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Abstract

Non-linear probability weighting is an integral part of descriptive theories of choice
under risk such as prospect theory. But why do these objective errors in information
processing exist? Should we try to help individuals overcome their mistake of over-
weighting small and underweighting large probabilities? In this paper, we argue that
probability weighting can be seen as a compensation for preexisting biases in evaluating
payoffs. In particular, inverse S-shaped probability weighting in prospect theory is a
flipside of S-shaped payoff valuation. Probability distortions may thus have survived
as a second-best solution to a fitness maximization problem, and it can be counter-
productive to correct them while keeping the value function unchanged.
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1 Introduction

Prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) is one of the
most successful descriptive theories for choice under risk. It rests on two main building blocks
for the evaluation of lotteries: an adaptive value function, which captures both loss aversion
and different risk attitudes across the domains of gains and losses, and a probability weighting
function, which captures systematic distortions in the way probabilities are perceived. Of
these ingredients, the probability distortions are particularly remarkable, as they reflect
objective errors in information processing: overweighting of small and underweighting of large
probabilities, relative to their true magnitudes. The existence of such objective errors gives
rise to puzzling questions. For instance, should we help individuals make better decisions by
trying to correct their mistakes? Some scholars have argued that this is indeed the case.1

Also, why do these errors exist in the first place? Evolutionary arguments typically predict
that individuals who make systematic mistakes do not survive because they are replaced by
more rational types.2

In this paper we propose a novel perspective on probability weighting, which sheds light
on both its evolutionary origins and its consequences for paternalism. We argue that the
particular form of probability misperception in prospect theory can be seen as an optimal
compensation for similar biases introduced by the value function. Probability weighting may
thus have survived as a second-best optimal solution to a fitness maximization problem, and
it might be misleading to think of it as an error that needs correction.

Our basic model and results are presented in Section 2, where we consider the case of
simple prospects with one possible payoff gain and one possible payoff loss. Nature offers
such prospects randomly to an agent, who decides whether to accept or reject. The agent
evaluates the payoffs by an S-shaped value function, as postulated in prospect theory. We
investigate the agent’s choices for different probability weighting schemes, and in particular
we look for the shape of probability perception that yields choices with maximal expected
payoffs. For the case without loss aversion, we first show that any solution to the problem
indeed involves overweighting of small and underweighting of large probabilities. Intuitively,
prospects with an expected payoff close to zero are especially prone to decision mistakes, and

1Camerer et al. (2003), for instance, argue in favor of a mild form of paternalism: “[s]ince low probabilities
are so difficult to represent cognitively, it may help to use graphical devices, metaphors (imagine choosing a
ping-poll ball out of a large swimming pool filled with balls), or relative odds comparisons (winning a lottery
is about as likely as being struck by lightning in the next week)” (p. 1231).

2Robson and Samuelson (2010) survey a large literature on the evolution of preferences and behavior.
More specifically, Robson (1996) has shown that evolution will select expected fitness maximizing agents
whenever risk is idiosyncratic. Expected fitness maximization is not evolutionarily optimal for correlated
risks (see also Cooper and Kaplan, 1982; Bergstrom, 1997; Curry, 2001; Robson and Samuelson, 2009), but
correlation does not provide a rationale for the above described errors in probability perception.
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small probabilities go along with large absolute payoffs in such prospects. Large absolute
payoffs are, in turn, relatively undervalued by an S-shaped value function. To compensate, it
becomes optimal to overweigh small and underweigh large probabilities. Non-linear probabil-
ity weighting here emerges as a second-best distortion in response to the value function that
constitutes a distortionary constraint (Lipsey and Lancaster, 1956). The resulting behav-
ior is still different from expected payoff maximization in most cases, because the first-best
cannot be achieved generically. We continue to show that the optimal perception can be
implemented by reflective and symmetric weighting (Prelec, 1998) in some cases, and we
discuss weighting functions that have been used in both empirical and theoretical work on
prospect theory (Gonzalez and Wu, 1999). We also illustrate that loss aversion, the system-
atically different treatment of gains and losses, implies that gain and loss probabilities should
be perceived differently, predicting violations of reflectivity in the direction of an optimism
bias (Sharot et al., 2007). We finally discuss the inverse problem where the value function is
chosen optimally given a non-linear probability weighting function. Section 3 of the paper
contains affirming numerical results for more complex prospects.

Our results reveal an interesting internal structure of prospect theory by describing value
and weighting function as two complementary elements that interact in an optimized way.
This has implications for the interpretation of probability distortions, because now they serve
a useful purpose rather than being a mistake. Related arguments about the expedience of
biases have been made in the literature. Kahneman and Lovallo (1993) have first pointed
out that exaggerated aversion to risk and exaggerated optimism might partially compensate
for one another.3 Besharov (2004) illustrates how attempts to correct interacting biases
can backfire, focussing on overconfidence in conjunction with hyperbolic discounting and
regret. The recent contribution by Steiner and Stewart (2014) derives distorted probability
perception as an optimal correction for a winner’s curse problem induced by noisy information
processing. They also predict the prospect theory shape of probability weighting, and they
discuss the opportunities and limits that this creates for “debiasing” agents.4

3Several other papers have provided purpose-oriented explanations for optimism or overconfidence. In
Bernardo and Welch (2001), overconfidence helps to solve problems of herding. In Carrillo and Mariotti
(2000), Bénabou and Tirole (2002) and Brocas and Carrillo (2004), individuals may choose to adhere to
such delusions because they serve as commitment devices in the presence of time-inconsistency problems.
Compte and Postlewaite (2004) model a situation where some overconfidence is optimal because it increases
actual success probabilities. In Johnson and Fowler (2011), overconfidence arises in a hawk-dove type of
interaction, based on the assumption that players behave aggressively whenever they believe to be more able
than their opponent.

4In Friedman and Massaro (1998), agents cannot perceive or process a true objective probability p ∈ [0, 1]
but instead have to work with p̂ ∈ [0, 1] which corresponds to the true probability p plus a noise term e. The
signalling process is such that if |p+e| > 1 then a new signal is drawn, and thus the expected value of the true
probability E(p|p̂) is closer to 0.5 than the signal p̂. Weighting probabilities is thus rational once the signal
generating process is taken into account. Rieger (2014) also suggests a reason for probability weighting that
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While evolutionary models quite often predict the emergence of fully rational agents,
several contributions have modelled the effect of cognitive or perceptive constraints on the
outcome of a biological selection process.5 Related to prospect theory, some papers (e.g.
Friedman, 1989; Robson, 2001; Rayo and Becker, 2007; Netzer, 2009) have concluded that
adaptive and possibly S-shaped value functions can be superior in the presence of such
constraints. In these models, steepness of the function that evaluates fitness payoffs can be
helpful in preventing decision mistakes, because it enables to distinguish alternatives even
if they are very similar to each other. A relatively large slope should thus be allocated to
regions where correct decisions matter most, which can explain adaptation to a reference
point and the S-shape.6 In this paper, we treat the value function as a primitive and do not
derive it from more basic principles. This can be thought of as a methodological shortcut
that allows us to illustrate the interplay between payoff valuation and probability weighting
without having to model a joint evolutionary process under constraints.

Some papers have explicitly investigated the interplay between different anomalies from
an evolutionary perspective. With imperfect information constraints, Suzuki (2012) derives
the joint evolutionary optimality of present bias, false beliefs and a concern to avoid cognitive
dissonance, while Yao and Li (2013) show that optimism and loss aversion may coevolve
because they jointly improve financial success, similar to one of our findings. Waldman (1994)
was the first to apply the second-best concept in an evolutionary context. In his model a
second-best population, consisting of agents who exhibit behavioral biases that are mutually
(but not necessarily globally) optimal, cannot be invaded by a first-best mutant, because
its optimal characteristics are diluted in the process of sexual recombination.7 Ely (2011)

is different from ours. If observable by the opponent, the bias of underweighting large probabilities can have
a strategic advantage in certain games such as war of attrition and a class of games he calls social control
games. In such games it can favorably influence the mixed equilibrium and thus be evolutionary semi-stable.
Heifetz et al. (2007) study the evolution of general perception biases that change the equilibrium structure
in strategic settings. See Acemoglu and Yildiz (2001) for an evolutionary model of strategic interactions in
which different behavioral anomalies emerge that perfectly compensate for one another.

5These include Samuelson (2004) and Noeldeke and Samuelson (2005), where agents cannot correctly
process information about their environment, specifically about current earnings opportunities. Concern for
relative consumption then becomes evolution’s constrained optimal way of utilizing the information inherent
in others’ consumption levels. Samuelson and Swinkels (2006) argue that choice-set dependency might be
an analogous way of correcting for an agent’s lack of understanding of her choices’ fitness implications under
different conditions. Baliga and Ely (2011), although not explicitly within an evolutionary framework, start
from the assumption of imperfect memory: after having made an investment, an agent forgets about the
details of the project. The initial investment now still contains information, and relying on this information
for future decisions on the project can be optimal rather than a “sunk cost fallacy”.

6For related arguments in different modelling frameworks and for critical discussions see Robson and
Samuelson (2011), Kornienko (2011), Wolpert and Leslie (2012) and Woodford (2012b,a). See Hamo and
Heifetz (2002) for a model in which S-shaped utility evolves in a framework with aggregate risk, and Mc-
Dermott et al. (2008) for a model where S-shaped utility is optimal if reproductive success is determined by
a single fitness threshold.

7As an application, Waldman (1994) discusses the co-evolution of disutility of effort and overconfidence.
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demonstrates that an evolutionary process can accumulate second-best “kludges” instead of
ever converging to a first-best solution. He considers a complex species that remains stuck
in a second-best forever because small local improvements, which take all other behavioral
parameters as given, are substantially more likely to occur than a complete redesign. These
general insights on the evolution of boundedly optimal behavior also justify our idea of
optimizing the probability perception with a value function already in place (or the other
way round), rather than solving a joint optimization problem. Even though it would be better
to remove both distortions simultaneously, path-dependence of the evolutionary process can
make such a solution very unlikely or infeasible.8

2 Probability Weighting for Simple Prospects

2.1 Basic Model

We start by considering a model of simple prospects. Such prospects consist of one possible
payoff gain of size x > 0 which occurs with probability 0 < p < 1, and one possible payoff
loss of size y > 0 which occurs with probability 1 − p. It is convenient to define prospects
in terms of relative rather than absolute probabilities. Hence a simple prospect is a tuple
(q, x, y) from the set P = R3

+, where q = p/(1− p) is the relative probability of a gain. The
function F : P → R, defined by

F (q, x, y) =

(
q

1 + q

)
x−

(
1

1 + q

)
y, (1)

assigns to each prospect (q, x, y) its expectation, where we used the identity p = q/(1 + q).
We will refer to F as the fitness function and treat it as the criterion for optimal decisions.
With our evolutionary interpretation in mind, we think of gains and losses as being measured
in terms of biological fitness relative to a decision-maker’s current fitness level c ∈ R (such as
the current number of expected offspring). The results by e.g. Robson (1996) then justify the
use of (1) as the criterion for evolutionary success. In the simplest possible choice situation
where the decision-maker is faced with a prospect and has to decide whether to accept it or

See Dobbs and Molho (1999) for a generalized version of the model, with an application to effort disutility
and risk aversion, among others. Similar ideas are studied in Zhang (2013), who focusses on risk-aversion
and overconfidence, and Frenkel et al. (2014), who examine the endowment effect and the winner’s curse.

8For instance, we can imagine a payoff valuation function being deeply ingrained in our brains, something
that may have evolved in our distant evolutionary past, shaped by evolutionary forces to deal with mostly
simple and possibly deterministic choices that our brain was capable of analyzing at that time. Dealing
with uncertainty in the form of explicit probabilities requires substantially more sophisticated cognitive
capabilities, and the development of the corresponding cognitive processes might have taken place when the
value function was already given.
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stay at the current level of fitness with certainty, prospect (q, x, y) should be accepted if and
only if F (q, x, y) ≥ 0, or equivalently q ≥ y/x, so that it (weakly) increases expected fitness
above the current level. Let P+ = {(q, x, y) ∈ P|q ≥ y/x} be the optimal acceptance set.

We now assume that the decision-maker uses an S-shaped value function V : R → R to
evaluate gains and losses relative to c. It satisfies V (c) = 0 and is depicted in Figure 1. We
decompose V into two functions, one used to evaluate gains (vG) and one to evaluate losses
(vL). Specifically, we define vG : R+ → R+ by vG(x) = V (c + x) for all gains x > 0, and
vL : R+ → R+ by vL(y) = −V (c − y) for all losses y > 0. We assume that both vG and vL

are continuously differentiable, strictly increasing, strictly concave, and unbounded.

Figure 1: The value function

Concerning the perception of probabilities, let η : R+ → R+ be a measurable weighting
function that yields a perceived relative probability η(q) for any true relative probability q.
Hence the actual gain probability p is perceived as η(q)/(1 + η(q)) and the loss probability
1− p is perceived as 1/(1 + η(q)) by the decision-maker. With these concepts at hand, the
subjective utility score assigned to a prospect is

Uη(q, x, y) =

(
η(q)

1 + η(q)

)
vG(x)−

(
1

1 + η(q)

)
vL(y). (2)

The decision-maker accepts prospect (q, x, y) if and only if Uη(q, x, y) ≥ 0. This can be
reformulated to η(q) ≥ vL(y)/vG(x), which is directly comparable to the criterion for optimal
choice q ≥ y/x. We will be interested in the weighting function η that maximizes expected
fitness, given the fixed value function. Since the value function distorts one side of the
optimality condition, it becomes apparent that the other side should be distorted as well.
Let P+

η = {(q, x, y) ∈ P|η(q) ≥ vL(y)/vG(x)} be the actual acceptance set.
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We assume that nature randomly draws and offers to the decision-maker one prospect at
a time, according to a probability distribution that can be described by a strictly positive
density h on P (for which the maximal expected fitness F̄ , defined below, is finite). We are
now interested in the solution to the following program, which we will also refer to as the
fitness maximization problem:

max
η

∫
P+

η

F (q, x, y)h(q, x, y)d(q, x, y). (3)

Problem (3) can be thought of as the reduced form of a frequency-independent dynamic
selection process (see e.g. Maynard Smith, 1978; Parker and Maynard Smith, 1990). Now
suppose that (3) achieves the maximum of F̄ =

∫
P+ F (q, x, y)h(q, x, y)d(q, x, y), i.e., there

exists a weighting function η for which the actual and the optimal acceptance sets P+

and P+
η coincide up to measure zero. Then behavior under η is almost surely identical

to expected payoff maximization, so that η perfectly compensates for the value function.
We will say that the first-best is achievable in this case. Otherwise, if the value of (3)
is strictly smaller than F̄ , the solution is truly second-best, with observed behavior that
deviates systematically from unconstrained expected payoff maximization.

The model of decision-making presented in this subsection corresponds to prospect theory
as applied to simple prospects (see Section 2.5 for more details). It is, however, only a special
case of a more general behavioral model that we present in the Appendix. This model does
not rely on the utility specification (2), but only assumes that decision-making is driven
by the comparison of two subjective values, the perceived relative probability η(q) and a
perceived relative payoff W (x, y). Our following main results are corollaries of the more
general results proven in the Appendix.

2.2 Optimal Weighting Without Loss Aversion

We first consider the case without loss aversion, which means that there is an S-shape but no
systematic distortion in the perception of gains versus losses. Formally, the value function is
symmetric and given by vG = vL =: v. The following proposition then states the important
property that the relative probability of the gain is optimally overvalued if the gain is less
likely than the loss, and undervalued otherwise.

Proposition 1. Suppose there is no loss aversion. Then, any solution η∗ to (3) satisfies

η∗(q) T q ⇔ q S 1, for almost all q ∈ R+. (4)
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To grasp an intuition for the result, assume that nature offers a prospect (q, x, y) where
q = y/x, so that the prospect’s expected payoff is exactly zero. If q < 1, then a decision-maker
who perceives probabilities correctly would reject this prospect. The reason is that any such
prospect must satisfy x > y, i.e., its gain must be larger than its loss, such that the S-shape
of the value function (concavity of v) implies v(y)/v(x) > y/x, resulting in rejection due to
an overvaluation of the loss relative to the gain. Monotonicity of v implies that all negative
fitness prospects with q < 1 are then also rejected, but the same still holds for some positive
fitness prospects, by continuity of v. Hence when there is no probability weighting, prospects
with q < 1 are subject to only one of the two possible types of mistakes: rejection of prospects
which should be accepted. The analogous argument applies to prospects with q > 1, where
correct probability perception implies that only the mistake of accepting a prospect that
should be rejected can occur. To counteract these mistakes, it becomes optimal to overvalue
small and undervalue large relative probabilities. Note that this intuition does not depend
on the specific density h. The exact shape of the solution η∗ will generally depend on h, but
the direction of probability weighting given in (4) does not.

2.3 Optimal Weighting With Loss Aversion

Next, we explore some implications of loss aversion for the optimal perception of probabilities.
Loss aversion means that the decision-maker takes a loss of given size more seriously than
a gain of the same size, so that the value function satisfies vG(z) < vL(z) for all z ∈ R+.
We work with a slightly stronger condition, which requires that there exists δ > 1 such that
vL(y)/vG(x) > y/x whenever y/x ≤ δ. Hence the overvaluation of the loss relative to the
gain must extend to some non-vanishing range where the loss is strictly larger than the gain.
A simple and prominent special case is given by vG(x) = v(x) and vL(y) = γv(y), for some
common function v and a loss aversion parameter γ > 1, but there are also examples with
non-multiplicative loss aversion (see the Appendix for details).

Proposition 2. Suppose there is loss aversion. Then, there exists q̄ > 1 such that any
solution η∗ to (3) satisfies

η∗(q) > q, for almost all q ≤ q̄. (5)

The result shows that loss aversion expands the range of overweighting, because correct
probability perception would now lead to rejection of zero fitness prospects even when the
gain is somewhat more likely (and thus smaller) than the loss. In particular, a gain should be
perceived as more likely than the loss even when they are in fact equally probable (η∗(1) > 1).
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Intuitively, if there is an asymmetry in the evaluation of gains and losses, the second-best
principle calls for a systematically different treatment of gain and loss probabilities. We will
discuss this in greater detail in Section 2.5.

2.4 First-best Solutions

How does the decision-maker’s behavior look like if the probability perception is chosen to
optimally compensate for the value function? We first ask the fundamental question whether
optimized behavior is at all different from expected payoff maximization. Put differently,
can the first-best be achieved despite the value function distortion, and if so, what is the
first-best weighting function? We can give an answer to these questions as follows.

Proposition 3. The first-best is achievable if and only if vG(x) = βGx
α and vL(y) = βLy

α

for some βG, βL, α > 0. In this case, ηFB(q) = (βL/βG)q
α is a first-best weighting function.

Actual and optimal behavior must be aligned in a first-best solution. Specifically, all
zero expected payoff prospects (q, x, qx) must be identified as such by the decision-maker.
Formally, we need to ensure that η(q) = vL(qx)/vG(x) always holds. This can be solved by
some η if and only if the RHS vL(qx)/vG(x) is independent of x, and the proposition provides
the class of functions for which this is the case. Observe that this class is not generic: the
first-best can only be achieved if the functions used to evaluate gains and losses are of the
specific CRRA form, and loss aversion is compatible with the first-best only in multiplicative
form with βG < βL. Otherwise, the solution η∗ is truly second-best and the decision-maker’s
optimized behavior deviates from expected payoff maximization.

2.5 Relation to Prospect Theory

In prospect theory it is usually assumed that a function πG : [0, 1] → [0, 1] transforms the gain
probability p into a perceived gain decision weight πG(p) and a function πL : [0, 1] → [0, 1]

likewise transforms the loss probability 1−p into πL(1−p) (see e.g. Kahneman and Tversky,
1979; Prelec, 1998). The term decision weight is used because πG(p) and πL(1 − p) do not
necessarily sum up to one, and thus are not necessarily probabilities. The decision maker
would then accept (q, x, y) if πG(q/(1+q))vG(x)−πL(1/(1+q))vL(y) ≥ 0. Hence the absolute
weighting functions πG and πL relate to our relative weighting function η as follows. On the
one hand, any given pair (πG, πL) uniquely induces

η(πG,πL)(q) =
πG(q/(1 + q))

πL(1/(1 + q))
.
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The converse is not true, because there are different pairs of absolute weighting functions
(πG, πL) that implement a given relative perception η. Hence there is not a unique way
of representing the optimal weighting η∗ in terms of prospect theory weighting functions,
except if we impose additional requirements on (πG, πL).

One requirement that has received attention in both the theoretical and the empirical
literature is reflectivity (Prelec, 1998). It postulates the identical treatment of gain and loss
probabilities: πG(r) = πL(r), ∀r ∈ [0, 1]. We will skip the indices G and L when referring to
reflective weighting functions. From an evolutionary perspective, reflective weighting is very
appealing as it redundantizes the maintenance of two separate weighting mechanisms and
thus saves on scarce cognitive resources. It is therefore plausible to assume that evolution
would have settled on reflective weighting if the optimal probability perception can be im-
plemented in this way. Even if no reflective weighting function implements our second-best
solution, evolution may still favor reflective probability weighting if the savings in cognitive
resources outweigh the losses from suboptimal decisions. Prelec (1998) summarizes evidence
that indeed provides support for reflectivity. The following lemma identifies a condition that
is necessary and sufficient for reflectivity to be no additional constraint in our framework.

Lemma 1. A weighting function η can be implemented reflectively if and only if

η(1/q) = 1/η(q), for all q ∈ R+. (6)

Proof. Suppose η satisfies (6). Consider the candidate πη(p) = η(p/(1−p))/(1+η(p/(1−p))).
It implements the relative perception

πη

(
q

1+q

)
πη

(
1

1+q

) =
η
(

q
1+q

× 1+q
1

)
1 + η

(
q

1+q
× 1+q

1

) ×
1 + η

(
1

1+q
× 1+q

q

)
η
(

1
1+q

× 1+q
q

) =
η(q)

1 + η(q)

1 + η(1/q)

η(1/q)
.

Using (6) we obtain

η(q)

1 + η(q)

1 + η(1/q)

η(1/q)
=

η(q)2

1 + η(q)

[
η(q) + 1

η(q)

]
= η(q),

which shows that πη indeed implements η reflectively. Conversely, suppose η is implemented
reflectively by some π, i.e., η(q) = π(q/(1 + q)/π(1/(1 + q)) for all q ∈ R+. Then

η(1/q) =
π
(

1/q
1+1/q

)
π
(

1
1+1/q

) =
π
(

1
1+q

)
π
(

q
1+q

) = 1/η(q)

for all q ∈ R+, so η satisfies (6).
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Consider first the case without loss aversion and assume that the optimal η∗ satisfies (6),
in addition to the optimality condition (4). There is still not a unique reflective weighting
function that implements η∗, but it does become unique when we impose the additional
requirement of symmetry, which postulates π(1 − r) = 1 − π(r), ∀r ∈ [0, 1] (see again
Prelec, 1998). It is given by πη∗(p) = η∗(p/(1− p))/(1+ η∗(p/(1− p))),9 and straightforward
calculations reveal that it satisfies

πη∗(p) T p ⇔ p S 1

2
.

This corresponds to the key property of prospect theory that small probabilities are over-
weighted and large probabilities are underweighted. For instance, the specific function
ηFB(q) = (βL/βG)q

α from Proposition 3 indeed satisfies (6) when βL = βG and gives rise to

πηFB(p) =
pα

pα + (1− p)α
,

which has been studied in the context of probability weighting by Karmarkar (1978, 1979).
In Figure 2, it is depicted by a solid line for the case when α = 1/2. However, there
is also empirical evidence on the asymmetry of weighting functions. Individuals tend to
overweigh absolute probabilities below approximately 1/3 and underweigh those above 1/3.
Hence symmetry, while technically convenient, might actually not be a reasonable property
to impose. Prelec (1998) instead suggests and axiomatizes the following reflective but non-
symmetric function:

π(p) = e−[(− ln p)α] where 0 < α < 1. (7)

It is depicted by a dashed line in Figure 2, again for α = 1/2. It can be shown that
the relative perception η induced by this asymmetric weighting function also satisfies our
necessary optimality condition (4).10

9Substituting q = p/(1 − p) in the condition that πη∗ implements η∗ immediately implies the condition
πη∗(p)/πη∗(1− p) = η∗(p/(1− p)). Using symmetry and rearranging then yields the given solution.

10Let η be implemented by a reflective π. Then η(q) T q can be rewritten as π(p)/π(1 − p) T p/(1 − p),
which, for π given in (7), can be rearranged to(

ln

(
1

1− p

))α

−
(
ln

(
1

p

))α

+ ln

(
1

p

)
− ln

(
1

1− p

)
T 0.

Observe that the LHS of this inequality is indeed equal to 0 for p = 1/2 or q = 1, respectively. Our claim
then follows from the fact that the LHS is strictly decreasing in p. The corresponding derivative is

α

(
(− ln (1− p))

α−1

1− p
+

(− ln (p))
α−1

p

)
− 1

1− p
− 1

p
.

Its value is strictly increasing in α and for α = 1 it is exactly 0. Hence it must be strictly negative for α < 1.
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Figure 2: Common weighting functions

Consider now the case with loss-aversion, such that η∗ satisfies condition (5). Any such
η∗ will violate (6), because we have η∗(1/q) > 1/q > 1/η∗(q) for almost all 1 ≤ q ≤ q̄.
The optimal absolute weighting functions must thus be non-reflective. As argued before, the
wedge between the perception of gains and losses drives a second-best wedge between the
perception of the associated probabilities. To understand the direction of this wedge, consider
again ηFB(q) = (βL/βG)q

α, now for βL > βG. The following “linear in log odds” functions
(Gonzalez and Wu, 1999) implement ηFB and additionally satisfy πFB

G (p) + πFB
L (1− p) = 1:

πFB
G (p) =

(βL/βG)p
α

(βL/βG)pα + (1− p)α
, πFB

L (p) =
(βG/βL)p

α

(βG/βL)pα + (1− p)α
.

They are illustrated in Figure 3 for the case of α = 1/2 and βL/βG = 3/2.11 The function for
gain probabilities lies above the one for loss probabilities. The model with loss aversion thus
predicts a bias similar to overconfidence (Camerer and Lovallo, 1999) or, even more closely,
optimism (Sharot et al., 2007). The fact that loss aversion and optimism might optimally
compensate for one another has also been pointed out by Yao and Li (2013). They argue that
investors who exhibit both anomalies might be most successful under certain circumstances.

11Several empirical studies have concluded that, to compensate for a loss of any given size, individuals
require a gain of roughly twice that size (see e.g. Tom et al., 2007). With the functions vG(x) = βGx

α and
vL(y) = βLy

α this is captured by βL/βG = 2α, which we approximate by 3/2 for the case when α = 1/2.
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Figure 3: Non-reflective weighting for α = 1/2 and βL/βG = 3/2.

2.6 The Inverse Problem

So far we have treated the value function as exogenous and the probability weighting function
as endogenous. This has enabled us to shed some light on the question whether probability
weighting is indeed a distortion in need of correction. It was also motivated in part by the
earlier literature, which provided reasons for an S-shape of the value function without ad-
dressing the issue of probability weighting, and in part by the argument that the cognitive
processes for dealing with explicit probabilities are presumably more advanced than simple
valuation tasks and may thus have evolved in a second-best fashion later on. We can, how-
ever, also study the inverse problem of finding an optimal value function when a probability
distortion is exogenously given. A formal treatment of this problem can be found in the
Appendix. Here, we confine ourselves to a short discussion of the results.

If we capture inverse S-shaped probability weighting by property (4) for all q ∈ R+,
then we can show in our generalized behavioral model that any optimally adapted payoff
valuation function will exhibit an S-shape: the perception of the payoff ratio y/x will be
enlarged (compressed) whenever the gain is larger (smaller) than the loss. This exactly
mirrors our result for optimal probability weighting. Without further restrictions, however,
we can always achieve the first-best in the inverse problem. The reason is that our generalized
model allows for an independent perception W (x, y) of any payoff pair (x, y), rather than
working with the prospect theory inspired constraint that the ratio y/x has to be perceived as
vL(y)/vG(x) for two separate functions vG and vL. Once we impose this additional constraint,

12



we retain a result analogous to Proposition 3: the first-best is achievable if and only if η is
given by the specific functional form η(q) = γqα.

3 Probability Weighting for More General Prospects

Working with simple prospects made the analysis tractable but poses the question to what
extent our results are robust. Since models with more general prospects become hard to
solve analytically, we present a numerical example in this section.

Assume that a prospect consists of a vector of payoffs z ∈ Rn, n ≥ 2, where z = (z1, ..., zn)

with z1 < ... < zk < 0 < zk+1 < ... < zn for 1 ≤ k < n, so that there are k possible losses
and n − k possible gains. The associated probabilities are given by p ∈ ]0, 1[n, where p =

(p1, ..., pn) with
∑n

i=1 pi = 1. The previous model is a special case for n = 2 and k = 1. The
fitness mapping is given by F (p, z) = p·z, where “·” represents vector multiplication, and the
optimal acceptance set P+ is defined as before. Let π be a weighting function that assigns
decision weights π(p) = (π1(p), ..., πn(p)) to prospects. Assume that Uπ(p, z) = π(p) ·V (z)

is the decision-makers’s utility from prospect (p, z), where V (z) ∈ Rn denotes the vector
obtained by mapping z pointwise through a value function V : R → R. We then obtain the
actual acceptance set P+

π of prospects with Uπ(p, z) ≥ 0. The optimization problem we are
interested in is given by

max
π

∫
P+

π

F (p, z)h(p, z)d(p, z),

where π is chosen from some set of admissible functions.
Our following results are for two gains and two losses (n = 4, k = 2). We employ

a value function given by vG(z) = zα and vL(z) = γzα, and we assume that nature offers
prospects according to a uniform prior.12 For each combination of α ∈ {1, 3/4, 1/2, 1/4, 1/10}
and γ ∈ {1, 3/2} we search for the optimal weighting function within a rank-dependent
framework (Quiggin, 1982). There, the restriction is imposed that there exists a reflective

12Our numerical analysis is based on a finite model version. We discretize the interval [0, 1] of probabilities
into a grid of size np, i.e., we allow for probabilities 0, 1/np, 2/np, ..., 1. We can then generate the set of all
probability vectors p = (p1, p2, p3, p4) based on this grid. Analogously, we allow for payoffs between −2 and
+2, discretized into a grid of size nz. The set of all payoff vectors z = (z1, z2, z3, z4) can then be generated
for that grid, and the set of all prospects is made up of all possible combinations of probabilities and payoffs.
We use np = nz = 10. The numerical calculations were performed in GNU Octave, and the script is available
upon request.
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function w : [0, 1] → [0, 1] which transforms cumulated probabilities.13 Formally,

πi(p) = w

(
i∑

j=1

pi

)
− w

(
i−1∑
j=1

pi

)
.

Table 1 contains the results when we use the function w(p) = δpβ/(δpβ + (1 − p)β) and
search for optimal values of β and δ in the range [0, 2], so that linear, S-shaped, and inverse
S-shaped weighting is admitted.14 The first main column refers to the case without loss
aversion (γ = 1). If we additionally assume that payoffs are perceived linearly (α = 1),
the optimum does not involve any probability weighting (β∗ = δ∗ = 1). The corresponding
behavior is first-best, yielding the largest possible fitness level F̄ = 0.2714. We now introduce
S-shaped payoff valuation by decreasing α towards zero. As the table shows, the optimal
exponent of the weighting function then decreases, which means that probability weighting
should become increasingly more inverse S-shaped. The maximum achievable fitness level
also goes down as we increase the severity of the original distortion. Hence the first-best
can no longer be achieved in the present setup with multiple gains and losses, despite the
specific functional form of the value function that admitted a first-best solution for simple
prospects. Without loss aversion the optimal weighting remains symmetric (δ∗ = 1). With
loss aversion (γ = 3/2), the inverse S-shape of the weighting function is complemented by
an asymmetry (δ∗ < 1). It is strikingly close to empirical findings, with the point of correct
probability perception strictly below 1/2, as Figure 4 illustrates for the case where α = 1/2

and γ = 3/2.

γ = 1 γ = 3/2
α β∗ δ∗ Fitness β∗ δ∗ Fitness
1 1.0000 1.0000 0.2714 1.0069 0.6944 0.2713

3/4 0.7708 1.0000 0.2713 0.7708 0.6875 0.2712
1/2 0.5208 1.0000 0.2707 0.5208 0.6806 0.2705
1/4 0.2639 1.0000 0.2690 0.2569 0.6736 0.2688
1/10 0.1042 1.0000 0.2672 0.1042 0.6667 0.2669

Table 1: w(p) = δpβ/(δpβ + (1− p)β).

13Cumulative prospect theory (Tversky and Kahneman, 1992) uses a similar formulation, where an inverse
of cumulated probabilities is transformed for gains. We can obtain similar numerical results in this framework
with non-reflective weighting.

14The search is carried out in two stages. First, we decompose [0, 2] into a grid of size 2ng for ng = 12 and
identify the optimum on that grid. As a second step, we search the area around this optimum more closely,
by again decomposing it into a grid of the same size.
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Figure 4: Numerical result for α = 1/2, γ = 3/2.

4 Discussion

We conclude by discussing two avenues for future research. First, a caveat of our analysis
is that either the value or the probability weighting function is treated as given, and the
two are not derived jointly from a more basic constraint. A modelling framework such as
the one recently proposed by Steiner and Stewart (2014) might be a promising candidate
for a unified model. Based on an assumption about noisy information transmission, they
can derive either an S-shaped value or an inverse S-shaped probability weighting function,
but they do not have results about their interaction or joint optimality. Our own framework
could also provide a starting point. For instance, consider the class of value and weighting
functions that achieve the first-best (Proposition 3). In the spirit of the literature discussed
in the Introduction, we could assume that steepness of the value and/or the probability
weighting function is cognitively “expensive”, which would provide an immediate argument
for picking functions with α < 1 out of the many behaviorally equivalent solutions.15 A
similar argument could still apply when the first-best is out of reach, e.g. for more complex
prospects or when additional constraints have to be respected.

Second, since our analysis postulates that probability weighting is a complement to payoff
valuation, it suggests that probability distortions are more pronounced for agents whose
value function deviates more strongly from linearity. There seem to be few, if any, empirical

15We are grateful to Philipp Kircher for this suggestion.
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studies that speak to this prediction about the correlation between the parameters of the two
functions. Some studies have sample sizes that are too small to make meaningful correlation
statements,16 others do not address the question for different reasons.17 Rieger et al. (2011)
present estimated parameters for 45 countries, using the CRRA value function with different
exponents for gains and losses, and a weighting function of the form

π(p) = pα/[pα + (1− p)α]1/α.

Based on their estimates (Table 2, p. 7) we obtain a correlation of about +0.23 between
the weighting parameter and the gain exponent, and of about +0.02 for the loss exponent.
These findings look promising but also suggest the need for additional empirical research.
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A General Approach to Optimal Probability Weighting

A.1 Generalized Model

As in the body of the paper, a prospect (q, x, y) ∈ P = R3
+ consists of a gain x > 0, a

loss y > 0, and a relative gain probability q > 0. The following assumption specifies the
substance of our generalized decision-making model.

Assumption 1. (i) The decision-maker accepts prospect (q, x, y) if and only if

η(q) ≥ W (x, y),

where η : R+ → R+ is a measurable probability weighting function and W : R2
+ → R+ is a

payoff valuation function.
(ii) W (x, y) is continuously differentiable with ∂W/∂x < 0 and ∂W/∂y > 0, and it satisfies
limy→∞ W (x, y) = ∞, limy→0 W (x, y) = 0, limx→∞ W (x, y) = 0, and limx→0W (x, y) = ∞.

Remark 1. In the body of the paper, a decision rule based on the utility function

Uη(q, x, y) =

(
η(q)

1 + η(q)

)
vG(x)−

(
1

1 + η(q)

)
vL(y)

is considered, where vi (for i = G,L) is continuously differentiable, strictly increasing, strictly
concave, and satisfies limz→0 vi(z) = 0. The prospect (q, x, y) is accepted if Uη(q, x, y) ≥ 0.
This amounts to the case W (x, y) = vL(y)/vG(x). The assumption that limy→∞W (x, y) = ∞
and limx→∞ W (x, y) = 0 implies that vG and vL cannot be bounded. This assumption is made
for simplicity only, and analogous results can be obtained in an extended model that allows
for bounded value functions.

Part (i) of Assumption 1 captures separability of perceived probabilities from perceived
payoffs, i.e., the perception of q is independent from the perception of x and y.18 Part (ii)

18It is an interesting question in how far the human brain processes probabilities separately from the
evaluation of gains and losses. In an fMRI study, Berns et al. (2008) find behaviorally meaningful neural
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requires that the acceptance threshold for the perceived relative gain probability should be
continuously increasing in the amount of the potential loss and decreasing in the amount of
the potential gain, hence capturing continuity and monotonicity.19

The fitness function F : P → R is given by

F (q, x, y) =

(
q

1 + q

)
x−

(
1

1 + q

)
y.

We denote by P+ = {(q, x, y) ∈ P|q ≥ y/x} the subset of prospects that should be accepted
in order to maximize expected fitness. Let P+

η = {(q, x, y) ∈ P|η(q) ≥ W (x, y)} be the
set of prospects that the decision-maker actually accepts. Prospects are drawn according
to a strictly positive density h on P (for which F̄ is finite), and thus the expected fitness
maximization problem is given by

max
η

∫
P+

η

F (q, x, y)h(q, x, y)d(q, x, y). (8)

We investigate this problem under different assumptions in the following subsections.

A.2 Optimal Weighting Without Loss Aversion

We first add an assumption that captures the S-shape of the valuation function.

Assumption 2. W (x, y) T y/x if and only if y/x S 1.

Assumption 2 requires a strictly enlarged (compressed) perception of the loss to gain ratio
whenever the gain is strictly larger (smaller) than the loss. Its symmetry implies W (z, z) = 1

for all z ∈ R+ and therefore precludes loss aversion.

correlates of non-linear (inverse S-shape) probability weighting. They show that “the pattern of activation
could be largely dissociated into magnitude-sensitive and probability-sensitive regions” (p. 2052), which
they explicitly interpret as evidence for the hypothesis that “people process these two dimensions separately”
(p. 2055). The only region that they found activated by both payoffs and probabilities is an area close
to the anterior cingulate cortex, which they see as a “prime candidate for the integration of magnitude and
probability information” (p. 2055). Note however that there also exists evidence of neural activity responding
to both probabilities and payoffs, e.g. by Platt and Glimcher (1999) who study monkey neurons in the lateral
intraparietal area. There are several other neuroscience studies that have also examined the neural basis of
probability weighting. Tobler et al. (2008), for instance, investigate the coding of probability perception for
non-choice situations. They also provide a literature review. See also Zhong et al. (2009a,b). Fehr-Duda
et al. (2010) report an experimental instance of non-separability of payoffs and probabilities.

19After rewriting the decision rule in Assumption 1(i) as η(q) − W (x, y) ≥ 0, it becomes reminiscent of
the functional representation of a possibly non-transitive consumer in Shafer (1974). We are grateful to a
referee for pointing this out.
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Remark 2. In the multiplicative utility model, Assumption 2 requires that vG = vL = v and
therefore W (x, y) = v(y)/v(x). It is then satisfied by concavity of v.

Proposition 4. Under Assumptions 1 and 2, any solution η∗ to (8) satisfies

η∗(q) T q ⇔ q S 1, for almost all q ∈ R+.

Proof. Let Assumptions 1 and 2 be satisfied, and consider a prospect with relative probability
q and loss y. How will a decision-maker behave who employs the functions η and W ,
depending on x? We can implicitly define a function x̃ : R2

+ → R+ by

W (x̃(y, r), y) = r

for all y, r ∈ R+. Assumption 1 implies that x̃(y, r) is uniquely defined and continuously
differentiable with ∂x̃/∂y > 0 and ∂x̃/∂r < 0 (by the implicit function theorem). The
considered prospect will be accepted if and only if x ≥ x̃(y, η(q)). Hence expected fitness
can be written as ∫

R+

[∫
R+

[∫ ∞

x̃(y,η(q))

F (q, x, y)h(q, x, y)dx

]
dy

]
dq.

For function η∗ to maximize this expression, we need η∗(q) ∈ argmaxr∈R+ Φ(r, q) for almost
all q ∈ R+, where

Φ(r, q) =

∫
R+

[∫ ∞

x̃(y,r)

F (q, x, y)h(q, x, y)dx

]
dy.

We obtain the derivative

∂Φ(r, q)

∂r
=

∫
R+

[(
−∂x̃(y, r)

∂r

)
F (q, x̃(y, r), y)h(q, x̃(y, r), y)

]
dy.

Both −∂x̃(y, r)/∂r and h(q, x̃(y, r), y) are strictly positive for all q, y, r ∈ R+. Now consider
the remaining term F (q, x̃(y, r), y), which has the same sign as qx̃(y, r)− y. We claim that
it is strictly positive for all y ∈ R+ whenever r ≤ q < 1. We have W (x̃(y, r), y) = r by
definition of x̃. When r < 1, Assumptions 1 and 2 then imply that x̃(y, r) > y, because
W (x, y) is strictly decreasing in x and W (y, y) = 1 must hold. Assumption 2 then further
implies that W (x̃(y, r), y) > y/x̃(y, r), which can be rearranged to rx̃(y, r) − y > 0. Since
x̃(y, r) > 0 and r ≤ q, this implies the claim qx̃(y, r)−y > 0. Hence we know that, whenever
q < 1, we have ∂Φ(r, q)/∂r > 0 for any r ≤ q. This implies that η∗(q) > q must hold for
almost all q < 1. Analogous arguments apply for the cases where q = 1 and q > 1.
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A.3 Optimal Weighting With Loss Aversion

To investigate the consequences of loss aversion, we replace Assumption 2 as follows.

Assumption 3. There exists δ > 1 such that W (x, y) > y/x if y/x ≤ δ.

Assumption 3 implies W (z, z) > 1 for all z ∈ R+, so that the decision-maker takes a loss
of given size more seriously than a gain of the same size. More precisely, it requires a strictly
enlarged perception of the loss to gain ratio even when the loss is larger than the gain, up to
some bound δ > 1 on the loss to gain ratio. The assumption is compatible with an S-shape,
but the loss must be sufficiently larger than the gain (y/x > δ) for a reversal of the relative
distortion effect to occur.

Remark 3. In the multiplicative utility model, Assumption 3 is satisfied for various different
specifications. For instance, consider the case where vG(x) = v(x) and vL(y) = γv(y) for
a common function v and a parameter γ > 1 that measures the degree of loss aversion.
For any y/x ≤ 1 we have W (x, y) = γv(y)/v(x) > v(y)/v(x) ≥ y/x by concavity of v.
Now let the bound be δ = γ. For any 1 < y/x ≤ δ we obtain W (x, y) = γv(y)/v(x) ≥
(y/x)v(y)/v(x) > y/x, so that Assumption 3 is satisfied. As another example, consider the
case where vG(x) = (x + 1)β − 1 and vL(y) = (y + 1)α − 1 for 0 < β < α < 1 (adding
and subtracting 1 ensures vG(z) < vL(z) for all z ∈ R+). For any y/x ≤ 1 we have
W (x, y) = ((y + 1)α − 1)/((x + 1)β − 1) > ((y + 1)β − 1)/((x + 1)β − 1) ≥ y/x due to
0 < β < α < 1. Now set the bound δ = α/β. For any 1 < y/x ≤ δ we obtain W (x, y) =

((y + 1)α − 1)/((x + 1)β − 1) > ((x + 1)α − 1)/((x + 1)β − 1). The last term can be shown
to be strictly larger than α/β (it converges to α/β as x → 0). Hence W (x, y) > α/β ≥ y/x,
which again shows that Assumption 3 is satisfied.

Proposition 5. Under Assumptions 1 and 3, there exists q̄ > 1 such that any solution η∗

to (8) satisfies
η∗(q) > q, for almost all q ≤ q̄.

Proof. The proof follows the one for Proposition 4, up to the point where we now need
to show that there exists q̄ > 1 such that qx̃(y, r) − y is strictly positive for all y ∈ R+

whenever r ≤ q ≤ q̄. Set q̄ = δ for a bound δ > 1 as described in Assumption 3. We have
W (x̃(y, r), y) = r by definition of x̃. When r ≤ q̄ = δ, Assumptions 1 and 3 then imply
that x̃(y, r) > y/δ, because W (x, y) is strictly decreasing in x and W (y/δ, y) > δ holds.
Assumption 3 then further implies that W (x̃(y, r), y) > y/x̃(y, r), which can be rearranged
to rx̃(y, r)− y > 0. Since x̃(y, r) > 0 and r ≤ q, this implies the claim qx̃(y, r)− y > 0. The
rest of the argument is again as in the proof of Proposition 4.
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A.4 First-Best Solutions

We now investigate the assumptions under which the first-best is achievable, i.e., under which
a solution η∗ to (8) induces a set P+

η∗ that coincides with P+ up to measure zero.

Proposition 6. Under Assumption 1, the first-best is achievable if and only if there exists
a function f : R+ → R+ such that W (x, y) = f(y/x). Then, ηFB = f is a first-best solution.

Proof. Step 1. Suppose that the first-best is achieved by ηFB. Using function x̃ defined in
the proof of Proposition 4, we then have that P+

ηFB = {(q, x, y) ∈ P|x ≥ x̃(y, ηFB(q))} and
P+ = {(q, x, y) ∈ P|x ≥ y/q} coincide up to measure zero. This implies that, for almost
all q ∈ R+, we have x̃(y, ηFB(q)) = y/q for almost all y ∈ R+, and hence for all y ∈ R+

by continuity of x̃. Substituting this into the equation that defines x̃ we obtain that, for
almost all q ∈ R+, W (y/q, y) = ηFB(q) holds for all y ∈ R+. Continuity of W then implies
that there exists a function f : R+ → R+ (which coincides with ηFB almost everywhere)
such that W (y/q, y) = f(q) for all q, y ∈ R+. Now consider any pair x, y ∈ R+. We obtain
W (x, y) = W (y/(y/x), y) = f(y/x).

Step 2. Suppose that there exists a function f : R+ → R+ such that W (x, y) = f(y/x).
Under Assumption 1, f must be strictly increasing. With weighting function ηFB(q) = f(q)

we then obtain ηFB(q) T W (x, y) ⇔ f(q) T f(y/x) ⇔ q T y/x, so that P+
ηFB and P+

coincide and the first-best is achieved.

This result does not rely on Assumption 2 (S-shape) or Assumption 3 (loss aversion). For
instance, without any payoff distortion (W (x, y) = y/x) the first-best is obviously achievable
by correct probability perception (ηFB(q) = q). However, there are also valuation functions
with an S-shape that satisfy the condition stated in Proposition 6: W (x, y) = f(y/x) satisfies
Assumption 2 when f(z) T z if and only if z S 1. Similarly, there are valuation functions
with loss aversion that satisfy the condition stated in Proposition 6: Assumption 3 holds
when f(z) > z for all z ≤ δ. While neither S-shape nor loss aversion are an impediment
to attainability of the first-best in principle, the following remark illustrates that first-best
solutions can still not be considered a generic case.

Remark 4. In the multiplicative model with W (x, y) = vL(y)/vG(x), the first-best is achiev-
able according to Proposition 6 if and only if vL(y)/vG(x) = f(y/x) holds for all x, y ∈ R+.
It follows from Lemma 2 in Appendix C that this is the case if and only if vG(x) = βGx

α and
vL(y) = βLy

α for βG, βL, α > 0 (the lemma is applicable after substituting a = x, b = y/x,
and relabelling f1 = vG, f2 = f , f3 = vL). In this case, ηFB(q) = (βL/βG)q

α is a first-best
weighting function. Hence the first-best can only be achieved if the functions used to evaluate
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gains and losses are of the specific CRRA form. In addition, loss aversion is compatible with
the first-best only in multiplicative form with βG < βL.

B General Approach to Optimal Payoff Valuation

We now consider the inverse problem where a weighting function η is given with properties
as described in Proposition 4, and we derive properties of an optimally adapted valuation
function W . We proceed in parallel to the previous section but restate the necessary concepts.

Assumption 1’. (i) The decision-maker accepts prospect (q, x, y) if and only if

η(q) ≥ W (x, y),

where W : R2
+ → R+ is a measurable payoff valuation function and η : R+ → R+ is a

probability weighting function.
(ii) η(q) is continuously differentiable with ∂η/∂q > 0, and it satisfies limq→∞ η(q) = ∞ and
limq→0 η(q) = 0.

Given Assumption 1’, let P+
W = {(q, x, y) ∈ P|η(q) ≥ W (x, y)} be the set of prospects

that are accepted. The expected fitness maximization problem is then given by

max
W

∫
P+

W

F (q, x, y)h(q, x, y)d(q, x, y). (9)

We next add an assumption that captures the inverse S-shape of the weighting function.

Assumption 2’. η(q) T q if and only if q S 1.

Proposition 7. Under Assumptions 1’ and 2’, any solution W ∗ to (9) satisfies

W ∗(x, y) T y/x ⇔ y/x S 1, for almost all (x, y) ∈ R2
+.

Proof. Let Assumptions 1’ and 2’ be satisfied, and consider a prospect with gain x and loss
y. A decision-maker who employs η and W will accept the prospect if and only if

q ≥ η−1 (W (x, y)) ,

where Assumption 1’ implies that the inverse function η−1(r) of η(q) is well-defined and
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continuously differentiable with ∂η−1/∂r > 0. Hence expected fitness can be written as∫
R2
+

[∫ ∞

η−1(W (x,y))

F (q, x, y)h(q, x, y)dq

]
d(x, y).

For function W ∗ to maximize this expression, we need W ∗(x, y) ∈ argmaxr∈R+ Φ(r, x, y) for
almost all (x, y) ∈ R2

+, where

Φ(r, x, y) =

∫ ∞

η−1(r)

F (q, x, y)h(q, x, y)dq.

We obtain the derivative

∂Φ(r, x, y)

∂r
= −

(
∂η−1(r)

∂r

)
F (η−1(r), x, y)h(η−1(r), x, y).

Both ∂η−1(r)/∂r and h(η−1(r), x, y) are strictly positive for all x, y, r ∈ R+. Now consider
the remaining term F (η−1(r), x, y), which has the same sign as η−1(r)x− y. We claim that
it is strictly negative whenever r ≤ y/x < 1. When r < 1, Assumption 2’ implies that
η−1(r) < r. Hence η−1(r)x − y < rx − y ≤ (y/x)x − y = 0, which establishes the claim.
Hence we know that, whenever y/x < 1, we have ∂Φ(r, x, y)/∂r > 0 for any r ≤ y/x.
This implies that W ∗(x, y) > y/x must hold for almost all (x, y) with y/x < 1. Analogous
arguments apply for the cases where y/x = 1 and y/x > 1.

For ease of comparison, we have stated and proven Proposition 7 in exactly the same
way as Proposition 4, but here we can additionally solve the first-order condition derived
in the proof to obtain the optimal payoff valuation function W ∗(x, y) = η(y/x). It follows
immediately (e.g. from Proposition 6) that this solution is always first-best. The reason is of
course that here we are free to independently design the perception of any pair (x, y), while
only the perception of q could be designed in the previous section. Let us therefore consider
the additional constraint that W (x, y) = vL(y)/vG(x) must hold, and only the (continuously
differentiable and strictly increasing) functions vL and vG can be chosen.

Proposition 8. Under Assumption 1’ and the constraint that W (x, y) = vL(y)/vG(x), the
first-best is achievable if and only if η(q) = γqα for γ, α > 0. Then, any pair vFB

G (x) = βGx
α

and vFB
L (y) = βLy

α with βL/βG = γ is a first-best solution.

Proof. Step 1. Suppose that the first-best is achieved by W FB(x, y) = vFB
L (y)/vFB

G (x).
Using the function η−1 as defined in the proof of Proposition 7, we then have that P+

WFB =

{(q, x, y) ∈ P|q ≥ η−1(vFB
L (y)/vFB

G (x))} and P+ = {(q, x, y) ∈ P|q ≥ y/x} coincide up to
measure zero. This implies that, for almost all (x, y) ∈ R2

+, we have vFB
L (y)/vFB

G (x) = η(y/x).
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Continuity of vFB
G , vFB

L and η in fact implies that the equality holds for all (x, y) ∈ R2
+.

Then it follows from Lemma 2 in Appendix C that η must be of the form η(q) = γqα

for γ, α > 0 (the lemma is applicable after substituting a = x, b = y/x, and relabelling
f1 = vFB

G , f2 = η, f3 = vFB
L ).

Step 2. Suppose that η(q) = γqα for γ, α > 0. For any pair vFB
G (x) = βGx

α and vFB
L (y) =

βLy
α with βL/βG = γ we then obtain η(q) T vFB

L (y)/vFB
G (x) ⇔ γqα T γ(y/x)α ⇔ q T y/x,

so that P+
WFB and P+ coincide and the first-best is achieved.

C Multiplicative Functions

The following lemma is useful for the characterization of first-best solutions in the multi-
plicative utility model. The result is known in the literature on functional equations as the
solution of the fourth Pexider functional equation (or power Pexider functional equation).

Lemma 2. Three continuous functions fi : R+ → R, i = 1, 2, 3, satisfy the functional relation

f1(a)f2(b) = f3(ab) for all a, b ∈ R+ (10)

if and only if

f1(x) = β1x
α, f2(x) = β2x

α, f3(x) = β1β2x
α for some α, β1, β2 ≥ 0. (11)

A proof (of a slightly more general version) can e.g. be found in Section 8.4 of Efthimiou
(2010, p. 142). The proof uses the solution to the power Cauchy equation, which is derived
in Section 5.4 of the same book (p. 97f).
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