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Abstract
We study the possibility of (almost) self-fulfilling waves of pessimism and self-

reinforcing liquidity traps in a New Keynesian model with heterogeneous expecta-
tions. We explicitly focus on the ”anchoring” of expectations that is modeled as
the range of deviations from the central bank targets (and from the rational expec-
tation equilibrium) that agents are willing to consider. We find that when the zero
lower bound on the nominal interest rate is not binding, aggressive monetary policy
can prevent waves of pessimism and exclude near unit root dynamics, even when
expectations are unanchored. However, as shocks bring the economy to a situation
with a binding zero lower bound, there is a danger of a long lasting self-reinforcing
liquidity trap that arises because of the existence of multiple steady states. It turns
out that in a model where the anchoring of expectations evolves endogenously, the
anchoring of expectations at the time the bad shocks hit is crucial in determining
whether the economy can recover from the liquidity trap. Furthermore, a higher
inflation target reduces the probability that self-reinforcing liquidity traps arise.

JEL Classification: E52, E32, C62

Keywords: Interest Rate Rules, Liquidity Traps, Heterogeneous Expectations, Bounded

Rationality, Multiple Steady States
∗The authors gratefully acknowledge the financial support of NWO (Dutch Science Foundation)

Project No. 40614011 ”Monetary and Fiscal Policy under Bounded Rationality and Heterogeneous Ex-
pectations”, and the financial support from the EU FP7 project ”Integrated Macro-Financial Modeling
for Robust Policy Design” (MACFINROBODS, grant 612796).

†Email addresses: C.H.Hommes@uva.nl, joep.lustenhouwer@uni-bamberg.de

1



1 Introduction

The aftermath of the recent financial crises has highlighted the importance of the zero

lower bound on the nominal interest rate and the possibility of self-reinforcing liquidity

traps. Interest rates all over the world have been at low levels for a prolonged period of

time, while recovery of output and inflation has been slow. While many factors may play

a role in explaining this, low confidence is likely to be an important one. As consumers

expect slow economic growth and a high risk of unemployment in the future, they are

reluctant to increase their current consumption. This keeps aggregate demand low, and

hence prevents a recovery in output. This problem is amplified by the fact that a combi-

nation of low inflation and near zero nominal interest rates leads to a high real interest

rate, which further reduces consumption. As a consequence, output stays even lower,

further reducing confidence. The economy then is stuck in a liquidity trap with a binding

zero lower bound and low output and inflation.

An important reason for increased transparency of many central banks and the adop-

tion of inflation targeting, has been to anchor private sector expectations to a positive

target value. While this policy has initially been very successful in stabilizing inflation,

it seems that since the financial crisis private sector expectations have no longer been

anchored to the target. Instead, many market participants consider the possibility that

inflation will stay well below target for a prolonged period of time. Additionally, output

expectations are no longer anchored to their long run growth path, and economists worry

that economies might not rerun to this growth path any time soon. These unanchored

expectations are crucial for explaining how a self-reinforcing liquidity trap as described

above could arise.

While the widely used rational expectations paradigm may be useful for many ap-

plications, we believe that it is lacking in its ability to model dropping confidence and

changes in the anchoring of expectations in a satisfactory way. Some successful attempts

have been made at explaining expectations driven liquidity traps by deviating, to some

extent, from the traditional paradigm. Mertens and Ravn (2014) build a model where

sunspot shocks can drive the economy temporarily towards a low inflation low output

equilibrium with a binding zero lower bound. The existence of such a zero lower bound

equilibrium was first highlighted by Benhabib et al. (2001a,b). Evans et al. (2008), Eusepi

(2007, 2010), and Benhabib et al. (2014) take a different approach and study dynamics
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in a model where agents use adaptive learning to form expectations. In this framework

they find that deflationary spirals with ever decreasing inflation and output can arise.

In all these models, expectations are however homogeneous and, therefore, either in line

with the rational expectations equilibrium consistent with the central banks targets, or

deviating from this equilibrium.

We believe that more insight in the possibility of self-fulling liquidity traps can be

obtained by allowing for heterogeneity in expectations in a framework where we can ex-

plicitly model the extent to which these heterogeneous expectations are anchored to the

targets of the central bank and the corresponding desired rational expectations equilib-

rium. Besides giving a more intuitive notion to the anchoring of expectations, heteroge-

neous expectations are also arguably more realistic than the assumption of a representa-

tive agent. Both surveys of consumers and professional forecasters (e.g. Mankiw et al.

(2003); Carroll (2003); Andrade et al. (2014)) and laboratory experiments with human

subjects (e.g. Pfajfar and Zakelj (2011); Assenza et al. (2014)) show that in practice

there exists considerable heterogeneity in the forecasts of macroeconomic variables.

In our model, agents consider a distribution of expectation values around the targets

of the central bank and the desired rational expectations equilibrium. When this distri-

bution of expectation values has a small variance, we say that expectations are strongly

anchored to the targets. When the variance is large and agents also consider expectation

values that are far away from the targets, expectations are unanchored. In each period,

each agent picks an expectation from the distribution of possible expectation values. They

do this randomly, where the probability of choosing each expectation value depends on

past realizations. That is, when agents that had pessimistic expectations turn out to

be right (e.g. due to bad shocks to the economy), in subsequent periods, other agents

are more likely to choose pessimistic expectations as well. However, there will always be

heterogeneity present, with some agents expecting values close to the targets and other

agents having more pessimistic or optimistic expectations.

We find that self-reinforcing waves of pessimism can arise, where agents coordinate

on expectations below target. These low expectations then result in low inflation and

output gap realizations, which in turn reinforce the pessimistic expectations. In normal

times, such waves of pessimism can be limited, or even prevented, with aggressive enough

monetary policy that provides strong mean reversion to the target steady state. Inflation
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and output gap will then remain relatively close to their targets, even when expectations

are low. However, as the economy is driven to the zero lower bound on the nominal

interest rate, monetary policy is no longer able to provide strong mean reversion, and

self-fulfilling waves of pessimism can arise more easily. These can then only be prevented

if expectations are relatively strongly anchored to the targets, and the inflation target is

high enough.

We first illustrate the above basic mechanism in a styled, analytically tractable model

with only 3 types of agents: optimist, pessimist and fundamentalists. The latter expect

inflation and output gap to be exactly at their targets, while optimist (pessimists) have

somewhat higher (lower) expectations. In this model specification, the anchoring of

expectations is determined by how much above or below target optimists and pessimists

expect variables to be. We show that if pessimists have low enough expectations relative

to the inflation target, agents can coordinate on a non-fundamental pessimistic liquidity

trap steady state with a binding zero lower bound.

We then turn to our benchmark model where there are many different expectation

values, each spaced by 0.5%. This discreteness in expectation formation reflects that, in

practice, people do not report expectations with infinitely many decimals, but instead

prefer round numbers (see e.g. Assenza et al. (2014)).1 In this model, the anchoring of

expectations, which is given by the number of expectation types (and hence the highest

and lowest expectation values that agents consider), is allowed to vary endogenously

with past absolute deviations from target in the economy. We show that, in this model,

multiple optimistic and pessimistic steady states can co-exist even in the absence of a

zero lower bound on the nominal interest rate. This is however only the case if monetary

policy is very weak so that there is so little mean reversion that expectations become

almost self-fulfilling.

As in the 3-type model, introducing the zero lower bound makes it much more plau-

sible that a self-reinforcing wave of pessimism can bring the economy to a pessimistic

liquidity trap steady state. Such a wave of pessimism could e.g. be triggered by a couple

of bad shocks to the fundamentals of the economy. We show that the anchoring of expec-

tations at the time that the economy is hit by bad shocks is crucial in determining whether

the economy can recover, or instead ends up in a liquidity trap that can last for prolonged
1This phenomenon is labeled ”digit preference”. See Curtin (2010).
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periods of time. In both cases the bad shocks initiate a wave of pessimism where the

majority of agents coordinate on the lowest expectations that they are willing to consider,

given the current anchoring of expectations. If the anchoring is strong enough, then these

expectations will not be too low, and small positive shocks to economic fundamentals can

bring the economy back on a path to the target steady state. If expectations are more

unanchored and the wave of pessimism is more severe, larger shocks would be needed to

achieve this. If such larger shocks do not arise, the economy will remain in the liquidity

trap, which slowly becomes worse as expectations become less anchored over time. We

conclude that the central bank must make sure that it anchors expectations strongly to

its targets during times where the zero lower bound is not binding. Furthermore, a high

enough inflation target could prevent such liquidity traps.

Finally, we use a model with a continuum of heterogeneous expectation rules, that

gives very similar dynamics to our benchmark model, to provide analytical results. We

do this by applying the large type limit (LTL) concept of Brock et al. (2005) to the New

Keynesian framework. The largest difference between this model and our benchmark

model arises because in the LTL specification there is no lower bound on expectation

values that agents consider, so that coordination on a pessimistic steady state cannot

arise. Instead, a self reinforcing wave of pessimism takes the form of a deflationary

spiral as in Evans et al. (2008), Benhabib et al. (2014) and Eusepi (2010) and other

with adaptive learning. With our LTL model we add to that literature by presenting

analytical expressions for the initial conditions that lead to a deflationary spiral or to

recovery (what they call a ”corridor of stability”). Moreover, our benchmark model adds

to the above literature by creating the possibility that downward spiraling expectations

do not continue indefinitely but instead lead to converge to a locally stable liquidity trap

steady state. This is also the case for Evans et al. (2016). Where however in that paper

exogenous lower bounds on inflation and consumption are imposed in order to create a

locally stable steady state under the zero lower bound, such a liquidity trap steady state

arises in our model because of anchored expectations. This steady state can furthermore

shift endogenously as the anchoring of expectations evolves over time. Finally, where the

adaptive learning literature assumes homogeneous expectations, we extend the analysis

by allowing for heterogeneity in expectations.

Our model is further related to the heterogeneous expectation models of Branch and
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McGough (2010), Massaro (2013), Gasteiger (2014) and Di Bartolomeo et al. (2015).

These papers however assume that agents can choose between two expectation formation

rules, rather than a distribution of heterogeneous expectations. More closely related are

the works of Anufriev et al. (2013), De Grauwe (2011), Agliari et al. (2014), Agliari et al.

(2015) and Pecora and Spelta (2017). However, these papers discuss either a model with

a relatively small number of different expectation values (like the 3-type model), or the

large type limit specification with a continuum of expectation values. None of these

papers consider the case where the range of expectation values varies endogenously, and

where the number of expectation values can be large but finite.

Moreover, where the focus in the above literature is on the desired, and in some cases

optimal, specification of monetary policy when the zero lower bound is not binding, our

main goal is to investigate how self-reinforcing waves of pessimism can arise when con-

ventional monetary policy can no longer be used due to the restrictions of the zero lower

bound on the nominal interest rate. De Grauwe and Ji (2016) and Hommes and Lusten-

houwer (2015) consider the zero lower bound in an heterogeneous expectations model.

Our contribution differs form these papers in that De Grauwe and Ji (2016) rely on simu-

lations only and do not derive analytical results, and Hommes and Lustenhouwer (2015)

focuses on the credibility of the central bank rather than the anchoring of expectations,

in a model with only two types. Furthermore, in neither of these papers locally stable

liquidity trap steady states can arise.

The remainder of this paper is organized as follows. In Section 2 the economic model,

and general expectation formation mechanism are presented. In Section 3 we illustrate

with the stylized 3-type example how (almost) self-fulfilling waves of pessimism could

arise, both without and with the zero lower bound on the nominal interest rate. Section

4 considers our benchmark model with an endogenously varying number of types, as well

as the large type limit with a continuum of expectation values. Section 5 concludes.

2 Model specification

2.1 Economic environment

We use a log linearized New Keynesian model in line with Woodford (2003). Micro-

foundations for this model when expectations are heterogeneous can be found in Hommes
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and Lustenhouwer (2015). The derivations in that paper largely follow Kurz et al. (2013).2

Microfoundations of the same New Keynesian model with heterogeneous expectations

under alternative assumptions are derived by Branch and McGough (2009).

The model is given by a New Keynesian Phillips curve describing inflation, an IS curve

describing output gap, and a rule for the nominal interest rate. Log linearized output

gap (xt) and inflation (πt) are given by

xt = Etxt+1 +
1

σ
(Etπt+1 − it + r̄) + ut, (1)

πt = βEtπt+1 + κxt + et, (2)

where κ, σ and β are model parameters, and r̄ = 1
β
− 1 is the steady state real interest

rate. et and ut are shocks to the economy, which we assume to be white noise.

Finally, it is the nominal interest rate.3 We assume the nominal interest rate is set

according to a forward-looking Taylor type interest rate rule.4

it = r̄ + πT + φ1(Etπt+1 − πT ) + φ2(Etxt+1 − xT ), (3)

where πT is the central banks inflation target, and xT = 1−β
κ
πT is the output gap target

consistent with πT . Forward-looking rules generally perform well empirically (e.g. Clarida

et al., 1998). Furthermore, Evans and Honkapohja (2003) show that a forward-looking

rule of the form (3), can be used to minimize an (add hoc) loss function containing

discounted squared deviations of inflation and output gap from target.5 Branch and
2In the derivations in Hommes and Lustenhouwer (2015), the aggregation of individual decisions in

terms of aggregates only (which is not the case in Kurz et al. (2013)), hinges on a specific property
of the way we model heterogeneous expectations. With the Heuristic switching model of Brock and
Hommes (1997), in any period there is heterogeneity in expectations, with different fractions of agents
using different heuristics. However, these fractions are updated in each period according to a probability
distribution that depends on the relative past performance of each expectation formation heuristic.
With this updating process each agent has in each period the same probability of following a particular
heuristic as all other agents, independent of the heuristic the particular agent followed in the previous
period. By assuming that agents are aware of this, their expectations about their own future consumption
coincide with their expectation about the future consumption of any other agents, and therefore with
their expectations about aggregate consumption, which is crucial for aggregation. See Hommes and
Lustenhouwer (2015) for details.

3Note that different from Hommes and Lustenhouwer (2015), the nominal interest rate is here not
defined in terms of deviation from steady state (which would give ît = it− r̄). This makes the zero lower
bound analysis in the current paper more intuitive.

4All results in this paper carry over qualitatively to the case of a contemporaneous Taylor rule or a
Taylor rule with lagged data. These results can be found in Lustenhouwer (2017).

5We assume here that the central bank can not observe and respond to contemporaneous shocks.
Otherwise these would show up as well in a rule derived from such a loss function.
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Evans (2011) and Hommes and Lustenhouwer (2015) show that this ”optimal” rule also

works well in models with heterogeneous expectations.

Abstracting from shocks and plugging (3) into (1), gives the following model

xt = (1− φ2

σ
)Etxt+1 −

φ1 − 1

σ
(Etπt+1 − πT ) +

φ2

σ
xT , (4)

πt = βEtπt+1 + κxt. (5)

2.2 Expectation formation

We deviate from the rational expectations hypothesis, and do not assume all agents

always exactly expect the same outcome of future variables. Instead, we assume that

some heterogeneity is present, with some agents expecting values that are a bit higher

and some agents expecting values that are a bit lower. This heterogeneity could be caused

by agents making small mistakes. Alternatively, the heterogeneity can arise because some

agents think they have reasons to be more optimistic or pessimistic in their predictions

than is warranted by the publicly available information. More specifically, expectations

are distributed around the targets of the central bank, πT an xT . This can be interpreted

as some agents trusting the central bank and expecting inflation and output gap to be

equal to their targets, while other agents expect that the central bank will not be able to

exactly achieve its goals, but that inflation and output gap will be somewhat higher or

lower. An alternative interpretation is that expectations are heterogeneously distributed

around the minimum state variable (MSV) solution of the model. Since we assume no

autocorrelation in shocks, the MSV solution coincides with the targets of the central bank

in any period.

We further assume that when agents that were more optimistic or pessimistic in their

prediction turn out to be right, then other agents will learn from this and adjust their

expectations in the direction of the better performing agents. Agents may, for example,

think that the correct agents had additional information available to them, or just had

more skills in analyzing the economic environment.

We implement this way of expectation formation with a heuristic switching model

as in Brock and Hommes (1997), where agents switch between simple prediction rules,

or heuristics. The heuristics in our model consists of deviations from the fundamental
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values of the economy. The fraction of agents using the heuristic with deviation, or bias,

bz,h in period t is updated according to the discrete choice model with multinomial logit

probabilities (see Manski et al. (1981)) given by

nz,h
t =

eωU
z,h
t−1∑Hz

h=1 e
ωUz,h

t−1

, z = π, x. (6)

Here, Hπ and Hx are the total number of prediction values used for respectively inflation

and output gap. U z,h
t is the fitness measure of predictor h in period t, which we will

depend on past prediction errors, and ω is the intensity of choice. The higher the inten-

sity of choice, the more sensitive agents become with respect to relative performance of

prediction values, and the more forecasts of agents will be coordinated.

Aggregate expectations are now given by a weighted average of the predictions of all

types. This gives for respectively inflation and output gap

Etπt+1 = πT +
Hπ∑
h=1

bπ,hn
π,h
t , (7)

and

Etxt+1 = xT +
Hx∑
h=1

bx,hn
x,h
t , (8)

3 An example with 3 types

Before we turn to the richer model with a large number of prediction values in Section

4, we will first illustrate some key properties of our model with a simple example where

Hx = Hπ = 3. There then are three types of agents for both output and inflation, which

we can label fundamentalists, optimist and pessimists. Fundamentalists have no bias

and believe in the targets of the central bank (or alternatively in the MSV solution of the

model). Their expectations are therefore given by Efun
t xt+1 = xT and Efun

t πt+1 = πT .

Then there are optimists and pessimists who have a bias of b and −b respectively. Their

expectations are given by Eopt
t xt+1 = xT + b, Eopt

t πt+1 = πT + b, Epes
t xt+1 = xT − b, and

Epes
t πt+1 = πT − b. The magnitude of the bias b, determines the range of values around

the targets (i.e. MSV solution) that agents are willing to consider as expectations. We

take this as a measure of the ”anchoring of expectations”. If b is small, then agents will

always expect values close to the targets of the central bank. We say that expectations

9



are strongly anchored in this case. If on the other hand b is large, then agents could

potentially switch to expectations that lie far from the target by becoming optimistic

or pessimistic. In this case, expectations are unanchored. In this section, we will

assume that b is fixed, so that the anchoring of expectations is exogenously given. In

Section 4 we will allow for endogenous evolution of the anchoring of expectations. Note

that we allow an agent to be optimistic about one variable, while being pessimistic or

fundamentalistic about the other, so that the fractions of agents that are optimistic and

pessimistic (denoted respectively nz,opt
t and nz,pes

t ) may differ between the two variables

z = x, π. The fraction of fundamentalists of variable z equals nz,fun
t = 1− nz,opt

t − nz,pes
t .

In this 3-type model, we will first show how our heterogeneous expectations framework

with nonlinear updating can imply multiple steady states, even in an otherwise linear

model (Section 3.1). Here we also illustrate how monetary policy can prevent the existence

of multiple steady states, so that coordination on optimism or pessimism is no longer

possible in the long run. In Section 3.2 we introduce the zero lower bound on the nominal

interest rate and show that this drastically alters policy implications. Now the existence

of a liquidity trap steady state with coordination on pessimism for both inflation and

output can no longer be prevented by choosing adequate coefficients in the Taylor rule.

Instead, such a ”bad” equilibrium can only be ruled out with a sufficiently high inflation

target or with sufficiently anchored expectations.

3.1 Steady states in the 3-type model without zero lower bound

We first ignore the zero lower bound on the nominal interest rate and consider the model

given by (4) and (5). Plugging in the biases of fundamentalists, optimist and pessimist

(respectively bx,h = −b, bx,h = 0, and bx,h = b for output, and bπ,h = −b, bπ,h = 0, and

bπ,h = b for inflation) in (7) and (8) results in

Etxt+1 = xT + b(nx,opt
t − nx,pes

t ), (9)

Etπt+1 = πT + b(nπ,opt
t − nπ,pes

t ). (10)

Fractions are given by (6), with h = opt, pes, fun. For analytical tractability, we will

in this section assume that the fitness measures are given by the most recently observed

squared prediction error. That is Uπ,h
t−1 = −(πt−1 − Eh

t−2πt−1)
2 for inflation, and Ux,h

t−1 =
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−(xt−1 − Eh
t−2xt−1)

2 for output gap, with h = opt, pes, fun. In Section 4 we will allow

the fitness measure to also depend on forecasting performance in earlier periods.

We now look at what steady states can exist in this non-linear model.

Proposition 1 (Existence fundamental steady state 3-type model). A funda-

mental steady state where inflation and output gap are equal to the targets of the central

bank, and where being a fundamentalist is the best performing heuristic, always exists,

independent of monetary policy and the parametrization of the model.

Proof. Plugging in the expectations of the three types in the above fitness measures, it

follows that when πt−1 = πT and xt−1 = xT , optimists and pessimists have identical

fitness (Ux,opt
t−1 = Ux,pes

t−1 and Uπ,opt
t−1 = Uπ,pes

t−1 ). It then follows from (6) that in this case

nx,opt
t = nx,pes

t and nπ,opt
t = nπ,pes

t , so that (9) and (10) reduce to Etxt+1 = xT and

Etπt+1 = πT . Plugging these expectations in (4) and (5), realized inflation and output

gap will, in the absence of shocks, be equal to πt = πT and xt = xT . This will then be

true in any period, so that the targets of the central bank comprise a steady state. �

While Proposition 1 implies that, in the absence of shocks, the central bank could

achieve its target in every period, there might also exist additional steady states, where

inflation and output gap are not equal to the target. This possibility arises due to the

non-linear updating process of the expectation fractions (6). In such non-fundamental

steady states, fundamentalism would no longer be the best performing heuristic for both

variables, but, instead, optimism or pessimism would dominate for inflation and/or output

gap. Since agents can be either pessimist, fundamentalist, or optimist about both inflation

and output gap, there are a total of nine combinations of dominating heuristics that could

potentially comprise a steady state. That is, beside the fundamental steady state, eight

different non-fundamental steady states could potentially exist.

As we are interested in the possibility of a liquidity trap, and this is most likely to

arise under pessimistic expectations, we will focus on the steady state where pessimism

dominates for both inflation and output gap. In Section 3.2 we will include the zero

lower bound on the nominal interest rate and see whether this steady state can imply a

liquidity trap.

Proposition 2 states under what conditions this pessimistic steady state exists for

the limiting case where the intensity of choice goes to infinity (ω = ∞). This implies
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that agents in every period immediately switch to the best performing heuristic, and

coordinate perfectly on either optimism, pessimism or fundamentalism.6 Proof of the

proposition is given in Appendix A.1.

Proposition 2 (Existence pessimistic steady state 3-type model). Without the

zero lower bound on the nominal interest rate, a locally stable steady state were pessimism

dominates for both inflation and output gap exists under ω = ∞ if and only if φ1 + φ2 <

1 + σ
2
.

From Proposition 2 it follows that if the central bank does not respond to output gap

(or at least not very strongly), then the pessimistic steady state can exist, in the limiting

case of infinite intensity of choice7, even if φ1 > 1. That is, even if the Taylor principle is

satisfied, and the fundamental equilibrium would be locally determinate under rational

expectations, the additional pessimistic steady state can exist. However, when the central

bank responds more aggressively to inflation (and/or to output gap), the existence of the

pessimistic steady state is ruled out.8

The intuition for the existence of the pessimistic steady state when monetary policy

is not aggressively enough is the following. If agents are pessimists, then this induces

inflation and output to become so low that agents have better predictive success by being

pessimists, than by being fundamentalists. We call such expectations ”almost self-

fulfilling”. When, on the other hand monetary policy is aggressively enough, the central

bank will sufficiently lower the interest rate when expectations become pessimistic, which

will stimulate output and inflation, leading to realizations that are closer to the fundamen-

tal values. Pessimistic expectations then perform worse than fundamental expectations

and the pessimistic steady state does not exist.
6The exception to perfect coordination arises in the knife edge case where fundamentalists have exactly

the same fitness as optimists (pessimists). In this case half of the agents will become fundamentalists,
while the other half become optimists (pessimists). These knife edge cases could also comprise steady
states. However, we show in the online supplementary material that such steady states are always
unstable.

7For finite intensity of choice there would not be perfect coordination, implying that during a wave of
pessimism also some agents are fundamentalists and optimists. These agents would put upward pressure
on inflation and output gap, driving realizations further away from the expectations of pessimists, making
them less self-fulfilling. In this case the pessimistic steady state can still exist, but the condition for its
existence would become more stringent.

8The other 7 non-fundamental steady states can also be ruled out with an aggressive enough response
to inflation and/or output gap. Conditions for existence of these steady states can be found in Lusten-
houwer (2017). In particular, the condition for existence of an optimistic steady state is exactly the same
as the one given in Proposition 2, since (abstracting from the zero lower bound) the model is completely
symmetric.
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When pessimistic expectations are almost self-fulfilling, it could still be that pessimists

make significant forecast errors. What is key however, is that their forecast errors are

smaller than those of optimists and fundamentalists and that pessimism outperforms all

other available prediction values. When a larger number of expectation values is allowed

(as in Section 4), forecast errors are required to be smaller for multiple steady states

to exist. Below, we will also consider the case where pessimistic expectations lead to

realizations that are not only low enough to make pessimistic expectations almost self-

fulfilling, but actually strictly lower than the expectations (zt < Et−1zt). We will refer to

this case as ”self-reinforcing” pessimistic expectations. Without the zero lower bound,

a self-reinforcing wave of pessimism can only arise if monetary policy does not satisfy

the Taylor principle.9 However, when we take account of the zero lower bound on the

nominal interest rate, self-reinforcing waves of pessimism are more likely to arise, as we

will show next.

3.2 A liquidity trap steady state in the 3-type model

We now introduce the zero lower bound (ZLB) on the nominal interest rate in the above

3-type model, and investigate its consequences on the existence of the pessimistic steady

state. In normal times the interest rate is still given by the forward-looking Taylor rule,

(3). We then say that our model is in the ”positive interest rate region”. When, however,

the Taylor rule implies that it < 0, then it is instead set equal to zero. In that case, we

say that the system is in the ”ZLB region”, and inflation and output reduce to

xt = Etxt+1 +
1

σ
Etπt+1 +

r̄

σ
, (11)

πt = βEtπt+1 + κxt. (12)

Proposition 3 states the conditions for existence of the pessimistic steady state under

the zero lower bound. Its proof is given in Appendix A.2

Proposition 3 (Existence liquidity trap steady state 3-type model). When all

agents are pessimists, the zero lower bound on the nominal interest rate is binding if and
9It would require φ1 + φ2 < 1.
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only if

πT + r̄ < b(φ1 + φ2). (13)

In that case, the pessimistic steady state of proposition 2 becomes a liquidity trap steady

state, and exists (assuming ω = ∞) if and only if

πT + r̄ < b(1 +
σ

2
). (14)

From Proposition 3 it follows that a liquidity trap steady state with pessimistic

expectations and a binding zero lower bound, can exist if expectations are unanchored (b

large). However, its existence can then be prevented if the inflation target is sufficiently

high. Note furthermore, that the liquidity trap steady state can exist when a pessimistic

steady state would also have existed in the absence of a zero lower bound on the nominal

interest rate (φ1 + φ2 < 1 + σ
2
); but that it can also exist when monetary policy is

aggressive enough to rule out the existence of a pessimistic steady state without the ZLB

(φ1 + φ2 > 1 + σ
2
). In the first case, (13) is the binding condition for the existence of the

liquidity trap steady state, while in the second case it is (14).

1 2 3 4 5 6 7 8 9 10

−4

−2

2

4

6

8

b (annualized)

πT (annualized)

Figure 1: Existence of liquidity trap steady state of Proposition 3 when φ1 + φ2 > 1 + σ
2 ,

σ = 0.157 and β = 0.99, depending on the anchoring of expectations (b) and the
inflation target (πT ). In the shaded area below the solid line (including both the
light and the dark part) the liquidity trap steady state exists, while in the non-
shaded area above the black line it is ruled out. Below the dashed line (darker
shaded area) pessimistic expectations are self-reinforcing.

In Figure 1, we plot the condition for existence of the liquidity trap steady state in

case of φ1+φ2 > 1+ σ
2

(i.e. we plot (14)) with a solid line (the meaning of the dashed line

will be discussed below). Here, we calibrate the elasticity of inter temporal substitution

as in Woodford (1999) to σ = 0.157, and set β = 0.99. For higher calibrations of σ the

14



line in Figure 1 would be steeper, implying that a higher inflation target would be needed

to rule out the liquidity trap steady state for a given level of the anchoring of expectations

(b). In the figure, it can be seen that, as long as pessimists expect annualized inflation to

be within 3.5% of its target (b < 3.5), the liquidity trap does not exist even if the central

bank’s inflation target is zero. However, as expectations become more unanchored, a

considerably higher inflation target is needed to rule out the possibility of a pessimistic

liquidity trap.

Finally, we turn to the possibility of self-reinforcing expectations in a liquidity trap.

Remember that in order for the steady state to exist, expectations must at least be almost

self-fulfilling in the sense that they result in realizations of inflation and output that are

closer to the pessimistic expectations than to the fundamentalist ones. However, we now

consider whether expectations can also lead to realizations of inflation and output gap

that are as low or lower than what pessimists expected. Proposition 4, whose proof is

given in Appendix A.3, states when this is the case.

Proposition 4 (A self-reinforcing liquidity trap). The liquidity trap steady state of

Proposition 3 is self-reinforcing if and only if

πT + r̄ < b (15)

Condition (15) is plotted as a dashed line in Figure 1. It follows that for most of

the combinations of anchoring of expectations (b) and the inflation target (πT ) where the

pessimistic steady state exists, it is also self-reinforcing (the darker shaded area below

the dashed line).

4 Many types

We now turn to our benchmark model with a large number of expectation values. While

the 3-type model of Section 3.1 gives interesting insights (in part because of its analytical

tractability), it is rather stylized in the sense that it does not allow for different degrees

of optimism and pessimism. Instead, all pessimists always have the same expectations

and all optimists always have the same expectations. The model in this section allows for

different degrees of optimism and pessimism by introducing more possible expectation

values. In addition, we will allow the number of expectation values that agents consider
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and their range (which we interpret as the anchoring of expectations in this model), to

vary over time endogenously.

Even though it makes sense to assume that different degrees of optimism and pes-

simism are allowed, some discreteness in expectations is empirically relevant. In prac-

tice, people do not form expectations with infinitely many decimals. Instead, humans

prefer round numbers when reporting their expectations (a phenomenon labeled digit

preference).10 We choose to model this by assuming that agents form expectations with

a precision of 0.5% (annualized). The different possible expectations values will therefore

be spaced by 0.5%, and go in both directions of the target. Assuming a higher precision

of expectations formation (e.g. 0.01%) would not change our results qualitatively.11 We

will furthermore show that most of our results even carry over to a model with a con-

tinuum of possible expectation values (where there is no rounding and no discreteness in

expectation formation).

Section 4.1 describes the specification of our benchmark model and shows that, as

in the 3-type model, multiple steady states can exist. However, expectations are now

required to be closer to perfectly self-fulfilling for this to occur. In Section 4.2 we show that

the dynamics of our benchmark model in the absence of the zero lower bound are almost

indistinguishable from those of a model where there is no discreteness in expectations,

but, instead, a continuum of possible prediction values (the large type limit). Section

4.3 focuses on the zero lower bound on the nominal interest and the possibility of a

self-fulfilling liquidity trap steady state in the benchmark model. Here we will let the

anchoring of expectations vary endogenously with past deviations of inflation and output

gap from their targets. We show that long lasting liquidity traps can arise. Whether

the economy can recover from such a liquidity trap very much depends on how anchored

expectations were when the economy fell in the trap, as well as on the inflation target.
10Curtin (2010).
11Having expectations that are spaced closer together would make conditions for existence of multiple

steady states more stringent. There would however continue to exist a range of policy parameters for
which expectations are sufficiently self-fulfilling for multiple steady states to exist. In the limit where
expectation values are infinitely close ot each other (the large type limit) this range of policy parameters
is reduced to a single bifurcation point.
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4.1 Finitely many expectation values

4.1.1 Model

As in Section 3.1, the model is given by the law of motions for the economy ((4) and

(5)), and by the equations describing expectations: (6), (7) and (8). However, instead of

letting Hx = Hπ = 3 in these expectation equations, we now allow Hx and Hπ to differ

and to be considerably larger. The different biases that agents choose from (bπ,h and bx,h)

will now be spaced by 0.5%, while extending equally to positive and negative values. For

example, if Hπ = 41, then the 41 possible biases for inflation will, in annualized values,

be {-10, -9.5, -9,...,-0.5, 0, 0.5,..., 9, 9.5, 10}. Similarly, when Hx = 35, the output gap

biases will range between 8% below target, and 8% above target (annualized). Hx and

Hπ therefore determine the largest deviations from target that agents consider, similar to

the bias b in Section 3.1. We will therefore use Hx and Hπ as measures of the anchoring

of expectations.

Finally, we allow the fitness measures used in (6) to depend on the whole history of

prediction errors, and not just the prediction error in the most recent period. That is,

Uπ,h
t−1 = −(1− ρ)(πt−1 − Eh

t−2πt−1)
2 + ρUπ,h

t−2, (16)

and

Ux,h
t−1 = −(1− ρ)(xt−1 − Eh

t−2xt−1)
2 + ρUx,h

t−2. (17)

4.1.2 Multiple steady states

We will first illustrate how almost self-fulfilling expectations can lead to the existence of

multiple non-fundamental steady states where optimism or pessimism dominates, as in

the 3-type model. We will do this for the case where Hx = Hπ = 41, so that expectations

are relatively unanchored and agents consider values up to ten percent above and below

the inflation and output gap targets. In Section 4.3 we will look at how the zero lower

bound on the nominal interest rate can create the possibility of a liquidity trap steady

state in a specification with endogenously varying Hx and Hπ.

Figure 2 plots a bifurcation diagram of a model with 41 types that is obtained by

simulating the model for many different initial conditions for different values of the policy

parameter φ1. The intensity of choice is chosen relatively high (ω = 2 · 106) to facilitate
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Figure 2: Bifurcation diagram of 41-type model in φ1 for large intensity of choice (ω = 2 ·106).
The blue lines represent (locally stable) steady states at the 41 different levels of
inflation expectations.

coordination, and hence the existence of almost self-fulfilling non-fundamental steady

states.

In the figure, it can be seen that for each of the 41 inflation prediction values there

is a range of φ1-values where this prediction comprises an almost self-fulfilling steady

state. In particular, when φ1 is around 0.95, then any value of inflation that agents could

expect would lead to a realization of inflation that is close to this expectation value,

so that agents will again choose these optimistic or pessimistic expectations. From a

policy perspective this implies that for these relatively low values of φ1, the central bank

might have difficulty achieving its targets. Shocks to fundamentals of the economy (or

to expectations themselves) could easily trigger coordination on optimistic or pessimistic

expectations with corresponding high or low inflation and output gap.

When however the monetary authority responds more aggressively to inflation, non-

fundamental expectations will lead to realizations that are less self-fulfilling due to stronger

mean reversion to the central bank’s targets. In the subsequent period agents will then

adjust their expectations and become less optimistic or pessimistic. This leads to realiza-

tions of inflation even closer to the target, which again brings expectations closer to the

fundamentals. As φ1 increases, the non-fundamental steady states in Figure 2 therefore

start to disappear. When φ1 is larger than 1.3, only steady states very close to the central
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bank’s targets exist, which might not be considered a problem from a policy perspective.

As φ1 is increased to 1.7 the fundamental steady state is unique and convergence to the

targets will always occur in the long run.

When the central bank responds very weakly to inflation (e.g. φ1 < 0.8), then waves of

optimism and pessimism become self-reinforcing. That is, low expectations of inflation

lead to even lower realizations, which causes agents to become even more pessimistic.

This process continues until the lowest possible expectations are reached (lowest blue line

in Figure 2). Analogously, self-reinforcing optimistic expectation lead to convergence to

the highest possible expectation values (highest blue line in Figure 2).

For lower intensity of choice, the range of policy parameters for which intermediate

steady state exist becomes smaller than in Figure 2. However, when monetary policy

is too weak, it will always be the case that optimistic and pessimistic expectations are

self-reinforcing, implying the existence of non-fundamental steady states where the most

extreme expectation values dominate.

4.2 Large type limit

4.2.1 LTL model

We now consider the robustness of the findings of Section 4.1 to the assumption of finitely

many discrete expectation values. In order to do this, we first combine equations (6), (7),

and (16). Assuming memory ρ = 0 for analytical tractability, this can be written as

Etπt+1 = πT +
1
H

∑Hπ

h=1 bhe
−ω(πt−1−bπ,h−πT )2

1
Hπ

∑H
h=1 e

−ω(πt−1−bπ,h−πT )2
. (18)

Brock et al. (2005) show that if we let Hπ go to infinity in this equation, the dynamics

of our model can be closely approximated with the so called large type limit (LTL),

where there is a continuum of prediction biases. Stated differently, the LTL, is an

accurate description of the evolutionary selection, (18), of Hπ forecasting rules when Hπ

is large. The LTL can be obtained by replacing sample means by population means in

(18). Assuming that the prediction biases bπ,h are normally distributed around zero with

variance s2, this gives

Etπt+1 = πT +

∫∞
−∞ be−ω(πt−1−b−πT )2e−

b2

2s2 db∫∞
−∞ e−ω(πt−1−b−πT )2e−

b2

2s2 db
. (19)
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The large type limit can also be interpreted in terms of Bayesian updating. Agents then

try to learn in each period about the correct value of b, with N(0, s2) as their prior. The

likelihood function (the distribution of πt−1 given the true value of b) is normal, with a

variance inversely related to the intensity of choice (ω). This means that the intensity of

choice (ω) is inversely related to the perceived noise with which agents can observe the

correct value of b. This interpretation is in line with the random utility model underlying

the multinomial logit probabilities given in (6) (see Anderson et al. (1992)). A more

detailed comparison between the LTL and Bayesian updating is presented in Appendix

B.1.

In the online supplementary material it is shown that (19) reduces to

Etπt+1 =
πT

2ωs2 + 1
+

2ωs2

2ωs2 + 1
πt−1. (20)

Analogously to the above, we obtain the following equation for output gap expectations.

Etxt+1 =
xT

2ωs2 + 1
+

2ωs2

2ωs2 + 1
xt−1. (21)

In the LTL model, expectations thus are a linear combination of the central bank’s

target, and of past realizations. The weights on these expectations depend on the intensity

of choice (ω) and on the variance of the distribution of expectation values (s2). Although

the LTL allows agents to choose infinitely high and infinitely low expectation values, we

can still talk about anchoring of expectations in this model. Where the anchoring of

expectations was determined by b, and Hx and Hπ in respectively the 3-type and the

many type model, this role is taken by the variance of the distribution of expectation

values (s2) in the LTL model.

4.2.2 Comparison with 41-type specification

Figure 3 shows a simulated time series of inflation and output gap of the LTL model

and the model with 41-types of Section 4. In the latter, we have set ρ = 0 in equations

(16) and (17) for comparability with the LTL specification. We use the calibration of

Woodford (1999) (with σ = 0.157, κ = 0, 024 and β = 0.99), and further set annualized

s2 equal to 0.35, so that the variance of the distribution of types in the LTL model

matches that of the 41-type model. We calibrate the intensity of choice at ω = 63500
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Figure 3: Simulated time series for LTL model (top panels, black) and 41-type model (bottom
panels). The case of rational expectations is plotted in the top two panels in dashed
green.

to let the 41-type model match expectations from survey data.12 At this calibration, the

interquartile range of the expectations distribution in the fundamental steady state is 1%

(in annualized terms). Outside of this steady state the interquartile range then typically

is 1.5%, and less for realized values close to the highest or lowest possible prediction value.

This is in line with the findings of Mankiw et al. (2003), who show that the interquartile

range of the Livingston Survey and the Survey of Professional Forecasters is around 1%.

Shocks to inflation and output gap are white noise, and have an annualized standard

deviation of 1.5%. In the interest rate rule we set πT = 0, φ1 = 1.5 and φ2 = σ = 0.157.

The first thing to notice in Figure 3, is that the time series of both the LTL model and

the 41-type model are highly persistent. Since there is no autocorrelation in shocks, this

persistence is fully endogenous, and comes from the way agents form expectations. Pos-

itive or negative shocks can initiate waves of optimism or pessimism that are eventually

reversed. If agents would form expectations rationally (which, in our model with white
12Note that the magnitude of the intensity of choice depends on the units of measurement of the data.

63500 should therefore not necessarily be seen as a high number. If we interpret the LTL model in terms
of Bayesian updating, then ω = 63500 implies that the perceived noise agents encounter in observing
true values has a standard deviation of 1.12% of annualized inflation (see Appendix B.1).
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noise shocks, would mean that they always expect the targets) such drifts in inflation

and output gap would not have arisen. For comparison, the case of rational expectations

is plotted in dashed green in the upper two panels.

The second thing to note from Figure 3, is that the time series of the LTL model

and the 41-type model look almost identical. So, even though in the 41-type model

expectations are discrete and very high or low values of inflation and output are not

considered when agents form expectations, the resulting dynamics are here practically

the same as in the LTL model with a continuum of expectations values ranging from

minus infinity to infinity.

The intuition for both the waves of optimism and pessimism, and for the striking

similarities between the two model specifications, are (almost) self-fulfilling expectations.

When shocks drive up inflation, this leads agents to increase their inflation expectations.

Since the main determinant of inflation is expected inflation, inflation is likely to be

high again in the subsequent period, leading again to high expectations. Meanwhile, the

monetary authority responds to the high inflation expectations by increasing the interest

rate, which depresses output gap. This leads to more pessimistic expectations about

output gap, amplifying the recession.

For the LTL model, these almost self-fulfilling expectations imply very slow conver-

gence to the steady state and a near unit root.13 That is, in the absence of further

shocks, realizations of inflation would be closer to the target then in the previous period,

but not by much. Therefore, expectations would also only slowly adjust and mean re-

version back to the steady state would go quite slowly. When new shock innovations are

added to this near unit root process, the near random walks of Figure 3 arise, with waves

of optimism and pessimism.

We saw in Section 4.1.2 that in the 41-type model almost self-fulfilling expectations

can lead to the existence of multiple steady states for high intensity of choice, due to

coordination on a specific expectation value. However, even when the intensity of choice

is lower and monetary policy is aggressive enough to make sure that expectations are not

sufficiently self-fulfilling for this to occur, it might still be the case that expectations are

self-fulfilling enough to induce agents to only slowly switch to another expectation value.

This is what is happening in the bottom panels of Figure 3.
13We show that the model has a near-unit root for this calibration in Section 5.1
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The waves of optimism and pessimism described above are somewhat limited by the

anchoring of expectations. In the bottom panels of Figure 3 (41-type) it regularly occurs

that the lowest or highest possible expectation values have the best fitness. If expectations

were less anchored, this would induce some agents to have even lower or even higher

expectations in these cases. In the top panels of Figure 3 (LTL), agents can always

choose even higher or lower expectations. However, the variance of the distribution of

expectations types, which determines the anchoring of expectations in this model, still

keeps most of the expectation mass relatively close to the target. That is, in both models

the anchoring of expectations prevents waves of optimism and pessimism from becoming

too large.

We can conclude that when monetary policy is active, the 41-type model gives very

similar expectations and dynamics as the LTL model, even though expectations are here

assumed to take on only discrete values, and even though the 41-type model places an

upper and lower bound on expectation values that agents can choose from. In Sections

4.3 and 5.2 we will see that in a liquidity trap with a binding zero lower bound, the

existence or absence of a lower bound on possible expectation values does qualitatively

alter dynamics.

4.3 Liquidity traps in many type model

4.3.1 Model with endogenously varying anchoring of expectations

In sections 4.2.2 we saw that self-fulfilling waves of optimism and pessimism can arise

in our model, even in the absence of the zero lower bound on the nominal interest rate.

We now return to our main question, and investigate whether our model can explain

self-fulfilling liquidity traps.

We do this with the model with finitely many expectation values of section 4.1 in its

most general form. That is, expectations are given by (6), (7) and (8) and we allow the

anchoring of expectations to differ between inflation (Hπ) and output gap (Hx) and to

vary over time. When expectations are such that the nominal interest rate is positive,

the model is in the ”positive interest rate region”, and the economy evolves according

to (4) and (5). When the zero lower bound on the nominal interest rate is binding, the

model is in the ”ZLB region”, and inflation and output gap are given by (11) and (12).
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When the model is in the ZLB region, there is no feedback on expectations through

monetary policy, and expectations can easily become self-reinforcing. In Section 3.2 we

saw that in the 3-type model this can lead to the existence of a liquidity trap steady

state with coordination on pessimistic expectations. We will now investigate whether

coordination on a liquidity trap steady state with self-reinforcing expectations can also

arise in our many type model.

Before we can address this question, we need to specify a law of motion for the an-

choring of expectations. We do this by assuming that expectations become less anchored

when realizations are far away from the target for an extended period of time, and become

more anchored when realizations continue to be relatively close to the central bank’s tar-

gets. We model this by letting agents adaptively update the largest absolute deviation

from target (LAD) that they consider, based on new realizations of absolute deviations

of variables from target. That is,

LADz
t = γLADz

t−1 + (1− γ)|zt−1 − zT |, z = π, x. (22)

The time t anchoring of expectations, Hz
t , is obtained from annualized LADz

t by first

multiplying by 4, and then truncating to the lowest odd integer.14 γ is a persistence

parameter that determines how fast expectations can become more or less anchored.

Note that with the anchoring of expectations evolving according to (22), expectations

would eventually become fully anchored in the target steady state. When the model is

subject to shocks however, the economy never fully reaches this steady state, but instead

inflation and output gap keep fluctuating around their targets. In this case, expectations

never become fully anchored, and there will always be heterogeneity in expectations.15

4.3.2 Simulation with different initial anchoring of expectations

We now simulate the above model for different levels of the initial anchoring of expecta-

tions. With this simulation exercise we can investigate whether liquidity traps can arise,
14It is multiplied by 4 because an extra percentage point in LADz

t implies a percentage point in the
positive and a percentage point in the negative direction, and hence 4 steps of 0.5%. Truncating to the
nearest odd integer ensures that symmetry in expectation values is maintained.

15Also note that the fractions of agents expecting different expectation values evolve according to a
probability distribution, where in any period each agent has a chance of choosing a particular value.
It is therefore not necessarily the case that there are individual agents who are either constantly too
optimistic or constantly too pessimistic and hence make persistent forecast errors. Instead, some agents
will be too optimistic for a while and then too pessimistic, while other agents are first too pessimistic
and then too optimistic.
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and how this depends on the anchoring of expectations. Figure 4 shows time series of

inflation and output gap (top two panels ) for two different values of initial anchoring.

Hπ
t and Hx

t evolve over time and are plotted in the middle two panels. Green curves

depict the case where the anchoring of expectations start out at Hπ
0 = Hx

0 = 41, while

the purple curves depict the case of initial anchoring of Hπ
0 = Hx

0 = 33. That is, either

agents initially consider expectation values up to 10% above and 10% below the target,

or expectations are somewhat more anchored, and agents only consider values between

−8% and 8% around the target. We deliberately take two initial conditions that are rela-

tively close to each other, in order to illustrate that a small difference in initial anchoring

of expectations can have a large impact on subsequent dynamics. Finally, the nominal

interest rate is plotted in the bottom panel of Figure 4.

In the figure, we have used the calibration of Section 4.2.2, but we allow the fitness

measures, (16) and (17), to depend on the whole history of realizations by setting ρ = 0.5.

We furthermore set γ = 0.995 so that expectations can become more or less anchored

endogenously, but that this happens at a much slower rate than the switching of agents

between expectation values. This reflects the intuitive assumption that expectations

remain relatively anchored when shocks drive inflation and output gap far away from

their targets for only a couple of periods, but that the range of expectation values that

agents consider to be realistic starts increasing as variables significantly deviate from

their targets for longer periods of time.

In Figure 4, it can be seen that the economy starts out with low inflation and high

output gap.16 Subsequently, both variables revert back to their target and stay close to

it for a while. This induces inflation expectations to become more anchored (LADπ
t and

Hπ
t decrease), as can be seen in the middle left panel.

Around period 12, some bad shocks hit the economy, which drive down inflation.

Almost self-fulfilling expectations then induce a wave of pessimism about inflation and

optimism about output gap, as also sometimes happens in Figure 3. However, at some

point (after period 20) the low inflation leads to a binding zero lower bound, and the

nominal interest rate is set to zero. As inflation falls even more, the real interest rate

becomes higher and higher, leading output gap to start falling as well. Since there is no

feedback from monetary policy anymore, pessimistic expectations now are self-reinforcing,
16We first run our model for 50 periods to initialize it (this is necessary for the fitness measures). The

initial levels of inflation and output gap are therefore random.
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Figure 4: Simulated time series of model with endogenous anchoring of expectations and ZLB.
The purple and green curves represent time series with different initial anchoring of
expectations Hπ

0 and Hx
0 .

just as in the dark shaded area in Figure 1, in the 3-type model.

Inflation and output gap keep falling until output gap expectations start to hit their

lowest possible value (Around period 30). The economy now is stuck in a liquidity trap

steady state, both in case of the purple and of the green curve. In the case of less

anchored expectations (the green curves), output gap expectations can fall more however,

leading to lower realizations of output gap and inflation than in the case of more anchored

initial expectations (purple curves). As the liquidity trap with low inflation and output

gap continues to last, output expectations start becoming less anchored (LADx
t and Hx

t

increase), as can be seen in the middle right panel of Figure 4.

Then, around period 45, favorable shocks start to hit the economy, and this is where

the two curves really start to differ. In the case of more anchored expectations (purple

curves), where inflation and output gap have not become too low yet, these shocks are

enough to get the economy out of the liquidity trap. Inflation and output and their
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expectations now become high enough for the model to revert back to the positive interest

rate region, from which monetary policy can achieve reversion back to the target. As this

happens, expectations become more and more anchored (middle panels).

In case of less anchored expectations (green curves) the favorable shocks also increase

inflation and output gap. However, here the liquidity trap already was too deep, so that

the zero lower bound remains binding, and both variables quickly start to fall again.

During the remaining periods, the economy keeps fluctuation around the liquidity trap

steady state, which has lower and lower inflation and output gap values as output gap

expectations keep becoming more unanchored (middle right panel). It therefore becomes

more and more difficult for favorable shocks, or policy interventions, to get the economy

out of this liquidity trap.

The key policy insight that can be obtained from this simulation exercise is the follow-

ing. Since the initial anchoring of expectations at the time bad shocks hit the economy is

crucial for eventual recovery of a liquidity trap, the central bank must make sure that this

initial anchoring is strong enough. It can do this by making sure that in the years

before the bad shocks hit, inflation and output gap are stabilized close to their targets.

Since the zero lower bound was not yet a binding constraint during these periods, this

can be achieved with adequate conventional monetary policy. In Section 4.1 and 4.2 we

showed that (without a binding zero lower bound) the existence of multiple steady states

in our benchmark model due to almost self-fulfilling expectations, can be prevented with

aggressive enough monetary policy. In Section 5.1 we will give analytical conditions for

local stability and eigenvalues in the large type limit model to provide robustness of this

result, and to give more insight in how conventional monetary policy can exclude almost

self-fulfilling expectations.

First, we will however stick with our benchmark model under the zero lower bound,

and show that a stronger initial anchoring of expectations not only makes recovery more

likely, but can even exclude the possibility of a liquidity trap altogether.

4.3.3 Liquidity traps and anchoring of expectations

To gain more insight in the role of the anchoring of expectations, and to provide robustness

to the above simulation exercise, we now turn to a bifurcation analysis. Figure 5 plots

the steady state values of both the target steady state (upper blue dots) and the liquidity
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Figure 5: Stable target steady state (top blue dots); stable liquidity trap steady state (bottom
blue dots), for different levels of anchoring of expectations in the model with finite
expectation types. The unstable steady state in the middle (green dots) separates
their basins of attraction.

trap steady state (lower blue dots), for different levels of Hπ
t and Hx

t . Additionally, we

plot the unstable steady state (green dots), lying between these two steady states. This

unstable steady state separates the basin of attraction of the target steady state from

that of the liquidity trap steady state.17 That is, in the absence of shocks, inflation and

output gap on one side of the unstable steady state imply convergence to the target steady

state, while initial inflation and output gap on the other side of the unstable steady state

imply convergence to the liquidity trap steady sate.

To keep the graphical representation clear, we do not show the output gap value of

the steady state, and put its inflation value on the vertical axis. Additionally, we vary

Hπ
t and Hx

t together and show on the horizontal axis H = Hπ
t = Hx

t . This allows us to

keep the plot 2-dimensional, without loss of generality.

It can be seen in Figure 5 that for strong anchoring of expectations (low H) the

target steady state is unique, and a persistent liquidity trap can not arise. However, as

expectations become less anchored, the liquidity trap steady state comes into existence

(H = 25). It then however still lies relatively close to the target steady state, and, more

importantly, very close to the unstable steady state. This implies that small favorable

shocks can bring inflation out of the liquidity trap, and above the unstable steady state,

from which the system will converge to the target steady state. As expectations become
17More precisely, the unstable steady state is a saddle point, and the basins of attraction of the two

stable steady states are separated by the stable manifold of the saddle point steady state.
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even more unanchored, the liquidity trap steady state has a lower inflation value and lies

farther away from the unstable steady state. Recovery due to favorable shocks is less

likely in this case. This is exactly what we saw in Figure 4. In the purple time series,

inflation was still close to the basin of attraction of the target steady state (i.e. close to

the unstable steady state), and favorable shocks led to recovery. In the green time series,

inflation was too far away from the unstable steady state, and favorable shocks did not

bring the economy back to the basin of attraction of the target steady state.

The unstable steady state in Figure 5 lies very close to the negative of the steady state

real interest rate: −r̄. We will show in Section 5.2 that this is no coincidence and that for

the LTL model with a continuum of expectation values, the unstable ZLB steady state

converges exactly to this value. The intuition for this result is that the (log-linearized)

period t real interest rate (given by it − r̄ − Etπt+1) is positive under a binding zero

lower bound if and only if Etπt+1 < −r̄. It follows from Equation (1), that when this

is the case, output gap realizations will be lower than output gap expectations. It then

follows from (2) that for reasonable calibrations of κ and β the same holds for inflation.

This implies that only if inflation expectations are low enough compared to the steady

state real interest rate, pessimistic expectations will be self-reinforcing and hence lead

to convergence to the liquidity trap steady state. A necessary condition for inflation

expectations to become low enough is that H is large enough, so that the lowest possible

inflation values that agents consider is lower than −r̄. If expectations are more anchored

(lower H) and agents do not consider inflation values below −r̄, then Etπt+1 < −r̄ can

never hold and the liquidity trap steady state does not exist. Hence, if the central bank

manages to anchor expectations strongly enough to its targets (by conducting aggressive

enough monetary policy), it can exclude to possibility of bad shocks driving the economy

into a self-reinforcing liquidity trap.

4.3.4 Increasing the inflation target

Since agent’s expectations are distributed around the targets, another way the central

bank could reduce the likelihood (or even exclude the possibility) of a self-reinforcing

liquidity trap, is by choosing a higher inflation target. For a given anchoring of expecta-

tions, the most pessimistic expectations that agents consider would then be higher. This

would make it less likely that Etπt+1 < −r̄ will hold, and that the economy enters a
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Figure 6: Bifurcation diagram of 41-type model in πT . The upper blue curve represents the
fundamental steady state, and the lower blue curve the liquidity trap steady state.
The green curve depicts the unstable steady state that separates their basins of
attraction.

liquidity trap.

In Figure 6 we plot the target steady state (top blue curve) and the liquidity trap

steady state (bottom blue curve) as a function of the inflation target (πT ), for the case

of H = 41. Note that, as the inflation target is chosen higher, the target steady state has

an equivalently higher inflation level as well, making the top blue curve upward sloping.

Since agents consider 10% below the inflation target as their lowest possible value, the

bottom blue line is also upward sloping. Figure 6 also plots the unstable steady state

(green curve) separating the basin of attraction of the liquidity trap from that of the

target steady state.

In Figure 6, it can be seen that for a zero inflation target, the liquidity trap steady

state is associated with a quite low level of inflation and lies far away from the basin of

attraction of the target steady state. As the inflation target is increased, the liquidity

trap steady state comes closer to the unstable steady state (green curve), making it more

likely that shocks bring the economy from the liquidity trap steady state to the basin of

attraction of the target steady state. As the inflation target is increased even more, the

liquidity trap steady state disappears altogether, and convergence to the target steady

state always occurs. Note however, that if we would let H vary endogenously as in Figure

4, a high inflation target can only temporarily exclude the possibility of a liquidity trap.

If, for some reason (e.g. bad shocks), inflation realizations remain low for a long period

of time, expectations would become less anchored, and agents might consider expectation
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values that satisfy Etπt+1 < −r̄, even when the inflation target is high. In that case, the

liquidity trap steady state would exist again.

The above result is similar to findings under rational expectations, where liquidity

traps can be prevented by choosing the inflation target high enough, so that large shocks

in the model do not lead to a severely binding zero lower bound and a high real interest

rate.18 Our model however emphasizes the role of expectations rather than that of exoge-

nous shocks. Low expectations might come about because of large shocks, but could also

arise slowly because of declining confidence after a period where small negative shocks

were relatively more prevalent.

5 Analytical results of LTL model

In the previous section we showed that the initial anchoring of expectations when the

economy hits the zero lower bound is crucial in determining whether recovery can oc-

cur. We concluded that during normal times the monetary authority would do well to

actively try to anchor expectations, and that it could do so by preventing (almost) self-

fulfilling expectations and waves of optimism and pessimism. In Section 4.2 we showed

that, without the zero lower bound, the dynamics of our benchmark model are almost

indistinguishable from those of the large type limit model where agents can choose from

a continuum of expectation values. Therefore, we can shed more light on how monetary

policy can prevent (almost) self-fulfilling expectations by studying the eigenvalues of the

analytically tractable LTL model. We do so in Section 5.1. In Section 5.2 we study the

LTL model under the zero lower bound to provide robustness to the results of Section

4.3, and to give more insight in the occurrence of liquidity traps.

5.1 Stability in LTL model without ZLB

In the LTL model, a locally stable target steady state (all eigenvalues inside the unit

circle) implies that convergence to the targets can occur. This is a first requirement for

inflation and output gap to remain close to their targets and hence for expectations to

become more anchored in a model with endogenous anchoring as presented in Section

4.3. However, if one eigenvalue lies only just inside the unit circle (a near unit root), then
18See e.g. Ball (2013)
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convergence to the steady state will be very slow and expectations will not easily become

more anchored. Below, we therefore first provide conditions for local stability and then

focus on the occurrence of near unit roots.

Proposition 5 states the conditions for stability of the target steady state. There

are two conditions, which respectively ensure that the first eigenvalue of the dynamical

system, λ1, is smaller than +1, and that the other eigenvalue, λ2, is larger than −1.19

Proof of Proposition 5 is given in Appendix B.2.20

Proposition 5 (Stability LTL). (See Figure 7) In the LTL model, the target steady

state steady state is locally stable if and only if

φ1 > 1− 1 + (1− β)2ωs2

2ωs2 + 1

(
σ

2ωs2κ
+
φ2

κ

)
, (λ1 < +1), (23)

and

φ1 < 1 +
(1 + β)2ωs2 + 1

2ωs2 + 1

(
(4ωs2 + 1)σ

2ωs2κ
− φ2

κ

)
, (λ2 > −1). (24)

It follows from Proposition 5 that there is both a lower and an upper bound on how

aggressive monetary policy responses can be. The conditions are presented in terms of

the inflation policy coefficient, φ1, and are a function of the output gap policy coefficient,

φ2, the anchoring of expectations s2 (see Subsection 4.2.1), and other model parameters.

The upper bound does not occur for realistic (policy) parameter settings, and it is also

not very intuitive that instability due too aggressive monetary police would occur in

practice.21 We therefore focus on Condition (23).

Figure 7 plots the stability condition (23) as a function of s2 and φ2. In this figure we

used the same calibration for σ, κ, β and ω as in Section 4.2.2. In the figure, it can be

seen that for low values of s2 (where expectations are strongly anchored to the targets),

weak inflation policy (0 < φ1 < 1) does not lead to instability. For higher values of s2

(unanchored expectations) however, the central bank must respond strongly enough to
19Note that eigenvalues can also be complex, but that they always lie inside the unit circle when this

is the case.
20A similar proposition for a contemporaneous interest rate rule can be found in Pecora and Spelta

(2017).
21If monetary policy is so aggressive that Condition (24) is violated, the following occurs. If the CB re-

sponds too strongly, high inflation expectations lead too very low inflation realizations, which (depending
on how strongly expectations are anchored), can lead to very low expectations in the subsequent period.
These low expectations then again induce a strong policy response that leads to very high realizations
of inflation, and high expectations in the subsequent period. The explosive overshooting then continues
with both expectations and realizations reaching ever higher and lower values.
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Figure 7: Stability region of the Target steady state in the LTL model for different policy
parameters (φ1, φ2) and anchoring of expectations (s2). The target steady state is
locally stable above the plotted surface.

inflation in order to satisfy (23). If we let s2 go to infinity, Condition (23) reduces to

φ1 > 1− (1−β)φ2

κ
, which is the well known Taylor principle that must be satisfied under

rational expectations in order to obtain local determinacy.22

Even though Condition (23) can be satisfied with relatively weak monetary policy, we

saw in Figure 3 that even when φ1 = 1.5 and φ2 = 0.157 white noise shocks can trigger

persistent waves of optimism and pessimism, due to almost self-fulfilling expectations.

The largest eigenvalue in the LTL model is then smaller than 1 in absolute value (so that

local stability is achieved), but still close to 1. Under such a near unit root, dynamics

become very persistent and mean reversion to the steady state is slow.

Figure 8 plots the largest eigenvalue of the LTL model as a function of φ2, for different

values of φ1. Here, we use again the calibration of Section 4.2.2, also for s2.23 The figure

illustrates that when φ2 is relatively low, a near unit root (absolute value of eigenvalue

close to 1) occurs, no matter how aggressive the monetary authority responds to inflation
22The result that stability is more easily achieved for low values of s2, is similar to findings in models

with constant gain learning. Evans et al. (2009) for example find that stability conditions become less
stringent as the gain parameter goes to zero. Where, however, a gain parameter of zero implies full
anchoring to initial beliefs, in our model, s2 = 0 implies full anchoring to the targets of the central bank.

23For higher values of s2 all curves are shifted upward, so that the largest eigenvalue becomes higher
for a given combination of policy parameters, and for lower values of s2 all curves of Figure 8 are shifted
downward.
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Figure 8: Absolute value of largest eigenvalue of LTL model as function of φ2 for different
values of φ1.

(high φ1). However, when φ2 is chosen larger, a near unit root can still occur if φ1 is not

large enough, or if φ2 is chosen too large. We can conclude that a well tuned combination

of φ1 and φ2 is required to prevent nearly self-fulfilling waves of optimism and pessimism.

5.2 LTL under the Zero Lower Bound

In Section 4.2.2 we saw that without the zero lower bound, the LTL model and 41-type

model share striking similarities (Figure 3). We now investigate whether the policy

implications under the zero lower bound of Section 4.3 also carry over to the LTL model.

Since we can obtain analytical results for the LTL model, the analysis of this section can

shed more light on the occurrence of liquidity traps.

As in the model with finitely many expectation values, the possibility of a persistent

liquidity trap in the LTL model depends on the existence and position of an unstable

steady state that limits the basin of attraction of the target steady state (the green

dots/line in Figures 5 and 6). However, unlike the finite expectation model, initial condi-

tions outside the basin of the target steady state do not lead to convergence to a liquidity

trap steady state in the LTL model. Since no lower bound on expectations exists in this

model, self-reinforcing pessimistic expectations will lead agents to keep adjusting their

expectations downward. This gives similar dynamics to the green time series in Figure 4,

where expectations keep decreasing as they become less anchored. However, in the LTL
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model expectations can fall faster, bringing the economy quickly into a deflationary spiral

with ever decreasing inflation and output gap. Such a deflationary spiral under the zero

lower bound is, amongst others, also found by Evans et al. (2008) and Benhabib et al.

(2014), under adaptive learning.

Proposition 6 states the inflation and output level of this unstable saddle point, and

its condition for existence. Finally, the line in the inflation output gap plane is given that

goes through the unstable steady sate, and is the boundary of the basin of attraction of

the target steady state. Proof of the proposition is given in Appendix B.3.

Proposition 6 (ZLB dynamics LTL). The unique ZLB steady state of the LTL model

is given by

πzlb =
(σ(1 + (1− β)2ωs2) + κ(2ωs2 + 1)) πT + κ(2ωs2 + 1)2r̄

σ(1 + (1− β)2ωs2)− κ(2ωs2 + 1)2ωs2
, (25)

xzlb =

(
(1− β)σ

κ
(1 + (1− β)2ωs2) + (2ωs2 + 1)

)
πT + (1 + (1− β)2ωs2)(2ωs2 + 1)r̄

σ(1 + (1− β)2ωs2)− κ(2ωs2 + 1)2ωs2
.(26)

This steady state is an unstable saddle-point, and exists if and only if

ωs2 >
1

4

(√
(1− (1− β)

σ

κ
)2 + 4

σ

κ
− (1− (1− β)

σ

κ
)

)
. (27)

When the steady state exists, all initial conditions above the stable eigenvector through

(πzlb, xzlb) imply recovery to the positive interest rate region, while all initial conditions

below it result in a deflationary spiral. This eigenvector has slope

−
1− (1− β)σ

κ
+
√
(1− (1− β)σ

κ
)2 + 4σ

κ

2σ
. (28)

Figure 9 illustrates the ”recovery region” and the ”deflationary spiral region” in the

(π, x)-plane. Here we set πT = 2%, and otherwise use the calibration of Section 4.2.2.

The red line in Figure 9 depicts the zero lower bound. For values of inflation and output

gap above this line, the nominal interest rate is positive (positive interest rate region)

and convergence to the target steady state can occur. For combinations of inflation and

output gap below this line, the zero lower bound is a binding constraint (ZLB region).

The black line indicates the stable eigenvector through the unstable ZLB saddle steady

state of Proposition 6. Combinations of inflation and output gap above (i.e. to the

right of) this line are not too low, so that recovery to the positive interest region occurs.
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Figure 9: Regions of recovery and a deflationary spiral in the annualized (π, x)-plane. The
thick red line indicates the ZLB. The black dot at 2% inflation indicates the target
steady state, while the black dot at the bottom of the figure depicts the unstable
ZLB saddle steady state from Proposition 6. The unstable eigenvector through this
saddle is depicted by the dashed line, while the stable eigenvector is depicted by the
solid black line. For initial conditions to the left of this black line a deflationary
spiral occurs, and for initial conditions to the right of this line inflation and output
gap will recover and increase to the positive interest rate region.

Inflation and output gap combinations below the black line lead to declining inflation

and output gap and hence a deflationary spiral.24

The position of the black line, and hence the size of the recovery region, depends

on the position of the ZLB steady state, which in turn depends on the anchoring of

expectations and the inflation target. Figure 10 shows how exactly the position of the

ZLB steady state depends on the anchoring of expectations, with s2 on the horizontal

axis and inflation on the vertical axis. For comparability with Figure 5 we have set the
24Our ”recovery region” is strongly related to the ”corridor of stability” discussed in Benhabib et al.

(2014) and Eusepi (2010). These papers consider global dynamics of a New Keynesian model under
adaptive learning, and find numerically that there is a region around the ZLB steady state from which
the economy goes to the target steady state and a region from which inflation and output go to minus
infinity. In our log-linearized model we are able to find an analytical expression for the curve that
separates these two regions. The drawback of using a linearized model is of course that it only gives
reasonable approximations for inflation and output gap not too far from the steady state.
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Figure 10: Stable target steady state (solid blue) and ZLB saddle steady state (dashed green)
In LTL model for different levels of anchoring of expectations. Points above the
ZLB saddle steady state imply convergence to the target steady state, while points
below it lead to a deflationary spiral.

inflation target back to zero in the figure. The dashed curve represents the unstable ZLB

steady state, while the solid line depicts the stable target steady state.

Taking the limit s2 → ∞ in (25) gives (for any value of the inflation target) −r.

Therefore, the green line in Figure 10 must have a horizontal asymptote at −r. As

commented earlier, the position of the unstable steady state in the model with finite

expectation values lies very close to this value as well. This is confirmed by comparing

the green curves in Figure 5 and Figure 10.

However, the way the unstable steady state seizes to exist for more anchored expecta-

tions is different across the two models. In Figure 5 the unstable steady state disappears

when expectations are so strongly anchored that the lowest expectation values that agents

consider no longer lead to low enough inflation and output gap for expectations to be

self-reinforcing. This happens when H is between 23 and 25, which would correspond

to an anchoring of expectations in the LTL model of around s2 = 0.12 (annualized). In

Figure 10 we see that for (annualized) s2 < 0.12, the steady state continuous to exist,

but that it lies at a lower and lower inflation value. This reflects that even though in this

model it is always possible that agents choose lower and lower expectation values, the

probability for this to happen becomes smaller as the variance of the distribution of ex-

pectation values decreases. Realizations of inflation and output must then be very low to

induce agents to choose this low expectations anyway, and, at some point, even infinitely

low inflation and output gap will no longer decrease expectations enough to induce a de-
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Figure 11: Bifurcation diagram of LTL model in πT . The blue line represents the target
steady state, and the green dashed line depicts the unstable ZLB saddle steady
state. Points above the ZLB steady state imply convergence to the target steady
state, while points below it lead to a deflationary spiral.

flationary spiral. Looking at Figure 9, this implies that as s2 becomes smaller, the black

line is considerably moved to the left, so that the deflationary spiral region decreases in

size. When s2 no longer satisfies (27) the deflationary spiral region disappears altogether

and the target steady state is globally stable in the LTL model as well.

Finally, we return to the effect of the inflation target on the unstable steady state in

the LTL model. As can be seen in Equation (25), the inflation level of the ZLB steady

state depends linearly on the inflation target (πT ). This is illustrated in Figure 11. Here

it can be seen that for a higher inflation target, the target steady state has an increased

inflation value, while the ZLB steady state has a (slightly) decreased inflation value. An

increased inflation target thus will make it less likely that negative shocks bring the model

to the deflationary spiral region. This is also what we found in the model with 41 types in

Figure 6. However, in the LTL model there is no lower bound on the expectation values

agents consider, so (as long as s2 satisfies (27)), the ZLB steady state cannot be made to

disappear with a high enough inflation target.

6 Conclusion

We built a model with heterogeneous expectations to gain more insight in the possibility

of self-reinforcing liquidity traps, and its relation with the anchoring of expectations. We
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found that when inflation and output gap expectations are relatively unanchored from

their targets, bad shocks that drive the economy to the zero lower bound on the nominal

interest can initiate a self-reinforcing wave of pessimism that keeps the economy in a

liquidity trap. Whether the economy can recover from such a liquidity trap crucially

depends on how unanchored expectations were when the bad shocks hit. Additionally,

the central bank can reduce the likelihood of the occurrence of self-reinforcing liquidity

traps by increasing its inflation target.

We conclude that it is crucial that in times where the zero lower bound is not binding,

the central bank tries to let expectations become as strongly anchored to its targets

as possible. In our model, this can be achieved by letting the interest rate respond

aggressively enough to inflation and neither too weakly nor too strongly to output gap.

The central bank then provides strong enough mean reversion to the target steady state

to exclude a near unit root, so that almost self-fulfilling waves of optimism and pessimism

cannot arise. As a consequence, inflation and output gap always remain relatively close

to their target which, over time, anchors private sector expectations.
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A 3 Type model

A.1 Proof Proposition 2

In a steady state where all agents are pessimists, (4) and (5) reduce to

xt = (1− φ2

σ
)(xT − b)− φ1 − 1

σ
(πT − b− πT ) +

φ2

σ
xT , (A.1)

πt = βEt(π
T − b) + κxt. (A.2)

Assume ω = ∞. Then the steady state exists if and only if both output gap and inflation

are such that in the next period again all agents are pessimists about both variables.

This requires that both xt < xT − b
2

and πt < πT − b
2
. Rewriting (A.1), the condition for

output gap reduces to

xt = xT + b(
φ2

σ
− 1 +

φ1 − 1

σ
) < xT − b

2
, (A.3)

which gives

φ1 < 1 +
σ

2
− φ2 (A.4)

If this condition is satisfied (and thereby xt < xT − b
2
), then it follows from (A.2) that

πt < βEt(π
T − b) + κ(xT − b

2
). (A.5)

This implies that for 2β+κ > 1, πt < πT − b
2

is automatically satisfied. Since κ is positive,

and it reasonable to consider only calibrations with the discount factor satisfying β > 1
2
,

we can conclude that when (A.2) holds, both xt < xT − b
2

and πt < πT − b
2
, so that the

pessimistic steady state exists. If (A.2) does not hold, then output gap expectations (and

possibly also inflation expectations) will not stay pessimistic, so that the pessimistic

steady state does not exist. Local stability of the steady state (and all other possible

steady states under ω = ∞) is proven in the online supplementary material.

A.2 Proof Proposition 3

In a steady state where all agents are pessimists, (11) and (12) reduce to
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xt = (xT − b) +
1

σ
(πT − b) +

r̄

σ
, (A.6)

πt = β(πT − b) + κxt. (A.7)

Analogously to Appendix A.1 it follows that under these equations xt < xT − b
2

if and

only if

πT + r̄ < b(1 +
σ

2
), (A.8)

and that πt < πT − b
2

then holds as well (assuming 2β + κ > 1).

The steady state is however only consistent with equations (11) and (12) if it lies in

the ZLB region of the model. This is the case if and only if

it = πT + r̄ + φ1(π
T − b− πT ) + φ2(x

T − b− xT ) < 0, (A.9)

or

πT + r̄ < b(φ1 + φ2). (A.10)

A.3 Proof Proposition 4

Inflation and output gap are again given by (A.7) and (A.6). Now it is required however,

that xt < xT − b and that πt < πT − b. The first inequality reduces to πT + r̄ < b. If

we assume that β + κ > 1, which will hold for most reasonable calibrations, πt < πT − b

then holds as well.

B Large type limit (LTL)

B.1 LTL and Bayesian updating

Equation (19) can be written as

Eπt+1 − πT =

∫∞
−∞ be−ω(πt−1−b−πT )2e−

b2

2s2 db∫∞
−∞ e−ω(πt−1−b−πT )2e−

b2

2s2 db
=

∫ ∞

−∞
bψ(b)db. (B.1)

Here, ψ(b) = e−ω(πt−1−b−πT )2e
− b2

2s2∫∞
−∞ e−ω(πt−1−b−πT )2e

− b2

2s2 db

can be interpreted as agents’ (posterior) proba-
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bility density function of choosing bias b. This facilitates a comparison between the large

type limit and Bayesian updating.

To make the relation between LTL and Bayesian updating more apparent, we multiply

the numerator and denominator of ψ(b) by
√
2ω√
2π

and by 1
s
√
2π

to get

ψ(b) =

√
2ω√
2π
e−ω(πt−1−b−πT )2 1

s
√
2π
e−

b2

2s2∫∞
−∞

√
2ω√
2π
e−ω(πt−1−b−πT )2 1

s
√
2π
e−

b2

2s2 db
. (B.2)

We now obtain a perfect mapping to the posterior of a Bayesian updating process,

given by

P (b|πt−1) =
P (πt−1|b)P (b)∫∞

−∞ P (πt−1|b)P (b)db
(B.3)

First of all, the posterior P (b|πt−1) = ψ(b) gives the probability density of choosing

bias b, given the observed value of πt−1. The prior distribution of b is given by P (b) =

1
s
√
2π
e−

b2

2s2 , which is the assumed distribution of the possible biases over the real line.

The likelihood of observing realization πt−1, given a value of the bias b, is now given by

P (πt−1|b) =
√
2ω√
2π
e−ω(πt−1−b−πT )2 . That is, agents believe that the data generating process

(DGP) of πt−1 is equal to a constant, πT + b, plus a normally distributed error term

with variance 1
2ω

. They then try to learn the true constant of the DGP by observing the

noisy time series and applying Bayesian updating. Note that the true constant value in

principle is allowed to change over time. What the agents try to infer in the above two

equations is what the true value was likely to be at the moment that πt−1 was generated.

When ω goes to zero, the variance of the noise in the perceived DGP goes to infinity,

so that the ”likelihood”
√

ω
π
e−ω(πt−1−b−πT )2 goes to zero for all values of πt−1. This means

that agents believe that no useful information about b can be inferred from observing

πt−1. As a consequence the posterior should just equal the prior, which is indeed the case

according to Equation (B.2) (all types get equal weight which means that the distribution

of mass over values on the real line is fully determined by the distribution of types over

the real line).

When ω = +∞ the variance of the noise in the perceived DGP goes to zero and the

likelihood e−ω(πt−1−b−πT )2 becomes degenerate: it equals 1 when the observation (πt−1)

equals the true value πT + b, and 0 for all other possible values of πt−1. This implies

that observing πt−1 is perceived as being fully informative about the true value of the
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constant. After observing πt−1 agents immediately know what the true constant value

was, and the posterior distribution should be degenerate as well, with all its mass on the

true value πT +b. This is indeed what Equation (B.2) tells us, i.e., for infinite intensity of

choice it holds that ψ(b) = 1 for b = πt−1 − πT and ψ(b) = 0 everywhere else (all agents

switch with probability 1 to expecting the last observed value πt−1).

We can conclude that if we interpret the LTL as Bayesian updating, then the intensity

of choice parameter determines how informative observations of πt are about the expec-

tations that agents should choose. The larger the intensity of choice, the less ”noise”

agents think they encounter, and the more clear it is to them, what prediction value they

should choose in the next period.

B.2 Proof Proposition 5

The Jacobian in the fundamental steady state equals

B

 1− φ2

σ
−φ1−1

σ

κ(1− φ2

σ
) β − κφ1−1

σ

 ,

with

B =
2ωs2

2ωs2 + 1
. (B.4)

The eigenvalues therefore are given by

λ1,2 =
B

2

(
(1 + β − φ2

σ
− κ

φ1 − 1

σ
)±

√
(1 + β − φ2

σ
− κ

φ1 − 1

σ
)2 − 4β(1− φ2

σ
)

)
.

Local stability requires λ1 < 1 and λ2 > −1. By keeping only the square root on one side

of the equation and taking squares, λ1 < 1 can be written as

φ1 > 1 + (−βB − 1

B
+ 1 + β)

σ

κ
+ (βB − 1)

φ2

κ
, (B.5)

Filling in B from (B.4) results in Condition (23).

Similarly, λ2 > −1 can be written as

φ1 < 1 + (1 + β + βB +
1

B
)
σ

κ
− (1 + βB)

φ2

κ
, (B.6)

from which Condition (24) can be obtained.
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B.3 Proof Proposition 6

When the zero lower bound is binding the LTL model becomes

xt =
xT

2ωs2 + 1
+

2ωs2

2ωs2 + 1
xt−1 +

1

σ

πT

2ωs2 + 1
+

1

σ

2ωs2

2ωs2 + 1
πt−1 +

r̄

σ
, (B.7)

πt = β
πT

2ωs2 + 1
+ β

2ωs2

2ωs2 + 1
πt−1 + κxt. (B.8)

Solving for the steady state of this model results in (25) and (26). Steady state output

gap and inflation both are negative if and only if

σ(1 + (1− β)2ωs2)− κ(2ωs2 + 1)2ωs2 < 0, (B.9)

which can be rewritten as (27).

The eigenvalues of the system defined by (B.7) and (B.8) are given by

λ1,2 =
ωs2

2ωs2 + 1

(
(1 + β +

κ

σ
)±

√(
1 + β +

κ

σ

)2
− 4β

)
. (B.10)

This implies that the steady state is an unstable saddle if and only if

ωs2 >
1

β − 1 + κ
σ
+
√

(1 + β + κ
σ
)2 − 4β

, (B.11)

which, after some algebraic manipulation, reduces to (27). Therefore, when (27) does not

hold the system has a unique attractor that lies outside the ZLB region. This implies

that from all initial conditions inflation and output gap will go towards this attractor

and cross the zero lower bound. Recovery then always occurs.

When (27) holds, initial conditions below the stable eigenvector through the steady

state given by (25) and (26) lead to ever decreasing inflation and output gap, while initial

conditions above it lead to increasing inflation and output gap, and thereby to recovery.

The slope of this eigenvector is given by (28).
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