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Abstract
In recent years, several languages of non-classical description logics have

been introduced to model knowledge and perform inference on it. There have
been several proposals for different application scenarios. The constructive
description logic cALC deals with uncertain and dynamic knowledge and is
therefore more restrictive than intuitionistic ALC.

We make use of a game-theoretic dialogue-based proof technique that has
its roots in philosophy to explain reasoning in cALC and its modal-logical
counterpart CKn.

The game-theoretic approach we build on has been introduced by Kuno
Lorenz and Paul Lorenzen. It contains a selection of game rules that specify
the behaviour of the proof system. Other logics can be adapted or even
constructed by changing the underlying game rules.

We formalize the intuitive rules in first-order logic making them concrete
from a mathematical perspective and thereby provide an adequate semantics
for cALC. It turns out that the interaction semantics provides the right level
of constructiveness.

This report contains only the soundness proof for a modal dialogical system
presented in the article A Game-Theoretic Interpretation for the Construc-
tive Modal Logic CK.

1 Frame Rules Formalized

1.1 Valid Moves (frame-independent)

1. Well-Formed Play (F1a)

well formed((moves, f),m)⇔
( id(m) = id(last(moves)) + 1 ∧

well formed play((moves ∪ {m}, f)) ).
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2. Particle Assignment (F1b)

particle assign((moves, f),m) ⇔
( ∃m′ ∈ moves (

m′
g
� m ∧ (assert(m′), assert(m)) ∈ PRuleSet ) )

where g = (moves ∪ {m}, f)

3. O’s Atom Attacks (F1c)

atom attack O((moves, f),m) ⇔ ∀φ, f, e (

( ( assert(m) = (O, f, e) ∧ ∃m′ ∈ moves (

m′
g
� m ∧ expr(m′) = φ ∧ atom(φ) ) )

⇒ ( e =C ∧ f = φ? ) ) ∧
( ( assert(m) = (P, f, e) ∧ ∃m′ ∈ moves (

m′
g
� m ∧ assert(m′) = (O, φ?,C) ∧ wrld(m′) = w ∧ atom(φ) ) )

⇒ ( e =C ∧ f = ! ∧ ∃m∗ ∈ moves (

player(m∗) = O ∧ expr(m∗) = φ ∧ wrld(m∗) = w ) ) ) )

where g =(moves ∪ {m}, f)

4. General Repetition Restriction (F1d)

repet a((moves, f),m) ⇔ ∀n, f, φ, w, ρ
( m = (n, (P, f, φ), w, ρ) ⇒ ¬∃m′ ∈ moves (

∃n′ (m′ = (n′, (P, f, φ), w, ρ) ∧ n 6= n′ ) ) )

repet b((moves, f),m) ⇔ ∀n, n′, ρ
( player(m) = O ⇒

¬∃m′ ∈ moves ( player(m′) = O ∧ id(m) 6= id(m′) ∧ ref (m) = ref (m′) ))
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5. Intuitionist Defence Restriction (F1e)

defence i((moves, f),m) ⇔ ∀m′ ∈ moves

( ( defence(m) ∧ m′
g
� m )

⇒ ¬∃m∗ ∈ moves (

player(m′) = player(m∗) ∧ attack(m∗) ∧
id(m) > id(m∗) > id(m′) ) )

where g = (moves ∪ {m}, f)

6. P’s Atom Attacks (intuitionist) (F1f)

atom attack P i((moves, f),m) ⇔ ∀n, f, e, φ, w, ρ (

( m = (n, (P, f, e), w, ρ) ∧ ∃m′ ∈ moves (

m′
g
� m ∧ expr(m′) = φ ∧ atom(φ) ) )

⇒ ∃m∗ ∈ moves ( ∃n∗, ρ∗ (

m∗ = (n∗, (P, f, e), w, ρ∗) ∧ attack(m∗) ∧ n∗ < n ) ) )

where g = (moves ∪ {m}, f)

7. Summary

∀g∀m(valid move(g,m)⇔
( well formed(g,m) ∧ particle assign(g,m) ∧

atom attack O(g,m) ∧ repet a(g,m) ∧ repet b(g,m)

defence i(g,m) ∧ atom attack P i(g,m) )

1.2 Frame Updates

1. (F2a)

frame update 1 ((moves, f),m∗, f∗)⇔
(player(m∗) = P ⇒ f∗ = f ) )
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2. (F2b)

frame update 2a((moves, (W,−→)),m∗, (W ∗,−→∗)) ⇔ ∀w′, w∗, i, ϕ
( ( defence(m∗) ∧ w∗ = wrld(m∗) ∧ ∃m′ ∈ moves (

m′
g
� m∗ ∧ force(m′) = ϕ?3i ∧ w′ = wrld(m′) ) )

⇒ ( W ∗ = W ∪ {w∗} ∧ −→∗=−→ ∪{(i, w′, w∗)} ) )

where g =(moves ∪ {m∗}, (W,−→))

frame update 2b((moves, (W,−→)),m∗, (W ∗,−→∗)) ⇔ ∀w∗, wt, i, ϕ

( force(m∗) = ϕ?2i/wt ∧ w∗ = wrld(m∗)

⇒ ( W ∗ = W ∪ {wt} ∧ −→∗=−→ ∪{(i, w∗, wt)} ) )

frame update 2c((moves, f),m∗, f∗)⇔ ∀i, u, ϕ1, ϕ2

( ( force(m∗) 6= ϕ1?2i/u ∧ ¬∃m′ ∈ moves (

m′
g
� m∗ ∧ force(m′) = ϕ2?3i ∧ defence(m∗) ))

⇒ f = f∗ )

where g =(moves ∪ {m∗}, f)

3. Summary

∀g∀m∗∀f∗(frame update(g,m∗, f∗)⇔
( frame update 1 (g,m∗, f∗) ∧ frame update 2a(g,m∗, f∗) ∧

frame update 2b(g,m∗, f∗) ∧ frame update 2c(g,m∗, f∗) ) )

1.3 Contexts and Context Changes

1. Frame Binding (F3a)

context move 1 ((moves, (W ∗, )),m∗) ⇔ wrld(m∗) ∈W ∗
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2. General Context Changes (F3b)

context move 2a((moves, (W,−→∗)),m∗) ⇔ ∀w∗, w′, i, ϕ
( ( defence(m∗) ∧ w∗ = wrld(m∗) ∧

∃m′ ∈ moves ( m′
g
� m∗ ∧ w′ = wrld(m′) ∧

( force(m′) = ϕ?3i ∨ force(m′) = ϕ?2i/w∗ ) ) )

⇒ (i, w′, w∗) ∈−→∗ )

where g = (moves ∪ {m∗}, (W,−→))

context move 2b((moves, f∗),m∗) ⇔ ∀w′, u, i, ϕ
( ( ∃m′ ∈ moves (

m′
g
� m∗ ∧ w′ = wrld(m′) ∧

force(m′) 6= ϕ?3i ∧ force(m′) 6= ϕ?2i/u ) )

⇒ wrld(m∗) = w′ )

where g = (moves ∪ {m∗}, f∗))

3. Constructive Backward Change (F3c)

context move 3con((moves, (W,−→)),m∗) ⇔
( ( player(m∗) = P ∧

context change(m∗, (moves ∪ {m∗}, (W,−→))))

⇒ ¬∃m′ ∈ moves (

player(m′) = P ∧ wrld(m′) = wrld(m∗) ))

4. Constructive Forward Attack (F3d)

context move 4con((moves, ),m∗) ⇔
( ( player(m∗) = P ∧ attack(m∗) )

⇒ ∃m′ ∈ moves ( player(m′) = P ∧
wrld(m′) = wrld(m∗) ∧ id(m′) < id(n∗) ) )
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5. Constructive Box-Diamond-Independence (F3e)

context move 5con a((moves, ),m∗) ⇔ ∀n∗, n′, n#, u∗, w′, ϕ, ψ

( m∗ = (n∗, (P, !, ϕ), u∗, n′) ∧
∃m′ ∈ moves ( m′ = (n′, (O, ϕ?3i ,C), w′, ) ∧
∃m# ∈ moves ( m# = (n#, (O, ψ?2i/u∗,C), w′, ) ∧
¬∃m§ ∈ moves ( wrld(m§) = u∗ ∧ id(m§) < n# ) ) ) )

⇒ n′ < n# < n∗ )

context move 5con b((moves, ),m∗) ⇔ ∀n∗, n#, u∗, w∗, ρ∗, ϕ, ψ

( m∗ = (n∗, (P, ϕ?2i/u∗,C), w∗, ρ∗) ∧
∃m# ∈ moves ( m# = (n#, (O, ψ?2i/u∗,C), w∗, ) ∧
¬∃m§ ∈ moves ( wrld(m§) = u∗ ∧ id(m§) < n# ) ) )

⇒ ρ∗ < n# < n∗ )

6. Summary

context move(g,m∗)⇔
( context move 1 (g,m∗) ∧ context move 2a(g,m∗) ∧

context move 2b(g,m∗) ∧ context move 3con(g,m∗) ∧
context move 4con(g,m∗) ∧ context move 5con a(g,m∗) ∧
context move 5con b(g,m∗) )

2 Soundness Proof

Definition 1. A Kripke model of CKn is a structure M = (W,�,−→,W⊥, |=)

• W is a non-empty set of worlds.

• � is a reflexive and transitive binary relation on W . It is hereditary with respect
to propositional variables, that is, for every variable p and worlds w, w′, if w � w′
and w |= p, then w′ |= p.

• −→ contains binary relations on W .

• The subset W⊥ ⊆ W is the set of fallible worlds closed under refinement, i.e.,
w ∈ W⊥ and w � w′ implies w′ ∈ W⊥. W> is the set of infallible worlds: W> =
W \W⊥.

• |= is a relation between elements w ∈ W and propositions A, written w |= A,
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or sometimes more explicitly M, w |= A (“A is satisfied at w in M”) with the
following properties:

w |= >
w |= ⊥ iff w ∈W⊥
w |= ¬A iff ∀w′ ∈W>(w � w′ ⇒ w′ 6|= A)
w |= A ∧B iff w |= A and w |= B
w |= A ∨B iff w |= A or w |= B
w |= A ⊃ B iff ∀w′ ∈W>((w � w′ ∧ w′ |= A)⇒ w′ |= B)

w |= 2iA iff ∀w′ ∈W>(w � w′ ⇒ ∀u ∈W (w′
i−→ u⇒ u |= A))

w |= 3iA iff ∀w′ ∈W>(w � w′ ⇒ ∃u ∈W (w′
i−→ u ∧ u |= A))

• Fallible entities are information-wise maximal elements and therefore all proposi-
tional variables p ∈ Var are valid in them:

w ∈W⊥ ⇒ w |= p

,

2.1 Constraint System

In the following we describe a constraint system we use for the soundness proof. A very
similar constraint system for cALC is introduced by [Sch15] and used for a correctness
proof of a tableau-calculus. The following definitions are adapted from his approach.

For the following constraint system, we consider a different set of worlds Wc = N × N.
For a (w, r) ∈Wc we call w the world group and r the refinement in w.

Definition 2 (Constraint, Constraint System, adapted from [Sch15]). A constraint is a
syntactic object of the following form

(w, r) : +φ, (w, r) : −φ, (w, r) � (w, r′) (w, r)
i→ (u, s), (w, r) : −2iψ

where (w, r), (w, r′) and (u, s) are worlds of Wc, φ and ψ are propositions and
i→ repre-

sents a binary relation on Wc.

A constraint system is a pair S = (C,A) where C is a finite, non-empty set of constraints
and A ⊆ Wc is a set of worlds, called the active set of S, such that every element of A
occurs in at least one of the constraints of C. The set of variables occuring in C is called
the support of S, written Supp(S). Note that A ⊆ Supp(S) ⊆ Wc and Supp(S) is not
empty.

Sometimes we write Supp(C) instead of Supp(S) as worlds in S appear in C.
Definition 3 (Constraint Satisfiability, adapted from [Sch15]). Let
M = (W,�,−→,W⊥ |=) be a constructive Kripke-model, S = (C,A) a constraint system
and ω : Supp(S)→W a function.
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We say that ω satisfies a constraint c ∈ C in M, written M, ω |=C c, according to the
following rules:

M, ω |=C (w, r) : +φ if ω((w, r)) |= φ
M, ω |=C (w, r) : −φ if ω((w, r)) 6|= φ

M, ω |=C (w, r)
i→ (u, s) if ω((w, r))

i−→ ω((u, s))
M, ω |=C (w, r) � (w, r′) if ω((w, r)) � ω((w, r′))

M, ω |=C (w, r) : −2iψ if ∀u ∈W (ω(w, r)
i−→ u⇒ u 6|= ψ)

A constraint system S = (C,A) is satisfied in a model M = (W,�,−→,W⊥, |=) if there
exists a function ω such that for all c ∈ C it holds that M, ω |=C c and for all worlds
(w, r) ∈ A the assignment ω((w, r)) is infallible, i.e. ω((w, r)) /∈ W⊥. The pair (M, ω)
is then called interpretation of S.

A constraint system S is called satisfiable if it has an interpretation and unsatisfiable if
it has no interpretation.

Note that from now on we write ω(w, r) instead of ω((w, r)).

2.2 Transformation from Moves to Constraints

Now we want to transform plays to constraint systems. For this we need an extra feature
R in the constraint system. It is needed to assign a refinement to a certain move and to
retrieve that information later. Because we use two natural numbers for the worlds we
have

R ⊆ (N× N× N) .

The first number refers to a move id, the second one to a world group and the third
to a refinement of the world group. For example, if the triple (3, 1, 2) is in R then the
assertion of the move with the id 3 refers to the world 1 and there to the refinement
2. In fact, one could omit the world group from the tuple as it can be read from the
corresponding move. However, we keep it for a better readability.

2.2.1 Transformation Rules

We define a function cs : Play → CS . It accepts a play and returns the corresponding
constraint system. For better reading we write 1 for init world . Note that this function
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is only defined for valid plays!

cs({mH}, ) = (CH,AH,RH)

where mH = (1, (P,H, φ), 1, 0),

CH = {(1, 0) : −φ}, AH = {(1, 0)}, RH = {(1, 1, 0)}

cs(moves, f) = cs∆(cs(moves−1, f),m
′,mlast)

where |moves| > 1, mlast = last(moves),

moves−1 = moves \ {mlast},

m′ ∈ moves−1 ∧ m′
(moves,f)
� mlast

So we have an initial constraint system that is initialized with the hypothesis. For the
succeeding move the function cs∆ is applied. It updates the old constraint system (the
previous one) according to the next move in the game.

cs∆ : CS ∗Move ∗Move → CS

The result of this update function depends on two input moves we call m and m∗ where
m∗ is a reaction on m.

In general, we have for every particle rule two cases: one for P and one for O. For ∧ and
∨ two more. This makes 16 cases.

Note that the case of an implication-attack performed by P is more complex and requires
an extra check. That is why we have recursive calls in cs∆.

We have an auxiliary function max� that returns the maximal refinement of a given
world (w, r) in the support of a given C:

max�(C, (w, r)) = (w, r) if ¬∃r′((w, r) � (w, r′) ∈ C)
else max�(C, (w, r′)) where (w, r) � (w, r′) ∈ C

As we see later, max� always returns a unique world (Lemma 6).

The following tables shows how the constraint system (C,A,R) is transformed to
(C∗,A∗,R∗) after move m∗ is added which is a reaction on move m. Values of aux-
iliary variables are assigned by the arrows ←. For instance, if for r ← there is written
(n,w, r) ∈ R then this means that the value of r can retrieved from R if n and w are
known as there is exactly one suitable tuple in R (what we show later in Lemma 1). The
expression ( , w, r′) 6∈ R for r′ ← means that the refinement r′ is fresh, i.e., the world
(w, r′) does not appear in R yet. A new refinement is created.

The lines marked with “cond.” define additional propositions that hold when the corre-
sponding constraint transformation is applied. The proof that these conditions hold is
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given later (see Lemma 4).

1. ¬
Note that in this case, a defence is not possible.

m n, (P, !,¬φ), w, n, (O, !,¬φ), w,

m∗ n∗, (O,¬φ?¬, φ), w, n n∗, (P,¬φ?¬, φ), w, n

C∗ {(w, r′) : +φ, (w, r) � (w, r′)} ∪ C {(w, r∗) : −φ} ∪ C
A∗ {(w, r′)} ∪ A A
R∗ {(n∗, w, r′)} ∪ R {(n∗, w, r∗)} ∪ R
r ← (n,w, r) ∈ R (n,w, r) ∈ R
r′ ← ( , w, r′) /∈ R —

r∗ ← — max�(C, (w, r))
cond. (w, r) : −¬φ ∈ C (w, r) : +¬φ ∈ C

(w, r) ∈ A

m n, (P,¬φ?¬, φ), w, ρ n, (O,¬φ?¬, φ), w, ρ

m∗ n∗, (O, φ?x, e∗), w, n n∗, (P, φ?x, e∗), w, n

C∗,A∗,R∗ cs∆((C,A,R),m!,m∗)

m! ← n, (P, !, φ), w, ρ n, (P, !, φ), w, ρ
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2. ⊃

m n, (P, !, φ ⊃ ψ), w, n, (O, !, φ ⊃ ψ), w,

m∗ n∗, (O, (φ ⊃ ψ)?⊃, φ), w, n n∗, (P, (φ ⊃ ψ)?⊃, φ), w, n

C∗ {(w, r′) : +φ, (w, r′) : −ψ, (w, r) � (w, r′)} ∪ C C
A∗ {(w, r′)} ∪ A A
R∗ {(n∗, w, r′)} ∪ R {(n∗, w, r∗)} ∪ R
r ← (n,w, r) ∈ R (n,w, r) ∈ R
r′ ← ( , w, r′) /∈ R —

r∗ ← — max�(C, (w, r))
cond. (w, r) : −φ ⊃ ψ ∈ C (w, r) : +φ ⊃ ψ ∈ C

(w, r) ∈ A

m n, (P, φ ⊃ ψ?⊃, φ), w, ρ n, (O, φ ⊃ ψ?⊃, φ), w, ρ

m∗ n∗, (O, φ?x, e∗), w, n n∗, (O, !, ψ), w, n n∗, (P, φ?x, e∗), w, n n∗, (P, !, ψ), w, n

C∗,A∗,R∗ cs∆((C ∪ {(w, r) : −φ}, ({(w, r) : +ψ} ∪ C), cs∆((C,A,R), C,A, (R∪ {n∗, w, r∗})
A,R),m!,m∗) A, (R∪ {n∗, w, r}) m!,m∗)

r ← (n,w, r) ∈ R (n,w, r) ∈ R
r∗ ← — — — max�(C, (w, r))
m! ← n, (P, !, φ), w, ρ — n, (O, !, φ), w, ρ —
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3. ∧ m n, (P, !, φ ∧ ψ), w, n, (O, !, φ ∧ ψ), w,
m∗ n∗, (O, (φ ∧ ψ)?L,C), w, n n∗, (O, (φ ∧ ψ)?R,C), w, n n∗, (P, (φ ∧ ψ)?L,C), w, n n∗, (P, (φ ∧ ψ)?R,C), w, n
C∗ {(w, r) : −φ} ∪ C {(w, r) : −ψ} ∪ C {(w, r∗) : +φ} ∪ C {(w, r∗) : +ψ} ∪ C
A∗ A A A A
R∗ {(n∗, w, r)} ∪ R {(n∗, w, r)} ∪ R {(n∗, w, r∗)} ∪ R {(n∗, w, r∗)} ∪ R
r ← (n,w, r) ∈ R (n,w, r) ∈ R (n,w, r) ∈ R (n,w, r) ∈ R
r∗ ← — max�(C, (w, r))
cond. (w, r) : −φ ∧ ψ ∈ C (w, r) : +φ ∧ ψ ∈ C

(w, r) ∈ A

m n, (P, (φ ∧ ψ)?L,C), w, n, (P, (φ ∧ ψ)?R,C), w, n, (O, (φ ∧ ψ)?L,C), w, n, (O, (φ ∧ ψ)?R,C), w,
m∗ n∗, (O, !, φ), w, n n∗, (O, !, ψ), w, n n∗, (P, !, φ), w, n n∗, (P, !, ψ), w, n

C∗ C C C C
A∗ A A A A
R∗ {(n∗, w, r)} ∪ R {(n∗, w, r)} ∪ R {(n∗, w, r)} ∪ R {(n∗, w, r)} ∪ R
r ← (n,w, r) ∈ R (n,w, r) ∈ R (n,w, r) ∈ R (n,w, r) ∈ R

4. ∨
m n, (P, !, φ ∨ ψ), w, n, (O, !, φ ∨ ψ), w,
m∗ n∗, (O, (φ ∨ ψ)?∨,C), w, n n∗, (P, (φ ∨ ψ)?∨,C), w, n
C∗ C C
A∗ A A
R∗ {(n∗, w, r)} ∪ R {(n∗, w, r∗)} ∪ R
r ← (n,w, r) ∈ R (n,w, r) ∈ R
r∗ ← — max�(C, (w, r))
cond. (w, r) : −φ ∨ ψ ∈ C (w, r) : +φ ∨ ψ ∈ C

(w, r) ∈ A

m n, (P, (φ ∨ ψ)?∨,C), w, n, (O, (φ ∨ ψ)?∨,C), w,
m∗ n∗, (O, !, φ), w, n n∗, (O, !, ψ), w, n n∗, (P, !, φ), w, n n∗, (P, !, ψ), w, n

C∗ {(w, r) : −φ} ∪ C {(w, r) : −ψ} ∪ C {(w, r∗) : +φ} ∪ C {(w∗, r) : +ψ} ∪ C
A∗ A A A A
R∗ {(n∗, w, r)} ∪ R {(n∗, w, r)} ∪ R {(n∗, w, r∗)} ∪ R {(n∗, w, r∗)} ∪ R
r ← (n,w, r) ∈ R (n,w, r) ∈ R
r∗ ← — max�(C, (w, r))
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5. 2i

m n, (P, !,2iφ), w, n, (O, !,2iφ), w,

m∗ n∗, (O,2iφ?2i/w#,C), w, n n∗, (P,2iφ?2i/w#,C), w, n

C∗ {(w, r) � (w, r′), (w, r′)→ (w#, 0), {(w#, 0) : +φ} ∪ C
(w#, 0) : −φ} ∪ C

A∗ {(w, r′), (w#, 0)} ∪ A A
R∗ {(n∗, w, r′)} ∪ R {(n∗, w, r∗)} ∪ R
r ← {(n,w, r)} ∈ R {(n,w, r)} ∈ R
r′ ← {( , w, r′)} /∈ R —

r∗ ← — max�(C, (w, r))
cond. (w, r) : −2iφ ∈ C (w, r) : +2iφ ∈ C

( , w#, 0) /∈ R

m n, (P,2iφ?2i/w#,C), w, n, (O,2iφ?2i/w#,C), w,

m∗ n∗, (O, !, φ), w#, n n∗, (P, !, φ), w#, n

C∗ C∗ C∗
A∗ A∗ A∗
R∗ {(n∗, w#, 0)} ∪ R {(n∗, w#, 0)} ∪ R

6. 3i

m n, (P, !,3iφ), w, n, (O, !,3iφ), w,
m∗ n∗, (O, (3iφ)?3i ,C), w, n n∗, (P, (3iφ)?3i ,C), w, n

C∗ {(w, r) � (w, r′), (w, r′) : −2φ} ∪ C C
A∗ {(w, r′)} ∪ A A
R∗ {(n∗, w, r′)} ∪ R {(n∗, w, r∗)} ∪ R
r ← {(n,w, r)} ∈ R {(n,w, r)} ∈ R
r′ ← {( , w, r′)} /∈ R —
r∗ ← — max�(C, (w, r))
cond. (w, r) : −3iφ ∈ C (w, r) : +3iφ ∈ C

(w, r) ∈ A, ( , w, r′) /∈ R

m n, (P, (3iφ)?3i ,C), w, n, (O, (3iφ)?3i ,C), w,
m∗ n∗, (O, !, φ), w#, n n∗, (P, !, φ), w#, n

C∗ {(w#, 0) : +φ, (w, r)→ (w#, 0)} ∪ C∗ {(w#, 0) : −φ} ∪ C∗
A∗ A∗ {(w#, 0)} ∪ A∗
R∗ {(n∗, w#, 0)} ∪ R {(n∗, w#, 0)} ∪ R

cond. ( , w#, ) /∈ R (w, r′) ∈ A
(w, r′) : −2φ ∈ C∗
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7. Atoms

m n, (P, !, A), w, n, (O, !, A), w,
m∗ n∗, (O, A?,C), w, n n∗, (P, f∗, e∗), w, n

C∗,A∗,R∗ C,A, ({(n∗, w, r)} ∪ R) cs∆((C,A,R),m!,m?)
r ← {(n,w, r)} ∈ R —
m? ← — P’s move that is repeated
m! ← — O’s move that is attacked again

m n, (O, A?,C), w,
m∗ n∗, (P, !,C), w, n

C∗ C
A∗ A
R∗ {(n∗, w, r)} ∪ R

2.3 Soundness of Dialogues

For better readability the following proofs refer to monomodal CK but are applicable for
CKn as well.

Lemma 1 (Unique Identifiers). Assume there is a valid play g and a corresponding
constraint system cs(g) = (C,A,R) and we add a move m = (n, (p, f, e), w, ρ) to g such
that the resulting play g′ is valid and we obtain the constraint system cs(g′) = (C′,A′,R′).
Then if (n,w∗, r∗) ∈ R′ and (n,w#, r#) ∈ R then w∗ = w# = w and r∗ = r#.

Proof. Every move in a valid play has a unique identifier as every play is linear and
because it is well-formed (F1a). When a move is added to cs(g) with cs∆ to obtain
cs(g′) then exactly one entry (n,w∗, r#) is added to R. As n is unique for every move,
there cannot be another pair w#, r# combined with n in R. Further, in all of the cases
of cs∆, w∗ is always equal to w. So we conclude that w = w∗ = w# and r∗ = r#. ,

Lemma 2 (Constraint Addition). Assume there is a valid play g and a corresponding
constraint system cs(g) = (C,A,R) and we add a move m = (n, (p, f, e), w, ρ) to g such
that the resulting play g′ is valid and we obtain the constraint system cs(g′) = (C′,A′,R′).

1. If p = P and m is a reaction on a move mO with e 6=C and m is not an attack on
an implication then there is an r such that (n,w, r) ∈ R′ and (w, r) : −e ∈ C′.

2. If p = O and m is a reaction on a move mP with e 6=C then there is an r such
that (n,w, r) ∈ R′, (w, r) : +e ∈ C′ and (w, r) ∈ A′.

Proof. For the proof note that constraints are never removed once they have been added
to C. Therefore they must be present at all times after the addition.

1. We consider all possible move types for P:
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• m is an attack on a negation or a defence on a ∨-attack or on a 3-attack.
With cs∆, (w, r) : −e is added directly to C and R is extended accordingly.

• m is a defence on a ⊃-attack, on a ∧-attack or on a 2-attack.
With cs∆, (w, r) : −e has been added with O’s attack before so that it is
already in C. R has been extended accordingly, as r is the same refinement
as the refinement of O’s attack.

• m is an attack on an implication.
This case is excluded.

• For all other cases we have e =C, so they are excluded.

2. We consider all possible move types for O:

• m is an attack on a negation, on an implication or a defence on a ⊃-attack,
on a ∨-attack or on a 3-attack.
With cs∆, (w, r′) : +e is added directly to C and R is extended accordingly.

• m is a defence on a ∧-attack or on a 2-attack.
With cs∆, (w, r) : +e has been added with O’s attack before so that it is
already in C. R has been extended accordingly, as r is the same refinement
as the refinement of P’s attack.

• For all other cases we have e =C, so they are excluded.

,

Lemma 3 (Active Worlds). Let g be a valid play with cs(g) = (C,A,R). For all
moves m′ = (n′, (p′, f ′, e′), w′, ρ′): If we add m′ to g to obtain a valid g′ and the
constraint system cs(g′) = (C′,A′,R′), then, for the r′ from (n′, w′, r′) ∈ R′ we have
(w′, r′) ∈ A′.

Proof by induction on the length of g′. Base case: the first move after the hypothesis is
an attack performed by O as it is his turn and there is nothing to defend (F1b). The
world 1 that is used in the hypothesis together with its refinement 0 has already been
added to the active set (see definition of cs). With O’s attack she either refers to the
same pair (1, 0) which must be in A′ (nothing is ever removed from the active set) or
she introduces a new refinement (1, r′) that has not existed before. However, in all of
these cases, (1, r′) is added to the active set by cs∆ so that it is an element of A′ after
the move.

Inductive step: two cases with respect to the player of m′

• p′ = P
With his moves P is never allowed to introduce new worlds (F2a). So P always
refers to a world-refinement pair that has been introduced by O before. In general,
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every world (w′, r) ∈ Supp(cs(g)) that is introduced by O with m′ is added directly
to the active set with one exception: when O defends against a 3-attack. In this
case, a new context (w#, 0) is opened which is not added to A. However, P is not
allowed to access it, i.e., state assertions for this world, unless he uses a defence
to state an assertion there (F3d). The only possibility for this is that P defends
against a 3-attack stated by O ((F3b), (F3e)). With this defence, (w#, 0) is
added to the active set.
So (w′, r) has either been introduced and added to A with an O-move or the
addition to A has been achieved by P’s defence on a 3-attack. Therefore we
conclude that (w′, r) ∈ A.

• p′ = O
If the world (w′, r) has already been used, i.e. there is an n such that (n,w′, r) ∈ R,
then it must also be in A′ by hypothesis.
Otherwise it is always added directly to the active set with m′ in cs∆.

,

Lemma 4 (Invariance). For all moves m, m′ and valid plays g, if m is a move in g and

m′ can be added to g according to the frame rules resulting in game g′, and m
g′

� m′

then the conditions for cs∆(cs(g),m,m′) hold.

Proof. By induction on the length of play g′:
Base cases: the initial constraint system cs1 = (C1,A1,R1) with the formula ϕ stated
as hypothesis, consists of C1 = {(1, 0) : −ϕ}, A1 = {(1, 0)} and R1 = {(1, 1, 0)}. Only
attacks by O are possible as reactions (F1b). We consider these in detail:

• ϕ is an atom. No change of cs1, no conditions. (holds)

• ϕ = ¬φ ⇒ m1 = (1, (P,H,¬φ), 1, 0)
(w, r)← (1, 0). (1, 0) ∈ A1 (holds), (1, 0) : −¬φ ∈ C1 (holds).

• ϕ = φ ⊃ ψ ⇒ m1 = (1, (P,H, φ ⊃ ψ), 1, 0)
(w, r)← (1, 0), (w, r′)← (1, 1) .
(1, 0) ∈ A (holds), (1, 0) : −φ ⊃ ψ ∈ C (holds), ¬∃n((n, 1, 1) ∈ R) (holds by
assignment of r′).

• The cases of ϕ = φ ∧ ψ, ϕ = φ ∨ ψ and ϕ = 3φ are considered analogously.

• ϕ = 2φ m1 = (1, (P,H,2φ), 1, 0)
(w, r)← (1, 0), (w, r′)← (1, 1) .
O introduces new target entity w#, because he may do so (context strategy, (F2a),
(F2b)).
⇒ ¬∃n((n,w#, 0) ∈ R). The other conditions hold as shown above.

Inductive Step: We consider the moves m and m′ in a valid play g′ such that m
g′

� m′.
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1. P claims — O attacks — P defends

a) Negation
m = (n, (P, f,¬φ), w, ρ) — m′ = (n′, (O,¬φ?¬, φ), w, n)
((F1a), (F1b), (F3b))
If m is an attack on an implication, then there is an r such that (n,w, r) ∈ R
and (w, r) : −¬φ ∈ C due to cs∆. The constraint is also present if m is not
an attack on an implication (Lemma 2).
According to Lemma 3 (w, r) is also in the active set A.

b) Implication

i. m = (n, (P, f, φ ⊃ ψ), w, ρ) — m′ = (n′, (O, φ ⊃ ψ?⊃, φ), w, n)
((F1a), (F1b), (F3b))
To show that the conditions hold we can use the same argumentation as
used for the negation.

ii. m′ = (n′, (O, φ ⊃ ψ?⊃, φ), w, n) — m′′ = (n′′, (P, !, ψ), w, n′)
((F1a), (F1b), (F3b))
No conditions, so nothing to show.

c) Conjunction, Disjunction
Same argumentation as for implication.

d) Box

i. m = (n, (P, f,2φ), w, ρ) — m′ = (n′, (O,2φ?2/w∗,C), w, n)
((F1a), (F1b), (F3b))
There is an r such that (n,w, r) ∈ R and the constraint (w, r) : −2φ is
in C (see argumentation above). As we assume that O introduces new
contexts whenever this is possible (context strategy), w∗ is a new context.
Therefore, there is no n§ such that (n§, w#, 0) ∈ R.

ii. m′ = (n′, (O,2φ?2/w∗,C), w, n) — m′′ = (n′′, (P, !, φ), w∗, n′)
((F1a), (F1b), (F3b))
No conditions, so nothing to show.

e) Diamond

i. m = (n, (P, f,3φ), w, ρ) — m′ = (n′, (O,3φ?3,C), w, n)
((F1a), (F1b), (F3b))
Same argumentation as for negation.

ii. m′ = (n′, (O,3φ?3,C), w, n) — m′′ = (n′′, (P, !, φ), w∗, n′)
((F1a), (F1b), (F3b))
The world (w, r′) has been added to the active set with O’s attack, the
constraint (w, r′) : −2φ has been added to the constraint system with
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that attack, as well.

f) Atom
No conditions, so nothing to show.

2. O claims — P attacks — O defends
For all attack-cases the only condition is that there is an r such that (n,w, r) ∈ R
and the constraint (w, r) : +ϕ is in C, where ϕ is the formula stated by O and
which is now attacked. We have already shown that this is fulfilled (Lemma 2).

The additional condition that there is no n§ and no r§ such that (n§, w#, r§) ∈ R
when O performs a 3-defence is also consequential, as O introduces new worlds
whenever this is possible (context strategy, (F2a), (F2b)).

,

Lemma 5 (O’s references). If O performs a move m in a valid play g, she always reacts
on the previous move which is performed by P.
Formally: m = (n, (O, , ), , ρ) ⇒ ρ = n− 1.

Proof. By induction on the length of g.
Base case: O’s first move is a reaction on the hypothesis (trivial).
Hypothesis: let n ≥ 2. ∀k ∈ N . 1 ≤ k ≤ n,
if m = (k, ( , , ), , ρ) and k is odd (O’s move) then ρ = k − 1.
Induction step: An O-move m = (n, (O, f, ϕ), w, ρ) is added to g. Every move of P
may only be attacked once (F1d). By hypothesis, O always reacted on the last P-move
before. Therefore, O already reacted on all moves of P in g with the exception of P’s last
move. As O may only react on every P-move once, she has to react on the last P-move
now which has the id n− 1. ,

Lemma 6 (Linear Refinement Structure). The refinement structure in a constraint
system is always linear:
Let g be a valid play and cs(g) = (C,A,R) the corresponding constraint system. For
all worlds (w, r), (w, r′), (w, r∗): If (w, r) � (w, r′) ∈ C and (w, r) � (w, r∗) ∈ C then
r′ = r∗.

Proof. By induction on the length of g:
Base case: only the hypothesis is in g, so only one world (1, 0) in Supp(cs(g)). No
refinements, so it holds.

Inductive step: We add a move m′ to g, so we get g′ and cs(g′) = (C′,A′,R′). Refinement
constraints are only introduced with O’s attacks so we only need to consider the corre-
sponding cases. So let us assume that O introduces the new constraint (w, r) � (w, r′)
with m′ in cs∆. We then have to show that there is no constraint (w, r) � (w, r∗) for an
arbitrary r∗ in C. Nothing is ever removed from the constraint system so it is enough to
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check this last state.
O always reacts on the last move m performed by P (Lemma 5) that refers to world (w, r).
O can’t react on an atom-defence by P (no further attack possible) in the followeing this
case is excluded.

• m is an attack.
To obtain the refinement of a P-attack, the maximal refinement of the current
world-group is always used (max�, cs∆). By hypothesis, this maximal refinement
must be unique. O reacts on this and introduces a new refinement (w, r′) of (w, r).
By hypothesis, the refinement structure in C is linear. As (w, r) is maximal in C
there is no r∗ 6= r′ such that (w, r) � (w, r∗) ∈ C and therefore also in C′. So (w, r′)
is the new maximal refinement.

• m is a defence.

– m is a defence on ?L, ?R, ?∨ or ?⊃ .
The move is a reaction on O’s last attack mO in g (F1e). Only O introduces
refinements and this is only possible with attacks (cs∆). There can’t be other
O-attacks between mO and m because of the intuitionistic defence restriction
so all refinements between mO and m must be the same. Therefore the re-
finement of mO and of m are maximal. By hypothesis, there is no branching
in the refinement-structure so far. With the new refinement (w, r′) we have
a new maximum, but still no branching.

– m is a defence on ?2/w# or ?3.
The world w# has been introduced by O some time before (F2a) in w. With
that move, (w#, 0) has been introduced somewhere in cs(g). O always intro-
duces new worlds whenever this is possible (context strategy, (F2a), (F2b)).
So the only access to w# is possible from w. P is not allowed to attack for-
mulas in worlds where he has not been before (F3d). Therefore the only
possibilities to access w# is by defence on a 2 or a 3 ((F3d), (F3b)). Only
after one of these possible moves, O can attack P in w# and the refinements
of (w#, 0) can be constructed (cs∆). But then P is in w# and can’t go back
to w (F3c). So after his defence, P is in w# for the first time and O has not
attacked P there yet, that is why there can’t be a refinement of (w#, 0) in
cs(g) and (w#, 0) is maximal.
By hypothesis, there is no branching in the refinement-structure so far. With
O’s new move a new refinement r′ of (w#, 0) is introduced. As (w#, 0) is
maximal in cs(g), (w#, r′) is now maximal in cs(g′) and there is no other
refinement of (w#, 0).

,

Lemma 7 (Monotonic Refinements). Let g be a valid play with cs(g) = (C,A,R).
(1) If a valid move m = (n, (p, f, e), w, ρ) is added to g so that we obtain g′ and the
corresponding constraint system cs(g′) = (C′,A′,R′) with (n,w, r′) ∈ R′ then there is no

19



r′ such that (w, r) � (w, r′) ∈ C′.
(2) If a constraint of the form (w, r′) : +ϕ, (w, r′) : −ϕ or (w, r′) : −2ϕ is added to C
with m then (w, r′) is maximal.

Proof. By induction on the length of g′.
Base case: At the beginning, there is only one world with one refinement (1, 0). O’s
attacks on the hypothesis either refer to the same refinement as the hypothesis-move or
create a new refinement which is then maximal (e.g. (1, 1)).
Hypothesis: Let g be a valid play with cs(g) = (C,A,R). If a valid move m =
(n, (p, f, e), w, ρ) is added to g so that we obtain g′ and we have the corresponding
constraint system cs(g′) = (C′,A′,R′) then (n,w, r′) ∈ R and there is no r′′ such that
(w, r′) � (w, r′′) ∈ C′.
If a constraint of the form (w, r′) : +ϕ, (w, r′) : −ϕ or (w, r′) : −2ϕ is added to C with
m then (w, r′) is maximal.
Induction step: A new valid move m is added to g.

• Case 1: O attacks.
In all attacks, O reacts on the last move performed by P (Lemma 5). By hypothesis,
this P-move refers to a maximal refinement. O either reuses this refinement (when
he attacks ∧) or he creates a new one which is then maximal.

• Case 2: P defends.

– P defends against a ⊃-, ∧- or atom-attack.
The move is a reaction on O’s last attack m′ (F1e). Only O introduces
refinements and this is only possible with attacks (cs∆). There can’t be other
O-attacks betweenm′ andm because of the intuitionistic defence restriction so
all refinements between m′ and m must be the same. Therefore the refinement
of m must be equal to the refinement of O’s last move which is maximal by
hypothesis.

– P defends against a ∨-attack.
The maximal refinement is added according to cs(g). This refinement is
unique according to Lemma 6.

– P defends against a 2- or 3-attack. The world w# has been introduced by
O some time before (F2a) in w. With that move, (w#, 0) has been introduced
somewhere in cs(g). Note that O always introduces new worlds whenever this
is possible (context strategy, (F2a), (F2b)). So the only access to w# is
possible from w. P is not allowed to attack formulas in worlds where he has
not been before (F3d). So the only possibilities to access w# is by a defence
on a 2 or on a 3 ((F3d), (F3b)). Only after one of these possible moves,
O can attack P in w# and then refinements of (w#, 0) can be constructed
(cs∆). But then P is in w# and can’t go back to w (F3c). So after his
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defence, P is in w# for the first time and O has not attacked P there yet so
there can’t be a refinement of (w#, 0) in cs(g′), therefore (w#, 0) is maximal.

• Case 3: P attacks.
For the attacking moves, the refinements are always set to the maximum (cs∆).
According to Lemma 6 these refinements are always unique.

• Case 4: O defends.

– O defends against a ⊃-, ∧- or ∨-attack.
O always reacts on the last move performed by P (Lemma 5). With O’s
defence, the refinement of that move (which is an attack) is taken over (cs∆).
By hypothesis, this refinement is maximal. Therefore, the refinement of the
defence must be maximal as well.

– O defends against a 2- or 3-attack.
When O accesses w# from w, we have to consider two cases:

1. O has not been in w# before.
Then she hasn’t been able to construct refinements there yet. That’s why
(w#, 0) is maximal.

2. O has been in w# but returned back to w with a reaction on one of P’s
moves.
P must still be in w as O always reacts on P’s last move (Lemma 5).
However P can never go back to a previously visited context (F3c). So
he mustn’t have been in w# yet. Therefore O has not performed any
attacks in w# and that’s why there can’t be any refinements of (w#, 0)
in cs(g′). This means that (w#, 0) is maximal.

There are no other possibilities for O to return to a previously visited context.

– O defends against an atom-attack.
As P may not change back to previously visited contexts (F3c) he is also
not able to repeat attacks for previously visited contexts. With P’s attack,
the refinement of that attack is maximized (case 3) and O defends against
this attack with a maximal refinement (the reasons stated above hold here as
well).

,

Theorem 1 (Unsatisfiability of Plays). Let g be a valid play.

1. If O is the player of the last move of g and there exists a play g′ such that (g, g′) ∈
FRuleSet for which the constraint system cs(g′) is not satisfiable then cs(g) is also
not satisfiable.

2. If P is the player of the last move of g and the constraint systems cs(g′) of all plays
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g′ such that (g, g′) ∈ FRuleSet are not satisfiable then cs(g) is also not satisfiable.

Proof. 1. We consider the valid play g with its constraint system cs(g) = (C,A,R).
We have to show for every possible sort of move performed by P separately that
for one of the corresponding moves, if the constraint system cs(g′) we have after
the move is unsatisfiable then cs(g) is also unsatisfiable.

Note that in the following f is considered to be !, otherwise it must be either ϕ?¬
or ϕ?⊃ for some ϕ. However these cases are also handled as defences in cs∆.

?¬ a) m = (n, (O, f,¬φ), w, ρ) � m′ = (n′, (P,¬φ?¬, φ), w, n)
Suppose g′ is the result of P’s attack on a negation in g performed by O
and c′ ∈ C′ such that c′ = (w, r) : −φ (by invariance).
Let us assume that cs(g) is satisfiable with (w, r) : +¬φ ∈ C (by invari-
ance), i.e., there is an interpretation M, ω such that M, ω |=C +¬φ, so
ω(w, r) |= ¬φ. This means that for every non-fallible refinement w∗ of
ω(w, r) it holds that w∗ 6|= φ. Particularly, ω(w, r) 6|= φ as every world is a
refinement of itself (reflexivity). This can be expressed by the constraint
c′. As C′ = C ∪ {c′}, cs(g′) must be satisfiable.

b) m = (n, (O,¬φ?¬, φ), w, ρ) � m′ = (n′, (P, φ?x, e′), w, n)
This is a counter-attack which is handled as an attack on a defence
(n, (P, !, φ), w, ρ) in cs∆. The constraint system is affected accordingly
(see corresponding case in this proof).

?⊃, !⊃ a) m = (n, (O, f, φ ⊃ ψ), w, ρ) � m′ = (n′, (P, φ ⊃ ψ?⊃, φ), w, n)
The constraint system does not change. So if cs(g) is satisfiable then
cs(g′) must also be satisfiable.

b) m = (n, (O, φ ⊃ ψ?⊃, φ), w, ρ)
� m′1 = (n′, (P, φ?x, e′1), w, n) or m′2 = (n′, (P, !, ψ), w, n)
Here, we discuss both possibilities of P’s reaction on O’s attack on an
implication: P can defend against this attack by stating ψ which does
not modify C or he may perform a counter-attack, what means that the
constraint system can be changed by another rule. In the latter case, cs∆

treats m as a defence and the constraint system is modified accordingly
(see corresponding case in proof). The current rule does not touch it
further.
In the former case C′ is the same as C as nothing is changed.

?∧ m = (n, (O, f, φ ∧ ψ), w, ρ)
� m′1 = (n′, (P, φ ∧ ψ?L,C), w, n) or m′2 = (n′, (P, φ ∧ ψ?R,C), w, n)
Suppose g′ is the result of P’s attack on a conjunction in g performed by O.
So there must be a constraint c′1 ∈ C′ or c′2 ∈ C′ such that c′1 = (w, r) : +φ
and c′2 = (w, r) : +ψ.
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Let us assume that cs(g) is satisfiable with c = (w, r) : +φ ∧ ψ ∈ C (in-
variance). There is an interpretation M, ω such that ω(w, r) |= φ and
ω(w, r) |= ψ. This can be expressed by the constraint c′i. As C′ = C ∪ {c′i},
cs(g′) must be satisfiable.

!∧ m1 = (n, (O, φ ∧ ψ?L,C), w, ρ) � m′1 = (n′, (P, !, φ), w, n)
m2 = (n, (O, φ ∧ ψ?R,C), w, ρ) � m′2 = (n′, (P, !, ψ), w, n)
Suppose g′ is the result of P’s defence on an attack m1 or m2 on a conjunction
in g. According to the cs∆ the constraint system does not change, therefore
if cs(g) is satisfiable then cs(g′) is also satisfiable.

?∨ m = (n, (O, f, φ ∨ ψ), w, ρ) � m′ = (n′, (P, φ ∨ ψ?∨,C), w, ρ)
Suppose g′ is the result of P’s attack on a disjunction in g. According to cs∆

the constraint system does not change, therefore if cs(g) is satisfiable then
cs(g′) is also satisfiable.

!∨ m = (n, (O, φ ∨ ψ?∨,C), w, ρ)
� m′1 = (n′, (P, !, φ), w, n) or m′2 = (n′, (P, !, ψ), w, n)
We have two possible resulting constraint systems cs(g′1) = (C′1,A′) and
cs(g′2) = (C′2,A′) depending on the move which is done (m′1 or m′2).
Let’s assume that cs(g) is satisfiable. Then C contains (w, r) : −φ ∨ ψ (in-
variance). So we have an interpretation M, ω with ω(w, r) 6|= φ ∨ ψ in M.
This means that ω(w, r) 6|= φ and ω(w, r) 6|= ψ. So we can add the constraint
(w, r) : −φ and the constraint (w, r) : −ψ to C without changing the sat-
isfiability of cs(g). We then have cs(g′1) or cs(g′2) which are therefore both
satisfiable.

?2 m = (n, (O, f,2φ), w, ρ) � m′ = (n′, (P,2φ?2/w#,C), w, n)
After the move we have C′ = C ∪ {(w#, 0) : +φ}. We assume that cs(g) is
satisfiable so by the conditions of cs∆ there is an interpretationM, ω such that
M, ω |=C (w, r) : +2φ and ω(w, r) |= 2φ. We also know that (w, r) ∈ A, so
ω(w, r) is infallible. This means that for all u∗ ∈W such that ω(w, r) −→ u∗

implies u∗ |= +φ.

P may not introduce new worlds (F2a) and there must be a transition
in the play’s frame from w (the source world) to w# (F3b). Therefore
O must have introduced w# and the link w −→ w# somewhere before with
a defence on a 3-attack or a 2-attack (F2b). We call these moves m§1 =

(n§, (O, !, ϕ), w#, ρ§) and m§2 = (n§, (O, χ?2/w#,C), w#, ρ§).

We obtain the refinement r§ of w for the move m§i from R ((n§, w, r§) ∈ R,
this must be possible because for every new move, such a unique entry is
added to R). As n§ < n we conclude that ω(w, r§) � ω(w, r′) (Lemma 7)
where r′ is the refinement of assigned to m′.

Case 1: There is a move m§1 = (n§, (O, !, ϕ), w#, ρ§) before m which is a
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defence on a 3-attack. As there must be such an attack, the constraint
(w, r§) : +3ϕ must also be in C (invariance). By Definition 1 we know that
there is a transition from all non-fallible refinements of ω(w, r§) to ω(w#, 0) in-
troduced by O with his move m§. Particularly, we have ω(w, r′) −→ ω(w#, 0),
so we can add the constraint (w#, 0) : +φ to C without changing satisfiability.

Case 2: There is a move m§2 = (n§, (O, χ?2/w#,C), w#, ρ§). This must have

been stated after m (where m
g′

� m′) (F3e), i.e., ρ < n§ < n′.
By Lemma 7 we know that ω(w, r) � ω(w, r§) � ω(w, r′) where r is the
refinement of move m, i.e. (ρ, w, r) ∈ R. As ω(w, r) |= 2φ and because
(w, r§) → (w#, 0) and (w, r§) ∈ A (added with move m§) we conclude by
Definition 1 ω(w, r§) −→ ω(w#, 0) ⇒ ω(w#, 0) |= φ. The condition is true
as (w, r§) → (w#, 0) has been added to C with m§. Therefore ω(w#, 0) |= φ
and the constraint (w#, 0) : +φ can be added to C without changing the
satisfiability of cs(g).

!2 m = (n, (O,2φ?2/w#,C), w, ρ) � m′ = (n, (P, !, φ), w#, n)
No changes of constraint system, so it holds.

?3 m = (n, (O, f,3φ), w, ρ) � m′ = (n′, (P,3φ?3,C), w, n)
No changes of constraint system, so it holds.

!3 m = (n, (O,3φ?3,C), w, ρ) � m′ = (n′, (P, !, φ), w#, n)
Let us assume that cs(g) is satisfiable. According to Lemma 4 we have the
constraint (w, r′) : −2φ in C. As cs(g) is satisfiable, there is an interpreta-
tion M, ω such that M, ω |=C (w, r′) : −2φ. So for all u∗ ∈ W such that
ω(w, r′) −→ u∗ it holds that u∗ 6|= φ.

P may not introduce new worlds (F2a) and there must be a transition
in the play’s frame from w (the source world) to w# (F3b). Therefore
O must have introduced w# and the link w −→ w# somewhere before with
a defence on a 3-attack or a 2-attack (F2b). We call these moves m§1 =

(n§, (O, !, ϕ), w#, ρ§) and m§2 = (n§, (O, ?2/w#,C), w#, ρ§).

We obtain the refinement r§ of w for the move m§i from R ((n§, w, r§) ∈ R,
this must be possible because for every new move, such a unique entry is
added to R). As n§ < n we conclude that ω(w, r§) � ω(w, r) (Lemma 7).

Here we can argue the same way we have done for the case ?2 (see above).
We conclude that ω(w, r) � ω(w#, 0).

Let ω(w#, 0) be one of the u∗s. Then we know that ω(w#, 0) 6|= φ because
of (w, r) : −2φ. We can add (w#, 0) : −φ to cs(g) without changing its
satisfiability. As ω(w#, 0) 6|= φ, ω(w#, 0) is infallible and (w#, 0) can be
added to A. We reach cs(g′) which must also be satisfiable.

a? m = (n, (O, f, a), w, ρ) � m′ = (n′, (P, f ′, φ′), w′, n)
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This is a repetition of an attack which has already been done by P in the
same world ((F1c), (F3c)). The constraint system is affected accordingly
(see corresponding case in the prove). There are no other changes.

a! m = (n, (O, a?,C), w, ρ) � m′ = (n′, (P, !,C), w, n)
The constraint system is not changed, so it holds.

2. Let cs(g) = (C,A,R) be the constraint system of a valid play g. We have to show
for every possible move m′ performed by O such that after adding m′ to g we
obtain the valid play g′: if the constraint system cs(g′) is unsatisfiable then g is
also unsatisfiable.
The single proofs work by contradiction, so we show that if cs(g) is satisfiable then
at least one of O’s possible moves leads to a satisfiable constraint system as well.
We consider all possible moves m of P in g to discuss O’s possible reactions m′.

In the following f is again considered to be !, otherwise it must be either ϕ?¬ or
ϕ?⊃ for some ϕ. However these cases are also handled as defences in cs∆.

?¬ a) m = (n, (P, f,¬φ), w, ρ) � m′ = (n′, (O,¬φ?¬, φ), w, n)
Let us assume that cs(g) is satisfiable. C contains (w, r) : −¬φ by Lemma
4. Therefore there is an interpretation M, ω such that M, ω |=C (w, r) :
−¬φ, so ω(w, r) 6|= ¬φ. By Definition 1 this means that there is a non-
fallible world v in M such that ω(w, r) � v and that v |= φ. So we can
extend ω by introducing (w, r′) to our constraint system and defining
ω(w, r′) = v. Then we add (w, r) � (w, r′) and (w, r′) : +φ to C and
(w, r′) to A (as v ∈W>). This does not change satisfiability of cs(g). We
then have cs(g′) which must then be satisfiable as well.

b) m = (n, (P,¬φ?¬, φ), w, ρ) � m′ = (n′, (O, φ?x, e′), w, n)
This is a counter-attack which is handled as an attack on a defence
(n, (P, !, φ), w, ρ) in cs∆. The constraint system is affected accordingly
(see corresponding case in this proof).

?⊃, !⊃ a) m = (n, (P, f, φ ⊃ ψ), w, ρ) � m′ = (n′, (O, φ ⊃ ψ?⊃, φ), w, n)
We assume that cs(g) is satisfiable. C contains (w, r) : −φ ⊃ ψ by Lemma
4. Therefore there is an interpretation M, ω such that ω(w, r) 6|= φ ⊃ ψ
in M. By Definition 1 this means that there is a non-fallible world v in
M such that ω(w, r) � v and that v |= φ and v 6|= ψ.
So if we extend cs(g) by a new world (w, r′) such that ω(w, r′) = v. Then
we add (w, r) � (w, r′), (w, r′) : +φ and (w, r′) : −ψ to C and (w, r′) to A
(as v ∈ W>). This does not change satisfiability of cs(g). We then have
cs(g′) which must then be satisfiable as well.

b) m = (n, (P, φ ⊃ ψ?⊃, φ), w, ρ)
� m′1 = (n′, (O, φ?x, e′1), w, n) or m′2 = (n′, (O, !, ψ), w, n)
Here, we discuss both possibilities of O’s reaction on P’s attack on an
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implication: O can defend against this attack by stating ψ which causes
that c′2 = (w, r) : +ψ is added to the constraints (we call the corre-
sponding game g′2) or she may perform a counter-attack, what means
that c′1 = (w, r) : −φ is added to the constraint system plus maybe some
extra constraints according to the kind of attack (g′1). For the latter case
cs∆ continues treating m as a defence and m′1 as an attack on it. The
constraint system is affected accordingly (see corresponding case in this
proof).

Let us assume that cs(g) is satisfiable, i.e., there is an interpretationM, ω
such that M, ω |=C (w, r) : +φ ⊃ ψ, so ω(w, r) |= φ ⊃ ψ.
Now let us also assume that ω(w, r) |= φ. Then we derive ω(w, r) |= ψ
by the implication. So the constraint (w, r) : +ψ can be added without
changing the satisfiability. In this case cs(g′2) is satisfiable.

If ω(w, r) |= φ is not true, we have ω(w, r) 6|= φ. This can be expressed
with the additional constraint (w, r) : −φ. Therefore cs(g′1) is satisfiable.

?∧ m = (n, (P, f, φ ∧ ψ), w, ρ)
� m′1 = (n′, (O, φ ∧ ψ?L,C), w, n) or m′2 = (n′, (O, φ ∧ ψ?R,C), w, n)
We have two possible resulting constraint systems cs(g′1) = (C′1,A′,R′) and
cs(g′2) = (C′2,A′,R′) depending on the move which is done (m′1 or m′2). Let’s
assume that cs(g) is satisfiable. Then C contains (w, r) : −φ∧ψ (invariance).
So we have an interpretationM, ω with ω(w, r) 6|= φ∧ψ inM. By Definition
1 this means that ω(w, r) 6|= φ or ω(w, r) 6|= ψ. So we can either add the
constraint (w, r) : −φ or the constraint (w, r) : −ψ to C. We then have cs(g′1)
or cs(g′2). At least one of the results must be satisfiable.

!∧ m1 = (n, (P, φ ∧ ψ?L,C), w, ρ) � m′1 = (n′, (O, !, φ), w, n)
m2 = (n, (P, φ ∧ ψ?R,C), w, ρ) � m′2 = (n′, (O, !, ψ), w, n)
No change of the constraint system, so it holds.

?∨ m = (n, (P, f, φ ∨ ψ), w, ρ) � m′ = (n′, (O, φ ∨ ψ?∨,C), w, ρ)
No change of the constraint system, so it holds.

!∨ m = (n, (P, φ ∨ ψ?∨,C), w, ρ)
� m′1 = (n′, (O, !, φ), w, n) or m′2 = (n′, (O, !, ψ), w, n)
Let us assume that cs(g) is satisfiable, i.e., there is an interpretation M, ω
such thatM, ω |=C (w, r) : +φ∨ψ, so ω(w, r) |= φ∨ψ. So either ω(w, r) |= φ
or ω(w, r) |= ψ.
Let us assume that ω(w, r) |= φ, then we can add the constraint (w, r) : +φ
to C without changing satisfiability. In this case cs(g′) is satisfiable.
If ω(w, r) 6|= φ then ω(w, r) |= ψ must hold and we can add (w, r) : +ψ to C.
In this case cs(g′) is satisfiable, too.

?2 m = (n, (P, f,2φ), w, ρ) � m′ = (n′, (O,2φ?2/w#,C), w, n)
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Again, we assume satisfiability of cs(g). By invariance we have (w, r) : −2φ ∈
C. So there is an interpretationM, ω with ω(w, r) 6|= 2φ inM. By Definition
1 this means that there must be a refinement v of ω(w, r) in M that is non-
fallible and there must also be a world u∗ such that v −→ u and u 6|= φ.
We introduce the worlds (w, r′) and (w#, 0) (which are not in cs(g) yet) and
extend ω in such a way that ω(w, r′) = v and ω(w#, 0) = u∗. Then we add
the constraints (w, r) � (w, r′), (w, r′) → (w#, 0) and (w#, 0) : −φ to cs(g)
which does not change the satisfiability. We reach cs(g′) which must also be
satisfiable.

!2 m = (n, (P,2φ?2/w#,C), w, ρ) � m′ = (n, (O, !, φ), w#, n)
No changes of constraint system, so it holds.

?3 m = (n, (P, f,3φ), w, ρ) � m′ = (n′, (O,3φ?3,C), w, n)
We assume that cs(g) is satisfiable. By invariance we have (w, r) : −3φ in C.
As cs(g) is satisfiable, there is an interpretationM, ω such that ω(w, r) 6|= 3φ.
By Definition 1 there must be a non-fallible refinement v of ω(w, r) in M.
Further, for all successors u of v we have u∗ 6|= A. So we introduce the new
world (w, r′) in cs(g) and update ω such that ω(w, r′) = v. Then it doesn’t
change satisfiability of cs(g) when we add (w, r) � (w, r′) and (w, r′) : −2φ
to C and (w, r′) to A as v ∈ W>. We reach cs(g′) which must be satisfiable
as well.

!3 m = (n, (P,3φ?3,C), w, ρ) � m′ = (n, (O, !, φ), w#, n)
We have two new constraints c′1 = (w#, 0) : +φ and c′2 = (w, r) → (w#, 0)
such that C′ = C ∪ {c′1, c′2}.
Let us assume that cs(g) is satisfiable. By the conditions of cs∆ we have
(w, r) : +3φ ∈ C. As (w, r) ∈ A and cs(g) is satisfiable we conclude that
there is an interpretation M, ω such that ω(w, r) |= 3φ and ω(w, r) ∈ W>.
Therefore, there is a world u∗ ∈W such that ω(w, r) −→ u∗ and u∗ |= φ.
By assumption, all of O’s reactions on g cause unsatisfiability, no matter
which world w# she chooses in her defence and for which world she states φ.
So let’s claim that w# = u. Then we can introduce a new world (w#, 0) into
the constraint system cs(g) such that u∗ = ω(w#, 0) and add the constraints
(w, r)→ (w#, 0) and (w#, 0) : +φ and the resulting constraint system (which
corresponds to cs(g′)) is still satisfiable.

a? m = (n, (P, f, a), w, ρ) � m′ = (n′, (O, a?,C), w, n)
No changes of the constraint system, so it holds.

!a refers to another case.

,

Theorem 2 (Unsatisfiability of Finished Plays). For all valid finished plays g (finished(g)),
if P is the winner of g (winner of play(g,P)) then cs(g) is not satisfiable, i.e., there ex-
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ists no interpretation for cs(g).

Proof. P is the winner of the play g. This means there is no possible move for O, in g
and P is the last player (see winning rule).
Let us assume that cs(g) is satisfiable. By Theorem 1 we know that if a play g, where
P is the last player who performed a move, is satisfiable then there must be at least one
g′ that can be obtained by an O-move added to g and which is also satisfiable. But as
P is the winner of g, O can’t continue g with any move and therefore there is no g′.
So cs(g) cannot be satisfiable. ,

Theorem 3 (Unsatisfiability of Dialogues). For all valid plays g, if P is the winner of
the dialogue starting in g (winner of dialogue(P, g)) then cs(g) is not satisfiable, i.e.,
there exists no interpretation for g.

Proof. By induction on the length of g.
Base case: There is no g′ such that (g, g′) ∈ FRuleSet . As P is the last player of g, it is
O’s turn now, but O is not able to move. The game is finished. By Theorem 2 cs(g) is
not satisfiable.

Inductive step: we have to distinguish two cases:

1. The last player of g is O. Then there must be a g′ such that (g, g′) ∈ FRuleSet and
P is the winner of g′.
By hypothesis, cs(g′) is not satisfiable. Therefore, cs(g) is also not satisfiable by
Theorem 1 (1).

2. The last player of g is P. Then for all g∗ such that (g, g∗) ∈ FRuleSet , P must be
the winner of g∗. By hypothesis, all cs(g∗) are not satisfiable. Therefore, cs(g) is
also not satisfiable by Theorem 1 (2).

,

Theorem 4. For all CKn-formulas ϕ, all CKn-models M and all worlds w of M:

D ϕ ⇒ M, w |= ϕ .

Proof. To conclude: At the beginning of a game P states a hypothesis containing the
formula ϕH. With this move the initial play g1 is constructed. The constraint (1, 0) : −ϕH

is then part of cs(g1). This means that for an interpretation M, ω, ϕH is not valid in
ω(1, 0). We have shown that if P is the winner of the dialogue started in g1 then cs(g1)
is not satisfiable, i.e., the interpretationM, ω does not exist. With this fact we can then
conclude that if P wins with his hypothesis, ϕH must be a valid formula. ,

28



References

[Sch15] Stephan Scheele. Model and Proof Theory of Constructive ALC – Constructive
Description Logics. PhD thesis, Otto-Friedrich Universität Bamberg, 2015.

29


