
Human Activity Recognition via
Deep Learning based on active

exoskeleton data

Master Thesis

Master of Science Survey Statistik

Christoph Zink

April 14, 2023

Supervisor:

1st: Prof. Dr. Christian Ledig
2nd: M. Sc. Joachim Fischer, German Bionic

Chair of Explainable Machine Learning
Faculty of Information Systems and Applied Computer Sciences
Otto-Friedrich-University Bamberg

Abstract

Repetitive strenuous physical activity may lead to various chronic musculoskeletal
disorders, reducing the quality of life of the affected. To prevent these disorders the
usage of exoskeletons has gained popularity in recent years. These wearable devices
exert forces upon the body of the user and relieve the worker by providing a portion
of the needed forces. For optimal relief, it is necessary to precisely control the force-
generating elements, i.e. the motors within active exoskeletons. One approach is
using built-in sensors to classify the user’s current activity and adjust the support
accordingly. As the application of human activity recognition on active exoskeleton
data is an emerging field with little research to date, this study aims at gathering
experience with the usage of deep learning models for this purpose.

The data for this study was recorded on the active Exoskeleton Cray-X produced by
the company German Bionic, intended to support the lower back when performing
repetitive lifting tasks.

Four neural network architectures were trained within this study: A hierarchical
feature-based feedforward network, a feedforward network receiving the raw data in
a windowed format, a convolutional neural network and a long short-term memory
network. These networks were compared with the baseline method, a hierarchically
classifying support vector machine. This comparison was done on a self-recorded
test set with n = 10 subjects to evaluate the ability of these models to generalize.
The subjects and five environments within this test set were not observed within
the training data. Furthermore, the performance of these deep learning models
was compared to a model representing the conventional approach to human activity
recognition, to test if neural networks are appropriate for the given task.

The results indicate that neural networks outperform the baseline method consis-
tently, with the best model achieving an accuracy of 76.79% and a Matthews correla-
tion coefficient of 73.48% on the k = 7 activities of daily living. The trained models
appear to be robust in their classification. This is a necessary condition for using
them to control the exoskeleton. With a limited search for the optimal hyperparam-
eter constellation, a feedforward neural network, classifying based on the normalized
sensor values, outperformed the convolutional neural network and the long short-
term memory network. This is interpreted as evidence, that using these specialized
architectures may require a more thorough search for optimal hyperparameters.

The conducted experiments were limited to the optimization of selected hyperpa-
rameters. Therefore further research is needed to confirm and expand on the results
of this study.

i

Zusammenfassung

Wiederholte körperlich anstrengende Tätigkeiten können zu einer Vielzahl von chro-
nischen Erkrankungen des Muskel-Skelett-Systems führen, die die Lebensqualität
der Betroffenen beeinträchtigen. Zur Prävention dieser Erkrankungen nimmt die
Verwendung von Exoskeletten in den letzten Jahren zu. Diese tragbaren Geräte
üben Kräfte auf den Körper des Benutzenden aus und entlasten, indem sie einen
Teil der für die Bewegung benötigten Kräfte aufbringen. Für optimale Entlastung
ist es notwendig, die krafterzeugenden Elemente, d.h. die Motoren in aktiven Ex-
oskeletten, präzise zu steuern. Ein mögliches Vorgehen für diese Steuerung besteht
in der Bestimmung der Aktivität des Nutzers anhand von eingebauten Sensoren und
entsprechender Regulierung der Motoren. Da die Erkennung menschlicher Aktivität
basierend auf Sensorwerten aus aktiven Exoskeletten ein wenig erforschtes Gebiet
ist, zielt diese Studie darauf ab, erste Erfahrungen im Gebrauch von Deep-Learning-
Modellen hierfür zu vermitteln.

Die Daten für diese Studie wurden mit dem aktiven Exoskelett Cray-X aufgezeich-
net. Dieses wird für die Entlastung des unteren Rückens vom Unternehmen German
Bionic entwickelt.

Für diese Studie wurden vier Arten neuronaler Netzwerke trainiert: Ein hierarchisch
klassifizierendes featurebasiertes Feedforward-Netzwerk, ein Feedforward-Netzwerk,
dass die Rohdaten als Input erhält, ein convolutional neural network und ein long
short-term memory network. Diese Netze wurden mit einem Basismodell, einer
hierarchisch klassifizierenden Support Vektor Maschine, verglichen. Es wurde ein
Testdatensatz mit n = 10 Testpersonen aufgenommen. Dieser Datensatz wurde
an fünf Orten aufgezeichnet, die nicht in den Trainingsdaten vorhanden sind. Der
Vergleich der neuronalen Netzwerke mit dem Basismodell dient dem Test, ob die
Leistung der Deep-Learning-Modelle angemessen ist.

Die Ergebnisse zeigen, dass die neuronalen Netze konstant besser klassifizieren als
das Basismodell. Das beste neuronale Netz erreichte eine Genauigkeit von 76, 79%
und einen Matthews-Korrelationskoeffizienten von 73, 48% bezogen auf k = 7 Ak-
tivitäten des täglichen Lebens. Auf neue Daten angewendet scheinen die trainierten
Modelle robust zu klassifizieren. Dies ist eine notwendige Bedingung, um sie für
die Steuerung eines Exoskeletts zu verwenden. Bei einer begrenzten Suche nach
der optimalen Hyperparameterkonstellation übertraf ein neuronales Feedforward-
Netz, welches die normalisierten Sensorwerte als Daten erhält, das convolutional
neural network und das long short-term memory network. Dies wird als Hinweis
intrepretiert, dass deren Nutzung eine gründlichere Suche nach geeigneten Hyper-
parametern erfordern könnte.

Der Umfang der durchgeführten Experimente war begrenzt auf die Optimierung
weniger Hyperparameter. Dies macht weitere Forschung erforderlich, um die Ergeb-
nisse dieser Studie zu bestätigen und zu erweitern.

ii

Acknowledgements

Firstly, I would like to thank my supervisors for their constant support and help.
Both supervisors provided helpful feedback at all times and invested a lot of their
time to mentor this project.

I would also like to thank Team Data at German Bionic for setting up the baseline
method.

Without the help of the various testers, both inside and outside German Bionic,
it would have been impossible to collect a new data set for validation and testing
purposes. I would like to thank everyone who gave their time to support this project.
Additional thanks go to Tobias Walter, Philipp Dehnen and Joachim Fischer who
organized the borrowing of a Cray-X to record this data off-site.

I would also like to thank my family and friends for their support during this time,
allowing me to focus on this project. Without their help this study would not have
been possible.

Special thanks are due to Philipp Claes, Joachim Fischer, Rainer Zink and Miriam
Pikulski, who spent much of their time proofreading this thesis and who assisted
with many fruitful conversations.

Finally, I would like to thank all the people who have been involved in my scientific
education and who have made this project possible. It is not possible to list them all
here, but I would like to thank you all for teaching me, learning with me, inspiring
me, and enabling me to tackle this project.

iii

Contents

List of Figures vii

List of Tables viii

List of Acronyms ix

Notation x

1 Introduction 1

2 Background 3

2.1 Human Activity Recognition . 3

2.1.1 Definition and Application . 3

2.1.2 Machine Learning . 4

2.1.3 Sensor Data . 7

2.1.4 Data Processing . 8

2.2 Human Activity Recognition based on Exoskeleton Data 11

2.2.1 Exoskeleton . 11

2.2.2 Requirements and Challenges 13

2.2.3 Literature Review . 14

2.3 Deep Learning . 16

2.3.1 Fundamentals of Deep Learning 16

2.3.2 Convolutional Neural Networks 23

2.3.3 Recurrent Neural Networks 24

3 Data 28

3.1 Recording Device . 28

3.2 Definition Activities . 29

3.3 Data Acquisition . 30

3.3.1 Training Data . 30

3.3.2 Validation Data . 31

3.3.3 Test Data . 32

3.4 Preprocessing . 33

3.4.1 Data Cleaning . 33

3.4.2 Labeling . 33

iv

3.4.3 Resampling . 35

3.4.4 Creation of Windows . 36

3.4.5 Balancing . 36

4 Baseline Method 38

4.1 Motivation . 38

4.2 Data Processing . 38

4.2.1 Feature Extraction . 38

4.2.2 Dimensionality Reduction . 39

4.2.3 Scaling . 39

4.2.4 Balancing . 39

4.3 Classification . 40

5 Method 42

5.1 Motivation . 42

5.2 Hyperparameter Optimization Schedule 42

5.3 Feedforward Network applied to features 45

5.4 Feedforward Network applied to raw data 46

5.5 Convolutional Neural Network applied to raw data 47

5.6 Long Short-term memory Network applied to raw data 49

6 Evaluation 50

6.1 Setup . 50

6.1.1 Procedure . 50

6.1.2 Scores . 50

6.2 Experimental Results . 54

7 Discussion 61

7.1 Approriatness of Deep Learning Models 61

7.2 Best-performing neural network . 61

7.3 Comparatively low level of performance 63

7.3.1 Models unable to distinguish Lifting from Dropping 63

7.3.2 Training Data Class Imbalance 64

7.3.3 No direct Comparison with State of the Art possible 64

7.4 Robustness of Deep Learning Models 64

7.5 Evaluation time . 66

7.6 Results from the Hyperparameter Optimization Process 66

v

8 Future Work 68

9 Conclusion 71

Bibliography 72

A Appendix 81

A.1 Code Availability . 81

A.2 Illustration of Resampling . 82

A.3 Protocol of Recording a Testfile . 84

vi

List of Figures

1 Process of Activity Recognition following the conventional approach
(Wang et al., 2019a) . 9

2 Forces applied via exoskeletons (Toxiri et al., 2019) 13

3 Structure of a Neural Network (Nielsen, 2015) 18

4 Examples for Data Augmentation . 22

5 Full Network vs. Network affected by Dropout (Nielsen, 2015) 22

6 Input Image and resulting feature map (Goodfellow et al., 2016) . . . 23

7 LSTM Cell . 26

8 Cray-X of the fifth generation (Schmidt, 2021a) 28

9 Amount of raw training data in minutes per activity 34

10 Amount of raw validation data in minutes per activity 35

11 Amount of raw test data in minutes per activity 35

12 Flowchart of the Classification of the Baseline Method 40

13 Process of hyperparameter optimization 44

14 Example of a Confusion Matrix . 51

15 Confusion Matrix of the Baseline Method on test data 55

16 Confusion Matrix of the ShallowFFNet Model on test data 56

17 Confusion Matrix of the DeepFFNet Model on test data 57

18 Confusion Matrix of the ConvNet Model on test data 58

19 Confusion Matrix of the LSTMNet Model on test data 59

20 Accuracy of the models on validation data throughout Hyperparam-
eter Optimization Process . 60

vii

List of Tables

1 Hyperparameters for Final ShallowFFNet Model 45

2 Hyperparameters for Final DeepFFNet Model 47

3 Hyperparameters for Final ConvNet Model 48

4 Hyperparameters for Final LSTMNet Model 49

5 Performance of final models on test data 54

6 Performance of final models on validation data 54

7 Precision, Recall and F-measure of the Baseline Method 55

8 Precision, Recall and F-measure of the ShallowFFNet Model 56

9 Precision, Recall and F-measure of the DeepFFNet Model 57

10 Precision, Recall and F-measure of the ConvNet Model 58

11 Precision, Recall and F-measure of the LSTMNet Model 59

12 Illustration Resampling: Raw Sensor data 82

13 Illustration Resampling: Raw Sensor data after forward filling 82

14 Illustration Resampling: Aggregated Sensor Data 83

15 Protocol for recording . 84

viii

List of Acronyms

CNN Convolutional Neural Network
HAR Human Activity Recognition
HL Hidden Layers
IMU Inertial Measurement Unit
LSTM Long Short-Term Memory
MCC Matthews Correlation Coefficient
MS Millisecond
MSD Musculoskeletal Disorder
N/A Not Available
NN Neural Network
RAM Random-Access Memory
ReLU Rectified Linear Unit
SVM Support Vector Machine

ix

Notation

This section provides an overview of the notation used. The notation is similar to
that used by Goodfellow et al. (2016).

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect
to X

∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

x

1 INTRODUCTION 1

1 Introduction

Manual material handling is a common task in a multitude of professions. If this
handling is ergonomically unhealthy, e.g. by applying forces unto the same tissues
in a repetitive manner without the necessary breaks for regeneration, permanent
damage to these tissues may occur (de Almeida et al., 2017). This permanent
damage might take on a specific form of musculoskeletal disorder (MSD), depending
on the damaged region and involved tissues. According to studies conducted by the
European Union, the most common areas for these disorders are the lower back, as
well as the upper limbs with the most typical cause being a combination of lifting
tasks combined with poor posture and a high rate of repetition. 24.7% of workers
within this study reported experiencing work-related backaches and 22.8% reported
muscular pain. These work-related injuries cause a significant loss of quality of life
for those affected, as well as financial losses for employing companies. In 2006 MSDs
led to the loss of seven million workdays in France, resulting in a loss of 710 million
euros for the affected companies (Schneider et al., 2010). To prevent the emergence
of these disorders a wide range of different interventions have been proposed, e.g.
limiting the weight of objects to be moved. These measures have not been able to
completely prevent the occurrence of MSDs for a variety of reasons.

In recent years another approach to reducing the risk of MSDs has gained popularity:
Supporting workers with load-reducing tools. One class of such tools are exoskele-
tons, i.e. devices that generate forces and thereby reduce the amount of stress on
the muscles and bones of the worker. There are a multitude of requirements for
these exoskeletons: They need to be adaptive to various environments, as well as
different users with varying characteristics. Additionally, they need to generate the
optimal amount of support exactly when needed to provide maximum relief. This
support needs to be timed precisely, because unrestrained application of forces onto
the worker would reduce the worker’s ability to move freely, possibly endangering
him. Ideally, the exoskeleton would know the amount of needed support at any
given time and be able to adjust the provided support accordingly (de Looze et al.,
2016).

An approach aimed at achieving this optimal support is by using built-in sensors to
estimate the current activity of the worker in real-time and adjust the activation of
the force-generating elements accordingly (Jaramillo et al., 2022). As there is little
research to date exploring the possibilities and limitations of this approach, this
study aims at gathering experience on the classification of human activity based on
exoskeleton data. In the more general research area of human activity recognition
(HAR), deep learning models represent the state of the art as they are able to
provide accurate and flexible predictions (Gu et al., 2021). Based on this the main
models explored within this study are deep learning models.

As this specific application of human activity recognition has little research to date,
this explorative study aims at gathering and communicating experience regarding a
variety of questions that are not answered by the existing literature.

1 INTRODUCTION 2

The first question was concerned with the appropriateness of deep learning models.
Therefore a comparison was made between the trained deep learning models and a
baseline method representing the conventional approach to human activity recog-
nition: Combining hand-crafted features with classification models. This approach
relies on finding useful representations of the data in the format of features via hu-
man expert knowledge. The features of the baseline method were found using expert
knowledge, enabling a comparison of this approach with the approach represented
by the deep learning models.

If deep learning models prove to be a better alternative to the conventional approach,
it is important for practitioners to correctly estimate the amount of effort needed to
produce well-functioning models. Therefore the process leading to the final model
for each model structure is laid out in a comprehensive manner.

Different types of deep learning models were trained in order to compare the per-
formance of different structures of deep learning models for this task. Each of these
structures can leverage the available information differently. The comparison al-
lowed an estimation of which information is most important for the classification
algorithm.

For application in practice, the trained models must be robust. Therefore the perfor-
mance of the resulting models was evaluated on a self-recorded test set, containing
n = 10 subjects in five locations. Neither the locations nor the subjects of the test
set are present within the training or validation data.

To answer these questions 15 neural networks of each network type were trained
following a fixed hyperparameter optimization schedule. This hyperparameter op-
timization schedule puts forth four final models, i.e. the best-performing model of
each network type. These final models are evaluated on the test data and the ac-
curacy, F-measure and Matthews correlation coefficient are reported. Furthermore,
the average time needed for the inference step of the models is reported, as timely
classification is a necessary condition for using these models in practice. In addi-
tion, the confusion matrices of the final models, as well as tables containing the
activity-specific precision, recall and F-measure were reported.

The results were contextualized by comparison with similar research. It was dis-
cussed, to what extent the research questions were answered. The experience gath-
ered within the hyperparameter optimization process was reported.

Opportunities for subsequent research were reviewed before a conclusion of the study
was drawn.

2 BACKGROUND 3

2 Background

2.1 Human Activity Recognition

2.1.1 Definition and Application

This subsection aims to define human activity recognition and give insights regarding
its applications.

Human activity recognition, in the following abbreviated as HAR, is a research field
concerned with the correct classification of human behavior into several categories
(Vrigkas et al., 2015). An activity is defined as any movement, gesture, or physical
action undertaken by the human (Gupta, 2021). This definition implies that human
activity recognition can be done at different levels of granularity: Most current
research focuses on activities of daily living involving whole-body movements of
a single person, e.g. standing, walking, or running. There is some research that
focuses on the correct classification of gestures or environment-dependent activities,
e.g. drinking coffee, that can only be correctly classified by using environmental
information (Wang et al., 2019a). In addition, some of the more complex activities,
e.g. playing soccer, may involve a mixture of several other sub-activities such as
running, standing, or shooting a ball. These sub-activities may also be performed
simultaneously, e.g. jumping and throwing a ball in basketball (Jobanputra et al.,
2019). This problem structure forces practitioners to decide which activity level is
relevant to the current study and whether classifying multiple activities at once is
permissible or whether activities are defined as a set of mutually exclusive categories.

As a research area, HAR is predominantly researched in the field of applied machine
learning and computer vision. Human activity recognition is used in a variety of
fields:

In home automation and security, it is used to adjust the settings of various smart
home devices depending on the user’s current needs (Bianchi et al., 2019). In addi-
tion, it is used in active and assisted living (AAL) to improve the quality of life of
the elderly or people with impairments by increasing safety and monitoring health
status. For this purpose, sensor data from various sources is combined to achieve
reliable detection in real-time.

In healthcare, it is used to gain insight into changes in personal fitness levels to
prevent injury, speed recovery, or improve personal training plans (Wang et al.,
2019b). HAR is used to detect abnormalities such as falls or strokes. In addition,
HAR can help inform medical personnel of the exact location of the person in need
of assistance (Bibbò et al., 2022). A related use case, the tracking of personal fitness
via step-counting based on smartphone data, has gained widespread popularity in
the last years (Naqvi, 2012).

HAR is used for indoor and outdoor surveillance and monitoring. It provides cost-
effective, scalable and reliable monitoring, and detection of unwanted behaviors such
as aggression or vandalism (M and Thillaiarasu, 2022).

2 BACKGROUND 4

It is used in tele-immersion applications such as virtual reality, by providing the
means to be physically present despite geographical distance and enabling full-body
interaction in real-time via 3D representations (Ranasinghe et al., 2016).

Additionally, it may be used for traffic scheduling, advertising and other use cases
(Gu et al., 2021).

2.1.2 Machine Learning

To understand their concrete application in the field of HAR, the fundamentals of
machine learning are revisited.

A machine learning algorithm is defined as an algorithm that learns from data. In
practical terms, this means that the algorithm is able to increase the performance
measure concerning the given task, when given more experience (Mitchell, 1997).

Machine learning is used for several tasks such as classification, classification with
missing inputs, regression, transcription, machine translation, anomaly detection,
synthesis and sampling, imputation of missing values, denoising and density esti-
mation (Goodfellow et al., 2016). The task partially determines the structure of
the algorithm, as the data type produced by the algorithm needs to match the one
determined by the task.

The performance of the machine learning model refers to its ability to perform the
given task in the intended way. To enable learning, choosing the right measure
of performance is paramount, because the way the algorithm updates its internal
state depends on the performance measure and therefore the final behavior of the
trained model depends on the chosen performance measure. However it is not always
feasible to mathematically describe the intended behavior of the algorithm, therefore
constructing a performance measure that generates said behavior is often difficult
(Goodfellow et al., 2016).

The experience refers to the data that is available to adjust the decision-making
within the model to produce an output that is closer to the desired, correct output.
The format of the experience determines whether a machine learning algorithm is
supervised or unsupervised.

In unsupervised learning, the data set, consisting of examples or data points, is given
to learn useful properties of the data set. Therefore density estimation, denoising
and clustering are typical unsupervised learning tasks.

Supervised tasks are tasks where each element of the data set is associated with a
label. The task is to learn the correct mapping from the given input to the correct
label. The model tries to learn the true mapping ftruth(x) = y. To do this, it is
given examples in the form of training data. Using these examples, it can adjust its
own approximation f̂model(x) = ŷ to more closely match the true function.

Classification tasks are supervised learning tasks, where y ∈ {1, ..., k} and the set of
possible values for y has no natural ordering. When the set of possible values for y
has natural ordering, the task is referred to as a regression task (Bishop, 2006).

2 BACKGROUND 5

Based on the given definitions above, human activity recognition is a classification
task, as the activities do not exist in natural ordering (Gupta, 2021). Therefore the
following will mainly focus on supervised learning and classification tasks.

In practice usually not all possible values x with their respective y are known. This
induces the need for correctly inferring the general patterns regarding the mapping
from x to y based on the available data.

This data is treated as a representative subset of all possible data. This assumption is
made to ensure, that the model can induce patterns about the real-world relationship
from x to y. This assumption is violated when the present data is not representative
of the real-world data-generating process, i.e. the relationships within the data are
not identical to the relationships in the real world. This misalignment might cause
a systematic error in the inference made by the model, even if it correctly learns
from the available data (Zhang et al., 2023). Based on these considerations another
criterion for the evaluation of the performance of a model becomes evident: The
ability to generalize beyond the given dataset.

A model which correctly learned the patterns within a dataset might be able to
classify the examples within the dataset with great accuracy. A formal definition of
accuracy is given in Subsection 6.1.2. The accuracy might be misleading when the
model did not generalize well, meaning that the accuracy on new, unseen data is
substantially lower than the accuracy on the original data set. This phenomenon is
called overfitting. It could entail basing the classification on seen noise within the
dataset, which does enable the model to classify the dataset better, however when
confronted with new data, this noise is not indicative of the true label (Mitchell,
1997). Overfitting can be viewed as overestimating the amount of signal within the
available data. The available data is a result of a mixture of signal, i.e. meaningful
information which can be used to detect the label in all possible data, and noise.

There is also an opposed phenomenon known as underfitting: The model underes-
timates the amount of signal within the given data and does not learn everything
about the patterns connecting x and y. An underfitting model has similar levels
of performance on the known data set and on new data, however, this level of per-
formance is substantially lower than theoretically possible based on the information
within the data set (Zhang et al., 2023).

Ideally, the trained model would neither under- nor overfit, meaning it extracted the
real-world patterns within the dataset optimally without learning anything peculiar
to the present dataset. To detect underfitting domain knowledge regarding the
performance of other models on similar tasks is needed, to detect overfitting the
performance of the model on new, unseen data is tested. In practice this means
dividing the available data into two sets: The first part is used to train the model,
i.e. to adjust the internal parameters. This set is called the training data. The
remaining data is used to estimate how well the trained model performs on new data.
Therefore this subset of data is called the test set. The difference in the performance
of the trained model on training and test set allows the practitioner to estimate the
model’s ability to generalize and detect overfitting. As the concrete learning process

2 BACKGROUND 6

might be depending on some external parameters, the so-called hyperparameters, a
part of the training data may be separated to find the best constellation of these
parameters. This part of the original dataset is called the validation set (Bishop,
2006). These hyperparameters influence how many and how the parameters of
the model are being learned. The hyperparameters of the model itself are fixed
once the training starts. The best constellation of hyperparameters allows for the
best learning and generalization of the model. To get reliable estimations of the
performance of the model it is important to choose the data for the validation and
test set at random, otherwise sampling bias might lead to biased estimations.

There are two main ways to estimate the performance of the model on new data. In
the holdout method, the test set is chosen once and then withheld from the training
to be used afterward for the evaluation of the model. This estimation is rather
unstable, depending on the amount of test data and the specific samples drawn from
the dataset. A more stable way is to separate the available dataset into k parts and
then training k models, where each model is being trained on different k− 1 subsets
and evaluated on the subset not used for training. Afterward, the performance of
the models is averaged and the resulting estimation of the performance has a lower
variance when compared to the holdout method (Bishop, 2006). This method is
known as K-fold cross-validation.

When it comes to controlling the learning process and avoiding under- and overfit-
ting, another important aspect to consider is the representational capacity of the
model. The representational capacity is defined as the set of all possible functions
that could theoretically be learned by the model. Which functions the model can
learn depends on the chosen structure of the model and the way the model’s pa-
rameters are updated. The parameters are internal states of the model that control
the way it produces output. Models with higher representational capacity have a
higher probability of having the wanted function within their set of possible func-
tions. In practice it is not useful to always use models with high representational
capacity. This is caused by the danger of overfitting: When providing the model
with too much capacity it might use it to memorize non-generalizable peculiarities
of the dataset. A necessary condition for creating a well-fitted model is starting to
train a model with appropriate representational capacity.

Various architectures for machine learning models have been proposed, as well as
different ways of updating these models according to new data. For the correct
usage of machine learning it is important to understand that each model utilizes a
set of prior assumptions. These assumptions shape the way the model learns from
data. When these assumptions are appropriate and comprehensive, the model is
well-equipped to handle the problem and to learn reliably and fast from the given
training data. However, when these assumptions are violated, learning might prove
difficult or impossible (Mitchell, 1997).

2 BACKGROUND 7

2.1.3 Sensor Data

The following entails a description of various sensors, as well as the data produced
by them. This is being done, as these sensors provide the data used for the training
and evaluation of human activity recognition systems.

The data for HAR stems from sensor measurements. These sensors can be char-
acterized by their position: They are either body-worn sensors, object sensors, or
environmental sensors. Sensors are called object sensors when they are attached to a
specific object to detect its motion, while environmental sensors are sensors that de-
tect the interaction with the respective environment (Wang et al., 2019a). Some re-
search has been done regarding the integration of various sensor types (Vepakomma
et al., 2015).

Accelerometers are the most commonly used type of body-worn sensors. They mea-
sure the acceleration of an object with high resolution. This acceleration data con-
tains information about the spatial location of the sensor and the object or body
part to which the sensor is attached. One advantage is anonymity since it is hardly
possible to obtain private information via these sensor readings (Islam et al., 2022).

Usually, accelerometer data is combined with gyroscope data which contains infor-
mation about orientation and angular velocity (Wang et al., 2019b). Accelerometers
and gyroscopes are often combined into a common sensor unit called an Inertial
Measurement Unit (IMU). The number of spatial dimensions measured by the IMU
determine the way an IMU is referred to. Thus, an IMU that contains both a triaxial
accelerometer and gyroscope is referred to as a six-axis IMU. An IMU may contain
the same sensor type multiple times (Pei-Chun Lin et al., 2012).

Other body-worn sensors are magnetometers, measuring the direction, strength, or
relative change of a magnetic field at a particular location. A magnetometer can be
a part of an IMU.

There is a wide range of small IMUs that require little power, so they can be powered
by small power supplies (Fakhri et al., 2014). Their small size allows them to
be integrated into other devices such as smartphones or to outfit a single person
with multiple sensors without restricting their range of motion. As these IMUs
are easily accessible and integrated into the user’s real life, as they are integrated
into smartphones, some research has been done on HAR based on smartphone data
(Bayat et al., 2014).

Other wearable sensors include barometers that measure air pressure. This infor-
mation has been successfully used to determine a user’s location in a multi-story
building (Haibo et al., 2016).

Additionally, there is the possibility of directly detecting the activation of the muscle
via electromyography, i.e. recording electrical activity within the muscle. As the
utility of these devices is limited, research based on this data source is limited to
specialized applications (Atzori et al., 2014).

All of the above sensor types can also be attached to objects close to the person
to detect the interaction between the person and the object (Wang et al., 2019a).

2 BACKGROUND 8

Object sensors are typically used in addition to wearable sensors to detect more
complex activities, as using only object sensors for HAR would limit the available
data to periods when the human is interacting with a sensor-equipped object.

Ambient sensors include sensors such as radars, sound sensors, temperature sensors,
or cameras. HAR based on ambient sensors has been researched mainly in the
context of smart home environments. Utilizing these sensors is difficult, as they are
prone to be influenced by environmental factors and thereby introduce a significant
amount of noise into the sensor readings. This, as well as data privacy concerns,
have led to a shift from camera and vision-based HAR to HAR based on body-worn
sensors (Islam et al., 2022).

2.1.4 Data Processing

After the collection of the data from the sensors, several processing steps may be
necessary before the classification is obtained by the machine learning algorithm:
Preprocessing, segmentation, feature extraction, dimensionality reduction and bal-
ancing.

The raw sensor data might be subject to noise because of several reasons: The
sensors might be miscalibrated which induces the need for removing or compensating
for several errors before using the sensor outputs (Rui Zhang et al., 2014). The
sensor may be malfunctioning or the sensor readings may be affected by ambient
noise. There is also the possibility that the position of the sensor may change,
particularly with body-worn sensors where certain activities may cause the sensor
to move from its original position.

To handle this noise a wide range of preprocessing filtering techniques have been
applied, such as the Wavelet filter, Kalman filter and the Low-pass filter (Minh Dang
et al., 2020).

Sensor sampling rates are typically small compared to the duration of human activ-
ity. As these activities involve time-related patterns of movement, a singular sensor
reading typically does not contain enough information to correctly estimate the ac-
tivity seen. Therefore segmentation is required to aggregate enough sampled data
into a collection to correctly estimate the activity.

There are various segmentation approaches available: Time-driven windows segmen-
tation separates the stream of sensor readings into fixed-sized windows. Event-driven
windows segmentation segments the sensor data into windows based on estimated
events. The action-driven window segmentation detects the windows, where indi-
vidual activities occur (Minh Dang et al., 2020).

There are two main ways to extract useful information from the segmented data.
Representation learning aims at learning which features are useful. This approach
is discussed in detail in Subsection 2.3.1. Before representation learning became
feasible for widespread application, hand-crafted feature creation and selection was
the predominant approach to bringing the data into an appropriate representation

2 BACKGROUND 9

for the classifier. As the advantages of representation learning can only be fully un-
derstood after understanding the traditional approach, the following aims at giving
an overview of the conventional approach relying on hand-crafted features. Figure
1 illustrates the process of HAR via the traditional approach.

Figure 1: Process of Activity Recognition following the conventional approach
(Wang et al., 2019a)

These segmented windows are used to extract a set of meaningful features. There are
three general approaches to the generating of features: The time domain approach,
the frequency domain approach and the wavelet transformation.

The time domain approach extracts information about the amplitude variations of
the signal over time. Therefore, the features typically consist of statistical moments
of the seen distribution within the window, such as mean, variance, skewness and
kurtosis (Suto et al., 2017). Using this approach has the advantage that no trans-
formations are required beforehand, allowing these features to be computed quickly
even on computationally limited edge devices (Dargie, 2009). On the other hand,
these features do not capture the information inherent in the signal frequency.

The frequency domain approach is based on the variation of the frequency of a
given signal over time. Features based on the frequency domain approach contain
information about the proportion of received signals within specific signal bands.
Examples of frequency domain features include spectral entropy, spectral power,
peak power and peak frequency. Compared to features based on the time domain
approach, the calculation of features based on this approach is computationally
expensive (Minh Dang et al., 2020).

Wavelet transformation decomposes a signal into several functions called wavelets.
This provides a high-resolution representation of the original signal via the decom-
posed functions, which can be used to calculate each wavelet’s energy. Examples of
features based on this approach include root mean square and mean absolute value.
Similar to features from the frequency domain approach, the computation of these
features is computationally expensive (Minh Dang et al., 2020).

After generating a set of features, this set is typically reduced to a set of the most
informative features according to an evaluation criterion in a process known as

2 BACKGROUND 10

feature selection. This is done to reduce the dimensionality of the input data. An
explanation of why this is desirable is given in Subsection 2.3.1 in the discussion of
the curse of dimensionality. Another advantage of feature selection is that it allows
the machine learning algorithm to compute the classification faster, as it does not
have to deal with redundant information. Unlike other dimensionality reduction
techniques (e.g. principal component analysis), feature selection does not alter the
original representation of the data (Sánchez-Maroño et al., 2007).

Depending on the training data, which can be labeled, unlabeled, or partially la-
beled, there are three classes of feature selection algorithms, i.e. supervised, unsu-
pervised and semi-supervised feature selection algorithms. Depending on the feature
selection process, the algorithm can be classified as a filter, wrapper, or embedded
method.

A filter method works by calculating a performance score for each feature and then
filtering features based on this score. This technique is popular due to its wide
applicability and lower computational requirements. In addition, feature selection
can be applied before the final classification algorithm is decided (Chandrashekar
and Sahin, 2014).

Wrapper methods work by training models with subsets of the available features
and selecting features based on the performance of the respective models. Wrap-
per methods are therefore based on the assumption that informative features help
models in different constellations. Wrapper methods can lead to better performance
compared to filter methods, as wrapper methods can take into account the appro-
priateness of the prior assumptions of the model regarding the data. In addition,
wrapper methods are able to account for the effects of highly correlated variables
that contain similar information. These methods are computationally expensive, as
different models with different subsets of features need to be trained and evaluated
(Jovic et al., 2015).

With embedded feature selection, feature selection is embedded in the training pro-
cess, meaning that the model learns to use the most informative features (Jovic
et al., 2015).

The process of feature creation and selection is guided by the domain knowledge
of the experts for the respective tasks. The choice of which features to create and
which selection methods to use is typically based on an informed process of trial
and error (Wang et al., 2019a).

When the labels of a dataset appear for an unequal amount, the dataset is called
imbalanced. When performing classification this might be problematic, as the per-
formance measure might depend predominantly on the majority classes. As a result,
the machine learning model might learn to classify the majority classes well while
the classification of the minority classes remains erroneous. To prevent this balanc-
ing techniques are used. These techniques are categorized either as undersampling
or oversampling techniques. Undersampling techniques refer to techniques which
remove samples from the majority classes, until the resulting dataset is less im-

2 BACKGROUND 11

balanced. Oversampling aims at adding additional samples to the minority classes
(Ganganwar, 2012).

For the final classification of the seen activity based on these resulting sets of fea-
tures, various classes of typical machine learning models have been used successfully.
These include tree-based models, Support Vector Machines, Hidden Markov Models
and Nearest Neighbor algorithms (Chen et al., 2021).

2.2 Human Activity Recognition based on Exoskeleton Data

The following section aims to inform about the application of human activity recog-
nition on exoskeleton data. First, basic knowledge about exoskeletons is given in
Subsection 2.2.1. Then the challenges of HAR based on exoskeleton data are dis-
cussed in Subsection 2.2.2, before a review of the current state of the art is given in
Subsection 2.2.3.

2.2.1 Exoskeleton

Exoskeletons are wearable devices that generate forces or torques on at least one
human joint to support the execution of physical activities (Toxiri et al., 2019).
Based on this definition exoskeletons might be characterized as follows: The first
categorization of exoskeletons is based on the method utilised to generate forces.
There are currently four categories of force-generating exoskeletons: Passive, semi-
passive, active and hybrid exoskeletons.

Passive exoskeletons are devices that store the energy generated by the user’s motion
in elastic elements and support the user when these elements decompress (de Looze
et al., 2016). Three types of elastic elements are used in passive exoskeletons:
Springs, flexible beams, or elastic bands (Ali et al., 2021). Depending on the elastic
elements, these devices can be lightweight and worn under clothing. The smaller size
is an advantage as it allows the user to work in smaller environments, use additional
protective equipment, or hide the use of the exoskeleton, which may be desired when
using these devices in public.

The disadvantage of passive exoskeletons is their lack of flexibility, which means that
these elastic elements statically apply forces regardless of current need. In addition,
the amount of support these devices can provide is fixed, as it depends on the elastic
materials incorporated into the exoskeleton and cannot be adjusted. Furthermore,
the amount of support provided by passive exoskeletons is limited by the amount
of energy given by the user, which could mean that the support shrinks as the
user becomes fatigued and unable to stretch or compress the elastic elements. Some
evidence suggests that the use of passive exoskeletons shifts the load to other muscle
groups, which may be desirable depending on the application (de Looze et al., 2016).

Semi-passive exoskeletons are exoskeletons that rely on elastic materials to generate
the supporting forces while incorporating mechanisms to modulate the behavior of
these materials. This regulation can be performed by the user or automated based

2 BACKGROUND 12

on built-in sensors (Grazi et al., 2022). As a result, semi-passive systems have
a higher degree of adaptivity compared to similar passive systems (Grazi et al.,
2020). A disadvantage is that these additional elements increase the weight of the
exoskeleton and if the modulation is sensor-based, care must be taken to ensure that
the support is provided at the correct time.

Active exoskeletons are characterized by generating forces and torques themselves
via built-in motors or pneumatic actuators. The advantage of these exoskeletons
is their flexibility, as the activation of the motor can be adjusted according to the
user’s needs. As these devices are self-powered, they can provide the majority of
the power needed to perform the activity. Some evidence suggests that the usage
of active exoskeletons reduces muscle activity in the supported regions (de Looze
et al., 2016).

As active exoskeletons are capable of changing the user’s body position, measures
must be taken to ensure that the device does not exert forces that could endanger
the user. Another disadvantage of active exoskeletons is their dependence on power
sources. This dependence might limit the amount of time the device can provide
continuous support.

For an active exoskeleton to function properly, several parts are required: Motors
to generate the supporting force, straps to transfer these forces to the user’s body,
sensors to detect the user’s current condition and a power supply to power the motor.
All of these components add to the weight of the exoskeleton, potentially reducing
the user’s range of motion and ability and willingness to wear the exoskeleton for
extended periods.

The combination of passive and active assistive support in a hybrid exoskeleton is a
new area of research and there are few studies to date exploring the potential of this
type of exoskeleton (Missiroli et al., 2022). Based on the little amount of available
research a more in-depth explanation is not provided.

Exoskeletons may be categorized by the supported region. Lower body exoskeletons
support the lower limbs, e.g. legs and feet, while upper body exoskeletons support
the upper limbs. There are also full-body exoskeletons and exoskeletons that support
only a single joint.

Another categorization is concerned with the used materials:

Soft exoskeletons are devices that consist of multiple garments placed around the
supported region. Support is generated by pulling these garments together by de-
compressing the elastic material, typically via a cable or strap. Overall, most soft
exoskeletons are passive exoskeletons that rely on the forces generated by changing
the state of the elastic material (Ali et al., 2021).

Rigid exoskeletons use hardened, inelastic parts that are typically required to trans-
mit the force generated in the actuators to the user. Rigid exoskeletons often in-
crease the amount of space required for the user, reducing their usability in certain
scenarios. While the forces applied by soft exoskeletons are usually parallel to the
user’s body, the forces applied by rigid exoskeletons are typically perpendicular to

2 BACKGROUND 13

the user (Toxiri et al., 2019). This is illustrated in Figure 2. Misalignment problems
can occur when using a rigid structure (Tiseni et al., 2019).

Some work has been done on the combination of soft and rigid components (Tiseni
et al., 2019).

Figure 2: Forces applied via exoskeletons (Toxiri et al., 2019)

2.2.2 Requirements and Challenges

Below is a discussion of the motivation for HAR on exoskeleton data, as well as
a discussion of potential problems with the detection of human activity based on
exoskeleton data.

The main problem with passive exoskeletons is their lack of flexibility to provide
support only when needed. Active exoskeletons have the advantage of being able to
regulate the current level of support by controlling the internal motors. Ideally, the
exoskeleton would be able to detect the user’s current need for support and provide
it without input from the user (Jaramillo et al., 2022).

Since the amount of support required varies between activities and even within
an activity, a correct classification of the current activity could provide the means
to successfully adapt the support to the user’s needs (Poliero et al., 2019). This
classification would have to fulfill several requirements to be useful for managing
the support of the exoskeleton:

The classification must be robust, i.e. not influenced by external, irrelevant factors,
and able to correctly classify the current activity regardless of the user’s concrete
environment. A classification algorithm that is susceptible to environmental influ-
ence is less reliable and could therefore hinder acceptance and usage (Poliero et al.,
2019). Classification should be performed in real-time, i.e. with as little delay as
possible, as delays reduce the usability of the device. Another requirement is the

2 BACKGROUND 14

ability to perform the classification with as little processing power as possible. This
is necessary to enable edge computing, i.e. the classification on the exoskeleton. This
is necessary because sending the data to servers to perform the classification would
introduce a dependency on a reliable connection to these servers, as well as greater
latency. Another desirable attribute of human activity recognition on exoskeleton
data is stability, i.e. not producing noisy and rapidly changing classification re-
sults when the user is performing similar activities. Rapidly changing classification
might lead to quickly changing behavior of the exoskeleton, which might make it
less suitable for real-world application. The overall accuracy of the model must be
adequate, otherwise, the exoskeleton would provide support below its capabilities or
even endanger the user by providing unwanted support (Toxiri et al., 2019).

A more in-depth review of the respective problem is given to facilitate the under-
standing of the current solutions.

One problem lies in the positioning of the sensor: As body-worn sensors may change
their position after prolonged wearing of the sensor, the processing needs to be
flexible enough to robustly classify the activity, even if the sensor position changes.

Additionally, the classification needs to be robust against different body types, user
states and environments. As age, sex, height, weight, fatigue, execution speed and
many other factors influence the specific way an activity might be performed, the
classification needs to be flexible enough to classify vastly different sensor inputs
into the same activity class. The same activity has a wide range of different sensor
readings, as all the above-mentioned factors add variety. This problem is known as
intraclass variety (Vrigkas et al., 2015).

Another problem that needs to be overcome for reliable, accurate classification of
human activity based on sensor data are the limitations imposed by reliance on
domain knowledge. As seen in Subsection 2.1.4, the traditional approach to HAR
relies on feature creation and selection based on the domain knowledge of human
experts. However, this domain knowledge is often limited to shallow features. Com-
plex, high-level features are hard to explore so the input for classification algorithms
was often limited to sets of shallow features (Hammerla et al., 2016). There is the
possibility that necessary information has been removed by reducing the available
data to sets of shallow features and therefore the resulting models would underfit
(Wang et al., 2019a).

2.2.3 Literature Review

The following aims at providing an overview regarding the current state of the art
of human activity recognition based on active exoskeleton data.

The research regarding human activity recognition based on active exoskeleton data
is an emerging field. As the research and usage of exoskeletons begin to accelerate,
some research is being done regarding HAR on active exoskeleton data. However, the
amount of literature in this field is still limited to singular investigations. Large-scale
studies are still missing from the literature (Pesenti et al., 2023). For this thesis,

2 BACKGROUND 15

the literature review has been limited to studies, where the focus of the research is
similar to the current study.

There is evidence that it is possible to use IMU data in a combination with the
information regarding the angles of the legs to use Support Vector Machines to
differentiate three activities of daily living with high accuracy. The authors of this
study performed the recognition to modulate the exoskeleton’s behavior based on
real-time classification of the seen activity direct onboard the exoskeleton, i.e. via
edge-computing (Poliero et al., 2019).

In human activity recognition deep learning has become the predominant approach
to classifying human activity (Jobanputra et al., 2019). The main reason for this
is the ability of deep learning models to learn useful representations of the data
themselves. By doing so they can avoid some of the dependency on human domain
knowledge. These models have greater representational capacity than other machine
learning models. As a result, they have the capacity to model more flexible functions.
A more in-depth explanation of this behavior is given in Subsection 2.3.1. The
metrics used in the discussion of the literature below are laid out in Subsection
6.1.2.

A recent study by Jaramillo et al. (2022) concerned with real-time HAR classification
based on sensor values of active exoskeletons trained models for distinguishing k = 8
activities of daily living. The data basis for this experiment was collected from an
exoskeleton intended for the relief of the lower back, developed by Hyundai Rotem.
Said exoskeleton contained a nine-axis IMU with a triaxial accelerometer, gyroscope
and magnetometer. An explanation of this sensor types is given in Subsection 2.1.3.
Additionally, the models used knowledge regarding the angle of the legs. The data
used to train, validate and test the model came from n = 4 subjects, between 25
and 30 years of age, recorded in a singular environment. Regarding preprocessing
the data was zero-centered and then scaled to be within [0, 1]. Additionally, a
moving-average filter was applied. The authors experimented with five different deep
learning architectures: Convolutional neural networks, recurrent neural networks,
long short-term memory networks, bi-directional long short-term memory networks
and neural networks equipped with gated recurrent units. However, they do not
communicate how many different hyperparameter constellations they tried before
reaching their final models. A different protocol was used, i.e. the order of activities
for training and test data differs. The authors reported various models with an
inference time smaller than nine milliseconds and an accuracy of over 86%, with the
best model achieving an inference time of 4.97 ms and an accuracy of 97.56%. As
the same subjects were used for the training and test set, as well as recording both
sets took place in the same environment, it remains questionable how well these
models generalize beyond this environment and these four subjects.

Another recent study by Pesenti et al. (2023) explored the possibility of simultane-
ously classifying the seen activity and the manipulated weight. The data for this was
collected from up to five IMUs, using the built-in accelerometer and gyroscope. The
authors explored the effects of removing IMUs from the available data pool on the
performance of resulting models. The data was collected from n = 12 sex-balanced

2 BACKGROUND 16

subjects, aged around 25. The raw data was passed through a zero-lag, fourth-order
Butterworth filter and afterward scaled to be within [−1, 1]. Regarding the over-
all structure of the model, the networks employed consisted of two long short-term
memory unit layers with 100 and 50 units, before the data was inserted into a fully
connected feedforward layer with 20 units. This feedforward layer was connected to
two output layers because the activity recognition task was split into two tasks: The
first concerned itself with the separation of standing, walking and interacting with
the payload, whereas the second task classified lifting or lowering the payload. For
the first task, a median accuracy of 89.49% and maximum accuracy of 91.90% was
reported, as well as a median F -measure of 89.92% and a maximum of 92.08%. For
the interaction task, the median accuracy was 96.33%, the maximum 97.14%, the
median F -measure 91.68% and a maximum score of 92.38%. This performance was
based on subject-specific models, i.e. for each of the n = 12 a different classification
model was trained. The protocols for the training and test set were different, how-
ever, the involved subjects, as well as the environment was identical in both sets.
Again the authors did not convey how many hyperparameter constellations were
tried before arriving at the final model structure.

2.3 Deep Learning

2.3.1 Fundamentals of Deep Learning

This subsection aims at explaining the fundamental structure of deep learning mod-
els. This is needed to understand the structure and order of the experiments reported
in the following chapters.

The inspiration for the development of artificial neural networks stems from the
dream of creating human-like intelligence. The natural approach was to build struc-
tures with an internal order similar to the one of the human brain. Within the
human brain complex calculations are performed by aggregating the calculations
made within a multitude of individual cells, called neurons. Each of these neurons
is connected to a small subset of other neurons, from which it gets information in
the format of chemical signals and is connected to another small set of neurons, to
which it returns information (Russell et al., 2016). Overall, it is a highly-parallelized
structure, in which iteratively gathering and aggregating information enables the
processing of complex tasks. However modern artificial neural networks are at best
loosely inspired by the human brain and the development of these networks is more
driven by principles of mathematics and engineering than by recreating biology
(Goodfellow et al., 2016).

The current success of artificial neural networks can be explained by their ability
to mitigate the effects of a phenomenon called the curse of dimensionality. This
phenomenon refers to the problem within machine learning (ML), that the number
of possible configurations for x grows exceedingly fast when the dimensionality of
x increases. For a supervised learning task, which tries to learn the true mapping
f(x) = y ∀x, it poses the problem that the available data will probably not fill

2 BACKGROUND 17

the whole possible feature space. If the dimensionality of x increases, the amount
of space for which the model does not have examples increases quickly (Bishop,
2006). Therefore the ML algorithm needs to generalize from the available data
appropriately to solve the given task. This ability depends on the prior assumptions
of the model, which guide the learning of the model. Conventional machine learning
models often implicitly make use of the local constancy prior, which states that the
function should not change within a small region. This means that f(x) ≈ f(x+e),
for any small change e (Goodfellow et al., 2016). Relying solely on this prior can
not be enough to tackle problems involving high-dimensional data, as the respective
feature spaces are too wide and therefore the inference based predominantly on the
most similar, i.e. nearest example becomes too noisy.

Neural Networks can partially handle this problem by incorporating another prior
assumption. This prior is called the manifold hypothesis and states that within
the high-dimensional feature space, the data is concentrated within a connected
lower-dimensional region, the manifold. For real-world application this assumption
seems to be approximately true for many tasks, e.g. for the translation of text:
The existing words do inhabit a small space within the space of all possible words,
as several constraints, such as length, limit the space of developed and used words
(Goodfellow et al., 2016).

To understand the structure of a neural network it is crucial to first understand the
building blocks of these networks, the units. A unit receives input x from other
units. This input is weighted via w, meaning each unit can weigh information from
previous units differently. The weighted sum of these inputs is then added to the
bias b of the unit, a numerical term influencing the general tendency of the unit
to produce high activation. Equation 1 illustrates, how the activation of a unit is
depended on the input vector coming from previous units x and the unit-specific
weighting of this information via w and the bias b.

z = wx+ b (1)

This activation z is put through an activation function, after which it is called the
output of the unit and is given to the next units. This activation function is typically
non-linear. This is because a network with only linear activation functions would
itself be a strictly linear function incapable of learning non-linear functions (Zhang
et al., 2023).

Usually, several units are combined into a layer, with the name of the layer depending
on the position of the layer. The first layer, which receives the input directly from
the data, is called the input layer. The output of the final layer is the output of the
network, therefore this layer is referred to as the output layer. The layers in between
are called hidden layers (HL). These namining conventions are illustrated in Figure
3. The number of units within a layer is called the width of the layer, whereas the
number of layers is known as the depth of the network. With the advent of better
algorithms and hardware, training deeper networks became feasible, hence the name
deep neural networks or deep learning.

2 BACKGROUND 18

Figure 3: Structure of a Neural Network (Nielsen, 2015)

Another advantage of neural networks is based on their ability to learn represen-
tations of the data. The calculations in the neural network may be interpreted in
the following manner: The hidden layers bring the original representation of the
data into a format, which is better suited for the final classification. Afterward,
the classification is done based on this informative representation. Updating the
weights and biases within the learning process equates to finding the best-suited
classification function and the best representation of the data, on which to base the
final classification. Neural networks are therefore able to learn high-level features
and abstract representations of the data as a part of the training process (Mitchell,
1997). This avoids the reliance on human experts to find the best representation of
the data, which is advantageous, see Subsection 2.2.2.

During the training the weights and biases of each unit within the network get
updated iteratively, to match a function with less error. The error of the network is
calculated based on the distance between the outputs of the network and the true,
expected output. Depending on the task and data type of the output type of the
network, different cost functions are available to measure the error of the network.

For this study, the most important loss function, used for all networks within Chap-
ter 5, is the Cross-Entropy Loss. To leverage the available information optimally, the
concept of maximum likelihood is used by this loss function. As the data is assumed
to be independent, the conditional distribution of the labels given the observed data
P (Y |X) may be re-written as

P (Y |X) =
n∏
i

P (y(i)|x(i)) (2)

As maximizing this likelihood is equivalent to minimizing the respective negative
log-likelihood, this may be written as:

− logP (Y |X) =
n∑

i=1

− logP (y(i)|x(i)) =
n∑

i=1

l(y(i), ŷ(i)) (3)

2 BACKGROUND 19

With the loss function l being calculated over all k classes in the following manner:

l(y(i), ŷ(i)) = −
k∑

j=1

yj log ŷj (4)

Equation 4 is similar to the definition of entropy, motivating the name of this loss
function. This loss function may either be interpreted as maximizing the likelihood of
the observed data or as minimizing the level of surprise encountered upon prediction.
For discrete classification tasks this is a popular choice regarding the loss function,
based on the useful properties utilized by this loss, as well as enabling efficient
computation of gradients (Zhang et al., 2023).

As the training problem of deep neural networks is typically nonconvex, the optimal
parameter values cannot be found analytically. After input data was passed through
the network in a forward pass, the loss J(θ) is calculated based on the chosen cost
function J and the parameters of the model θ. To reduce the error of the network
the information is required how the loss depends on the current weights and biases θ
of the model. This information is present within the gradient ∇θJ(θ). The influence
of each parameter on the overall cost of the current network may be calculated via
the chain rule of calculus. In the scalar case, this rule states that for the functions
y = g(x) and z = f(g(x)) the derivative of z respective to x is

dz

dx
=

dz

dy

dy

dx
(5)

This rule can be used to calculate the gradient for nested functions. A deep neural
network can be viewed as a collection of nested functions, where the final output is
created by applying all the functions represented by the layers in a nested fashion,
see equation 6.

ŷ = f4(f3(f2(f1(x)))) (6)

Therefore, the chain rule of calculus can be used to calculate all the needed gradients.
Generalizing this rule beyond the scalar case for x ∈ Rm, y ∈ Rn, with g mapping
from Rm to Rn, yields

∂z

∂xi

=
∑
j

∂z

∂yj

∂yj
∂xi

(7)

Using vector notation this can be written as

∇xz =

(
∂y

∂x

)T

∇yz (8)

where
∂y

∂x
is the n ×m jacobian matrix of g, i.e. the matrix containing all partial

derivatives. The backpropagation algorithm consists of performing such a jacobian-
gradient product for each operation within the computational graph of the neural
network. When doing so for a network, several subexpressions would need to be
evaluated several times. The backpropagation algorithm stores these subexpressions,

2 BACKGROUND 20

thus increasing the evaluation speed, especially on large networks (Goodfellow et al.,
2016).

In practice, calculáting the gradients on the entire dataset is avoided due to mem-
ory issues, as the size of the available datasets often exceeds the available RAM.
Knowledge from statistical theory is used to approximate the information of the
whole dataset by using smaller subsets of the training data. The learning process,
therefore, consists of doing a forward pass of all the data within the chosen subset,
called minibatch, calculating the loss and the respective gradient for every param-
eter and updating the parameters, before passing the next minibatch through the
network. In practice using small batch sizes has proven to improve the model’s ca-
pability of generalizing. This might be due to the noise injected via the randomly
sampled examples within each minibatch, which might avoid halting in local min-
ima (Mitchell, 1997). When updating the parameters the gradients are added to
the current parameter value, after weighting the gradient by the learning rate µ.
Choosing a high learning rate will speed up the initial learning but may prevent
the learning from getting close to the desired minimum. A lower learning rate may
require a longer learning process but may allow approaching the desired minima
more closely. It has become common practice to change the learning rate during
the training process. There are several algorithms to do this, one widely accepted
algorithm is called adam, derived from adaptive moment estimation (Kingma and
Ba, 2017). This widespread acceptance stems from a multitude of useful properties
for stochastic optimization, as well as good empirical results.

The activation function chosen for the units depends on the given task. The acti-
vation function of the output layer is determined by the expected data type: When
doing regression tasks, the final layer may contain units with a linear activation
function, whereas for multi-class classification a typical activation function is the
softmax function. Each unit within the output layer corresponds to one of the k
possible classes and the network returns a vector of length k containing the prob-
abilities, that the given input data belongs to the respective class. The softmax
function is

softmax(z)i =
exp (zi)∑
j exp (zj)

(9)

with zi = log P̃ (y = i|x). For mutual exclusive classification, the final classification
is simply the class with the highest probability assigned to it, which is the class with
the highest value within z (Zhang et al., 2023).

The activation function determines how a unit is referred to, so a unit with the soft-
max activation function is called a softmax unit. As for the activation function of the
hidden units, these are typically non-linear functions that introduce non-linearity
into the neural network. This nonlinearity is desired because solving complex tasks
typically involves handling non-linearity. There are various possible activation func-
tions for the hidden units available, a usually acceptable choice is using Rectified
Linear Units (ReLU) with the activation function f(x) = max(0, x), which has the
useful property of having the derivative

2 BACKGROUND 21

f ′ =

{
0 if x < 0

1 if x > 0
(10)

The gradient f ′(0) is not defined, however, this can be ignored, as the input 0 is
typically a product of underflow, i.e. rounding of small non-zero values, therefore
returning using either 0 or 1 is heuristically justified (Goodfellow et al., 2016).

Regarding the structure of artificial neural networks another important theorem is
the universal approximation theorem, which states that a network with a linear
output layer and at least one hidden layer with a ”squashing” activation function
can approximate any Borel measurable function from one finite-dimensional space
to another with any desired nonzero amount of error, given enough hidden units
(Hornik et al., 1989). Any continuous function within a closed and bounded subset
of Rn is Borel measurable. Universal approximation theorems have also been proven
for a wider class of activation functions, including ReLUs (Leshno, 1993). This
theorem provides the theoretical basis, that the model class of neural networks is
in general appropriate to handle any task given the conditions above. It has been
shown that using models with less depth increased the needed width dramatically.
Therefore deeper networks are being used, which can represent the desired function
with fewer units. Being able to represent the wanted function does not mean that
this function gets learned within the learning process (Mitchell, 1997). This may be
because the learning halts in local minima, as a result of gradient-based learning.

As a consequence of the theorem above it may be stated that depending on the size
of the network, artificial neural networks have a large representational capacity, as
defined in Subsection 2.1.2. To guide the learning process to generalize better, sev-
eral regularization methods are applied. These are intended to influence the learning
process by adding additional constraints so that the resulting model generalizes bet-
ter (Goodfellow et al., 2016). It has been shown that bigger, well-regularized models
typically outperform smaller models with little regularization. As there are various
ways in which a neural network may be regularized, the following discussion only
entails methods used within Chapter 5.

The first regularization method is dataset augmentation. The idea is that using
larger datasets makes it more difficult for a model with a fixed representational
capacity to overfit. Via dataset augmentation, the existing data is used to generate
additional, similar training examples. In general, these additional samples might be
generated by adding small, but for the classification irrelevant noise to the examples
and adding these noised examples to the dataset (Gu et al., 2021). The enhanced
performance may be explained by the inclusion of examples, which probably exist in
reality, but were not included in the original training data (Goodfellow et al., 2016).
Figure 4 shows the creation of augmented data by either adding small random noise
or a small constant term.

Regularization by dropout refers to randomly removing a portion of the hidden units
and then training and adjusting the parameters of the remaining units. For each
minibatch, another randomly selected portion of the hidden units is excluded from

2 BACKGROUND 22

Figure 4: Examples for Data Augmentation

forward propagation and learning. After training, the parameters of the model are
rescaled according to the dropout rate used. This adds uncertainty to the presence
of multiple features for the final classification, forcing the model to base its final
classification on the aggregation of multiple pieces of information, rather than re-
lying on singular features that may not be present. Another way to understand
the effect of dropout is to interpret the final model as a mixture of different sub-
models that share parameters. By interpreting dropout in this way, the additional
performance on the validation data can be explained by the aggregation of different
models, making the resulting model an ensemble model (Hinton et al., 2012). The
effectiveness of this method has been demonstrated for a wide range of networks,
albeit at the cost of additional training time or making larger networks necessary
(Labach et al., 2019). Figure 5 illustrates dropout.

Figure 5: Full Network vs. Network affected by Dropout (Nielsen, 2015)

Another regularization method is early stopping. This means stopping the learn-
ing process on the training data, as soon as the performance of the model on the
validation data does not improve anymore. This is motivated by the idea, that
this stopping point marks the time when the model stopped learning generally use-

2 BACKGROUND 23

ful patterns and began overfitting on the training data by learning overly complex
functions based on observed noise (Caruana et al., 2000).

Batch normalization refers to the process of z-standardizing the inputs of the respec-
tive layer, i.e making the resulting distribution centered around zero with a standard
deviation of one. While the exact reasons for the success of this method remain not
fully known, reliable enhancement of network performance has led to widespread
usage (Zhang et al., 2023).

2.3.2 Convolutional Neural Networks

There are various classes of neural networks which differ in design to enable better
processing of certain characteristics of the input data. One expansion on the classical
fully-connected feedforward network is the convolutional neural network (CNN),
which is defined as a feedforward network that has at least one layer performing
the convolution operation. This operation consists of multiplying a certain weight
matrix, also known as a receptive field, over a part of the input data, where the size
of the receptive field is smaller than the size of the input data. This field gets moved
over all of the grid-like input data and results in a grid-like feature map (LeCun
et al., 1998). Figure 6 illustrates a possible result by showing a color-coded feature
map besides the original input image.

Figure 6: Input Image and resulting feature map (Goodfellow et al., 2016)

Applying convolution leverages various ideas: Sparse interactions means that the
number of parameters used may be reduced significantly by using a convolution layer
instead of a fully connected layer. This is because not every input unit is connected
to every output unit via a separate weight parameter. Matrix multiplication with m
inputs and n outputs requires a runtime of O(m · n), whereas applying a kernel or
receptive field, which limits the number of connections from the input to the output
to k makes calculation in O(k · n) possible. In deeper networks, the later layers still
can indirectly interact with large proportions of the input, resulting in a significant
reduction in used parameters, while keeping the performance of said network high.
Applying the same kernel across all of the input data can be interpreted as a form
of parameter sharing, as the same set of parameters gets used for the entirety of the
input data, resulting in smaller memory requirements compared to models, where
each input unit is connected to all the output units. This parameter sharing causes
the convolution layer to be equivariant to translation. An equivariant function is a
function, where a changed input results in an equally changed output, i.e. f(x) is

2 BACKGROUND 24

equivariant to the function g if f(g(x)) = g(f(x)). Specifically, this translates to the
convolution layer being able to detect certain patterns within the grid-like topology
of the input data, creating feature maps displaying the occurrence of the feature
described by the receptive field. Additionally, multiple convolution layers may be
combined within a network, enabling the detection of high-level patterns from the
data in an efficient manner (LeCun et al., 1998).

The various hyperparameters for the construction of a convolution layer are as fol-
lows: The kernel size determines how many datapoints are evaluated at once. Bigger
kernel sizes, i.e. local receptive fields, are able to detect more complex patterns, al-
beit at the cost of additional parameters. Small kernel sizes have been shown to work
well (Grzeszick et al., 2017). The number of filters determines how many kernels
are being applied to the input, where each filter detects its own features. Therefore
applying various k filters to the same input results in k feature maps. The stride
determines the step length between the application of the kernel to the data. Choos-
ing a stride higher than the kernel size is discouraged, as this would entail not using
certain data points at all. Using a convolution layer introduces the prior assumption
into the network, that the function to be learned by the layer only contains local
interactions and is equivariant to translation (Goodfellow et al., 2016).

Typically pooling is performed after convolution. This operation gathers the infor-
mation within a region by a summary statistic. This makes the internal represen-
tation of the network approximately invariant to small translations of the input,
meaning that small modifications of the input hardly change the pooled outputs.
This is especially useful when the detection of the presence of a pattern is more
important than knowing the exact location of the pattern. Adding a pooling layer
adds the prior assumption, that each unit should be invariant to small translations.
Regarding the summary statistic for pooling, there are several options, with using
the maximum value within a region a commonly used one (Wang et al., 2019a).
Another hyperparameter for pooling is the aggregation size, determining how many
elements of a sample are to be aggregated by the singular summary statistic. Ana-
logue to the convolution there is also the stride hyperparameter, regulating how big
the overlap between the regions to aggregate is.

When processing data in a grid-like structure, e.g. pictures or time-series data,
typically convolution and pooling operations are performed before processing the
resulting feature maps within fully connected layers (Gu et al., 2021). As these
feedfordward layers process input in the format of vectors, the feature maps get
flattened, i.e. transformed to a vector.

2.3.3 Recurrent Neural Networks

Another relevant extension of feedforward neural networks are recurrent neural net-
works, a group of networks specialized in the processing of sequential data (Gu et al.,
2021). This specialization enables them to successfully handle long-term dependen-
cies.

2 BACKGROUND 25

Similar to convolutional neural networks, these networks make heavy use of param-
eter sharing, which makes it possible to generalize across several parts of the model.
This enables the detection of patterns regardless of the specific point in time of
occurrence. This parameter sharing enables most recurrent networks to handle se-
quences of arbitrary length, even if this length was not observed in the training data.
Feedforward neural networks and convolutional neural networks may be viewed as
a directed acyclic computational graph going layer per layer from the input to the
output. Recurrent networks extend this by allowing cycles within the computational
graph. When the state s depends on the previous state of the system and its param-
eters, it may in general be written as st = f(s(t−1); θ). In a process called unfolding
the computational graph may be unrolled for any finite number of steps in time T
by replacing s with the definition. Therefore with t = 3, the previous function may
be unrolled as

s(3) = f(s(2); θ)

= f(f(s(1); θ); θ)
(11)

The above-mentioned parameter sharing can be seen, as the same θ gets processed
by every call of the function f . This represents the usage of the same transition
function for every time step. Applying this unfolding results in a graph without
recurrence, which may be seen as a directed acyclic graph (Zhang et al., 2023). In
recurrent neural networks, the state of the hidden units may therefore be written as

ht = f(ht−1,xt; θ) (12)

The forward pass through such a network consists of initializing h(0), then for each
t ∈ {1, ..., T} the activation

at = b+Wh(t−1) +Ux(t) (13)

gets computed, where b is the bias vector, W is the weight matrix weighting the
influence of the previous hidden state and U is the weight matrix applied to the new
input data at time t. Afterwards the hidden state h(t) gets computed by applying
the activation function to a(t). The output o(t) is then generated via the bias vector
c and the matrix weighting the influence of the hidden state to the output, V :

o(t) = c+ V h(t) (14)

When the task is a classification based on past events, the network learns to treat
h as a lossy summary of past events. Learning in these networks might be done via
the backpropagation algorithm applied to the unfolded computational graph. This
process is known as back-propagation through time. As this process is inherently
sequential, parallelization is not possible, resulting in O(T) runtime (Goodfellow
et al., 2016).

Long-term dependencies are difficult to process for these recurrent neural networks
because this information is stored within the hidden states and the information

2 BACKGROUND 26

within these will either vanish or explode, depending on the weight matrix W ,
because as the information within gets transported through time, this matrix will
be multiplied with itself multiple times.

The Long short-term memory (LSTM) model is a specialized version of recurrent
neural networks aimed at mitigating these problems by using LSTM cells. The
input and output of these LSTM cells are identical to those used by recurrent neural
networks, however, LSTM cells have an additional system of gating units attached to
them, which control how and if past information flows through time (Hochreiter and
Schmidhuber, 1997). This system of gating units within an LSTM cell is displayed
in Figure 7.

Figure 7: LSTM Cell

The central unit is called state unit s(t), which has a self-loop. The weight of this
self-loop is determined by a forget-gate, which uses a sigmoid activation function to
ensure that this weight w ∈ (0, 1). The activation of the forget gate for one LSTM
cell at time t is being computed as

f (t) = σ
(
bf +

∑
j

U f
j x

(t)
j +

∑
j

W f
j h

(t−1)
j

)
(15)

With bf denoting the bias of the forget gate, U f denoting the weight applied to the
input, W f denoting the weights applied to the previous hidden states, also known
as recurrent weights and x(t) denoting the external input at time t. Each LSTM cell
additionally has an external input gate g, which determines, the weight with which
the new external input is being used to update the internal state of st. Additionally,
there is an output gate q which uses present and past information to determine the
weight applied to the state before outputting. The calculation for all gates and the
external input e is analog to the one for the forget gate f , however each with their

2 BACKGROUND 27

own bias b and weight matrices U and W . The activation function for the gates
is typically the sigmoid activation function, whereas the activation function for the
input may be any generic squashing function ρ (Goodfellow et al., 2016).

The activation of the state unit s(t) is therefore

s(t) = f (t)s(t−1) + g(t)e(t) (16)

The output ht of the LSTM cell is being controlled by the output gate qt, resulting
in

h(t) = tan
(
s(t)

)
qt (17)

With this architecture, LSTMs have been successfully applied to a wide range of
time-related data, proving their ability to successfully handle long-term dependen-
cies within the data (Hammerla et al., 2016).

3 DATA 28

3 Data

The following chapter aims to explain the origin of the data, as well as the prepro-
cessing steps applied to all the data used within this study.

3.1 Recording Device

The data for this research was generated by the active, rigid, low-back support
exoskeleton Cray-X manufactured by the company German Bionic. The devices
used within this study are Cray-X of the fifth generation, displayed in Figure 8.
It is an powered exoskeleton, which generates forces itself and applies these forces
via hardened parts on the user’s body. An introduction of exoskeletons is given
in Subsection 2.2.1. The intended usage of the Cray-X is relieving workers when
performing lifting tasks by straightening the user, when an upwards movement is
detected from a bent position. Force is being applied to the user via straps on the
torso, the thighs and the lower back to bring the user from the bent position into a
straight standing position (Schmidt, 2021b). The support generated by the device is
modulated by manually set support parameters, determining the scale of the given
support.

Figure 8: Cray-X of the fifth generation (Schmidt, 2021a)

The data recorded by the exoskeleton includes data from an IMU. Analog to other
research, this data was reduced a priori to the data from the built-in accelerometer
and gyroscope, i.e. the IMU was treated as a 6-axis IMU (Pesenti et al., 2023). This
was done based on the assumption, that the magnetometer data would add little

3 DATA 29

additional information. This assumption was made, as the state of the art contains
reports of well-performing models using only accelerometer and gyroscope data.
Additionally, the angle of the thighs, as well as the torso respective to the hip is
measured. These sensors are introduced in Subsection 2.1.3. The raw data contained
9 dimensions: The triaxial accelerometer, the triaxial gyroscope, the angles of the
left and right leg, as well as the tilt angle of the torso. The data was available in
high resolution, i.e. the angles were observed with a frequency of at least 10 Hertz,
the IMU data with a frequency of at least 60 Hertz. Hertz is defined as events per
second, therefore a frequency of 100 Hertz denotes that a given event happens 100
times within a second.

3.2 Definition Activities

This section entails the definitions of the seven activities distinguished within this
study.

The first activity is lifting, which includes the process of a standing human lowering
the torso without holding any weight, picking up a weight and placing the weight
at a higher position before lowering again.

The second activity was dropping, which was defined similarly to lifting, albeit that
the weight was lowered from a higher position to a lower position. Similar to lifting,
the activity of dropping was defined in a way that includes the process of moving
the body towards the next weight, i.e. the dropping data contained data in which
the subject straightens the body in order to grab an object from a higher position.

Holding was the third activity, which included a static holding of an object in front
of the user’s body in a bent position. Only slight movements sideways were allowed
within this activity because otherwise, the seen activity would shift to lifting or
dropping.

Holding, lifting and dropping were defined as activities performed in a standing
position.

Three activities concerned with modes of walking were distinguished. These include
walking normal, i.e. on flat ground, as well as walking up stairs and walking down
stairs. The activity walking normal includes movements of pushing and pulling a
trolley or a cart while moving on a flat surface. Moving backward or in circles is
included in the activity walking normal.

The last activity was resting, which summarized the activities of sitting and stand-
ing, both without the handling of weights.

The definition of these activities, determining the label given to the raw sensor
data, was set a priori and not adjusted throughout the study. These activities are
commonly used within the literature and can be aggregated under the term activities
of daily living, as mentioned in Subsection 2.1.1. The amount and granularity of the
chosen activities follows the state of the art to enable comparison. The activities

3 DATA 30

were defined as such, as it was assumed that the trained models would be able to
separate the respective sensor data reliably.

These definitions deal with the whole-body movements of individuals. These activi-
ties were defined as mutually exclusive, i.e. a person could only perform one activity
at a time.

3.3 Data Acquisition

3.3.1 Training Data

The training data was recorded in the testparcour of the company German Bionic,
where testers perform predefined tasks. The definition of these tasks was done by
experts to utilize the resulting data for the training of human activity recognition
systems. The chosen tasks are similar in structure to those encountered in the
logistics industry.

At the beginning of a task, the testers started a recording of the sensor data on
the device so that the raw sensor data could be linked to the activity. Examples
of these tasks are walking in a circle for 30 seconds or lifting multiple weights on
a board. Every recording contained a singular activity for a minimum duration of
20 seconds and up to 10 minutes. The testers can manually change the scale of
support provided by the exoskeleton between the recordings. During the tasks, the
testers were not under direct surveillance. As the subjects were employed over long
periods, some familiarisation with the tasks, the exoskeleton and the environment
is expected. The testers are able to choose the order in which the tasks are being
performed, therefore the training data could contain the same activity performed at
different levels of fatigue.

For the training data, nine testers were included, of which seven were male. The
testers were between 19 and 53 years old with an average of 32 years.

The training data results from recordings made by various devices. However, these
devices are all fifth-generation Cray-X exoskeletons with identical compositions.
Therefore, it is assumed that differences in the behavior of these devices are negli-
gible.

The training data was recorded from February 2022 until October 2022.

The lifting and dropping data includes moving the weight from various heights to
other varying heights. The used objects for lifting, dropping and holding range from
five to 20 kg in weight. The walking normal data included walking around corners
and walking backwards. For walking up or downstairs the training data contains
data from a singular staircase. This staircase was not a spiral staircase, i.e. walking
stairs contained only slight shifts sideways. The steps of this staircase had the same
length, width and height. The resting data includes sitting and standing data, with
chairs of differing height present within the dataset.

It was not possible to map the recordings in the training data to the individual
tester.

3 DATA 31

3.3.2 Validation Data

Analog to the training data, the validation data was recorded in the testparcour of
German Bionic. In contrast to the training data, the validation data was explicitly
recorded for this study.

The volunteers used for the validation data were recruited from the employees of
the company German Bionic.

The volunteers used for the validation data were informed of the goal of the record-
ings and had several minutes of preparation to find the preferred support settings of
the exoskeleton. The subjects were instructed to perform the tasks in a manner that
is natural to them. Afterward, each volunteer performed an individual protocol of
tasks. This protocol ensured, that the resulting activities were observed for similar
times. The protocols for the subjects included the same tasks, albeit in a differ-
ent order to include recordings of the same activity at different levels of exhaustion
within the dataset. During the protocol, the subjects were under observation by the
author. Based on the length of the protocol, the author gave instructions regarding
the next tasks whenever the volunteer was standing or sitting, resulting in the ob-
servation of more resting data, see Figure 10. The subjects were familiar with the
exoskeleton, but none had a history of continuous usage like the subjects observed
in the training data. Performing the individual protocol took between 15 and 25
minutes, depending on the resting time needed for recovery and understanding the
following tasks. Between each task a break was done, in which the subject rested.
During these 10 seconds of resting the subject was able to change the level of sup-
port given by the exoskeleton depending on current and future need. An example
of a used protocol is given in Appendix A.3.

The validation data consists of recordings made by n = 4 subjects between 20 and
26 years of age. Of these four subjects, three were male. No recording of the author
is included in the validation data. None of the subjects in the validation data appear
in the training or test data.

The validation data was recorded on different Cray-X exoskeletons of the same
generation. As a result, these exoskeletons share a common internal structure and
identical components. Differences due to the use of varying devices are therefore
assumed to be negligible.

The validation data was recorded on three days throughout October 2022.

Analog to the training data the validation data includes the handling of objects of
differing weights. These objects were moved to different heights to include a wider
variety of modes of performing these activities. Various modes of walking normal
are included in the validation data, e.g. pushing and pulling a cart. The staircase
observed within the training data is identical to the one within the validation data.
In general the weights, stairs and chairs utilized for the recording of the validation
data are identical to the ones observed within the training data, see Subsection 3.3.1.

3 DATA 32

3.3.3 Test Data

The test data was not recorded at the location observed in the training and test
data. This was done to prevent that information about the unseen test data are
present in the training data, i.e. to prevent that information about the shared
environment aid in the correct classification of test data. This was done to reliably
estimate the performance of the models in a real-world scenario, where none of the
users have been observed within the training data and the environment differs from
the environment of the training data. Changing the environment was done as it is
assumed, that the environment influences the specific way an activity is performed,
e.g. the height and width of a stair tread influence the specific mode of walking
stairs. Similar to the validation data the test data was recorded for this study.

The volunteers used for the test data were recruited from the author’s acquaintances.

Analog to the validation data the volunteers observed within the test data were
informed of the intended usage of the data and the purpose of the study. As none of
the subjects observed within the training data had experience with handling active
exoskeletons, five to 10 minutes were given for acclimatization. An explanation of
the behavior and the steps needed to change the support of the exoskeleton were
given. The subjects were instructed to perform the tasks in a way that feels natural
and comfortable to them. The individual protocols contained the same tasks with
different ordering. Similar to the validation data the next task was explained after
the previous one, while the subject was resting. During this resting phases the
subjects were allowed to change the support of the exoskeleton according to current
and future need. Performing the individual protocol took a similar amount of time
as performing the protocols of the validation data, i.e. 15 to 25 minutes.

The test set was collected to evaluate the performance of various models on unseen
data.

The test data contains n = 10 recordings from subjects between 23 and 53 years of
age. The median age was 26 years. Seven of the 10 subjects were male. The data
was recorded in five different locations, none of them was the location seen in the
training and validation data. No data of the author was included in the test data.

The test data was recorded on one Cray-X of the fifth generation.

The test data was recorded over four days in January 2023.

For each environment, different objects were used for lifting, dropping and holding.
The weight of these objects was within the boundaries observed within the training
data. Several modes of walking normal are included in the test data, such as moving
a cart. The test data contains recordings from two spiral staircases. The resting data
contains a mixture of sitting and standing, both equally observed for each subject,
albeit with different chairs at varying locations.

As one research question is concerned with estimating the performance of the trained
models in a real-world scenario, avoiding leaking information from the test set into
the training set became a priority. Based upon this the allocation of data to the

3 DATA 33

training, validation, or test set was not randomly chosen. This was done to prevent
observing the environments or subjects of the test data within the training data.
The design of this study did not allow for the usage of K-fold cross-validation, as
explained in Subsection 2.1.2, for several reasons: The first being that it was not
possible within the scope of this study to map the training data to a tester which
made the respective recording. Based on this the training data had to be used as
a joined dataset. The second reason is that the baseline method, which was used
as a comparison, was trained on the training data. Comparing the performance of
models trained on different datasets cannot be used to answer questions regarding
the better-suited architecture. Based on these reasons the test data was carefully
constructed to contain varied data. This was done to get a stable estimation of the
performance of the models without relying on k-fold cross validation.

It is important to consider that the test data was not created by a random sample
of a greater population. Therefore results based on the usage of this set are not
representative. Instead, they are to be understood as first attempts to answer the
research questions. Generating a representative sample would require the definition
of a population, from which this sample is drawn via a specified sampling procedure.

3.4 Preprocessing

This section aims at describing the preprocessing applied to all the datasets de-
scribed in Section 3.3.

3.4.1 Data Cleaning

Data Cleaning refers to removing or correcting incorrect or incomplete data within
a dataset.

Errors induced by miscalibrated sensors were avoided, as the sensors used within
the exoskeletons were correctly calibrated before the construction of the respective
exoskeleton.

No filtering technique for smoothing the sensor values has been applied.

Before the files were labeled, outliers in the sensor readings were searched. This
consisted of checking if the seen sensor values lie within boundaries of valid sensor
values. When the sensor values of a file lay outside these boundaries, a human could
inspect and remove the respective file, if necessary. This inspection was done by
human experts at German Bionic.

3.4.2 Labeling

The files were labeled manually, meaning the activity label was attached to the file
containing the respective raw sensor data only after being checked by a human.
When doing this inspection the data was cut if needed, keeping only data from the

3 DATA 34

respective activity. Faulty and erroneous recordings were removed. During labeling
the human inspector visually checked if the data is appropriate and as expected for
the respective activity class. This labeling was done at German Bionic by experts
familiar with sensor readings and the activities. Ambiguous, faulty, or erroneous
data was removed within this process and was not used for the respective data
sets. Based on this manual inspection the resulting data quality is assumed to be
adequate, as every file was inspected by a human expert and confirmed, that the
data is valid.

The training data was labeled by several experts at German Bionic, while the vali-
dation and test data were labeled by the author.

The following displays the distribution of the activities seen in the labeled data for
the training data in Figure 9, validation data in Figure 10 and test data in Figure
11.

The amount of available training data differed widely depending on the observed
activity: The most-observed activity, walking normal was observed over 750 times
more often than the least observed activities, walking up and walking down stairs.
Figure 9 displays the distribution of the raw, labeled training data in minutes per
activity. The overall amount of training data is larger than typically observed within
the literature, albeit being highly imbalanced (Grzeszick et al., 2017).

Figure 9: Amount of raw training data in minutes per activity

Figure 10 displays the distribution of labeled validation data in minutes per activity
for the validation data. The activity resting was observed more frequently due to
reasons explained in Subsection 3.3.2.

3 DATA 35

Figure 10: Amount of raw validation data in minutes per activity

Figure 11 shows the distribution of the resulting labeled test data in minutes. Similar
to the validation data the test data contains more walking normal data than most
other activities, as this activity has several modes in which it was performed, see
Section 3.2.

Figure 11: Amount of raw test data in minutes per activity

3.4.3 Resampling

After labeling the data, some general-purpose preprocessing was applied. This in-
cludes resampling the data, i.e. gathering various sensor readings into a singular
data point. This was being done to ensure that the aggregated sensor readings are

3 DATA 36

evenly spaced and a fixed period contains the same amount of readings. Resam-
pling was done guided by the literature and resulted in a resampling rate of 100
Hertz, meaning that each resampled datapoint contained the information of 10ms
(Pesenti et al., 2023). To fill gaps within the sensor readings various possibilities
exist. It was chosen to use forward filling and averaging of the resulting sensor
readings to produce the resampled data points. This decision was made by experts,
which used these methods and parameters to produce the data for the training of
baseline method.

An illustration of the resampling process used for this study is given in Appendix
A.2.

3.4.4 Creation of Windows

This collection of resampled data points was used to generate windows. The ap-
proach used for the generation of windows is the time-driven windows segmentation
approach, see Subsection 2.1.4. It divides the stream of sensor readings into win-
dows of a fixed length. The chosen window size was one second. This window size
was inspired by the literature, where similar lengths are common (Grzeszick et al.,
2017). As a result of the prior resampling, the amount of data points within each
window is identical. Each window contains the data for all m = 9 axis of measure-
ment, see Section 3.1, for n = 100 observations, making the resulting data matrix a
9, 100 matrix. To generate additional data, the windows were created with a 50%
overlap, i.e. a new window was created beginning at the middle of the previous one
(Valarezo et al., 2017). Doing so almost doubled the available data. This procedure
may be seen as a data augmentation technique, see Subsection 2.3.1, to generate ad-
ditional examples from the existing data, without the risk of generating adversarial
examples.

3.4.5 Balancing

Balancing a dataset refers to adjusting the dataset, so that the labels in the resulting
dataset appear with the same frequency. This is being done, as using unbalanced
datasets for the training of models may affect the classification behaviour in an
undesired manner. An introduction of balancing is given at the end of Subsection
2.1.4.

As seen in the Figures 9, 10 and 11 the datasets are imbalaced. Therefore balancing
was applied to all datasets.

For this study oversampling was used, i.e. before the dataset was inserted into a
model for training, validation, or testing purposes, the data was balanced by adding
additional samples of the minority classes until the dataset is balanced. These
additional samples were inserted unaltered. The same oversampling algorithm was
used for all datasets and models.

3 DATA 37

The windows introduced by this oversampling technique contain the same informa-
tion as the windows already present in the data set, so the additional samples might
be interpreted as placing a higher weight or importance on the original samples (Fer-
nandez et al., 2018). The data was balanced by oversampling because experimental
results show that this balancing method results in better model performance when
compared to undersampling, which can be explained by not discarding information
of the majority classes (Mohammed et al., 2020).

This balancing was applied after all model-specific processing was applied to the
windowed data. This model-specific preprocessing is explained at the same location
as the respective model in Chapters 4 and 5.

4 BASELINE METHOD 38

4 Baseline Method

This section aims at explaining the structure of the hierarchically classifying Support
Vector Machine model. This model is used as a reference for the performance of the
neural networks explained in Chapter 5.

4.1 Motivation

This model, from now on referred to as the baseline method, was built as a reference
for the results achieved by the various neural networks. The model represents the
conventional approach to HAR, before the advent of deep learning in HAR and
was constructed by using the domain knowledge of experts. These experts are
experienced with the construction of human activity recognition systems based on
active exoskeleton sensor data. As a consequence, the baseline method is seen as
representative of the conventional approach. This conventional approach is laid out
in Subsection 2.1.4 and illustrated in Figure 1.

4.2 Data Processing

The processing steps for the data for this method closely follow the process de-
scribed in Subsection 2.1.4, i.e. preprocessing, segmentation, feature extraction,
dimensionality reduction and balancing.

The same processing steps were applied to the training, validation and test data
in order to use them with this model. The origin of these datasets is laid out in
Section 3.3. The general preprocessing as laid out in Section 3.4 was applied, i.e.
the raw data was cleaned, labeled, resampled and cut into windows of a fixed length.
The preprocessing and segmentation of the data were therefore identical to all other
models used within this study.

4.2.1 Feature Extraction

After generating the resampled windows from the data, as explained in Chapter 3,
the data in the format of windows was used to generate a set of features. This set
contained features from the time domain, as well as the frequency domain approach,
as explained in Subsection 2.1.4. As a result of this process the features, which were
calculated on the sensor values within the window were attached to the respective
window, and the raw sensor values were discarded. This was being done, as it was
assumed, that all relevant information within the sensor readings of the window is
present within the generated features.

4 BASELINE METHOD 39

4.2.2 Dimensionality Reduction

This set of features was then reduced to a set of features to be used for the classi-
fication. The set of features to keep resulted from a process of combining domain
knowledge and filter and wrapper feature selection techniques. These techniques are
introduced in Subsection 2.1.4. The features constructed and kept for the classifi-
cation of samples cannot be made publicly available, as these are company secrets
owned by German Bionic.

4.2.3 Scaling

As the used classification models, Support Vector Machines, are sensitive regarding
the scale of the input data, the features needed to be normalized. As the Baseline
Method consists of three Support Vector Machines, i.e. the top-level, the lifting and
the walking classifier, each of the classifiers had another set of features as input.

The input features for each classifier were standardized either by z-normalization or
maximum absolute normalization. The standardization type was chosen based on
domain knowledge. The parameters used for normalization were computed on the
training data, but used for the validation and test data as well.

Z-normalization refers to a rescaling of the data x by

z =
x− µ

σ
(18)

The resulting distribution has a mean of 0 and a standard deviation of 1 (Gu et al.,
2021). When the original distribution was a normal distribution, the resulting dis-
tribution is known as a standard normal distribution. When maximum absolute
normalization was chosen, the data x was rescaled via

m =
x

max(|x|)
(19)

The resulting values are within [−1, 1].

4.2.4 Balancing

Afterward, this set of files, each file containing only for the classification necessary
features, was balanced via oversampling, as explained in Subsection 3.4.5. The data
was balanced in a way that ensures that classes separated by each classifier are
balanced, i.e. appear equally often.

The windows were saved as individual files. This is not necessary when training a
Support Vector Machine, but it was useful for training the neural networks, as these
are trained on minibatches. Saving the windows as individual files allowed loading
into Random-Access memory (RAM) only the windows needed for the current mini-
batch. As the neural network introduced in Section 5.3 is trained on the same data
as the baseline method, the data format needed to be appropriate to train a neural
network.

4 BASELINE METHOD 40

4.3 Classification

The final classification resulted from a hierarchical classification process. The first
model, also known as the top-level classifier, separated the three general classes
lifting, walking and resting. When lifting was classified the so-called lifting classifier
was called to separate the three activities lifting, dropping and holding. When a
sample was classified as walking by the top-level classifier, the walking classifier
was called to classify this data as walking normal, walking up stairs or walking
down stairs. The definition of these activities is given in Section 3.2. For this
classification each classifier had its own set of features available. Figure 12 illustrates
this classification process.

Figure 12: Flowchart of the Classification of the Baseline Method

The classification based on these normalized features was done by a machine learn-
ing model called a Support Vector Machine (SVM). This is a typical model for HAR,
which works by finding the hyperplane, which separates the respective classes, rep-
resented by vectors of the examples, the best, i.e. with the widest margin (Yin
et al., 2021). As this is only possible when the data is linearly separable, the al-
gorithm may apply the kernel trick, which is based on the fact, that in a space
of high-enough dimensionality, any set of vectors is linearly separable. Using this
kernel trick enables the algorithm to find well-mannered functions, which separate
the sets in a high-dimensional space, as well as enabling the retransformation to the
original, lower-dimensional space (Bishop, 2006).

Each classifier utilized a Support Vector Machine as the classification algorithm,
however with individual sets of features and label classes as output. Depending
on the classifier the definition of the respective labels changed. The lifting class of
the top-level classifier contains the activities lifting, dropping and holding and the
walking class of this classifier contained walking normal, as well as walking stairs.
This definition of the classes for the top-level classifier was necessary to enforce, that
the top-level classifier calls the correct classifier when classifying activities.

The classifiers were trained exclusively on the training data. For the optimization
of hyperparameters of the classifiers a randomly chosen subset of the training data
was used as validation data. The validation data as laid out in Subsection 3.3.2 was

4 BASELINE METHOD 41

not used for this purpose. This is because the baseline method was trained before
the beginning of the study and treated as fixed throughout this study.

The training of the baseline method with the respective classifiers was done before-
hand by human experts at the German Bionic, see Section 3.1. The structure of the
baseline method as a hierarchically classifying collection of Support Vector Machines
was decided by these experts.

5 METHOD 42

5 Method

5.1 Motivation

As seen in Subsection 2.2.3 there is little research to date regarding human activity
based on active exoskeleton data. As the experience within the field is limited to
singular explorations, which still leave important research questions unanswered,
this thesis aims at providing the first general insights.

Regarding the ability to generalize the present literature does not give insights into
the performance of the models when applied to new persons or within new envi-
ronments. The number of subjects included in previous studies was typically small,
making it plausible to assume that the implemented models might have overfitted
on the observed subjects. When the same subjects or the same environment is used
for training and testing, the assumption that the test set consists of unseen data is
violated, which might help overfitted models to perform well on the test data. The
phenomenon of overfitting is introduced in Subsection 2.1.2. As the model´s ability
to generalize is crucial for application in practice, estimating the robustness of the
models is an important issue, which is currently disregarded by the literature. This
thesis tries to estimate the performance of trained models in an unbiased manner
by a careful creation of the test set, see Subsection 3.3.3.

As large-scale studies are still missing within this area of research, it is unclear
which information is the most important for correct classification. To find evidence
this study compares various structures of neural networks, which handle information
differently. The assumption is made, that the best model was able to perform in
that manner because it had the most useful information available. Based on this
assumption it is inferred, which information is the most important for the success
of the various network types.

For practitioners, it is important to know which effort is necessary to achieve ac-
ceptable performance with the models. As the current literature often conceals the
number of hyperparameter constellations which were tried before reaching the final
model, this thesis aims at communicating this effort (Hammerla et al., 2016). Be-
sides communicating experience to foster realistic expectations, this is being done
to enhance reproducibility.

5.2 Hyperparameter Optimization Schedule

To enable a comparison between the different models, all architectures trained
throughout Chapter 5 have undergone a process of hyperparameter optimization,
which is as similar as possible. This includes that all the models were trained for
10 epochs. This number of epochs was chosen based on the comparatively large
amount of available training data even before balancing, see Figure 9. The hyper-
parameters were optimized one after the other with the order of optimization based
on the results of large-scale experiments by Hammerla et al. (2016). In addition, the

5 METHOD 43

importance of the hyperparameter influenced the number of experiments performed
to find the optimal hyperparameter value. More important hyperparameters were
investigated more thoroughly. The number of experiments conducted was limited
by the resources available to this study.

The initial model resulted from a preliminary exploration, which ended as soon as
a model with over 70% accuracy on the validation data was detected. For this
exploration 5% of the available training data were used, to find a hyperparameter
constellation that enables learning from the available data. The hyperparameters
used in the preliminary exploration were based on domain knowledge of the author,
as well as estimations regarding the complexity of the task to be solved by the
respective model. The hyperparameters of this model were used as a starting point
for the hyperparameter optimization. All of the experiments conducted to find the
optimal hyperparameter values consisted of training for 10 epochs while tracking
loss and accuracy on the training and validation data.

The first hyperparameter to be optimized was the learning rate µ of the model, for
which six experiments were done for each network. During this search, the learning
rate µ was varied across orders of magnitude in four experiments before the last two
experiments were concerned with finding the best learning rate within the range of
tried learning rates.

Using the best learning rate the architecture of the network, i.e. the amount, compo-
sition and width of the hidden layers, was optimized in four experiments. Additional
hidden layers were added or the number of hidden layers was reduced while increas-
ing the width of the remaining hidden layers. Experiments were performed, in which
the depth of the network was kept constant, while the width of the hidden layers
was increased.

Afterward, the effects of regularization via dropout were explored by three experi-
ments, using the dropout rates of 0.5, 0.25 and 0.1.

Afterward, the minibatch size was optimized in two additional experiments, where
deviations from the default size of 64 were tried. These minibatch sizes were 256 and
512. It was chosen to explore the effects of higher minibatch sizes to test the effects
of a less noisy approximation of the information within the dataset. The process of
hyperparameter optimization is illustrated in Figure 13.

The final model was the model with the highest accuracy on the validation data from
all the models produced throughout this hyperparameter optimization process. The
validation data was used only for finding the correct hyperparameters of the model,
not for optimizing the parameters of the final model.

The exact number of experiments for each hyperparameter was chosen based on the
relevance of the respective hyperparameter. The best resulting model was used as the
final model for this architecture and used for the classification of the test data. The
optimal hyperparameter values were found by choosing the model, which resulted in
the highest accuracy on the validation data during training. For this an naive early
stopping algorithm was used, which saved the model with the current parameter
values, when the performance of the model on the entire validation dataset was

5 METHOD 44

Figure 13: Process of hyperparameter optimization

better than all previously measured performances. This algorithm enabled training
each model on the same amount of epochs, while not letting overfitting caused by
training for too long influence the final model performance.

To prevent data leakage from the test data into the training process, the test data
was used after the training of all models was finished. The classification of the
test data happened five times throughout this study, i.e once for every model type
mentioned throughout Chapters 4 and 5.

Due to the scope of this study, the effects of all hyperparameters could not be
evaluated. It was chosen to limit the experiments to the set of hyperparameters
that was assumed to have the biggest influence on the performance of the model.
Some hyperparameter values were used for all networks, such as the loss function.
For all networks, the Cross-Entropy Loss was used, which is explained in Subsection
2.3.1. As an optimization algorithm, adam was chosen. When not stated otherwise,
the activation function used for the hidden units was the ReLU. The window size
and resampling rate for all networks and the baseline method were constant, as
stated in Section 3.4. Batch normalization was applied after every fully-connected
hidden feedforward layer. These hyperparameters were chosen based on experience
within the literature (Hammerla et al., 2016).

The training was done in Python, version 3.8.10, and the training of the neural
networks was done via the PyTorch framework, more specifically the CPU-variant
of version 1.13.1. When not stated otherwise, the default values for the respective
parameters and functions of this library were used (Paszke et al., 2019).

The baseline method was processed by using the SVC class of the Python package
Scikit learn (Pedregosa et al., 2011). Version 1.1.0 of this package was used.

To improve reproducibility and enable further research, the code used in this study
is freely available under the MIT license, see appendix A.1.

The training and validation were performed on an Intel(R) Core(TM) i5-1135G7
CPU of the 11th generation with 2.40GHz.

5 METHOD 45

5.3 Feedforward Network applied to features

The first model trained explicitly for this study was built to answer the question:
Does the baseline method use the available information in an optimal way? Answer-
ing this is essential for the comparison of later models with the baseline method.
To test this a neural network was built, which is in structure and format of train-
ing data exactly equal to the baseline method. It classifies hierarchically based on a
normalized set of features, with first classifying on an upper level if the seen features
belong to the classes lifting, walking, or resting. Depending on the first classifica-
tion the lifting or walking classifiers might get called, analog to the baseline method,
explained in Chapter 4. This classification process is depicted in Figure 12. In the
following, this model is referred to as the ShallowFFNet model.

The preprocessing of the data for this model strictly follows the preprocessing ex-
plained in Section 4.2, except for exchanging the final classifier to a fully-connected
feedforward neural network. Each classifier had an individual set of features as input.
These sets of features were identical to the sets of features utilized by the baseline
method, i.e. the top-level classifier of the ShallowFFNet model had the same set of
features as input as the top-level classifier of the baseline method. For the normal-
ization of the features, the same parameters as for the baseline method were used.
These parameters were calculated on the training data and used for the validation
and test data as well, see Subsection 4.2.3. The datasets, consisting of standardized
sets of features, were balanced via oversampling as explained in Subsection 3.4.5.

Based on the hierarchical structure of this classifier, three networks were trained:
The top-level classifier, as well as a lifting classifier and a walking classifier.

Training the three classifiers in sequential order with 15 experiments performed for
each model to find the optimal hyperparameter values, with each experiment con-
sisting of training over 10 epochs, resulted in the final hyperparameter values. Table
1 displays the final hyperparameter values for each classifier of the ShallowFFNet
model.

Table 1: Hyperparameters for Final ShallowFFNet Model

Classifier Learning rate Nr. HL Width of HL Dropout rate Minibatch size

Top 0.000003 1 8 0.0 64

Lifting 0.000003 1 8 0.1 64

Walking 0.00003 1 8 0.0 64

After the hyperparameter optimization process, the final top-level model contains
307 parameters, the lifting classifier 91 parameters and the walking classifier 99
parameters to be optimized during training. This amount of parameters refers to
the number of weights and biases within the network. An explanation of these terms
is given in Subsection 2.3.1.

5 METHOD 46

5.4 Feedforward Network applied to raw data

The next trained model was built to answer the question if enabling the model to
learn relevant features as a part of the training process enables better performance
when compared to using handcrafted features as input for the models. For this
purpose a model was created, which got the training data in a raw format as input.
In the first step, the performance of a deep fully-connected feedforward network is
evaluated, before more specialized network variants are trained in the following two
subsections. As this model learns useful representations of the data within multiple
hidden feedforward layers, this network is referred to as the DeepFFNet model.

The processing of the datasets was as follows: The general preprocessing as ex-
plained in Section 3.4 was applied. The labeled and resampled data was cut into
windows. This data was z-normalized, as explained in Subsection 4.2.3. To avoid
differences in the resulting performance based on different standardization for the
various models, the data for the neural networks had to be standardized as well.
Similar to the baseline method the parameters used for the standardization of the
input data were computed based on the training data and then used for the training,
validation and test data. In contrast to the previously mentioned models, the raw
data was standardized. This was done as this model receives the raw data as input,
whereas the ShallowFFNet model and the baseline method receive features as input.
Standardization therefore had to be applied to the raw data. This was done for each
axis separately. As a result, the n×m matrix for one window with m denoting the
number of measured axis contained m = 9 vectors with an expected mean of 0 and
an expected variance of 1. n = 100 is the number of resampled datapoints within a
window, see Section 3.4.

After standardizing the data was flattened, i.e. the data for one window was brought
from the shape n ×m to a vector of length n ·m. With m = 9 and n = 100, this
yields a length of the resulting vector of 900. Based on this process the input layer
of the DeepFFNet model had a width of 900 units.

The resulting data was balanced via oversampling so that each of the seven activities
has the same number of available data points. Analog to the model trained in Section
5.3, the chosen oversampling algorithm drew samples from the existing samples of
the minority class and added them unchanged to the dataset.

The training regime for this model was as follows:

The preliminary exploration resulted in an architecture with three hidden fully-
connected layers with 70, 40 and 20 ReLU units respectively after trying three
model structures.

After 15 experiments, which followed strictly the training protocol explained in
Section 5.2, the hyperparameters for the final DeepFFNet model were found.

5 METHOD 47

Table 2 displays the final learning rate, number and width of hidden layers (HL),
dropout rate and minibatch size. These hyperparameters are introduced in Subsec-
tion 2.3.1.

Table 2: Hyperparameters for Final DeepFFNet Model

Model Learning rate Nr. HL Width of HL Dropout rate Minibatch size

DeepFFNet 0.00001 3 70,40,20 0.1 64

The final DeepFFNet model contained 66877 weights and biases which were opti-
mized during the training process.

5.5 Convolutional Neural Network applied to raw data

This model was constructed and trained to test, whether allowing the model to take
advantage of the ordering of the data along the time axis improves performance. This
ordering is leveraged by models utilizing the convolution operation. An introduction
of these models is given in Subsection 2.3.2. Based on this convolution operation the
final network of this architecture is referred to as the ConvNet model. It is assumed
that utilizing this ordering of the data is possible when the neural network receives
the raw data, therefore the data used for this model is not brought into the format of
features. Using several hidden layers further enables learning useful representations
of the data.

The data used for the training, validation and testing of the model was preprocessed
as laid out in Subsection 3.4. Analog to the DeepFFNet model explained in Section
5.4, the resampled and windowed datapoints were z-normalized among each of the
m = 9 axes. The normalization parameters from the DeepFFNet model were used.
These were calculated on the training data and used additionally on the validation
and test data. Normalization was done, as the input for the baseline method was
standardized. When evaluating the effects of using different architectures for solving
a given task it is important to keep external factors constant. For this reason the
input for all neural networks was standardized.

Analog to the other models, the data was balanced by oversampling, so that each
activity has the same frequency within the resulting dataset. After balancing the
total amount of occurrences depends on the number of windows of the activity with
the previously highest number of windows. Analog to all the other models through-
out this study, the oversampling was performed by repeatedly adding samples from
the minority class to the dataset, until the dataset was balanced.

As the convolution operation leverages the spatial structure of the data, the shape
of the data was not converted into a vector. The matrix for one window had a shape
of m× n. n = 100 denotes the number of resampled datapoints within one window
and m = 9 denotes the amount of measured axis

5 METHOD 48

Analog to the process in Section 5.4, a preliminary exploration was performed, to
find an appropriate layer structure before optimizing the hyperparameters. Five
models were evaluated before a model with an overall accuracy of over 70% on the
validation data was found. The first layer of this model was a convolution layer,
which applied 30 receptive fields with a length of 15 and a stride of five to the data.
The convolution layer performed 1D convolution along the time axis, as suggested
by the literature, as well as experience within the preliminary exploration, where
1D convolution outperformed 2D convolution (Murad and Pyun, 2017).

Afterward, these feature maps were aggregated via max pooling, as this is a widely
used pooling technique (Wang et al., 2019a). This pooling is done with a stride of two
and a length of the area to pool of two. After the pooling, the data was flattened,
before being inserted in a fully connected ReLU layer with 50 units, which was
followed by another ReLU layer with 30 units.

The hyperparameter optimization was done based on the architecture of the prelim-
inary exploration, as well as experience from the literature. Using the best learning
rate from six experiments, four different layer structures were explored. The effects
of adding another convolution and pooling layer were tested within this optimization
step. The best network architecture was found to be a model utilizing a convolution
layer with 30 receptive fields, each having a length of five, applied with a stride of
five. Afterward, max-pooling was performed with a length and stride of two before
the resulting condensed feature maps were flattened. this vector was processed by
two feedforward layers, using 50 and 30 ReLU units respectively, before the results
were passed into the output layer. Table 3 provides an overview of the final hyper-
parameters of the Convnet Model. This table includes the learning rate, the number
and width of the hidden layers (HL), as well as the dropout rate and minibatch size.
These hyperparameters are introduced in Subsection 2.3.1.

Table 3: Hyperparameters for Final ConvNet Model

Model Learning rate Nr. HL Width of HL Dropout rate Minibatch size

ConvNet 0.00001 5 C,P,300,50,30 0.1 64

In the Table 3 the width of the hidden layers is laid out only for the last three hidden
layers. The Convolution Layer (C) and the pooling layer (P) do not have a defined
width. The flattening of the pooled feature maps resulted in 300 units as input for
the two remaining hidden fully-connected feedforward layers.

The final model was trained based on the optimal hyperparameters found by this
process of hyperparameter optimization and had 18177 parameters to be optimized
throughout the training process. These parameters include all the weights and biases
of the ConvNet model.

5 METHOD 49

5.6 Long Short-term memory Network applied to raw data

Additional models were trained, which specialized in handling time-related data and
long-term dependencies. These were trained to test the hypothesis, that handling
this time-related structure of the data enables better performance. As these recur-
rent models make use of a unit called a long short-term memory (LSTM) cell, the
final network utilizing this architecture is referred to as the LSTMNet model.

The preprocessing of the datasets for this model follows exactly the one described
in Section 5.5, where the processing of the data for convolutional neural networks is
laid out. As convolutional and recurrent neural networks leverage the information
inherent in the ordering of the sensor readings, both networks receive the data in
the same format.

The networks trained within this study make use of the standard version of the
LSTM cell, which does not contain any peephole connections. This cell and the
general architecture of recurrent and LSTM networks are introduced in Subsection
2.3.3.

The preliminary exploration resulted in a network utilizing a single hidden layer of
150 LSTM cells. Before arriving at this network four combinations of learning rates
and amount and width of LSTM layers were tried.

The process of hyperparameter optimization deviates from the description given in
Section 5.2. After six experiments regarding the optimal learning rate the architec-
ture was explored in four experiments. Throughout the optimization of the network
architecture, neither adding another layer of LSTM cells nor adding additional feed-
forward layers improved performance. As a result, the effects of dropout could not
be researched, as the final model consisted only of two layers, the input or LSTM
layer, as well as the output layer. To enable comparison with the other network
architectures by keeping the amount of performed experiments equal, instead of ex-
ploring the effects of different dropout rates, three additional experiments regarding
the optimal architecture were performed. Analog to the other networks the final
two experiments explored the effects of varying minibatch sizes. The number of
experiments was 15, analog to the other neural networks.

Table 4 contains the hyperparameter values for the final LSTMNet model after the
hyperparameter optimization process was finished. The hyperparameters within this
table are explained in Subsection 2.3.1.

Table 4: Hyperparameters for Final LSTMNet Model

Model Learning rate Nr. HL Width of HL Dropout rate Minibatch size

LSTMNet 0.00004 1 LSTM 200 0.0 64

The final LSTMNet model contains 170207 parameters which were optimized during
the training. This number is the amount of weights and biases within the network.

6 EVALUATION 50

6 Evaluation

6.1 Setup

6.1.1 Procedure

All the results displayed in Section 6.2 refer to the final models, i.e. the models with
the best hyperparameters and parameters found throughout the hyperparameter
process. This process is explained in the Chapter 5. There the model-specific
processing of the datasets is explained in the respective subsections. The origin
of all datasets, as well as the preprocessing applied to all datasets is explained in
Chapter 3.

For the hierarchically classifying models, i.e. the baseline method and the Shal-
lowFFNet model, the final confusion matrix was created in the following manner:
The top-level classifier separated the classes lifting and walking from the activity
resting. The classes lifting and walking contain each three activities. This induces
the problem, that when a sample is misclassified by the top-level classifier, it is am-
biguous which concrete activity got misclassified as which concrete other activity.
To allocate these misclassifications to a specific field within the joined confusion ma-
trix, it was assumed that these errors occur independently. As an example: When
9% of all samples are samples of the class lifting, that got misclassified as belonging
to the class walking, each of the fields within the three by three submatrix of the
confusion matrix displaying the mislabeling of these classes, received an entry of 1%
of all samples. By introducing this assumption a confusion matrix with all the k = 7
activities as ticks for the x- and y axes could be generated to enable comparison with
the confusion matrices of the other models. This procedure may have inserted slight
errors in the activity-specific calculation of precision and recall but does not have
any effect on scores calculated based on the entire confusion matrix.

6.1.2 Scores

There are several scores available to measure the performance of a machine learning
model. The following aims at explaining all the scores used throughout Section 6.2
for the comparison of the models described in Chapters 4 and 5.

The results of classification are typically aggregated in a matrix, called the confusion
matrix. The steps along the x-axis typically denote the various classes classified by
the model, whereas the steps along the y-axis denote the ground truth, i.e. the true
class of an example. The k classes are ordered along the axis in such a way that a
correct classification is denoted by the addition of one to the main diagonal at the
correct position. Especially when this k×k matrix is color-coded to mark fields with
high numbers, confusion matrices pose an intuitive way of visually understanding the
classification behavior of the model, given k is reasonably small. This visualization
enables the practitioner to detect classes often mislabeled by the classifier, as these

6 EVALUATION 51

are visible as fields outside the main diagonal with a relatively large number in them
(Grandini et al., 2020). Figure 14 illustrates a confusion matrix.

Figure 14: Example of a Confusion Matrix

Accuracy is the most popular score for the evaluation of a classification model. It
describes the proportion of correct predictions on all predictions. As a proportion,
it may take values from 0 to 1 with higher values denoting a better model. As a
score, it has come under some critique, especially when the data is highly unbal-
anced. In this case, a classifier that always predicts the majority class might achieve
high accuracy, even though not learning any patterns within the given data. For a
two-class classification problem, the accuracy is calculated by the formula given in
equation 20.

accuracy =
tp+ tn

tp+ tn+ fp+ fn
(20)

In this equation for binary classification, tp denotes the number of true positives,
i.e. the number of samples for which the classifier predicted class 1 and the ground
truth is class 1. tn denotes the number of correct predictions of class 0, i.e. the true
negatives. fp denotes the number of samples that have the true label 0 attached
to them, whereas the model classified them as class 1, meaning the model falsely
classified them as positive. fn is the number of labels misclassified as class 0 (Gu
et al., 2021). The multi-class extension of this calculation is straightforward when
using the concept of the confusion matrix: Accuracy is the proportion of the correctly
classified samples, i.e. the sum of the main diagonal, on all samples, i.e. the sum of
all fields within the confusion matrix.

This score was chosen due to its widespread popularity and to enable comparison
with other models within the literature. Furthermore, the data processed by the
models for training, validation and testing was balanced, therefore some of the
critique directed at this score does not apply to this study. The used balancing
technique is described in Subsection 3.4.5.

6 EVALUATION 52

The precision of a classifier refers to the proportion of correctly predicted positive
cases, tp among the total number of positive predicted cases, i.e. tp + fp. As a
proportion, it is defined within [0, 1]. A classifier with high precision is reliable in
the sense, that if it classifies an example as positive, it has a high probability of being
positive as the ground truth. When inspecting a confusion matrix for a multi-class
classification problem, the precision may be calculated by dividing the number of
true positives of this class, tp, by the amount of positive predicted cases, i.e. the
sum on this column. Equation 21 contains the formula for the calculation of the
precision of a two-class classifier.

precision =
tp

tp+ fp
(21)

However using the precision alone is not suited for the evaluation of a classifier,
because a classifier that only predicts positive, when it has overwhelming evidence
at hand might have a high precision, but an overall poor performance, because it
produces a high amount of false negatives, fn. The recall of a classifier refers to
the proportion of correctly predicted positive cases, tp among the total number of
positive cases, i.e. tp + fn. It is also defined within [0, 1]. A classifier that always
predicts class 0 in a two-class problem will have a high amount of true negatives
tn, but no correctly classified true positives, leading to a recall of 0. A classifier
with a high recall is reliable in the sense that it has a high probability of predicting
a positive sample as positive (Grandini et al., 2020). The formula for calculating
the recall is given in equation 22. For multi-class classification the recall may be
calculate by dividing the amount of true positives of this class, tp by the sum of
values within the respective row.

recall =
tp

tp+ fn
(22)

Based upon the critique of the accuracy score, the F-measure became a popular score
for the evaluation of classifiers. It is the harmonic mean of precision and recall and
enables evaluating a model in a single score. Similar to the other above-mentioned
scores it is bounded between (0, 1). For multi-class classification the F-measure of a
label may not be calculable when this class was never correctly predicted. Equation
23 contains the formula for the calculation of the F-measure.

F −measure = 2 · precision · recall
precision+ recall

(23)

Another score used for assessment of the performance of a classifier is Matthews
correlation coefficient (MCC). This score is bounded between [−1, 1]. It returns a
high score only if the classifier was able to correctly predict the majority of positive
instances, as well as the majority of negative instances. A value of 1 indicates perfect
classification, whereas a value of -1 indicates perfect misclassification. The expected

6 EVALUATION 53

value of the MCC for a randomly guessing classifier is 0. The mathematical prop-
erties of this score result in a more robust estimation of the overall performance of
the classifier when compared to the accuracy or the F-measure (Chicco and Jurman,
2020). The formula for the calculation of the MCC is given in equation 24.

MCC =
tp · tn− fp · fn√

(tp+ fp) · (tp+ fn) · (tn+ fp) · (tn+ fn)
(24)

The given definitions were formulated for two-class classification problems but may
be applied to multi-class classification as well. This may be done by converting the
problem to k class vs. rest classification problems. Doing so enables calculating
these scores for each class individually.

As discussed in Subsection 2.2.2, real-time prediction of the current activity is an
important requirement. Therefore the average prediction time in milliseconds (ms)
µ̂ms of the models is reported. The prediction time is defined as the time needed
for the inference step, i.e. passing the data through the model. The data for this
inference step was already within the needed format, i.e. the time needed to bring
the raw data into the needed format is not included in the calculation of the average
prediction time.

For the baseline method and the ShallowFFNet model, the overall prediction time
was calculated based on the prediction time of the respective classifiers. The ex-
act formula for the prediction time of hierarchically classifying models is given in
equation 25.

µ̂ms = µ̂top +
6

7
· µ̂lifting + µ̂walking

2
(25)

This was done to correctly estimate the needed time, under the assumption that all
k = 7 activities appear equally often and the lifting or walking classifier gets called
whenever the top-level classifier does not classify the activity as resting, see Figure
12.

6 EVALUATION 54

6.2 Experimental Results

This section displays the results of training and testing various models. The base-
line method, a hierarchically classifying Support Vector Machine applied to hand-
crafted features, is introduced in Chapter 4. The ShallowFFNet model, a shallow
feedforward neural network applied to the same features as the baseline method, is
explained in Section 5.3. The DeepFFNet model is a deeper feedforward network
directly applied to the raw data, see Section 5.4. The ConvNet model is a convo-
lutional neural network applied to the raw data, see Section 5.5 and the LSTMNet
utilizes specialized recurrent units, see Section 5.6. Model-specific preprocessing of
the data, as well as the regimen utilized to find the best-suited hyperparameters,
are explained in these locations.

The origin of the training, test and validation data is explained in Chapter 3, and
the scores utilized for the evaluation are defined in Subsection 6.1.2. All datsets used
for the tables and figures within this section were balanced as explained in 3.4.5.

Table 5 summarizes the performance of the final models, i.e. the models trained
with the best hyperparameters, on the unseen test data.

Table 5: Performance of final models on test data

Model Input Classifier Accuracy F-Measure MCC µ̂ms

Baseline Features SVM 60.87% 55.43% 56.24% 0.64

ShallowFFNet Features Feedforward NN 71.46% 71.37% 66.81% 0.13

DeepFFNet Raw Feedforward NN 76.79% 76.69% 73.48% 0.22

ConvNet Raw Convolutional NN 70.91% 71.28% 66.46% 0.19

LSTMNet Raw LSTM NN 70.94% 71.24% 66.25% 0.75

For practitioners, it may be important to estimate the amount of occurred over-
fitting. To do this, the performance of the final models on the validation data is
reported in Table 6.

Table 6: Performance of final models on validation data

Model Input Classifier Accuracy F-Measure MCC µ̂ms

Baseline Features SVM 64.84% 60.24% 60.44% 0.63

ShallowFFNet Features Feedforward NN 82.25% 82.08% 79.43% 0.13

DeepFFNet Raw Feedforward NN 84.21% 84.11% 81.96% 0.22

ConvNet Raw Convolutional NN 80.42% 80.27% 77.39% 0.20

LSTMNet Raw LSTM NN 73.68% 73.55% 69.57% 0.75

6 EVALUATION 55

Figure 15 contains a color-coded confusion matrix of the baseline method, explained
in Chapter 4, on the unseen test data.

Figure 15: Confusion Matrix of the Baseline Method on test data

Table 7 contains the precision, recall and F-measure of the baseline method on the
unseen test data. The F-measure for the activity lifting was set to N/A, short for not
available, as calculating the F-measure would require dividing by zero, see equation
23.

Table 7: Precision, Recall and F-measure of the Baseline Method

Activity Precision Recall F-Measure

Lifting 0.0 0.0 N/A

Dropping 49.29% 82.26% 61.64%

Holding 92.60% 84.36% 88.29%

Walking normal 46.55% 84.99% 60.15%

Walking up stairs 56.09% 44.07% 49.36%

Walking down stairs 95.74% 32.83% 48.89%

Resting 67.31% 97.56% 79.66%

6 EVALUATION 56

Figure 16 contains the confusion matrix of the ShallowFFNet Model on unseen test
data. An explanation of this model, as well as hyperparameter values for this model
are given in Section 5.3.

Figure 16: Confusion Matrix of the ShallowFFNet Model on test data

Table 8 contains the precision, recall and F-measure for each activity after converting
the confusion matrix given in Figure 16 to seven activity versus rest classification
problems.

Table 8: Precision, Recall and F-measure of the ShallowFFNet Model

Activity Precision Recall F-Measure

Lifting 46.46% 42.31% 44.29%

Dropping 49.43% 49.07% 49.25%

Holding 86.15% 91.27% 88.64%

Walking normal 59.85% 74.71% 66.46%

Walking up stairs 77.98% 72.87% 75.34%

Walking down stairs 95.18% 73.31% 82.83%

Resting 89.15% 96.67% 92.72%

6 EVALUATION 57

The confusion matrix for a feedforward network applied on the raw data, i.e. the
DeepFFNet model, on the unseen test data is given in Figure 17. This model is
introduced in Subsection 5.4.

Figure 17: Confusion Matrix of the DeepFFNet Model on test data

The precision, recall and F-measure of the DeepFFNet model, when applied to the
unseen test data, is given in Table 9.

Table 9: Precision, Recall and F-measure of the DeepFFNet Model

Activity Precision Recall F-Measure

Lifting 52.71% 71.13% 60.55%

Dropping 51.31% 37.00% 42.99%

Holding 99.48% 91.29% 95.21%

Walking normal 65.59% 98.87% 78.69%

Walking up stairs 99.76% 70.11% 82.34%

Walking down stairs 98.05% 71.41% 82.63%

Resting 91.04% 97.72% 94.26%

6 EVALUATION 58

Figure 18 contains the confusion matrix of the ConvNet model on unseen test data.
The ConvNet model utilizes the convolution operation. The background of this
architecture is laid out in Subsection 2.3.2, whereas the concrete hyperparameters
of the ConvNet are laid out in Section 5.5.

Figure 18: Confusion Matrix of the ConvNet Model on test data

The precision, recall and F-measure of the ConvNet model on unseen test data is
given in Table 10.

Table 10: Precision, Recall and F-measure of the ConvNet Model

Activity Precision Recall F-Measure

Lifting 45.09% 50.95% 47.84%

Dropping 46.68% 47.12% 46.90%

Holding 98.09% 78.27% 87.06%

Walking normal 59.28% 89.46% 71.31%

Walking up stairs 96.10% 80.45% 87.89%

Walking down stairs 86.30% 53.63% 66.15%

Resting 88.14% 96.51% 92.13%

6 EVALUATION 59

Figure 19 contains the confusion matrix of the LSTMNet Model on unseen test data.
The origin of the test data is laid out in Subsection 3.3.3. The hyperparameters of
the LSTMNet model are laid out in Section 5.6.

Figure 19: Confusion Matrix of the LSTMNet Model on test data

Based on the evaluation visualized in Figure 19, Table 11 contains the respective
precision, recall and F-measures for each activity. The values were calculated based
on the performance of the LSTMNet model on unseen test data.

Table 11: Precision, Recall and F-measure of the LSTMNet Model

Activity Precision Recall F-Measure

Lifting 43.80% 48.55% 46.05%

Dropping 44.90% 44.49% 44.69%

Holding 91.24% 74.47% 81.99%

Walking normal 65.99% 83.33% 73.66%

Walking up stairs 88.17% 83.39% 85.71%

Walking down stairs 91.73% 68.39% 78.36%

Resting 83.15% 93.99% 88.24%

6 EVALUATION 60

Figure 20 displays the highest accuracy in % of the models trained throughout the
hyperparameter optimization process on the validation data. As the best LSTMNet
model did not contain any hidden layers, no experiments regarding dropout were
performed for this model. To keep the number of experiments equal for the network
types, three additional experiments regarding the architecture were performed for
the LSTMNet model, see Section 5.6.

Figure 20: Accuracy of the models on validation data throughout Hyperparameter
Optimization Process

7 DISCUSSION 61

7 Discussion

The following entails a discussion of the results seen in Section 6.2.

7.1 Approriatness of Deep Learning Models

The first research question is if the approach of deep learning is appropriate for
human activity recognition (HAR) on active exoskeleton data. To answer this the
performance of the baseline method is compared to the performance of neural net-
works, both applied to unseen data. Table 5 visualizes the performance of the
trained neural networks and the baseline method on the unseen test data. For the
evaluation of the performance the accuracy, F-measure and Matthews correlation
coefficient (MCC) are used. These scores have an upper limit of one with a higher
score denoting a better model. An introduction of these scores is given in Subsection
6.1.2. The baseline model achieved an accuracy of 60.87% on unseen test data, in
comparison, the worst performing neural network achieved an accuracy of 70.91%.
When using the F-measure and the MCC a similar picture emerges: The perfor-
mance measures consistently indicate a better performance of the neural networks.
This is interpreted as evidence supporting the claim that deep learning models are
appropriate for the task of human activity recognition based on active exoskeleton
data.

7.2 Best-performing neural network

Different architectures of neural networks were trained, as each can process the data
in a different way. This was done to estimate, what information is most important
for the successful classification of human activity. The following entails a discussion
of the performance of the various network types.

A hierarchical classifier, utilizing the same information as the baseline method, how-
ever using neural networks as the classification algorithm outperforms the baseline
method, see Tables 5, 7 and 8. While the baseline method achieved an F-measure
of 55.43% on unseen test data, the ShallowFFNet model, which was trained on
the same training data, achieved an F-measure on the same unseen test data of
71.37%. This indicates that the difference in the resulting scores between the base-
line method and the neural networks is not due to a difference in the format of the
available data, but due to the suboptimal usage of the available information by the
baseline method. A plausible explanation for this difference in performance is that
the baseline method might have overfitted on the training data. Based on the way
this margin-based classifier finds the respective hyperplane, it is susceptible to mis-
labeling of the data, leading to unnecessarily complex decision boundaries, which
do not reliably separate real-world data (Qiao and Zhang, 2015). The explanation
of an overfitted baseline method is supported by the fact, that the hyperparameters
of the baseline method were optimized on randomly chosen subsets of the training

7 DISCUSSION 62

data. It is plausible that this differing process of hyperparameter optimization may
have lead to a greater extend of overfitting in the baseline method. The utilized
neural networks of the ShallowFFNet model were rather small, i.e. no classifier of
this model had more than 310 parameters to be optimized throughout the training,
see Section 5.3. As a small number of parameters translates to smaller representa-
tional capacity, this smaller capacity may have prevented them from learning overly
complex decision functions.

The approach of using hand-crafted features as input for the final classifier resulted
in acceptable performance comparable to other networks trained on the raw data, as
the ConvNet model achieved an F-measure of 71.28% on unseen test data and the
LSTMNet model an F-measure of 71.24%. These scores were calculated on unseen
test data, see Table 5. Using features as input for the final classification system
seems to be an acceptable choice, given these features contain enough information.
Domain knowledge may be required for the process of generating and selecting fea-
tures. Choosing the correct classification algorithm which classifies based on these
features has a considerable effect on the performance of the overall activity recogni-
tion system.

The DeepFFNet model was trained to observe if providing the classifier with the
means to learn useful representations directly from the raw data does enable the
model to achieve a better performance compared to models receiving the data in
the format of features. As the resulting model got the highest accuracy, F-measure
and MCC, see Table 5, this is interpreted as evidence supporting the claim that rep-
resentation learning provides an advantage for this task. When compared against
the performance of the ShallowFFNet model, the DeepFFNet model performs reli-
ably better. This is either due to having more information available, i.e. the raw
data instead of features or the ability to better extract useful representations within
the hidden layers. An interesting finding is that the difference in performance on the
validation and test set is bigger on the ShallowFFNet model when compared to the
DeepFFNet model, see Tables 5 and 6. This indicates that relying on handcrafted
features in combination with small neural networks is not a useful strategy for the
prevention of overfitting. A bigger feedforward model, directly applied to the raw
data generalized better than the set of hierarchically classifying simpler networks in
the ShallowFFNet model. As the DeepFFNet model reliably achieved good perfor-
mance during training, see Figure 20, practitioners may be well advised to invest
resources directly in training such models rather than spending time on feature engi-
neering. The research reported well-performing standard feedforward models, even
when compared to convolutional or recurrent networks (Hammerla et al., 2016).

The ConvNet model was built to test if providing the network with the means of
detecting local patterns within the time structure of the data enables the model to
perform better when compared to a classical feedforward network. As the perfor-
mance of the ConvNet is similar to the ShallowFFNet and LSTMNet model, this
indicates that this ability does not seem to bring any relevant advantage, see Ta-
bles 5, 10 and 11. To the author this result came surprisingly, considering that
the state of the art of HAR, makes use of convolutional models. There are several

7 DISCUSSION 63

possible explanations for this behavior, the most plausible one being that the liter-
ature made use of a more rigorous exploration of the hyperparameter space, which
enabled finding a better-suited constellation. During training the ConvNet model
achieved consistent performance, i.e. the performance for various constellations of
hyperparameters was similar, see Figure 20. This finding is in line with the results
of large-scale studies in which this robustness has also been observed (Hammerla
et al., 2016).

A similar research question was addressed by the training of the LSTMNet model,
which had a greater capacity for processing long-term relationships within the data.
Analog to the ConvNet model, this did not seem to bring any advantages and the
performance of the model is comparable to the ShallowFFNet model. Utilizing this
capacity of the model to better process the flow of information through the model did
not seem to yield an advantage over a standard feedforward network, as represented
by the DeepFFNet model.

As recurrent models are frequently used within the current state of the art of HAR,
the most plausible explanation for their lack of performance within this study is
the limited search for well-suited hyperparameters (Pesenti et al., 2023). Analog
to convolutional models, the training of recurrent models resulted in models with
constant performance, see Figure 20.

7.3 Comparatively low level of performance

Another important observation is that the overall performance of the models is
substantially lower than reported in the current state of the art, see Subsection
2.2.3. There are three main reasons for this:

7.3.1 Models unable to distinguish Lifting from Dropping

The main reason for this is the definition of the activities to be classified. As laid out
in Section 3.2, the activities lifting and dropping were defined as activities not only
involving the moving of a weight into a different height but also including the process
of returning to the original position to grab the next weight. As a result, similar
sensor values had differing labels attached, i.e. moving the torso downwards while
holding a weight was classified as dropping, whereas moving the torso downwards
without holding a weight was labeled as lifting. None of the trained models was
able to reliably classify if this moving of the torso was being done with or without a
weight, resulting in being unable to distinguish lifting from dropping. The models
were randomly guessing between lifting and dropping, whenever one of them was
detected. This effect can be seen when observing the distribution of the values within
the upper left corner of the Figures 15, 16, 17, 18 and 19. This effect numerically
expressed in the precision, recall and F-measure achieved on these activities, see
Tables 7, 8, 9, 10 and 11. The phenomenon of kinetically similar activities being
difficult to differentiate is observed within the literature (Kuschan et al., 2021).

7 DISCUSSION 64

Based on the inability of the models to discern two of the k = 7 classes the maximum
expected accuracy was 100% − 1

7
= 85.72%. As it was assumed that the models

would be able to distinguish lifting from dropping based on this definition, the
classes were defined as such at the beginning of the study. As a result, the models
seem to perform significantly worse than the current state of the art, but considering
that two classes could not be separated based on the available data the resulting
models seem acceptable. The best model achieved an accuracy of 76.79% on the
test data, with a theoretical maximum accuracy of 85.72%. Setting these values into
relationship yields

76.79%

85.72%
≈ 93.08% (26)

This performance is indeed comparable to the current state of the art.

7.3.2 Training Data Class Imbalance

As laid out in Subsection 3.4.2, the training data was affected by class imbalance.
This was especially severe regarding the walking activities. The activities of walking
up and walking down stairs were observed for less than four minutes each, see Figure
10. This lack of information made the detection of patterns distinguishing walking
activities difficult. Even on more balanced data sets, discerning these classes was
shown to be susceptible to error (Valarezo et al., 2017).

7.3.3 No direct Comparison with State of the Art possible

Furthermore, there is no study on HAR using deep learning on the data from active
exoskeletons to date, which utilizes a test set recorded at different locations and con-
taining only subjects never seen in the training data, see Subsection 2.2.3. Therefore
the results of this study cannot be compared without restriction, as there are valid
reasons to assume, that at least some sort of information about the subjects or the
shared environment could have been utilized by the models within the literature to
correctly classify the test set.

Based on the three above-mentioned arguments, i.e. the inability to discern lift-
ing from dropping, heavy class imbalance, as well as the application to a test set
that contains subjects and environments not observed throughout the training pro-
cess the conclusion is drawn, that the trained models do perform adequately. A
purely numerical comparison with the state of the art reviewed in Subsection 2.2.3
is misleading.

7.4 Robustness of Deep Learning Models

Another research question aimed at the model’s ability to generalize beyond the sub-
jects and environments seen in the training data. Based on the results of this study

7 DISCUSSION 65

with n = 9 subjects observed in the training data, see Subsection 3.3.1, the neural
networks trained seem to generalize rather well, as the best model achieved an accu-
racy of 84.21% on the validation data and 76.79% on the test data. These results are
especially promising considering, that a singular environment was observed within
the training and validation data. This might have led to some overfitting on the
shared environment throughout the hyperparameter optimization process. Further-
more, the training data contained little data on stair-related activities. This data
was oversampled, but the chosen oversampling technique simply adjusted the impor-
tance of these samples for the loss function and did not insert any new information
about these classes into the dataset. Considering all this the models classified new
data in a relatively robust manner.

For each model, the extent of overfitting can be estimated from the difference in
performance on the validation and test data, see Tables 5 and 6. The biggest
difference between the performance on the validation and test data occurred at the
ConvNet model, followed by the ShallowFFNet model. The performance gap of
the DeepFFNet model is slightly smaller. The smallest differences are recorded
on the final LSTMNet and baseline method. The LSTMNet model has a difference
regarding the accuracy of test and validation data of 2.74%, which may be indicative
of underfitting. In combination with the successful prior usage of these recurrent
models the conclusion is drawn, that recurrent models might be well-suited for the
given task. These models might outperform standard feedforward models, albeit at
the cost of making a diligent search through the hyperparameter space necessary.
Training these networks takes more time than training a feedforward neural network,
because of reasons explained in Subsection 2.3.3. Based on these two observations,
the training of recurrent networks could be appropriate if sufficient resources are
available for comprehensive training (Wang et al., 2019a).

This study was motivated by the goal of adjusting the support generated by the
exoskeleton according to the current need of the user. In addition to finding initial
evidence for appropriate network types, this study looked at the robustness of the
trained models, i.e. their ability to infer reliably when applied to new users in unseen
environments. The results indicate that the trained models are able to perform
classification on unseen data quite well. This result must be taken with caution,
as there are reasons indicating that these results may overestimate the performance
when applied to real-world data. The first is that the training, validation and test
data were recorded in rather artificial environments, i.e. the subjects knew what
was being recorded and may therefore have changed their behavior to perform the
activities in a particularly clean or ergonomically healthy way. This effect may
have been stronger when the subjects were under direct observation. This was
the case in the validation and test data, see Section 3.3. The process of labeling
the data encouraged removing ambiguous activities or any activities, which did
not match the expectations of the labeling human regarding the specific movement
patterns. By doing so all the datasets might be subject to a process that leads
to clearer differences between the activity patterns, than may be observed within
the real world. Another important consideration is that none of the datasets used

7 DISCUSSION 66

in this study are representative. The testers and subjects used were not randomly
selected from a clearly defined larger population. Some groups that might use the
exoskeletons were never observed in any of the datasets, e.g. none of the datasets
included a person over the age of 53. Given these limitations, the results of this
study should be interpreted as preliminary evidence that neural networks appear
to generalise quite well for this application. Good generalization is not the only
requirement for a model to be used in the application for the control of the support
by an exoskeleton. Several other requirements, listed in Subsection 2.2.2, would also
need diligent exploration and examination.

7.5 Evaluation time

In terms of inference time, it is interesting to note that the number of parameters in
the neural networks seems to have little effect. Standard feedforward passes appear
to have almost identical computational requirements, regardless of the number of
parameters involved. This is inferred from the difference in inference time between
the ShallowFFNet and DeepFFNet model, see Tables 5 and 6. The convolution
operation adds little additional computational time. This may be due to the ability
to parallelize this operation. The inherent sequential nature of the LSTMNet model
did increase the time required. Comparisons between the baseline method and the
neural networks cannot be made, as they are based on different libraries and are
therefore optimized differently. In general, these results should be taken cautiously,
as these inference times are not gathered from edge devices and the used hardware
greatly affects the resulting times.

7.6 Results from the Hyperparameter Optimization Process

Another goal of this study was to communicate experience with training neural
networks for this application. Therefore the following discusses the effects of hyper-
parameter optimization on the performance on the validation data. This discussion
refers to results illustrated in Figure 20.

For each trained network, the learning rate was varied six times at the beginning
of the hyperparameter optimization process, initially changing the learning rate for
orders of magnitude. These six experiments yielded an accuracy improvement on
the validation data of 0.5% to 3.5%, with models having a smaller initial perfor-
mance experiencing bigger improvements. Optimizing this hyperparameter yielded
the biggest increase in performance. The literature reports similar results for studies
of larger scale (Hammerla et al., 2016).

Afterward, the structure of the model was varied four times, as described in Section
5.2. This optimization resulted in improvements regarding accuracy on the vali-
dation data between 0.1% and 1.2%. If the initial model performed well, adding
additional layers never improved performance on the validation data, and adding

7 DISCUSSION 67

units to existing layers often yielded only minimal bonus in performance. The com-
plexity of the task to be solved by the network set clear limits on the structure and
complexity of the model: Classifying the activity based on selected features is an
easier task than learning and constructing these features based on the raw data, so
the ShallowFFNet model was able to perform well using three networks, each con-
taining a single hidden layer of eight units, whereas the DeepFFNet model had to
use three hidden layers. Adding additional layers did not increase the performance
of the DeepFFNet model. These findings are in accordance with prior studies, stat-
ing that utilizing networks with more than three hidden layers for human activity
recognition seldom leads to improved performance (Hammerla et al., 2016).

Changing the used dropout rate either did not improve accuracy on the validation
data or by small margins, i.e. ≈ 1%. Improving the model via dropout was usually
achieved with a dropout rate of 10%. It remains unclear why higher dropout rates
did not lead to increased performance, however, there are two plausible explanations:
Either the relatively large amount of training data regularized the neural networks
enough so that including dropout did not increase performance or the networks were
too small to profit from dropout. As explained in Subsection 2.3.1, using dropout
might make utilizing larger network sizes necessary. Because of the training schedule,
the network size was treated as fixed when optimizing this hyperparameter, so the
positive effects of using a higher dropout rate in combination with a larger network
could not be explored.

Regarding the minibatch size, the results of the experiments are as expected from
the literature: Using a smaller minibatch size increases the performance on the val-
idation data, albeit at the cost of longer training time (Masters and Luschi, 2018).
Throughout the hyperparameter optimization phase, no network with a larger mini-
batch size was able to outperform its counterpart trained with a smaller minibatch
size. Ideally, minibatch size and learning rate would be optimized together, as
smaller minibatches contain less information and a more noisy approximation of the
information within the overall training data, therefore a lower learning rate may be
appropriate for them.

8 FUTURE WORK 68

8 Future Work

The following entails a discussion of possibilities for future research.

Current research neglects the importance of unbiased estimation of the model’s
ability to generalize. To the best knowledge of the author, this is the first study
regarding HAR on low-back exoskeletons via deep learning, which utilizes unseen
environments combined with unseen subjects for the test data. Recording represen-
tative datasets, which include a wider variety of subjects and locations, is necessary
to prevent overestimating the model’s ability to generalize (Kuschan et al., 2021).
Using these overfitted models might be dangerous, as the classification of the mod-
els might be used to influence the behavior of the active exoskeletons and lead to
inappropriate support, endangering the user. Therefore similar work, which extends
the number of subjects and locations for the test data via a representative sample
of a clear-defined population is necessary to correctly estimate the ability of deep
learning models to generalize. The existing research evaluates the performance of
the models via the holdout method, see subsections 2.1.2 and 2.2.3. Utilizing larger
and more diverse datasets enables a more stable estimation of the robustness of the
models via k-fold cross-validation, see Subsection 2.1.2

As creating large-scale representative datasets with an adequate variety might prove
difficult for practitioners, data-generating techniques might be leveraged to increase
the variety of the available data. Training of generative models to produce additional
training data may improve the generalization of said models, however there is little
experience available regarding the usage of these models for HAR (Gu et al., 2021).
Comparing the robustness of models trained using data augmentation techniques
may provide insight into the appropriateness of this approach. Investigating this
topic may provide a low-cost way to increase the robustness of models.

Closely related to the effects of generating additional samples are the effects of
balancing on the ability of the model to generalize. This paper has used a basic
oversampling technique to balance the activities, but future work could evaluate the
effects of more sophisticated techniques on the generalization of the model. These
more sophisticated algorithms could generate additional minority class samples by
interpolating between observed minority class samples, as is done by the Synthetic
Minority Oversampling Technique (Chawla et al., 2002).

As a combination of the different approaches mentioned above, HAR with little
training data is another interesting area of research. Answering the question of
how many different subjects should be included in a dataset for what minimum
amount of time to achieve a given level of performance could enable the use of
HAR on exoskeleton data in low data scenarios. Experience could be gained by
successively adding testers to the available data pool and gradually increasing the
time each tester is observed. For each step, models are trained and evaluated. This
could provide insight into the minimum amount of data required for a given level of
performance.

8 FUTURE WORK 69

As explained in Subsection 2.2.3, the current research mainly focuses on training
the models after finishing recording the data and afterward using the final models
without further adjustment to them (Wang et al., 2019a). As the use of active
exoskeletons in the field provides more unlabelled data, integrating this additional
data into the model could improve robustness. Online and incremental learning,
possibly even on the edge devices themselves, may prove essential for classifying
more complex activities. To the best of the author’s knowledge, there is no study
to date that evaluates the possibility of online learning based on exoskeleton data.

Another topic in HAR based on active exoskeleton data requiring further research
is the possibility of training individual models per user. Doing so might increase
the performance of said models by reducing the problem of intraclass variety, as
explained in Subsection 2.2.2. This may be implemented by starting with an initial
pre-trained model which gets more adapted to the specific user over time, as more
data is collected from this user. Some authors assume that using individual models
is necessary for real-world application to remove the effects of inter-person variety
within the activity classes (Pesenti et al., 2023).

As multiple activities may be performed at the same time, models which allow for
the simultaneous classification of activities may be explored. These activities may
either be hierarchically ordered or specific to certain limbs, e.g. the leg-related
activity may be walking, while the arm-related activity is holding, meaning that the
user is carrying an object. This more fine-grained classification may allow for more
precise control of the support generated by the active exoskeleton (Gu et al., 2021).

Regarding the model architecture, there is a wide range of experiences gathered
within the field of HAR, however when applied to exoskeleton data, there is little
data available. Large-scale explorations of different model architectures, as well
as the effects of hyperparameter optimization on these model types, remain to be
done. Several architectures, such as hybrid models combining convolution operations
with recurrent units, remain unexplored within the existing literature (Wang et al.,
2019a). Throughout this thesis, some hyperparameters such as the window size and
the resampling rate were taken as fixed to enable comparison between the models,
albeit at the cost of not being able to estimate the effects of varying these parameters.
In Chapter 7 evidence regarding underfitting of the recurrent model was gathered,
therefore a more in-depth exploration of hyperparameters for this model type seems
promising. Within these large-scale studies, another interesting research topic is
the evaluation of transformer models. These have achieved better performance than
convolutional and recurrent networks when applied to activity recognition tasks,
however they have not been studied in the context of HAR on exoskeleton data
(Shavit and Klein, 2021).

Research into computationally cheap and real-time classification for HAR on ex-
oskeleton data is another little explored area. Reducing the computational burden
has several benefits for the usability of the model, such as reduced energy consump-
tion and enabling smaller hardware to perform the classification on edge devices.
The importance of this is recognized in the field, as one of the first studies measured

8 FUTURE WORK 70

and reported the time required for classification on edge devices (Jaramillo et al.,
2022).

In addition, no research to date investigates the possibility of HAR for multiple
exoskeleton users. As the exoskeleton users could be working in the same environ-
ment and interacting with each other, the sensor readings from multiple exoskeletons
could be aggregated for a joint classification of activities involving multiple subjects,
such as carrying a heavy object together.

Adding additional data sources to the data available to the exoskeleton might im-
prove prediction and enable more precise identification of the user’s interaction with
the environment. As active exoskeletons might be utilized within modern factories,
which are highly connected and equipped with a multitude of sensors to identify and
locate products, the data from these object-bound sensors may be combined with
data stemming from the exoskeleton (Hozdic, 2015). This application has potential
regarding injury prevention, as the data from the products might contain informa-
tion regarding the weight, enabling the exoskeleton to provide optimal support for
handling said product.

As the classification of human activity could be used to influence the behavior of the
force-generating components of active exoskeletons, predicting future activity could
provide the means to control the relevant motors in a smoother, more adaptive way.
By using activity prediction, the amount of time needed to apply supporting forces
could be reduced. This topic has been explored for other applications of HAR, while
it remains an unexplored topic for exoskeletons (Du et al., 2019).

If the models developed are to be used in practice, security issues need further
research. The impact of misclassification on the user varies: Similar tasks require
similar assistance, so confusing an activity with a similar one, e.g. walking normal
with stair climbing, has little impact on the user. If the classified activity, e.g.
lifting, is different from the real activity, e.g. resting, the exoskeleton could provide
unwanted support and move the worker unexpectedly. Current research does not
take into account that the cost of misclassification varies. To provide safe and reliable
support, this information would need to be incorporated into the training process
of neural networks. A general framework for evaluating the safety of exoskeleton
control by human activity recognition systems would need to be developed and
tested.

9 CONCLUSION 71

9 Conclusion

The present study tested the performance of various types of neural networks for
the task of human activity recognition based on active exoskeleton data. A test set
containing n = 10 new subjects at five previously unseen locations was recorded.
The comparison with a model representing the conventional, feature-based approach
to human activity recognition indicates that deep learning models are appropriate
for this task.

Representation learning via neural networks applied to raw sensor data can outper-
form the conventional approach to human activity recognition for this use case. A
fully-connected feedforward neural network applied directly to the raw and flattened
sensor data was able to classify unseen data with acceptable performance.

Specialized neural network architectures making usage of recurrency or the convo-
lution operation underperformed within this study, indicating that their successful
usage requires a more thorough investigation of the hyperparameter space. As the
model, which utilized long short-term memory units, showed signs of underfitting
it seems plausible that this class of neural networks may be able to perform better,
given the correct hyperparameter constellation.

The hyperparameter optimization process confirmed knowledge from existing litera-
ture, that optimizing the learning rate does have a greater effect on the performance
of the model when compared to the effects of other hyperparameters. The second-
most important hyperparameter is the architecture of the utilized network. As the
utilized networks for this study were rather small and the architecture of the network
was treated as fixed when optimizing the influence of regularization via dropout, all
possible effects of this regularization method could not be investigated. Positive ef-
fects were found when using small dropout rates, such as 0.1. A negative correlation
between the minibatch size and the performance of the model was detected.

Regarding the robustness of said models, evidence was gathered that deep learning
models prove to be robust when applied to new locations or new subjects. These
results apply with various limitations, therefore further research is needed to confirm
these findings.

A call for a more thorough exploration of possible hyperparameter constellations for
the various model types is made. There are various important research questions to
be answered: These include exploring the effects of utilizing datasets of greater va-
riety on the robustness of the resulting models, testing the effects of data generating
techniques and various oversampling techniques. Online and incremental learning,
e.g. for adapting to individual workers, is another currently unexplored topic.

Before the human activity recognition system can safely be used to control the be-
havior of the force-generating elements of exoskeletons, diverse research is needed
to prove that deep learning models are adequate for this task. This includes prov-
ing that the safety, stability, robustness and overall performance of the models are
appropriate.

BIBLIOGRAPHY 72

Bibliography

Athar Ali, Vigilio Fontanari, Werner Schmoelz, and Sunil K. Agrawal. System-
atic Review of Back-Support Exoskeletons and Soft Robotic Suits. Frontiers in
Bioengineering and Biotechnology, 9, November 2021. ISSN 2296-4185. doi:
https://doi.org/10.3389/fbioe.2021.765257. URL https://www.frontiersin.

org/articles/10.3389/fbioe.2021.765257.

Manfredo Atzori, Arjan Gijsberts, Claudio Castellini, Barbara Caputo, Anne-
Gabrielle Mittaz Hager, Simone Elsig, Giorgio Giatsidis, Franco Bassetto, and
Henning Müller. Electromyography data for non-invasive naturally-controlled
robotic hand prostheses. Scientific Data, 1(1):140053, December 2014. ISSN 2052-
4463. doi: 10.1038/sdata.2014.53. URL https://www.nature.com/articles/

sdata201453. Number: 1 Publisher: Nature Publishing Group.

Akram Bayat, Marc Pomplun, and Duc A. Tran. A Study on Human Activity Recog-
nition Using Accelerometer Data from Smartphones. Procedia Computer Science,
34:450–457, August 2014. ISSN 18770509. doi: 10.1016/j.procs.2014.07.009. URL
https://linkinghub.elsevier.com/retrieve/pii/S1877050914008643.

Valentina Bianchi, Marco Bassoli, Gianfranco Lombardo, Paolo Fornacciari, Monica
Mordonini, and Ilaria De Munari. IoT Wearable Sensor and Deep Learning: An
Integrated Approach for Personalized Human Activity Recognition in a Smart
Home Environment. IEEE Internet of Things Journal, 6(5):8553–8562, May 2019.
ISSN 2327-4662, 2372-2541. doi: 10.1109/JIOT.2019.2920283. URL https://

ieeexplore.ieee.org/document/8727452/.

Luigi Bibbò, Riccardo Carotenuto, and Francesco Della Corte. An Overview of
Indoor Localization System for Human Activity Recognition (HAR) in Healthcare.
Sensors, 22(21):8119, October 2022. ISSN 1424-8220. doi: 10.3390/s22218119.
URL https://www.mdpi.com/1424-8220/22/21/8119. Number: 21 Publisher:
Multidisciplinary Digital Publishing Institute.

Christopher M. Bishop. Pattern recognition and machine learning. Information
science and statistics. Springer, New York, August 2006. ISBN 978-0-387-31073-
2.

Rich Caruana, Steve Lawrence, and C Lee Giles. Overfitting in Neural Nets: Back-
propagation, Conjugate Gradient, and Early Stopping. In Proceedings of the 13th
International Conference on Neural Information Processing Systems, NIPS, pages
381–387. MIT Press, Cambridge, MA, USA, January 2000.

Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods.
Computers & Electrical Engineering, 40(1):16–28, January 2014. ISSN 00457906.
doi: 10.1016/j.compeleceng.2013.11.024. URL https://linkinghub.elsevier.

com/retrieve/pii/S0045790613003066.

https://www.frontiersin.org/articles/10.3389/fbioe.2021.765257
https://www.frontiersin.org/articles/10.3389/fbioe.2021.765257
https://www.nature.com/articles/sdata201453
https://www.nature.com/articles/sdata201453
https://linkinghub.elsevier.com/retrieve/pii/S1877050914008643
https://ieeexplore.ieee.org/document/8727452/
https://ieeexplore.ieee.org/document/8727452/
https://www.mdpi.com/1424-8220/22/21/8119
https://linkinghub.elsevier.com/retrieve/pii/S0045790613003066
https://linkinghub.elsevier.com/retrieve/pii/S0045790613003066

BIBLIOGRAPHY 73

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic
Minority Over-sampling Technique. Journal of Artificial Intelligence Research,
16:321–357, June 2002. ISSN 1076-9757. doi: 10.1613/jair.953. URL https:

//www.jair.org/index.php/jair/article/view/10302.

Jingcheng Chen, Yining Sun, and Shaoming Sun. Improving Human Activity
Recognition Performance by Data Fusion and Feature Engineering. Sensors,
21(3):692, January 2021. ISSN 1424-8220. doi: 10.3390/s21030692. URL
https://www.mdpi.com/1424-8220/21/3/692. Number: 3 Publisher: Multidis-
ciplinary Digital Publishing Institute.

Davide Chicco and Giuseppe Jurman. The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification evaluation.
BMC Genomics, 21(1):6, January 2020. ISSN 1471-2164. doi: 10.1186/s12864-
019-6413-7. URL https://doi.org/10.1186/s12864-019-6413-7.

Waltenegus Dargie. Analysis of Time and Frequency Domain Features of Ac-
celerometer Measurements. In 2009 Proceedings of 18th International Confer-
ence on Computer Communications and Networks, pages 1–6, San Francisco,
CA, USA, August 2009. IEEE. doi: 10.1109/ICCCN.2009.5235366. URL
http://ieeexplore.ieee.org/document/5235366/.

Larissa Brentini de Almeida, Edgar Ramos Vieira, José Eduardo Zaia, Branca Maria
de Oliveira Santos, Américo Riccardi Vaccari Lourenço, and Paulo Roberto Veiga
Quemelo. Musculoskeletal disorders and stress among footwear industry workers.
Work, 56(1):67–73, February 2017. ISSN 10519815, 18759270. doi: 10.3233/
WOR-162463. URL https://www.medra.org/servlet/aliasResolver?alias=

iospress&doi=10.3233/WOR-162463.

Michiel P. de Looze, Tim Bosch, Frank Krause, Konrad S. Stadler, and Leonard W.
O’Sullivan. Exoskeletons for industrial application and their potential effects on
physical work load. Ergonomics, 59(5):671–681, May 2016. ISSN 0014-0139, 1366-
5847. doi: 10.1080/00140139.2015.1081988. URL https://www.tandfonline.

com/doi/full/10.1080/00140139.2015.1081988.

Yegang Du, Yuto Lim, and Yasuo Tan. A Novel Human Activity Recognition and
Prediction in Smart Home Based on Interaction. Sensors, 19(20):4474, January
2019. ISSN 1424-8220. doi: 10.3390/s19204474. URL https://www.mdpi.com/

1424-8220/19/20/4474. Number: 20 Publisher: Multidisciplinary Digital Pub-
lishing Institute.

Alam Fakhri, ZhaiHe Zhou, and JiaJia Hu. A Comparative Analysis of Orien-
tation Estimation Filters using MEMS based IMU. In 2nd International Con-
ference on Research in Science, Engineering and Technology (ICRSET’2014),
March 21-22, 2014 Dubai (UAE). International Institute of Engineers, March
2014. ISBN 978-93-82242-81-9. doi: 10.15242/IIE.E0314552. URL http:

//iieng.org/siteadmin/upload/7697E0314552.pdf.

https://www.jair.org/index.php/jair/article/view/10302
https://www.jair.org/index.php/jair/article/view/10302
https://www.mdpi.com/1424-8220/21/3/692
https://doi.org/10.1186/s12864-019-6413-7
http://ieeexplore.ieee.org/document/5235366/
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/WOR-162463
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/WOR-162463
https://www.tandfonline.com/doi/full/10.1080/00140139.2015.1081988
https://www.tandfonline.com/doi/full/10.1080/00140139.2015.1081988
https://www.mdpi.com/1424-8220/19/20/4474
https://www.mdpi.com/1424-8220/19/20/4474
http://iieng.org/siteadmin/upload/7697E0314552.pdf
http://iieng.org/siteadmin/upload/7697E0314552.pdf

BIBLIOGRAPHY 74

Alberto Fernandez, Salvador Garcia, Francisco Herrera, and Nitesh V. Chawla.
SMOTE for Learning from Imbalanced Data: Progress and Challenges, Mark-
ing the 15-year Anniversary. Journal of Artificial Intelligence Research, 61:863–
905, April 2018. ISSN 1076-9757. doi: 10.1613/jair.1.11192. URL https:

//www.jair.org/index.php/jair/article/view/11192.

Vaishali Ganganwar. An overview of classification algorithms for imbal-
anced datasets. International Journal of Emerging Technology and Ad-
vanced Engineering, 2(4), 2012. ISSN 2250-2459. URL https://www.

researchgate.net/profile/Vaishali-Ganganwar/publication/292018027_

An_overview_of_classification_algorithms_for_imbalanced_datasets/

links/58c7707a458515478dc4c68b/An-overview-of-classification-

algorithms-for-imbalanced-datasets.pdf.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
November 2016. ISBN 978-0-262-33737-3. Google-Books-ID: omivDQAAQBAJ.

Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for Multi-Class
Classification: an Overview, August 2020. URL http://arxiv.org/abs/2008.

05756. arXiv:2008.05756 [cs, stat].

Lorenzo Grazi, Emilio Trigili, Giulio Proface, Francesco Giovacchini, Simona Crea,
and Nicola Vitiello. Design and Experimental Evaluation of a Semi-Passive Upper-
Limb Exoskeleton for Workers With Motorized Tuning of Assistance. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, 28(10):2276–2285, Oc-
tober 2020. ISSN 1534-4320, 1558-0210. doi: 10.1109/TNSRE.2020.3014408. URL
https://ieeexplore.ieee.org/document/9159674/.

Lorenzo Grazi, Emilio Trigili, Noemi Caloi, Giulia Ramella, Francesco Giovac-
chini, Nicola Vitiello, and Simona Crea. Kinematics-Based Adaptive Assis-
tance of a Semi-Passive Upper-Limb Exoskeleton for Workers in Static and Dy-
namic Tasks. IEEE Robotics and Automation Letters, 7(4):8675–8682, Octo-
ber 2022. ISSN 2377-3766, 2377-3774. doi: 10.1109/LRA.2022.3188402. URL
https://ieeexplore.ieee.org/document/9815517/.

Rene Grzeszick, Jan Marius Lenk, Fernando Moya Rueda, Gernot A. Fink, Sascha
Feldhorst, and Michael ten Hompel. Deep Neural Network based Human Activity
Recognition for the Order Picking Process. In Proceedings of the 4th International
Workshop on Sensor-based Activity Recognition and Interaction, pages 1–6, Ro-
stock Germany, September 2017. ACM. ISBN 978-1-4503-5223-9. doi: 10.1145/
3134230.3134231. URL https://dl.acm.org/doi/10.1145/3134230.3134231.

Fuqiang Gu, Mu-Huan Chung, Mark Chignell, Shahrokh Valaee, Baoding Zhou,
and Xue Liu. A Survey on Deep Learning for Human Activity Recognition. ACM
Computing Surveys, 54, August 2021. doi: 10.1145/3472290.

Saurabh Gupta. Deep learning based human activity recognition (HAR) using
wearable sensor data. International Journal of Information Management Data

https://www.jair.org/index.php/jair/article/view/11192
https://www.jair.org/index.php/jair/article/view/11192
https://www.researchgate.net/profile/Vaishali-Ganganwar/publication/292018027_An_overview_of_classification_algorithms_for_imbalanced_datasets/links/58c7707a458515478dc4c68b/An-overview-of-classification-algorithms-for-imbalanced-datasets.pdf
https://www.researchgate.net/profile/Vaishali-Ganganwar/publication/292018027_An_overview_of_classification_algorithms_for_imbalanced_datasets/links/58c7707a458515478dc4c68b/An-overview-of-classification-algorithms-for-imbalanced-datasets.pdf
https://www.researchgate.net/profile/Vaishali-Ganganwar/publication/292018027_An_overview_of_classification_algorithms_for_imbalanced_datasets/links/58c7707a458515478dc4c68b/An-overview-of-classification-algorithms-for-imbalanced-datasets.pdf
https://www.researchgate.net/profile/Vaishali-Ganganwar/publication/292018027_An_overview_of_classification_algorithms_for_imbalanced_datasets/links/58c7707a458515478dc4c68b/An-overview-of-classification-algorithms-for-imbalanced-datasets.pdf
https://www.researchgate.net/profile/Vaishali-Ganganwar/publication/292018027_An_overview_of_classification_algorithms_for_imbalanced_datasets/links/58c7707a458515478dc4c68b/An-overview-of-classification-algorithms-for-imbalanced-datasets.pdf
http://arxiv.org/abs/2008.05756
http://arxiv.org/abs/2008.05756
https://ieeexplore.ieee.org/document/9159674/
https://ieeexplore.ieee.org/document/9815517/
https://dl.acm.org/doi/10.1145/3134230.3134231

BIBLIOGRAPHY 75

Insights, 1(2):100046, November 2021. ISSN 2667-0968. doi: 10.1016/j.jjimei.
2021.100046. URL https://www.sciencedirect.com/science/article/pii/

S2667096821000392.

Ye Haibo, Gu Tao, Tao Xianping, and Lu Jian. Scalable floor localization
using barometer on smartphone. Wireless Communications and Mo-
bile Computing, 16(16):2557–2571, October 2016. ISSN 1530-8669. doi:
10.1002/wcm.2706. URL https://onlinelibrary.wiley.com/doi/10.1002/

wcm.2706?casa_token=WMWSkWvjSAsAAAAA%3AkSqph3VxTTUZe60Sw4l8Ud-

0nLcmF18sdD5OBaat1xrRMUGr59PUD5JM0jTnYy1DJZZ1-McSzvPPbUe9.

Nils Y. Hammerla, Shane Halloran, and Thomas Ploetz. Deep, Convolutional, and
Recurrent Models for Human Activity Recognition using Wearables, April 2016.
URL http://arxiv.org/abs/1604.08880. arXiv:1604.08880 [cs, stat].

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R. Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors, July 2012. URL http://arxiv.org/abs/1207.0580.
arXiv:1207.0580 [cs].

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-
putation, 9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.
1997.9.8.1735. Conference Name: Neural Computation.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, Jan-
uary 1989. ISSN 08936080. doi: 10.1016/0893-6080(89)90020-8. URL https:

//linkinghub.elsevier.com/retrieve/pii/0893608089900208.

Elvis Hozdic. Smart Factory for industry 4.0. International Journal of Modern
Manufacturing Technologies, 2015. ISSN 20673604, 20673604.

Md Milon Islam, Sheikh Nooruddin, Fakhri Karray, and Ghulam Muhammad. Hu-
man Activity Recognition Using Tools of Convolutional Neural Networks: A
State of the Art Review, Data Sets, Challenges and Future Prospects. Com-
puters in Biology and Medicine, 149:106060, October 2022. ISSN 00104825. doi:
10.1016/j.compbiomed.2022.106060. URL http://arxiv.org/abs/2202.03274.
arXiv:2202.03274 [cs, eess].

Ismael Espinoza Jaramillo, Jin Gyun Jeong, Patricio Rivera Lopez, Choong-Ho Lee,
Do-Yeon Kang, Tae-Jun Ha, Ji-Heon Oh, Hwanseok Jung, Jin Hyuk Lee, Won Hee
Lee, and Tae-Seong Kim. Real-Time Human Activity Recognition with IMU and
Encoder Sensors in Wearable Exoskeleton Robot via Deep Learning Networks.
Sensors, 22(24):9690, January 2022. ISSN 1424-8220. doi: 10.3390/s22249690.
URL https://www.mdpi.com/1424-8220/22/24/9690. Number: 24 Publisher:
Multidisciplinary Digital Publishing Institute.

https://www.sciencedirect.com/science/article/pii/S2667096821000392
https://www.sciencedirect.com/science/article/pii/S2667096821000392
https://onlinelibrary.wiley.com/doi/10.1002/wcm.2706?casa_token=WMWSkWvjSAsAAAAA%3AkSqph3VxTTUZe60Sw4l8Ud-0nLcmF18sdD5OBaat1xrRMUGr59PUD5JM0jTnYy1DJZZ1-McSzvPPbUe9
https://onlinelibrary.wiley.com/doi/10.1002/wcm.2706?casa_token=WMWSkWvjSAsAAAAA%3AkSqph3VxTTUZe60Sw4l8Ud-0nLcmF18sdD5OBaat1xrRMUGr59PUD5JM0jTnYy1DJZZ1-McSzvPPbUe9
https://onlinelibrary.wiley.com/doi/10.1002/wcm.2706?casa_token=WMWSkWvjSAsAAAAA%3AkSqph3VxTTUZe60Sw4l8Ud-0nLcmF18sdD5OBaat1xrRMUGr59PUD5JM0jTnYy1DJZZ1-McSzvPPbUe9
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1207.0580
https://linkinghub.elsevier.com/retrieve/pii/0893608089900208
https://linkinghub.elsevier.com/retrieve/pii/0893608089900208
http://arxiv.org/abs/2202.03274
https://www.mdpi.com/1424-8220/22/24/9690

BIBLIOGRAPHY 76

Charmi Jobanputra, Jatna Bavishi, and Nishant Doshi. Human Activity Recog-
nition: A Survey. Procedia Computer Science, 155:698–703, January 2019.
ISSN 1877-0509. doi: 10.1016/j.procs.2019.08.100. URL https://www.

sciencedirect.com/science/article/pii/S1877050919310166.

A. Jovic, K. Brkic, and N. Bogunovic. A review of feature selection methods
with applications. In 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pages
1200–1205, Opatija, Croatia, May 2015. IEEE. ISBN 978-953-233-082-3. doi:
10.1109/MIPRO.2015.7160458. URL http://ieeexplore.ieee.org/document/

7160458/.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization,
January 2017. URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].

Jan Kuschan, Moritz Burgdorff, Hristo Filaretov, and Jörg Krüger. Inertial Mea-
surement Unit based Human Action Recognition for Soft-Robotic Exoskeleton.
IOP Conference Series: Materials Science and Engineering, 1140(1):012020, May
2021. ISSN 1757-899X. doi: 10.1088/1757-899X/1140/1/012020. URL https:

//dx.doi.org/10.1088/1757-899X/1140/1/012020. Publisher: IOP Publish-
ing.

Alex Labach, Hojjat Salehinejad, and Shahrokh Valaee. Survey of Dropout Methods
for Deep Neural Networks, October 2019. URL http://arxiv.org/abs/1904.

13310. arXiv:1904.13310 [cs].

Yann LeCun, Yoshua Bengio, and T Bell Laboratories. Convolutional Networks for
Images, Speech, and Time-Series. In The Handbook of Brain Theory and Neural
Networks, pages 255–258. MIT Press, Cambridge, MA, USA, October 1998. ISBN
0-262-51102-9.

Moshe Leshno. Multilayer Feedforward Networks with a Non-Polynomial Ac-
tivation Function Can Approximate Any Function. Neural Networks, 6
(6):861–867, 1993. ISSN 0893-6080. doi: https://doi.org/10.1016/S0893-
6080(05)80131-5. URL https://www.sciencedirect.com/science/article/

pii/S0893608005801315.

Ashwin Shenoy M and N. Thillaiarasu. A Survey on Different Computer Vision
Based Human Activity Recognition for Surveillance Applications. In 2022 6th
International Conference on Computing Methodologies and Communication (IC-
CMC), pages 1372–1376, Erode, India, March 2022. IEEE. ISBN 978-1-66541-028-
1. doi: 10.1109/ICCMC53470.2022.9753931. URL https://ieeexplore.ieee.

org/document/9753931/.

Dominic Masters and Carlo Luschi. Revisiting Small Batch Training for Deep
Neural Networks, April 2018. URL http://arxiv.org/abs/1804.07612.
arXiv:1804.07612 [cs, stat].

https://www.sciencedirect.com/science/article/pii/S1877050919310166
https://www.sciencedirect.com/science/article/pii/S1877050919310166
http://ieeexplore.ieee.org/document/7160458/
http://ieeexplore.ieee.org/document/7160458/
http://arxiv.org/abs/1412.6980
https://dx.doi.org/10.1088/1757-899X/1140/1/012020
https://dx.doi.org/10.1088/1757-899X/1140/1/012020
http://arxiv.org/abs/1904.13310
http://arxiv.org/abs/1904.13310
https://www.sciencedirect.com/science/article/pii/S0893608005801315
https://www.sciencedirect.com/science/article/pii/S0893608005801315
https://ieeexplore.ieee.org/document/9753931/
https://ieeexplore.ieee.org/document/9753931/
http://arxiv.org/abs/1804.07612

BIBLIOGRAPHY 77

L. Minh Dang, Kyungbok Min, Hanxiang Wang, Md. Jalil Piran, Cheol Hee Lee,
and Hyeonjoon Moon. Sensor-based and vision-based human activity recogni-
tion: A comprehensive survey. Pattern Recognition, 108:107561, December 2020.
ISSN 00313203. doi: 10.1016/j.patcog.2020.107561. URL https://linkinghub.

elsevier.com/retrieve/pii/S0031320320303642.

Francesco Missiroli, Nicola Lotti, Enrica Tricomi, Casimir Bokranz, Ryan Alicea,
Michele Xiloyannis, Jens Krzywinski, Simona Crea, Nicola Vitiello, and Lorenzo
Masia. Rigid, Soft, Passive, and Active: A Hybrid Occupational Exoskeleton
for Bimanual Multijoint Assistance. IEEE Robotics and Automation Letters, 7
(2):2557–2564, April 2022. ISSN 2377-3766, 2377-3774. doi: 10.1109/LRA.2022.
3142447. URL https://ieeexplore.ieee.org/document/9681209/.

Tom M. Mitchell. Machine Learning. McGraw-Hill series in computer science.
McGraw-Hill, New York, 1997. ISBN 978-0-07-042807-2.

Roweida Mohammed, Jumanah Rawashdeh, and Malak Abdullah. Machine Learn-
ing with Oversampling and Undersampling Techniques: Overview Study and
Experimental Results. In 2020 11th International Conference on Information
and Communication Systems (ICICS), pages 243–248, Irbid, Jordan, April 2020.
IEEE. ISBN 978-1-72816-227-0. doi: 10.1109/ICICS49469.2020.239556. URL
https://ieeexplore.ieee.org/document/9078901/.

Abdulmajid Murad and Jae-Young Pyun. Deep Recurrent Neural Networks for
Human Activity Recognition. Sensors, 17(11):2556, November 2017. ISSN 1424-
8220. doi: 10.3390/s17112556. URL https://www.mdpi.com/1424-8220/17/11/

2556. Number: 11 Publisher: Multidisciplinary Digital Publishing Institute.

Najme Zehra Naqvi. Step Counting Using Smartphone-Based Accelerometer. In-
ternational Journal on Computer Science and Engineering, 4(05), 2012.

Michael Nielsen. Neural Networks and Deep Learning, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. CoRR, 2019. doi: https://doi.org/10.48550/arXiv.1912.01703. URL
http://arxiv.org/abs/1912.01703.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Research, 12(85):2825–2830, 2011.
ISSN 1533-7928. URL http://jmlr.org/papers/v12/pedregosa11a.html.

https://linkinghub.elsevier.com/retrieve/pii/S0031320320303642
https://linkinghub.elsevier.com/retrieve/pii/S0031320320303642
https://ieeexplore.ieee.org/document/9681209/
https://ieeexplore.ieee.org/document/9078901/
https://www.mdpi.com/1424-8220/17/11/2556
https://www.mdpi.com/1424-8220/17/11/2556
http://arxiv.org/abs/1912.01703
http://jmlr.org/papers/v12/pedregosa11a.html

BIBLIOGRAPHY 78

Pei-Chun Lin, Jau-Ching Lu, Chia-Hung Tsai, and Chi-Wei Ho. Design and Im-
plementation of a Nine-Axis Inertial Measurement Unit. IEEE/ASME Trans-
actions on Mechatronics, 17(4):657–668, August 2012. ISSN 1083-4435, 1941-
014X. doi: 10.1109/TMECH.2011.2111378. URL http://ieeexplore.ieee.

org/document/5734855/.

Mattia Pesenti, Giovanni Invernizzi, Julie Mazzella, Marco Bocciolone, Alessan-
dra Pedrocchi, and Marta Gandolla. IMU-based human activity recognition
and payload classification for low-back exoskeletons. Scientific Reports, 13(1):
1184, January 2023. ISSN 2045-2322. doi: 10.1038/s41598-023-28195-x. URL
https://www.nature.com/articles/s41598-023-28195-x. Number: 1 Pub-
lisher: Nature Publishing Group.

Tommaso Poliero, Stefano Toxiri, Sara Anastasi, Luigi Monica, Darwin G. Caldwell,
and Jesús Ortiz. Assessment of an On-board Classifier for Activity Recognition on
an Active Back-Support Exoskeleton. In 2019 IEEE 16th International Conference
on Rehabilitation Robotics (ICORR), pages 559–564, June 2019. doi: 10.1109/
ICORR.2019.8779519. ISSN: 1945-7901.

Xingye Qiao and Lingsong Zhang. Distance-weighted Support Vector Machine, Oc-
tober 2015. URL http://arxiv.org/abs/1310.3003. arXiv:1310.3003 [stat].

Suneth Ranasinghe, Fadi Al Machot, and Heinrich C Mayr. A review on applica-
tions of activity recognition systems with regard to performance and evaluation.
International Journal of Distributed Sensor Networks, 12(8):1550147716665520,
August 2016. ISSN 1550-1329. doi: 10.1177/1550147716665520. URL https:

//doi.org/10.1177/1550147716665520. Publisher: SAGE Publications.

Rui Zhang, Fabian Hoflinger, and Leonhard M. Reind. Calibration of an IMU
Using 3-D Rotation Platform. IEEE Sensors Journal, 14(6):1778–1787, June
2014. ISSN 1530-437X, 1558-1748. doi: 10.1109/JSEN.2014.2303642. URL http:

//ieeexplore.ieee.org/document/6728637/.

Stuart J. Russell, Peter Norvig, Ernest Davis, and Douglas Edwards. Artificial intel-
ligence: a modern approach. Prentice Hall series in artificial intelligence. Pearson,
Boston Columbus Indianapolis New York San Francisco Upper Saddle River Am-
sterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo,
third edition, global edition edition, 2016. ISBN 978-1-292-15396-4.

Armin Schmidt. German-Bionic-5th-Generation-1-scaled.jpg, 2021a. URL
https://germanbionic.com/wp-content/uploads/2021/12/German-Bionic-

5th-Generation-1-scaled.jpg.

Armin Schmidt. German Bionic launches 5th generation Cray X, smart AI-
powered exoskeleton, December 2021b. URL https://germanbionic.com/

en/german-bionic-launches-5th-generation-cray-x-smart-ai-powered-

exoskeleton/.

http://ieeexplore.ieee.org/document/5734855/
http://ieeexplore.ieee.org/document/5734855/
https://www.nature.com/articles/s41598-023-28195-x
http://arxiv.org/abs/1310.3003
https://doi.org/10.1177/1550147716665520
https://doi.org/10.1177/1550147716665520
http://ieeexplore.ieee.org/document/6728637/
http://ieeexplore.ieee.org/document/6728637/
https://germanbionic.com/wp-content/uploads/2021/12/German-Bionic-5th-Generation-1-scaled.jpg
https://germanbionic.com/wp-content/uploads/2021/12/German-Bionic-5th-Generation-1-scaled.jpg
https://germanbionic.com/en/german-bionic-launches-5th-generation-cray-x-smart-ai-powered-exoskeleton/
https://germanbionic.com/en/german-bionic-launches-5th-generation-cray-x-smart-ai-powered-exoskeleton/
https://germanbionic.com/en/german-bionic-launches-5th-generation-cray-x-smart-ai-powered-exoskeleton/

BIBLIOGRAPHY 79

Elke Schneider, Xabier Irastorza, and Sarah Copsey. OSH in figures: work-related
musculoskeletal disorders in the EU - Facts and figures. European risk observatory
report. Office for Official Publ. of the Europ. Communities, Luxembourg, April
2010. ISBN 978-92-9191-261-2. doi: 10.2802/10952.

Yoli Shavit and Itzik Klein. Boosting Inertial-Based Human Activity Recognition
With Transformers. IEEE Access, 9:53540–53547, 2021. ISSN 2169-3536. doi:
10.1109/ACCESS.2021.3070646. Conference Name: IEEE Access.

Jozsef Suto, Stefan Oniga, and Petrica Pop Sitar. Feature Analysis to Human Activ-
ity Recognition. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNI-
CATIONS & CONTROL, 12(1):116–130, 2017. ISSN 1841-9844. URL https://

www.univagora.ro/jour/index.php/ijccc/article/view/2787. Number: 1.

Noelia Sánchez-Maroño, Amparo Alonso-Betanzos, and Maŕıa Tombilla-Sanromán.
Filter Methods for Feature Selection – A Comparative Study. In Hujun Yin,
Peter Tino, Emilio Corchado, Will Byrne, and Xin Yao, editors, Intelligent Data
Engineering and Automated Learning - IDEAL 2007, volume 4881, pages 178–
187. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-77225-
5. doi: 10.1007/978-3-540-77226-2 19. URL http://link.springer.com/10.

1007/978-3-540-77226-2_19. Series Title: Lecture Notes in Computer Science.

Luca Tiseni, Michele Xiloyannis, Domenico Chiaradia, Nicola Lotti, Massimil-
iano Solazzi, Herman van der Kooij, Antonio Frisoli, and Lorenzo Masia. On
the edge between soft and rigid: an assistive shoulder exoskeleton with hyper-
redundant kinematics. In 2019 IEEE 16th International Conference on Reha-
bilitation Robotics (ICORR), pages 618–624, Toronto, ON, Canada, June 2019.
IEEE. ISBN 978-1-72812-755-2. doi: 10.1109/ICORR.2019.8779546. URL
https://ieeexplore.ieee.org/document/8779546/.

Stefano Toxiri, Matthias B. Näf, Maria Lazzaroni, Jorge Fernández, Matteo
Sposito, Tommaso Poliero, Luigi Monica, Sara Anastasi, Darwin G. Cald-
well, and Jesús Ortiz. Back-Support Exoskeletons for Occupational Use:
An Overview of Technological Advances and Trends. IISE Transactions on
Occupational Ergonomics and Human Factors, 7(3-4):237–249, October 2019.
ISSN 2472-5838. doi: 10.1080/24725838.2019.1626303. URL https://doi.

org/10.1080/24725838.2019.1626303. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/24725838.2019.1626303.

E. Valarezo, P. Rivera, J. M. Park, G. Gi, T. Y. Kim, M. A. Al-Antari, M. Al-
Masni, and T.-S. Kim. Human Activity Recognition Using a Single Wrist IMU
Sensor via Deep Learning Convolutional and Recurrent Neural Nets. Journal
of ICT, Design, Engineering and Technological Science, pages 1–5, June 2017.
ISSN 2604-2673. doi: 10.33150/JITDETS-1.1.1. URL https://jitdets.com/

ojs/index.php/jitdets/article/view/30.

https://www.univagora.ro/jour/index.php/ijccc/article/view/2787
https://www.univagora.ro/jour/index.php/ijccc/article/view/2787
http://link.springer.com/10.1007/978-3-540-77226-2_19
http://link.springer.com/10.1007/978-3-540-77226-2_19
https://ieeexplore.ieee.org/document/8779546/
https://doi.org/10.1080/24725838.2019.1626303
https://doi.org/10.1080/24725838.2019.1626303
https://jitdets.com/ojs/index.php/jitdets/article/view/30
https://jitdets.com/ojs/index.php/jitdets/article/view/30

BIBLIOGRAPHY 80

Praneeth Vepakomma, Debraj De, Sajal K. Das, and Shekhar Bhansali. A-
Wristocracy: Deep learning on wrist-worn sensing for recognition of user com-
plex activities. In 2015 IEEE 12th International Conference on Wearable and
Implantable Body Sensor Networks (BSN), pages 1–6, June 2015. doi: 10.1109/
BSN.2015.7299406. ISSN: 2376-8894.

Michalis Vrigkas, Christophoros Nikou, and Ioannis A. Kakadiaris. A Review of Hu-
man Activity Recognition Methods. Frontiers in Robotics and AI, 2, 2015. ISSN
2296-9144. URL https://www.frontiersin.org/articles/10.3389/frobt.

2015.00028.

Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep Learn-
ing for Sensor-based Activity Recognition: A Survey. Pattern Recognition Letters,
119:3–11, March 2019a. ISSN 01678655. doi: 10.1016/j.patrec.2018.02.010. URL
http://arxiv.org/abs/1707.03502. arXiv:1707.03502 [cs].

Yan Wang, Shuang Cang, and Hongnian Yu. Survey on wearable sensor
modality centred human activity recognition in health care. Expert Systems
with Applications, 137:167–190, 2019b. doi: https://doi.org/10.1016/j.eswa.
2019.04.057. URL https://www.sciencedirect.com/science/article/pii/

S0957417419302878.

Zeyu Yin, Jianbin Zheng, Liping Huang, Yifan Gao, Huihui Peng, and Linghan Yin.
SA-SVM-Based Locomotion Pattern Recognition for Exoskeleton Robot. Applied
Sciences, 11(12):5573, January 2021. ISSN 2076-3417. doi: 10.3390/app11125573.
URL https://www.mdpi.com/2076-3417/11/12/5573. Number: 12 Publisher:
Multidisciplinary Digital Publishing Institute.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning, February 2023. URL http://arxiv.org/abs/2106.11342.
arXiv:2106.11342 [cs].

https://www.frontiersin.org/articles/10.3389/frobt.2015.00028
https://www.frontiersin.org/articles/10.3389/frobt.2015.00028
http://arxiv.org/abs/1707.03502
https://www.sciencedirect.com/science/article/pii/S0957417419302878
https://www.sciencedirect.com/science/article/pii/S0957417419302878
https://www.mdpi.com/2076-3417/11/12/5573
http://arxiv.org/abs/2106.11342

A APPENDIX 81

A Appendix

A.1 Code Availability

The code which produced the results for this study is made freely available under
the MIT license. It is available for usage under the respective terms at
https://github.com/CZ438FE/HAR_DL_exoskeleton.git.

This repository contains the functionalities to process labeled raw data, train models
on this processed data and evaluate the resulting models. A detailed explanation of
this repository is given in the README.md in the parent directory, as well as in
the respective READMEs for the various functionalities of the repository.

Some functionalities within this repository expect the existence of an anonymiza-
tion file.json, which is not contained within this repository. This file contains com-
pany secrets owned by German Bionic and can therefore not be made publicly avail-
able. Care has been taken to reduce the dependency on this file as far as possible.
The repository and included functions were constructed to enable quick understand-
ing and modification of the code. Therefore most of this repository could be used
for similar research after minor adjustments.

The code used for this study was written by the author of this study with the
exception of the functions used for the creation of the features, i.e. all the functions
within the feature utils.py file and the respective tests in feature utils test.py.

The repository was created on the Linux/GNU distribution Ubuntu, therefore some
functionalities are adapted to the folder structure of this operating system. When
bugs appear under Windows-based operating systems, checking the correct handling
of the file and folder structure might be a starting point. Making this repository
robust to different operating systems was beyond the scope of this study.

https://github.com/CZ438FE/HAR_DL_exoskeleton.git

A APPENDIX 82

A.2 Illustration of Resampling

The following entails a visualization of the process of resampling, as applied within
this study. As the sensor readings are not evenly spaced and may occur with differing
frequencies, resampling the data is needed to ensure that the data has the same
format for all further processing. To illustrate this process, the following displays
the performed steps on an example containing two features. In this example a period
of five milliseconds (ms) is to be aggregated as a new resampled datapoint.

The raw data may contain gaps between sensor readings, illustrated in Table 12.
As not every millisecond from zero to four contains sensor readings, there are gaps
to be filled before resampling. This can be understood as solving a missing data
problem, because the two features are unobserved for the times one and three.

Table 12: Illustration Resampling: Raw Sensor data

Time in ms Feature 1 Feature 2

0 0.0 4.8

2 1.3 3.7

4 1.9 4.2

There are several possibilities to impute these missing values for unobserved points
in time. For this study it was chosen to impute via forward filling, i.e. imputing by
inserting the last observed value for all unobserved points in time. Table 13 contains
the same data as Table 12 after imputing the unobserved values via forward filling.
The period to be aggregated has a length of five milliseconds.

Table 13: Illustration Resampling: Raw Sensor data after forward filling

Time in ms Feature 1 Feature 2

0 0.0 4.8

1 0.0 4.8

2 1.3 3.7

3 1.3 3.7

4 1.9 4.2

A APPENDIX 83

These filled sensor values are aggregated via averaging. Table 14 contains the ag-
gregated values of the data seen in Table 13. The aggregated values were created
by averaging column-wise.

Table 14: Illustration Resampling: Aggregated Sensor Data

Time in ms Feature 1 Feature 2

2 0.9 4.24

A APPENDIX 84

A.3 Protocol of Recording a Testfile

A protocol, which was used for the recording of validation data is shown in Table
15. Before each task the subject rested for at least 10 seconds. The given duration
was the intended duration, but as the subjects were allowed to perform the tasks in
a manner that is natural to them, the time needed to perform the task deviated in
practice, e.g. by walking faster than expected.

Table 15: Protocol for recording

Task Manipulated weight Duration

Lifting weights to the height of the hip 10 kg 30 seconds

Set weights down from the height of the hip 10 kg 30 seconds

Pulling a cart 25 kg 20 seconds

Pushing a cart 25 kg 20 seconds

Sitting on chair one None 30 seconds

Set weights down from shelve to floor 5-20 kg 20 seconds

Lifting weights from floor into shelve 5-20 kg 20 seconds

Holding weight in front of the body 10 kg 40 seconds

Sitting on chair two None 30 seconds

Walking on flat ground towards staircase None 30 seconds

Going up a staircase two floors None 40 seconds

Going down a staircase two floors None 40 seconds

Declaration of Authorship

Ich erkläre hiermit gemäß § 9 Abs. 12 APO, dass ich die vorstehende Abschlus-
sarbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe. Des Weiteren erkläre ich, dass die digitale Fassung der
gedruckten Ausfertigung der Abschlussarbeit ausnahmslos in Inhalt und Wortlaut
entspricht und zur Kenntnis genommen wurde, dass diese digitale Fassung einer
durch Software unterstützten, anonymisierten Prüfung auf Plagiate unterzogen wer-
den kann.

Place, Date Signature

	List of Figures
	List of Tables
	List of Acronyms
	Notation
	Introduction
	Background
	Human Activity Recognition
	Definition and Application
	Machine Learning
	Sensor Data
	Data Processing

	Human Activity Recognition based on Exoskeleton Data
	Exoskeleton
	Requirements and Challenges
	Literature Review

	Deep Learning
	Fundamentals of Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Networks

	Data
	Recording Device
	Definition Activities
	Data Acquisition
	Training Data
	Validation Data
	Test Data

	Preprocessing
	Data Cleaning
	Labeling
	Resampling
	Creation of Windows
	Balancing

	Baseline Method
	Motivation
	Data Processing
	Feature Extraction
	Dimensionality Reduction
	Scaling
	Balancing

	Classification

	Method
	Motivation
	Hyperparameter Optimization Schedule
	Feedforward Network applied to features
	Feedforward Network applied to raw data
	Convolutional Neural Network applied to raw data
	Long Short-term memory Network applied to raw data

	Evaluation
	Setup
	Procedure
	Scores

	Experimental Results

	Discussion
	Approriatness of Deep Learning Models
	Best-performing neural network
	Comparatively low level of performance
	Models unable to distinguish Lifting from Dropping
	Training Data Class Imbalance
	No direct Comparison with State of the Art possible

	Robustness of Deep Learning Models
	Evaluation time
	Results from the Hyperparameter Optimization Process

	Future Work
	Conclusion
	Bibliography
	Appendix
	Code Availability
	Illustration of Resampling
	Protocol of Recording a Testfile

