
Matchmaking: How similar is what I want to what I get
Michael Munz and Klaus Stein and Martin Sticht and Ute Schmid 1

Abstract. We introduce matchmaking as a specific setting for sim-
ilarity assessment. While in many domains similarity assessment is
between pairs of entities with equal status, this is not true for match-
making in general. Usually, in matchmaking there exists a source
request which triggers search for the most similar set of available
entities. Whether an entity is acceptable depends highly on the ap-
plication domain. We describe a specific scenario where elderly peo-
ple request support or companionship for activities away from home.
The focus is primarly based on neighbourly help, like helping some-
one to carrying his or her shoppings, finding someone else to enjoy
a performance or simply for taking a walk around the block. Then,
the scenario is used to formulate requirements for a matchmaking
framework and for the matchmaking service.

1 INTRODUCTION
Cognitive scientists consider similarity to play a crucial role in most
cognitive processes such as concept acquistion, categorization, rea-
soning, decision making, and problem solving [5, 4]. Major ap-
proaches to similarity in cognitive science as well as in artificial in-
telligence can be characterized on two dimensions: First, whether
basic information about objects is metrical or categorial and second,
whether objects are characterized by feature vectors or structural in-
formation [10, 5]. In psychology, the typical task under investigation
is that subjects are asked to rate similarity of two objects. In this
setting, the entities for which similarity is assessed play equivalent
roles and often occur as first or second position during evaluation.
Furthermore, entities are dissociated from the person who does the
rating. However, there are many scenarios, where similarity between
a “driver” entity and a series of candidates needs to be assessed. This
type of similarity assessment is to the core of information retrieval
research and can be characterized by the questions how similar is
what I want to what I get?

In this paper we introduce matchmaking as a special domain of in-
formation retrieval. In general, matchmaking is the process of identi-
fying similar or compatible entities. Requirements stated as a query
by a user are matched with descriptions (e.g. of services or social
events) provided by other users. Typically, a good match is obtained
by identifying features or constraints which are similar and – in addi-
tion – by features or constraints which are complementary for request
and candidate entities. Complementary or fitting features are defined
by a request/provides relation.

There exists a wide range of application to matchmaking, such as
(online) dating, sports, eSports and business [12, 11]. In those do-
mains, the matching process is based on different assumptions about
what “similarity” means. In (online) dating a matchmaker tries to
bring together people with similar interests or similar personality.

1 University of Bamberg, Germany, WIAI, email: {name.surname}@uni-
bamberg.de

Whereas in the area of sports a matchmaker has to consider the skills
and competence of sportsmen and of teams when it comes to a match-
ing. In business, a matchmaker could have the job of finding appro-
priate services for a request. Here, similarity depends on what kind
of service one is interested in. The examples are all from different
domains, that means finding something that is similar to a request
depends on the domain of application.

The paper is organised as follows: first, we review three different
approaches of matchmaking applied to different domains. Then we
present two different kinds of scenarios, where older people search
support or compagnions for activities. The scenarios are used to de-
rive requirements for a matchmaking framework. In chapter 5 we
present the components of framework and conclude with a short dis-
cussion and future plans. The focus of this paper is on the presenta-
tion of the system architecture (backend) by which matchmaking can
be realized. We are not concerned with the user interface (frontend).

2 APPROACHES TO MATCHMAKING
In this section we discuss three existing approaches for matchmaking
with respect to four major questions:

1. How is the data (advertisements, queries) represented?
2. Does the approach make use of background knowledge?
3. Which matching algorithm is applied?
4. Which fitting measurement is used?

The described approaches are applied in different domains. The ap-
proaches [9] and [3] are related to the business domain whereas [2]
is related to dating and meeting people. Furthermore, they have a dif-
ferent understanding of what actually similarity means as previously
discussed. It is this difference that drives the matchmaking process
in different directions.

2.1 Matching Resources With Semistructured Data
The classad matchmaking framework [9] is a centralized resource
management system for managing distributed resources. It allo-
cates information, like availability, capacity, constraints, and other
attributes describing a resource. Those information are used in the
matchmaking process to find a proper match. The idea here is to use
classads (classified advertisement), a semi-structured data model [1]
comparable to records or frames, to describe a resource request or to
announce a resource to the system. Classads are modelled via lists of
pairs, each containing an attribute name and one or more values, to
store semi-structured data. Data pairs are used to describe offered and
requested services. For example, when considering to use a worksta-
tion, a requester would probably store information about the CPU’s
capabilities or the disk space, while a provider offering a printing ser-
vice would describe the printer’s throughput. It’s possible to define



constraints, restricted user groups and rules to rank each other. Both,
service provider and service requester use classad descriptions. This
makes it easy to compare the query with the suppliers’ offers, look-
ing at similarities of attributes and constraints and to rank the offers
found in this process.

For a given request, the matchmaker tries to match the classad
of the request to a resource with respect to any constraints given
in the classads. The rule-based process evaluates expressions like
other.memory >= self.memory. The authors focus on the data struc-
ture and do not specify a specific matching algorithm. They state that
the profiles can be matched in “a general manner” using the specified
constraints. Additionally, as goodness criteria, the ranking rules can
be applied to find out which classads fit better than others. Unfortu-
nately, further details are not given by the authors.

Finally, the matched entities will be informed by sending them the
classads of each other by the matchmaker and the resource provider
decides to accept or decline the given request.

2.2 Matching Activities Using Ontologies

R-U-In? [2] is a social network primarily based on activities and in-
terests of users. A user looking for company for an activity (e. g.
going to the cinema or to a jazz club etc.) queries system with a short
description, including time and place. The matchmaker returns con-
tacts found by the user’s social network profile, who have similar
interests and are located in close proximity. The found contacts need
not be known by the querying user yet. For example, the new person
might be a social-network “friend” of a “friend” identified by some
social network service.

Users can post their interests and planned activities on the platform
in real-time, i .e. planned activities are dynamic and can often change
at the last minute. As a result of this, participants in an activity get
updates about changes immediately.

An ontology is used to realise the matching process. There are rea-
soning mechanisms for ontologies based on Description Logic [6]
and therefore for ontologies based on OWL [7]. Banerjee et al. used
an OWL-based context model for their activity-oriented social net-
work. Interests are provided by the user itself and are based on tags.
Each interest can be tagged via the dimensions location, category
and time. In this way, one can find similar interests by matching on
all dimensions: the time (e.g. evening, 8 pm, . . . ), the category (hor-
ror movie, skating, jazz, . . . ) and the location (Bamberg, jazz-club).

Tags entered by the user (for describing or querying an activity)
are considered as concepts of the ontology. The matchmaker queries
the context model which in return gives a set of similar tags. Those
tags are then matched with the tags specified in the user profile.
Based on the search criteria of a user, activities might match exactly
or just partially. The search result of any match is then ranked by its
geographical distance to the current location of the requesting user.
Suppose, a user stores the activity (Park, skating, 3 pm) and a sec-
ond user searches for (skating, afternoon). While the activity skating
is an exact match, afternoon matches only partially with 3 pm. As
afternoon subsumes 3 pm it is still possible to match the activity.

In general, the ontology is used to store background knowledge by
modelling concepts and relations. For the presented prototype, this is
done manually. After a query, the matching process is performed in
two steps. First, the context-model is used to get semantically similar
tags which are then compared to the tags of the other user’s activ-
ity descriptions. However, details on how the tags are compared and
matched and how the results are ranked (beside of the geographical
distance) are not discussed by the authors.

2.3 Matching Web Services Using Clustering
Fenza et al. [3] propose an agent-based system to match semantic
web services. There are two different kinds of agents in the system:
a broker agent (kind of mediator) and one or more advertiser agents.
A request for a service is handled only by the broker itself. When it
encounters a request it converts it into a fuzzy multiset [8] represen-
tation. With these multisets a relevance degree is assigned to each
possible ontology term that describes a web service according to the
place, where the term occurs. For example, if the term occurs in the
input specification of the service then it will get a relevance degree
of 1. If it occurs in the textual description, then it will get a degree
of 0.3 and so on. In this way, it is possible to weight the term for
different occurrences via categories.

Advertiser agents interact with web services and with a single bro-
ker agent. Each web service description2 is converted into a fuzzy
multiset representation. Note that the broker does the same with the
user’s request. So in the end, a broker has a fuzzy multiset of a re-
quest and advertiser agents have a fuzzy multiset for each registered
service. The broker sends the fuzzy multiset of the request to the ad-
vertiser agents to find an appropriate web service. If a web service
matches with a request then the matched web service is returned by
the broker, the corresponding fuzzy multiset is stored to a central
cluster and its job is done. Otherwise, the broker tries to find an ap-
proximate service by using a knowledge base which is divided into
two distinct sets of knowledge: static knowledge and dynamic knowl-
edge.

There are several ontologies modelled to specific domains in the
static part of the background knowledge. To calculate an approxima-
tion, the broker modifies the original request by utilizing the domain
ontologies. The dynamic part of the knowledge consists of the cluster
of fuzzy multisets where the web service descriptions of the known
providers are stored (encoded as fuzzy multisets). It compares the
fuzzy multiset of the modified request with the fuzzy multiset of each
cluster center and selects the services most similar to the request.
That is, services with the minimal distance to the request are can-
didates for an approximation. The similarity is therefore measured
using the distances in the fuzzy cluster.

3 SCENARIO
Many older people at a specific age often don’t leave their home on
their own, because of several factors: they might be more anxious
in late life or may have physical health problems. They also might
be more socially isolated, have significant changes in living arrange-
ments, the loss of mobility, fewer flexibility, and loss of their inde-
pendance. All this factors contribute to withdrawal from social life
and thereby reduce quality of life.

To have an independent life at an old age mobility is crucial to
being active and to stay in contact with other people. Therefore, the
goal is to improve mobility and social connections of (older) people.
That is, to bring together people who do need help, but also people
who want to meet others and people who offer help.

The idea is to build a platform mainly based on collaborative help,
but also includes service providers. In this paper we focus on the
matchmaking framework of the platform. The context of collabora-
tive help means to match people asking for help to people offering
help and vice versa. People looking for help are going to be mostly
elderly people and people offering help are going to be mainly vol-
unteers.
2 A specific ontology for describing web-services named OWL-S is used.

2



In the following, we are looking at two kinds of scenarios the
system might be confronted with. They represent two different ap-
proaches the matching service has to deal with. The first scenario
describes matchmaking based on best fit, while the second scenario
describes matchmaking based on similarity. Fitting and Similarity are
discussed in more detail in chapter 5.

Scenario 1 (a) Mrs. Weber is looking for a babysitter for her 3
years old daughter on weekends on a regular basis from 1 pm un-
til at least 4 pm. (b) Mrs. Peters is an 82 years old lady who needs
attendance in taking the public bus lines. She thinks it’s too compli-
cated for her, because she has to know how to buy a ticket, where to
change bus lines, and the bus station to get off. (c) Zoey plays guitar
and goes to the music lessons every Wednesday after school at 3 pm
and takes the bus line 901. She would agree in attending someone
else. (d) Aylia Özdan is 31 and will help someone else on Sundays if
it’s between 11 am – 8 pm.”

The examples provide some information: Zoey works as a volun-
teer every now and then. She would accompany someone else under
some conditions. She is using the bus line 901 at a very specific time
(3 pm). So the person to accompany should use the same bus line and
should be there before the bus arrives at the bus stop. If these condi-
tions are met, Zoey will accompany a person until the bus arrives at
the bus stop she has to get off. The request of Mrs. Peters will match
this offer, if she also uses bus line 901 and waits at the same bus stop.

The request of Mrs. Weber looking for a babysitter on weekends
matches only partial with the offer of Aylia Özdan to help someone
on Sundays. Note, there is a difference between the help of Zoey and
Aylia Özdan. While Zoey is helping the old lady by courtesy as long
as it doesn’t interfere with her plans, is Aylia Özdan helping someone
else on purpose by spending some of her spare time.

Scenario 2 (a) Mr. Beck is 70 years old and interested in play-
ing Backgammon regularly. None of his acquaintances is play-
ing it, and he doesn’t know any other person who might play it.
(b) Mr. Miller plays regularly Poker with his buddies on Friday
evening and is always looking for new participants who are inter-
ested in it. (c) Mr. Novak wants to play Skat with a friend and they
are looking for a third player.

In this scenario Mr. Beck is looking for someone who is playing
Backgammon. Because there is nobody else in the system who is in-
terested in it, no exact match is possible. But there are other requests
stored in the system, like Skat and Poker, the system could offer in-
stead as similar matches. The implication is, if one is interested in
playing Backgammon, one could also be interested in playing other
games. Here, similarity means finding someone with similar inter-
ests. At the level of a “parlour game” all these requests are similar.
So they should appear in the result list as possible matches.

4 REQUIREMENTS

In chapter 3 we described two different kinds of scenarios where
matchmaking is either a best fit or a similarity match. From these
scenarios various requirements arise which have to be considered in
a matchmaking framework.

Activities A matchmaking framework has to deal with different
kinds of requests when it comes to a matchmaking. The essence of
scenario 1 is that someone is searching for help and someone else
is offering a helping hand. Here, a request for help and an offer to

help should be matched. In scenario 2 the situation is different. Users
search for other users with similar interests. Here, a matching service
should match users with same or similar interests. All requests have
in common that they concern “activities”. As a result, requests are
essentially a search for activities. Therefore, one requirement to a
matching framework is to handle those activities properly.

While R-U-In? (Sec. 2.2) matches users with similar interests it
does not handle fitting of offers with requests. Classads (Sec. 2.1), on
the other hand, support these different roles but only provides the data
structure and no matching algorithm. The fuzzy multiset approach
(Sec. 2.3) also supports the different roles of requester and provider
as long as all parameters can be expressed as fuzzy multisets.

Constraints Activities are essentially sets of constraints. We dis-
tinguish between hard (“must”) and soft (“should”) constraints. If
only one hard constraint can’t be satisfied the whole activity won’t
be satisfied at all. If one soft constraint can’t be satisfied, the activity
will still be available as a possible match. In the context of matching
similar activities, a soft constraint evaluated to false means matched
activities do not fit so well. Note, what is seen as hard and soft con-
straints depends highly on user expectations. Scenario 2 (Backgam-
mon) is an example where a lot of soft constraints exist: time, place,
day of week, and even the activity itself. Whereas the examples of
scenario 1 have a lot of hard constraints, like time, place, bus line,
and day of week.

The classad approach supports modelling of constraints, but the
authors do not distinguish between hard and soft constraints. To
overcome this, one could think of utilising annotations to distin-
guish categorically between hard and soft constraints. Both of the
other approaches do not have explicit constraining mechanisms. The
activity-oriented network R-U-In? models interests of users via three
dimensions: “time”, “category”, and “location”. The model could
be extended by an additional dimension specifying constraints. The
downside of this approach is all dimensions of the model are repre-
sented by an ontology. That means, only the concepts of hard and
soft constraints could be modelled, but no instances. Otherwise, con-
straints would be predefined and too inflexible. The fuzzy multiset
approach directly supports (weighted) matching of soft constraints,
but the datastructure has to be adapted to directly support hard con-
straints.

Roles The scenarios (Sec. 3) present two basic situations. On one
hand there are people needing help or searching for other people with
same interests. On the other hand, there are people offering their help.
But there are differences in the degree of helping someone. Some
users do volunteering work and other users just do someone a favour.
In the context of neighbourly help it’s important to distinguish be-
tween these, because there is a difference in the social commitment.
Via user roles these differences can be modelled. Roles can represent
the different expectations users have, when searching for activities.
For example, users searching for help expect to find someone offer-
ing help. The same is true vice versa. That is, a volunteer who is
looking for users needing help expects to find posted activites.

As already stated, the goal of the proposed framework is to im-
prove social life of older people by focusing on mutual assistance
and neighbourly help. Therefore, the default role represents those
users who are searching for help or looking for company. The dif-
ference in helping is taken into account by another two roles. That
is, volunteers and favours are represented by separate roles, because
they have different characteristics. People doing volunteering jobs do
it on a regular basis and offer assistance explicitly. Usually, they have

3



weaker conditions under which they are willing to help and try to be
more flexible in scheduling an appointment with someone who needs
help. Furthermore, they are willing to spend some of their spare time
in helping others. In a third role are those users represented doing
favours. The difference to volunteers is, they don’t help out regu-
larly and they have stronger conditions under which they are willing
to help someone. Doing someone a favour is usually a very time-
limited act, so time is a hard constraint. Another characteristic of a
favour is most people will do it only, if it doesn’t interfere with their
own plans and they don’t have to change their schedules.

Classads and fuzzy multisets are designed to match available re-
sources to requests of resources. In those situations there exist only
the two roles of service providers and service requesters, and no fur-
ther differentiation is needed. An activity-oriented social platform
like R-U-In? does only have one group of users. All users are in-
terested in doing activities in their spare time. This leads to clear
expectations when using the platform. They either search for or post
activities. Because of an activity-oriented user group only one role is
needed to represent them.

Knowledge The matchmaking process can be improved by pro-
viding knowledge. For matchmaking based on similarity different
sources of knowledge are suitable. That is, background knowledge
and user profiles.

Background knowledge is the general knowledge available in the
system. Activities are represented by it and the knowledge is used to
tell how similar different activities are. Then, the matching service
can offer similar activities by evaluating it (e. g. by taxonomic rela-
tionships). Suppose, someone searches for Backgammon, but there
is no direct match (as the situation is in scenario 2). The matchmak-
ing service can offer Skat and Poker instead and ignore other avail-
able activities. Background knowledge has a disadvantage, though.
It is often static and explicit. It doesn’t change often and represents
knowledge to a specific time. Moreover, updating static knowledge is
often time consuming. To overcome this we consider to utilise user
input. The initial background knowledge would be more dynamic
and converge to requested user activities.

A user profile is also helpful in the matching process. It has two
advantages: first, in the profile are those information stored a user
normally doesn’t want to re-enter everytime a search is submitted.
Second, information stored in the profile can be used to filter off
matched activities which do not fit. In this way, the result list can be
improved. Information in the profile could be among other things:
interests of a users, trust to other users, constraints, and a user rat-
ing. Activities of other users should be withhold in the result list, if
a user marked others as disliked or even untrusted. Trust and user
ratings are really important in the context of neighbourly help and
are valuable information in the matching process. A matching will
get a much more higher rating, if there already exists a relationship
of trust between users. The implication is, they did some activities
in the past, know each other and would like to do future activities
together.

Classads [9] have in some extend a user profile, but they do not
have any background knowledge. In classads only a resource can
specify a list of trusted and untrusted requesters, so the relationship
here is unidirectional. The activity network R-U-In? [2] uses both
background knowledge and user profiles for a matching. While user
profiles are updated in real-time, the background knowledge has no
dynamic update mechanism so far. Moreovere, there exists a policy
repository where a user can define policies for participants when at-
tending an activity. The downside of the platform is one can’t rate

users, can’t mark them as liked or unliked, and it’s not possible as-
signing any status of trust. In the fuzzy multiset approach [3] there
is a distinction between background knowledge and fuzzy multisets.
The background knowledge is realised in the form of domain ontolo-
gies and is static, according to the paper [3]. Whereas, fuzzy multi-
sets are dynamic and are updated according to changes of services.

Requests The matching framework should be able to differenti-
ate between two different classes of requests, immediate request and
stalled request. They represent different searches of activities. Sup-
pose, a user wants to play Backgammon and issues a search. In the
profile aren’t defined any preferences, like hard constraints. Further
assume no exact match is possible, but there are two other activites
stored (Skat and Poker), as the situation in scenario 2. As a result,
the best matches are Poker and Skat. The user has now the choice
of either choosing any of the matches he or she is interested in by
contacting the other person or to store the request in the system. A
user should have the opportunity to store it, if he or she doesn’t like
any of the activities found or the results are not as expected

Everytime a user initiates a new search for activities to the sys-
tem he or she immediately receives all matching results best fitting
the search. It is an immediate request. The result list is ordered ac-
cording to a weighting so the best fitting activities are on top. In
case, the user isn’t happy about the found matching results, he or
she has the opportunity to initiate a stalled request. The request of
the user is stored in the system’s activity database and is from now
on in monitoring modus. Depending on the preferences stored in the
corresponding user profile the user will be notified about new activ-
ities of other users similar to his or her activity request. Utilising a
stalled request one can find a match that best fits over a period of
time while an immediate request matches the best fit of the current
available activities.

Classads [9] and the fuzzy multiset approach [3] match a request to
the current available set of services, only. They do not have to distin-
guish between different kinds of requests in their systems. Whereas,
in R-U-In? [2] you can search for and post activities. Activities are
stored in a so-called activity groups reposititory. The difference here
is, stored activities are not in any monitoring mode, so users are not
being informed about searches of other users. Rather, in R-U-In? a
user will only be informed, if the requester is interested explicitly in
an activity by sending him or her a message.

For the proposed system based on neighbourly help the described
requirements are mandatory to the process of matchmaking. Because
none of the approaches is appropriate for our needs we propose a
matching framework with the required components.

5 COMPONENTS OF A MATCHMAKING
FRAMEWORK

We introduce a framework with respect to the requirements identi-
fied in chapter 4. Figure 1 depicts all components of the proposed
matchmaking framework. It shows the interaction between the com-
ponents, in which the matchmaker is the key component. A user
searching for activities initiates a request to the system. All inter-
action between a user and the system is via a mediator. The mediator
decides whether it is an immediate request or a stalled request. If
it’s an immediate request the matchmaker will be called. For finding
similar activities or activities which fit to a given request the match-
ing algorithm uses the underlying databases. That is, the background
knowledge, the user profiles and the stored activities. A result list is
then returned in response to the mediator. If the request is a stalled

4



mediator

request

immediate
request

stalled request

matchmaker

database activities

background
knowledge

user profiles

requests

creates

Figure 1. Components of the matching framework and their interaction.
The matchmaker is the key component of the system. It uses the underlying

database for a matching and propagates the results to the mediator.

request an activity will be created in the activities database. There
are two things to be aware of: first, the activity is in a monitoring
mode. Second, a stalled request can only follow up on an immediate
request. Whenever there is a new match for a stalled request the user
will be informed.

5.1 Representing Constraints
Descriptions of activities as those mentioned in chapter 3 consist of
features, such as gender, time, location, and the name of the activity
itself. These features describing an activity are viewed as constraints
for a matching and are classified by two dimensions:

similarity ↔ complement
hard constraints ↔ soft constraints

Some features need to be similar like the activity. Here reflexivity of
mapping holds. On the other hand, some features need to be com-
plementary. For example, the relationship between needs car/offers
car. Here we speak of fitting and not of similarity. The mapping of
fittings can be modelled in such a way that the resulting scale cor-
responds to a similarity mapping. So that both similarity and fitting
can be processed together.

Hard constraints can be encoded using arbitrary complex boolean
formulas on object properties while sets of weighted propositions are
used for soft constraints. For example, let’s assume that Mrs. Peters
from scenario 1 only wants help from women who are at least 30
years old (hard constraint). This can be formalised as:

other .gender = female ∧ other .age ≥ 30 (1)

where other is a reference to a potential activity partner (similar to
[9]). Consider the request of Mrs. Peters finding someone assisting

her in riding the public bus as activity a1:

requires(a1, assistance) (2)

Requires relations are matched to corresponding provides relations
of other activities. Say a2 given by another user, namely Aylia Özdan.
Both relation will be used to check, if the activities fit, as:

provides(a2, assistance) (3)

The matchmaker must know that the relations requires and provides
are matchable. However, matching two requires relations would not
solve any problems. Whereas, relations of the same type (e.g. likes)
would match in a similarity check:

likes(other , backgammon) ' likes(other , skat) (4)

Using constraints, time and loaction related restrictions can also be
modelled. For time related restrictions it’s necessary to handle inter-
vals to check temporal overlaps. Location related restrictions calcu-
late and weight distances. The distances are used for ranking pur-
poses. Matches which have a shorter distance are better matches as
similar pairs of matches but with greater distance.

5.2 Matching on Constraints
Checking hard constraints can be done by comparing the requires
and provides relations of both, activities and the user profiles. If a
hard constraint is violated by an activity description or an involved
user profile, the activity will not be considered further in this query.
Matching hard constraints should be done before soft constraints are
considered. In this way hard constraints are used as filters to omit ac-
tivities that are being violated. Soft constraints have to be checked
only on the remaining set of activities to calculate values of the
matching quality.

Soft constraints have different weights, i. e. a value between 0.0
and 1.0 representing its importance to a user. These weights are either
derived from the user profiles or from the user’s query where the
requester can specify the importance of each constraint.

If a soft constraint doesn’t match, the matchmaker can

1. check the severity of the violation (e.g. the other’s age is 38 while
the claimed age is 40; this violation would not be as strong as if
the other’s age was 12). Note that this is only possible if a distance
between the claimed and the actual value can be obtained (here
difference in ages).

2. combine the severity of the violation with the weight of the con-
straint and find out how severe this violation is for the complete
activity. Lower weights of constraints might qualify severe viola-
tions and vice versa.

If we assume that the severity can be normalized to a value be-
tween 0.0 and 1.0 where 0.0 means no violation and 1.0 represents
the hardest possible violation, the matching violation V can obtained
by a sum

V =
∑
c∈C

sc · wc (5)

where sc represents the normalized severity of the violation of fea-
ture c and wc the weight given by the user. C is the set of all relevant
constraints.

In this way, it is possible to calculate for every remaining activity
(after checking the hard constraints) a value of how well it fits to a
query. A low V means a better fitting. According to these values,
target activities can be ranked and presented in the corresponding
order.

5



5.3 Knowledge from User Profiles and Missing
Knowledge

We do not only distinguish hard and soft constraints, but also pro-
file constraints and on the fly constraints. These constraints refer to
where they are defined. Profile constraints are defined in user pro-
files and are used for recurring constraints only. If a user has defined
constraints via the profile, the system will take them into account
automatically when initiating a request. It’s a way of constraining
the search implicit. On the other hand, it should be possible to de-
fine constraints manually when doing a search. Those constraints
are specified on the fly and are valid only for a specific request.
Manually constraining the search should have higher priority as con-
straints in profiles. For this reason, different knowledge has different
priority. Information given in profiles have higher priority as back-
ground knowledge. A request has in turn higher priority as profiles.
So knowledge with higher priority overwrites lower priority. As a
result, constraints defined in the profile influence the search results
implicitly, whereas constraints defined on the fly influence it explic-
itly.

Suppose, a user has ignore(cardgames) in his profile the con-
straint specified and searches for Backgammon. Skat, Poker, and
chess are in the system as available activities. Because Backgammon
isn’t available, the only similar activities are Skat, Poker, and chess.
The matching service just offers chess as an alternative activity and
discards the card games Skat and Poker, because they’re on the ig-
nore list. Now suppose, the same user initiates an explicit request for
Skat. The request has higher priority as the constraint in the profile
and overwrites it. This approach allows users to find still activities
explicit, even when the profile states otherwise, by overwriting con-
straints.

Further, it is also important not to treat unmatched constraints as
fails because of missing information about the feasibility on the other
side. Assume Zoey wants to attend a concert, but needs someone with
a car to go there. So the car is a requirement that can be modelled as
a (hard) constraint: requires(car). Her neighbour Tim also wants to
go to the concert. However, he doesn’t mention in his stalled activity
that he’s going to drive with his own car. The problem here is, Zoey
wouldn’t find him although the activities would match. In this case,
the matchmaker should identify the match and the missing fulfiller
(car). Then, inform Zoey about the possible match and propose her
to contact Tim to check, if the activity can be matched anyway. After
contacting Tim, Zoey is able to go with Tim to the concert by car.

Missing information can be treated as wild cards which match ev-
erything. The matchmaker doesn’t know if Tim possesses a car, but
the requirement is assumed to be fulfilled. However, the activity is
marked as uncertain until Tim confirms he’s going to the concert by
driving his own car.

5.4 Presentation of Results

The approach we’re going to use here is to present all matching re-
sults to the user. For this purpose, the result list is divided into three
subsets: matches with complete information, matches with incom-
plete (missing) information, followed by matches violated by hard
constraints. The results within the first subset are ranked by viola-
tion of soft constraints. Matches with no violations come first, then
matches with low violation and finally matches with high violation.
To improve the subset of matches with missing values the user is
asked to provide additional information.

6 CONCLUSION AND FUTURE WORK
In this paper we proposed a framework for matchmaking similar ac-
tivities. It is part of a larger web-application called EMN-MOVES.
The target group of the system are older people and the overall goal
is to improve their mobility and their social life. We described two
different kinds of scenarios the system might be confronted with to
derive the requirements of the framework. We have evaluated the re-
quirements against existing approaches and concluded none of these
can fully support our needs for a platform based on neighbourly help.

The presented framework will be the starting point for the de-
velopment of a general framework for matchmaking. Currently, we
are designing an algorithm which allows to calculate both similar-
ity matches and best fits and incorporates a goodness criterion for
ranking the results.

ACKNOWLEDGEMENTS
This work is funded by BMBF grant 16SV5700K (Technology
and Innovation), Cooperation project “Europäische Metropolregion
Nürnberg macht mobil durch technische und soziale Innovationen für
die Menschen in der Region” (EMN-MOVES). We thank members
of the senior citizen councils of Bamberg, Erlangen, and Nürnberg.
We also thank the reviewers for their helpful comments.

References
[1] Serge Abiteboul, ‘Querying Semi-Structured Data’, in Database The-

ory - ICDT ’97, 6th International Conference, Delphi, Greece, January
8-10, 1997, Proceedings, pp. 1–18, (1997).

[2] Nilanjan Banerjee, Dipanjan Chakraborty, Koustuv Dasgupta, Sumit
Mittal, Seema Nagar, et al., ‘R-U-In?-exploiting rich presence and
converged communications for next-generation activity-oriented social
networking’, in Mobile Data Management: Systems, Services and Mid-
dleware, 2009. MDM’09. Tenth International Conference on, pp. 222–
231. IEEE, (2009).

[3] Giuseppe Fenza, Vincenzo Loia, and Sabrina Senatore, ‘A hybrid ap-
proach to semantic web services matchmaking’, International Journal
of Approximate Reasoning, 48(3), 808–828, (2008).

[4] Dedre Gentner and Arthur B. Markman, ‘Defining structural similar-
ity’, The Journal of Cognitive Science, 6, 1–20, (2006).

[5] Robert L. Goldstone and Ji Yun Son, ‘Similarity’, Psychological Re-
view, 100, 254–278, (2004).

[6] Javier González-Castillo, David Trastour, and Claudio Bartolini, ‘De-
scription Logics for Matchmaking of Services’, in IN PROCEEDINGS
OF THE KI-2001 WORKSHOP ON APPLICATIONS OF DESCRIP-
TION LOGICS, (2001).

[7] Ian Horrocks and Peter Patel-Schneider, ‘Reducing OWL Entailment
to Description Logic Satisfiability’, in The Semantic Web - ISWC 2003,
eds., Dieter Fensel, Katia Sycara, and John Mylopoulos, volume 2870
of Lecture Notes in Computer Science, 17–29, Springer Berlin / Heidel-
berg, (2003).

[8] Sadaaki Miyamoto, ‘Information clustering based on fuzzy multisets’,
Inf. Process. Manage., 39(2), 195–213, (March 2003).

[9] Rajesh Raman, Miron Livny, and Marvin Solomon, ‘Matchmaking:
Distributed resource management for high throughput computing’, in
High Performance Distributed Computing, 1998. Proceedings. The
Seventh International Symposium on, pp. 140–146. IEEE, (1998).

[10] Ute Schmid, Michael Siebers, Johannes Folger, Simone Schineller, Do-
minik Seuss, Marius Raab, Claus-Christian Carbon, and Stella Faerber,
‘A cognitive model for predicting aesthetical judgements as similarity
to dynamic prototypes’.

[11] D. Shaw, P.E. Newson, P.W. O’Kelley, and W.B. Fulton. Social match-
ing of game players on-line, 2005.

[12] Online matchmaking, eds., Monica T. Whitty, Andrea J. Baker, and
James A. Inman, Basingstoke, 2007.

6


