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Abstract

Parkinson’s disease is a severe neurodegenerative disorder that can dramatically
reduce the quality of life and impose significant socio-economic challenges. Ioflu-
pane (123I) Dopamine Transporter Single-Photon Emission Computed Tomography
(DAT-SPECT) is effectively used for detecting Parkinson’s disease and distinguish-
ing it from secondary Parkinsonian syndromes. Reliable automatic classification of
DAT-SPECT images and accurate identification of borderline cases is highly desir-
able. Modern convolutional neural networks are commonly trained with the goal
of obtaining highly accurate and generalizable DAT-SPECT image classifiers. This
work aimed to compare the performance of CNN-based (ResNet) classification meth-
ods to benchmark methods (SBR and Random Forest) and proposed the area under
balanced accuracy (AUC-bACC) over the percentage of inconclusive cases as the
performance metric. The proposed metric allows for both the comparison of classifi-
cation methods independently from fixed decision thresholds and the determination
of the optimal inconclusive interval (operation point) for a specific classifier given
an application-dependent target balanced accuracy. The influence of the label se-
lection strategy (majority vote and random label selection) during model training
on the classification performance was also part of the investigation. The methods
were trained on an augmented development dataset derived from 1740 DAT-SPECT
images, each labeled by three independent raters. The evaluation was conducted on
the test set of the development dataset and two independent datasets with varying
image characteristics. The CNN-based classification methods outperformed bench-
mark methods with respect to the proposed metric, most remarkably on independent
testing datasets. Random label training led to a slight performance advantage com-
pared to majority vote training.
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Abstract

Morbus Parkinson ist eine schwere neurodegenerative Erkrankung, welche die Leben-
squalität drastisch reduzieren und erhebliche sozioökonomische Herausforderungen
mit sich bringt. Ioflupane (123I) Dopamine Transporter Single-Photon Emission
Computed Tomography (DAT-SPECT) wird effektiv zur Erkennung von Morbus
Parkinson in Abgrenzung zu sekundären Parkinson-Syndromen eingesetzt. Eine zu-
verlässige automatische Klassifizierung von DAT-SPECT-Bildern und eine genaue
Identifizierung von Grenzfällen sind äußerst wünschenswert. Moderne faltende neu-
ronale Netzwerke werden häufig mit dem Ziel trainiert, hochgenaue und general-
isierungsfähige DAT-SPECT-Bildklassifikatoren zu erhalten. Diese Arbeit hatte
zum Ziel, die Performance von CNN-basierten (ResNet) Klassifikationsmethoden
mit Benchmark-Methoden (SBR und Random Forest) zu vergleichen und die Fläche
unter der Balanced Accuracy (AUC-bACC) über dem Prozentsatz an ”unklaren”
Fällen als Performancemetrik vorzuschlagen. Die vorgeschlagene Metrik ermöglicht
sowohl den Vergleich von Klassifikationsmethoden unabhängig von festen Entschei-
dungsschwellen als auch die Bestimmung des optimalen ”unklaren” Intervalls (Be-
triebspunkt) für einen bestimmten Klassifikator bei einer anwendungsabhängigen
Ziel Balanced Accuracy. Der Einfluss der Label-Auswahlstrategie (Mehrheitsentschei-
dung und zufällige Labelauswahl) beim Modelltraining auf die Klassifikationsper-
formance war ebenfalls Gegenstand der Untersuchung. Die Methoden wurden auf
einem erweiterten Entwicklungsdatensatz trainiert, der 1740 DAT-SPECT-Bildern
zu Grunde hatte, welche von drei unabhängigen Bewertern gelabelt wurden. Die
Evaluation wurde sowohl am Testsatz des Entwicklungsdatensatzes als auch an zwei
unabhängigen Datensätzen mit unterschiedlichen Bildcharakteristika durchgeführt.
Die CNN-basierten Klassifikationsmethoden übertrafen die Benchmark-Methoden
in Bezug auf die vorgeschlagene Metrik, insbesonders auf den unabhängigen Test-
datensätzen. Das Trainieren mit zufälliger Labelauswahl führte im Vergleich zum
Trainieren mit Mehrheitsentscheidung zu einem leichten Leistungsvorteil.
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1 INTRODUCTION 1

1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease after
Alzheimer’s disease (Twelves et al., 2003). It is expected to impose an increasing
social and economic burden on societies as populations age (de Lau and Breteler,
2006). The prevalence of PD in industrialized countries is about 1% in people over
60 years of age (de Lau and Breteler, 2006). The standardized incidence rate of PD is
estimated to range between about 10 and about 20 per 100,000 person-years (de Lau
and Breteler, 2006). This results in the diagnosis of up to 100,000 new PD cases
annually in the EU and up to 50,000 cases in the US.

PD is typically characterized by bradykinesia and variable expression of cardinal
symptoms: resting tremor, rigidity, and postural instability (Tolosa et al., 2006;
Gibb and Lees, 1988). However, this combination of symptoms, often referred to as
‘parkinsonism’ or ‘parkinsonian syndrome’ (PS), occurs not only in PD (and some
rare ‘atypical’ neurodegenerative PS such as multiple system atrophy, progressive
supranuclear palsy and corticobasal degeneration). It also occurs in so-called ‘sec-
ondary’ (non-neurodegenerative) PS that can be induced by drugs, head trauma, in-
flammatory or metabolic disorder, as well as other diseases such as essential tremor,
dystonic tremor, or normal pressure hydrocephalus (Tolosa et al., 2006; Piccini and
Whone, 2004). A particularly frequent cause of secondary PS is cerebrovascular
disease (Funke et al., 2013). The differentiation between PD and secondary PS is
highly relevant because secondary PS might be treated more effectively than PD and
some secondary PS may be fully cured. Yet, the clinical, that is, symptom-based
differentiation between PD and secondary PS is challenging in a significant fraction
of patients, particularly at early disease stages with mild symptoms and in patients
with atypical presentation (Hughes et al., 2002, 1992). These cases are often referred
to as ‘clinically uncertain parkinsonian syndromes’ (CUPS) (Catafau et al., 2004).

Dopamine transporter single-photon emission computed tomography (DAT-SPECT)
with ioflupane (123I), also referred to as [123I]FP-CIT, is an established nuclear
medicine brain imaging procedure for Parkinson’s disease diagnosis. The widespread
use of the diagnostic procedure is due to its high accuracy, its relevant impact on
patient management, and the strong guideline recommendations. In Europe, around
70,000 patients undergo DAT-SPECT scans annually, with 10,000 in Germany alone,
and at the University Medical Center Hamburg-Eppendorf (UKE) currently around
400 per year (Marienhagen et al., 2017). The demographical change in industrial
countries is expected to result in a further increase in the number of DAT-SPECT
examinations, because age is the major risk factor for PD (Reeve et al., 2014). Fur-
thermore, there are early signs of PD such as smell loss and idiopathic rapid eye
movement sleep and behavioral disorder that can precede motor symptoms by sev-
eral years but are not particularly specific for PD (Iranzo et al., 2017; Postuma and
Berg, 2019; Postuma et al., 2019). It becomes increasingly important to detect PD
at these early pre-motor stages because the earlier the treatment is initiated the bet-
ter the chances of moderating the course of PD with disease-modifying drugs (Kim,
2017).
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In clinical practice, the interpretation of DAT-SPECT is binary, that is, the nu-
clear medicine physician has to decide whether the SPECT images indicate degen-
eration of the dopaminergic neurotransmitter system (Parkinson’s disease) or not
(secondary PS). This decision can be challenging by visual inspection of the tomo-
graphic SPECT images, particularly for less experienced readers (Schiebler et al.,
2023). Thus, DAT-SPECT would benefit from methods for the automatic classi-
fication of the images that achieve similar (or better) performance as experienced
readers. Convolutional neural networks (CNNs) appear particularly promising for
this purpose (Wenzel et al., 2019; Chien et al., 2020; Magesh et al., 2020; Hathaliya
et al., 2022; Nazari et al., 2022).

Yet, there are also ‘true’ borderline cases that cannot be classified with high cer-
tainty even by expert readers. In DAT-SPECT of CUPS, the proportion of visually
inconclusive borderline cases ranges between 5 and 10% (Mäkinen et al., 2016; Al-
bert et al., 2016). Automatic binary classification of these cases by a CNN might
pretend a certainty of the diagnosis that is not actually given. It is important, there-
fore, to identify these cases to ensure that the user visually inspects these SPECT
images in order to check the automatic categorization particularly carefully. The
user will accept the CNN’s decision in some cases, overrule the CNN in other cases,
and categorize the remaining cases as actually inconclusive (and might recommend
follow-up DAT-SPECT after 6-12 months (Apostolova et al., 2017)).

The most obvious approach to identify borderline cases in CNN-based classification
would be based on the distance of the CNN’s sigmoid output from a predefined
decision threshold (e.g., 0.5). However, empirically, sigmoid outputs of CNN for
classification of DAT-SPECT tend to cluster at the extreme values so that their
utility for the identification of borderline cases seems limited. As a consequence,
this approach is not recommended among practitioners, as it tends to overestimate
the certainty of CNN-based classification (Ulmer and Cinà, 2021; Guo et al., 2017;
Karimi and Gholipour, 2020).

Against this background, the current work aimed to propose and validate a CNN-
based approach for the automatic classification of DAT-SPECT that allows reliable
identification of inconclusive cases that might be misclassified by the CNN when the
decision threshold is strictly applied. The ‘decision confidence’ of the classification
model is evaluated on a metric, proposed in the following, that aims to maximize
the classification performance of the model in conclusive cases while minimizing the
potential effort of manual inspection originating from inconclusive cases.

Starting from the assumption that between-readers discrepancy in the binary visual
interpretation of DAT-SPECT is much more likely in borderline cases than in conclu-
sive cases, a standard CNN structure was trained for the automatic classification of
DAT-SPECT using a large training dataset in which each SPECT image had been vi-
sually classified by three independent readers. During the model training phase, the
standard-of-truth label was selected randomly from the three independent available
reads. This way, the same borderline case image could be presented to the network
with different standard-of-truth labels. The rationale was that this could allow the
network to learn about the uncertainty of these cases, and that this would result
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in sigmoid outputs close to the decision threshold. This “random label” training
(RLT) approach was compared with the conventional majority vote training (MVT)
approach. In the latter, the majority vote across the three readers was consistently
used as standard-of-truth during the training phase. The MVT obviously “hides”
the uncertainty associated with between-readers discrepancy from the network. To
be able to better assess the performance of the CNN-based approaches, univari-
ate and multivariate conventional methods were employed as benchmark methods.
In addition, the performance of the approaches was also evaluated on independent
external datasets.

The primary hypothesis put to test in this work was that the sigmoid output of the
CNN is more effective for the identification of inconclusive cases (by an ‘inconclusive’
range around the decision threshold) when the network is trained using the RLT
strategy compared to MVT.

To test this hypothesis, the proportion of inconclusive cases required to achieve a
given balanced accuracy in the conclusive cases was proposed and used as a perfor-
mance metric. More precisely, the area under the curve (AUC) of mean balanced
accuracy in conclusive cases versus the mean proportion of inconclusive cases (ob-
served in the test set) was used as a model-agnostic quality metric. The AUC does
not depend on a specific operating point (target balanced accuracy). The rationale
for this performance metric was that more inconclusive cases would require more
attention and manual inspection by the attending physician which is considered ‘ex-
pensive’ (“90% inconclusive cases to achieve the required accuracy in the remaining
10% of cases is clearly useless”). Therefore the utility of the classifier for widespread
use in clinical practice depends on the proportion of inconclusive cases to be accepted
to achieve a predefined balanced accuracy in the remaining conclusive cases.

The following secondary hypotheses were put to test. First, CNN-based classifi-
cation outperforms conventional baseline methods in terms of AUC of balanced
accuracy, both univariate and multivariate baseline methods. The specific binding
ratio (SBR) of the tracer uptake in the putamen was used for the univariate analysis
as a benchmark method. Current procedure guidelines recommend the putaminal
SBR to support the visual interpretation of DAT-SPECT in everyday clinical pa-
tient care (Morbelli et al., 2020). The putaminal SBR characterizes the contrast of
the tracer uptake (= intensity) in the putamen relative to the mean tracer uptake
in a reference region void of DAT (Buchert et al., 2019b). The putaminal SBR was
assumed to be proportional to the density of DAT in the putamen (Buchert et al.,
2019b). As a multivariate benchmark method, a random forest approach was im-
plemented using the expression profile of a set of covariance patterns as input. The
covariance patterns were identified by principal component analysis in the training
dataset.

Second, CNN-based classification demonstrates enhanced generalizability, partic-
ularly in its robustness concerning varying image characteristics, such as spatial
resolution. In particular, the need for robustness against variations in image char-
acteristics arises from differences in acquisition hardware, such as various SPECT
cameras and collimators, as well as from diverse reconstruction and correction meth-
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ods, including those addressing photon attenuation, scatter recovery, and resolution
recovery. To validate this hypothesis, the classification methods, trained on the
training set of the development dataset, were assessed using two test datasets that
were entirely separate from the development dataset.

The following research questions are addressed:

• When comparing the CNN-based classification approaches, how does the RLT
approach perform compared to the MVT approach using the proposed perfor-
mance metric?

• How do the CNN-based approaches perform on diverse testing data compared
to conventional approaches? What conclusions can be made regarding the
generalizability of the approaches under test?

2 Background

The purpose of this chapter is to provide background knowledge relevant to the
understanding of the domain and methodology applied. It begins with an elabo-
ration on the rationale behind DAT-SPECT imaging for Parkinson’s disease. The
fundamental principles of Convolutional Neural Networks for image classification
are discussed thereafter. Finally, an overview of widely used metrics for assessing
different performance aspects of binary classification models is presented.

2.1 DAT-SPECT for Detecting Parkinson’s Disease

Dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), a region
of the human midbrain, are of high physiological importance in the regulation of
various cognitive mechanisms and voluntary movement control in humans (Luo and
Huang, 2016). Dopamine transporters (DAT) are proteins located on the presynap-
tic plasma membrane that reuptake dopamine released into the synaptic cleft (Giros
and Caron, 1993). Ligands that bind to the DAT protein can inhibit the reuptake
mechanism. Presynaptic DAT ligands labeled with radioactive material are com-
monly used as radiotracers for nuclear medical imaging, aiming to assess the integrity
of dopaminergic neurons. Figure 1 illustrates a dopaminergic synapse, highlighting
the transporters and receptors to which different radiotracers can bind.

Parkinson’s disease (PD) as well as ’atypical’ neurodegenerative Parkinsonian syn-
dromes (PS) are both associated with the progressive loss of DA neurons in the
SNpc that project to the dorsal striatum via the nigrostriatal pathway (Piggott
et al., 1999). The reduced availability of DAT in the striatum is a well-validated
biomarker for nigrostriatal degeneration in PD (Bernheimer et al., 1973; Fazio et al.,
2018; Niznik et al., 1991). The reduction in striatal DAT availability is significantly
advanced even in the earliest symptomatic (motor) stages of PD, as the degeneration
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Figure 1: Dopaminergic synapse, adopted from Booij and Kemp (2008). Postsy-
naptic radiotracers specifically bind to the D2 dopamine receptor. Presynaptic ra-
diotracers bind to specific dopamine transporters such as Amino Acid Transporter,
VMAT-2 or DAT. As an example, Ioflupane Iodine-123 ([123I]FP-CIT) specifically
binds to the dopamine transporter (DAT).

of dopaminergic nerve endings in the striatum represents an early step in the patho-
logical PD cascade (Bernheimer et al., 1973; Fazio et al., 2018; Niznik et al., 1991).
The compensatory downregulation of the DAT expression in the remaining nerve
endings leads to a more pronounced loss of striatal DAT (Lee et al., 2000; Saari
et al., 2017; Honkanen et al., 2019). Secondary PS’s are typically not associated
with nigrostriatal degeneration or the loss of striatal DAT.

The reduction in striatal DAT availability can be detected by Single Photon Emission
Computed Tomography (SPECT) imaging with DAT ligands (Kuikka et al., 1995;
Abi-Dargham et al., 1996). The radiolabeled DAT ligand Ioflupane Iodine-123 (trade
name: DaTscan©), also [123I]FP-CIT, exhibits a high affinity for presynaptic DAT
and has been approved as a SPECT tracer in both the US and Europe (Neumeyer
et al., 1994). Figure 2 illustrates an example of a SPECT scanner. The DAT-
SPECT imaging procedure can be briefly described as follows. First, the patient
is administered with a radiolabeled DAT ligand, allowing the radiolabeled ligand
to bind specifically to the striatal DAT. The gamma rays emitted from the DAT
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regions are detected using a rotating (single-head or multiple-head) gamma camera
which captures planar projection (2D) images at multiple angles (Patton and Turk-
ington, 2008). The obtained projection images are then filtered and backprojected
to a 3-dimensional radioactivity distribution SPECT image (Patton and Turking-
ton, 2008). The photons emitted from the radiolabeled ligand undergo attenuation
and Compton scattering due to interactions with human tissue which can lead to
a distorted radioactivity distribution (Patton and Turkington, 2008). To obtain
a more accurate representation of the radioactivity distribution, attenuation and
scatter correction techniques can be applied after the backprojection (Patton and
Turkington, 2008).

Figure 2: Symbia Evo™ SPECT scanner by Siemens Healthineers. Image source:
Healthineers (2023).

A recent review, which involved a non-systematic meta-analysis of DAT-SPECT
with [123I]FP-CIT in patients with PS, confirmed that DAT-SPECT exhibits high
sensitivity (median 93%) and high specificity (median 89%) in differentiating PD
from secondary PS in patients with clinically uncertain parkinsonian syndrome
(CUPS) (Buchert et al., 2019a). Moreover, the review demonstrated that DAT-
SPECT results in a change in diagnosis for about 40% of patients with CUPS and
leads to a change in treatment for a similar proportion of these patients (Buchert
et al., 2019a). Thus, DAT-SPECT with [123I]FP-CIT is a highly accurate diagnostic
method that significantly influences the diagnosis and treatment of patients with
CUPS. Guidelines from professional neurological societies have therefore strongly
emphasized the role of DAT-SPECT with [123I]FP-CIT in recent years (Tatsch and
Poepperl, 2013). For example, the current version of the S3 guideline “Idiopathic
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Parkinson syndrome” of the German Society of Neurology states that DAT-SPECT
should be conducted at an early disease stage in CUPS patients.

2.2 Convolutional Neural Networks for Image Classification

The rise of Convolutional Neural Networks (CNNs) enabled significant performance
breakthroughs in various machine learning tasks, including image classification, ob-
ject detection and semantic segmentation. Today CNNs are used in medical re-
search to support the diagnosis of tumors (Tiwari et al., 2022; Gunashekar et al.,
2022; Gao et al., 2021), cardiovascular diseases (Yoon and Kang, 2023; Li et al.,
2022), Alzheimer’s disease (Basaia et al., 2019; Folego et al., 2020) and Parkinson’s
disease (Hathaliya et al., 2022; Magesh et al., 2020; Li et al., 2023) through diverse
imaging modalities such as histopathological images, magnetic resonance imaging
(MRI), positron emission tomography (PET) and SPECT. Continuous research in
the explainable AI domain has the potential to enhance the trustworthiness of au-
tomatic medical diagnosis through explanatory techniques (Ribeiro et al., 2016;
Petsiuk et al., 2018; Dhurandhar et al., 2018; Chaddad et al., 2023).

Convolutional Neural Networks typically consist of many convolution-pooling blocks,
each with an activation function in between, followed by fully-connected layers that
lead to the output layer. Convolutional layers use a set of filters to extract different
local features from the input whereas pooling layers are used for the reduction of
spatial dimensionality. The usage of batch normalization layers as a regularization
technique can lead to an improved convergence of the model. The parameters of a
CNN are trained using a gradient descent-based algorithm that aims to optimize a
specific loss function. The Adam optimization algorithm (Kingma and Ba, 2015)
allows for fast and smooth convergence and is therefore a common choice for opti-
mization. In a binary classification scenario, the optimization target is the binary
cross-entropy loss, while for multi-class classification the target is the categorical
cross-entropy loss.

A challenging effect that occurs in deep neural networks is the vanishing gradient
as it is backpropagated through the neural network during optimization (vanishing
gradient problem). The residual network (ResNet) architecture (He et al., 2016)
was proposed to mitigate the vanishing gradient problem. In comparison to regular
building blocks the ResNet architecture incorporates a residual (skip) connection
into its building blocks, as demonstrated in Figure 3. The inclusion of the residual
connection leads to a larger gradient compared to a scenario where it is absent.
Thereby the residual network architecture allows the training of deeper neural net-
works. Also, the residual connection facilitates the learning of the identity function
using a shallow model (He et al., 2016).
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Figure 3: Residual block (right) in comparison to a regular block (left), adopted
from Zhang et al. (2023).

2.3 Evaluation metrics for Binary Classification

For the assessment of the classification performance of a binary classification model,
multiple statistical metrics can be used, each focusing on different performance as-
pects. Given a set of input features and a decision threshold, the binary classification
model predicts them as either positive or negative, either correctly or incorrectly.
Thereby the model produces a certain amount of True Positives (TP), True Nega-
tives (TN), False Positives (FP) and False Negatives (FN), which are then used to
calculate the desired metric.

To obtain an overall measure of the classification correctness of the model across all
classes one can calculate the overall accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

The overall accuracy is a suitable metric for balanced datasets with a similar amount
of positive and negative cases. For imbalanced datasets, the overall accuracy pro-
vides little informative value since it tends to express the accuracy for cases from
the majority class.

Sensitivity and specificity are used to gain a more differentiated understanding of
the model performance. In a medical diagnostic scenario, sensitivity, also known as
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True Positive Rate (TPR), expresses the ability of the model to correctly classify
‘disease’ (positive) cases (Parikh et al., 2008) and can be calculated as

Sensitivity =
TP

TP + FN
. (2)

The model’s ability to correctly classify ‘normal’ (negative) cases can be measured
using specificity (Parikh et al., 2008) which is defined as

Specificity =
TN

TN + FP
. (3)

Given the sensitivity and specificity of the prediction model, the balanced accuracy
can be calculated as the arithmetic mean of both measures as

Balanced Accuracy =
Sensitivity + Specificity

2
. (4)

Balanced accuracy is a more robust metric for datasets with imbalanced class dis-
tributions, as it averages over the performances within each individual class.

In cases where either false positives or false negatives have more severe negative
consequences, one can consider the Positive Predictive Value (PPV) or Negative
Predictive Value (NPV). A higher PPV is associated with fewer false positives and
can help to reduce unnecessary medical treatments. The PPV can be calculated as
follows:

PPV =
TP

TP + FP
. (5)

A higher NPV corresponds to fewer false negatives, which can be important to catch
as many disease cases as possible. The calculation of NPV is as follows:

NPV =
TN

TN + FN
, (6)

All the metrics that have been discussed can only be calculated using a predefined
decision boundary (threshold). A commonly employed metric that allows the eval-
uation and comparison of the performance of binary classifiers independently of
a specific threshold is the area under the Receiver Operating Characteristic curve
(AUC-ROC). The ROC curve represents sensitivity as a function of the False Posi-
tive Rate (FPR). The FPR can be calculated as follows:

FPR =
FP

FP + TN
. (7)
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3 Data Sources

The study retrospectively included 3 different datasets with a total of 3025 DAT-
SPECT images. The primary dataset (‘development dataset’) was used for both
training and testing the models associated with the respective method. Both of the
other independent datasets, the ‘PPMI dataset’ and the ‘MPH dataset’, were used
for testing purposes only and not for training. This chapter describes the datasets
in terms of data acquisition, labeling and statistics.

3.1 Development dataset

The development dataset consisted of 1740 consecutive DAT-SPECT scans obtained
from clinical routine at the Department of Nuclear Medicine, University Medical
Center Hamburg-Eppendorf (Schiebler et al., 2023). In brief, DAT-SPECT with
[123I]FP-CIT had been performed according to common procedures guidelines (Dar-
court et al., 2010; Djang et al., 2012) with different double-head cameras equipped
with low-energy-high-resolution or fan-beam collimators. The projection data were
reconstructed using the iterative ordered-subsets-expectation-maximization (Hud-
son and Larkin, 1994) with attenuation and simulation-based scatter correction as
well as collimator-detector response modeling as implemented in the Hybrid Recon-
Neurology tool of the Hermes SMART workstation v1.6 (Hermes Medical Solutions,
Stockholm, Sweden) (Diemling, 2021; Sohlberg and Kajaste, 2012; Solutions; Kan-
gasmaa et al., 2016). All parameter settings were as recommended by Hermes (Diem-
ling, 2021) for the EANM / EANM Research Ltd (EARL) ENC-DAT project (Eu-
ropean Normal Control Database of DaTSCAN) (Tossici-Bolt et al., 2011; Dickson
et al., 2010; Varrone et al., 2013; Tossici-Bolt et al., 2017; Dickson et al., 2012).
More precisely, ordered-subsets-expectation-maximization was performed with 5 it-
erations and 15/16 subsets for 120/128 views. For noise suppression, reconstructed
images were postfiltered by convolution with a 3-dimensional Gaussian kernel of 7
mm full-width-at-half-maximum.

The ground-truth label, indicating either ‘normal’ or ‘Parkinson-typical’ reduction
(‘reduced’) of the striatal signal, was obtained by visual assessment of the DAT-
SPECT images by three independent readers (Schiebler et al., 2023). As an illustra-
tion, Figure 4 shows examples of one ’normal’ case and three ‘reduced’ cases from
the development dataset. The readers achieved inter-reader consensus on the ‘nor-
mal’ label in 855 cases (49.1%) and on the ‘reduced’ label in 802 cases (46.1%). The
inter-reader consensus on the label could not be achieved for 83 cases (4.8%). The
dataset comprised about 43.5% female cases and 56.5% male cases. In the dataset,
the average age among cases was 66.7 with a standard deviation of 11.6 years. The
development dataset was utilized for both training and testing the classification
models.
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3.2 Independent testing datasets

PPMI dataset The ‘PPMI dataset’ comprised 645 DAT-SPECT with [123I]FP-
CIT from the Parkinson’s Progression Markers Initiative (PPMI) (Parkinson Pro-
gression Marker Initiative, 2011). The external dataset included 438 patients with
Parkinson’s disease and 207 healthy controls as described in Wenzel et al. (2019).
The mean age among cases was 61.2 with a standard deviation of 10.2 years, and the
dataset comprised 35.2% female cases. Details of the PPMI DAT-SPECT protocol
are given at PPMI (2023). Raw projection data has been transferred to the PPMI
imaging core lab for central image reconstruction using an iterative (HOSEM) algo-
rithm on a HERMES workstation. The clinical diagnosis was used as ground-truth
label (Parkinson’s disease = “reduced”, healthy control = “normal”). The exter-
nal dataset showed lower spatial resolution than the development dataset (lower
striatum-to-background contrast).

MPH dataset The ‘MPH dataset’ comprised 640 consecutive DAT-SPECT with
[123I]FP-CIT from clinical routine at UKE that had been acquired with a triple-head
camera equipped with brain-specific multiple pinhole (MPH) collimators. Multiple
pinhole SPECT concurrently improves count sensitivity and spatial resolution com-
pared to SPECT with parallel-hole and fan-beam collimators (Mathies et al., 2022;
Tecklenburg et al., 2020). The projection data were reconstructed with the Monte
Carlo photon simulation engine and iterative one-step-late maximum-a-posteriori
expectation-maximization implemented in the camera software (24 iterations, 2 sub-
sets) (Tecklenburg et al., 2020; Magdics et al., 2010). Neither attenuation nor scatter
correction was applied to the SPECT images. The ground-truth label (‘normal’ or
‘reduced’) was obtained by the visual interpretation of an experienced reader (about
20 years of experience in clinical DAT-SPECT reading, ≥3,000 cases). All SPECT
images were interpreted twice (with different randomization) by the same reader.
The delay between the reading sessions was 14 days. Cases with discrepant interpre-
tations between the two reading sessions were read a third time by the same reader
to obtain an intra-reader consensus as the ground-truth label. Thereby 327 cases
(51.1%) were labeled as ‘reduced’ and 313 cases (48.9%) were labeled as ‘normal’.
The dataset contained 283 female cases (44.2%), and the average age among cases
was 67.2 with a standard deviation of 11.4 years. In contrast to the development
dataset, the internal test dataset exhibited a better spatial resolution, leading to
higher contrast between the striatum and background, along with reduced statisti-
cal noise. The MPH dataset has not been described in previous works.

Figure 4 illustrates differences in DVR image quality among the PPMI dataset, the
MPH dataset, and the development dataset.
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Figure 4: DVR slabs for one healthy control (‘normal’) case and three cases with re-
duced availability of DAT in the striatum (‘reduced’) from the development dataset,
the PPMI dataset, and the MPH dataset. For the cases from the development
dataset, attenuation and scatter correction (ASC) were applied, and no smoothing
was performed.

4 Methods

This chapter provides an insight into the methodology used in this study. First, the
software tools and libraries that were employed for the study are presented. Then
the applied data preparation techniques are discussed in more detail. Subsequently,
each benchmark and experimental CNN method used in the study is thoroughly
explained. The chapter concludes with an examination of the performance metrics
utilized for the evaluation of the research outcomes.

4.1 Software Tools and Libraries

The project was built on Python 3.10. A variety of widely adopted open-source
libraries were used in the project. NumPy (Harris et al., 2020) was utilized to
perform efficient array operations and numerical calculations. The NIBabel (Brett
et al., 2023) library was used for reading and writing of medical image data stored
in the Neuroimaging Informatics Technology Initiative (NIfTI) file format. Py-
Torch (Paszke et al., 2019), a widely adopted deep learning framework, was em-
ployed for building and training the neural networks. The Torchvision (Marcel and
Rodriguez, 2010) package provided the machine learning models and image trans-
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formation capabilities utilized in this project. Pandas (Wes McKinney, 2010) was
used for efficient structured data manipulation and analysis. Matplotlib (Hunter,
2007) and Seaborn (Waskom, 2021) were employed for the creation of customized
data visualizations. The Scikit-Learn (Pedregosa et al., 2011) library provided ma-
chine learning models and model evaluation tools utilized in this project, whereas
Scipy (Virtanen et al., 2020) was used for data interpolation.

The seeds of the random number generators in each package were initialized to
ensure reproducibility.

4.2 Development Data Preparation

4.2.1 Data Preprocessing

Individual DAT-SPECT images were stereotactically normalized to the anatomical
space of the Montreal Neurological Institute (MNI) using the Normalize tool of
the Statistical Parametric Mapping software package (version SPM12) and a set
of custom DAT-SPECT templates representative of normal and different levels of
Parkinson-typical reduction of striatal uptake as target (Apostolova et al., 2023).
The voxel size of the stereotactically normalized images was 2x2x2 mm3. Intensity
normalization was achieved by voxelwise scaling to the individual 75th percentile of
the voxel intensity in a reference region comprising the whole brain without striata,
thalamus, medial temporal lobe, brainstem, cerebellum, and ventricles (Kupitz et al.,
2014). The resulting images are distribution volume (DVR) images. A 2-dimensional
transversal DVR slab of 12mm thickness and 91x109 pixels with 2 mm edge length
was obtained by averaging 6 transversal slices through the striatum (Buchert et al.,
2006).

4.2.2 Data Augmentation

Data augmentation was applied to the development dataset to increase the hetero-
geneity of the data. To enhance robustness across various attenuation correction and
scatter correction methods, each image was generated in a version with and with-
out attenuation and scatter corrections applied (Schiebler et al., 2023). Also, 3D-
smoothing of the 3-dimensional SPECT images in MNI space was performed before
computing the 2-dimensional slabs as an augmentation technique. A 3-dimensional
isotropic Gaussian kernel with various Full Width at Half Maximum (FWHM) val-
ues (FWHM = 10, 12, 14, 16, 18mm) was used for the smoothing. Thereby an
augmented dataset of 20,880 images in total was constructed based on 1,740 cases.
Two representative cases augmented using the described techniques are depicted in
Figure 5.
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Figure 5: DVR slabs for two sample cases from the development dataset, a healthy
control case (above) and a PD case with reduced availability of DAT in the stria-
tum (below). The two cases are presented in 12 different versions. In each version,
attenuation and scatter corrections are either applied (‘withASC’) or not applied
(‘woASC’). Also, for each version, isotropic 3-dimensional Gaussian kernel smooth-
ing with different FWHM values (10, 12, 14, 16, 18mm) was either performed or not
performed (‘original’).

4.2.3 Dataset Splitting

Ten distinct random splits were created from the augmented development dataset,
resulting in ten different combinations of training, validation, and test sets for the
conducted experiments. In each random split, the data distribution was as follows:
60% for the training set, 20% for the validation set, and 20% for the test set.
While splitting the data it was ensured that all augmented images associated with a
given patient were put into the same subset. Thereby, randomization into training,
validation and test set was performed on the level of patients rather than on the
level of single images. Thereby inter-subset leakage of images from the same patient
was avoided.

4.3 Univariate benchmark: Specific Binding Ratio

The unilateral [123I]FP-CIT specific binding ratio (SBR) was used as a benchmark
classification method. Here, the SBR in left and right putamen was obtained by
hottest voxels (HV) analysis of the stereotactically normalized DVR image using
large unilateral putamen masks predefined in MNI space (Wenzel et al., 2019). The
unilateral hottest voxel SBR was calculated as
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HV-SBRunilateral =

(
1

K10ml

∑
k

Îk,ROI

)
− 1 , (8)

where Îk,ROI represent the normalized voxel intensities of the K10ml hottest voxels
(i.e., voxels with the highest intensity) comprising a total volume of 10 ml within
the unilateral putamen ROI in the DVR image. The voxel intensities of the hottest
voxels are normalized to the 75th percentile of the voxel intensities in the reference
region associated with non-specific binding (Wenzel et al., 2019). The minimum of
the HV-SBR values from the left and right hemispheres of the brain was used for
the analysis. An in-depth elaboration on SBR analysis can be found in Wenzel et al.
(2019).

The SBR-based classifier was obtained for each of the random splits (n = 10) as
follows. First, the optimal cutoff on the SBR was determined in the validation
set using ROC analysis and the Youden criterion (Youden, 1950). The determined
optimal cutoff was then used as the decision boundary between normal control cases
and Parkinson’s disease and evaluated on the test set of the development dataset.
Also, the determined cutoff was evaluated on the PPMI and MPH test datasets
described in Section 3.2. As a result, 10 optimal cutoffs on the SBR were determined
and evaluated.

4.4 Multivariate benchmark: PCA-enhanced Random For-
est

As a further benchmark, a random forest classifier was trained on PCA-transformed
features of the training set of the development dataset.

To be comparable with CNN-based approaches, first, a 91x91 pixel square-shaped
region of interest was defined within the 91x109 pixel DVR slab, and each develop-
ment data image (of each subset) was cropped to this region. The square-shaped
region was determined by cropping an equal number of pixels from the top and
bottom of the DVR slab along its second dimension (anterior-posterior direction).
The used region of interest is marked in Figure 5.

Then a PCA model with 10 principle components was initialized and fit to the train-
ing set to obtain the principle components of the training set. The determined prin-
ciple components were used to transform the training set into a lower-dimensional
space, where each image was represented by a 10-vector characterizing the expres-
sion of each principal component. An example of the principle components of the
training set for one of the random splits is depicted in Figure 6.

The training data transformed by the principle components was then used to train
a random forest classifier with 100 decision trees. As hyperparameters, the Gini
impurity was used to assess split quality, with a minimum of 2 samples required
to split an internal node and 1 sample needed at a leaf node. The trained random
forest classifier was evaluated on the test split of the development dataset for each
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of the 10 random splits. In addition, the trained model was tested on the PPMI
and MPH datasets described in Section 3.2.

Figure 6: Principle components of the training set (development dataset) for the
first random split. The principle components are arranged in descending order based
on the amount of variance they explain.

4.5 CNN-based classification

The models of CNN-based classifiers were based on a Residual Network (ResNet)
architecture. More precisely, the ResNet-18 (He et al., 2015) model architecture
consisting of 18 layers was used as basis. The non-pretrained weights of the ResNet-
18 were used as initial weights. The ResNet-18 architecture expects input tensors
of size (3, 224, 224), denoting images with 3 channels and spatial dimensions of 224
by 224 pixels. Since the development data has one color channel, the architecture
was modified to expect one input channel at its first convolutional layer. Also the
dimensions of the last fully-connected layer of the architecture were modified to
produce one output node in the output layer. The modified ResNet-18 model is
depicted in Figure 7. To produce a probabilistic model output within the range of
0 to 1, the sigmoid function was applied to the output layer of the model.

Further development data preprocessing was performed to comply with the spatial
input dimensions required by the model architecture. First, a 91x91 pixel square-
shaped region of interest was defined within the 91x109 pixel DVR slab, and each
development data image (of each subset) was cropped to this region. The cropping to
a square shape was performed to preserve the aspect ratio while doing the subsequent
upscaling. The square-shaped region was determined by cropping an equal number
of pixels from the top and bottom of the DVR slab along its height dimension.



4 METHODS 17

Figure 7: Architecture of the CNN-based classification models.

Then the square-shaped images were resized to the target image size of 224x224
pixels using bicubic interpolation.

The CNN-based methods were trained for 20 epochs using a batch size of 64. For the
MVT and RLT approaches (described in Section 4.5.1) the Binary Cross Entropy
(BCE) loss was employed for optimization, whereas for the Regression approach (de-
scribed in Section 4.5.2) the Mean Squared Error (MSE) loss function was used. The
Adam optimization algorithm was utilized with an initial learning rate of 0.0001. No
hyperparameter optimization was conducted for the CNN-based methods. During
the training of the model, the weights of the best epoch were saved for subsequent
evaluations. Each CNN model was trained and evaluated separately for each of the
10 random splits of the development dataset. Additionally, the trained models were
evaluated on the PPMI and MPH test datasets described in Section 3.2. No attempt
was made to adapt the CNN models trained in the development dataset for these
independent test datasets.
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4.5.1 MVT-based and RLT-based methods

When training a CNN using the BCE loss function, one has to provide the ground
truth label of each instance to the optimization algorithm. Given that each instance
in the development data is labeled by three independent readers, a selection strategy
must be determined. The following two label selection strategies are used for training
the CNNs: Majority Vote training (MVT) and Random Label training (RLT). The
labels chosen using one of the two strategies are then used, together with the model
predictions, to compute the BCE loss.

Majority vote training involved selecting the label that received the majority of votes
from the readers as the ground truth label. Since there are three available labels,
a majority is reached when two out of the three readers agree on a particular label
(e.g., the normal case (NC)). During the model training phase, the majority vote
strategy was employed to select the labels for both the training and validation data
instances.

In contrast to MVT, random label training involved choosing a random label from
the three available options as the ground truth label. The seed of the random
number generator (responsible for the random selection) is set only once at the start
of the algorithm and is not reset between the model training epochs. Thereby a
different label could be chosen as the ground truth label for each distinct training
epoch. Here the random label selection strategy is applied both to the training and
validation data.

4.5.2 Regression-based method

The regression-based approach aimed to incorporate the uncertainty regarding the
ground truth label into the training algorithm. The ground-truth label was de-
rived from the combination of the three available labels, resulting in a floating-point
number. Each of the following states of certainty about the label was mapped to
a distinct floating-point valued ground-truth label: all readers agree on ‘normal’
(ground-truth label: 0.0), majority of readers (two out of three) agree on ‘normal’
(ground-truth label: 1.0/3.0), majority of readers (two out of three) agree on ‘re-
duced’ (ground-truth label: 2.0/3.0) and all readers agree on ‘reduced’ (ground-truth
label: 1.0). This mapping of available labels to the ground-truth label was used for
both the training and validation data during the model training phase.

During model training, the loss was computed using the Mean Square Error loss
function which aims to minimize the mean of the squared differences between the
model predictions and the ground-truth labels.

4.6 Evaluation Metrics and Procedure

In the following the performance metrics used for the evaluation of the different
classification methods are explained in more detail.



4 METHODS 19

First the mean±SD (standard deviation) of the following measures were calculated
across the different random splits for each classification approach and subset (train-
ing, validation and testing) given a cutoff: AUC-ROC, balanced accuracy, (overall)
accuracy, sensitivity, specificity, PPV and NPV. The natural cutoff of 0.5 was used
for each classification approach except the SBR method. For the SBR method the
optimal cutoff was determined using the Youden criterion (Youden, 1950) and was
used for calculating the measures. In the test set of the development dataset (for
each random split), the majority vote was used as ground truth in all cases.

Second, for each element within a set of considered percentages of inconclusive cases
in the validation set (PIncVal) the corresponding inconclusive interval was deter-
mined. Inconclusive cases were defined as cases predicted within an inconclusive
interval (bounded by lower and upper bound), while conclusive cases were those
predicted outside this interval. The determination of the inconclusive interval was
exclusively performed using the validation set for each random split and classifi-
cation approach independently. The set of PIncVal values considered ranged from
0.2% to 20.0%, increasing in increments of 0.2%. For each target PIncVal value the
lower and upper bounds of the inconclusive interval were independently determined
in such a way that there was the same number of inconclusive cases (±1 case) be-
low and above the pre-defined cutoff. For the CNN-based classification methods
and the multivariate benchmark the natural cutoff of 0.5 was used, whereas for the
SBR-based univariate benchmark the optimal cutoff on the SBR was used.

To assess the stability of the determined inconclusive interval over the proportion of
inconclusive cases, the determined upper and lower bounds (mean±SD across the 10
random splits) of the inconclusive interval were plotted against the corresponding
PIncVal (%). The rate at which the lower (upper) bound decreases (increases)
over the PIncVal reflects the density of inconclusive cases within a certain region
of PIncVal. Specifically, higher function gradients indicate lower concentration of
predictions, and vice versa. Also, a higher standard deviation indicates that the
stable inconclusive interval determination is less robust within a certain region of
PIncVal.

As the main performance metric (regarding the primary hypothesis of the project)
we propose the area under the curve of mean balanced accuracy (AUC-bACC, %)
on conclusive test cases as a function of the mean percentage of inconclusive test
cases (mean PIncObs, %). More precisely the relative AUC-bACC (%) normalized
to the maximum achievable area was used for the comparison. To obtain the relative
AUC-bACC, first, the mean balanced accuracy function was interpolated using cubic
spline interpolation. Then the area under the mean balanced accuracy curve was
computed using the trapezoidal rule and then normalized to the maximum achievable
area (100% balanced accuracy * (20% - 0.2%) inconclusive cases). The evaluation
of each classification method with respect to this metric was conducted on the test
set of the development dataset as well as on the independent datasets PPMI and
MPH.

As a further metric, the mean±SD percentage of observed inconclusive cases in the
test set (PIncObs, %) was plotted against the PIncVal (%). A mean of PIncObs near
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the identity line is an indicator for a similar prediction distribution for validation set
and test set on average. In case the mean of PIncObs consistently lies over (under)
the identity line the supposed prediction certainty on the test set, on average, is lower
(higher) than on the validation set. Also a lower standard deviation of PIncObs over
PIncVal indicates that PIncObs is less sensitive to the randomness of the inconclusive
intervals across random splits. In particular, a lower standard deviation of PIncObs
allows for a more reliable calculation of the main performance metric.

5 Evaluation

This chapter focuses on the presentation and evaluation of the research results.
It commences with the examination of the performance results obtained for the
benchmark methods. The core of this chapter subsequently unveils the results for
the experimental methods evaluated using various test datasets and compared to
the benchmark performance. The chapter concludes with a comparative analysis,
which seeks to assess and contrast the effectiveness and limitations of the research
methods employed. The findings are presented using performance summary tables
for statistical measures and graphical representations.

5.1 Benchmark Performance

In this section, the performance results for the SBR benchmark method are pre-
sented. Furthermore the outcomes for the multivariate PCA-RFC method are also
provided as an additional benchmark. The objective of this evaluation is twofold:
to comprehend the inherent capabilities of the benchmark methods, SBR and PCA-
RFC, and to establish a clear point of reference for the CNN-based methodologies.

5.1.1 SBR Method

Classification performance on development dataset Table 1 presents the
quantitative performance (balanced accuracy, accuracy, sensitivity, specificity, PPV,
NPV and AUC-ROC) of the SBR-based classification on different subsets of the
development dataset. The determined optimal SBR cutoff was rather stable across
random splits. The SBR method consistently achieved around 93% in balanced
accuracy, accuracy, sensitivity, specificity, PPV and NPV on the validation set, with
a variance between 0.5-1.5% across random splits. The performance on training and
test sets is also similarly around 93% with respect to all the metrics. The comparable
sensitivity and specificity imply a well-balanced SBR model that identifies both
positive and negative cases similarly well. The SBR model achieved a stable AUC-
ROC of 0.983 ± 0.002.
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Table 1: Evaluation of the SBR method on development dataset (SBR cutoff
mean±SD: 0.703 ± 0.009).

train set validation set test set
Balanced Accuracy 0.936 ± 0.003 0.929 ± 0.008 0.935 ± 0.007
Accuracy 0.936 ± 0.003 0.930 ± 0.008 0.935 ± 0.007
Sensitivity 0.934 ± 0.006 0.924 ± 0.005 0.930 ± 0.014
Specificity 0.937 ± 0.003 0.935 ± 0.015 0.939 ± 0.012
PPV 0.933 ± 0.005 0.929 ± 0.014 0.930 ± 0.015
NPV 0.938 ± 0.005 0.930 ± 0.004 0.938 ± 0.018
AUC-ROC - 0.983 ± 0.002 -

Inconclusive intervals in the validation set Figure 8a illustrates the deter-
mined lower and upper bounds on the SBR as a function of the percentages of incon-
clusive cases in the validation set (development dataset), along with the mean±SD
of the optimal cutoff. Corroborating the intuitive expectation, the width of the
inconclusive interval expands as the percentage of inconclusive cases increases. The
close resemblance in slopes between the upper and lower bound functions indicates
a nearly identical distribution of predictions both below and above the cutoff.

Transferability of inconclusive intervals In Figure 8b the correspondence
between the percentage of inconclusive cases in the validation set (development
dataset) and the mean±SD percentage of observed inconclusive cases (PIncObs) in
the test set (development dataset) is demonstrated. The plot illustrates that the
deviation of the mean PIncObs in the test set from the identity line is negligibly
small. This can be attributed to the nearly identical distribution of data in both
the test and validation sets (due to random splitting) which results in a similar
distribution of SBR model predictions.

AUC-bACC performance Figure 9a shows the balanced accuracy (mean±SD
across random splits) on both conclusive and inconclusive cases as a function of the
mean PIncObs in the test set (development dataset). The balanced accuracy on
inconclusive cases is not part of further performance analysis and comparison due
to the emphasis on the balanced accuracy on conclusive cases as the basis for the
main metric of this work. The balanced accuracy (mean±SD) on conclusive cases
over the mean PIncObs is depicted with enhanced clarity and precision in Figure 9b.
The mean of the balanced accuracy rises from approximately 94% when there are
around 1% of inconclusive cases in the test set to about 98% when there are around
20% of inconclusive cases in the test set. The SBR benchmark method attains a
relative AUC-bACC of 96.38% for the mean balanced accuracy on conclusive cases
over the mean PIncObs in the test set of the development dataset.

Performance on PPMI dataset The results obtained from evaluating the SBR
method on the PPMI dataset are depicted in Figure 10. The mean±SD percentage of
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(a) Determined upper and lower bound of
the inconclusive interval for a target per-
centage of inconclusive cases in the valida-
tion set.

(b) Observed percentage of inconclusive
cases in the test set (mean±SD) for a tar-
get percentage of inconclusive cases in the
validation set of the development dataset.

Figure 8: Evaluation of the SBR method on the test set of development dataset.

inconclusive cases observed (PIncObs) in the PPMI test dataset over the percentage
of inconclusive cases in the validation set (development dataset) is consistently below
the identity line, which can be seen in Figure 10a. That implies that, on average,
the supposed prediction certainty on PPMI dataset is higher than on validation set
(development dataset), regardless of the prediction accuracy. The balanced accuracy
on conclusive cases over the mean PIncObs is shown in Figure 10b. The mean of
the balanced accuracy rises from approximately 96% when there are around 1% of
inconclusive cases in the PPMI test set to about 99% when there are around 20%
of inconclusive cases in the PPMI test set. The SBR benchmark method achieved a
relative AUC-bACC of 97.51% for the mean balanced accuracy on conclusive cases
over the mean PIncObs in the PPMI test dataset.

Performance on MPH dataset The evaluation of the SBR method on the MPH
dataset is shown in Figure 11. Figure 11a demonstrates the mean±SD percentage of
inconclusive cases observed (PIncObs) in the MPH test dataset over the percentage
of inconclusive cases in the validation set (development dataset). Similar as in case
of the PPMI dataset, here the PIncObs in the MPH test dataset is also consistently
below the identity line and thus the supposed prediction certainty on MPH dataset
is higher than on validation set. The balanced accuracy on conclusive cases over the
mean percentage of observed inconclusive cases (PIncObs) is shown in Figure 11b.
The mean of the balanced accuracy rises from approximately 91.5% when there
are around 1% of inconclusive cases in the MPH test set to about 95% when there
are around 20% of inconclusive cases in the MPH test set. The SBR benchmark
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(a) (b)

Figure 9: Evaluation of the SBR method on the test set of development dataset.
Balanced accuracy for a given mean percentage of observed inconclusive cases in the
test set on (a) both conclusive and inconclusive cases and (b) only conclusive cases.
Each of the mean percentages of observed inconclusive cases is associated with an
inconclusive range (determined in the validation set). For better illustration the
area under the mean of the balanced accuracy is highlighted.

method achieved a relative AUC-bACC of 93.46% for the mean balanced accuracy
on conclusive cases over the mean PIncObs in the MPH test dataset.

5.1.2 PCA-RFC Method

Classification performance on development dataset Table 2 presents the
quantitative performance (balanced accuracy, accuracy, sensitivity, specificity, PPV,
NPV and AUC-ROC) of the PCA-RFC classification on different subsets of the
development dataset. In the evaluation process, the natural sigmoid cutoff value
of 0.5 was employed. The PCA-RFC method achieved around 96% in balanced
accuracy, accuracy, sensitivity, specificity, PPV and NPV on the validation and test
set, with a variance around 1% across random splits. The PCA-RFC model achieved
a stable AUC-ROC of 0.994 ± 0.002.

Inconclusive intervals in the validation set Figure 12a illustrates the deter-
mined lower and upper bounds on the probabilistic output as a function of the
percentages of inconclusive cases in the validation set (development dataset), along
with the natural cutoff of 0.5. The width of the inconclusive interval expands rather
slowly as the percentage of inconclusive cases increases and the visual resemblance in
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(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 10: Evaluation of the SBR method on PPMI test dataset.

(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 11: Evaluation of the SBR method on MPH test dataset.

shape and slope between the curve a similar distribution of predictions both below
and above the cutoff.
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Table 2: Evaluation of the PCA-RFC method on development dataset. For evalua-
tion, the natural sigmoid cutoff 0.5 was used.

train set validation set test set
Balanced Accuracy 1.000 ± 0.000 0.963 ± 0.010 0.966 ± 0.006
Accuracy 1.000 ± 0.000 0.963 ± 0.010 0.966 ± 0.006
Sensitivity 1.000 ± 0.000 0.957 ± 0.012 0.962 ± 0.010
Specificity 1.000 ± 0.000 0.969 ± 0.011 0.969 ± 0.009
PPV 1.000 ± 0.000 0.966 ± 0.012 0.965 ± 0.010
NPV 1.000 ± 0.000 0.961 ± 0.012 0.966 ± 0.011
AUC-ROC - 0.994 ± 0.002 -

Transferability of inconclusive intervals The correspondence between the per-
centage of inconclusive cases in the validation set (development dataset) and the
mean±SD percentage of observed inconclusive cases (PIncObs) in the test set (de-
velopment dataset) is demonstrated in Figure 12b. The deviation of the mean
PIncObs in the test set from the identity line is small which can be attributed to
the nearly identical distribution of data in both the test and validation sets (due to
random splitting).

(a) Determined upper and lower bound of
the inconclusive interval for a target per-
centage of inconclusive cases in the valida-
tion set.

(b) Observed percentage of inconclusive
cases in the test set (mean±SD) for a tar-
get percentage of inconclusive cases in the
validation set of the development dataset.

Figure 12: Evaluation of the PCA-RFC method on the test set of development
dataset.

AUC-bACC performance Figure 13a shows the balanced accuracy (mean±SD
across random splits) on both conclusive and inconclusive cases as a function of
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the mean PIncObs in the test set (development dataset). The balanced accuracy
(mean±SD) on conclusive cases over the mean PIncObs is depicted with enhanced
clarity and precision in Figure 13b. The mean of the balanced accuracy rises from
approximately 97% when there are around 1% of inconclusive cases in the test set to
about 99.5% when there are around 20% of inconclusive cases in the test set. As a
result, the PCA-RFC benchmark method achieved a relative AUC-bACC of 98.71%
for the mean balanced accuracy on conclusive cases over the mean PIncObs in the
test set of the development dataset.

(a) (b)

Figure 13: Evaluation of the PCA-RFC method on the test set of development
dataset. Balanced accuracy for a given mean percentage of observed inconclusive
cases in the test set on (a) both conclusive and inconclusive cases and (b) only
conclusive cases. Each of the mean percentages of observed inconclusive cases is
associated with an inconclusive range (determined in the validation set). The area
under the mean of the balanced accuracy is highlighted for better illustration.

Performance on PPMI dataset The following results were obtained when eval-
uating the PCA-RFC method on the PPMI dataset. Figure 14a shows the mean±SD
percentage of inconclusive cases observed (PIncObs) in the PPMI test dataset over
the percentage of inconclusive cases in the validation set (development dataset).
The function is consistently above the identity line. Therefore, on average, the sup-
posed prediction certainty of the PCA-RFC method on PPMI dataset is lower than
on validation set, regardless of the prediction accuracy. The balanced accuracy on
conclusive cases over the mean PIncObs is presented in Figure 14b. The mean of the
balanced accuracy rises from approximately 98% when there are around 1% of in-
conclusive cases in the PPMI test set to about 99.5% when there are around 20% of
inconclusive cases in the PPMI test set. The PCA-RFC benchmark method achieved
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a relative AUC-bACC of 99.12% for the mean balanced accuracy on conclusive cases
over the mean PIncObs in the PPMI test dataset.

(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 14: Evaluation of the PCA-RFC method on PPMI dataset.

Performance on MPH dataset In Figure 15a the mean±SD percentage of in-
conclusive cases observed (PIncObs) in the MPH test dataset over the percentage
of inconclusive cases in the validation set (PIncVal) is illustrated. Here the mean
of PIncObs in the MPH test dataset lies consistently above the identity line and its
deviation from the identity line significantly increases over PIncVal. Therefore the
supposed prediction certainty on MPH dataset is lower than on validation set (devel-
opment data). The balanced accuracy on conclusive cases over the mean PIncObs is
shown in Figure 15b. The mean of the balanced accuracy rises from approximately
90.5% when there are around 1% of inconclusive cases in the MPH test set to about
94% when there are around 19% of inconclusive cases in the MPH test set. As a
result, the PCA-RFC benchmark method achieved a relative AUC-bACC of 92.42%
for the mean balanced accuracy on conclusive cases over the mean PIncObs in the
MPH test dataset.

5.2 Experimental Methods Performance

5.2.1 CNN-MVT Method

Classification performance on development dataset The quantitative per-
formance results of the CNN-MVT classification on different subsets of the develop-
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(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 15: Evaluation of the PCA-RFC method on MPH dataset.

ment dataset are presented in Table 3. In the evaluation process, the natural sigmoid
cutoff value of 0.5 was employed. The CNN-MVT method achieved around 96.4%
in sensitivity, 97.6% in specificity and a balanced accuracy of 97.0%, with a variance
between 1-2% across random splits, on the test set. The performance results on the
validation set are very similar. The method achieved a stable AUC-ROC of 0.996
± 0.002.

Table 3: Evaluation of the CNN-MVT method on development dataset. For evalu-
ation, the natural sigmoid cutoff 0.5 was used.

train set validation set test set
Balanced Accuracy 0.999 ± 0.003 0.970 ± 0.014 0.970 ± 0.008
Accuracy 0.999 ± 0.003 0.970 ± 0.014 0.970 ± 0.008
Sensitivity 1.000 ± 0.000 0.963 ± 0.010 0.964 ± 0.015
Specificity 0.997 ± 0.006 0.976 ± 0.023 0.976 ± 0.013
PPV 0.997 ± 0.006 0.975 ± 0.024 0.972 ± 0.018
NPV 1.000 ± 0.000 0.966 ± 0.010 0.968 ± 0.014
AUC-ROC - 0.996 ± 0.002 -

Inconclusive intervals in the validation set In Figure 16a the determined
lower and upper bounds on the probabilistic sigmoid output are plotted as a function
of the percentages of inconclusive cases in the validation set (development dataset),
along with the natural cutoff 0.5. The visual resemblance in shape and slope between
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the upper and lower bound curves indicates a similar distribution of predictions both
below and above the cutoff. The width of the inconclusive interval increases more
rapidly as the percentage of inconclusive cases increases when compared to the
PCA-RFC benchmark method. That implies that the CNN-MVT method produces
relatively fewer cases close to the cutoff than both conventional benchmark methods.

Transferability of inconclusive intervals The correspondence between the per-
centage of inconclusive cases in the validation set (development dataset) and the
mean±SD percentage of observed inconclusive cases (PIncObs) in the test set (de-
velopment dataset) is illustrated in Figure 16b. As for the baseline cases, the de-
viation of the mean PIncObs in the test set from the identity line is small which
can be attributed to the nearly identical distribution of data in both the test and
validation sets (due to random splitting).

(a) Determined upper and lower bound of
the inconclusive interval for a target per-
centage of inconclusive cases in the valida-
tion set.

(b) Observed percentage of inconclusive
cases in the test set (mean±SD) for a tar-
get percentage of inconclusive cases in the
validation set of the development dataset.

Figure 16: Evaluation of the CNN-MVT method on the test set of development
dataset.

AUC-bACC performance The balanced accuracy (mean±SD) on conclusive
cases over the mean PIncObs in the test set (development dataset) is depicted in
Figure 17b. The mean of the balanced accuracy rises from about 97% when there
are around 1% of inconclusive cases in the test set to about 99.5% when there
are around 20% of inconclusive cases in the test set. As a result, the CNN-MVT
method achieved a relative AUC-bACC of 98.95% for the mean balanced accuracy on
conclusive cases over the mean PIncObs in the test set of the development dataset.
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The achieved relative AUC-bACC is approximately 2.5% higher than that of the
SBR benchmark method and around 0.2% higher than the PCA-RFC benchmark.

(a) (b)

Figure 17: Evaluation of the CNN-MVT method on the test set of development
dataset. Balanced accuracy for a given mean percentage of observed inconclusive
cases in the test set on (a) both conclusive and inconclusive cases and (b) only
conclusive cases. Each of the mean percentages of observed inconclusive cases is
associated with an inconclusive range (determined in the validation set). The area
under the mean of the balanced accuracy is highlighted for better illustration.

Performance on PPMI dataset Figure 18a depicts the mean±SD percentage of
inconclusive cases observed (PIncObs) in the PPMI test dataset over the percentage
of inconclusive cases in the validation set (PIncVal) of development dataset. For
lower PIncVal the corresponding PIncObs in the PPMI test dataset are similar.
However as PIncVal increases (corresponding to increasing inconclusive intervals)
the supposed prediction certainty on PPMI dataset decreases when compared to
the certainty on validation set, on average. The balanced accuracy on conclusive
cases over the mean PIncObs is illustrated in Figure 18b. The mean of the balanced
accuracy rises from approximately 98% when there are around 1% of inconclusive
cases in the PPMI test set to about 99.5% when there are around 20% of inconclusive
cases in the PPMI test set. The CNN-MVT method achieved a relative AUC-bACC
of 99.23% for the mean balanced accuracy on conclusive cases over the mean PIncObs
in the PPMI test dataset. The achieved relative AUC-bACC is approximately 1.7%
higher than that of the SBR benchmark method and around 0.1% higher than the
PCA-RFC benchmark.
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(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 18: Evaluation of the CNN-MVT method on PPMI dataset.

Performance on MPH dataset Figure 19a presents the mean±SD percentage of
inconclusive cases observed (PIncObs) in the MPH test dataset over the percentage
of inconclusive cases in the validation set (PIncVal) of development dataset. The
mean of PIncObs in the MPH test dataset is consistently above the identity line.
The standard deviation of PIncObs is very large and increases over PIncVal. When
compared to the mean PIncObs of the SBR benchmark the mean PIncObs of the
CNN-MVTmethod is higher. Also the PIncObs of the CNN-MVT has a much higher
standard deviation compared to the PIncObs of the SBR method. The balanced
accuracy on conclusive cases over the mean percentage of observed inconclusive cases
(PIncObs) is depicted in Figure 19b. The mean of the balanced accuracy increases
from approximately 95% when there are around 1% of inconclusive cases in the MPH
test set to about 96% when there are around 20% of inconclusive cases in the MPH
test set. As a result, the CNN-MVT method achieved a relative AUC-bACC of
95.73% for the mean balanced accuracy on conclusive cases over the mean PIncObs
in the MPH test dataset. The achieved relative AUC-bACC is approximately 2.3%
higher than that of the SBR benchmark method and around 3.3% higher than the
PCA-RFC benchmark.

5.2.2 CNN-RLT Method

Classification performance on development dataset The quantitative per-
formance results of the CNN-RLT classification on different subsets of the devel-
opment dataset are presented in Table 4. In the evaluation process, the natural
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(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 19: Evaluation of the CNN-MVT method on MPH dataset.

sigmoid cutoff value of 0.5 was employed. The CNN-RLT method achieved around
96.1% in sensitivity, 98.5% in specificity and a balanced accuracy of 97.3%, with a
variance between 0.5-1.5% across random splits, on the test set. The performance
results on the validation set are similar. The method achieved a stable AUC-ROC
of 0.994 ± 0.002.

Table 4: Evaluation of the CNN-RLT method on development dataset. For evalua-
tion, the natural sigmoid cutoff 0.5 was used.

train set validation set test set
Balanced Accuracy 0.982 ± 0.003 0.967 ± 0.008 0.973 ± 0.005
Accuracy 0.982 ± 0.003 0.968 ± 0.008 0.973 ± 0.005
Sensitivity 0.980 ± 0.008 0.951 ± 0.013 0.961 ± 0.014
Specificity 0.983 ± 0.008 0.984 ± 0.005 0.985 ± 0.010
PPV 0.983 ± 0.009 0.982 ± 0.006 0.982 ± 0.012
NPV 0.981 ± 0.008 0.956 ± 0.012 0.966 ± 0.013
AUC-ROC - 0.994 ± 0.002 -

Inconclusive intervals in the validation set Figure 20a shows the determined
lower and upper bounds on the probabilistic sigmoid output as a function of the
percentages of inconclusive cases in the validation set (development dataset), along
with the natural cutoff 0.5. The upper bound curve increases and saturates faster
than the lower bound curve with a lower variance across the random splits. First
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this suggests a disparity in the distribution of predictions below and above the cutoff
point. Also the determination of stable lower bounds across the random splits is
more difficult than the determination of stable upper bounds. When compared to
the PCA-RFC benchmark method, the width of the inconclusive interval increases
more rapidly as the percentage of inconclusive cases increases, however less rapidly
when compared to CNN-MVT.

Transferability of inconclusive intervals The correspondence between the per-
centage of inconclusive cases in the validation set (development dataset) and the
mean±SD percentage of observed inconclusive cases (PIncObs) in the test set (de-
velopment dataset) is depicted in Figure 20b. As for the benchmark methods, the
deviation of the mean PIncObs in the test set from the identity line is small, in stark
contrast to the CNN-MVT method.

(a) Determined upper and lower bound of
the inconclusive interval for a target per-
centage of inconclusive cases in the valida-
tion set.

(b) Observed percentage of inconclusive
cases in the test set (mean±SD) for a tar-
get percentage of inconclusive cases in the
validation set of the development dataset.

Figure 20: Evaluation of the CNN-RLT method on the test set of development
dataset.

AUC-bACC performance The balanced accuracy (mean±SD) on conclusive
cases over the mean PIncObs in the test set (development dataset) is depicted in
Figure 21b. The mean of the balanced accuracy rises from about 97.5% when there
are around 1% of inconclusive cases in the test set to about 99.5% when there
are around 20% of inconclusive cases in the test set. As a result, the CNN-RLT
method achieved a relative AUC-bACC of 99.02% for the mean balanced accuracy on
conclusive cases over the mean PIncObs in the test set of the development dataset.



5 EVALUATION 34

The achieved relative AUC-bACC is approximately 2.6% higher than that of the
SBR benchmark method and around 0.3% higher than the PCA-RFC benchmark.

(a) (b)

Figure 21: Evaluation of the CNN-RLT method on the test set of development
dataset. Balanced accuracy for a given mean percentage of observed inconclusive
cases in the test set on (a) both conclusive and inconclusive cases and (b) only
conclusive cases. Each of the mean percentages of observed inconclusive cases is
associated with an inconclusive range (determined in the validation set). The area
under the mean of the balanced accuracy is highlighted for better illustration.

Performance on PPMI dataset Figure 22a shows the mean±SD percentage of
inconclusive cases observed (PIncObs) in the PPMI test dataset over the percentage
of inconclusive cases in the validation set (PIncVal) of the development dataset. Here
the mean PIncObs in the PPMI test dataset deviates only slightly from the identity
line. For PIncVal less than 6% the mean PIncObs is slightly below the identity
line. Subsequently the mean PIncObs rises slightly above the identity line with
an increasing standard deviation of PIncObs. The balanced accuracy on conclusive
cases over the mean percentage of observed inconclusive cases (PIncObs) is presented
in Figure 22b. The mean of the balanced accuracy rises from approximately 98.5%
when there are around 1% of inconclusive cases in the PPMI test set to about
99.5% when there are around 20% of inconclusive cases in the PPMI test set. The
CNN-RLT method achieved a relative AUC-bACC of 99.31% for the mean balanced
accuracy on conclusive cases over the mean PIncObs in the PPMI test dataset. The
achieved relative AUC-bACC is approximately 1.8% higher than that of the SBR
benchmark method and around 0.2% higher than the PCA-RFC benchmark.
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(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 22: Evaluation of the CNN-RLT method on PPMI dataset.

Performance on MPH dataset Figure 23a illustrates the mean±SD percentage
of inconclusive cases observed (PIncObs) in the MPH test dataset over the percent-
age of inconclusive cases in the validation set (PIncVal) (development dataset). Here
the mean of the PIncObs in the MPH test dataset is slightly above the identity line
and the standard deviation increases over the PIncVal. The balanced accuracy on
conclusive cases over the mean PIncObs is depicted in Figure 23b. The mean of
the balanced accuracy slightly increases from approximately 95% when there are
around 1% of inconclusive cases in the MPH test set to about 96% when there are
around 20% of inconclusive cases in the MPH test set. As a result, the CNN-RLT
method achieved a relative AUC-bACC of 96.12% for the mean balanced accuracy
on conclusive cases over the mean PIncObs in the MPH test dataset. The achieved
relative AUC-bACC is approximately 2.7% higher than that of the SBR benchmark
method and around 3.7% higher than the PCA-RFC benchmark.

5.2.3 CNN-Regression Method

Classification performance on development dataset The quantitative per-
formance results of the CNN-Regression classification on different subsets of the
development dataset are presented in Table 5. In the evaluation process, the natu-
ral sigmoid cutoff value of 0.5 was employed. The CNN-Regression method achieved
around 96.1% in sensitivity, 98.8% in specificity and a balanced accuracy of 97.5%,
with a standard deviation between 0.6-1.1% across random splits, on the test set.
The performance results on the validation set are a balanced accuracy of 97.7%,
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(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 23: Evaluation of the CNN-RLT method on MPH dataset.

a sensitivity of 98.3% and a specificity of 97.2%. The method achieved a stable
AUC-ROC of 0.998 ± 0.001.

Table 5: Evaluation of the CNN-Regression method on development dataset. For
evaluation, the natural sigmoid cutoff 0.5 was used.

train set validation set test set
Balanced Accuracy 0.982 ± 0.003 0.977 ± 0.006 0.975 ± 0.006
Accuracy 0.980 ± 0.003 0.977 ± 0.007 0.976 ± 0.006
Sensitivity 1.000 ± 0.000 0.983 ± 0.009 0.961 ± 0.011
Specificity 0.963 ± 0.005 0.972 ± 0.009 0.988 ± 0.008
PPV 0.960 ± 0.005 0.967 ± 0.011 0.986 ± 0.009
NPV 1.000 ± 0.000 0.985 ± 0.008 0.967 ± 0.010
AUC-ROC - 0.998 ± 0.001 -

Inconclusive intervals in the validation set Figure 24a presents the deter-
mined lower and upper bounds on the probabilistic sigmoid output as a function of
the percentages of inconclusive cases in the validation set (PIncVal) of the develop-
ment dataset, along with the natural cutoff 0.5. Similar to the CNN-RLT method,
here the upper bound curve increases and saturates slightly faster than the lower
bound curve with a lower variance across the random splits. This suggests a slight
disparity in the distribution of predictions below and above the cutoff point. Since
both the upper and lower bound functions exhibit a significant standard deviation
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across the random splits the determination of stable lower and upper bounds is
difficult. When compared to the PCA-RFC benchmark method the width of the
inconclusive interval increases more rapidly over the PIncVal.

Transferability of inconclusive intervals The correspondence between the PInc-
Val of the development dataset and the mean±SD percentage of observed incon-
clusive cases (PIncObs) in the test set of the development dataset is depicted in
Figure 24b. As for the baseline cases, the deviation of the mean PIncObs in the test
set from the identity line is small which can be attributed to the nearly identical
distribution of data in both the test and validation sets (due to random splitting).

(a) Determined upper and lower bound of
the inconclusive interval for a target per-
centage of inconclusive cases in the valida-
tion set.

(b) Observed percentage of inconclusive
cases in the test set (mean±SD) for a tar-
get percentage of inconclusive cases in the
validation set of the development dataset.

Figure 24: Evaluation of the CNN-Regression method on the test set of development
dataset.

AUC-bACC performance The balanced accuracy (mean±SD) on conclusive
cases over the mean PIncObs in the test set (development dataset) is depicted in
Figure 25b. The mean of the balanced accuracy rises from about 98% when there
is a PIncObs of 1% in the test set to about 99.5% when there is a PIncObs around
20% in the test set. As a result, the CNN-Regression method achieved a relative
AUC-bACC of 99.23% for the mean balanced accuracy on conclusive cases over the
mean PIncObs in the test set of the development dataset. The achieved relative
AUC-bACC is approximately 2.8% higher than that of the SBR benchmark method
and around 0.5% higher than the PCA-RFC benchmark.
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(a) (b)

Figure 25: Evaluation of the CNN-Regression method on the test set of development
dataset. Balanced accuracy for a given mean percentage of observed inconclusive
cases in the test set on (a) both conclusive and inconclusive cases and (b) only
conclusive cases. Each of the mean percentages of observed inconclusive cases is
associated with an inconclusive range (determined in the validation set). The area
under the mean of the balanced accuracy is highlighted for better illustration.

Performance on PPMI dataset Figure 26a illustrates the mean±SD percent-
age of inconclusive cases observed (PIncObs) in the PPMI test dataset over the
percentage of inconclusive cases in the validation set (PIncVal) of the development
dataset. Here for lower PIncVal values (less than 5%) the corresponding mean PIn-
cObs in the PPMI test dataset is near the identity line. However for higher PIncVAl
values the mean of PIncObs increasingly rises above the identity line and the stan-
dard deviation of PIncObs increases strongly. The balanced accuracy on conclusive
cases over the mean PIncObs is presented in Figure 26b. The mean of the balanced
accuracy rises from approximately 98.5% when there are around 1% of inconclusive
cases in the PPMI test set to about 99.5% when there are around 20% of inconclu-
sive cases in the PPMI test set. The CNN-Regression method achieved a relative
AUC-bACC of 99.38% for the mean balanced accuracy on conclusive cases over the
mean PIncObs in the PPMI test dataset. The achieved relative AUC-bACC is ap-
proximately 1.9% higher than that of the SBR benchmark method and around 0.3%
higher than the PCA-RFC benchmark.

Performance on MPH dataset Figure 27a demonstrates the mean±SD per-
centage of inconclusive cases observed (PIncObs) in the MPH test dataset over
the percentage of inconclusive cases in the validation set (PIncVal) (development
dataset). Here the mean of the PIncObs in the MPH test dataset is above the
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(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 26: Evaluation of the CNN-Regression method on PPMI dataset.

identity line. Also the standard deviation of the PIncObs is high and increases over
the increasing PIncVal. The balanced accuracy on conclusive cases over the mean
PIncObs is depicted in Figure 27b. The mean of the balanced accuracy slightly
increases from approximately 95% when there are around 1% of inconclusive cases
in the MPH test set to about 96.5% when there are around 20% of inconclusive
cases in the MPH test set. As a result, the CNN-Regression method achieved a
relative AUC-bACC of 96.24% for the mean balanced accuracy on conclusive cases
over the mean PIncObs in the MPH test dataset. The achieved relative AUC-bACC
is approximately 2.8% higher than that of the SBR benchmark method and around
3.8% higher than the PCA-RFC benchmark.

5.3 Comparative Performance Analysis

In this section, a summary comparison of the performance between the benchmark
and experimental methods is presented. The comparison focuses on two aspects:
transferability of inconclusive intervals (in both validation and test sets) and the
AUC-bACC of balanced accuracy on conclusive cases across varying percentages of
observed inconclusive cases (PIncObs). To support the analysis visually one com-
parison figure is used for each aspect tested on a specific dataset. The comparison
is carried out for the test set of the development data, the PPMI dataset and the
MPH dataset, respectively.
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(a) Observed percentage of inconclusive
cases in the test set (mean±SD) for a target
percentage of inconclusive cases in the vali-
dation set of the development dataset.

(b) Balanced accuracy on conclusive cases
for a given mean percentage of inconclusive
cases observed in the test set (area under the
mean of balanced accuracy is highlighted).

Figure 27: Evaluation of the CNN-Regression method on MPH dataset.

5.3.1 Performance on test set of development dataset

Figure 28 provides a comparison of the transferability of the inconclusive intervals
from the validation set to the test set (development data) along the benchmark and
experimental methods. For each considered method the mean of the percentage of
observed inconclusive cases (PIncObs) hardly deviates from the identity line. The
similarity in data distribution of the validation and test set due to random splitting
is an explanation for that. The standard deviation of PIncObs is also similarly low
across the methods. Thus the PIncObs is hardly affected by the randomness of the
inconclusive intervals across random splits for each method. The mean of PIncObs
can be reliably used for the calculation of the main metric of this work compared in
the following.

In Figure 29, the performance comparison of the methods on the test set (devel-
opment dataset) concerning the main metric of this work, the relative AUC-bACC
for the mean balanced accuracy on conclusive cases over the mean PIncObs in the
test set, is shown. In general, the CNN-based methods outperform both benchmark
methods, the SBR method and PCA-RFC. The highest performance is achieved
by the CNN-Regression (relative AUC: 99.23%) method whereas the lowest AUC-
bACC is that for the SBR-based method (relative AUC: 96.38%). The CNN-RLT
method achieved slightly higher performance than the CNN-MVT.
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5.3.2 Performance on PPMI dataset

Figure 30 shows a comparison of the transferability of the inconclusive intervals from
the validation set to the PPMI test dataset along the baseline and experimental
methods. The percentage of observed inconclusive cases (PIncObs) of CNN-based
methods shows a higher standard deviation compared to the baseline methods. A
possible explanation for that is the higher sensitivity of the CNN-based methods
to the variability in inconclusive intervals across random splits. Also the mean
of PIncObs deviates stronger from the identity line (above identity line) for the
CNN-MVT and CNN-Regression methods compared to the baseline methods and
CNN-RLT. That indicates that, on average, the CNN-MVT and CNN-Regression
methods are supposedly less certain about the PPMI dataset predictions compared
to the other methods.

The performance comparison of the methods concerning the relative AUC-bACC
for the mean balanced accuracy on conclusive cases over the PIncObs in the PPMI
dataset is depicted in Figure 31. The CNN-based methods outperform both baseline
methods, the SBR method and PCA-RFC. The highest performance is achieved by
the CNN-Regression (relative AUC: 99.38%) method whereas the lowest AUC-bACC
is that for the SBR-based method (relative AUC: 97.51%). The CNN-RLT method
achieved slightly higher performance (relative AUC: 99.31%) than the CNN-MVT
(relative AUC: 99.23%).

5.3.3 Performance on MPH dataset

Figure 32 illustrates a comparison of the transferability of the inconclusive intervals
from the validation set to the MPH test dataset along the baseline and experi-
mental methods. As for the PPMI dataset, on the MPH dataset the percentage
of observed inconclusive cases (PIncObs) of CNN-based methods shows a higher
standard deviation compared to the baseline methods. The higher sensitivity of the
CNN-based methods to the variability in inconclusive intervals across random splits
is a possible explanation. Here also the mean of PIncObs deviates stronger from the
identity line (above identity line) for the CNN-MVT and CNN-Regression meth-
ods compared to the CNN-RLT. That indicates that, on average, the CNN-MVT
and CNN-Regression methods are supposedly less certain about the MPH dataset
predictions compared to the CNN-RLT method. However the highest deviation of
the mean PIncObs from the identity line shows the baseline PCA-RFC method and
thus shows the lowest supposed certainty about the MPH dataset predictions, on
average.

In Figure 33 the performance comparison of the methods concerning the relative
AUC-bACC for the mean balanced accuracy on conclusive cases over the PIncObs
in the MPH dataset is presented. As for the other test datasets, CNN-based methods
outperform both baseline methods, the SBR method and PCA-RFC. The highest
performance is achieved by the CNN-Regression (relative AUC: 96.24%) method
whereas the lowest AUC-bACC is that for the baseline PCA-RFC method (rela-
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tive AUC: 92.42%). The CNN-RLT method achieved slightly higher performance
(relative AUC: 96.12%) than the CNN-MVT (relative AUC: 95.73%).

6 Discussion

6.1 Interpretation of Results

The performance results summarized in Figure 34 demonstrate that the RLT strat-
egy leads to slightly better AUC-bACC performance (higher by 0.05 − 0.1%) on
the development data test set and the external PPMI test dataset compared to the
MVT strategy. On the internal MPH test dataset the AUC-bACC performance of
the CNN using RLT strategy is higher by 0.4% compared to the MVT strategy.
Since the MPH dataset cases exhibit better spatial resolution than the development
dataset and PPMI dataset cases and thus are potentially more difficult to classify the
clear superiority of the RLT strategy on this test dataset is particularly remarkable.
Hence the findings support the primary hypothesis of this work.

The CNN-based methods outperform both benchmark methods on the PPMI and
MPH test datasets as can be seen in Figure 34. The CNN-based methods consis-
tently achieve over 2% higher AUC-bACC results compared to the SBR benchmark
method across all test datasets. The AUC-bACC performance of the multivariate
benchmark method PCA-RFC closely approaches that of the CNN-based methods
on the development data test set and PPMI test dataset. Therefore, both secondary
hypotheses are supported by the findings. On the MPH test dataset, the AUC-
bACC performance of the PCA-RFC method is over 3% lower compared to that of
the CNN-based methods. This suggests that the benchmark PCA-RFC method is
particularly sensitive to varying imaging characteristics. In general, the AUC-bACC
performance on the MPH test dataset is significantly lower than that on the devel-
opment data test set and PPMI test dataset across all classification methods. A
possible explanation for that is the higher spatial resolution of MPH dataset cases
which are harder to classify for the methods that were trained on cases with lower
spatial resolution (development dataset). On the MPH dataset, the AUC-bACC
performance advantage of the CNN-based methods is more prominent particularly
compared to the PCA-RFC method. The higher performance on the PPMI dataset
across all methods suggests that the smoothened augmented images of the develop-
ment dataset helped to generalize to the lower spatial resolution cases in the PPMI
set.

6.2 Practical Implications

The findings of the study have practical implications for the classification of DAT-
SPECT images. First, the study shows that random label selection as a ground-truth
label selection strategy can lead to better performance results compared to the ma-
jority vote strategy when training a CNN classifier for Parkinson’s disease diagnosis



6 DISCUSSION 43

based on DAT-SPECT. However, considering that the random label strategy re-
quires visual assessment of the DAT-SPECT images by several readers the practical
benefit may be not significant enough to justify the additional assessment costs.

Second, the mean AUC-bACC of balanced accuracy on conclusive cases over the
mean percentage of observed inconclusive cases (PIncObs) can be used as a metric
to decide for a concrete binary classification approach given a set of possible meth-
ods. The metric decouples the classification model performance from the arbitrarily
chosen inconclusive interval bounds. Given a chosen classification method for prac-
tical application, the balanced accuracy on conclusive cases over PIncObs allows to
decide for the operating point (inconclusive interval) based on the target balanced
accuracy. In practice, the target balanced accuracy can vary across applications.
For example, given a target balanced accuracy of 98% the required PIncObs might
be 2%. The target PIncObs of 2% can then be mapped back to the corresponding
percentage of inconclusive cases in validation set (PIncVal). The inconclusive in-
terval associated with this PIncVal can then be used as an operating point for the
practical application. It should be noted that the applicability of the AUC-bACC
metric is not limited to the medical field and extends to general binary classification
problems.

Third, the results once again confirm the superiority of CNN-based methods for
DAT-SPECT classification compared to the widely adopted SBR method in clinical
practice, highlighting the importance of transitioning to CNN-based approaches.

6.3 Limitations of the Study

6.3.1 Significance of AUC-bACC results

There are several limitations to be considered that may impact the validity of the
applied methods and results. First, statistical significance testing was not conducted
for the differences in AUC-bACC results among the methods. Also, the main metric
used to compare the model performance, the AUC-bACC of mean balanced accuracy
over mean PIncObs, depends on a set of inconclusive intervals determined within
the validation set of the development dataset for each classification method and
randomization individually. Since the balanced accuracy and PIncObs are averaged
across the results for each random split the reliability of the metric may be affected
by the standard deviation of both variables across the random splits. To enhance
the reliability of the metric a higher number of random splits can be used. Also, the
resolution of the balanced accuracy over PIncObs decreases as the density of test set
predictions around the cutoff increases in comparison to the validation set predic-
tions. Finally the metric may be less intuitively understandable and requires more
expertise when interpreting the results when compared to standard classification
metrics such as balanced accuracy and AUC-ROC.
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6.3.2 Generalizability of classification models

The results show that AUC-bACC performance on the MPH test across all consid-
ered classification methods, is significantly lower than on the test set of the develop-
ment dataset. The variation in image characteristics resulting from the augmenta-
tion of the training data, as described in Section 4.2.2, seems not to be sufficient to
be robust with respect to higher spatial resolution images as contained in the MPH
dataset. Also the potential site-specific bias of the classification models can only
be assessed on the external PPMI dataset since the MPH dataset originates from
clinical routine at UKE, as the development dataset.

6.4 Future Research

Future research attempts should focus on testing the statistical significance of the
differences in AUC-bACC results obtained. Confidence intervals (CI) of the relative
AUC-bACC estimates can be calculated to assess the statistical significance. The
effect of CNN hyperparameter tuning on the AUC-bACC performance of different
CNN-based methods can be investigated in future studies. The potential perfor-
mance benefits when using volumetric DAT-SPECT images instead of 2-dimensional
DVR slabs are to be addressed. To better assess the generalizability of the models
to external data a larger subset of the PPMI database could be used. To enhance
the robustness of classification models with respect to higher spatial resolution one
should also include DAT-SPECT images acquired using pinhole collimators in the
training set.

7 Conclusion

This work contributed to a better understanding of the performance differences re-
sulting from the usage of either random label selection or majority vote selection
as label selection strategies for training convolutional neural networks. The results
showed a slight performance advantage on test data for the random label selection
strategy concerning the proposed AUC-bACC metric. To justify additional costs
for obtaining multiple ground truth assessments for DAT-SPECT images the sig-
nificance of the performance difference on more diverse real-world data has to be
further investigated in future work. The proposed AUC-bACC performance met-
ric allows to decide for a concrete classification method among different methods
considering both the cost of manual inspection of inconclusive DAT-SPECT cases
by physicians and the classification performance on conclusive cases. Both aspects
are crucial for an automatic DAT-SPECT image classification method to be useful
in clinical practice. The metric also allows for the derivation of an operating point
for a binary DAT-SPECT classifier given a target balanced accuracy. Further re-
search has to be conducted to assess the robustness of the AUC-bACC metric and
the statistical significance of the produced results. The study further confirmed
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the performance advantage of CNN-based DAT-SPECT classification compared to
benchmark methods. The higher robustness of CNN methods is particularly promi-
nent when evaluating on unseen DAT-SPECT images with higher spatial resolution.
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(a) SBR method. (b) PCA-RFC method.

(c) CNN method - MVT (d) CNN method - RLT

(e) CNN method - Regression

Figure 28: Comparison of different methods on the test set of development data.
Transferability of inconclusive intervals.
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(a) SBR method. (b) PCA-RFC method.

(c) CNN method - MVT (d) CNN method - RLT

(e) CNN method - Regression

Figure 29: Comparison of different methods on the test set of development data.
Balanced accuracy over the percentage of observed inconclusive cases.
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(a) SBR method. (b) PCA-RFC method.

(c) CNN method - MVT (d) CNN method - RLT

(e) CNN method - Regression

Figure 30: Comparison of different methods on PPMI dataset. Transferability of
inconclusive intervals.



7 CONCLUSION 49

(a) SBR method. (b) PCA-RFC method.

(c) CNN method - MVT (d) CNN method - RLT

(e) CNN method - Regression

Figure 31: Comparison of different methods on PPMI dataset. Balanced accuracy
over the percentage of observed inconclusive cases.



7 CONCLUSION 50

(a) SBR method. (b) PCA-RFC method.

(c) CNN method - MVT (d) CNN method - RLT

(e) CNN method - Regression

Figure 32: Comparison of different methods on MPH dataset. Transferability of
inconclusive intervals.
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(a) SBR method. (b) PCA-RFC method.

(c) CNN method - MVT (d) CNN method - RLT

(e) CNN method - Regression

Figure 33: Comparison of different methods on MPH dataset. Balanced accuracy
over the percentage of observed inconclusive cases.



7 CONCLUSION 52

Figure 34: AUC-bACC achieved by baseline and experimental methods on different
test data. The AUC-bACC was calculated for the mean balanced accuracy over the
percentage of inconclusive cases in the considered test set.
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mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
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Ich erkläre hiermit gemäß §9 Abs. 12 APO, dass ich die vorstehende Abschlussarbeit
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