between the different models. With the dataset split determined,
the scaling and encoding methods will be evaluated in the following chapter.

6 EVALUATION 55

6.2 Experiment - Scaling and Encoding Effects

Chapter 5.4 outlined why and how encoding and scaling transformations are to be applied
to the training data. Now, these decisions are evaluated with the results in the tables
below, which contain the model performance for each experiment as RMSE. Table 15
shows for the models trained to predict OEE that, as assumed in chapter 5.4, SVR
and NN benefit from the application of standard scaling. All other model types trained

Table 15: OEE Model Performance: With vs. without Scaling

LR RR PR DTR RF XGB SVR CatB. LGBM NN

Scaling Off 0.1447 0.1446 0.1209 0.1569 0.1193 0.1125 0.1701 0.1068 0.1062 0.5337

Scaling On 0.5337 0.8185 0.5346 0.2171 0.2110 0.3103 0.1161 0.2126 0.1951 0.1179

Difference 0.3891 0.6738 0.4137 0.0602 0.0917 0.1977 -0.0541 0.1058 0.0889 -0.4159

for the OEE target observe worse performance when scaling is applied. The neural
network is especially strongly negatively affected by training on unscaled features. At
the same time, the simple regression models Linear Regression (LR), Ridge Regression
Regression (RR), and Polynomial Regression (PR) are strongly negatively affected by
training on scaled features. The effect on neural networks has to be taken with caution
because it is exaggerated by the early stopping mechanism, which seems to stop the
training of the NN due to it being unable to converge properly. For further evaluation, this

Table 16: Mean Performance Across Multiple Targets: With vs. without Scaling

LR RR PR DTR RF XGB SVR CatB. LGBM NN

Scaling Off 0.1109 0.1109 0.0988 0.1282 0.0956 0.0926 0.1447 0.0869 0.0874 0.5631

Scaling On 0.7429 0.5699 0.6034 0.2009 0.1579 0.2247 0.1092 0.1666 0.1438 0.0978

Difference 0.6320 0.4590 0.5046 0.0728 0.0623 0.1321 -0.0354 0.0797 0.0563 -0.4653

test was done as mean over the model targets OEE, PE, AR, and QR, which is possible
because they have the same underlying range of values between 0 and 1. Table 16 shows
this test’s result, which exhibits the same characteristics as the result for the OEE target
alone. Therefore, for further model training, scaling will only be applied to the model
types SVR and NN training runs, while all other model types will not use feature scaling.
In addition to standard scaling, feature encoding was used to transform categorical

Table 17: OEE Model Performance: Ordinal vs. Label Encoding

LR RR PR DTR RF XGB SVR CatB. LGBM NN

Ordinal 0.1447 0.1446 0.1209 0.1597 0.1193 0.1125 0.1161 0.1068 0.1062 0.1117

Label 0.1447 0.1446 0.1209 0.1572 0.1195 0.1125 0.1161 0.1068 0.1062 0.1131

Difference 0.0000 0.0000 0.0000 -0.0025 0.0002 0.0000 0.0000 0.0000 0.0000 -0.0016

features into numeric ones. As discussed in chapter 5.4 for the ordinal features, both
label and ordinal encoding methods have been tested. The results of the tests can be

6 EVALUATION 56

Table 18: Mean Performance Across Multiple Targets: Ordinal vs. Label Encoding

LR RR PR DTR RF XGB SVR CatB. LGBM NN

Ordinal 0.1109 0.1109 0.0988 0.1267 0.0957 0.0926 0.1092 0.0869 0.0874 0.1012

Label 0.1109 0.1109 0.0988 0.1292 0.0958 0.0926 0.1092 0.0869 0.0874 0.0948

Difference 0.0000 0.0000 0.0000 -0.0025 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0064

seen in Tables 17 and 18. The results in the tables confirm that the encoding method has
little impact on the model performance. No model shows performance difference above
the third decimal digit. In most cases, there are tiny performance advantages favoring
ordinal encoding, but the author deems them too insignificant to allow for an objective
decision. As a standard method for ordinal features, ordinal encoding will be used for
the model evaluation runs.

6.3 OEE Models

In the following chapter, the results of the primary task in the present project, the
prediction of the OEE, will be provided. For this purpose, several model types have
been trained, and for the final evaluation, hyperparameters were optimized using the
Optuna method with the parameter distributions described in chapter 5.5. The optimized
hyperparameter configuration can be found in the Appendix.

Table 19 shows the results for all performance metrics discussed in chapter 2.4.2 for
the selected model types. The table highlights in bold that the CatBoost model, in its
optimized form, is the best-performing model to predict the OEE based on all three met-
rics. Interestingly, for the CatBoost model, the performance slightly worsens regarding
the MAE due to hyperparameter optimization and getting outperformed by XGBoost.
Generally, the boosting models CatBoost, XGBoost, and LGBM perform very similarly.

Table 19: OEE Models Performance Evaluation - Model Type Comparison

Metric LR RR PR DTR RF SVR XGB CatB. LGBM NN

RMSE (Non-Opt) 0.1447 0.1446 0.1209 0.1561 0.1197 0.1161 0.1125 0.1068 0.1062 0.1137

RMSE (Optimized) 0.1446 0.1209 0.1309 0.1088 0.1159 0.1068 0.1067 0.1069 0.1134

RMSE (Difference) 0.0000 0.0000 -0.0252 -0.0109 -0.0002 -0.0057 -0.0001 0.0007 -0.0003

MAE (Non-Opt) 0.1099 0.1098 0.0843 0.1036 0.0810 0.0837 0.0781 0.0716 0.0728 0.0817

MAE (Optimized) 0.1099 0.0843 0.0925 0.0751 0.0826 0.0725 0.0736 0.0746 0.0808

MAE (Difference) 0.0001 0.0000 -0.0111 -0.0060 -0.0011 -0.0056 0.0020 0.0018 -0.0009

R2 (Non-Opt) 0.6680 0.6681 0.7681 0.6136 0.7728 0.7863 0.7992 0.8191 0.8211 0.7949

R2 (Optimized) 0.6682 0.7681 0.7282 0.8122 0.7870 0.8190 0.8195 0.8188 0.7959

R2 (Difference) 0.0001 0.0000 0.1146 0.0393 0.0007 0.0198 0.0004 -0.0023 0.0009

Overall, it can be concluded that the hyperparameter optimization has a moderate posi-
tive effect on the model performance for several models like DTR, Random Forest (RF),
and eXtreme Gradient Boosting (XGB). Other models like the Light Gradient-Boosting
Machine (LGBM) and CatBoost show slightly worse performance after hyperparameter
optimization, which overfitting problems might cause. Generally, the performance of all

6 EVALUATION 57

more complex models is within a similar range, indicating that the data is the limit-
ing factor for improved performance rather than the model type or its hyperparameter
optimization.

Table 20 averages the performance within the technique (families) defined in section 5.2.
From the table, the simpler technique families, as expected, perform worse than more
complex models. Boosting is the best-performing technique but is closely trailed by
Bagging.

Table 20: OEE Models Performance Evaluation - Model Family Comparison

Metric Simple
Regression

DTR Bagging Boosting SVM NN

RMSE (Non-Opt) 0.1367 0.1561 0.1197 0.1085 0.1161 0.1137

RMSE (Optimized) 0.1328 0.1309 0.1088 0.1070 0.1159 0.1134

RMSE (Difference) -0.0039 -0.0252 -0.0109 -0.0015 -0.0002 -0.0003

MAE (Non-Opt) 0.1013 0.1036 0.0810 0.0742 0.0837 0.0817

MAE (Optimized) 0.0971 0.0925 0.0751 0.0736 0.0826 0.0808

MAE (Difference) -0.0042 -0.0111 -0.0060 -0.0006 -0.0011 -0.0009

R2 (Non-Opt) 0.7014 0.6136 0.7728 0.8131 0.7863 0.7949

R2 (Optimized) 0.7182 0.7282 0.8122 0.8184 0.7870 0.7959

R2 (Difference) 0.0168 0.1146 0.0393 0.0053 0.0007 0.0009

Analyzing the models’ results shows visually good learning behavior. An example of the
CatBoost model and the NN is shown in Figure 30, where the left chart is a regression
plot with the actual values on the x-axis and the predicted values on the y-axis. Besides
a few outliers, most individual orders are predicted to be close to the actual values. The
second chart depicts the common training versus validation loss chart for neural networks
and visually indicates the functioning convergence of the neural network training.

Figure 30: OEE Models Performance Evaluation - CatBoost and Neural Network Charts

In summary, it can be concluded from the above results that OEE can be predicted with
the data in the present project but only with a moderate error margin in all tested model
types. This error margin can result either from insufficient information density inside the
data or from an unsuitable model training setup, which will be further evaluated in the

6 EVALUATION 58

following sections about explainability and error correlation analysis. The fact that all
model types perform pretty similarly, especially all more complex model types, indicates
that the underlying data is the most likely root cause for the observed errors. The author
considers this the answer to the third research question of chapter 1.2. The answer to the
fourth question is that the Boosting models and, more specifically, the CatBoost model
are the best performing on the dataset available at Dr. Pfleger.

6.4 OEE Submetrics Models

The following tables contain the results for models with the target values Availability
Rate, Performance Efficiency and Quality Rate. Table 21 shows that the availability

Table 21: AR Models Performance Evaluation - Model Type Comparison

Metric LR RR PR DTR RF SVR XGB CatB. LGBM NN

RMSE (Non-Opt) 0.1446 0.1446 0.1208 0.1622 0.1253 0.1152 0.1220 0.1109 0.1109 0.1151

RMSE (Optimized) 0.1446 0.1208 0.1246 0.1167 0.1156 0.1109 0.1078 0.1102 0.1125

RMSE (Difference) 0.0000 0.0000 -0.0375 -0.0086 0.0004 -0.0110 -0.0031 -0.0007 -0.0026

MAE (Non-Opt) 0.1091 0.1091 0.0869 0.1070 0.0863 0.0841 0.0855 0.0768 0.0780 0.0817

MAE (Optimized) 0.1091 0.0869 0.0887 0.0819 0.0815 0.0794 0.0752 0.0783 0.0768

MAE (Difference) 0.0000 0.0000 -0.0183 -0.0044 -0.0026 -0.0061 -0.0016 0.0003 -0.0050

R2 (Non-Opt) 0.6438 0.7514 0.5520 0.7327 0.7740 0.7467 0.7905 0.7905 0.7744 0.7949

R2 (Optimized) 0.7514 0.7354 0.7682 0.7726 0.7904 0.8021 0.7932 0.7844 0.7959

R2 (Difference) 0.0000 0.1833 0.0355 -0.0014 0.0437 0.0115 0.0027 0.0100 0.0009

rate models perform very similar to the OEE models. The CatBoost model is the best-
performing model, and the R2 score shows a similar level of variance explanation. For the

Table 22: PE Models Performance Evaluation - Model Type Comparison

Metric LR RR PR DTR RF SVR XGB CatB. LGBM NN

RMSE (Non-Opt) 0.1233 0.1232 0.1236 0.1507 0.1079 0.1245 0.1078 0.1017 0.1030 0.1293

RMSE (Optimized) 0.1232 0.1236 0.1190 0.1015 0.1236 0.0987 0.1003 0.1003 0.1204

RMSE (Difference) 0.0000 0.0000 -0.0316 -0.0064 -0.0008 -0.0091 -0.0014 -0.0028 -0.0089

MAE (Non-Opt) 0.0846 0.0846 0.0786 0.0948 0.0731 0.0900 0.0735 0.0693 0.0703 0.0904

MAE (Optimized) 0.0845 0.0786 0.0782 0.0690 0.0848 0.0678 0.0694 0.0686 0.0835

MAE (Difference) -
0.0001

0.0000 -0.0166 -0.0041 -0.0052 -0.0057 0.0001 -0.0017 -0.0069

R2 (Non-Opt) 0.5034 0.5035 0.5005 0.2580 0.6194 0.4937 0.6205 0.6621 0.6530 0.4537

R2 (Optimized) 0.5038 0.5005 0.5370 0.6632 0.5005 0.6819 0.6710 0.6714 0.5260

R2 (Difference) 0.0002 0.0000 0.2790 0.0438 0.0068 0.0614 0.0089 0.0184 0.0723

PE, the best-performing model is XGBoost. Note, though, that the differences between
the model types are smaller than for the previous two targets and that the R2 score indi-
cates that the models trained on the available data are worse at explaining the variance
in the PE.

The models trained to predict the QR exhibit a few different characteristics than the
models for the previous three targets. First, the general magnitude of error is smaller,

6 EVALUATION 59

Table 23: QR Models Performance Evaluation - Model Type Comparison

Metric LR RR PR DTR RF SVR XGB CatB. LGBM NN

RMSE (Non-Opt) 0.0312 0.0312 0.0300 0.0276 0.0283 0.0813 0.0283 0.0281 0.0296 0.0480

RMSE (Optimized) 0.0312 0.0300 0.0302 0.0283 0.0311 0.0292 0.0286 0.0294 0.0362

RMSE (Difference) 0.0000 0.0000 0.0026 0.0000 -0.0502 0.0010 0.0006 -0.0001 -0.0118

MAE (Non-Opt) 0.0118 0.0118 0.0105 0.0102 0.0093 0.0750 0.0094 0.0088 0.0091 0.0324

MAE (Optimized) 0.0118 0.0105 0.0094 0.0087 0.0119 0.0099 0.0088 0.0088 0.0200

MAE (Difference) 0.0000 0.0000 -0.0008 -0.0007 -0.0631 0.0005 0.0000 -0.0003 -0.0124

R2 (Non-Opt) 0.1882 0.1882 0.2498 0.3646 0.3300 -4.5241 0.3327 0.3419 0.2691 -0.9260

R2 (Optimized) 0.1882 0.2498 0.2368 0.3295 0.1909 0.2852 0.3145 0.2752 -0.0981

R2 (Difference) 0.0000 0.0000 -0.1278 -0.0005 4.7150 -0.0475 -0.0274 0.0061 0.8279

and there are no significant differences between the simple baseline and more complex
models. Additionally, the R2 scores are generally relatively low, explaining only roughly
18 to 35 percent of the variance in the QR. Interestingly, the hyperparameter optimization
seems to have no or a negative effect on all models except the SVR and NN. The QR
models likely exhibit such lower error values because the overall variance in the metric
is very low. One outlier model for the QR is the SVR. It performs poorly compared to
the baseline linear regression model in its unoptimized form, as shown by the strongly
negative R2 score. SVR seems unable to fit the underlying distribution of the QR with its
standard parameters, and only after optimization, reasonable performance is achieved.
Similarly, the NN exhibits a negative R2, indicating it performs worse than the baseline
model linear regression. These results partially answer the fifth research question by
showing that all the OEE subcomponents are predictable with moderate error margins.
For a full answer to the fifth research question, chapter 6.6 evaluates the performance
predicting the planning time KPIs. The varying performance on the different targets
might arise due to the difference in underlying distributions of the metrics as discussed
in chapter 4.5.

6.5 Experiment - OEE Composite Metric

Now that we have evaluated the models for OEE, AR, PE, and QR, we can experiment
to test if the composite result of the models for AR, PE and QR predicts the OEE better
than the trained model. For this, the predictions from each model and its respective
type have simply been multiplied, and the result per model type has been compared to
the predictions made by the best OEE model. Table 24 shows the error values for the
composite results for the non-optimized and optimized model. The table also provides the
difference between the optimized composite results and the trained OEE models. From
those differences, it can be concluded that the composite metric performs slightly better
for several model types than the trained OEE model. The NN is an outlier in that regard
and performs significantly worse than the trained model. This decrease in performance
for the NN might be caused by its bad performance for the QR. Finally, the CatBoost
model is the best-performing one in the composite metric, and the composite metric is
the best in general prediction.the OEE. One advantage of using the composite metric is
that the predicted subcomponents and the OEE always align, which is not necessarily

6 EVALUATION 60

Table 24: OEE Composite Performance Evaluation - Model Type Comparison

Metric LR RR PR DTR RF SVR XGB CatB. LGBM NN

RMSE (Non-Opt) 0.1455 0.1455 0.1203 0.1498 0.1185 0.1285 0.1115 0.1051 0.1051 0.1202

RMSE (Optimized) 0.1454 0.1203 0.1177 0.1093 0.1152 0.1073 0.1048 0.1062 0.2014

RMSE (Difference) -0.0001 0.0000 -0.0321 -0.0092 -0.0133 -0.0042 -0.0003 0.0011 0.0811

Composite Diff. to
trained model

0.0000 0.0008 -0.0006 -0.0132 0.0004 -0.0007 0.0005 -0.0019 -0.0007 0.0879

MAE (Non-Opt) 0.1114 0.1113 0.0846 0.1006 0.0804 0.1000 0.0777 0.0711 0.0724 0.0859

MAE (Optimized) 0.1114 0.0846 0.0823 0.0752 0.0823 0.0741 0.0715 0.0730 0.1591

MAE (Difference) 0.0001 0.0000 -0.0184 -0.0051 -0.0177 -0.0037 0.0004 0.0006 0.0732

Composite Diff. to
trained model

0.0000 0.0015 0.0003 -0.0102 0.0002 -0.0003 0.0016 -0.0020 -0.0016 0.0782

R2 (Non-Opt) 0.6641 0.6644 0.7705 0.6441 0.7772 0.7381 0.8029 0.8248 0.8248 0.7707

R2 (Optimized) 0.6646 0.7705 0.7802 0.8106 0.7894 0.8173 0.8259 0.8211 0.3569

R2 (Difference) 0.0002 0.0000 0.1361 0.0334 0.0513 0.0144 0.0011 -0.0038 -0.4139

Composite Diff. to
trained model

0.0000 -0.0036 0.0024 0.0519 -0.0015 0.0024 -0.0017 0.0064 0.0022 -0.4390

true for the trained OEE model. This experiment is considered successful and shows that
the composite metric is as good if not better than the trained OEE model.

6.6 Planning Time Models

The following evaluation revolves around the prediction of the PPT, Operating Time
(OT), and Down Time (DT). Those KPIs are measured in hours on the decimal scale.
Due to the different value ranges, the errors for the three target values are not comparable
with each other or between the models of OEE, AR, PE, and QR. These time values
have been predicted to provide critical information for planning and a metric to generate
planning proposals, as discussed in previous chapters.

Table 25: PPT Models Performance Evaluation - Model Type Comparison

Metric LR RR PR DTR RF SVR XGB CatB. LGBM NN

RMSE (Non-Opt) 12.5334 12.5336 15.7067 17.7124 12.8374 12.2309 12.5632 11.7223 12.1641 11.7828

RMSE (Optimized) 12.5366 15.7067 12.8211 11.3516 11.3443 11.5137 11.3404 11.4932 12.0466

RMSE (Difference) 0.0030 0.0000 -4.8913 -1.4859 -0.8866 -1.0495 -0.3819 -0.6709 0.2638

MAE (Non-Opt) 6.8595 6.8581 5.8169 7.3061 5.6521 5.3804 5.6924 5.1960 5.4561 5.2737

MAE (Optimized) 6.8534 5.8169 6.1540 5.1426 4.7773 5.3416 5.2540 5.4084 5.7053

MAE (Difference) -0.0047 0.0000 -1.1521 -0.5095 -0.6032 -0.3509 0.0580 -0.0477 0.4316

R2 (Non-Opt) 0.4230 0.4229 0.0938 -0.1525 0.3946 0.4505 0.4202 0.4952 0.4565 0.4900

R2 (Optimized) 0.4227 0.0938 0.3961 0.5266 0.5273 0.5130 0.5276 0.5148 0.4669

R2 (Difference) -0.0003 0.0000 0.5486 0.1320 0.0768 0.0928 0.0324 0.0583 -0.0231

Table 25 shows that the CatBoost model is the best-performing model to predict the
PPT in regards to the RMSE and MAE. The R2 scores explain roughly half of the vari-
ance in the actual values. Some models show considerable improvements in performance
due to hyperparameter optimization, especially the DTR, while most show moderate
improvements from the optimization. Only the model NN is an outlier in this regard

6 EVALUATION 61

and shows worse performance from hyperparameter optimization. Generally, the simpler
models perform similarly to more complex models, indicating that the available data is
the limiting factor for better predictions. The more complex model performs very well

Table 26: OT Models Performance Evaluation - Model Type Comparison

Metric LR RR PR DTR RF SVR XGB CatB. LGBM NN

RMSE (Non-Opt) 4.8642 4.8641 2.0556 4.6309 1.8944 3.3369 2.5558 2.6759 2.0390 1.7413

RMSE (Optimized) 4.8642 2.0556 5.2856 1.7439 2.3358 1.8824 2.1950 2.0966 2.1621

RMSE (Difference) 0.0001 0.0000 0.6547 -0.1505 -1.0011 -0.6734 -0.4809 0.0576 0.4208

MAE (Non-Opt) 3.7747 3.7763 1.2507 1.3496 1.0001 2.0653 1.1457 1.1239 1.1051 1.2329

MAE (Optimized) 3.7786 1.2507 1.4902 0.9495 1.5484 1.0807 1.0950 1.1253 1.6056

MAE (Difference) 0.0022 0.0000 0.1406 -0.0506 -0.5170 -0.0650 -0.0289 0.0202 0.3727

R2 (Non-Opt) 0.6938 0.6938 0.9453 0.7224 0.9536 0.8559 0.9155 0.9073 0.9462 0.9608

R2 (Optimized) 0.6938 0.9453 0.6384 0.9606 0.9294 0.9541 0.9376 0.9431 0.9395

R2 (Difference) 0.0000 0.0000 -0.0840 0.007 0.0735 0.0387 0.0303 -0.0031 -0.0213

for the target OT as Table 26 shows. The models explain up to 95% of the underlying
variance according to the R2 scores. For OT, the RF model is the best performing, which
is the first time in this evaluation that a nonboosting model is the best-performing model.
As for PPT, several models show a mild performance improvement by the hyperparam-
eter optimization process, while NN and DTR show a mild worsening. A performance
improvement of factor two can be observed between simple regression and complex mod-
els in the RMSE and MAE. One explanation for the strong model performance when
predicting OT might be that the operating time directly scales with the number of units
produced.

Table 27: DT Models Performance Evaluation - Model Type Comparison

Metric LR RR PR DTR RF SVR XGB CatB. LGBM NN

RMSE (Non-Opt.) 10.7092 10.7098 15.1060 16.0693 12.3478 11.0713 12.6743 11.5708 11.1826 15.5991

RMSE (Optimized) 10.7188 15.1060 11.7096 10.9562 11.0455 10.8185 10.7337 10.9632 11.0355

RMSE (Difference) 0.0090 0.0000 -4.3596 -1.3915 -0.0258 -1.8558 -0.8370 -0.2194 -4.5636

MAE (Non-Opt.) 4.6019 4.6018 5.3069 5.9951 5.1828 3.9252 5.2535 4.7059 4.5890 9.5231

MAE (Optimized) 4.6065 5.3069 4.9635 4.5779 4.0141 4.6745 4.5838 4.7241 4.8436

MAE (Difference) 0.0047 0.0000 -1.0315 -0.6049 0.0889 -0.5790 -0.1220 0.1351 -4.6796

R2 (Non-Opt.) 0.2487 0.2486 -0.4950 -0.6917 0.0011 0.1970 -0.0524 0.1229 0.1808 -0.5941

R2 (Optimized) 0.2473 -0.4950 0.1017 0.2136 0.2007 0.2332 0.2452 0.2126 0.2022

R2 (Difference) -0.0013 0.0000 0.7934 0.2124 0.0037 0.2856 0.1223 0.0318 0.7963

Finally, Table 27 indicates the lousy performance of most model types predicting the
DT. Especially without hyperparameter optimization, many model types perform worse
than the linear regression baseline model, which, for some, even results in a negative R2

score. None of the model types perform better in all metrics than the linear regression.
Therefore, it is concluded that with the available data, the DT cannot be predicted with
sufficient accuracy. Due to that fact, it is not usable in the user interface, and the models
are not deployed.

The results above complete the answer to the fifth research question. All subcomponents
of the OEE, the PPT, and the OT are predictable with the available dataset with mod-

6 EVALUATION 62

erate error margins. Some targets might observe better performance than others due to
either the data explaining them better or their underlying distributions differing.

6.7 Error Correlation Analysis

With multiple model types trained per target, one interesting evaluation is to check
if the model’s errors correlate. To this end, the correlation of errors between different
models can be analyzed to determine the possibility of enhancing the performance through
ensembling. However, if the errors of both models are strongly correlated, then ensembling
might not be a viable strategy to improve performance.

One trivial example to understand the concept. If the RF predicts OEE to be 0.8 while
XGBoost predicts 0.7 for a true OEE of 0.8, the ensemble prediction would average 0.75,
which resembles an error of 0.05. Similarly, if both the models have highly correlated
errors (for instance, both are giving an OEE of 0.7 for the actual value of 0.8), then
ensembling them will not improve performance. For this purpose, a correlation matrix of
the errors of all model types for each target has been calculated.

In this chapter, only the correlation matrix for OEE is analyzed in detail because it is
the primary prediction target of the present thesis, and all other targets showed similar
characteristics. As Figure 31 shows, all correlation coefficients range between zero and
one. Furthermore, the figure shows that the errors of more complex models, especially

Figure 31: OEE Sample Error Correlation Matrix

the boosting models, strongly correlate with a coefficient of higher than 0.99. Some corre-
lations are observed to be weaker, primarily the simpler models. This weaker correlation
between simple and complex models is caused by the general performance difference be-
tween those models, where the simpler models observe worse performance. Even this
weaker correlation has a higher coefficient than 0.9 in all cases.

6 EVALUATION 63

From the correlation matrix, we can conclude that ensembling is not a viable strategy
for the models trained in the present project to improve the performance of the OEE
prediction.

6.8 OEE Model Explainability

To explain the model’s decision-making to the stakeholders at Dr. Pfleger SHAP-values
have been used. The concept behind SHAP values and explainability have been explained
in the chapters 2.4.12 and 5.7. The following chapter provides an exemplary description
of how xAI concept in the form of SHAP for the best performing OEE model, which
is the CatBoost model. Throughout the project’s timeline, explaining the OEE model
as the primary target was the focus of explainability efforts. Other targets have only
been spuriously explained with SHAP values. Three types of SHAP plots have been
used for explaining: First, the mean absolute SHAP value per feature plot, which shows
the average impact a feature has on a provided model’s prediction over all analyzed
instances. Secondly, a feature instance summary plot that allows the inclusion of the
directional influence of a feature instance. Lastly, SHAP dependence plots were used to
explain the learning behavior of a model in regard to a specific feature. Explainability
plots used the model’s validation dataset for the analysis.

Figure 32 contains the two mentioned summary plots against the entire used feature set.
An explanation of each feature can be found in the Appendix. The left plot shows the
features on the y-axis and the mean absolute SHAP values on the x-axis. According to the
plot, the top three to five features dominate in their impact on the prediction. Especially,
the order quantity and the product changeover time (10th Percentile Auftragswechsel)
have strong average mean SHAP values, which is as expected. A surprise to the stake-
holders was the strong impact of the packaging foil (CALC ALUFOLIE encoded) and
the packaging width (FS Breite) on the model’s prediction. Furthermore, the plot shows

Figure 32: OEE Model Catboost - SHAP Summary Plots

that, as previously discussed, the different production lines impact the model’s predic-

6 EVALUATION 64

tions differently. Here the line with the strongest impact on the model’s prediction is
the P SARO 2, while the blister and tube lines (V Linie 6-8 and V TUBE 2) show less
impact on the prediction.

The right plot of Figure 32 shows the directional impact of a feature in relation to its
value. Negative SHAP values must be interpreted as reducing the predicted value, while
positive values increase the predicted value. As an example, it can be seen that the
order quantity tends to improve the OEE when it is high, while it decreases it when it is
low. This characteristic is reversed for the product changeover time, which decreases the
predicted OEE when it is high but increases when it is low.

Not all present features exhibit such clear patterns; therefore, more in-depth explana-
tions for features are necessary to understand the models’ behavior. For this purpose,
dependency plots for the most crucial features are used and shown in Figure 33. The
dependency plots show one dot per feature instance, the impact as SHAP value on the
y-axis, and the feature value on the x-axis. The first dependency plot shows the impact

Figure 33: OEE Model Catboost - SHAP Feature Depency Plots

of order quantity on the prediction, approximating a logarithmic curve. This logarithmic
characteristic means that in the range of the order quantity from 0 to about 50000, the
impact on prediction changes very fast compared to the higher ranges between 50000 and
400000. An order quantity below about 25000 reduces the predicted OEE, while a value
above that quantity increases the predicted OEE. Similarly, in the second plot of Fig-
ure 33, the product changeover time tends to increase the predicted OEE when shorter
than roughly three hours. Longer product changeover times reduce the predicted OEE.
Finally, the third plot shows less clear characteristics as the package width (FS Breite) is
no continuous variable, but only a few distinct widths. From this plot, we can conclude
that it might not be learning correct behavior as for each distinct width, a highly varying
impact on the predictions is observed. Generally, each distinct width has either a positive
or negative impact on the prediction.

The analysis of the further features is not discussed in this chapter. Each feature has been
briefly analyzed throughout the project’s development time, and most showed expected
learning behavior. The product packaging information and production lines are outliers
and exhibit less clear learning behavior. These features will need to be analyzed further
in the project’s future development. The above discussion of applying the xAI methods
highlights just one possible way to explain models to users and stakeholders. In this
project, the explanations were crucial to create trust in the model’s learning behavior.

6 EVALUATION 65

6.9 Project Requirement Satisfaction

With all models and experiments evaluated, the final project requirement satisfaction
can be analyzed based on the process outlined in Chapter 2 and 3. For this purpose, the
company’s stakeholders have been requested to assign a satisfaction and dissatisfaction
score to each requirement. Satisfaction scores range between the values one and five.
The result is shown in Table 28. In addition to the simple satisfaction and dissatisfaction
score, the satisfaction considering the priorities has been calculated as the division of the
score and the priority. The two metrics are not directly comparable, but the ratio between
satisfaction and dissatisfaction can be compared. Furthermore, Table 28 shows in the col-

Table 28: Project Requirements Satisfaction and Dissatisfaction

N. Primary Priority Completed? Satisfaction Dissatisfaction Satisf.action
cons. Priority

Dissatisfaction
cons. Priority

1 Yes 1 Yes 5.00 1.00 5.00 1,00

2 Yes 1 Yes 5.00 1.00 5.00 1,00

3 Yes 1 Yes 5.00 1.00 5.00 1,00

4 Yes 2 Yes 5.00 1.00 2.50 0,50

5 Yes 1 Yes 5.00 1.00 5.00 1,00

6 No 2 Yes 4.00 2.00 2.00 1,00

7 Yes 1 Yes 5.00 1.00 5.00 1,00

8 No 3 Yes 5.00 1.00 1.67 0,33

9 No 3 Yes 5.00 1.00 1.67 0,33

10 No 2 Yes 2.00 4.00 1.00 2,00

11 Yes 1 Yes 5.00 1.00 5.00 1,00

12 Yes 3 Yes 5.00 1.00 1.67 0,33

13 Yes 1 Yes 5.00 1.00 5.00 1,00

14 No 4 Yes 4.00 2.00 1.00 0,50

15 No 5 Yes 4.00 2.00 0.80 0,40

16 No 2 No 2.00 3.00 1.00 1,50

17 No 5 No 1.00 3.00 0.20 0,60

18 No 5 No 1.00 2.00 0.20 0,40

19 No 5 No 1.00 2.00 0.20 0,40

umn ’Completed?’ which of the requirements has been resolved. Some requirements were
outside the original scope of this thesis and can be considered as future work. Of all 19 re-
quirements, 15 have been completed. The mean satisfaction score is 3.89, and the mean
dissatisfaction score is 1.63, which makes a satisfaction-to-dissatisfaction ratio of 2.39.
From these scores, the overall high stakeholder satisfaction with the requirement comple-
tion can be concluded. Considering the priorities, this ratio rises to 3.2, indicating that

Table 29: Satisfaction and Dissatisfaction by Completion Status

Completed? Mean
Satisfaction

Mean
Dissatisfaction

Mean Satisfaction
cons. Priority

Mean Dissatisfaction
cons. Priority

No 1.25 2.50 0.40 0.73

Yes 4.60 1.40 3.15 0.83

6 EVALUATION 66

especially the highly prioritized requirements have been fulfilled with higher stakeholder
satisfaction. When aggregating by requirement completion, it becomes apparent that
the stakeholder dissatisfaction primarily originates from the not completed requirements,
while the completed requirements enjoy a very high satisfaction score of 4.6 to dissatis-
faction of 1.4 (compare Table 29). Similarly, Table 30 shows that primary requirements
show higher satisfaction scores due to receiving more focus and attention throughout the
development process. Functional requirements are also fulfilled with higher satisfaction

Table 30: Satisfaction and Dissatisfaction by Primary Flag

Primary Mean
Satisfaction

Mean
Dissatisfaction

Mean Satisfaction
cons. Priority

Mean Dissatisfaction
cons. Priority

Yes 5.00 1.00 4.35 0.87

No 2.90 2.20 0.97 0.75

than non-functional requirements (compare Table 31). This project focused on building
a functional prototype; therefore, functional requirements received more focus and devel-
opment time. Lastly, Table 32 highlights that the requirements related to the pipeline

Table 31: Satisfaction and Dissatisfaction by Requirement Type

Requirement Type Mean
Satisfaction

Mean
Dissatisfaction

Mean Dissatisfaction
cons. Priority

Mean Satisfaction
cons. Priority

Functional 4.75 1.25 0.70 3.03

Non-functional 2.43 2.29 0.99 1.80

steps ’Data Integration’ and ’Model Training’ have higher satisfaction scores than the
’Frontend’ or ’Model Evaluation’. The user interface was a requirement added late in the
project and received only limited attention. The Model Evaluation might exhibit lower
satisfaction scores due to one primary evaluation requirement that could not be fulfilled:
The real-world application of the system (Req. 16) to evaluate its effectiveness in the
running planning process.

Table 32: Satisfaction and Dissatisfaction by Area of Pipeline

Area of Pipeline Mean
Satisfaction

Mean
Dissatisfaction

Mean Satisfaction
cons. Priority

Mean Dissatisfaction
cons. Priority

Data Integration 4.17 1.33 3.28 0.82

Model Training 4.25 1.75 2.33 0.92

Model Evaluation 3.60 1.60 2.57 0.85

Frontend 3.00 2.33 0.67 0.50

In summary, the project was a success based on the evaluation in the previous chapters,
the fulfilled requirements, and the overall high satisfaction scores. The stakeholder sat-
isfaction is reasonable to very good, and all primary requirements were completed. The
unfulfilled requirements or those with lower satisfaction scores highlight areas for further
work and research possibilities.

7 DISCUSSION 67

7 Discussion

The present thesis described in the previous chapters a practical implementation project
trying to optimize the OEE with the help of machine learning methods. Several ML
algorithms have been used to train models to predict KPIs related to the OEE. The
thesis discussed a nearly complete creation of a machine learning project from the raw
data collection to the explainability of trained models. Therefore, it can inspire how
such an end-to-end project can be conducted in practical environments. Furthermore,
it highlights the challenges of working in practical settings with data availability and
quality limitations. Finally, it shows the importance of testing several machine learning
methods against a baseline method to analyze the performance results thoroughly.

The performance results of the model training are considered satisfactory for a prototype
project but leave room for improvement for a future productive tool. The conducted
experiments evaluated in the chapters 6.1 and 6.2 highlight the importance of evaluating
certain tooling choices in applying machine learning methods. These experiments espe-
cially showed that for smaller datasets, a proper validation set ratio needs to be chosen
and that different ML algorithms react quite differently to the usage of standard scaling.
Furthermore, the results provided regarding hyperparameter optimization in chapter 6
highlight that different methods react differently to optimization and that optimization
of one performance metric might worsen the model’s performance in another (here RMSE
vs. MAE). Overall, hyperparameter optimization seems to have a limited effect on the
performance of trained models, and the standard parameters for most models are suf-
ficient. One noticeable exception from this trend is the RF and DTR, which seem to
benefit from hyperparameter optimization more than the other models for most targets.
This more substantial improvement for the tree-based models might be explainable due
to the standard model parameters allowing trees of unlimited size, which might lead to
overfitting issues.

Generally, the projects’ goals have been achieved, and the cooperation partner, Dr.
Pfleger, is satisfied with fulfilling their requirements. The OEE could be predicted with
the, aimed for, error margin of about 10%. The thesis highlighted the strength of ensem-
bling methods in this use case, in which both Bagging and Boosting techniques outper-
formed most other simple techniques. This strong performance of ensembling methods is
likely because they can handle outliers better than the other methods due to the nature
of ensembling various differently trained models. A more extensive analysis would need
to be done to understand why these model types perform better conclusively.

Additionally, this thesis highlights that even elementary regression methods perform rel-
atively well on the given dataset and that more complex models yield only minor perfor-
mance improvements for most model targets. While the models predicting the OEE and
AR explain the underlying variance relatively well, models for the PE, the DT, and espe-
cially the QR are unable to fit the underlying variance. Note that many of the features
used in training those models are known to affect primarily the OEE and AR, while it
is unclear to the company’s stakeholders what causes the variance in the QR. Further-
more, the error correlation analysis highlights that ensembling the different model types
is unsuitable for improving performance. Those facts might hint that the only remaining
path to improve model prediction performance further is using more, better, or additional
data for training. The models might benefit from including more data besides the prod-
uct packaging information or the pure MES data. For example, the used feature set does

7 DISCUSSION 68

not include information about the availability of materials, the involved steps of machine
adjustments, workers in a shift, the expected delivery times, and similar topics outside
of the management data scope. Critically, some data that would probably be crucial
to predicting the OEE, like data regarding the staff involved in the production project,
will, even if available, not be usable in such a project due to data privacy. Therefore,
performance is, in practice, also limited by outside regulations.

Note the following additional limitations of the present project. First, data quality prob-
lems occurring while aggregating the MES data make a conclusive evaluation in the live
process difficult and reduce the available training examples, which might negatively affect
the performance. Furthermore, as shown and discussed in Chapter 6, the available data
seems insufficient to predict the target KPIs with a lower error margin. Most models
still show considerable errors even after hyperparameter optimization. This fact might
prevent the practical application of the models trained in this project even though the
defined performance goal of the stakeholders has been satisfied. The most crucial limita-
tion of the present thesis is the lack of real-world application. The thesis did show that
the models can predict past orders with moderate error margins, but does that mean
they can predict future orders? This question, which is a short form of the seventh re-
search question, could not be answered throughout this thesis due to the lack of trust
of stakeholders and planners in using the system, the limitation of the implementation
timeframe, and the limited time planners have to be closely involved in the project. Using
the system in practice, in the everyday work of the planners, and evaluating the models’
predictions against real-world observation would be a crucial next step in understanding
whether or not the OEE can indeed be improved by the developed tool. Due to this How
this could be done will be discussed in the next chapter. Closer cooperation with the end
users and a greater effort to increase their trust with explainability methods might have
been crucial to faster use of the system in practice. The methods used described in chap-
ter 5.7 and 6.8 might not be extensive enough or follow a scientifically valid approach to
provide model explanations with xAI methods. Further research would be required into
other available methods like Local Interpretable Model-Agnostic Explanations (LIME)
or model-inbuilt explainability methods like decision tree-based explanations.

The user interface built in this mockup highlights the need for a practical project to
consider the deployment and operations of the models trained. An easily accessible and
intuitive interface to trained machine learning models seems necessary to conclude such
a project successfully. In the case of the present thesis, deployment, operations, and user
interface have not been a focus. Nonetheless, they are critical for the project’s long-term
success at Dr. Pfleger. Operations in this context involve the regular retraining of models
on new incoming data and constant performance monitoring. Deployment highlights how
models are made available to users, which is usually done by a graphical user interface.
An intuitive user interface might motivate stakeholders and users to interact, drive the
project forward, and reduce resistance to introducing a ML-based tool into their everyday
work life.

Lastly, the generation of scheduling proposals was an addition to the project’s original
scope that needs further research and work. Using models that can predict individual
orders to construct scheduling proposals iteratively may not be scientifically valid or
purposeful. Other machine learning methods that fit the nature of the proposal generation
problem should be investigated. Possibilities might be a RL approach or neural network
architectures that can predict sequences like Recurrent Neural Networks. The research

7 DISCUSSION 69

from Usuga Cadavid et al. (2020) seems to indicate that such RL are used frequently for
similar problems. The order-based approach seems to yield satisfactory results from the
initial evaluation but needs real-world evaluation to validate this subjective evaluation.
Furthermore, it should be noted that this generation problem, whichever method is used,
suffers from a lack of knowledge at the time of prediction about topics like delivery
expectancy, material availability, supply chain stability, and staff availability. These
factors would be crucial to creating a fully autonomous system for production planning
and would require significant work to gather, validate, and prepare new data sources.

As the above discussion indicates, the project at Dr. Pfleger has many avenues and ways
to progress further and invest more time to achieve the vision outlined by Dr. Pfleger.
The next chapter will briefly outline how the research and project could be developed
further.

8 FUTURE WORK 70

8 Future Work

The main ways of further developing the project of the present thesis are data enrichment,
real-world testing, and further research into generating scheduling proposals. This chapter
will briefly describe further work possible in these three areas.

Data enrichment is a topic already mentioned in Dr. Pflegers long-term vision outlined in
Figure 14 and revolves around opening up and using new data sources. This additional
data should be chosen such that it has explanatory content about so far unexplained
variance in the distributions of the KPIs related to the OEE. Most likely this would
require the connection of new databases, tapping into new data in the existing SAP or
MES data or including additional external manually created information. Crucial would
be collecting and including data about the process in the cleanroom area of the production
lines. Another interesting topic would be to find data that better explains the variance
in the quality rate, meaning data that explains why specific production orders result
in more scrapped products than others. Finally, new data explaining the occurance of
unscheduled downtime better would be crucial to close the gap in predicting the downtime
but also the AR and the OEE.

Real-world testing is critical to evaluate whether one of the core assumptions of the
build tool holds: That the future behaves similarly to the past. To execute such a test,
planners need to adjust their plans with the help of suggestions they get for the model.
These adjustments could be limited in scope to one production line for ease of evaluation;
for this line, production campaign planners could generate scheduling proposals over a
defined timeframe. These schedules would then be executed throughout the timeframe,
and their true KPIs recorded by the MES. These records could then be evaluated against
the original predictions made by the models, which allows us to determine the differences
between predicted KPIs and true KPIs. The resulting range of differences will determine
whether the tool can be employed in the practical process.

Lastly, further research and development into how to generate good scheduling proposals
should be conducted. To further develop the topic around scheduling proposal generation,
extensive literature research should be conducted to check for similar problems that
have already been solved. Several techniques might be found in this literature review,
which can then be tested and evaluated against the existing method. Furthermore, other
types of models should be trained and evaluated that have inbuilt abilities to predict
sequences like recurrent neural networks or potentially a RL agent could be trained to
solve the scheduling problems. These approaches differ significantly from the SL approach
employed in this thesis and, therefore, would require more research in their theoretical
background.

Finally, the practical application of the software package developed throughout the im-
plementation phase of this project should be made possible with ML deployment and
operation techniques. Models trained should be appropriately registered into the Azure
ML platform, including their respective target, performance, and reference to the dataset
version used for retraining. Furthermore, the user interface would need to be deployed
on a productive server with proper security measures and connected to the company’s
single-sign-on system to provide easy access to users. A regular automatic retraining and
validation pipeline could be implemented. Newly retrained models would be deployed to
the user interface based on predefined logic regarding their monitored performance.

9 CONCLUSION 71

9 Conclusion

This thesis described a holistic approach based on the DSR methodology for improving
the OEE through the application of machine learning techniques. Through the use of
several ML algorithms to predict several KPIs and allow model interaction in a user
interface, the thesis was able to show how ML can be used to enhance the efficiency of
industrial processes, especially for production planning and control at Dr. Pfleger.

The main goal was to train a model that would allow to predict the OEE and its sub-
components with a certain level of accuracy. The thesis demonstrated that the models’
performance is reasonable for OEE and AR prediction by employing various machine
learning models, including ensemble models like bagging and boosting. These results
show that ensemble methods are superior to simple regression models in this project,
most likely, because they are better able to deal with data variability and outliers.

However, the models trained were less accurate in predicting other subcomponents of
OEE, namely Performance Efficiency and especially Quality Rate. The reduced perfor-
mance in predicting these subcomponents can most probably be attributed to the lack
of sufficient data, which emphasizes a key challenge in this research: the need for further
data sources to explain the variance in all KPI targets better.

As for the practical outcome, the project has given Dr. Pfleger the initial prototype
that can predict the OEE with an RMSE of approximately 10%. This satisfies the
defined performance objectives and provides a good basis for future work and possible
real-world application. However, the models have to be tested for their effectiveness in
real life situations to ascertain their accuracy in prediction. In addition, the trust of
the stakeholders and the usability of the tool should be increased by refining the user
interface and incorporating the system into the production planners’ work processes.

Therefore, this thesis has provided evidence and possibilities of enhancing OEE in pro-
duction systems using machine learning. Despite the fact that the project achieved its
goals, there are several directions for further research: data enrichment, real-world experi-
ments, and enhancing the generation scheduling proposals. These areas will be important
in order to achieve the potential of machine learning in the improvement of production
processes at Dr. Pfleger.

A APPENDIX 72

A Appendix

A.1 Code Repository

The code written to solve the task in the present thesis and to produce the results is
made available under MIT license and can be used with the license terms at:

https://github.com/Veheled/ML Prediction OEE

The code repository contains an introductory readme file that explains roughly the func-
tioning of each notebook and module as well as how to run them. Furthermore, the
readme quickly explains how the user interface can be started and accessed. Note that
this repository does not include any data due to the data being owned by Dr. Pfleger.
The code expects a folder structure to function. Also it expects datafiles with a specific
naming convention to be downloaded from an Azure Storage in the dataloader module. It
was developed in the Azure ML Studio environment and expects certain native function
and packages related to this environment to function. Furthermore, a set of external
python packages are required for the code to run. They are specified in the require-
ments.txt and called for in the setup.py. The python package defined by the code in the
repository can be installed via pip using the link above.

https://github.com/Veheled/ML_Prediction_OEE

A APPENDIX 73

A.2 Requirement Descriptions

N. Short Name Type Primary Priority Area of
Pipeline

Description

1 Data Exploration and
Business Knowledge
Collection

Non-
functional

Yes 1 Collect business insights and ex-
plore existing data sources to de-
fine project goals and requirements
and understand how data needs to
be integrated and connected for fur-
ther analysis.

2 Implementation of
Database Connection

Functional Yes 1 Data In-
tegration

Establish connections to necessary
data sources from Azure data stor-
age to load the MES raw data.
The data should be loaded and
stored using a timestamp version-
ing system to allow backtracking of
which pipeline run produced and
used which input data.

3 Data Integration and
Aggregation of MES
Raw Data

Functional Yes 1 Data In-
tegration

Integrate raw data from MES with
the help of the provided datamodel
to obtain the KPIs similarly as they
are provided in the MES frontend
tool. The result should return all
KPIs relevant for the OEE calcu-
lation as well as all other necessary
data contained in the MES raw data
on the basis of an order.

4 Processing of Static
Product and Packaging
Information

Functional Yes 2 Data In-
tegration

Load, clean, process, and join the
data provided via Excel files into
the aggregated MES data via their
associated product key. The infor-
mation should be transformed from
strings into numbers for fields con-
taining multiple dimensional pack-
aging information.

5 Data Validation and
Quality Checks

Functional Yes 1 Data In-
tegration

Execute data quality tests and im-
plement validation checks to ensure
the quality and consistency of the
integrated data with the frontend of
the MES.

6 Feature Engineering
for Model Training

Functional 2 Data In-
tegration

Explore possibilities to engineer
new features based on the MES
data to improve model accuracy
and performance.

7 Training of ML Models
to Predict the OEE

Functional Yes 1 Model
Training

Develop a pipeline to train machine
learning models that are capable of
predicting the OEE based on the
integrated dataset. This pipeline
should follow the commonly used
structure of ML training like a
train-test split, validation on un-
seen data, and test various different
types of models.

8 Training of ML Models
to Predict Additional
KPIs

Functional 3 Model
Training

Train additional models to allow
prediction of other KPIs among
which the Availability, Perfor-
mance, Quality, and planned pro-
duction times.

9 Hyperparameter Tun-
ing and Model Opti-
mization

Functional 3 Model
Training

Optimize models through hyperpa-
rameter tuning to improve their
predictive accuracy.

10 Model Versioning and
Experiment Tracking

Non-
functional

2 Model
Training

Implement a way to version control
trained models, store their respec-
tive loss, and experiment tracking
to manage model iterations and ex-
periments.

A APPENDIX 74

N. Short Name Type Primary Priority Area of
Pipeline

Description

11 Model Evaluation and
Selection of Best Ap-
proach

Functional Yes 1 Model
Evalua-
tion

Evaluate the performance of all
models trained and determine the
best-performing model for a pro-
ductive deployment.

12 Evaluate Method
for Explainability of
Model Decisions

Functional Yes 3 Model
Evalua-
tion

Explore and implement methods to
explain the model’s predictions to
decision-makers in business, high-
lighting key influencing factors on
models’ predictions.

13 Average OEE Predic-
tion Error of Below 10
Percentage Points

Non-
functional

Yes 1 Model
Evalua-
tion

If possible, the goal is to train mod-
els that can achieve to predict the
OEE with an average error of 10
percentage points. The error range
was chosen in regards to the as-
sumed precision of prediction al-
lowed by the data.

14 Implementation of
User Interface Pro-
totype for Planner
Interaction

Functional 4 Frontend Create a user interface for planners
to interact with the trained mod-
els, inputting necessary parameters
for prediction, drawing historic ref-
erence data and features, and dis-
playing predictions returned by the
model.

15 Implementation of
Methods to Allow
Planners to Get Op-
timized Production
Sequences

Functional 5 Frontend Create a user interface and associ-
ated background algorithm that al-
lows planners to optimize input pro-
duction sequences by using models
to predict multiple combinations of
possible sequences.

16 Real-World Perfor-
mance Evaluation in
Production Planning

Non-
functional

2 Model
Evalua-
tion

Test the model in a real-world pro-
duction environment to assess its ef-
fectiveness in optimizing order se-
quencing.

17 Integration with Exist-
ing Production Plan-
ning Tools

Non-
functional

5 Frontend Ensure seamless integration of the
ML model with existing tools used
by production planners.

18 Scalability and Perfor-
mance Optimization of
Pipeline

Non-
functional

5 Data In-
tegration

Optimize the data pipeline to han-
dle large datasets and ensure effi-
cient processing.

19 Continuous Monitoring
and Feedback Loop

Non-
functional

5 Model
Evalua-
tion

Set up monitoring tools to track
model performance over time and
incorporate feedback for continuous
improvement.

A APPENDIX 75

A.3 Technical Feature Descriptions

Technical Feature Name Description

ProductCode encoded The ordinal / label encoded product code of the product to be produced in
the associated order.

Previous ProductCode encoded The ordinal / label encoded product code of the product produced in the
previous order.

OrderQuantity The amount of product units to be produced in this order.

FS Breite Folding box (Faltschachtel) width in mm.

FS Länge Folding box (Faltschachtel) length in mm.

FS Tiefe Folding box (Faltschachtel) depth in mm.

PBL Breite Package leaflet (Packungsbeilage) width in mm.

PBL Länge Package leaflet (Packungsbeilage) length in mm.

Tuben Durchmesser Tube diameter in mm.

Tuben Länge Tube length / height in mm.

CALC PACKGROESSE Calculated feature describing the amount of units per product package.

CALC WIRKSTOFF Calculated feature describing the primary ingredient of the product.

CALC ALUFOLIE Calculated feature describing the packaging foil used for the product.

10th Percentile Auftragswechsel Calculated feature of the 10th percentile of the product changeover time (Auf-
tragswechseldauer).

10th Percentile Primär Calculated feature of the 10th percentile of the primary error time
(Primärfehlerzeit).

10th Percentile Sekundär Calculated feature of the 10th percentile of the secondary error time
(Sekundärfehlerzeit).

Code P-SARO-2 One-Hot-Encoded feature whether or not the order is produced on the specific
production line, which is the saro line.

Code V-PAST-2 One-Hot-Encoded feature whether or not the order is produced on the specific
production line, which is the pastille line.

Code V-LINIE6 One-Hot-Encoded feature whether or not the order is produced on the specific
production line. Line 6 is a blister line.

Code V-LINIE7 One-Hot-Encoded feature whether or not the order is produced on the specific
production line. Line 7 is a blister line.

Code V-LINIE8 One-Hot-Encoded feature whether or not the order is produced on the specific
production line. Line 8 is a blister line.

Code V-TUBEN2 One-Hot-Encoded feature whether or not the order is produced on the specific
production line, which is the tube line.

A.4 KPI Descriptions

KPI Tables Involved Calculation Description

Good Quantity FactMdaCounter,
DimMdaCounter,
DimWorkcenter

Sum of values where Kind is ”OK”, considering if
Quality is enabled.

Rework Quantity FactMdaCounter,
DimMdaCounter,
DimWorkcenter

Sum of values where Kind is ”Rework”, considering
if Quality is enabled.

Scrap Quantity FactMdaCounter,
DimMdaCounter,
DimWorkcenter

Sum of values where Kind is ”NOK”, considering if
Quality is enabled.

A APPENDIX 76

KPI Tables Involved Calculation Description

Target Time (NOT1) FactMdaCounter,
DimMdaCounter,
DimMdaOperation,
DimWorkcenter

Sum of values multiplied by effective processing
time, if performance is enabled and quality condi-
tions are met.

Runtime FactMdaState Sum of the duration across all states.

Offtime FactMdaState,
DimMdaState,
DimWorkcenter

Sum of duration where Kind is ”Planned Stop” and
availability is enabled.

Downtime FactMdaState,
DimMdaState,
DimWorkcenter

Sum of duration where Kind is ”Unplanned Stop”
and availability is enabled.

Uptime FactMdaState,
DimMdaState,
DimWorkcenter

Sum of duration where Kind is ”Production” and
availability is enabled.

Target Time (NOT2) FactMdaState,
DimMdaOperation,
FactMdaMes,
DimMdaState,
DimWorkcenter

Sum of duration based on production or unplanned
stop conditions when performance is not enabled.

Planned Production Time FactMdaState Calculated as Runtime minus Offtime.

Operating Time FactMdaState Calculated as PlanOccupancyTime minus Down-
time.

Total Quantity FactMdaCounter Sum of GoodQuantity and ScrapQuantity.

Availability Rate FactMdaMes Calculated as AllUsageTime divided by PlanOccu-
pancyTime.

Performance Efficiency FactMdaMes Calculated as sum of NOT1 and NOT2 divided by
AllUsageTime.

Quality Rate FactMdaMes Calculated as (GoodQuantity - ReworkQuantity) di-
vided by TotalQuantity.

Overall Equipment Effective-
ness

FactMdaMes Calculated as the product of Availability, Perfor-
mance, and Quality.

A.5 Algorithm Implementation used by Package and Class

Algorithm Python Package Algorithm Class

Linear Regression sklearn.linear model LinearRegression

Ridge Regression sklearn.linear model Ridge

Polynomial Regression sklearn.preprocessing PolynomialFeatures

Decision Tree Regression sklearn.tree DecisionTreeRegressor

Random Forest Regression sklearn.ensemble RandomForestRegressor

Support Vector Regression sklearn.svm SVR

eXtreme Gradient Boosting xgboost XGBRegressor

CatBoost catboost CatBoostRegressor

Light Gradient-Boosting Machine lightgbm LGBMRegressor

Neural Network torch nn, optim, nn.MSELoss()

A APPENDIX 77

A.6 Optimized Hyperparameters per Model Target

Algorithm Optimized Hyperparameter Set

Target OEE

Ridge Regression alpha: 3.9099

Polynomial Regression poly degree: 2

Decision Tree Regression max depth: 20, min samples split: 11, min samples leaf: 5

Random Forest n estimators: 412, max depth: 10, min samples split: 7, min samples leaf: 2, bootstrap:
True

SVR C: 4.1971, epsilon: 0.0267, kernel: rbf

XGBoost n estimators: 186, max depth: 5, learning rate: 0.1471, subsample: 0.8369,
colsample bytree: 0.7563, gamma: 0.0140

CatBoost iterations: 205, learning rate: 0.0581, depth: 6, l2 leaf reg: 9, border count: 210,
grow policy: Depthwise

LightGBM n estimators: 238, learning rate: 0.1731, num leaves: 219, boosting type: dart,
colsample bytree: 0.8898, reg alpha: 0.5541, reg lambda: 0.8333

Neural Network num epochs: 1035, learning rate: 0.0052, early stop patience: 193

Target AR

Ridge Regression alpha: 2.5132

Polynomial Regression poly degree: 2

Decision Tree Regression max depth: 15, min samples split: 11, min samples leaf: 4

Random Forest n estimators: 207, max depth: 13, min samples split: 7, min samples leaf: 2, bootstrap:
True

SVR C: 2.2576, epsilon: 0.0614, kernel: rbf

XGBoost n estimators: 261, max depth: 4, learning rate: 0.1474, subsample: 0.9980,
colsample bytree: 0.9980, gamma: 0.0090

CatBoost iterations: 422, learning rate: 0.0503, depth: 5, l2 leaf reg: 4, border count: 139,
grow policy: Lossguide

LightGBM n estimators: 415, learning rate: 0.0637, num leaves: 163, boosting type: gbdt,
colsample bytree: 0.6816, reg alpha: 0.9999, reg lambda: 0.9972

Neural Network num epochs: 116, learning rate: 0.0148, early stop patience: 70

Target PE

Ridge Regression alpha: 2.6029

Polynomial Regression poly degree: 2

Decision Tree Regression max depth: 33, min samples split: 11, min samples leaf: 5

Random Forest n estimators: 334, max depth: 10, min samples split: 5, min samples leaf: 1, bootstrap:
True

SVR C: 2.6170, epsilon: 0.0344, kernel: rbf

XGBoost n estimators: 199, max depth: 6, learning rate: 0.0306, subsample: 0.7900,
colsample bytree: 0.8691, gamma: 0.0442

CatBoost iterations: 209, learning rate: 0.0568, depth: 10, l2 leaf reg: 9, border count: 127,
grow policy: Lossguide

LightGBM n estimators: 450, learning rate: 0.1541, num leaves: 235, boosting type: dart,
colsample bytree: 0.7892, reg alpha: 0.6987, reg lambda: 0.1050

Neural Network num epochs: 160, learning rate: 0.0346, early stop patience: 28

Target QR

Continued on next page

A APPENDIX 78

Algorithm Optimized Hyperparameter Set

Ridge Regression alpha: 0.1258

Polynomial Regression poly degree: 2

Decision Tree Regression max depth: 38, min samples split: 5, min samples leaf: 5

Random Forest n estimators: 257, max depth: 38, min samples split: 3, min samples leaf: 5, bootstrap:
True

SVR C: 0.3820, epsilon: 0.0109, kernel: rbf

XGBoost n estimators: 355, max depth: 9, learning rate: 0.1879, subsample: 0.7621,
colsample bytree: 0.6059, gamma: 0.0120

CatBoost iterations: 495, learning rate: 0.0125, depth: 8, l2 leaf reg: 9, border count: 164,
grow policy: Depthwise

LightGBM n estimators: 284, learning rate: 0.0108, num leaves: 153, boosting type: goss,
colsample bytree: 0.7374, reg alpha: 0.0110, reg lambda: 0.0230

Neural Network num epochs: 1040, learning rate: 0.0236, early stop patience: 202

Target PPT

Ridge Regression alpha: 6.7017

Polynomial Regression poly degree: 2

Decision Tree Regression max depth: 40, min samples split: 5, min samples leaf: 5

Random Forest n estimators: 314, max depth: 10, min samples split: 4, min samples leaf: 5, bootstrap:
True

SVR C: 9.9587, epsilon: 0.4808, kernel: rbf

XGBoost n estimators: 426, max depth: 3, learning rate: 0.0213, subsample: 0.7605,
colsample bytree: 0.9647, gamma: 0.2939

CatBoost iterations: 197, learning rate: 0.0315, depth: 6, l2 leaf reg: 7, border count: 248,
grow policy: Depthwise

LightGBM n estimators: 443, learning rate: 0.0136, num leaves: 102, boosting type: goss,
colsample bytree: 0.7435, reg alpha: 0.8041, reg lambda: 0.7949

Neural Network num epochs: 1278, learning rate: 0.0300, early stop patience: 35

Target OT

Ridge Regression alpha: 2.4945

Polynomial Regression poly degree: 2

Decision Tree Regression max depth: 24, min samples split: 3, min samples leaf: 1

Random Forest n estimators: 308, max depth: 49, min samples split: 8, min samples leaf: 1, bootstrap:
True

SVR C: 9.7129, epsilon: 0.0414, kernel: rbf

XGBoost n estimators: 106, max depth: 5, learning rate: 0.0504, subsample: 0.7380,
colsample bytree: 0.8921, gamma: 0.0057

CatBoost iterations: 341, learning rate: 0.0221, depth: 7, l2 leaf reg: 3, border count: 141,
grow policy: Depthwise

LightGBM n estimators: 380, learning rate: 0.1440, num leaves: 255, boosting type: dart,
colsample bytree: 0.9863, reg alpha: 0.3287, reg lambda: 0.7239

Neural Network num epochs: 1724, learning rate: 0.0989, early stop patience: 69

Target DT

Ridge Regression alpha: 14.6986

Polynomial Regression poly degree: 2

Continued on next page

A APPENDIX 79

Algorithm Optimized Hyperparameter Set

Decision Tree Regression max depth: 10, min samples split: 11, min samples leaf: 5

Random Forest n estimators: 156, max depth: 26, min samples split: 3, min samples leaf: 5, bootstrap:
True

SVR C: 0.5901, epsilon: 0.4489, kernel: linear

XGBoost n estimators: 182, max depth: 4, learning rate: 0.0133, subsample: 0.7075,
colsample bytree: 0.6104, gamma: 0.0003

CatBoost iterations: 211, learning rate: 0.0165, depth: 8, l2 leaf reg: 6, border count: 128,
grow policy: Lossguide

LightGBM n estimators: 51, learning rate: 0.0614, num leaves: 177, boosting type: goss,
colsample bytree: 0.9605, reg alpha: 0.7228, reg lambda: 0.9876

Neural Network num epochs: 114, learning rate: 0.0044, early stop patience: 242

BIBLIOGRAPHY 80

Bibliography
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A Next-generation Hyper-

parameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’19, pages 2623–2631, New York, NY, USA, July 2019. Association for Computing
Machinery. ISBN 978-1-4503-6201-6. doi: 10.1145/3292500.3330701. URL https://doi.org/10.1145/3292500.3330701.

David M. Allen. Mean Square Error of Prediction as a Criterion for Selecting Variables. Technometrics, 13(3):469–475,
August 1971. ISSN 0040-1706, 1537-2723. doi: 10.1080/00401706.1971.10488811. URL http://www.tandfonline.com/

doi/abs/10.1080/00401706.1971.10488811.

Aayush Bajaj. Performance Metrics in Machine Learning [Complete Guide], July 2022. URL https://neptune.ai/blog/

performance-metrics-in-machine-learning-complete-guide.

James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimization. Journal of machine learning
research, 13(2):281–305, 2012.

Michael Braun. Nicht-funktionale Anforderungen, January 2016. URL https://www.pst.ifi.lmu.de/Lehre/wise-15-16/

jur-pm/braun-ausarbeitung.pdf.

S. Chapman. The Fundamentals Of Production Planning And Control. March 2005. URL https:

//www.semanticscholar.org/paper/The-Fundamentals-Of-Production-Planning-And-Control-Chapman/

554ff92970c557c80c78b337f01c56eecd1ddfea.

O. Chikwendu, Anozie Stephen Chima, and Mgbemena Chika Edith. The optimization of overall equipment
effectiveness factors in a pharmaceutical company. Heliyon, 6, 2020. doi: 10.1016/j.heliyon.2020.e03796.
URL https://consensus.app/papers/optimization-equipment-effectiveness-factors-company-chikwendu/

6c5f20b0c2b959c68cf574851fef6e77/.

Péter Dobra and János Jósvai. Assembly Line Overall Equipment Effectiveness (OEE) Prediction from Human Esti-
mation to Supervised Machine Learning. Journal of Manufacturing and Materials Processing, 6(3):59, June 2022a.
ISSN 2504-4494. doi: 10.3390/jmmp6030059. URL https://www.mdpi.com/2504-4494/6/3/59. Number: 3 Publisher:
Multidisciplinary Digital Publishing Institute.

Péter Dobra and János Jósvai. Predicting the impact of type changes on Overall Equipment Effectiveness (OEE) through
machine learning. In 2022 IEEE 1st International Conference on Internet of Digital Reality (IoD), pages 000011–000016,
June 2022b. doi: 10.1109/IoD55468.2022.9986645. URL https://ieeexplore.ieee.org/abstract/document/9986645.

Choumicha El Mazgualdi, Tawfik Masrour, Ibtissam El Hassani, and Abdelmoula Khdoudi. Machine learning for KPIs
prediction: a case study of the overall equipment effectiveness within the automotive industry. Soft Computing, 25
(4):2891–2909, February 2021. ISSN 1432-7643, 1433-7479. doi: 10.1007/s00500-020-05348-y. URL https://link.

springer.com/10.1007/s00500-020-05348-y.

Adrien Payong Fadheli, Abdeladim. K-Fold Cross Validation using Scikit-Learn in Python - The Python Code, September
2024. URL https://thepythoncode.com/article/kfold-cross-validation-using-sklearn-in-python.

Flask. Welcome to Flask — Flask Documentation (3.0.x), September 2024. URL https://flask.palletsprojects.com/

en/3.0.x/.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning, volume 196. MIT Press, Massachusetts, 2016. ISBN
978-0-262-03561-3. OCLC: 1091224171.

Michael Haenlein and Andreas Kaplan. A Brief History of Artificial Intelligence: On the Past, Present, and Future
of Artificial Intelligence. California Management Review, July 2019. doi: 10.1177/0008125619864925. URL https:

//journals.sagepub.com/doi/epub/10.1177/0008125619864925. Publisher: SAGE PublicationsSage CA: Los Angeles,
CA.

Kai Holzweißig. Wissenschaftliches Arbeiten - Eine Anleitung für dual Studierende der Wirtschaftsinformatik. Leanpub,
4. auflage edition, April 2019. URL https://leanpub.com/wawinfo.

Vorne Industries. OEE Factors: Availability, Performance, and Quality | OEE, August 2024a. URL https://www.oee.

com/oee-factors/.

Vorne Industries. OEE Calculation: Definitions, Formulas, and Examples | OEE, August 2024b. URL https://www.oee.

com/calculating-oee/.

Vorne Industries. Six Big Losses in Manufacturing | OEE, August 2024c. URL https://www.oee.com/

oee-six-big-losses/.

Vorne Industries. World-Class OEE: Set Targets To Drive Improvement | OEE, August 2024d. URL https://www.oee.

com/world-class-oee/.

https://doi.org/10.1145/3292500.3330701
http://www.tandfonline.com/doi/abs/10.1080/00401706.1971.10488811
http://www.tandfonline.com/doi/abs/10.1080/00401706.1971.10488811
https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide
https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide
https://www.pst.ifi.lmu.de/Lehre/wise-15-16/jur-pm/braun-ausarbeitung.pdf
https://www.pst.ifi.lmu.de/Lehre/wise-15-16/jur-pm/braun-ausarbeitung.pdf
https://www.semanticscholar.org/paper/The-Fundamentals-Of-Production-Planning-And-Control-Chapman/554ff92970c557c80c78b337f01c56eecd1ddfea
https://www.semanticscholar.org/paper/The-Fundamentals-Of-Production-Planning-And-Control-Chapman/554ff92970c557c80c78b337f01c56eecd1ddfea
https://www.semanticscholar.org/paper/The-Fundamentals-Of-Production-Planning-And-Control-Chapman/554ff92970c557c80c78b337f01c56eecd1ddfea
https://consensus.app/papers/optimization-equipment-effectiveness-factors-company-chikwendu/6c5f20b0c2b959c68cf574851fef6e77/
https://consensus.app/papers/optimization-equipment-effectiveness-factors-company-chikwendu/6c5f20b0c2b959c68cf574851fef6e77/
https://www.mdpi.com/2504-4494/6/3/59
https://ieeexplore.ieee.org/abstract/document/9986645
https://link.springer.com/10.1007/s00500-020-05348-y
https://link.springer.com/10.1007/s00500-020-05348-y
https://thepythoncode.com/article/kfold-cross-validation-using-sklearn-in-python
https://flask.palletsprojects.com/en/3.0.x/
https://flask.palletsprojects.com/en/3.0.x/
https://journals.sagepub.com/doi/epub/10.1177/0008125619864925
https://journals.sagepub.com/doi/epub/10.1177/0008125619864925
https://leanpub.com/wawinfo
https://www.oee.com/oee-factors/
https://www.oee.com/oee-factors/
https://www.oee.com/calculating-oee/
https://www.oee.com/calculating-oee/
https://www.oee.com/oee-six-big-losses/
https://www.oee.com/oee-six-big-losses/
https://www.oee.com/world-class-oee/
https://www.oee.com/world-class-oee/

BIBLIOGRAPHY 81

M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 349(6245):255–260,
July 2015. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.aaa8415. URL https://www.science.org/doi/10.1126/

science.aaa8415.

Yoonsuh Jung. Multiple predicting K -fold cross-validation for model selection. Journal of Nonparametric Statistics,
30(1):197–215, January 2018. ISSN 1048-5252, 1029-0311. doi: 10.1080/10485252.2017.1404598. URL https://www.

tandfonline.com/doi/full/10.1080/10485252.2017.1404598.

Raman Kumar, Sita Rani, and Sehijpal Singh Khangura. Machine Learning for Sustainable Manufacturing in Industry
4.0: Concept, Concerns and Applications. CRC Press, November 2023. ISBN 978-1-00-098619-8. Google-Books-ID:
vKMIEQAAQBAJ.

Laura Lucantoni, Sara Antomarioni, Filippo Emanuele Ciarapica, and Maurizio Bevilacqua. A rule-based machine learning
methodology for the proactive improvement of OEE: a real case study. International Journal of Quality & Reliability
Management, 41(5):1356–1376, January 2023. ISSN 0265-671X. doi: 10.1108/IJQRM-01-2023-0012. URL https:

//doi.org/10.1108/IJQRM-01-2023-0012. Publisher: Emerald Publishing Limited.

Luke Merrick and Ankur Taly. The Explanation Game: Explaining Machine Learning Models Using Shapley Values.
volume 12279, pages 17–38, Cham, 2020. Springer International Publishing. ISBN 978-3-030-57320-1 978-3-030-57321-
8. doi: 10.1007/978-3-030-57321-8 2. URL https://link.springer.com/10.1007/978-3-030-57321-8_2. Book Title:
Machine Learning and Knowledge Extraction Series Title: Lecture Notes in Computer Science.

Ercan Oztemel and Samet Gursev. Literature review of Industry 4.0 and related technologies. Journal of Intelligent
Manufacturing, 31(1):127–182, January 2020. ISSN 1572-8145. doi: 10.1007/s10845-018-1433-8. URL https://doi.

org/10.1007/s10845-018-1433-8.

Andrew J. Patton and A. Timmermann. Testing Forecast Optimality Under Unknown Loss. Journal of the American
Statistical Association, 102:1172–1184, 2007. doi: 10.1198/016214506000001176. URL https://consensus.app/papers/

testing-forecast-optimality-under-unknown-loss-patton/b69e663bece052d89b82db1e7e41e91b/.

Dr. Pfleger. Dr. Pfleger Arzneimittel heute, 2024a. URL https://dr-pfleger.de/unternehmen/

dr-pfleger-arzneimittel-heute/.

Dr. Pfleger. Wie wir arbeiten, 2024b. URL https://dr-pfleger.de/unternehmen/dr-pfleger-arzneimittel-heute/

wie-wir-arbeiten/.

Liliane M-y A Pintelon and Peter Nganga Muchiri. Performance measurement using overall equipment effectiveness (OEE):
literature review and practical application discussion. International Journal of Production Research, 46(13):3517–3535,
July 2008. ISSN 0020-7543. doi: 10.1080/00207540601142645. URL https://doi.org/10.1080/00207540601142645.
Publisher: Taylor & Francis eprint: https://doi.org/10.1080/00207540601142645.

REFA. OEE - Overall Equipment Effectiveness, August 2024. URL https://refa.de/service/refa-lexikon/

oee-overall-equipment-effectiveness.

Biswaranjan Senapati, Awad Bin Naeem, and Renato R. Maaliw. Machine Learning Model for Improving the Overall Equip-
ment Effectiveness in Industrial Manufacturing Sites. In Advances in Computational Intelligence and Its Applications.
CRC Press, 2024. ISBN 978-1-00-348868-2. Num Pages: 11.

Christian Stemper, Eva Kodisch, and David Billing. AI Usecases @ Dr. Pfleger - Optimization of Production Planning,
November 2022.

Juan Pablo Usuga Cadavid, Samir Lamouri, Bernard Grabot, Robert Pellerin, and Arnaud Fortin. Machine learning applied
in production planning and control: a state-of-the-art in the era of industry 4.0. Journal of Intelligent Manufacturing,
31(6):1531–1558, August 2020. ISSN 1572-8145. doi: 10.1007/s10845-019-01531-7. URL https://doi.org/10.1007/

s10845-019-01531-7.

Bruno Vilela De Souza, Sérgio R. Barros Dos Santos, André M. De Oliveira, and Sidney N. Givigi. Analyzing and
Predicting Overall Equipment Effectiveness in Manufacturing Industries using Machine Learning. In 2022 IEEE In-
ternational Systems Conference (SysCon), pages 1–8, April 2022. doi: 10.1109/SysCon53536.2022.9773846. URL
https://ieeexplore.ieee.org/document/9773846. ISSN: 2472-9647.

Thomas Wilde and Thomas Hess. Forschungsmethoden der Wirtschaftsinformatik. WIRTSCHAFTSINFORMATIK,
49(4):280–287, August 2007. ISSN 1861-8936. doi: 10.1007/s11576-007-0064-z. URL https://doi.org/10.1007/

s11576-007-0064-z.

Tzu-Tsung Wong and Nai-Yu Yang. Dependency Analysis of Accuracy Estimates in k-Fold Cross Validation. IEEE
Transactions on Knowledge and Data Engineering, 29(11):2417–2427, November 2017. ISSN 1041-4347. doi: 10.1109/
TKDE.2017.2740926. URL http://ieeexplore.ieee.org/document/8012491/.

Carl August Zehnder. Informationssysteme und Datenbanken. Leitfäden der Informatik. Teubner Verlag, Stuttgart, 6.
auflage edition, 1998. ISBN 3-519-32480-6.

Muhammad Zubair, S. Maqsood, Tufail Habib, Qazi Muhammad Usman Jan, Uroosa Nadir, M. Waseem, and Q. Yaseen.
Manufacturing productivity analysis by applying overall equipment effectiveness metric in a pharmaceutical indus-
try. Cogent Engineering, 8, 2021. doi: 10.1080/23311916.2021.1953681. URL https://consensus.app/papers/

manufacturing-productivity-analysis-applying-equipment-zubair/98e794c62e3e542f85f9c5924bf02bf8/.

https://www.science.org/doi/10.1126/science.aaa8415
https://www.science.org/doi/10.1126/science.aaa8415
https://www.tandfonline.com/doi/full/10.1080/10485252.2017.1404598
https://www.tandfonline.com/doi/full/10.1080/10485252.2017.1404598
https://doi.org/10.1108/IJQRM-01-2023-0012
https://doi.org/10.1108/IJQRM-01-2023-0012
https://link.springer.com/10.1007/978-3-030-57321-8_2
https://doi.org/10.1007/s10845-018-1433-8
https://doi.org/10.1007/s10845-018-1433-8
https://consensus.app/papers/testing-forecast-optimality-under-unknown-loss-patton/b69e663bece052d89b82db1e7e41e91b/
https://consensus.app/papers/testing-forecast-optimality-under-unknown-loss-patton/b69e663bece052d89b82db1e7e41e91b/
https://dr-pfleger.de/unternehmen/dr-pfleger-arzneimittel-heute/
https://dr-pfleger.de/unternehmen/dr-pfleger-arzneimittel-heute/
https://dr-pfleger.de/unternehmen/dr-pfleger-arzneimittel-heute/wie-wir-arbeiten/
https://dr-pfleger.de/unternehmen/dr-pfleger-arzneimittel-heute/wie-wir-arbeiten/
https://doi.org/10.1080/00207540601142645
https://refa.de/service/refa-lexikon/oee-overall-equipment-effectiveness
https://refa.de/service/refa-lexikon/oee-overall-equipment-effectiveness
https://doi.org/10.1007/s10845-019-01531-7
https://doi.org/10.1007/s10845-019-01531-7
https://ieeexplore.ieee.org/document/9773846
https://doi.org/10.1007/s11576-007-0064-z
https://doi.org/10.1007/s11576-007-0064-z
http://ieeexplore.ieee.org/document/8012491/
https://consensus.app/papers/manufacturing-productivity-analysis-applying-equipment-zubair/98e794c62e3e542f85f9c5924bf02bf8/
https://consensus.app/papers/manufacturing-productivity-analysis-applying-equipment-zubair/98e794c62e3e542f85f9c5924bf02bf8/

Declaration of Authorship

Ich erkläre hiermit gemäß §9 Abs. 12 APO, dass ich die vorstehende Abschlussarbeit
selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe. Des Weiteren erkläre ich, dass die digitale Fassung der gedruckten Ausfer-
tigung der Abschlussarbeit ausnahmslos in Inhalt und Wortlaut entspricht und zur Ken-
ntnis genommen wurde, dass diese digitale Fassung einer durch Software unterstützten,
anonymisierten Prüfung auf Plagiate unterzogen werden kann.

Place, Date Signature

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Project Motivation
	Research methodology
	Thesis Structure

	Theoretical Background
	Basic definitions
	Production Planning and Control
	Overall Equipment Effectiveness
	Machine Learning
	Regression Problems and Models
	Loss Functions for Regression Problems
	Linear, Polynomial and Ridge Regression
	Decision Tree Regression
	Support Vector Regression
	Neural Networks for Regression
	Early Stopping
	Ensemble Learning
	Data Encoding and Standardization
	k-Fold Cross Validation
	Hyperparameter Optimization Methods
	Model Explainability with SHAP-Values

	Machine Learning in Production Planning and Control

	As-Is Analysis and conceptual design
	Business Environment
	Order Planning Process
	Business Problem Definition
	Technical Project Setup

	Conceptualization of the ML-based OEE prediction tool
	Project Goals and Solution Concept
	Requirements Creation

	Data and Feature Engineering
	Data Modelling
	Data Aggregation and Preparation
	Data Quality Issues
	Feature Creation
	Dataset Description

	Model Development
	Model Targets
	Selection of models for evaluation
	Dataset Splits
	Data Encoding and Scaling
	Hyperparameter Optimization
	Data, Training and Evaluation Pipeline
	Model Ensembling and Explainability
	Web-based User Interface

	Evaluation
	Experiment - Validation Set Ratios
	Experiment - Scaling and Encoding Effects
	OEE Models
	OEE Submetrics Models
	Experiment - OEE Composite Metric
	Planning Time Models
	Error Correlation Analysis
	OEE Model Explainability
	Project Requirement Satisfaction

	Discussion
	Future Work
	Conclusion
	Appendix
	Code Repository
	Requirement Descriptions
	Technical Feature Descriptions
	KPI Descriptions
	Algorithm Implementation used by Package and Class
	Optimized Hyperparameters per Model Target

	Bibliography

