
How similar is what I get to what I want �

Matchmaking for Mobility Support

Ute Schmid, Lukas Berle, Michael Munz, Klaus Stein, and Martin Sticht

Faculty Information Systems and Applied Computer Science, University of Bamberg,
Germany

{firstname.surname}@uni-bamberg.de

Abstract. We introduce matchmaking as a speci�c setting for similar-
ity assessment. While in many domains similarity is assessed between
pairs of entities with equal status, in matchmaking there exists a source
request which triggers search for the most similar set of available enti-
ties. We describe a speci�c scenario where elderly people request support
or companionship for outdoor activities in the neighbourhood. The sce-
nario is used to formulate requirements for a matchmaking framework.
Similarity matching for support requests is based on hard criteria such
as gender and on spatio-temporal constraints. Matching companions for
outdoor activities needs a more sophisticated method taking into account
semantic similarity of requested and o�ered activities.

1 Introduction

Cognitive scientists consider similarity to play a crucial role in most cognitive
processes such as concept acquisition, categorisation, reasoning, decision making,
and problem solving [1,2]. Major approaches to similarity in cognitive science as
well as in arti�cial intelligence can be characterised on two dimensions: First,
whether basic information about objects is metrical or categorial and second,
whether objects are characterised by feature vectors or structural information
[3,1]. The majority of cognitive and computational models of similarity are based
on feature vector representations [1]. In contrast, many models of analogical
reasoning are based on structure mapping since analogy making is per de�nition
a transfer of relations from a base domain to a target domain [4,5].

In psychological research of similarity judgement, the typical task under in-
vestigation is that subjects are asked to rate similarity of two objects [1,6]. In
this setting, the entities for which similarity is assessed play equivalent roles and
can occur as �rst or second position during evaluation. Furthermore, entities
are dissociated from the person who does the rating. However, there are many
scenarios, where similarity between a �driver� entity and a series of candidates
needs to be assessed. This type of similarity assessment is to the core of informa-
tion retrieval research. Likewise, in analogical reasoning, a new target problem
is the driver for retrieval of a suitable base problem. While analogical matching
and transfer is based on structural similarity, for retrieval of a base problem
many approaches propose feature based algorithms [7,8]. That is, for retrieval



problems, be it in analogy or information retrieval domains, the leading question
is how similar is what I get to what I need or want?

In this paper we introduce matchmaking as a special domain of similarity-
based retrieval. In general, matchmaking is the process of identifying similar or
compatible entities. Requirements stated as a query by a user are matched with
descriptions (e.g., of services or social events) provided by other users. We dis-
cern two di�erent types of matchmaking � asymmetric and symmetric request
relations. An asymmetric relation is constituted by a request for service. For
example, somebody might look for a person who can drive her or him with a car
to some destination. In this case, matching is based on features or constraints
which are complementary for request and candidate entities. Complementary or
�tting features are de�ned by a request/provides relation. A symmetric relation
is constituted by a request for a person or entity with similar features or con-
straints. For example, somebody might look for a person who accompanies her or
him to the cinema. In this case, matching is based on corresponding constraints,
e.g. with respect to time and location, and similarity of interests.

In the following, we will �rst present some approaches to matchmaking which
were proposed in di�erent application domains. Afterwards, we introduce the do-
main for our matchmaking approach, that is assistance of outdoor mobility for
senior citizens. The requirements are formulated and the matchmaking frame-
work is described. Finally, we present our approach to activity matching based
on self-extending ontologies.

2 Approaches to Matchmaking

There exists a wide range of application to matchmaking, such as (online) dating,
sports, and business [9,10]. Approaches to matchmaking di�er with respect to
representation of data, reference to background knowledge and used similarity
measures � resulting in di�erent matchmaking algorithms.

In the following, we discuss three approaches to matchmaking. When formu-
lating the requirements of a matchmaking system in the context of our appli-
cation scenario, we refer back to these approaches � identifying concepts which
can and which cannot be used for our speci�c setting.

2.1 Matching Resources With Semistructured Data

The classad matchmaking framework [11] is a centralised resource management
system for managing distributed resources. It allocates information such as avail-
ability, capacity, constraints, and other attributes describing a resource. To de-
scribe a resource request or to announce a resource to the system, the information
is represented as a so called classad (classi�ed advertisement) � a semi-structured
data model [12] comparable to records or frames in procedural programming
languages. Classads are modelled via lists of pairs, each containing an attribute
name and one or more values. Data pairs are used to describe o�ered and re-
quested services. For example, when considering to use a workstation, a requester



would probably store information about the CPU's capabilities or the disk space,
while a provider o�ering a printing service would describe the printer's through-
put. In addtion, constraints such as restricted user groups can be de�ned. Finally,
ranking rules can be provided.

For a given request, the matchmaker tries to match the classad of the request
to a resource with respect to any constraints given in the classads. The rule-based
process evaluates expressions like other.memory >= self.memory. The authors
focus on the data structure and do not specify a speci�c matching algorithm.
They state that the pro�les can be matched in �a general manner� using the
speci�ed constraints. Additionally, as goodness criteria, the ranking rules can be
applied to �nd out which classads �t better than others. Finally, the matchmaker
informs the matched entities by sending the classads of each other. The resource
provider decides whether it accepts or declines the request.

2.2 Matching Web Services Using Clustering

Fenza et al. [13] propose an agent-based system to match semantic web services.
There are two di�erent kinds of agents in the system: a broker agent (mediator)
and one or more advertiser agents. A request for a service is handled only by
the broker. When it encounters a request it converts it into a fuzzy multiset
[14] representation. With these multisets a relevance degree is assigned to each
possible ontology term that describes a web service according to the place, where
the term occurs. For example, if the term occurs in the input speci�cation of
the service then it will get a relevance degree of 1. If it occurs in the textual
description, then it will get a degree of 0.3 and so on. In this way, it is possible
to weight the term for di�erent occurrences via categories.

Advertiser agents interact with web services and with a single broker agent.
Each web service description1 is converted into a fuzzy multiset representation.
Note, that the broker does the same with the user's request. So in the end,
a broker has a fuzzy multiset of a request and advertiser agents have a fuzzy
multiset for each registered service. The broker sends the fuzzy multiset of the
request to the advertiser agents to �nd an appropriate web service. If a web
service matches with a request then the matched service is returned by the
broker, the corresponding fuzzy multiset is stored to a central cluster and its
job is done. Otherwise, the broker tries to �nd an approximate service by using
a knowledge base which is divided into two distinct sets of knowledge: static
knowledge and dynamic knowledge.

There are several ontologies modelled to speci�c domains in the static part
of the background knowledge. To calculate an approximate match, the broker
modi�es the original request by utilizing the domain ontologies. The dynamic
part of the knowledge consists of a cluster of fuzzy multisets where the web ser-
vice descriptions of the known providers are stored (encoded as fuzzy multisets).
It compares the fuzzy multiset of the modi�ed request with the fuzzy multiset of
each cluster center and selects the services most similar to the request. That is,

1 A speci�c ontology for describing web-services named OWL-S is used.



services with the minimal distance to the request are candidates for an approx-
imation. The similarity is therefore measured using the distances in the fuzzy
cluster.

2.3 Matching Activities Using Ontologies

R-U-In? [15] is a social network primarily based on activities and interests of
users. A user looking for company for an activity (e. g. going to the cinema or
to a jazz club etc.) queries the system with a short description, including time
and place. The matchmaker returns contacts found by the users' social network
pro�le, who have similar interests and are located in close proximity. The found
contacts need not be known by the querying user yet. For example, the new
person might be a social-network �friend� of a �friend� identi�ed by some social
network service. Users can post their interests and planned activities on the
platform in real-time, i .e. planned activities are dynamic and can often change
at the last minute. As a result of this, participants in an activity get updates
about changes immediately.

An ontology is used to realise the matching process. There are reasoning
mechanisms for ontologies based on description logic [16] and therefore for on-
tologies based on OWL [17]. Banerjee et al. used an OWL-based context model
for their activity-oriented social network. Interests are provided by the user itself
and are based on tags. Each interest can be tagged via the dimensions location,
category and time. Similar interests can be identi�ed by matching on all dimen-
sions: the time (e.g. evening, 8 pm, . . . ), the category (horror movie, skating,
jazz, . . . ) and the location (Bamberg, jazz-club).

Tags entered by the user for describing or querying an activity are considered
as concepts of the ontology. The matchmaker queries the context model which
in return gives a set of similar tags. Those tags are then matched with the tags
speci�ed in the user pro�le. Based on the search criteria of a user, activities
might match exactly or just partially. The search result of any match is then
ranked by its geographical distance to the current location of the requesting
user. Suppose, a user stores the activity (Park, skating, 3 pm) and a second user
searches for (skating, afternoon). While the activity skating is an exact match,
afternoon matches only partially with 3 pm. As afternoon subsumes 3 pm it is
still possible to match the activity.

In general, the ontology is used to store background knowledge by modelling
concepts and relations. For the presented prototype, this is done manually. After
a query, the matching process is performed in two steps. First, the context-model
is used to get semantically similar tags which are then compared to the tags of the
other user's activity descriptions. However, details on how the tags are compared
and matched and how the results are ranked (beside of the geographical distance)
are not discussed by the authors.



3 SCENARIO

Maintenance of mobility in old age is a crucial factor of quality of live because
many activities of daily living require being mobile [18]. Indoor mobility is impor-
tant for independent living in one's own home, outdoor mobility is a prerequisite
for activities such as shopping, visiting friends, and participating in social events
[19]. Impairments of mobility result from di�erent causes: old age often entails
bodily handicaps such as restricted ability to walk or reduced eye-sight. How-
ever, mobility can also be a�ected by monetary or mental constraints such as
the fear of falling [20] or the fear to travel alone with public transport [21].

Our research goal is to improve outdoor mobility and to establish social
connections of (older) people. To improve mobility plus covering social aspects we
have to distinguish between two domains of interest the matchmaker has to deal
with:mobility assistance and outdoor activities, see also �gure 1. Matchmaking in
those two domains is either accomplished by a best �t approach or by a similarity
approach. The idea is to build a platform mainly based on collaborative help,
but also includes service providers.

In the best �t approach the matchmaker needs to determine the best 'help
response' to a 'help request'. In the similarity approach the matchmaker needs
to �nd related or similar content or activities.

3.1 Mobility Assistance

Mobility assistance tries to improve mobility of older people. Often, older people
are in the position of needing temporal help. One can think of going to the
supermarket, going to the medical doctor, using public transportations, carrying
groceries, going for a walk around the block etc. . To improve mobility of those
people the system can be used to request assistance. Volunteers then, can provide
assistance and support in their mobility. We call the relationship between seniors
and volunteers in the domain of mobility assistance asymmetric, because seniors
depend on someone else (volunteer) who give support and help. Without the
help of a volunteer a senior wouldn't be able to be as mobile as she likes to be
or in the worst case couldn't realise it at all.

Fig. 1. left: asymmetric. A helping situation is an asymmetric relationship. The older
person depends on someone who is willing to help, because she can't do it on her own.
right: symmetric. The relationship of activities is symmetric. Involved parties are at
an equal level, no one depends on someone else to do the activity.



In general, volunteers should be certi�ed over some agency to guarantee they
are trustworthy and quali�ed to deal with the speci�c needs of older people.
Screening and training of volunteers implies some costs, seniors typically would
be paying some small fee to be registered at the agency.

Scenario 1 - mobility assistance: asymmetric relationship. Mrs. Peters is a 82
years old lady who needs attendance in taking the public bus lines. She thinks
it's to complicated for her, because she has to know how to buy a ticket, where
to change bus lines, and the bus stations to get o�. Lisa Gustafsson has an
appointment at the medical doctor on Wednesday at 12.15 pm. She has a zimmer
frame and needs to use the public bus to go to the doctor. Aylia Özdan is 61
and a volunteer. She is willing to help someone else on Monday, Tuesday, and
Thursday from 11 am to 1 pm. Mr.Weber is a 58 years old invalidity pensioner.
He has committed himself to work as a volunteer and is usually available from
Monday until Friday from 12 pm to 16 pm.

In the situations above there are some information explicitly given and some
implicitly. There are two people who have themselves committed to work as
volunteers and there are two older people who need assistance. Naturally, one
would match the help request of Lisa Gustafsson to Mr.Weber who is a volunteer.
The time slot of Lisa Gusta�son is �xed, because she has an appointment at the
medical doctor, and Mr.Weber's time slot as a volunteer matches in time and
day. But the problem here is implicitly given. Lisa Gustafsson is a woman who
is going to the doctor and she might be embarrassed about getting assistance
from a man. Of course, Lisa Gustafsson could explicitly say she doesn't want a
man as an assistance. In that case, the best �t would be Aylia Özdan, although
the time slot doesn't �t.

The request of Mrs. Peters is less uncomplicated. She is afraid of taking the
public bus, but whether a man or a woman can give her assistance in riding the
bus is here of no importance. Therefore, possible matches are both Aylia Özdan
and Mr.Weber, because there is no more information given to constraint the
matching.

3.2 Outdoor Activities

With outdoor activities not only the mobility of older people can be improved,
but also social life. Here, the system can be used to do activities together with
other people. Seniors can search for other seniors who have similar interests in
activities. An important di�erence between outdoor activities and mobility as-
sistance (described in previous section) is, there are not necessarily volunteers
needed. Instead, the focus here lies in meeting people about the same age and
with similar interests. The relationship between seniors participating in an activ-
ity is symmetric, because no one depends on someone else to realize the activity.
In the worst case, an activity could be done alone.

Scenario 2 - outdoor activity: symmetric relationship. Mr. Beck is 70 years old
and interested in walking. He has also done Nordic walking in the past. None



of his acquaintances is interested in it, and he doesn't know any other person
who has the same interests. Mrs. Novak is 73 years old and she likes all kinds of
outdoor activities and to be outside and enjoy the nature. Mr.Miller, 81 years
old, lives near a park. He loves to go for a walk in the park. He has a walking
stick.

In this scenario there are three older people who are looking for other activity
partners. When Mr.Beck searches for someone else who also likes walking, he
�nds that Mr.Miller likes it as well, because both activities are similar. But the
system could also o�er the activity of Mrs.Novak in the resulting list, because
she likes to be in the nature and doing all kinds of activities. She hasn't provided
any more information to the system, so the matchmaker can't constrain it any
further. But all three activities are - at a higher level - similar and therefore
match.

4 Requirements

From the scenarios described above various requirements arise which have to be
considered in a matchmaking framework.

Activities A matchmaking framework has to deal with di�erent kinds of requests
when it comes to a matchmaking. The essence of scenario 1 is that someone is
searching for help and someone else is o�ering a helping hand. Here, a request
for help and an o�er to help should be matched. In scenario 2 the situation is
di�erent. Users search for other users with similar interests. A matching service
should match users with same or similar interests. All requests have in common
that they concern �activities�. As a result, requests are essentially a search for
activities. Therefore, one requirement to a matching framework is to handle those
activities properly.

While R-U-In? (Sec. 2.3) matches users with similar interests, it does not pro-
vide a �tting algorithm to match o�ers and requests of users. Classads (Sec. 2.1),
on the other hand, supports di�erent roles. It provides the data structure to
model requests`and o�ers` but no matching algorithm. The fuzzy multiset ap-
proach (Sec. 2.2) supports the di�erent roles of requester and provider as long
as all parameters can be expressed in fuzzy multisets.

Constraints Activities are essentially sets of constraints. We distinguish between
hard (�must�) and soft (�should�) constraints. If only one hard constraint can't
be satis�ed the whole activity won't be satis�ed at all, as it is the case in scenario
1 not wanting a man as an assistance. If one soft constraint can't be satis�ed,
the activity will still be available as a possible match, as with Lisa Gustafsson
and Aylia Özdan. In the context of matching similar activities, a soft constraint
evaluated to false means matched activities do not �t so well. Note, what is seen
as hard and soft constraints depends highly on user expectations. Scenario 2
(walking) is an example where a lot of soft constraints exist: time, place, day
of week, and even the activity itself (walking, Nordic walking, doing an outdoor



activity). Whereas the examples of scenario 1 have a lot of hard constraints, like
time, place, bus line, gender, and day of week.

The classad approach supports modelling of constraints, but the authors
do not distinguish between hard and soft constraints. To overcome this, one
could think of utilising annotations to distinguish categorically between hard and
soft constraints. Both of the other approaches do not have explicit constraining
mechanisms. The activity-oriented network R-U-In? models interests of users via
three dimensions: �time�, �category�, and �location�. The model could be extended
by an additional dimension specifying constraints. The downside of this approach
is all dimensions of the model are represented by an ontology. That means, only
the concepts of hard and soft constraints could be modelled, but no instances.
Otherwise, constraints would be prede�ned and too in�exible. The fuzzy multiset
approach directly supports (weighted) matching of soft constraints, but the data-
structure has to be adapted to directly support hard constraints.

Roles The scenarios (Sec. 3) present two basic situations. On one hand, there
are people needing help or searching for other people with same interests. On
the other hand, there are people o�ering their help. But there are di�erences in
the degree of helping someone. Some users do volunteering work and other users
just do someone a favour. In the context of neighbourly help it's important to
distinguish between these, because there is a di�erence in the social commitment.
the degree of social commitment can be modelled via roles. Roles can represent
the di�erent expectations users have, when searching for activities. For example,
users searching for help expect to �nd someone o�ering help. The same is true
vice versa. That is, a volunteer who is looking for users needing help expects to
�nd posted activities.

As already stated, the goal of the proposed framework is to improve social life
of older people by focusing on mutual assistance and neighbourly help. Therefore,
the role of seniors represents those users who are searching for help or looking
for company. The di�erence in helping is taken into account by other two roles.
That is, volunteering work and doing favours are represented by separate roles,
because they have di�erent characteristics. People doing volunteering jobs do
it on a regular basis and o�er assistance explicitly. Usually, they have weaker
conditions under which they are willing to help and try to be more �exible in
scheduling an appointment with someone who needs help. Furthermore, they
are willing to spend some of their spare time in helping others. Users doing
favours don't help out regularly and have stronger conditions under which they
are willing to help someone. Doing someone a favour is usually a very time-
limited act, so time is a hard constraint. Another characteristic of a favour is
most people will do it only if it doesn't interfere with their own plans and they
don't have to change their schedules.

Classads and fuzzy multisets are designed to match available resources to
requests of resources. In those situations there exist only the two roles of service
providers and service requesters, and no further di�erentiation is needed. An
activity-oriented social platform like R-U-In? does only have one group of users.
All users are interested in doing activities in their spare time. This leads to clear



expectations when using the platform. They either search for or post activities.
Because of an activity-oriented user group only one role is needed to represent
them.

Knowledge The matchmaking process can be improved by providing knowledge.
It is suitable for matchmaking based on similarity to access background knowl-
edge and user pro�les.

Background knowledge is the general knowledge available in the system. Ac-
tivities are represented by it and the knowledge is used to tell how similar di�er-
ent activities are. The matching service can o�er similar activities by evaluating
it (e. g. by taxonomic relationships). Suppose, someone searches for Nordic walk-
ing, but there is no direct match (as described in scenario 2). The matchmaking
service can o�er activities similar to walking instead and ignore other available
activities (e. g. playing golf). Background knowledge has a disadvantage, though.
It is often static and explicit. It doesn't change often and represents knowledge
to a speci�c time. Moreover, updating static knowledge is often time consum-
ing. To overcome this we consider to utilise user input as an additional dynamic
source. It gives extra information to the matching process to examine the search
query of a user and the chosen activity. Considering this, background knowlegde
is more dynamic and converges to requested user activities.

A user pro�le is also helpful in the matching process. It has two advantages:
�rst, in the pro�le are those information stored a user normally doesn't want
to re-enter every time a search is submitted. Second, information stored in the
pro�le can be used to �lter o� matched activities which do not �t. In this way,
the result list can be improved. Information in the pro�le could be among other
things: interests of a users, trust to other users, constraints, and a user rating.
Activities of other users should be withhold in the result list, if a user marked
others as disliked or even untrusted. Trust and user ratings are really important
in the context of neighbourly help and are valuable information in the matching
process. A matching will get a much higher rating, if there already exists a
relationship of trust between users. The implication is, they did some activities
in the past, know each other and would like to do future activities together.

Classads [11] have in some extend a user pro�le, but they do not have any
background knowledge. In classads only a resource can specify a list of trusted
and untrusted requesters, so the relationship here is unidirectional. The activity
network R-U-In? [15] uses both background knowledge and user pro�les for a
matching. While user pro�les are updated in real-time, the background knowl-
edge has no dynamic update mechanism so far. Moreover, there exists a policy
repository where a user can de�ne policies for participants when attending an
activity. The downside of the platform is one can't rate users, can't mark them as
liked or unliked, and it's not possible assigning any status of trust. In the fuzzy
multiset approach [13] there is a distinction between background knowledge and
fuzzy multisets. The background knowledge is realised in the form of domain
ontologies and is static, according to the paper [13]. Whereas, fuzzy multisets
are dynamic and are updated according to changes of services.



Requests The matching framework should be able to di�erentiate between two
di�erent classes of requests, immediate request and stalled request. They repre-
sent di�erent searches of activities. Suppose, a user wants to do Nordic walking
and issues a search. There aren't de�ned any preferences in the pro�le, like hard
constraints. Further assume no exact match is possible, but there are two other
activities stored (walking and enjoying nature), as the situation in scenario 2. As
a result, the best matches are those two. The user has now the choice of either
choosing any of the matches he or she is interested in by contacting the other
person or to store the request in the system. A user should have the opportunity
to store it, if he or she doesn't like any of the activities found or the results are
not as expected

Every time a user initiates a new search for activities to the system he or
she immediately receives all matching results best �tting the search. It is an
immediate request. The result list is ordered according to a weighting so the
best �tting activities are on top. In case the user isn't happy about the found
matching results, he or she has the opportunity to initiate a stalled request. The
request of the user is stored in the system's activity database and is from now on
in monitoring mode. Depending on the preferences stored in the corresponding
user pro�le the user will be noti�ed about new activities of other users similar
to his or her activity request. By utilising a stalled request one can �nd a match
that best �ts over a period of time. An immediate request returnes matches that
best �t to all currently available activities.

Classads [11] and the fuzzy multiset approach [13] match a request to the
current available set of services only. They do not have to distinguish between
di�erent kinds of requests in their systems. In R-U-In? [15] users can search for
and post activities. Activities are stored in a so-called activity group repository.
A di�erence to our proposed matchmaking system is, stored activities are not
in any monitoring mode, so users are not being informed about searches of
other users. Rather, in R-U-In? a user will only be informed, if the requester is
interested explicitly in an activity by sending him or her a message.

For the proposed system based on neighbourly help the described require-
ments are mandatory to the process of matchmaking. Because none of the ap-
proaches is appropriate for our needs we propose a matching framework with
the required components.

5 COMPONENTS OF A MATCHMAKING

FRAMEWORK

We introduce a framework with respect to the requirements identi�ed in chapter
4. Figure 2 depicts all components of the proposed matchmaking framework. It
shows the interaction between the components in which the matchmaker is the
key component. A user searching for activities initiates a request to the system.
All interaction between a user and the system happens via a mediator. The
mediator decides whether it is an immediate request or a stalled request. If it's an
immediate request the matchmaker will be called. For �nding similar activities or



mediator

request

immediate
request

stalled request

matchmaker

database activities

background
knowledge

user pro�les

requests

creates

Fig. 2. Components of the matching framework and their interaction. The matchmaker
is the key component of the system. It uses the underlying database for a matching
and propagates the results to the mediator.

activities which �t to a given request the matching algorithm uses the underlying
databases. That is, the background knowledge, the user pro�les and the stored
activities. A result list is then returned in response to the mediator. If the request
is a stalled request an activity will be created in the activities database. There
are two things to be aware of: �rst, the activity is in a monitoring mode. Second,
a stalled request can only follow up on an immediate request. Whenever there
is a new match for a stalled request the user will be informed.

5.1 Representing Constraints

Descriptions of activities as those mentioned in chapter 3 consist of features,
such as gender, time, location, and the name of the activity itself. These features
describing an activity are viewed as constraints for a matching and are classi�ed
by two dimensions:

similarity ↔ complement
hard constraints ↔ soft constraints

Some features need to be similar to the activity. Here, re�exivity of mapping
holds. On the other hand, some features need to be complementary. For example,



the relationship between needs car/o�ers car. Here we speak of �tting and not
of similarity. The matching can be modelled in such a way that the resulting
scale corresponds to a similarity mapping. So both similarity and �tting can be
processed together.

Hard constraints can be encoded using arbitrary complex boolean formulas on
object properties while sets of weighted propositions are used for soft constraints.
For example, let's assume that Mrs. Peters from scenario 1 only wants help from
women who are at least 30 years old (hard constraint). This can be formalised
as:

other .gender = female ∧ other .age ≥ 30 (1)

where other is a reference to a potential activity partner (similar to [11]). Con-
sider the request of Mrs. Peters �nding someone assisting her in riding the public
bus as activity a1:

requires(a1, assistance) (2)

Requires relations are matched to corresponding provides relations of other ac-
tivities. Say a2 is given by another user, namely Aylia Özdan. Both relation will
be used to check, if the activities �t, as:

provides(a2, assistance) (3)

The matchmaker must know that the relations requires and provides are match-
able. However, matching two requires relations would not solve any problems.
Whereas, relations of the same type (e.g. likes) would match in a similarity check:

likes(other ,nordic walking) ' likes(other ,walking) (4)

Using constraints, time- and location-related restrictions can also be modelled.
For time-related restrictions it's necessary to handle intervals to check temporal
overlaps. Location-related restrictions calculate and weight distances. The dis-
tances are used for ranking purposes. Matches which have a shorter distance are
better matches as similar pairs of matches but with greater distance.

5.2 Matching on Constraints

Checking hard constraints can be done by comparing the requires and provides
relations of both, activities and the user pro�les. If a hard constraint is violated
by an activity description or an involved user pro�le, the activity will not be
considered further in this query. Matching hard constraints should be done before
soft constraints are considered. In this way hard constraints are used as �lters
to omit activities that are violated. Soft constraints have to be checked only on
the remaining set of activities to calculate values of the matching quality.

Soft constraints have di�erent weights, i. e. a value between 0.0 and 1.0 repre-
senting its importance to a user. These weights are either derived from the user
pro�les or from the user's query where the requester can specify the importance
of each constraint.

If a soft constraint doesn't match, the matchmaker can



1. check the severity of the violation (e.g. the other's age is 38 while the claimed
age is 40; this violation would not be as strong as if the other's age was 12).
Note that this is only possible if a distance between the claimed and the
actual value can be obtained (here di�erence in ages).

2. combine the severity of the violation with the weight of the constraint and
�nd out how severe this violation is for the complete activity. Lower weights
of constraints might qualify severe violations and vice versa.

If we assume that the severity can be normalised to a value between 0.0
and 1.0 where 0.0 means no violation and 1.0 represents the hardest possible
violation, the matching violation V can obtained by a sum

V =
∑
c∈C

sc · wc (5)

where sc represents the normalised severity of the violation of feature c and wc

the weight given by the user. C is the set of all relevant constraints.
In this way, it is possible to calculate for every remaining activity (after

checking the hard constraints) a value of how well it �ts to a query. A low V
means a better �tting. According to these values, target activities can be ranked
and presented in the corresponding order.

5.3 Knowledge from User Pro�les and Missing Knowledge

We do not only distinguish hard and soft constraints, but also pro�le constraints
and on the �y constraints. These constraints refer to where they are de�ned.
Pro�le constraints are de�ned in user pro�les and are used for recurring con-
straints only. If a user has de�ned constraints via the pro�le, the system will
take them into account automatically when initiating a request. It's a way of
constraining the search implicitly. On the other hand, it should be possible to
de�ne constraints manually when doing a search. Those constraints are speci�ed
on the �y and are valid only for a speci�c request. Constraining the search manu-
ally should have higher priority as constraints speci�ed in a user pro�le. For this
reason, di�erent knowledge has di�erent priority. Information given in pro�les
has higher priority as background knowledge. A request has in turn higher pri-
ority as pro�les. So knowledge with higher priority overwrites lower priority. As
a result, constraints de�ned in the pro�le in�uence the search results implicitly,
whereas constraints de�ned on the �y in�uence it explicitly.

Suppose, a user has the constraint ignore(fitness walking) in his pro�le and
searches for a stroll in the city. Walk in the park, Nordic walking, and trekking
pole are in the system as available activities. Because walking isn't available,
the only similar activities are a walk in the park, Nordic walking, and trekking
pole. The matching service just o�ers a 'walk in the park' as an alternative
activity and discards the Nordic walking and trekking pole, because they are on
the ignore list via ignore(fitness walking). Now suppose, the same user initiates
an explicit request for Nordic walking. The request has higher priority as the



constraint in the pro�le and overwrites it. This approach allows users to �nd
still activities explicitly, even when the pro�le states otherwise.

Further, it is also important not to treat unmatched constraints as fails be-
cause of missing information about the feasibility on the other side. Assume
Lisa Gustafsson wants to go to an opera, but needs someone with a car to go
there. So the car is a requirement that can be modelled as a (hard) constraint:
requires(car). Someone in her neighbourhood also wants to go to the opera.
However, he doesn't mention in his stalled activity that he's going to drive with
his own car. The problem here is, Lisa Gustafsson wouldn't �nd him although
the activities would match. In this case, the matchmaker should identify the
match and the missing ful�ller (car). Then, inform Lisa Gustafsson about the
possible match and propose her to contact the person. After contacting him,
Lisa Gustafsson is going to be able to go with him to the opera by car.

Missing information can be treated as wild cards which match everything.
The matchmaker doesn't know if someone possesses a car, but the requirement is
assumed to be ful�lled. However, the activity is going to be marked as uncertain
until the person in question con�rms he's going to the concert by driving his
own car.

5.4 Presentation of Results

The approach we're going to use here is to present all matching results to the
user. For this purpose, the result list is divided into three subsets: matches with
complete information, matches with incomplete (missing) information, followed
by matches violated by hard constraints. The results within the �rst subset are
ranked by violation of soft constraints. Matches with no violations come �rst,
then matches with low violation and �nally matches with high violation. To
improve the subset of matches with missing values the user is asked to provide
additional information.

6 Activity Mapping

In the following we present details for symmetric matching of leisure activities.
Since interaction with the matchmaking service should be as simple as possi-
ble, we decided against presenting selection menus for activities in � possibly
hierarchical � categories and allow the user to input simple natural language
descriptions instead.

Figure 3 shows a model that describes the process of activity suggestions. If a
person searches for a partner to join some outdoor leisure activity, the database
needs to be searched for a person who is interested in the same or a similar activ-
ity. As described in the section above there are further constraints to obey such
as local nearness and similar time frames. For matching natural language de-
scriptions we introduce a simple ontology which represents a hierarchy of leisure
activities. That is, natural language descriptions are mapped either to a category



to which the current description is similar or to which the current description
belongs with a certain probability.

The converter transforms the natural language activity description, the user
pro�le and the restrictions to a Java object and sends this object to the category
suggester. The category suggester �gures out categories the description belongs
to and sends them to the activity weight calculator. If the category suggester
cannot �nd out well matching categories it provides some category suggestions
and the user returns his desired category. Finally, the activity weight calculator
returns the best matching activities that are stored in the database to the user.

Fig. 3. The process of identifying activity suggestions (aspects discussed in this paper
highlighted in grey)



The functional requirements with respect to the the category suggester and
the ontology are:

Mapping Natural Language Activity Descriptions The application must
be able to map natural language activity descriptions to activities. In ad-
dition it must be able to return a probability that a description �ts to an
activity and return how reliable the mapping is.

Semantic Matching The application must be able to deal with generalisations
and similarities between di�erent kinds of activities.

Self-Learning The application must learn from user inputs in order to improve
future outputs.

6.1 Ontology

One working de�nition for an ontology is �a formal, explicit speci�cation of
shared conceptualisation� [22]. A conceptualisation can be de�ned as �an ab-
stract, simpli�ed view of the world that we wish to represent for some purpose�
[23]. Thus it is possible to model a part of the world by using an ontology. By
contrast, a taxonomy is a hierarchical structure in which the objects are just
related with one type of relation. This relation can be a sub-concept or a part-of
relation [24]. In many ontologies there is a taxonomy which functions as back-
bone in order to create hierarchical structures [22]. The taxonomy is also a large
and important part of the ontology for the desired matchmaker.

There are many di�erent formal ontology languages that describe ontolo-
gies. We use OWL2, however making use only of a small part of the OWL2
features. These features are classes, individuals, self de�ned �ags and self de-
�ned �has_Relation� annotations. In table 1 all used ontology elements of the
matchmaker are described.

Table 1. Used elements in the matchmaker's ontology

Representation De�nition Example

Direct subclass �Other Activities� → �Zoo�

Individual �Zoo� → �Zoo of Berlin�

has_Relation �Stroll� → �Jogging�

Flag �Zoo of Berlin� → �ag: false

Figure 4 depicts all elements which are used in the ontology for this match-
maker. The following de�nitions of ontology elements may di�er from other
de�nitions because the ontology elements are de�ned referring to their usage in
this work.



De�nition 1 (Class). A class is a collection of individuals. There are two kinds
of relations between classes: A subclass relation and the inverse parent class
relation. Here, a class represents an activity or a collection of activities.

De�nition 2 (Parent Class). The parent class P of a class C is P | [ C 6≡ P
∧ C v P ∧ ¬∃ X | (X v P ∧ C v X)].

De�nition 3 (Subclass). The set of subclasses SC of the parent class C are
all classes S | (S v C).

De�nition 4 (Direct Subclass). The set of direct subclasses SC of the parent
class C are all classes S | (parentClass(S) ≡ C).

De�nition 5 (Top-Level Class). A top-level class is a class that is a direct
subclass of the class �owl:Thing� which is the root class in ontologies described
in OWL.

De�nition 6 (Individual). An individual is a natural language activity de-
scription that has been entered by a user and has been subordinated to a class.
Individuals can hold a �ag. When �a� is an individual that belongs to the class
�C� then the formal description is a : C.

De�nition 7 (Flag). A �ag is a boolean value an individual can hold. If the �ag
is true then the individual must be further subordinated in the class hierarchy. If
the �ag is false, it already belongs to the correct class from the system's view.

De�nition 8 (has_Relation). Between two classes there can be a has_Relation
connection. If activities in class B and their subclasses could be relevant for a
user if class A is relevant, then there must be a �has_Relation� connection from
class A to class B.

6.2 The Algorithm

De�nitions for the Algorithms

De�nition 9 (Similarity Weight). A similarity weight is a global weight be-
tween 0.0 and 1.0. After each class has received a weight, the weight of the classes
and their subclasses that are connected with a has_Relation connection from a
class that have the highest weight become increased to similarity weight * highest
weight.

De�nition 10 (Strictness Factor). A strictness factor is a global factor be-
tween 0.0 and 1.0. A strictness factor x means that at least the 100 * x % best
matching classes are returned. A high strictness factor could cause more potential
matching classes than a low strictness factor.



Fig. 4. An exemplary ontology

De�nition 11 (Quality Factor). A quality factor is a global factor between
0.0 and 1.0. It is used to de�ne whether a class suggestion for a speci�c natural
language activity description is good or bad. Considering a quality factor x, a
result is good if at least 100 * x % of the suggested classes are subordinated to
one top level class, otherwise the result is bad.

De�nition 12 (Direct Match). A direct match is a match that occurs if a
natural language activity description is a substring of a class name or vice versa.

The technical de�nitions used in the algorithms are given in table 2.

Weight Calculating The algorithm calculates a normalised weight for the
classes in the ontology. The normalised weights indicate the probability that a
natural language activity description matches a speci�c class.

Algorithm 1 calculateWeights(input_a: natural language activity description)

1: input_o ← set of all classes in the ontology
2: input_i ← set of all individuals in the ontology
3: input_k ← similarity weight
4:

5: dirctMatch = false
6: input_a = clean(input_a) //eliminates stop words
7: ForEach class ∈ input_o Do
8: If input_a ≷ class.n Then



Table 2. Technical De�nitions

C.n If C is a class, C.n is its name
C.w If C is a class, C.w is its weight
i.n If i is an individual, i.n is its name
i.�ag If i is an individual, i.�ag is its �ag
i.class If i is an individual, i.class is the class i is subordinated to. Formal:

i.class ≡ C | [i : C ∧ ¬∃ X | (X v C ∧ i : X)]
equals(String s1, String s2)

Is true if s1 is exact the same String like s2
clean(String s) Returns s without stop words
getWords(String a) Returns a set that contains all words of a
parentClass(Class C) Returns P | [C 6≡ P ∧ C v P ∧ ¬∃ X | (X v P ∧ C v X)]
subClass(Class C) Returns all S | (parentClass(S) ≡ C)
Class D ≡ Class F C v D ∧ D v C
individualsOf(Class C) Returns all i | [i : C ∧ ¬∃ X | (X v C ∧ i : X)]
hasRelation(Class C) Returns a set that contains all classes to which C is connected

with a has_Relation connection
String s1 ≷ String s2 Returns true if s1 is a substring of s2 or if s2 is substring of s1.

Otherwise it returns false
a++ Adds 1 to the variable a. More formal: a = a + 1
Set.add(c) Adds c to the set
Set.delete(i) Deletes i from the set
C.addInvidiual(i) Adds individual i to the class C
getTopLevelClasses Returns a set containing all C | C ∈ subClass(�Thing�)

9: /* There is a direct match. Set class weight to one and assign weights
to subclasses and related classes */

10: directMatch = true
11: class.w = 1
12: ∀relClass ∈ hasRelation(c): setWeightToClassAndSubClasses(relClass,

input_k)
13: If subClass(class) 6= ∅ Then
14: setWeightToClassAndSubClasses(class, 1)
15: EndIf
16: EndIf
17: EndFor
18: If directMatch = false Then
19: /* There is no direct match. Check for every word in the natural lan-

guage description if it is a substring of a word in an individual. If it is
a substring, increase the weight of the corresponding class */

20: ForEach word ∈ getWords(input_a) Do
21: ForEach class ∈ input_o Do
22: ForEach individual ∈ indvidualsOf(class) Do
23: ForEach individual_word ∈ getWords(individual.n) Do
24: If word ≷ individual_word Then
25: class.w++
26: EndIf
27: EndFor
28: EndFor
29: EndFor
30: EndFor



31: highestWeight = max∀classes∈input_o (class.w)
32: ForEach class | class ∈ input_o && class.w = highestWeight Do
33: /* Increase the weight of the subclasses and the related classes of the

highest-weight-class(es) */
34: setWeightToClassAndSubClasses(class, highestWeight * input_k)
35: ∀relClasses ∈ hasRelation(c): setWeightToClassAndSubClasses(relClasses,

highestWeight * input_k)
36: EndFor
37: EndIf
38: /* Normalise the weights */
39: totalWeight =

∑
class∈input_o class.w

40: ∀class ∈ input_o: class.w = class.w / totalWeight

end

Algorithm 2 setWeightToClassAndSubClasses(input_c: class, input_w: weight)

1: If input_c.w < input_w Then
2: input_c.w = input_w
3: EndIf
4: ForEach class ∈ subClass(input_c) Do
5: setWeightToClassAndSubClasses(class, input_w)
6: EndFor

end

The direct match (lines 7�17 in algorithm 1) is mostly relevant in the initial
phase of the software usage because the direct match alleviates the problem of
the cold start. The reason for this is that the ontology holds very few individuals
in this phase and thus the algorithm has rather limited background knowledge.
The algorithm must make use of the class names in the ontology.

If there is not a direct match for a given natural language activity description,
the matchmaker will try to �nd out the related category by using the individuals
(lines 18�30 in algorithm 1). Figure 4 illustrates an ontology with individuals.

Assumed that somebody enters the natural language activity description �I
need to buy some modern clothes from H&M�. At �rst, all stop words of the
description are deleted. So the cleaned description could be �Need buy modern
clothes H&M�. Then the algorithm checks if a direct match is possible. Consid-
ering the direct match de�nition (de�nition 12), there is no direct match in the
ontology in �gure 4.

The next step is to start the individual based matching: It assigns weights
to potential matching classes. If a word in the description is a substring of a
word in an individual or vice versa, the class weight of the individual's class
is increased by one. This is done for each word in the description and for each
word in the name of every individual. After �nishing this process, all potentially



relevant classes have a weight. The result of this process can be seen in �gure
5. Above each individual there is an addition of 5 numbers. The �rst number of
each addition is one if the �rst word of the cleaned description (here: �Need�)
is a substring of a word in the individual or vice versa, the second number is
one if the second word of the cleaned description is a substring of a word in the
individual or vice versa and so on. The number above each class is the sum of
the sums of its belonging individuals.

Fig. 5. Ontology with weights for the natural language activity description �I need to
buy some modern clothes from H&M� (�has_Relation� connections are not considered)

In the next step, the class(es) that have the highest weight (here: �Shop-
ping�) are in the focus. The weight of all classes and their subclasses that are
connected with a �has_Relation� connection from the highest weight classes in-
crease, if possible, their weight to highest weight * similarity weight. Considering
a similarity weight of 1

3 , the weight of all related classes and their subclasses
(here it is just �Stroll�) is increased by one. Besides the weight of all subclasses
of the highest weight classes is increased to highest weight * similarity weight.
In this example, �Shopping�, however, has no subclasses.

Now all classes that are relevant from the system's view have a weight (Shop-
ping: 3, Stroll: 1, Jogging: 1). In the last step the class weights are normalised.
This is done by dividing each class weight by the sum of all class weights (3 + 1
+ 1 = 5). So the �nal weights for the classes are: Shopping: 0.6, Stroll: 0.2 and
Jogging: 0.2.



Extending the ontology Algorithm 3 is invoked by the presentation layer
when a user wants to publish a new activity. It returns class suggestions for a
speci�c activity description. The algorithm considers the strictness factor, see
de�nition 10. Thus only classes with a high weight are returned.

Algorithm 3 getBestMatchingClasses(input_a: natural language activity de-
scription)

1: input_s ← strictness factor
2:

3: classes ← set of classes (empty at the beginning)
4: matchingClasses = getClassesAndWeights(input_a)
5: classesCompleted = false
6: While

∑
class∈classes class.w ≤ input_s Do

7: highestWeight = max∀classes∈matchingClasses (class.w)
8: ForEach class | class ∈ matchingClasses && class.w = highestWeight

Do
9: classes.add(class)
10: matchingClasses.delete(class)
11: EndFor
12: EndWhile
13: Return classes

end

Algorithm 4 is invoked by the presentation layer in order to subordinate an
individual to a speci�c class. The variable �ag predicates whether the individ-
ual must be further subordinated (true) or if the individual has already been
subordinated to a correct class (false).

Algorithm 4 setIndividual(input_individual: individual to add, input_c: class
of individual, input_�ag: �ag)

1: input_individual.�ag = input_�ag
2: input_c.addIndividual(input_individual)

end

If a user (�U1�) enters a natural language activity description in order to
publish an activity and the system cannot return satisfying results, the user can
subordinate this description (and in this way an individual) to one top level
class, for example to the class �Other Assistances�. Then the �ag will be set to
�true�. Assumed another user (�U2�) enters, in order to search for an activity, a
description that matches the class �Zoo�. It matches the class �Zoo� if U2 chooses
this class manually or if algorithm 3 just returns this class. Supposed that U2
contacts U1 by using an internal message service, algorithm 5 is invoked. Be-
cause U2's description belongs to a subclass (�Zoo�) of U1's �Other Activities�,



the entered individual of U1 is moved to the class �Zoo� and the �ag is set to
�false�. A formal description of this procedure is described in algorithm 5.

Algorithm 5 classifyIndividual(input_individual: individual to classify, input_c:
classi�ed class)

1: input_i ← set of all individuals in ontology
2:

3: If input_individual.�ag = true && input_c v input_individual.class
Then

4: input_i.delete(input_individual)
5: setInvididual(input_individual, input_c, false)
6: EndIf

end

Improving the ontology To increase the probability of a direct match, a
possible improvement is to store other words as labels in a class. Accordingly
a class could have the name �watching football� and this class has labels like
�football stadium�, �Champion's League� and so on. The algorithm can easily
be improved in order to handle labels. Considering the mentioned example, a
natural language activity description that contains �football stadium� will lead
to a direct match with the class �watching football�. This will de�nitely improve
the matching quality. The creation of labels could be done automatically. An
algorithm can be developed that recognises that numerous individuals of a cer-
tain class contain a speci�c substring which cannot be found in the individuals
of other classes. Then the algorithm can add the substring automatically as
label to the corresponding class. Figure 6 shows such an automated ontology
transformation.

7 CONCLUSION AND FUTURE WORK

We proposed a framework for matchmaking for asymmetric support requests and
for joint activity requests. This framework constitutes the core of a community-
based platform for elderly people. It is part of a larger web-application developed
in the interdisciplinary research project EMN-Moves. While asymmetric match-
ing of support requests can be dealt with in a rather simple manner, activity
matching relies on a more complex approach based on ontologies.

The proposed ontology-based matching algorithm could also be used as re-
trieval component in speci�c settings of analogy making to incorporate back-
ground knowledge not only for mapping [?,?] but also for �nding a suitable
source problem.

Currently, the �rst prototype of our matchmaking framework is tested in a
social service company.



Fig. 6. The automated creation of labels

Acknowledgement.This work is funded by BMBF grant 16SV5700K (Technology
and Innovation), Cooperation project �Europäische Metropolregion Nürnberg
macht mobil durch technische und soziale Innovationen für die Menschen in der
Region� (EMN-MOVES). We thank members of the senior citizen councils of
Bamberg, Erlangen, and Nürnberg. We also thank the reviewers for their helpful
comments.

References

1. Goldstone, R.L., Son, J.Y.: Similarity. Psychological Review 100 (2004) 254�278

2. Gentner, D., Markman, A.: De�ning structural similarity. The Journal of Cognitive
Science 6 (2006) 1�20

3. Schmid, U., Siebers, M., Folger, J., Schineller, S., Seuÿ, D., Raab, M., Carbon, C.C.,
Faerber, S.: A cognitive model for predicting esthetical judgements as similarity
to dynamic prototypes. Cognitive Systems Research 24 (2013) 72�79

4. Gentner, D.: Why we're so smart. In Gentner, D., Goldin-Meadow, S., eds.:
Language in Mind. MIT Press (2003) 195�235

5. Schmid, U., Wirth, J., Polkehn, K.: A closer look on structural similarity in ana-
logical transfer. Cognitive Science Quarterly 3(1) (2003) 57�89

6. Tversky, A.: Features of similarity. Psychological Review 85 (1977) 327�352

7. Thagard, P., Holyoak, K., Nelson, G., Gochfeld, D.: Analogical retrieval by con-
straint satisfaction. Arti�cial Intelligence 46 (1990) 259�310

8. Forbus, K., Gentner, D., Law, K.: MAC/FAC: A model of similarity-based retrieval.
Cognitive Science 19(2) (1995) 141�205

9. Whitty, M.T., Baker, A.J., Inman, J.A., eds.: Online matchmaking. Palgrave
Macmillan, Basingstoke (2007)



10. Shaw, D., Newson, P., O'Kelley, P., Fulton, W.: Social matching of game players
online (2005)

11. Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource manage-
ment for high throughput computing. In: High Performance Distributed Comput-
ing, 1998. Proceedings. The Seventh International Symposium on, IEEE (1998)
140�146

12. Abiteboul, S.: Querying Semi-Structured Data. In: Database Theory - ICDT '97,
6th International Conference, Delphi, Greece, January 8-10, 1997, Proceedings.
(1997) 1�18

13. Fenza, G., Loia, V., Senatore, S.: A hybrid approach to semantic web services
matchmaking. International Journal of Approximate Reasoning 48(3) (2008) 808�
828

14. Miyamoto, S.: Information clustering based on fuzzy multisets. Inf. Process. Man-
age. 39(2) (March 2003) 195�213

15. Banerjee, N., Chakraborty, D., Dasgupta, K., Mittal, S., Nagar, S., et al.: R-
U-In?-exploiting rich presence and converged communications for next-generation
activity-oriented social networking. In: Mobile Data Management: Systems, Ser-
vices and Middleware, 2009. MDM'09. Tenth International Conference on, IEEE
(2009) 222�231

16. González-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Match-
making of Services. In: IN PROCEEDINGS OF THE KI-2001 WORKSHOP ON
APPLICATIONS OF DESCRIPTION LOGICS. (2001)

17. Horrocks, I., Patel-Schneider, P.: Reducing OWL Entailment to Description Logic
Satis�ability. In Fensel, D., Sycara, K., Mylopoulos, J., eds.: The Semantic Web -
ISWC 2003. Volume 2870 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg (2003) 17�29

18. Gagliardi, C., Marcellini, F., Papa, R., Giuli, C., Mollenkopf, H.: Associations of
personal and mobility resources with subjective well-being among older adults in
italy and germany. Archives of Gerontology and Geriatrics 50 (2010) 42�47

19. Mollenkopf, H.: Enhancing Mobility in Later Life: Personal Coping, Environmental
Resources and Technical Support, the Out-Of-Home Mobility of Older Adults in
Urban and Rural Regions of Five European Countries. Ios Press (2005)

20. Sche�er, A.C., Schuurmans, M.J., van Dijk, N., van der Hooft, T., de Rooij, S.E.:
Fear of falling: measurement strategy, prevalence, risk factors and consequences
among older persons. Age and Ageing 37(1) (2008) 19�24

21. Haustein, S., Kemming, H.: Subjektive Sicherheit von Senioren im Straÿenverkehr.
Zeitschrift für Verkehrssicherheit 54(3) (2008) 128�133

22. Staab, S.: Handbook on ontologies. Springer Verlag (2009)
23. Genesereth, M., Nilsson, N.: Logical foundations of arti�cial intelligence. Volume 9.

Morgan Kaufmann Los Altos, CA (1987)
24. Daconta, M., Obrst, L., Smith, K.: The Semantic Web: a guide to the future of

XML, Web services, and knowledge management. Wiley (2003)


