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Abstract

Current deep learning-based image classification models store their learned knowl-
edge implicitly in deep neural networks. This implicit knowledge can only be ad-
justed by retraining the entire model, which can lead to catastrophic forgetting of
previously learned knowledge and can be challenging for applying personal user data
privacy regulations.

Nakata et al. proposed a kNN-based image classification system that claims to
overcome these challenges. During this thesis, a prototype system was developed
based on their description to evaluate their approach.

Overall, the prototype system almost matches the classification performance of
Nakata et al.’s system, just falling short by 0.006% to 2.8% in accuracy for the
ResNet-50 image encoder and a decrease in accuracy of 4% to 12.5% for the ViT-
B/16 image encoder. Dimensionality reduction with t-SNE can increase the classifi-
cation performance and visualize the model’s decision-making process. Catastrophic
forgetting was mitigated, and it has been shown that it is possible to delete up to 40%
of feature embeddings of a single class before the classification accuracy declines.

Investigating Nakata et al.’s approach by building a prototype system confirmed
their results. The prototype implementation showed that addressing continual learn-
ing and data privacy challenges with an explainable kNN-based image classifier is
possible.
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Übersicht

Aktuelle auf Deep Learning basierende Bildklassifizierungsmodelle speichern ihr er-
lerntes Wissen implizit in tiefen neuronalen Netzen. Dieses implizite Wissen kann
nur angepasst werden, indem das gesamte Modell neu trainiert wird, was zum
so genannten katastrophalen Vergessen des zuvor gelernten Wissens führen kann
und eine Herausforderung für die Anwendung der Datenschutzbestimmungen für
persönliche Nutzerdaten darstellt.

Nakata et al. haben ein kNN-basiertes Bildklassifizierungssystem vorgeschlagen,
das diese Herausforderungen überwinden soll. Im Rahmen dieser Arbeit wurde ein
Prototypsystem auf der Grundlage ihrer Beschreibung entwickelt, um ihren Ansatz
zu evaluieren.

Insgesamt erreicht das Prototypsystem fast die Klassifizierungsgenauigkeit des Sys-
tems von Nakata et al. und liegt nur um 0,006% bis 2,8% in der Genauigkeit für
den ResNet-50-Bildkodierer und um 4% bis 12,5% für den ViT-B/16-Bildkodierer
darunter. Eine Dimensionalitätsreduktion mit t-SNE kann die Klassifikationsleis-
tung erhöhen und den Entscheidungsprozess des Modells visualisieren. Das katas-
trophale Vergessen wurde vermieden, und es hat sich gezeigt, dass bis zu 40% der
Merkmalseinbettungen einer einzelnen Klasse gelöscht werden können, bevor die
Klassifizierungsgenauigkeit abnimmt.

Die Untersuchung des Ansatzes von Nakata et al. durch den Aufbau eines Proto-
typsystems bestätigte ihre Resultate. Die Prototyp-Implementierung zeigte, dass
es möglich ist, die Herausforderungen des kontinuierlichen Lernens und des Daten-
schutzes mit einem erklärbaren kNN-basierten Bildklassifikator zu bewältigen.
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1 INTRODUCTION 1

1 Introduction

1.1 Context and Motivation

Combining the k-nearest neighbors (kNN) algorithm from 1951 with the most recent
advancements in deep learning leads to a new image classification model, which is
privacy-focused, explainable, and cost-effective. The kNN classifier is a machine
learning algorithm that classifies data points based on their similarity to other data
points.

Kengo Nakata et al. described this approach in the paper “Revisiting a kNN-based
Image Classification System with High-capacity Storage” (Nakata et al., 2022). This
bachelor thesis aims to rebuild a prototype system of Nakata et al.’s approach to
verify their results and perform additional experiments to understand the proposed
system’s limits and strengths.

Deep learning has shown its use cases for multiple applications, especially domains
where it is hard for humans to grasp the significant features of data. For example,
deep learning has been used to achieve accurate solutions in the field of medical
image analysis (Puttagunta and Subban, 2021) and medical drug discovery (Chen
et al., 2018). Besides the medical field, deep learning has proven its accuracy and
reliability in image classification, object detection, and natural language processing
(Pouyanfar et al., 2019).

However, deep learning models have some limitations. One limitation is that train-
ing large models requires high computational power, which results in high costs for
training deep learning models from scratch (Alzubaidi et al., 2021). Another limi-
tation is that they can be challenging to interpret, making it difficult to trust their
results (Parisi et al., 2019; Goodfellow et al., 2016). Additionally, deep learning
models can be prone to so-called catastrophic forgetting, which is the phenomenon
of losing previously learned knowledge when new information is added to the model
(Xie et al., 2021; Alzubaidi et al., 2021).

1.2 Related Work

To address these limitations, researchers have proposed several techniques for con-
tinual learning, which is the ability of a deep learning model to learn new information
without forgetting the old information. For example, one such technique is incre-
mental learning, which involves updating the model with new data one instance at
a time. This helps to prevent the model from forgetting the old data (Lange et al.,
2022). Besides the advancements in continual learning, in 2022, van de Ven et al.
concluded that current continual learning techniques have multiple limitations, for
example, being computationally expensive or requiring a large amount of memory
(van de Ven et al., 2022).
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The continued development of continual learning techniques is a critical area of
research. These techniques have the potential to overcome catastrophic forgetting
and make deep learning a more powerful tool for a broader range of applications.

The project described in this bachelor thesis aims to investigate a way to enable
architecture-based continual learning for image classification by simultaneously al-
lowing the deletion of data from the system without causing a severe performance
deterioration of the model. This is a challenging problem, but it is important to be
solved, especially for real-world applications using sensitive user data, which must
adhere to privacy protection laws.

To address these issues, Nakata et al. proposed a system that combines an image
encoder from a convolutional neural network (CNN) with the k-nearest neighbor
(kNN) approach (Nakata et al., 2022). A visualization of the proposed system is
provided in figure 8. The image encoder, which extracts the features from the given
pictures, has already been trained for image classification on publicly available data
such as ImageNet. Various pretrained CNNs are available. Typically, they can
be downloaded and used free of cost from commonly used deep learning Python
libraries, such as torchvision from PyTorch (Paszke et al., 2019) and TensorFlow
(Abadi et al., 2015). Hence, the cost-intensive training phase of a new CNN is not
required.

The image encoder can learn to extract features such as the shape, texture, and
color of depicted objects that are relevant to the specific task, such as classification.
The features extracted by the image encoder are then stored as multi-dimensional
vectors in a high-capacity storage system and used by the kNN classifier to make
predictions. The kNN classifier predicts the class of a data point based on the
similarity to its surrounding labeled data points. Using kNN in conjunction with
a high-capacity storage system allows for the fast and simple addition and deletion
of features extracted from new images without having to retrain a CNN model.
Especially highlighting the possibilities of deletion of images and their corresponding
extracted features in accordance with privacy measures such as the European GDPR.
(European Parliament and Council of the European Union, 2016) The GDPR states
that at any point in time, individuals are able to request the removal of their personal
data from company databases, including trained machine learning and deep learning
models.

The advantage of Nakata et al.’s approach is that it combines the power of deep
learning with the flexibility of kNN. Nakata et al. claim that the proposed approach
has the following potential benefits:

1. Mitigating catastrophic forgetting : Learning new information is possible with-
out forgetting the old information.

2. Accordance to privacy laws : Data can be deleted from the system without
causing severe performance deterioration of the model.

3. Explainability : The model’s decision can be evaluated by visually comparing
the k nearest neighbors with the data sample in question.
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4. Cost-Effective: The described approach is inexpensive because no training of
a new CNN is needed.

The proposed approach by Nakata et al. is still under development but could po-
tentially contribute to the field of continual learning significantly.

1.3 Contribution

Nakata et al. did not publish their source code, which has limited the ability of
other researchers to reproduce their results and build upon their work. This bach-
elor’s thesis aims to address this gap by developing a prototype system based on
Nakata et al.’s approach. The prototype system will be used to verify Nakata et
al.’s results and explore the potential benefits of their approach. To understand the
proposed system’s limits and strengths, additional experiments, such as evaluating
the hyperparameters of the prototype system, assessing the impact of catastrophic
forgetting, and investigating the feasibility of privacy-preserving deletion of support
set feature embeddings, will be performed. The model’s decision process will be
visualized using different dimensionality reduction methods. Additionally, the sys-
tem’s usefulness for medical image analysis is explored by practical research with
medical datasets.

2 Theoretical Foundations

2.1 Machine Learning Introduction

Machine learning (ML) is a subfield of Artificial Intelligence (AI) and is closely
related to statistics. The following section shall provide an overview of ML by
starting with the statistical foundations, continuing with a concise definition of the
term ML, and finishing with a detailed look into the kNN algorithm.

From Statistics to Machine Learning Machine learning and statistics are
closely related fields that influence each other. Statistics provides the theoretical
foundation for machine learning, and multiple ML algorithms have been introduced
as applied statistics methods. (James et al., 2013) However, there are some key dif-
ferences between the two. Machine learning is a subfield of artificial intelligence (AI)
that mainly describes algorithms that enable computers to learn relations in data
without being explicitly programmed (Mitchell, 1997). It does this by using statis-
tical methods to analyze data and identify patterns (Mitchell, 1997). On the other
hand, statistics is the science of collecting, analyzing, interpreting, and presenting
data. It provides tools and techniques for understanding data, making inferences,
and making predictions. (James et al., 2013) For example, the kNN algorithm is a
machine learning algorithm that uses statistics to find the k most closely adjacent
data points to a new data point in a multidimensional space. Both fields use data to
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identify relations of samples in a dataset to generalize and allow inference. (James
et al., 2013) However, the approach to identifying relations is different. Machine
learning algorithms learn from data by identifying patterns, while statistical meth-
ods learn from data by making assumptions about the underlying distribution of
the data (James et al., 2013; Mitchell, 1997).

Despite their differences, machine learning and statistics are complementary fields.
Machine learning can be used to automate tasks that would be difficult or time-
consuming to do manually, while statistics can also be used to evaluate the perfor-
mance of machine learning models. For example, statistical methods can be used
to calculate a machine learning model’s accuracy (proportion of all predictions that
are correct), precision (proportion of positive predictions that are actually correct),
and recall (proportion of actual positives that are correctly predicted) (Sammut and
Webb, 2017). These metrics help determine how well the ML model is performing
and whether it is ready to be used in production.

Machine Learning Tom Mitchell, a computer scientist and AI researcher, coined
the concise definition of Machine learning as follows: “A computer program is said to
learn from experience E with respect to some class of tasks T and performance mea-
sure P, if its performance at tasks in T, as measured by P, improves with experience
E.” (Mitchell, 1997)

This definition highlights the three main aspects of machine learning:

• Experience E: Machine learning algorithms learn from data. The data can be
labeled, which means that each sample is identified with a target value, or it
can be unlabeled.

• Tasks T: Machine learning algorithms are designed to perform specific tasks,
such as classification, regression, or clustering.

• Performance measure P: The performance of a machine learning algorithm is
measured by a metric, such as accuracy, precision, or recall. The definition
emphasizes that machine learning algorithms shall improve their performance
over time by learning from the given data.

k-Nearest Neighbors (kNN) The k-nearest neighbors (kNN) algorithm is a ma-
chine learning algorithm that can be used for classification and regression tasks. The
kNN algorithm is an instance-based learning algorithm, which means that the gen-
eralization is postponed until a new instance (new data point) is classified (Mitchell,
1997). It works by finding the k most similar data points to a new data point, called
the query point, and then using the labels of those k points to predict the label of
the query point. The similarity between two data points in vector space is typically
measured using a distance metric, such as cosine similarity (cf. Cosine Similarity
2.1). The k data points that are closest to the query point are called the k-nearest
neighbors. A majority vote on the k-nearest neighbors then predicts the label of the
query point.
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Cosine Similarity Cosine similarity is a measure of similarity between two vec-
tors in a vector space. It is calculated by dividing the dot product of the two vectors
by the product of their magnitudes.

cosine similarity = SC(X, Y ) =
X ·Y

∥X∥∥Y∥
=

∑n
i=1XiYi√∑n

i=1X
2
i ·

∑n
i=1 Y

2
i

The cosine similarity of two vectors can range from -1 to 1, with -1 indicating perfect
dissimilarity and 1 indicating perfect similarity.

The kNN classification process is visualized in Figure 1.

Figure 1: Visualization of kNN classification process. Adapted from Navlani (2018)

Pseudocode kNN algorithm Algorithm 1 shows a pseudocode representation
of the simple kNN training phase, which essentially stores all training examples in a
data structure (or a database). (Mitchell, 1997) Algorithm 2 shows the classification
phase of kNN, thus the inference. It includes the distance calculation with cosine
distance in line 2 and the inference by majority vote in line 6.

Algorithm 1 k-Nearest Neighbors Training. By (Mitchell, 1997)

Require: Training data X, corresponding labels y(i)

Ensure: Data structure D which contains all training examples with their labels
1: for x(i) in X do
2: store tuple ⟨x(i), y(i)⟩ in data structure D ▷ Could also be a database
3: end for

Nakata et al. state that they used a distance measure based on cosine similarity.
Their given formula is cosine distance, which is the complement of cosine similarity.
Cosine distance = 1 − SC(X, Y ) (Chomboon et al., 2015). Cosine distance ranges
from 0 to 2, which makes it more convenient to use due to the embedding in positive
space.

Applying TomMitchell’s ML definition to the kNN algorithm results in the following:

• Experience E: The experience of the kNN algorithm is the training data. The
training data consists of a set of data points, each of which has a label.
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Algorithm 2 k-Nearest Neighbors Classification. Adapted from (Mitchell, 1997)

Require: new data point xq, number of neighbors k, D set of tupels ⟨x(i), y(i)⟩ (cf.
k-Nearest Neighbors Training Algorithm 1)

Ensure: Classification label of xq named ŷq
1: for tuple ⟨x(i), y(i)⟩ in data structure D do
2: calculate cosine distance d(i) between xq and x(i) ▷ cf. Cosine Similarity 2.1
3: store tuple ⟨d(i), y(i)⟩ in list L
4: end for
5: Sort list L by distance d(i) lowest to highest

6: ŷq = argmaxl∈L
k∑

n=1

Ln.y(i) ▷ majority vote on k nearest neighbours

• Tasks T: The tasks that kNN can perform are classification and regression. In
classification, the task is to predict the label of a new data point. In regression,
the task is to predict the value of a continuous variable for a new data point.

• Performance measure P: Accuracy is the performance measure for kNN. It is
the percentage of data points that are correctly classified.

• Improves with experience E: The kNN algorithm improves its performance
with experience E by learning from the training data. Thus, this generally
allows the algorithm to make better predictions for new data points.

The kNN algorithm is a simple and intuitive algorithm, but it can be very effective
in practice. It is often used for tasks where the data is not linearly separable, such
as text classification (Soucy and Mineau, 2001) and natural language processing
(Mikolov et al., 2013). The kNN algorithm is also a robust algorithm that is not
sensitive to outliers. This makes it a good choice for tasks where the data may
be noisy or contaminated with outliers. According to Tom Mitchell, kNN is a so-
called “lazy learning” ML algorithm. A lazy learning algorithm is a type of machine
learning algorithm that does not build a predictive model during training but instead
stores the training data and makes predictions at inference time by comparing the
new data to the stored data (Mitchell, 1997). The advantages of lazy learning
algorithms include their simplicity and their ability to handle noisy data. Upfront
training of an ML model is not required. Disadvantages of lazy learning algorithms
include their computational complexity upon classification of new data and their
sensitivity to the choice of the hyperparameter k. (Mitchell, 1997)

Hyperparamter k The hyperparameter k needs to be chosen carefully, as it af-
fects the performance of the kNN algorithm. A small value of k will make the
algorithm more sensitive to noise, while a large value of k will make the algorithm
more conservative. The optimal value of k will depend on the specific dataset and
the desired trade-off between accuracy and robustness. (Mitchell, 1997) Chossing a
higher value for k is visualized in figure 2. For this bachelor thesis, the value of k
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= 10 has been provided by Nakata et al.. However, the choice of k = 10 has been
evaluated through grid search in experiment 2 (cf. 4.5.1).

Figure 2: Visualization of kNN classification process with k=7 (cf. Figure 1).
Adapted from Navlani (2018)

Distance-Weighted kNN Distance-weighted k-nearest neighbors is a modifica-
tion of the kNN algorithm that assigns weights to the k-nearest neighbors of a new
data point according to their distance. This means that closer neighbors have more
influence on the prediction than farther neighbors. For distance-weighted kNN, it
is only needed to adjust the inference formula (cf. algorithm 2 line 6) by adding
a weight factor wi. The resulting inference formula for distance-weighted kNN is:

ŷq = argmaxl∈L
k∑

n=1

wiLn.y(i) with wi =
1

(d(i))2
. (Mitchell, 1997)

By using distance-weighted kNN it is theoretically possible to omit the bound of
k and calculate the classification based on all available data points. Using this
approach distance-weighted kNN would be a global instead of a local ML method.
According to Mitchell there is no advantage in using global distance-weighted kNN;
additionally, the classifier will run more slowly if all available data points are used.
(Mitchell, 1997) The accuracy of the local distance-weighted kNN approach is going
to be compared with the traditional kNN approach in experiment 3 (cf. 4.5.2).

2.2 Deep Learning Introduction

Deep learning is a subfield of machine learning that uses artificial neural networks to
learn from data (Goodfellow et al., 2016). The following section will provide a broad
overview of deep learning, starting with historical inventions, continuing with the
basic principles, and finishing with a description of the two deep learning networks,
ResNet and the Vision Transformer architecture, that were used for the prototype
in this bachelor’s thesis.

From Machine Learning to Deep Learning The history of deep learning dates
back to the early days of artificial intelligence research. In the 1950s, psychologist
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Frank Rosenblatt developed the perceptron, a simple neural network that could
learn to classify patterns (Kanal, 2003). However, a single perceptron could only
be used to learn linearly separable problems; thus, solving the XOR problem with
a single-layer perceptron is impossible (Marvin and Seymour, 1969). Marvin and
Seymour concluded that multi-layer perceptrons could be used to solve non-linearly
separable problems, but due to other, more promising approaches, the research on
the perceptron and on artificial neural networks stalled (Marvin and Seymour, 1969;
Russell and Norvig, 2010).

In the 1980s, there was a resurgence of interest in neural networks. This was due
to the development of new learning algorithms, such as backpropagation training.
Backpropagation is a method for training neural networks that is much more efficient
than the methods that were available in the 1950s (Rumelhart et al., 1986). In the
1990s, the research on artificial neural networks made significant progress. This was
due to the availability of large datasets, such as the MNIST dataset of handwritten
digits. The MNIST dataset consists of 60000 grayscale images of handwritten digits,
each of which is 28 x 28 pixels in size (784 pixels total). Each pixel value is an integer
between 0 and 255, where 0 represents black and 255 represents white. A section of
these images is visualized in figure 3. The Boosted LeNet-4 ML model proposed by
LeCun et al. was able to classify the ten digits in the MNIST dataset with an error
rate of 0.7% (LeCun et al., 1998).

Figure 3: Exemplary visualization of some samples in the MNIST dataset. Section
of figure 4 by LeCun et al. (1998).

From the 2000s and onwards, artificial neural networks continued to improve because
of the development of new hardware, such as GPUs, which are well-suited for training
neural networks (Goodfellow et al., 2016). In 2010, the ImageNet dataset and the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) were released by
Russakovsky et al.. In 2012, a group based around Geoffrey Hinton achieved a
breakthrough on the ILSVRC with their CNN AlexNet (Krizhevsky et al., 2012).
AlexNet is considered one of the first deep artificial neural networks that started
the ML subfield of deep learning. In 2016, ResNet-50 achieved a top-5 error rate of
2.99% on the ImageNet dataset, which is a significant improvement over previous
models (He et al., 2016). In 2021 the vision transformer architecture was published
(Vaswani et al., 2017).

Principles of Deep Learning Deep learning is based on the principle of artificial
neural networks (ANNs). Neural networks are made up of interconnected nodes
called neurons. The neurons are structured into parallel layers. Multiple layers
are arranged sequentially, one after the other, to produce a multilayer perception.
(Goodfellow et al., 2016; Roberts et al., 2021)
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Each neuron can be depicted as a function that receives input from neurons of the
former layer, calculates the weighted sum of all inputs, and compares it against
a given activation function. The result of the activation function is passed on to
neurons in the following layer. (Goodfellow et al., 2016; Roberts et al., 2021) The
neural network is characterized by the used activation functions and the weights on
the interconnection of neurons. These weights are adjusted during the training of
the neural network. (Goodfellow et al., 2016; Roberts et al., 2021) A commonly used
activation function is the ReLU (Rectified Linear Unit) function. It is a non-linear
function that outputs the input if it is positive and 0 otherwise. (Goodfellow et al.,
2016) According to Goodfellow et al., ReLU is the most popular activation function
in modern neural networks, as it is computationally efficient and helps to prevent
the vanishing gradient problem Goodfellow et al. (2016).

Deep learning networks can have many layers of neurons. The first layer of neurons,
the visible layer, is typically used to extract features from the input data. The sub-
sequent layers of neurons, the hidden layers, are used to learn patterns in the data.
From the first to the last hidden layer, the input data will be increasingly abstracted.
In the case of image classification, beginning with edge detection, continuing with
corners and contours, and finishing with object parts. The final layer of neurons
produces the output of the network. (Goodfellow et al., 2016) A simplified view of
an image classification deep learning model is provided in appendix A.1 as figure 21.

Applications of Deep Learning Deep learning, compared to Machine Learning,
has been used to achieve better results in a wide variety of tasks, including:

• Image classification: Deep learning has been used to develop systems that
can classify images into different categories, such as cats, dogs, and cars. For
example, the ViT/B-16 model has an accuracy of 85.22% on the ILSVRC.
(Dosovitskiy et al., 2021)

• Natural language processing: Deep learning has been used to develop systems
that can understand and process natural language. These systems can be
used for tasks such as machine translation, text summarization, and question
answering. For example, the BERT model has an accuracy of 89.5% on the
GLUE benchmark Wang et al. (2019).

• Medical diagnosis and assistance: Deep learning has been used to develop
systems that can diagnose diseases from medical images. These systems can
help doctors to make more accurate diagnoses. For example, the InceptionV3
model has an accuracy of 99.0% in detecting breast cancer (Husaini et al.,
2022).

ResNet(50) ResNet-50 is a deep convolutional neural network (CNN) that was
introduced in the paper “Deep Residual Learning for Image Recognition” by He
et al. in 2016.
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ResNet-50 has 50 layers, hence the name. The first few layers of ResNet-50 extract
low-level features from the image, such as edges and corners. The later layers ex-
tract higher-level features, such as objects and faces. ResNet-50 uses residual blocks
to improve the training of the model. The residual block is the key innovation of
ResNet (Res(idual)Net). (He et al., 2016) A typical CNN consists of sequentially
aligned layers. In contrast, a residual block adds another path for the data to reach
latter parts of the neural network by skipping some layers, the so-called residual
connections. This mitigates the vanishing gradient problem because the residual
connections accelerate convergence, thus allowing for the training of “deeper” net-
works. (Veit et al., 2016; Alzubaidi et al., 2021)

The 50 layers of ResNet-50 are arranged in 4 stages. Each stage consists of a number
of residual blocks. The first stage has two residual blocks, the second stage has
three residual blocks, and so on. The residual blocks are the basic building blocks
of ResNet-50. Each residual block consists of three convolutional layers, followed
by a conjunction with the residual connections. The residual block’s first and last
convolutional layers use a 1x1 kernel. The second convolution layer uses a 3x3 kernel.
(He et al., 2016) A visualisation for of a residual block is provided in figure 4.

Figure 4: Visualization of a Residual Block in ResNet-50. Section of Figure 5 by He
et al. (2016)

When released, ResNet-50 achieved a top-5 error rate of 2.99% on the ImageNet
dataset, which is a significant improvement over previous models. The top-5 error
rate measures the percentage of test images for which the model’s top-five predictions
do not include the correct label. (He et al., 2016) During the following years, it has
been shown that ResNet is a powerful deep CNN that is very effective for image
classification.

Vision Transformer (ViT-B/16) Vision Transformer (ViT) is a neural network
architecture that can be used for image processing tasks. At first the image is
converted into a sequence of tokens. This is typically done by dividing the image
into a grid of patches and then representing each patch as a token. The desired
input resolution of the ViT determines the number of patches and the size of each
patch. (Dosovitskiy et al., 2021; Han et al., 2020) Afterwards, the patches are
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then processed by the so-called transformer encoder. The transformer encoder is
a neural network that learns to attend to different parts of the image and identify
their relationships. The transformer encoder is typically implemented using the self-
attention mechanism, which allows it to learn long-range dependencies between the
tokens. This allows the ViT to learn a global image representation, which can be
used for image classification, object detection, and segmentation tasks. (Vaswani
et al., 2017; Dosovitskiy et al., 2021; Han et al., 2020) The ViT architecture is
visualized in Figure 5. The transformer encoder includes residual connections, like
the residual connections in ResNet.

The ViT architecture was first introduced in the paper “An Image is Worth 16 ×
16 Words: Transformers for Image Recognition at Scale” by Dosovitskiy et al. in
2021. (Since 2020 the paper was available as preprint on arxiv.org). The paper
showed that ViTs could outperform former state-of-the-art results on the ILSVRC,
without using any convolutional layers (Vaswani et al., 2017). There are different
ViT model variants available. ViT-B/16 means, that the “Base” variant is used with
a 16x16 input patch size. ViT-Base has 12 layers, 12 heads, and 86M parameters
(Dosovitskiy et al., 2021). Other available variants are ViT-Large and ViT-Huge.
Both increase the number of layers, heads, and parameters.

Figure 5: Illustration of the Vision Transformer Architecture. The input image
is split into fixed-size patches, which are then linearly embedded and combined
with a position embedding. The resulting sequence of vectors is then fed into the
transformer encoder. To perform classification, an extra learnable “classification
token” is added to the sequence. Illustration by Dosovitskiy et al. (2021).
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2.3 Continual Learning

Continual learning is a subfield of ML. Conventional machine learning models are
trained on a fixed dataset to capture its (single) data distribution (cf. 2.1). In
contrast, continual learning models are trained on a continuous stream of new data
to capture a dynamic data distribution that changes progressively over time. (Lange
et al., 2022; Parisi et al., 2019; Wang et al., 2023) The fundamental components of
a definition of continual learning are:

• Learning over time: Continual learning algorithms are capable of learning from
progressively available new data over time. (Parisi et al., 2019)

• Task changes: Continual learning algorithms are able to adapt to changes in
the task, such as when new classes are added or the data distribution changes.
(Parisi et al., 2019)

• Minimize knowledge interference: Continual learning algorithms aim to mini-
mize the interference between already learned knowledge and newly acquired
knowledge. Thus, the learning of new tasks shall not reduce the performance
of older tasks, also known as catastrophic forgetting. (Parisi et al., 2019)

Catastrophic Forgetting Catastrophic forgetting is a phenomenon that occurs
in continual learning when a model forgets previously learned knowledge as it learns
new knowledge (Wang et al., 2023). This can lead to an abrupt performance decrease
or a complete loss of previously learned knowledge (Parisi et al., 2019).

One way to understand catastrophic forgetting is through the lens of neural net-
works. As described in 2.2, neural networks are made up of a large number of
interconnected neurons. These interconnections represent the knowledge the neural
network has learned by its adjacent weights. When a neural network learns a new
task, it adjusts the weights of its connections in order to represent the new data bet-
ter. However, as the learning process adjusts the weights, it can also cause the net-
work to forget by significantly interfering with the weights of a former learned task,
resulting in lower performance. Hence, the name catastrophic forgetting. (Parisi
et al., 2019)

To reduce the impact of catastrophic forgetting, continual learning systems must
determine a balance between plasticity (the ability to integrate new information) and
stability (the ability to retain existing knowledge), known as the stability-plasticity
dilemma or stability-plasticity trade-off (Lange et al., 2022; Wang et al., 2023).

Continual Learning Approaches Multiple continuous learning approaches have
emerged to reduce the impact of catastrophic forgetting. Lange et al. proposed a
taxonomy based on three main categories (Lange et al., 2022).

• Regularization-based methods: A regularization term is introduced in the loss
function to consolidate previous knowledge when learning new data. Thus, the
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model is penalized for forgetting what it has already learned. (Lange et al.,
2022) Common approaches are EWC and LwF.

• Replay methods: Store previous task samples in raw format or generate pseudo-
samples with a generative model. These samples are replayed while learning
a new task by reusing them as model inputs. (Lange et al., 2022) Common
approaches are iCaRL and ER.

• Parameter isolation methods: Store dedicated distinct model parameters for
each task, for example, by freezing previous task parameters and growing new
branches for new tasks. (Lange et al., 2022) Common approaches are PackNet
and ExpertGate.

The approach to continual learning chosen by Nakata et al. has been inspired by
the replay methods. However, as their approach is based on a pretrained CNN and
inference through kNN (cf. kNN chapter 2.1), they introduce their approach as a
data-based approach, which uses available datasets as knowledge sources in order to
adapt to new tasks (Nakata et al., 2022).

2.4 Explainable AI Overview

Explainable AI (XAI) is a study field that aims to improve trust and transparency of
AI-based systems, thus making the results more understandable to humans (Adadi
and Berrada, 2018; Arrieta et al., 2020). Especially current ML and DL algorithms
suffer from a lack of transparency, meaning it is difficult to explain a decision made
to the user of such a system (Adadi and Berrada, 2018). However, through privacy
measures such as the GDPR (European Parliament and Council of the European
Union, 2016) the user has a granted “right to explanation” (Adadi and Berrada,
2018; DG et al., 2020).

Besides the juristical need for XAI in Europe, Samek et al. provided additional
arguments on why XAI is desirable (Samek et al., 2017):

• Verification: Domain experts, for example doctors, can examine the mod-
els’ calculated decisions to uncover false correlations detected by the model.
(Samek et al., 2017)

• Improvement: XAI allows for identifying weaknesses and biases and comparing
different models. By explaining and, thus, understanding how AI systems
work, it is assumed that making them more accurate and reliable should be
possible. (Samek et al., 2017)

• Learning: Humans could use XAI systems to acquire new knowledge. For
example, AlphaGo identified a new strategy to play Go, which professional
human players have been unable to uncover. (Samek et al., 2017)
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Arrieta et al. provided a distinction of different levels of transparency in ML models.
(Arrieta et al., 2020)

• Simulatability is the ability of a model to be simulated by a human. For
example, a single perceptron neural network (cf. Kanal (2003)) (Arrieta et al.,
2020).

• Decomposability means that the input, parameters, and calculation of a model
must be able to be explained in order to explain the behavior of the whole
model. Thus, every input needs to be interpretable by humans. (Arrieta
et al., 2020)

• Algorithmic Transparency describes the ability of a human to follow the model’s
process to produce the model’s output provided with the given input. Algo-
rithmic transparency can only be achieved if the model can be mathematically
analyzed. (Arrieta et al., 2020)

These three different levels of ML model transparency are visualized and further
explained by an example in figure 6.

Figure 6: Illustration of different Levels of Transparency in Machine Learning Mod-
els. Figure by Arrieta et al. (2020). Original caption: “Figure 3: Conceptual di-
agram exemplifying the different levels of transparency characterizing a ML model
Mφ, with φ denoting the parameter set of the model at hand: (a) simulatability;
(b) decomposability; (c) algorithmic transparency. Without loss of generality, the
example focuses on the ML model as the explanation target. However, other targets
for explainability may include a given example, the output classes or the dataset
itself.” (Arrieta et al., 2020)

The transparency level of kNN (cf. kNN chapter 2.1) depends on the features,
the used hyperparameter k, and the distance function. A very high k impedes
simulatability by a human. Complex features, or complex distance functions, hinder
the ability of decomposability. Thus, in the most complex case, kNN’s level of
transparency is bound to algorithmic transparency. (Arrieta et al., 2020) In other
words, kNN models are more interpretable when they have fewer neighbors, simpler
features, and simpler distance functions, thus fulfilling all three levels of transparency
(Arrieta et al., 2020).
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Besides the different levels of transparency in ML models, Arrieta et al. also pro-
vided a summary of six Post-hoc explainability techniques for ML models. (Arrieta
et al., 2020) 1. Text explanation, 2. Visual explanation, 3. Local explanation, 4.
Explanation by example, 5. Explanation by simplification, 6. Feature relevance
explanation

These techniques target models that are not interpretable by design and cover com-
mon human ways to explain processes and systems. For this thesis, only explanations
by example and visual explanations are relevant; information on the other techniques
can be found in Arrieta et al. (2020).

Explanations by Example Post-hoc explanations by example are a way to un-
derstand machine learning model outputs by extracting data examples related to
this output. This is similar to humans’ explanation behavior by using examples.
Explanations by example can help to understand the inner relationships and corre-
lations that the model has learned. (Arrieta et al., 2020) This explanation technique
is examined in experiment 5 (cf. 4.6.1) by comparing an image classified by kNN
with its nearest neighbors.

Visual Explanation Techniques Post-hoc visual explanation techniques aim
to visualize the model’s behavior in a way that is easy for humans to understand
because visualizations effectively communicate complex information (Arrieta et al.,
2020). A common Post-hoc visual explanation technique is dimensionality reduction,
which will be discussed in 2.4.1 and examined in experiment 6 (cf. 4.6.2).

2.4.1 Dimensionality Reduction

Dimensionality reduction is the process of reducing the number of features in a
dataset while minimizing the loss of information (Reddy et al., 2020). This is use-
ful for high-dimensional datasets, which are datasets with many features. These
high-dimensional datasets often contain redundant information, increasing the ef-
fort in data analysis and training of ML models. (Jia et al., 2022) Dimensionality
reduction techniques extract new features from the existing features and combine
them into a lower-dimensional feature space. This new feature space contains the
most important information from the original features while eliminating redundant
or irrelevant information. (Jia et al., 2022)

Dimensionality Reduction techniques reduce the computation time required to train
ML models (Reddy et al., 2020) and can increase the explainability of ML models
(Arrieta et al., 2020).

Multiple dimensional reduction methods are available. They can be categorized
into supervised and unsupervised methods and linear and non-linear techniques.
Supervised dimensionality reduction methods consider provided class labels (Jia
et al., 2022; Nanga et al., 2021). Linear methods assume that the data lies in a
low-dimensional subspace of the high-dimensional space, while non-linear methods



2 THEORETICAL FOUNDATIONS 16

make no such assumptions (Nanga et al., 2021). In the following, four dimensionality
reduction methods will be presented. These four methods have been evaluated
during this thesis in experiment 4 (cf. 4.5.3) and experiment 6 (cf. 4.6.2).

General Approach:
The general approach of dimensionality reduction can be mathematically described
as follows: Suppose there is a n-dimensional vector X = [x1, x2, ..., xn]

T and a
mapping function Y = f(X). The mapping function f maps the vector X to an
m-dimensional vector Y = [y1, y2, ..., ym]

T with m << n and Y containing the main
features of X. (Jia et al., 2022)

PCA Principal component analysis (PCA) is a linear unsupervised dimensionality
reduction technique that identifies directions of greatest variance in the data, the so-
called principal components of a dataset (Mart́ınez and Kak, 2001). The following
steps, enhanced with their mathematical formulas, provide an overview of the general
PCA process. The formulas are provided by Reddy et al. (2020).

Step 1: Standardize the data by subtracting the mean x̄j from each feature xi
j and

dividing by the standard deviation σj for each feature.

xi
j =

xi
j − x̄j

σj

∀j

Step 2: Calculate the covariance matrix

∑
=

1

m

m∑
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∑
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Step 3: Calculate the eigenvector and eigenvalue of the covariance matrix
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Step 4: Project the top k eigenvectors of the covariance matrix; this means the
vectors with the largest eigenvalues are selected first. Thus, the first few principal
components capture the most variance in the data.
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PCA can fail to find the most compact description of the data if the principal com-
ponents are highly statistically dependent. This is because PCA does not consider
the statistical dependencies between the principal components. (Nanga et al., 2021)
PCA is also sensitive to outliers, which are common in realistic training sets. This
is because PCA uses least squares estimation techniques, which means that outliers
can significantly impact the results of PCA. (Nanga et al., 2021)

LDA The dimensionality reduction approach of Linear discriminant analysis (LDA)
is similar to PCA. PCA maximizes the variance of the data; additionally, LDA also
maximizes the separation between different classes. (Mart́ınez and Kak, 2001; Nanga
et al., 2021) Hence, LDA is a supervised linear dimensionality reduction technique.

LDA creates a within-class scatter matrix

Sw =
c∑

j=1

Nj∑
i=1

(
xj
i − µj

) (
xj
i − µj

)T
and a between-class scatter matrix

Sb =
c∑

j=1

(µj − µ) (µj − µ)T

(Mart́ınez and Kak, 2001). The goal is to find a subspace of the data where the
classes are as far apart as possible, and the data within each class is as close together
as possible. Hence, maximizing the between-class scatter matrix Sb while minimizing
the within-class scatter matrix Sw. (Mart́ınez and Kak, 2001; Nanga et al., 2021)

LDA is sensitive to the sample size, especially to the so-called small sample problem.
Suppose the number of samples in the dataset is much smaller than the dimension-
ality of the data. In that case, LDA cannot find a meaningful lower dimensional
space, resulting in the within-class scatter matrix becoming singular. (Mart́ınez and
Kak, 2001; Nanga et al., 2021)

t-SNE t-distributed stochastic neighbor embedding (t-SNE) has been introduced
in 2008 (Van der Maaten and Hinton, 2008). It is a dimensionality reduction tech-
nique that has specifically been crafted to visualize high-dimensional data in 2D or
3D. The t-SNE algorithm can be reduced to a 6-step procedure. The complete and
concise mathematical description of each step is available within the paper “Visual-
izing Data using t-SNE” by Van der Maaten and Hinton (2008).

• Step 1: Calculate the pairwise Euclidean distance between the data points.

• Step 2: Construct a probability distribution P over pairs of data points in
the high-dimensional space. More similar data points are assigned a higher
probability than dissimilar data points.

• Step 3: Initialize a low-dimensional embedding of the data.
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• Step 4: Construct a Student t-distribution Q with a single degree of freedom
over pairs of data points in the low-dimensional space.

• Step 5: Minimize the Kullback-Leibler divergence DKL between the two prob-
ability distributions by gradient descent.

• Step 6: Repeat steps 4 and 5 until the algorithm converges or the maximum
number of iterations has been reached.

The gradient, which shall be minimized is given as:
∂C
∂yi

= 4
∑

j (pij − qij) (yi − yj) (1 + ||yi − yj||2)−1
(Van der Maaten and Hinton, 2008)

In 2014 van der Maaten accelerated t-SNE by developing an approximation of the
used gradient by using the Barnes-Hut algorithm. This reduces the complexity class
from O(N2) to O(NlogN). (van der Maaten, 2014)

U-MAP Uniform Manifold Approximation and Projection (UMAP) is a non-
linear dimensionality reduction technique that preserves the global structure (inter-
class distances) and local structure (intra-class distances) of a dataset, while com-
pared to PCA and t-SNE, achieving a superior runtime performance (Dalmia and
Sia, 2021).

UMAP is a two-phased algorithm. In the first phase, the graph construction phase,
a high dimensional graph representation of the data, a connectivity graph, is con-
structed (McInnes and Healy, 2018; Dalmia and Sia, 2021). The connectivity graph
is a network of nodes, where each node represents a data point, and each edge
between the nodes represents the relationships between the data points. By de-
fault, this connectivity graph is constructed using the efficient NN-Descent (Nearest
Neighbor Descent) algorithm. (McInnes and Healy, 2018; Dalmia and Sia, 2021)

Once the connectivity graph has been constructed, UMAP constructs a low dimen-
sional embedding of the data by minimizing the difference between the connectiv-
ity graph of the original data and the connectivity graph of the low dimensional
embedding (McInnes and Healy, 2018). This is done by iteratively adjusting the
positions of the data points in the low dimensional embedding (McInnes and Healy,
2018). This shows similarities to force-directed graph layout algorithms. These al-
gorithms embed the proximity of data points in the high-dimensional space in a low-
dimensional space by iteratively moving the low-dimensional points closer together
(respectively further apart) according to their proximity in the high-dimensional
space. (Wang et al., 2021) Compared to t-SNE, UMAP is faster and produces bet-
ter visualizations, especially because UMAP preserves the global structure better
(Nanga et al., 2021).

2.5 Machine Unlearning and Privacy Regulations

Removing data from machine learning models is challenging, especially for complex
models such as neural networks (Ginart et al., 2019). The naive approach is to
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retrain the model without the data that is to be removed. However, this can be
computationally expensive and time-consuming, especially for large datasets. Ad-
ditionally, if the model is deployed in a production setting, taking it offline for
retraining may not be feasible.

The General Data Protection Regulation (GDPR) gives individuals the erasure right
(also known as the ’right to be forgotten’) to withdraw their consent to having their
data processed at any time (European Parliament and Council of the European
Union, 2016; Veale et al., 2018; DG et al., 2020). This means that organizations that
use machine learning models that contain personal data must be able to efficiently
remove data from those models upon request (Ginart et al., 2019; DG et al., 2020).

Personal data used to train ML models is at risk through privacy attacks such as
model inversion and membership inference attacks (Ginart et al., 2019; Veale et al.,
2018).

Model inversion attacks are a type of adversarial attack in which an attacker at-
tempts to extract sensitive information from an ML model without having access
to the training data. (Ginart et al., 2019; Veale et al., 2018) Suppose the attacker
knows the predictions of a model M(B) for a set of individuals and has access to a
training dataset A of individuals. In that case, the attacker can use model inversion
to recover some of the variables in training dataset B for the individuals who are in
both A and B. (Veale et al., 2018)

Membership inference attacks are privacy attacks that attempt to determine whether
a given individual’s data was used to train an ML model. These attacks do not
recover the individual’s data itself but rather determine whether the individual’s
data was part of the training set. (Veale et al., 2018)

Figure 7 visualizes model inversion and membership inference privacy attacks.

Figure 7: Illustration of Model Inversion and Membership Inference Privacy Attacks.
Figure by Veale et al. (2018).
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Ginart et al. provide design principles for the efficient deletion of user data in ML
systems (Ginart et al., 2019). These principles include the use of linear models
because they are relatively simple to train, and it is possible to remove a data point
by undoing its influence on a set of parameters. (Ginart et al., 2019)

Software engineering has inspired another suggested approach: the use of modu-
larity. Modular machine learning models are those in which the model parameters
are divided into different modules. This makes it possible to efficiently delete data
points by only recomputing the modules that are affected by the deleted data points.
(Ginart et al., 2019)

Lastly, Ginart et al. suggest using lazy learning methods (cf. kNN chapter 2.1).
Lazy learning methods delay computation until inference time, which makes them
very efficient for deletion, as all that is needed to delete a data point is to update the
model at inference time. (Ginart et al., 2019) This is also the approach chosen by
Nakata et al. (2022). This lazy learning approach to machine unlearning is evaluated
in this bachelor thesis as experiment 10 (cf. 4.8.1) and experiment 11 (cf. 4.8.2).
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3 Methods

3.1 System Description

Nakata et al. propose a three-phase system consisting of 1. pretraining, 2. knowl-
edge storing, and 3. inference. The following section will provide an overview of
each phase. The system is visualized in figure 8.

Figure 8: Visualisation of the system proposed by Nakata et al. Image from Nakata
et al. (2022). Original caption: “Fig. 1. Overview of our image classification
system. Our system stores feature maps extracted from support images with the
corresponding labels to the external storage. When classifying a query image, our
system retrieves feature maps similar to the query one from the storage by calculat-
ing the distance based on cosine similarity. The query image is classified by majority
vote on the labels of the top-k similar feature maps.”

Pretraining The first phase is pretraining, which involves training an image en-
coder model on a large-scale dataset of images. This dataset can be unlabeled or
noisily labeled, as the goal of pretraining is to learn general-purpose image features.
It is important to note that the transformation performed by the pretrained image
encoder model should map semantically similar images to neighborhoods in latent
space. This is essential for the similarity-based retrieval performed in the inference
phase. Nakata et al. conducted a preliminary experiment to select a pretraining
method by comparing the performance of three pretraining methods on four im-
age datasets (CIFAR-10, CIFAR-100, STL-10, and ImageNet-1k cf. 4.1 Datasets).
The results showed that: A supervised learned ResNet-50 model on ImageNet-1k
achieved the best accuracy on ImageNet-1k, but not on the other datasets. This
suggests that the image encoder model does not generalize well to unseen datasets.
(Nakata et al., 2022) A ViT-B/16 model pretrained by Masked Auto Encoder (MAE)
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on the ImageNet-1k dataset without labels showed poor performance. This is be-
cause the objective of MAE pretraining is incompatible with the system’s similarity-
based retrieval approach. (Nakata et al., 2022) A ViT-B/16 model pretrained by
CLIP (Radford et al., 2021) on 400 million image and text pairs collected from the
internet achieved good accuracy on all four datasets. This indicates that the image
encoder model is well generalized. (Nakata et al., 2022) Based on these results,
Nakata et al. decided to use image encoder models pretrained by CLIP (Radford
et al., 2021) in their experiments.

Knowledge Storing In the knowledge storing phase, the pretrained image en-
coder model extracts feature embeddings (vector representations) from a so-called
support set of images. The support set is a small set of images relevant to the down-
stream task for which the model will be used. The pretrained image encoder model
extracts feature embeddings from a support set of n-labeled images: {xs,1, ..., xs,n},
with corresponding labels {y1, ..., yn}. The feature embeddings are extracted using
the following equation:

zs,i = f(xs,i)

where f() is the pretrained image encoder model and zs,i is the d-dimensional feature
embedding of the i-th support image. Each extracted feature embedding is paired
with its corresponding label (zs,i, yi) and stored in a database.

Inference (kNN) In the inference phase, the pretrained image encoder model
extracts a feature embedding zq of a query image xq as zq = f(xq). The system
then retrieves the top-k (cf. Hyperparamter k 2.1) most similar feature embeddings
from the database using cosine similarity (cf. Cosine Similarity 2.1). The query
image is then classified by majority vote on the labels of the top-k similar feature
embeddings.

3.2 Prototype Implementation

Besides the system description, as mentioned earlier, and the usage of the PyTorch
library (Paszke et al., 2019) Nakata et al. did not provide details or source code
regarding their implementation. To verify their results, a prototype based on their
system description has been built during this thesis.

The prototype system is implemented using the Python programming language and
the PyTorch library, specifically the torchvision package (Paszke et al., 2019). The
system uses pretrained image classification models from PyTorch. However, to ex-
tract the feature embeddings and hence work as a pretrained image encoder (cf.
Pretraining 3.1), in the case of ResNet-50, the last fully connected layer is removed;
in the case of ViT-B/16, the MLP head at the end is removed. The extracted feature
embeddings have a size of 2048 dimensions for the ResNet-50 image encoder and
768 dimensions for the ViT-B/16 image encoder.
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The system uses Chroma (Huber and Troynikov, 2023)(formerly known as Chro-
maDB) as a database to store the extracted feature embeddings and their corre-
sponding labels. Chroma is an in-memory embedding database (also known as
vector database) specially designed to store feature embeddings and their meta-
data. It is released under Apache License 2.0. Chroma allows to search for similar
data points by finding the nearest neighbors in the embedding space. By default,
Chroma provides different embedding functions depending on the data type; using
a custom embedding function is also possible, as well as storing already obtained
feature embeddings. (Huber and Troynikov, 2023) Storing already obtained feature
embeddings from the pretrained image encoder is chosen as the approach for the
prototype as it allows to separate the computationally intensive feature embedding
calculation from the relatively simple data storage and retrieval.

For inference, kNN (cf. k-Nearest Neighbors section 2.1) has been implemented
based on algorithm 2. If not stated otherwise k=10 and majority vote was used.
Chroma allows to query for the k-Nearest Neighbours, thus cosine similarity distance
calculation (cf. cosine similarity section 2.1) is already handled inside Chroma.

Hardware The separation of computation and data storage mentioned above al-
lowed the use of two different servers for the project. The computation server houses
an NVIDIA A100 80GB Tensor Core GPU1, which was shared through virtualiza-
tion. The data storage server is based on TrueNas2. The two servers are connected
through a LAN network.

3.3 Differences to Nakata et al.’s System

In the absence of source code for Nakata et al.’s system, the prototype was rebuilt
from their description. Despite best efforts, there may be some differences between
the two systems due to factors such as interpretation of the Nakata et al. paper
and specific implementation choices made. The prototype system differs from the
Nakata et al. system in a number of ways:

• Chroma: Nakata et al. do not specify which database is used to store the
extracted feature embeddings and their corresponding labels. The prototype
system uses Chroma version 0.3.25.

• Transfer over network: The system by Nakata et al. requires the support set
to be stored on the same machine as the image encoder model. The prototype
system can transfer the support set and its feature embeddings over a network
to the pretrained image encoder model. This allows for a separation of feature
embedding computation and storage.

1www.nvidia.com/a100
2www.truenas.com

www.nvidia.com/a100
www.truenas.com
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• Pretrained networks without CLIP: The Nakata et al. system uses pretrained
image encoder models that are pretrained using CLIP (Radford et al., 2021).
For simplification, the prototype system uses supervised pretrained image en-
coder models trained on ImageNet-1k. The pretrained image encoder models,
ResNet-50 and ViT-B/16, are based on pretrained image classification models
provided by PyTorch (Paszke et al., 2019).

3.4 Dimensionality Reduction in the Prototype Implemen-
tation

The following Python libraries were used for dimensionality reduction in this study:

• LDA and PCA: Scikit-learn (scikit-learn version 1.0.2) (Pedregosa et al.,
2011)

• t-SNE: openTSNE (opentsne version 0.5.3) (Poličar et al., 2019)

• UMAP: UMAP (umap-learn version 1.0.0) (McInnes et al., 2018)

The different dimensionality reduction methods were instantiated with the default
parameters provided by the libraries. Dimensionality Reduction with PCA, t-SNE,
and UMAP was performed unsupervised, while LDA was performed supervised.

3.5 Accuracy as a Metric for Comparing Results

The results of the conducted experiments are compared by their accuracy. Accu-
racy is a metric used to evaluate the performance of machine learning models on
classification tasks. It measures the proportion of test images for which the model’s
predicted label matches the correct label. (Sammut and Webb, 2017) For example,
if a model is tested on 100 images and correctly predicts the label of 80, then its
accuracy is 80%.

Accuracy =
Number of correct classifications

Total number of classifications
(1)
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4 Experiments and Results

The following section introduces the datasets and hyperparameters used in the ex-
periments, followed by a presentation of the experiments and their results. A detailed
discussion of each result is provided in section 5.

4.1 Datasets

CIFAR-10 and CIFAR-100 In 2009, the CIFAR-10 and CIFAR-100 datasets
were introduced by Krizhevsky et al. (2009). CIFAR-10 consists of 10 different
image classes with 60000 total images, while CIFAR-100 consists of 100 different
image classes with the same number of images. The CIFAR dataset is one of the
main datasets for evaluating new proposed classifiers. 50000 images of the dataset
are used for training, and the remaining 10000 images are used for testing. All
labels in the dataset are simple objects, such as ship, airplane, and cat. Each image
contains only one object with a resolution of 32x32 pixels. The CIFAR datasets are
a subset of the 80 Million Tiny Images dataset, created by web scraping in 2008
(Torralba et al., 2008). In 2020, a prerelease study uncovered that the “80 Million
Tiny Images” dataset contains degrading terms as categories and offensive images
(Birhane and Prabhu, 2021). As a response to the findings, the authors of the
dataset retracted it. The CIFAR datasets are unaffected because Krizhevsky et al.
handpicked their classes.

ImageNet1K ImageNet1K is a large-scale image dataset with over 1 million im-
ages belonging to 1000 different classes. It is a widely used dataset for evaluating
machine learning models for image classification, for example as part of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). ImageNet1K was created by
collecting images from the internet and manually annotating them with correspond-
ing labels. (Russakovsky et al., 2015) The dataset is divided into training, valida-
tion, and test sets. The training subset contains 1.2 million images, the validation
subset contains 50000 images, and the test subset contains 100000 images. It con-
tains various images, including images of natural objects, manufactured objects, and
scenes. In this project, the dataset was indirectly used as a training dataset for the
pretrained image classification models (cf. section System Description paragraph
Pretraining 3.1) provided by PyTorch (Paszke et al., 2019).

STL-10 In 2011, the STL-10 dataset was introduced by Coates et al. (2011). It is
a dataset of 10 different image classes with 60000 total images, similar to CIFAR-10.
The STL-10 dataset is divided into 100000 unlabelled and 13000 labeled images. The
labeled images contain a training set of 5000 images (500 images from each class)
and a test set of 8000 labeled images. For this thesis, the 13000 labeled images are
used. All labels in the STL-10 dataset are simple objects, such as ship, airplane, and
cat (inspired by CIFAR-10). Each image contains only one object with a resolution
of 96x96 pixels.
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Melanoma The “Melanoma Skin Cancer Dataset of 10000 Images” is a collection
of 10605 images of melanoma skin cancer, the most lethal skin cancer (according
to Codella et al. (2018)). The dataset was constructed by Muhammad Hasnain
Javid and made publicly available on Kaggle (CC 0: Public Domain3)(Javid, 2022).
The images were collected from different ISIC melanoma skin cancer directories
(https://www.isic-archive.com). The dataset is divided into a training set of
9605 images and a test set of 1000 images. The training set contains 5000 benign
and 4605 malignant images. The test set contains 500 benign and 500 malignant
images. Each image has a resolution of 300x300 pixels. The dataset classes are
visualized in figure 9.

Melanoma benign Melanoma malignant

Figure 9: Visualization of the classes in the melanoma dataset

Pneumonia This dataset contains 5863 chest X-ray images of children aged 1 to
5 years old, labeled as either Pneumonia or Normal. The images were selected from
retrospective cohorts of pediatric patients at the Guangzhou Women and Children’s
Medical Center, Guangzhou, China. According to the authors, all chest X-rays were
performed as part of patients’ routine clinical care. (Kermany et al., 2018) The
dataset is licensed CC BY 4.04 and available to download at https://www.kaggle.
com/datasets/paultimothymooney/chest-xray-pneumonia. The dataset has two
classes, “Normal” and “Pneumonia” and is divided into three subsets: training
(5216 images, 1341 Normal; 3875 Pneumonia), validation (16 images, 8 Normal; 8
Pneumonia), and test (624 images, 234 Normal; 390 Pneumonia). The images in
the dataset have a resolution range of 384x127 to 2916x2583 pixels, with an average
resolution of 1328x971 pixels. The training and test subsets were used for this
project. The classes of the dataset are visualized in figure 10.

4.2 System Setup Parameters for Experiments

If not stated otherwise, the experiments were conducted with the following param-
eters.

• k = 10 is used as hyperparameter for kNN.

3https://creativecommons.org/publicdomain/zero/1.0/
4https://creativecommons.org/licenses/by/4.0/

https://www.isic-archive.com
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by/4.0/


4 EXPERIMENTS AND RESULTS 27

Normal Pneumonia (viral)

Figure 10: Visualization of the Classes in the Pneumonia Dataset. The X-ray of
viral Pneumonia shows a diffuse intra-structural pattern in both lungs (Kermany
et al., 2018).

• kNN uses majority vote for inference.

• The images of the datasets are rescaled to 224x224 pixels, because this is the
input size of ViT-B/16. Other data preprocessing approaches were not used.

4.3 General Classification Results

The achieved accuracies of the developed prototype system are summarized in table
1.

Image Encoder Dataset Accuracy

ResNet-50

CIFAR-10 80.0
CIFAR-100 54.7
STL-10 96.2
Pneumonia 85.3
Melanoma 90.6

ViT-B/16

CIFAR-10 87.3
CIFAR-100 61.8
STL-10 94.9
Pneumonia 80.3
Melanoma 91.1

Table 1: Classification Accuracies of the developed Prototype System

Required Storage Space and Computational Time The required storage
space for storing the support sets in Chroma was analyzed. Storing the feature
embeddings of the 5000 STL-10 training images, encoded with ViT-B/16, occupied
around 16 MB of storage. Using ResNet-50 as an image encoder resulted in approx-
imately 41 MB of occupied storage. The creation of the feature embeddings of the
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5000 STL-10 training images took around 3 minutes on the provided hardware (cf.
Hardware 3.2)

4.4 Comparison of the Prototype to Nakata et al.’s System

4.4.1 Experiment 1: Accuracy Comparison on Identical Datasets

Experiment description The goal of this experiment is to evaluate if the pro-
totype system resembles Nakata et al.’s system. This evaluation compares the ac-
curacy of the two systems on identical datasets (CIFAR-10, CIFAR-100, STL-10).
The prototype system will use the training set of each dataset as support set (cf.
Knowledge Storing 3.1); the accuracy will be evaluated with each test set.

Results The results are presented in table 2 and visualized in appendix A.2 figure
22 and figure 23.
Overall, the Prototype system performs worse than Nakata et al.’s system on all
three datasets. The ResNet-50 image encoder has a smaller gap in performance
between the Prototype system and Nakata et al.’s system, with a difference of -1%
to -2.8%, compared to the ViT-B/16 image encoder, which has a wider gap of -4%
to -12.5%.

Image Encoder Dataset Baseline (Nakata et al.) Prototype ∆

ResNet-50
CIFAR-10 82.8 80.0 -2.8
CIFAR-100 55.7 54.7 -1.0
STL-10 96.8 96.2 -2.6

ViT-B/16
CIFAR-10 94.4 87.3 -7.1
CIFAR-100 74.3 61.8 -12.5
STL-10 98.9 94.9 -4.0

Table 2: Experiment 1: Test Accuracies

4.5 Evaluating Parameters of the Prototype System

4.5.1 Experiment 2: Grid Search kNN Hyperparameter k

Experiment description The goal of this experiment is to evaluate whether
k=10 is a sensible choice for the hyperparameter k in the kNN classifier. A grid
search is performed to evaluate different values of k on the classification accuracy of
different data sets (STL-10, Melanoma).

Results The results are presented in table 3 and visualized in figure 11.
The performance of the Prototype system is consistent across different values of
the k hyperparameter, with an accuracy of 95% to 96% on the STL-10 dataset and
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around 90% on the Melanoma dataset for both the ResNet-50 and ViT-B/16 image
encoders. The STL-10 dataset has the maximum accuracy for the ResNet-50 image
encoder of 96.3% at k=15 and 95.7% for the ViT-B/16 image encoder at k =25. The
Melanoma dataset has the maximum accuracy for the ResNet-50 image encoder of
90.6% at k=3 and k=10, and 91.1% for the ViT-B/16 image encoder at k=10.

Image Encoder Dataset k=1 k=3 k=5 k=7 k=10 k=15 k=25

ResNet-50
STL-10 96.1 96.2 96.2 96.1 96.1 96.3 96.2
Melanoma 89.7 90.6 90.2 89.9 90.6 90.3 89.6

ViT-B/16
STL-10 94.7 95.0 95.1 95.0 95.0 95.4 95.7
Melanoma 90.5 90.6 90.5 90.3 91.1 90.9 90.0

Table 3: Experiment 2: Test Accuracies
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Figure 11: Experiment 2 Visualization of Hyperparameter k

4.5.2 Experiment 3: Comparison of kNN with distance-weighted kNN

Experiment description The goal of this experiment is to evaluate whether
distance-weighted kNN increases the classification accuracy of the prototype. The
experiment is conducted by comparing the accuracy of kNN and distance-weighted
kNN on the STL-10 and the Melanoma dataset. Both kNN variants are used with
hyperparameter k = 10.
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Results The results are presented in table 4.
Overall, the performance of kNN and distance-weighted kNN is very similar. Distance-
weighted kNN slightly outperforms kNN on both datasets, using both image en-
coders. However, the difference in performance is minimal, ranging up to +0.3%.

Image Encoder Dataset kNN distance-weighted kNN ∆

ResNet-50
STL-10 96.0 96.1 +0.1
Melanoma 90.6 90.9 +0.3

ViT-B/16
STL-10 95.1 95.1 0
Melanoma 91.1 91.4 +0.3

Table 4: Experiment 3: Test Accuracies

4.5.3 Experiment 4: Comparison of Dimensionality Reduction Methods
in Conjunction with kNN

Experiment description The goal of this experiment is to determine the effect
of dimensionality reduction methods on the classification accuracy of the kNN clas-
sifier. The dimensionality of the feature embeddings of the support set is reduced
and, afterwards, stored in the database. The dimensionality reduction model, which
was used for the dimensionality reduction of the support set, is stored in memory.
The feature embeddings for the test data are reduced using the previously stored di-
mensionality reduction model. Afterwards kNN is performed on the reduced support
and test set to determine the classification accuracy.

The classification accuracies of the test datasets with dimensionality reduction meth-
ods are compared to those without dimensionality reduction. A grid search is per-
formed to evaluate a sensible number of remaining dimensions for each of the four
dimensionality reduction methods LDA, PCA, t-SNE, and UMAP. The experiment
is performed solely on the STL-10 dataset.

Results The results are visualized in figure 12. The detailed results are given in
appendix A.3 table 7. UMAP and t-SNE were able to maintain the accuracy of
the kNN baseline model across all values for the number of remaining dimensions.
In contrast, LDA and PCA lost more than 20% of their classification accuracy for
two and three dimensions. However, their accuracy increased as the number of
remaining dimensions was increased and was on par with the baseline accuracy for
eight remaining dimensions. For ResNet-50, t-SNE slightly improved the baseline
classification accuracy by 0.5%, from 96.2% to 96.7%. For ViT-B/16, t-SNE also
slightly improved the baseline classification accuracy by approximately 1%, from
94.9% to 95.9% (96.1% for three and eight dimensions). Additionally, LDA with
eight remaining dimensions increased the classification accuracy of ViT-B/16 by
2.3%, from 94.9% to 97.2%.
The feature embedding space is visualized in experiment 6 (cf. 4.6.2).
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Figure 12: Experiment 4 Results Visualization (Dataset: STL-10)

4.6 Explainable AI

4.6.1 Experiment 5: Visualization of Classification Results through Sup-
port Set and Query Image Comparison

Experiment description The goal of this experiment is to visualize the classifi-
cation results of the prototype by comparing a misclassified query image of the test
set to its k nearest-neighbour support images. The experiment is performed solely
on the STL-10 dataset.

Results Figure 13 shows the results of experiment 5, which visualized the kNN
decision process for a misclassified image. The ten nearest neighbors of the mis-
classified image are distributed in four classes, with six images depicting cats, two
images depicting deer, one image depicting an airplane, and one image depicting a
bird. The majority vote of the kNN algorithm results in a cat classification. None
of the nearest neighbors is from the actual class of the image (dog). The provided
distances allow to determine which neighbor is closest to the misclassified image. In
this case, the closest neighbor is the fourth picture in the first row, depicting a cat
with a distance of 132.607. The second closest neighbor is the bird image (second
image, second row), with a distance of 133.043.
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Experiment 5: Visualize Nearest Neighbors of misclassified Image

Figure 13: Experiment 5 Visualization of Nearest-Neighbours

4.6.2 Experiment 6: Comparison of Dimensionality Reduction Methods
for Feature Embedding Space Visualization

Experiment description The goal of this experiment is to find out if one of the
dimensionality reduction methods is superior in explaining the feature embedding
space. The 2D visualizations of different dimensionality reduction methods LDA,
PCA, t-SNE, and UMAP are compared for visualizing the feature embedding space
of the ML model (cf. section 2.4.1). The experiment is performed on the STL-10
dataset.

Results The results using ViT-B/16 as an image encoder are visualized in figure
14. Comparing the visualizations of the feature embedding space of the different
dimensionality reduction methods suggests some differences:

• The LDA projection indicates four clusters. Three clusters have overlapping
classes within each cluster: 1. Airplane, Ship 2. Car, Truck 3. Bird, Cat,
Deer, Dog, Horse.

• The PCA projection suggests one huge cluster of all data points, with no clear
separation between the classes.

• The t-SNE projection gives ten distinct clusters.
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• The UMAP projection gives seven clusters. Three clusters have overlapping
classes: 1. Airplane, Ship 2. Deer, Horse 3. Dog, Cat. Compared to t-SNE,
the clusters have a wider separation from each other and are populated more
densely.

The additional results using ResNet-50 as an image encoder are visualized in ap-
pendix A.4 figure 14. There are only minor differences compared to the ViT-B/16
visualizations.
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Figure 14: Experiment 6 Feature Embedding Space Visualization for Dimensionality
Reduction Methods (Image Encoder: ViT-B/16, Dataset: STL-10)

4.7 Continual Learning and Catastrophic Forgetting

4.7.1 Experiment 7: Class Incremental Continual Learning

Experiment description The goal of this experiment is to investigate the perfor-
mance differences of class incremental continual learning by stepwise adding classes
to the support set and test set. The experiment is performed on STL-10 and CIFAR-
10.
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Image Encoder Dataset
Number of Classes

1 2 3 4 5 6 7 8 9 10

ResNet-50
STL-10 100 99.6 99.5 99.1 98.0 97.1 95.8 96.0 96.1 96.0
CIFAR-10 100 97.5 95.1 90.9 86.8 83.9 82.1 81.3 80.5 79.9

ViT-B/16
STL-10 100 99.2 99.0 98.4 98.1 96.7 96.0 95.9 95.6 95.6
CIFAR-10 100 98.9 97.4 95.7 92.7 90.3 89.0 87.1 87.5 87.4

Table 5: Experiment 7: Test Accuracies

Results The results are presented in table 5.
Both ViT-B/16 and ResNet-50 models achieved high accuracy on the STL-10 dataset,
with accuracy above 95% even when the number of classes was 10. However, the
ViT-B/16 model outperformed the ResNet-50 model on the CIFAR-10 dataset, es-
pecially when the number of classes was large. For example, the accuracy of the
ViT-B/16 model was 87.4% when the number of classes was 10, while the accu-
racy of the ResNet-50 model was only 79.9%. Figure 15 shows that the ResNet-50
model stabilizes beyond n=7 around 96% for the STL-10 dataset. For the CIFAR-10
dataset, after n=7 a continual linear decline of 0.8% per step is observed. Figure 16
shows that the ViT-B/16 model stabilizes beyond n=8 for both datasets.
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Figure 15: Experiment 7 Results Visualization (ResNet-50)



4 EXPERIMENTS AND RESULTS 35

1 2 3 4 5 6 7 8 9 10
Number of classes

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Te

st
 a

cc
ur

ac
y

Class Incremental Continual Learning (ViT-B/16)
Dataset

STL-10
CIFAR-10

Figure 16: Experiment 7 Results Visualization (ViT-B/16)

4.7.2 Experiment 8: Task Incremental Continual Learning

Experiment description The goal of this experiment is to investigate the perfor-
mance differences of task incremental continual learning by stepwise adding feature
embeddings of each class to the support set and test set. The experiment is per-
formed on STL-10, CIFAR-10, Melanoma and Pneumonia.

Results The results are visualized in figure 17 and figure 18. The whole results
table is available in appendix A.5 table 8.
The results show that increasing the number of feature embeddings per class im-
proves performance on all four datasets for both image encoder models. For example,
on the Pneumonia dataset, the ViT-B/16 model achieved an accuracy of 74.4% with
one feature embedding per class but an accuracy of 80.3% with 512 feature embed-
dings per class. For each dataset, the ViT-B/16 model achieved at eight feature
embeddings per class a performance, which is less than 10% worse than the per-
formance on each whole dataset. The ResNet-50 image encoder reaches the same
result at 32 feature embeddings per class.
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Figure 17: Experiment 8 Results Visualization (ResNet-50)
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Figure 18: Experiment 8 Results Visualization (ViT-B/16)
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4.7.3 Experiment 9: Evaluate Catastrophic Forgetting through Contin-
ual Learning of Multiple Datasets

Experiment description The goal of this experiment is to evaluate catastrophic
forgetting in the prototype system through continual learning of multiple datasets.
The experiment is conducted in the following steps:

1. Use the Pneumonia dataset as support set.

2. Evaluate the baseline accuracy of the prototype system on the Pneumonia test
set.

3. Add the Melanoma dataset to the support set.

4. Using the combined support set, evaluate the test accuracy of the prototype
system on the Pneumonia test set again.

Catastrophic forgetting is evaluated by comparison of the baseline accuracy (cf. step
2) with test accuracy (cf. step 4).

Results The results from table 6 show that there is no change in Pneumonia
classification performance, even after adding the Melanoma dataset to the support
set of the system. This holds for the ResNet-50 image encoder as well as the ViT-
B/16 image encoder.

Image Encoder Support Set Baseline Support Set Test Baseline Test ∆

ResNet-50 Pneumonia Pneumonia + Melanoma 85.3 85.3 0

ViT-B/16 Pneumonia Pneumonia + Melanoma 80.3 80.3 0

Table 6: Experiment 9: Test Accuracies

4.8 Privacy Preserving Deletion of Support Set Feature Em-
beddings

4.8.1 Experiment 10: Deletion of Most Significant Feature Embeddings
per Class

Experiment description The goal of this experiment is to evaluate the impact
on classification performance if the most significant feature embedding of each class
is deleted from the support set. One class’s most significant feature embedding is
the feature embedding, which is, upon correct classification, most often a member
of the k nearest neighbors. The experiment is conducted in the following steps:

1. Determine baseline accuracy and identify the most significant feature embed-
ding by counting feature embedding IDs relevant for correct classifications.
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2. Delete the most significant feature embeddings for each class from the support
set.

3. Determine the test accuracy.

The impact on classification performance is evaluated by comparison of the baseline
accuracy (cf. step 1) with test accuracy (cf. step 3). The experiment is conducted
with the STL-10 and the Pneumonia dataset.

Results The results are visualized in figure 19. The whole result table is available
in appendix A.6 table 9.
The results show that deleting the most significant feature embeddings per class has
a negative impact on the performance of both image encoder models. For exam-
ple, on the STL-10 dataset, the performance of the model declined after the 100
most significant feature embeddings were deleted from each class. On the Pneu-
monia dataset, the performance of the model continually declined as more feature
embeddings were deleted. However, surprisingly, after deleting almost all (1335
out of 1341) of the significant feature embeddings for the Pneumonia dataset class
“Normal”, the classification performance increased by around 5%.
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Figure 19: Experiment 10 Results Visualization

4.8.2 Experiment 11: Grid Search of Maximum Possible Deletions of
Feature Embeddings of one Class

Experiment description The goal of this experiment is to evaluate the impact
on classification performance if n randomly chosen feature embeddings of one class
C are deleted from the support set. Different values for n are examined. The upper
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bound for n is nC
max − k

2
+ 1 with nC

max denoting the number of available training
images of class C. The experiment is conducted with the STL-10 and the Pneumonia
dataset.

Results The results are visualized in figure 20. The whole result table is available
in appendix A.7 table 10.
For the STL-10 dataset, the performance of the model declined after 300 feature
embeddings of the class “bird” were deleted. However, if only 50 bird embeddings
remained, the performance was only around 2% worse than the baseline. For the
Pneumonia dataset, the performance of the model surprisingly increased by 5% after
deleting 3000 feature embeddings (77%) from the class “Pneumonia”. However, the
performance for ResNet-50 was 10% worse than the baseline when 3765 of 3875
(110 remaining) feature embeddings for the class Pneumonia were deleted. The
performance for ViT-B/16 decreases by more than 10% compared to the baseline
when 3815 of 3875 (60 remaining) feature embeddings for the class Pneumonia were
deleted.
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Figure 20: Experiment 11 Results Visualization
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5 Discussion

The following discussion section will begin with a detailed consideration of the results
of the conducted experiments. Afterwards, the details are summarized to allow a
broader overview of the strengths and limitations of the proposed system.

5.1 Experiments in Detail

Experiment 1: Comparing the Prototype System to Nakata et al.’s Sys-
tem Experiment 1 (cf. 4.4.1) compared the accuracy of the prototype system to
Nakata et al.’s system on identical datasets. Overall, the prototype system per-
formed worse than Nakata et al.’s system. However, the gap in classification accu-
racy was smaller when using the ResNet-50 image encoder (up to 2.8%) compared
to when using the ViT-B/16 image encoder (up to 12.5%).
One possible explanation for the bigger gap in classification accuracy when using the
ViT-B/16 image encoder is that the CIFAR-10 (7.1% worse) and CIFAR-100 (12.5%
worse) images have a lower initial resolution, 32x32 pixels, compared to STL-10 (4%
worse), with an initial resolution of 96x96 pixels. A lower initial resolution may make
it more difficult for the ViT-B/16 image encoder to learn effective representations
of the images.
A possible explanation for the overall worse performance of the prototype is that
Nakata et al.’s system used CLIP (Radford et al., 2021) to increase the available
information during pretraining of the image encoders.
Overall, the results of Experiment 1 suggest that the prototype system is a promis-
ing approach to Nakata et al.’s system. However, more research is needed to improve
the performance of the prototype system, especially when using the ViT-B/16 image
encoder.

Experiment 2: Grid Search kNN Hyperparameter k Experiment 2 (cf.
4.5.1) evaluated the performance of the prototype system on different values of the
kNN hyperparameter k. The results showed that the system’s classification perfor-
mance is relatively consistent across different values of k, with a maximum difference
of 1%. This is especially true for the Melanoma dataset, where k=10 achieves the
maximum accuracy for both the ResNet-50 and ViT-B/16 image encoders.
On the STL-10 dataset, however, the classification performance using the ViT-B/16
image encoder continually increases with values of k > 10. The reason for this con-
tinual increment is unclear and requires further investigation.
Overall, due to the consistent performance on different values of k, k=10 seems to
be a sensible choice for the k hyperparameter. However, it is important to note that
the optimal value of k varies depending on the dataset (Mitchell, 1997) and the used
image encoder.

Experiment 3: Comparison of kNN with distance-weighted kNN Exper-
iment 3 (cf. 4.5.2) compared the performance of kNN with distance-weighted kNN.
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The results showed that distance-weighted kNN can slightly increase the classifica-
tion performance of the prototype system. This performance improvement is likely
due to the fact that distance-weighted kNN gives more weight to the votes of neigh-
bors that are closer to the test sample and, thus, supposably more similar. This can
help reduce noise and outliers’ impact on the training data (Mitchell, 1997).
However, the improvement in performance from using distance-weighted kNN is
relatively small. For example, on the Melanoma dataset, distance-weighted kNN
improved the classification accuracy of the prototype system by 0.3%.
Overall, the results of Experiment 3 suggest that distance-weighted kNN can be
used to improve the classification performance of the prototype system slightly.

Experiment 4: Comparison of Dimensionality Reduction Methods in
Conjunction with kNN Experiment 4 (cf. 4.5.3) compared the classification
performance of different dimensionality reduction methods in conjunction with kNN
on the STL10 dataset. UMAP and t-SNE were able to maintain a high accuracy for
all tested number of dimensions. t-SNE slightly increased the classification perfor-
mance by 0.5% for the ResNet-50 image encoder and by around 1% for the ViT-B/16
image encoder. LDA, with eight remaining dimensions, increased the classification
accuracy of ViT-B/16 by 2.3%.
These results suggest that UMAP and t-SNE are more robust to dimensionality
reduction methods in conjunction with kNN than LDA and PCA. Hence, UMAP
and t-SNE are better at preserving the underlying manifold structure of the data.
The improved performance of LDA with eight remaining dimensions for ViT-B/16
is likely due to the number of classes in the STL10 dataset being ten. LDA is a
supervised dimensionality reduction technique, which means it considers the class
labels when projecting the data into a lower-dimensional space. The result suggests
it is beneficial for LDA to keep the number of remaining dimensions close to the
number of classes. Hence, LDA can learn a projection that is specifically designed
to separate the different classes.
Maintaining or even increasing the classification performance is a promising result.
However, more research is needed to explore the performance of different dimen-
sionality reduction techniques in conjunction with kNN on other datasets, especially
with different numbers of classes. Additionally, it would be interesting to investi-
gate the effects of the kNN hyperparameter k and distance-weighted kNN on the
classification performance combined with dimensionality reduction.

Experiment 5: Visualization of Classification Results through Support
Set and Query Image Comparison Experiment 5 (cf. 4.6.1) investigated the
kNN decision process for a misclassified image of a white-furred dog with black dots
where the front of the head was not visible. None of the nearest neighbors were from
the actual class of the image (dog), but all of the nearest neighbor images of cats
showed cats with light-colored fur and black dots. These results suggest that the
similarity of light-colored fur with black dots led to the model’s misclassification.
This experiment demonstrates that visualizing the kNN decision process can ex-
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plain the model’s decision-making process. Furthermore, this type of explanation
by example (cf. 2.4) allows humans to assess the classifications made by the model
quickly. Additionally, it allows for the detection and correction of falsely labeled
images in the support set Nakata et al., 2022.

Experiment 6: Experiment 6: Comparison of Dimensionality Reduction
Methods for Feature Embedding Space Visualization In experiment 6 (cf.
4.6.2), the different dimensionality reduction methods were visually compared.
LDA and PCA are not able to separate the ten classes of the dataset. This finding
is supported by the results of experiment 4 (cf. 4.5.3), where the classification per-
formance of LDA and PCA is more than 20% worse using dimensionality reduction
with two remaining dimensions.
UMAP and t-SNE provide a good separation of the classes, which was also indicated
by the results of experiment 4.
Upon inspecting the overlapping classes, it is interesting to note that the classes
“ship” and “airplane” are often overlapping. Indicating that there might be visual
details in the images that are closely related. Assumingly, in this case, the image
background might affect the image encoder, and thus, the dimensionality reduced
feature embedding. In the case of a ship, the background is supposedly blue water
and blue or white skies, whereas, for an airplane, the background is solely blue or
white skies.
Overall, experiment 6 showed that the visual inspection of the dimensionality-
reduced feature embedding spaces is closely related to the kNN classification perfor-
mance of the dimensionality-reduced feature embeddings (cf. experiment 4 4.5.3).
UMAP and t-SNE should preferably be used for two-dimensional visualizations.
Additionally, it is essential to note that the visualizations of the feature embedding
space can be affected by the choice of parameters for each dimensionality reduction
method. For example, the perplexity parameter can control the number of clusters
in the t-SNE projection. In experiment 6, all parameters were set to the default
values provided by the dimensionality reduction libraries.

Experiment 7: Class Incremental Continual Learning Experiment 7 (cf.
4.7.1) investigated the performance of class incremental continual learning by step-
wise adding classes to the support set and test set. On the STL-10 dataset, the
ResNet-50 model stabilizes after adding seven classes, with an accuracy of approx-
imately 96%. On the CIFAR-10 dataset, the ResNet-50 model shows a continual
linear decline in accuracy of 0.8% per step after adding seven classes. The ViT-
B/16 model stabilizes after adding eight classes on both the STL-10 and CIFAR-10
datasets.
These results suggest that the ViT-B/16 model is more robust in class incremental
continual learning scenarios than the ResNet-50 model. This may be because the
ViT-B/16 model is able to learn more global representations of the data, which are
less likely to be affected by the introduction of new classes (Vaswani et al., 2017;
Dosovitskiy et al., 2021; Han et al., 2020).
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Experiment 8: Task Incremental Continual Learning Experiment 8 (cf.
4.7.2) investigated the performance of task incremental continual learning by step-
wise adding feature embeddings of each class to the support set and test set. The
results showed that increasing the number of feature embeddings per class improved
classification performance for both image encoder models on all four datasets. This
suggests that using more feature embeddings allows the model to learn more discrim-
inative representations of each class, which makes it less likely to forget previously
learned tasks when new tasks are introduced.
Interestingly, the ViT-B/16 image encoder achieved a performance that was less
than 10% worse than the performance on each whole dataset with only eight feature
embeddings per class. This suggests that the ViT-B/16 model can learn effective
representations of classes with a relatively small number of feature embeddings.
Overall, the results of Experiment 8 suggest that the prototype system, especially
using ViT-B/16 as an image encoder, is a promising approach to task incremental
continual learning.

Experiment 9: Evaluate Catastrophic Forgetting through Continual Learn-
ing of Multiple Datasets Experiment 9 (cf. 4.7.3) evaluated catastrophic for-
getting in the prototype system. The results showed that there was no change in
Pneumonia classification performance, even after adding the Melanoma dataset to
the support set of the system. This held for both the ResNet-50 and ViT-B/16
image encoders.
This result suggests that the prototype system can mitigate catastrophic forgetting
for datasets with distinguishable classes. This is likely due to the fact that the pro-
totype system is based on image encoders pretrained on the ImageNet1K dataset
(cf. 3.1).
However, more research is needed to evaluate the effect of catastrophic forgetting
on the prototype system, especially on datasets with overlapping classes and image
classes that are not represented in ImageNet1K.

Experiment 10: Deletion of Most Significant Feature Embeddings per
Class Experiment 10 (cf. 4.8.1) evaluated the impact of deleting the most sig-
nificant feature embeddings for each class from the support set on classification
performance. The results showed that deleting the most significant feature embed-
dings per class had a negative impact on the performance of both image encoder
models. Presumably, due to the binary class of Pneumonia, this negative impact
was more noticeable.
Overall, the results of Experiment 10 suggest that the removal of personal user data
from the support set due to privacy regulations and concerns is possible. In the case
of STL-10, up to 40% of the most significant feature embeddings could be removed
without a noticeable loss in accuracy.
It remains unclear why Pneumonia’s classification performance increased by around
5% upon the deletion of almost all (from class “normal”) feature embeddings, 1335
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out of 1341, compared to the deletion of 400 feature embeddings. Conducting further
research regarding the reason for this increase might be interesting.

Experiment 11: Grid Search of Maximum Possible Deletions of Feature
Embeddings of one Class Experiment 11 (cf. 4.8.2) evaluated the impact on
classification performance by deleting a varying number of feature embeddings from
one class from the support set. The results show no noticeable impact on classifica-
tion performance, even when deleting 50% of all feature embeddings from a single
class. This result further suggests that the proposed system allows for the dele-
tion of single feature embeddings from the support set due to privacy concerns and
regulations.

5.2 Key Findings and Future Directions for the Prototype
System

Key Findings:

1. The created prototype system is a promising approach to continual learning
but has lower accuracy than Nakata et al.’s system (cf. experiment 1). Pre-
sumably, due to the differences in interpretation and implementation (cf. 3.3).

2. Distance-weighted kNN can slightly improve the classification performance of
the prototype system (cf. experiment 3).

3. Dimensionality reduction with t-SNE can slightly improve the classification
performance of the prototype system (cf. experiment 4).

4. The ViT-B/16 image encoder is more robust to class incremental and task
incremental continual learning than the ResNet-50 image encoder. (cf. exper-
iments 7 and 8)

5. The prototype system can mitigate catastrophic forgetting for datasets with
distinguishable classes. (cf. experiment 9)

6. Depending on the dataset, removing up to 40% of the feature embeddings of
a single class is possible, with only a relatively small loss in accuracy. This
shows that the classification performance of the prototype system is stable,
even if some data samples have to be removed due to privacy concerns and
regulations. (cf. experiments 10 and 11)

Future directions:

1. Improve the performance of the prototype system, especially when using the
ViT-B/16 image encoder.
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2. Investigate the reason for the continual increase in classification performance
on the STL-10 dataset with values of k greater than 10 when using the ViT-
B/16 image encoder. (cf. experiment 2)

3. Explore the performance of different dimensionality reduction techniques in
conjunction with kNN on other datasets. (cf. experiment 4)

4. Evaluate the effect of catastrophic forgetting on the prototype system, es-
pecially on datasets with overlapping classes and image classes that are not
represented in ImageNet1K. (cf. experiment 9)



6 CONCLUSION 46

6 Conclusion

This bachelor’s thesis evaluated a novel continual learning image classification ap-
proach.

First, a prototype system was developed based on Nakata et al.’s kNN-based image
classification approach. Experiments showed that the prototype system can repro-
duce Nakata et al.’s results and validated their claimed benefits. Hence, building
future systems upon Nakata et al.’s work is possible.

Second, a series of experiments was conducted to further evaluate the prototype
system’s performance by visualizing the decision process, evaluating the impact of
different hyperparameters and different modeling decisions, and exploring privacy
challenges for continual learning systems. The main findings for these further ex-
periments are:

• The classification accuracy of the system can be increased with distance-
weighted kNN and dimensionality reduction with t-SNE.

• The ViT-B/16 image encoder is more robust in continual learning challenges
than the ResNet-50 image encoder.

• Catastrophic forgetting can be mitigated for datasets with distinguishable
classes.

• Privacy challenges regarding stored personal user data can be resolved by
allowing the deletion of up to 40% of the feature embeddings of a single class
before the classification accuracy declines.

These specific findings contribute to Nakata et al.’s approach by further integrating
new ideas. This opens up new possibilities for future research on continual learning
and Nakata et al.’s kNN-based image classification approach.

Future Research A promising area for future research is to investigate an addi-
tional utilization of query image feature embeddings as new members of the support
set. This could be achieved by adding the feature embedding of a query image to the
support set and using it for future inferences. This approach can potentially improve
the system’s classification performance, especially for novel or unseen classes.

Another promising future research area is to compare the performance of different
image encoder models, such as ViT-L/32 and ResNet-100, and address domain-
specific classification problems using image encoder models pretrained on datasets
specific to those domains.

Finally, it could be interesting to evaluate the performance of Nakata et al.’s kNN-
based image classification approach with different distance metrics for kNN. Chom-
boon et al. (2015) have shown that kNN’s performance is strongly affected by the
choice of distance metric. Applying their conclusions could further improve the
performance of Nakata et al.’s approach.
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A Appendix

A.1 Deep Learning Introduction

See figure 21.

Figure 21: Simplified Illustration of an Image Classification Deep Learning Model.
Figure 1.2 by Goodfellow et al. (2016).

A.2 Experiment 1

See figure 22 and figure 23.

A.3 Experiment 4

See table 7.

A.4 Experiment 6

See figure 24.
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Figure 22: Experiment 1 Results Visualization (ResNet-50)
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Figure 23: Experiment 1 Results Visualization (ViT-B/16)

A.5 Experiment 8

See table 8.

A.6 Experiment 10

See table 9.
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Reduction Methods (Image Encoder: ResNet-50, Dataset: STL-10)

A.7 Experiment 11

See table 10.
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