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Abstract

In the journal article [8] we introduce a modal λ-calculus λCKn whose type system cor-
responds to the constructive multi-modal logic CKn. This logic is a constructive refinement
of the classical multi-modal logic Kn which forms the heart of the class of description logics
used in semantic information processing. λCKn constitutes the core of a functional language
for information processing in this application domain. Being strongly typed, it offers static
type checking to support safe contextual reasoning in relational structures like those treated
by description logics.

Here we provide detailed mathematical proofs for the results presented in [8]. Accordingly,
this report is not meant as a self-contained technical exposition of the whys and hows of
λCKn. It is merely a collection of ancillary material to complement the main article [8] to
which the reader is referred for more information.

An early version of this work appeared at the 3rd International Workshop on Logics,
Agents and Mobility (LAM 2010). We are grateful for the support by the German Research
Council (DFG) who funded this research as part of the project SPACMODL under grant
No. ME 1427/4-1.

1 The Structure of Normal Form Proofs

Proposition 1. Every expression typeable under the rules of Fig. 1 and Fig. 2 is in normal
form.

Proof. The proof proceeds by induction on the structure of the typing derivation. The statement
is obvious for the base case of rule Axm and the induction steps for left rules ∨L, ∃L, the right
rules ∧R, ∨R1, ∨R2, ⊃R, ∃R as well as ∀R. For the left rules ∧L1, ∧L2, ⊃L, ∀L we use the
fact that if nf is a normal form and y a free variable in nf , then the substitutions nf Jπ1 x/yK,
nf Jπ2 x/yK, nf Jxnf ′/yK and nf Jx@b/yK are again normal forms. For rule Ax f we observe that

if nf is a normal form, then so is nf JΓ̂/ΓK.
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Axm
Σ, x : C ` x : C

Σ ` e1 : D1 Σ ` e2 : D2 ∧R
Σ ` (e1, e2) : D1 ∧D2

Σ1, y : C1,Σ2 ` e : Ψ ∧L1
Σ1, x : C1 ∧ C2,Σ2 ` eJπ1 x/yK : Ψ

Σ1, y : C2,Σ2 ` e : Ψ ∧L2
Σ1, x : C1 ∧ C2,Σ2 ` eJπ2 x/yK : Ψ

Σ ` e : D1 ∨R1
Σ ` ι1 e : D1 ∨D2

Σ ` e : D2 ∨R2
Σ ` ι2 e : D1 ∨D2

Σ1, y1 : C1,Σ2 ` e1 : Ψ Σ1, y2 : C2,Σ2 ` e2 : Ψ ∨L
Σ1, x : C1 ∨ C2,Σ2 ` case x of [ι1 y1 → e1 | ι2 y2 → e2] : Ψ

Σ1 ` e1 : C1 Σ1, y : C2,Σ2 ` e : Ψ ⊃L
Σ1, x : C1 ⊃ C2,Σ2 ` eJx e1/yK : Ψ

Σ, y : C ` e : D ⊃R
Σ ` λy. e : C ⊃ D

The variables y, y1, y2 in rules ∧L1, ∧L2, ∨L, ⊃L, ⊃R must be fresh.

Figure 1: Lambda Typing Rules.

2 Admissibility of Structural Rules

Lemma 1 (Admissibility of Structural Rules).

1. (Contraction) For every derivation φ of a typing sequent Σ⊕d {z : D,x : D} ` e : Ψ there
is a derivation φ∗ of Σ⊕d z : D ` e{z/x} : Ψ. Secondly, for every derivation φ of a typing
sequent Σ ⊕d R?a〈ẑ : D, x̂ : D〉 ` e : Ψ there is a derivation φ∗ of Σ ⊕d R?a〈ẑ : D〉 `
e{ẑ/x̂} : Ψ.

2. (Strengthening) Given a derivation φ of Σ ⊕d x : C ` e : E such that x 6∈ FV (e). Then,
we can type e without x, i.e., there is a derivation φ∗ of Σ ` e : E. Secondly, given a
derivation φ of Σ ⊕d R?a〈x̂ : C〉 ` e : E such that x̂ 6∈ FV (e). Then, we can type e
without x̂, i.e., there is a derivation φ∗ of Σ ` e : E.

3. (Weakening) Given a derivation φ of Σ ` e : E. Then, for an arbitrary (valid) context
extension Σ � Σ′ there is a derivation φ∗ of Σ′ ` e : E.

Additionally, in each case, the size of φ∗ (i.e., the number of rule applications in the derivation
tree) is no larger than that of φ, and if φ is a cut-free derivation (i.e., without applications of
the substitution rules cut1 or cut2), then so is φ∗.

Proof. The three statements are shown by a straightforward induction on the structure of
the typing derivation φ. One observes that in each case the induction step does not involve
additional typing rules. In particular, no extra substitution rules are needed to transform φ
into φ∗.

Technically, the proof of contraction admissibility depends on the fact that the contraction
{z/x} commutes with the capture avoiding substitutions in the typing rules ∧Li, ⊃L, ∀L, cut1
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Σ�R!a Γ ` e : Ψ
Ax f

Σ, R?a〈Γ̂〉 ` ∅ �R!a eJΓ̂/ΓK : Ψ

Σ ` ∅ �R!a e : D ∃R
Σ ` !a. e : ∃R.D

Σ1, R?a〈ŷ : C〉,Σ2 ` e : Ψ ∃L
Σ1, x : ∃R.C,Σ2 ` let !a. ŷ = x in e : Ψ

Σ1 �R!a y : C,Σ2 ` e : Ψ ∀L
Σ1, x : ∀R.C �R!a Σ2 ` eJx@a/yK : Ψ

Σ �R!a ∅ ` e : D ∀R
Σ ` ?a. e : ∀R.D

The scope name a in rules ∀R, ∃L, trunk variable y in ∀L and branch variable ŷ in ∃L must
be fresh.

Figure 2: Modal Typing Rules.

and cut2. For instance, regarding ∀L we have eJx@a/yK{z/x} = e{z/x}Jz@a/yK because z
cannot be bound by e at y. We also note that admissibility of weakening involves implicit
α-conversion. In general, if Σ ` e : E and the context is extended to Σ′, then Σ′ ` e′ : E where
e′ ≡α e. The reason is that for validity of Σ′ all we require is that the new variables added to Σ′

do not occur in Σ, i.e., that they are not free in e. Yet, they may be bound in e. Strictly, these
bound occurrences need to be named apart to make the typing of e′ work in Σ′. However, as
we identify expressions up to ≡α, this may be left implicit in the statement (3) of Lem. 1.

3 Extensional Soundness and Completeness

Theorem 1 (Extensional Soundness and Completeness). If proposition D does not contain
negation or falsity, then D is a theorem of CKn iff ∅ `norm D.

Proof. We use a direct syntactic technique to prove equivalence of the two derivation systems.
One direction (completeness) is to show that every derivation `H E, where `H denotes Hilbert
derivability in CKn, can be simulated in λCKn. First, we observe that there are proof terms
K∀R and K∃R for the axiom schemes ∀R.(A ⊃ B) ⊃ (∀R.A ⊃ ∀R.B) and ∀R.(A ⊃ B) ⊃
(∃R.A ⊃ ∃R.B) respectively. The K-combinators of the Hilbert system for CKn are the typed
normal form terms

K∃R = λx. λz. let !a. ŷ = z in !a. (x@a) ŷ : ∀R.(C ⊃ D) ⊃ (∃R.C) ⊃ (∃R.D)
K∀R = λx. λz. ?a. (x@a)(z@a) : ∀R. (C ⊃ D) ⊃ (∀R.C) ⊃ (∀R.D)

obtained from the following derivations (without terms, for conciseness):
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Axm
∅ �R!a C ` C

Axm
∅ �R!a D,C ` D ⊃L

∅ �R!a C ⊃ D,C ` D ∀L
∀R. (C ⊃ D) �R!a C ` D

Ax f
∀R. (C ⊃ D), R?a〈C〉 ` ∅ �R!a D ∃R
∀R. (C ⊃ D), R?a〈C〉 ` ∃R.D ∃L
∀R. (C ⊃ D),∃R.C ` ∃R.D ⊃R

∀R. (C ⊃ D) ` (∃R.C) ⊃ (∃R.D) ⊃R
∅ ` ∀R. (C ⊃ D) ⊃ (∃R.C) ⊃ (∃R.D)

Axm
∅ �R!a C ` C

Axm
∅ �R!a D,C ` D ⊃L

∅ �R!a C ⊃ D,C ` D ∀L
∀R. (C ⊃ D) �R?a C ` D ∀L

∀R. (C ⊃ D),∀R.C �R!a ∅ ` D ∀R
∀R. (C ⊃ D),∀R.C ` ∀R.D ⊃R

∀R. (C ⊃ D) ` (∀R.C) ⊃ (∀R.D) ⊃R
∅ ` ∀R. (C ⊃ D) ⊃ (∀R.C) ⊃ (∀R.D)

Also, every theorem of minimal intuitionistic propositional logic (IPL) is derivable. This follows
from the observation that the derivation rules, Fig. 1, specialised to sequents of the form
Γ ` e : E, where Γ is a single scope, provide a complete axiomatisation of IPL. Further,
the Hilbert rules of Modus Ponens and Necessitation are admissible, too, by the Structural
Rules, Lem. 1, and the admissibility of cut elimination which follows from Prop. 2, Strong
Normalisation Prop. 9 and Subject Reduction Prop. 6, as follows:

First, Modus Ponens, which is function application, is representable as a combinator MP =
λy. λx. y x for which ∅ ` MP : C ⊃ (C ⊃ D) ⊃ D is derivable. Then, if ∅ ` m1 : C ⊃ D and
∅ ` m2 : C we have ∅ ` MPm1m2 : D by the substitution typing rule cut1. Second, regarding
Necessitation, context weakening (Lem. 1) guarantees that ∅ ` m : D implies ∅ �R?a ∅ ` m : D
and thus ∅ ` ?a.m : ∀R.D, for any role R. Hence, NecRm is an abbreviation for ?a.m.

This proves that λCKn is at least as rich as CKn.

Next, we argue the converse (soundness) direction, that λCKn does not include more theorems.
We show that every derivation ∅ `norm E in the Gentzen-style system of Figs. 1 and 2 can
be simulated by Hilbert to give `H E. We achieve this through a structural transformation
of sequents into propositions and of sequent rules into Hilbert derivations. This translation
is an adaptation of the interpretation suggested in [7] for a related sequent calculus. In this
translation we remove all term annotations and fold up the tree structure of a sequent Σ ` Ψ
into a single formula. We define a wrapping translation [Σ ` Ψ]h for sequents with path contexts
Σ as follows:

[x : C,Σ ` Ψ]h =df C ⊃ [Σ ` Ψ]h

[R?a〈Γ̂〉,Σ ` Ψ]h =df (∃R.Γ̂) ⊃ [Σ ` Ψ]h (Σ does not contain scope a)

[∅ �R!a Σ ` Ψ]h =df ∀R. [Σ ` Ψ]h

[∅ ` ∅ �R!a Ψ]h =df ∃R.[∅ ` Ψ]h

[∅ ` e : E]h =df E

where Γ̂ denotes the conjunction of all types in Γ. As an example consider the sequent Σ ` e : E
with context Σ = {x : A, y : B,R?b〈ẑ : C〉, S!d[v : B, T?c〈ŵ : D〉]}, or in path notation
x : A, y : B,R?b〈ẑ : C〉 �S!d v : B, T?c〈ŵ : D〉 ` e : E. It wraps into the proposition

[Σ ` e : E]h = A ⊃ B ⊃ ∃R.C ⊃ ∀S.(B ⊃ ∃T.D ⊃ E),
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where, as usual, nested implications associate to the right. One proves by induction that for
every derivation Σ `norm Ψ of a sequent using the rules in Figs. 1 and 2 there exists a Hilbert
proof of `H [Σ ` Ψ]h. Thus, if ∅ `norm e : E we get `H [∅ ` e : E]h, which is the same as `H E.

In order to simulate the sequent rules, which act arbitrarily deep inside the formula structure,
we need to exploit the extensionality principle of Hilbert calculus. Specifically, if `H φ[D1]
where φ is a positive1 propositional context with a selected occurrence of a sub-proposition D1

and `H D1 ⊃ D2 then `H φ[D2]. For intuitionistic propositional logic this is well known, for
CKn the two characteristic axioms K∀R : ∀R.(A ⊃ B) ⊃ (∀R.A ⊃ ∀R.B) and K∃R : ∀R.(A ⊃
B) ⊃ (∃R.A ⊃ ∃R.B) are instrumental for this. In fact, preserving this extensionality principle
is the main and only job done by these axioms. It suffices to look at the modal typing rules in
Fig. 2. All the lambda typing rules in Fig. 1 are handled analogously.

• The premise of Ax f translated (essentially) gives [Σ�R!a Γ ` Ψ]h = φ[∀R.(Γ̂ ⊃ ψ)] where
ψ = [∅ ` Ψ]h and φ[·] subsumes the (positive) context arising from the translation of the Σ
prefix. Here and in the following we leave out the proof terms from the sequents since they
get dropped in the translation, anyway. Now, the implication ∀R.(Γ̂ ⊃ ψ) ⊃ (∃R.Γ̂) ⊃
∃R.ψ is an instance of K∃R. But the formula φ[(∃R.Γ̂) ⊃ ∃R.ψ] is the translation of the
Ax f rule’s conclusion. Hence, by the extensionality principle, Ax f is admissible.

• Regarding rule ∃R, consider a translation of a typical premise [Σ ` ∅ �R!a D]h =
φ[∃R.D]. Obviously, the conclusion Σ ` ∃R.D translates into exactly the same formula.
Hence ∃R is trivially admissible.

• The wrapping up of the premise of ∃L is of the shape [Σ1, R?a〈C〉,Σ2 ` Ψ]h = φ[∃R.C ⊃
ψ] where φ captures the prefix Σ1 and ψ takes care of the suffix sequent ψ = [Σ2 ` Ψ]h.
This is precisely the translation of the conclusion [Σ1, ∃R.C,Σ2 ` Ψ]h = φ[∃R.C ⊃ ψ].

• An application of rule ∀L takes a premise which translates as [Σ1 �R!a C,Σ2 ` Ψ]h =
φ[∀R.(C ⊃ ψ)]. An application of the CKn axiom scheme K∀R : ∀R.(A ⊃ B) ⊃
(∀R.A ⊃ ∀R.B) and extensionality permits us to derive the translation of the conclu-
sion [Σ1, ∀R.C �R!a Σ2 ` Ψ]h = φ[∀R.C ⊃ ∀R.ψ].

• Finally, consider the rule ∀R. Suppose we have derived the wrap-up of a premise [Σ�R!a

∅ ` D]h = φ[∀R.D]. Then, the translation of the conclusion can be obtained, too, because
it is the same.

4 Characterisation of Well-typed Irreducibles

Proposition 2. Suppose Σ ` e : Ψ. Then e is irreducible iff Σ `norm e : Ψ.

1A context φ[X] is positive if X occurs in positive position, i.e., nested behind an even number of negations.
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Proof. For the first part of the proposition recall (Prop. 1) that all terms typed under the rules
of Fig. 1 and Fig. 2 are in normal form, given as

nf ::= g | let !a. ŷ = g innf | (nf 1,nf 2) | ι1 nf | ι2 nf |
case g of[ι1 y1 → nf 1 | ι2 y2 → nf 2] | λx.nf | ?a.nf | !a.nf

g :: = x | x̂ | g@a | π1 g | π2 g | g nf .

A special class of normal form terms are those of form g, called neutral terms. Each neutral term
g consists of a sequence of destructors applied to a unique variable, called the spine variable of
g. Every occurrence of a free variable inside nf is the spine variable of a neutral term g by which
the variable is destructed to some depth, from which a sequence of constructors then builds
the normal form nf . Also, every sub-expression f in a normal form nf {f/x} that starts with
a destructor f = π1 g, f = π2 g, f = g@a, f = g nf , f = case g of[ι1 y1 → nf 1 | ι2 y2 → nf 2]
or f = let !a. ŷ = g in f ′ has a neutral term g as its reduction object and immediate sub-
expression. This means that normal forms do not contain any redexes for either β-contractions
or (commuting) γ-contractions. Thus, if Σ `norm e : Ψ, then e is irreducible.

For the second part of the proposition we must show that every well-typed irreducible expression
can be typed with the typing rules of Figs. 1 and 2 alone, i.e., without cut1 or cut2. The proof
proceeds by induction on the size of typing derivations (i.e., the number of rules) to show that
each application of a cut1 or cut2 in the typing of an irreducible term can be eliminated.

Rule [cut1]. We begin by looking at a typing tree which ends in rule cut1, i.e., a derivation
tree φ of the following form:

...φ1

Σ�d ` e : D

...φ2

Σ⊕d x : D ` f : Ψ
cut1 (x fresh)

Σ ` fJe/xK : Ψ

where fJe/xK is irreducible and φ1 and φ2 are the two sub-proofs on which the cut is performed.
Without loss of generality we may assume that (i) the cut variable x occurs free in f and (ii)
we are eliminating an innermost cut, i.e., φ1 and φ2 do not contain cuts themselves. We first
observe that all the cases where φ1 ends in one of the rules ∧Li, ⊃L, ∀L commute with the cut,
so that cut elimination follows by induction hypothesis. If φ1 is an application of Axm then
e = y where y : D is a trunk variable in the active scope of Σ�d, i.e., at depth d in Σ. Because
the cut variable x is fresh, we must have y 6= x. Thus, fJe/xK = fJy/xK. By assumption,
Σ ⊕d x : D ` f : Ψ is cut-free. Hence we can use the admissibility of contraction of Lem 1(1)
to conclude that Σ ` fJy/xK : Ψ can be typed without cut. Since the end rule of φ1 cannot be
Ax f it remains to treat the cases where

• φ1 ends in one of the right rules ∧R, ∨Ri, ⊃R, ∃R, ∀R, or the left rules ∨L or ∃L.

All these are special in the sense that they introduce the top-level operator of expression e
which gets substituted. These we cannot commute with the last rule of φ2, without destroying
the structure of the resulting term fJe/xK, unless the last rule of φ2 is Axm. If φ2 = Axm · φ′2
and f = x is the cut variable then fJe/xK = e and d is the depth of Σ, i.e., Σ�d = Σ. Then φ1

is the desired typing without the cut. If φ2 = Axm ·φ′2 and f = y 6= x is some other variable in
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the active scope of Σ⊕d x : D then fJe/xK = yJe/xK = y and φ2 is the desired cut-free typing.
If φ2 ends in a right rule ∧R, ∨Ri, ⊃R, ∃R, ∀R then this rule application can be pushed down
across the cut, too, without changing the typed expression. Just as easy is the case where
φ2 = Ax f · φ′2:

...φ1

(Σ′, R?a〈Γ̂〉)�d ` e : D

...φ
′
2

Σ′ ⊕d x : D �R!a Γ ` f ′ : F
Ax f

(Σ′, R?a〈Γ̂〉)⊕d x : D ` ∅ �R!a f
′JΓ̂/ΓK : F

cut1
Σ′, R?a〈Γ̂〉 ` ∅ �R!a f

′JΓ̂/ΓKJe/xK : F

If needed, we can weaken φ′2 to a typing φ∗2 of (Σ′, R?a〈Γ̂〉)⊕d x : D �R!a Γ ` f ′ : F and then
apply cut1 between φ1 and φ∗2 which obtains Σ′, R?a〈Γ̂〉 �R!a Γ ` f ′Je/xK : F from which Ax f
generates the conclusion Σ′, R?a〈Γ̂〉 ` ∅ �R!a f

′Je/xKJΓ̂/ΓK : F which is what we want because
f ′Je/xKJΓ̂/ΓK = f ′JΓ̂/ΓKJe/xK. The equality holds since no variable of Γ is free in e and trunk
variable x is distinct from all branch variables in Γ̂.

It remains to see how we get rid of cut1 when φ2 ends in a left rule. It is not difficult to show
that every application of a left rule in φ2 which does not involve the cut variable x can be
permuted with the cut. So, it is enough to consider the cases where

• φ2 ends in ∧Li, ∨L, ⊃L, ∃L, ∀L which operates on the cut variable x : D.

The type D now restricts the possible combination of the end rules in φ1 and in φ2. Specif-
ically, we can only have (∧R, ∧Li), (∨Ri, ∨L), (⊃R, ⊃L), (∃R, ∃L), (∀R, ∀L) as well as all
combinations of ∨L, ∃L in φ1 with any of ∧Li, ∨L, ⊃L, ∃L, ∀L for φ2. Hence, we are down to
19 cases. At this point, the assumption that fJe/xK is irreducible comes into play. For none of
these cases can actually occur in an irreducible expression as they would generate a redex in
fJe/xK.

For instance, if φ1 ends in ∧R and φ2 = ∧Li · φ′2 where ∧Li works on x : D, we must have
D = D1 ∧D2, e = (e1, e2) as well as f = f ′Jπi x/yK with φ′2 being a typing of Σ⊕d {y : D1, x :
D} ` f ′ : Ψ. Thus, fJe/xK = (f ′Jπi x/yK)J(e1, e2)/xK = (f ′J(e1, e2)/xK)Jπi(e1, e2)/yK. But
then fJe/xK contains the β-redex πi(e1, e2) unless y is not free in f ′. Yet, if this is so, the end
rule ∧Li of φ2 is redundant, because f = f ′ and thence sub-derivation φ′2 without ∧Li (using
admissibility of strengthening Lem 1(2)) already is a typing of Σ⊕d x : D ` f : Ψ. We can then
invoke the induction hypothesis and conclude that the cut1 between φ1 typing Σ�d ` e : D and
φ′2, which also types Σ ` fJe/xK : Ψ, is eliminable. Essentially the same argument applies to
the combinations (∨Ri, ∨L), (⊃R, ⊃L), (∃R, ∃L), (∀R, ∀L). They all generate β-redexes.

Now what about φ1 ending in ∨L, ∃L? Then, the top-level operator of e is a case or let

construct. Combine this with an application of ∧Li, ∨L, ⊃L, ∃L or ∀L as the end rule in φ2

acting on the cut variable x. We get a destructor applied to a case or let inside fJe/xK. This
results in one of the 10 γ-redexes of Fig. 4. For example, suppose φ1 = ∃L ·φ′1 and φ2 = ∃L ·φ′2
where ∃L in φ2 decomposes x : D with D = ∃R.D′. Then, e = let !b. ẑ = e1 in e2 and
f = let !a. ŷ = x in f ′ such that φ′2 types Σ ⊕d {x : D,R?a〈ŷ : C〉} ` f ′ : Ψ. We calculate
fJe/xK = let !a. ŷ = (let !b. ẑ = e1 in e2) in f ′. This is a redex for γ-contraction γlet5 (see
Fig. 4). The same reasoning shows that in all the other cases, too, γ-redexes would arise, if the
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last left rule in φ2 is not redundant. But redexes for commuting contractions do not exist in
fJe/xK by assumption. This completes the proof that cut1 can be eliminated.

Rule [cut2]. Next, we come to look at an application of cut2. Again, let φ1 and φ2 be two cut-
free (by virtue of the induction hypothesis) sub-proofs, then perform cut2 on their conclusion
sequents. This yields a derivation tree φ as follows:

...φ1

Σ�d ` ∅ �R!a e : D

...φ2

Σ⊕d R?a〈x̂ : D〉 ` f : Ψ
cut2 (x̂ fresh)

Σ ` fJe/x̂K : Ψ

We can easily interchange cut2 with the last rules of φ2, if this is a right rule ∧R, ⊃R, ∃R,
∀R, ∨Ri or any of the left rules. This is also true for Axm because it cannot involve the cut
variable x̂ : D, which is a branch not a trunk variable. Let us look at the case of ⊃L for a
typical example. The typing derivation φ of such a cut looks like this

...φ1

Σ�d ` ∅ �R!a e : D

...φ21

(Σ⊕d R?a〈x̂ : D〉)�k ` e1 : C1

...φ22

Σ⊕d R?a〈x̂ : D〉 ⊕k z : C2 ` f : Ψ ⊃L
Σ⊕d R?a〈x̂ : D〉 ` fJy e1/zK : Ψ

cut2
Σ ` (fJy e1/zK)Je/x̂K : Ψ

where y : C1 ⊃ C2 is a trunk variable at depth k in Σ⊕d R?a〈x̂ : D〉. Here, as with most other
cuts in which ⊃L appears on the right branch, the cut distributes over the two sub-derivations
φ21 and φ22, to give φ∗21 and φ∗22 on which we can use the induction hypothesis because they
are each smaller in size.

Suppose first that d ≤ k, i.e., (Σ ⊕d R?a〈x̂ : D〉)�k = Σ�k ⊕d R?a〈x̂ : D〉 and Σ�k�d =
Σ�d. Then we can perform cut2 between φ1 and φ21 obtaining a cut-free typing φ∗21 of Σ�k `
e1Je/x̂K : C1. Now consider that (Σ ⊕k z : C2)�d = Σ�d (z is a trunk variable and cannot
be captured as a branch) so the induction hypothesis is applicable to φ1 and φ22 to build a
cut-free typing φ∗22 of Σ ⊕k z : C2 ` fJe/x̂K : Ψ. Both φ∗21 and φ∗22 recombine under ⊃L
to yield Σ ` (fJe/x̂K)Jy(e1Je/x̂K)/zK : Ψ, this time cut-free. This is what we desire since
(fJe/x̂K)Jy(e1Je/x̂K)/zK = (fJy e1/zK)Je/x̂K. Note that this syntactic equality guarantees that
both e1Je/x̂K and fJe/x̂K must be irreducible because (fJy e1/zK)Je/x̂K is irreducible. This is
why the induction hypotheses apply.

The case d > k is even simpler, since then x̂ does not occur free in e1. We only need to eliminate
the cut2 of φ1 with φ22 and then apply ⊃L to the result. This completes the case where φ2

ends in ⊃L. The only remaining, and most interesting, case is when

• φ2 ends in Ax f .

If φ2 = Ax f · φ′2 and the branch R?a〈x̂ : D〉 containing the cut variable is not introduced by

8
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Ax f ,

...φ1

(Σ′, S?b〈Γ̂〉)�d ` ∅ �R!a e : D

...φ
′
2

Σ′ ⊕d R?a〈x̂ : D〉 �S!b Γ ` f : Ψ′
Ax f

(Σ′, S?b〈Γ̂〉)⊕d R?a〈x̂ : D〉 ` ∅ �S!b fJΓ̂/ΓK : Ψ′
cut2 (x̂ fresh)

Σ′, S?b〈Γ̂〉 ` ∅ �S!b fJΓ̂/ΓKJe/x̂K : Ψ′

then we have direct commutation between cut2 and Ax f . Again, if needed, derivation φ′2 can

be weakened to a typing φ∗2 of (Σ′, S?b〈Γ̂〉)⊕d R?a〈x̂ : D〉 �S!b Γ ` f : Ψ′. Considering that d
is at most the depth of Σ′, one can show that (Σ′, S?b〈Γ̂〉 �S!b Γ)�d = (Σ′, S?b〈Γ̂〉)�d, so that
cut2 combines φ1 and φ∗2 to obtain Σ′, S?b〈Γ̂〉 �S?b Γ ` fJe/x̂K : Ψ′ from which an application
of Ax f gives us Σ′, S?b〈Γ̂〉 ` ∅ �S!b fJe/x̂KJΓ̂/ΓK : Ψ′. Since x̂ is different from all Γ̂ and no

variable from Γ can be free in e this expression is the same as fJΓ̂/ΓKJe/x̂K.

If Ax f introduces the cut variable, then d is the depth of Σ, Σ�d = Σ where φ′2 types Σ �R!a

x : D ` f : Ψ′ with Ψ = ∅ �R!a Ψ′. Here we apply the Scope Shift Prop. 5 to φ1 which
gives Σ = Σ′, R?a〈Γ̂〉 and a derivation φ∗1 of Σ �R!a Γ ` e′ : D with e = e′JΓ̂/ΓK. Close
inspection of the proof of Prop. 5 shows that for this ”transformation” from φ1 to φ∗1 we do not
need to introduce any cut rules and also do not increase the size of the derivation. Since no
trunk variable of Γ occurs in Σ, we can use Lem. 1(3) to weaken φ′2 to derive a typing φ∗2 of
Σ �R!a x : D,Γ ` f : Ψ′ of size not greater than φ′2. Using the induction hypothesis for cut1

on φ∗1 and φ∗2 we construct a cut free typing derivation of Σ�R!a Γ ` fJe′/x̂K : Ψ′ from where
an application of Ax f takes us back to the original typing Σ ` fJe′/x̂KJΓ̂/ΓK : Ψ in view of

Ψ = ∅ �R!a Ψ′ and fJe′/x̂KJΓ̂/ΓK = fJΓ̂/ΓKJe/x̂K. This completes the proof of elimination for
cut2 and thus the proof of Prop. 2.

5 Destructor Completeness

Proposition 3 (Destructor Completeness). 1. Σ ` let !a. ŷ = e in f : F iff for some depth
k of Σ, Σ�k ` e : ∃R.D and Σ⊕k R?a〈ŷ : D〉 ` f : F .

2. Σ ` e@a : E iff Σ is of the form Σ = Σ′ �R!a Γ and Σ′ ` e : ∀R.E.

3. Σ ` e1 e2 : E iff Σ ` e1 : D ⊃ E and Σ ` e2 : D for some type D.

4. Σ ` π1 e : E iff Σ ` e : E ∧D for some type D.

5. Σ ` π2 e : E iff Σ ` e : D ∧ E for some type D.

6. Σ ` ι1 e : F iff F = D ∨ E for some types D, E and Σ ` e : D.

7. Σ ` ι2 e : F iff F = D ∨ E for some types D, E and Σ ` e : E.

Proof. The (⇒) direction of all claims are obtained by induction on the structure of typing
derivations and the (⇐) direction uses the typing rules including the cut rules to build the
desired typing. We show the inversion for the modal destructors and function application,
cases (1)-(3) of Prop. 3. The other cases (4)-(7) for projections and injections are standard.

9
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(1) ∃R.D. We start with the (⇒) direction of the statement. Let φ be a typing derivation of
form Σ ` let !a. ŷ = e in f : F . We show that there is some depth d such that Σ�d ` e : ∃R.D
and Σ⊕d R?a〈ŷ : D〉 ` f : F . The argument proceeds by induction on φ. Obviously, φ cannot
end in any of the rules Ax f , Axm, ⊃R, ∧R, ∨Ri, ∨L, ∃R or ∀R. What we need to check are
the rules ∃L, ⊃L, ∧Li, ∀L and cut1, cut2.

• If φ = ∃L · φ1 the statement is trivial since then e = x is a variable, Σ = Σ1, x : ∃R.D,Σ2

and φ1 types Σ1, x : ∃R.D,R?a〈ŷ : D〉,Σ2 ` f : F . Clearly, Σ�d ` x : ∃R.D by Axm where d is
the depth of x in Σ.

• The cases ⊃L, ∧Li, ∀L are easy to argue as they commute with the inversion. Consider ⊃L
in detail, φ = ∀L · φ1 and φ = ∧Li · φ1 are handled in the same fashion:

...φ1

Σ�k ` e1 : C1

...φ2

Σ⊕k z : C2 ` let !a. ŷ = e′ in f ′ : F ⊃L (z fresh)
Σ ` let !a. ŷ = e′Jx e1/zK in f ′Jx e1/zK : F

where e = e′Jx e1/zK, f = f ′Jx e1/zK and x : C1 ⊃ C2 is a trunk variable at depth k in Σ. One
can show that a and ŷ must be fresh (in φ2) for Σ and thus for Σ�k. Therefore, they cannot
be free in e1, so that (let !a. ŷ = e′ in f ′)Jx e1/zK = let !a. ŷ = e′Jx e1/zK in f ′Jx e1/zK. By
induction hypothesis on φ2, there are typings φ21 of (Σ ⊕k z : C2)�d ` e′ : ∃R.D and φ22 of
(Σ ⊕k z : C2) ⊕d R?a〈ŷ : D〉 ` f ′ : F at some depth d. Note that the context of φ22 can be
rearranged as (Σ ⊕k z : C2) ⊕d R?a〈ŷ : D〉 = (Σ ⊕d R?a〈ŷ : D〉) ⊕k z : C2 which prepares φ22

for application with ⊃L.

1. If k ≤ d, then (Σ⊕k z : C2)�d = Σ�d⊕k z : C2 as well as Σ�d�k = Σ�k. Thus, the typings
φ1 and φ21 can be combined by ⊃L obtaining Σ�d ` e : ∃R.D.

2. If d < k then (Σ ⊕k z : C2)�d = Σ�d and e′, according to φ21 does not contain z free. It
follows e = e′ and φ21 is the required typing Σ�d ` e : ∃R.D for e.

This extracts the typing for e. Regarding the typing for f we argue as follows:

1. If d ≤ k then (Σ ⊕d R?a〈ŷ : D〉)�k = Σ�k ⊕d R?a〈ŷ : D〉. Combining φ1, weakened by
R?a〈ŷ : D〉 at depth d (Lem. 1(3)), with φ22 under ⊃L then yields Σ⊕dR?a〈ŷ : D〉 ` f : F
as required.

2. If k < d then (Σ ⊕d R?a〈ŷ : D〉)�k = Σ�k. Now we can directly combine φ1 with φ22

under ⊃L to infer Σ⊕d R?a〈ŷ : D〉 ` f : F .

• The end rules cut1 and cut2 are not difficult either. Let us begin with cut1 which gives sub-
derivations φ1 of Σ�k ` g1 : C and φ2 for Σ⊕k x : C ` g2 : F with g2Jg1/xK = let !a. ŷ = e in f .

A special case of this is where g2 = x and g1 = let !a. ŷ = e in f . For the typing φ2 to be
valid, variable x must be a (trunk) variable in the active scope of Σ⊕k x : C which means that
k is identical to the depth of Σ, whence Σ�k = Σ. The statement then follows directly from
the induction hypothesis applied to φ1. So, suppose g2 6= x, i.e., g2 = let !a. ŷ = e′ in f ′ with
e′Jg1/xK = e and f ′Jg1/xK = f . We invoke the induction hypothesis on φ2. This gives a depth
d within context Σ⊕k x : C such that (Σ⊕k x : C)�d ` e′ : ∃R.C and (Σ⊕k x : C)⊕d R?a〈ŷ :
D〉 ` f ′ : F . The latter can directly be combined with φ1, possibly weakened (Lem. 1(3)), by
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cut1 to give Σ⊕d R?a〈ŷ : D〉 ` f ′Jg1/xK : F or in fact Σ⊕d R?a〈ŷ : D〉 ` f : F . Regarding the
typing of e we make a case distinction: If d ≥ k, we can form cut1 between φ1 and the typing
(Σ⊕k x : C)�d ` e′ : ∃R.C to get Σ�d ` e′Jg1/xK : ∃R.C. This is what we need. If d < k then
(Σ⊕k x : C)�d = Σ�d and thus e′ does not have x free. Then, e = e′ and we are done.

• Finally, regarding cut2 we are looking at sub-typings φ1 of Σ�k ` ∅ �S!c g1 : C and φ2 for
Σ⊕k S?c〈x̂ : C〉 ` g2 : F with g2Jg1/x̂K = let !a. ŷ = e in f . Here we can immediately exclude
the case g2 = x̂ because the typing Σ ⊕k S?c〈x̂ : C〉 ` x̂ : F would require that x̂ is a trunk
variable in the active scope of the context, while in fact it is a branch variable (at depth k+ 1).
Thus, g2 6= x̂ and g2 = let !a. ŷ = e′ in f ′ with e′Jg1/x̂K = e and f ′Jg1/x̂K = f .

The induction hypothesis on φ2 yields a depth d in context Σ ⊕k S?c〈x̂ : C〉 together with a
typing derivation φ21 for

(Σ⊕k S?c〈x̂ : C〉)�d ` e′ : ∃R.D

and φ22 of Σ⊕k S?c〈x̂ : C〉 ⊕d R?a〈ŷ : D〉 ` f ′ : F . It is possible to use cut2 with φ1 (suitably
weakened by R?a〈ŷ : D〉 if d ≤ k) on φ22, with the result Σ⊕dR?a〈ŷ : D〉 ` f ′Jg1/x̂K : F which
is Σ⊕d R?a〈ŷ : D〉 ` f : F as desired.

Given d ≥ k it holds that (Σ ⊕k R?a〈x̂ : C〉)�d = Σ�d ⊕k R?a〈x̂ : C〉 and Σ�d�k = Σ�k. The
application of cut2 on φ1 with φ21 produces Σ�d ` e′Jg1/x̂K : ∃R.D. But this is exactly the
typing Σ�d ` e : ∃R.D that we want. What if d < k? Then, e′ cannot have branch variable x̂
free, whence e′ = e and typing φ21 already amounts to Σ�d ` e : ∃R.D.

It remains to argue the converse direction (⇐) of the statement. To this end suppose there is
some depth d such that Σ�d ` e : ∃R.D and Σ ⊕d R?a〈ŷ : D〉 ` f : F . First, we can weaken
(Lem. 1(3)) the typing of f to Σ⊕d {x : ∃R.D,R?a〈ŷ : D〉} ` f : F for a suitable fresh variable
x, and then apply ∃L to construct Σ ⊕d x : ∃R.D ` let !a. ŷ = x in f : F . Finally, we invoke
cut1 with Σ�d ` e : ∃R.D and get Σ ` let !a. ŷ = e in f : F as desired.

Case (2) ∀R.E. First consider the (⇒) direction, assuming a derivation φ of Σ ` e@a : E.
We show that Σ = Σ′ �R!a Γ and Σ′ ` e : ∀R.E. We proceed by induction on the structure of
the typing derivation. Clearly, the last rule cannot be Ax f or any of the right rules ∀R, ∃R,
⊃R, ∧R, ∨Ri nor the left rule ∃L or ∨L. We only need to treat the end rules ⊃L, ∧Li, ∀L,
cut1 and cut2.

• If φ = ⊃L ·(φ1, φ2) then φ1 types Σ�k ` e1 : C1 and φ2 is a typing for Σ⊕kw : C2 ` e′ : E such
that e′Jy e1/wK = e@a for some trunk variable y : C1 ⊃ C2 at depth k in Σ. The trivial case
e′ = w is excluded since always y e1 6= e@a. We must have e′ = e′′@a and e′′Jy e1/wK = e. The
induction hypothesis applied to φ2 guarantees that Σ⊕kw : C2 = Σ′ �R!a Γ and Σ′ ` e′′ : ∀R.E.
We observe that Σ′ �R!a Γ = (Σ′′ �R!a Γ′) ⊕k w : C2 and Σ = Σ′′ �R!a Γ′. We claim that
Σ′′ ` e : ∀R.E. But this follows directly by assumption if w 6∈ FV (e′′), because then Σ′ = Σ′′

and e = e′′, or by applying ⊃L to φ1 and the typing Σ′ ` e′′ : ∀R.E if w ∈ FV (e′′), since then
w εk Σ′, Σ′ = Σ′′ ⊕ w : C2 and Σ′′�k = Σ�k.

• The next cases are φ = ∧Li·φ1 and φ = ∀L·φ1. We only treat the latter, as the former proceeds
analogously. Suppose, then, φ1 types Σ ⊕k+1 w : C ` e′ : E where Σ = Σ1, y : ∀S.C �S!b Σ2

with trunk variable y at level k and e@a = e′Jy@b/wK.
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The matching may come about because e′ = w, where we have e = y and a = b. Also, the
typing φ1 turns into Σ ⊕k+1 w : C ` w : E which means that E = C as well as that Σ has
depth k + 1 and Σ2 = Γ is of depth 0. Then, obviously, Σ = Σ′ �S!a Γ with Σ′ = Σ1, y : ∀S.C
and Σ′ ` y : ∀S.C by rule Axm as desired.

The other possibility is that e@a = e′Jy@b/wK holds because there is an expression e′′ with
e′ = e′′@a and e = e′′Jy@b/wK. Then φ1 types Σ ⊕k+1 w : C ` e′′@a : E. Applying the
induction hypothesis yields Σ ⊕k+1 w : C = Σ′′ �R!a Γ and Σ′′ ` e′′ : ∀R.E. We can extract
the trunk variable w : C at level k + 1 in Σ′′ �R!a Γ and find Σ′′′, Γ′ so that Σ′′ �R!a Γ =
(Σ′′′ �R!a Γ′)⊕k+1 w : C and also Σ = Σ′′′ �R!a Γ′.

If w 6∈ FV (e′′), then e = e′′ and we can strengthen (Lem. 1(2)) the typing Σ′′ ` e′′ : ∀R.E
to Σ′′′ ` e′′ : ∀R.E. Thus, we are done. If w ∈ FV (e′′), then w must appear at depth k + 1
in Σ′′, i.e., Σ′′ = Σ′′′ ⊕k+1 w : C and Γ′ = Γ. We still have variable y : ∀S.C at depth k in
Σ′′′ since it occurs in Σ at depth k. Therefore, we can apply ∀L to Σ′′ ` e′′ : ∀R.E to derive
Σ′′′ ` e′′Jy@b/wK : ∀R.E or rather Σ′′′ ` e : ∀R.E.

• If φ ends in cut1 with sub-derivations φ1 and φ2, then e@a = g2Jg1/yK such that φ1 types
Σ�k ` g1 : C and φ2 is a typing of Σ⊕k y : C ` g2 : E.

The operator @ is either part of g2 or introduced with the substitution of g1 for y. In the latter
case we must have g1 = e@a as well as g2 = y, E = C, and Σ is of depth k. Thus, Σ�k = Σ
which means our claim follows from the induction hypothesis applied to φ1.

If however @ is part of g2 then g2 = g′2@a, e = g′2Jg1/yK and the typing φ2 becomes Σ ⊕k
y : C ` g′2@a : E. The induction hypothesis can now be applied to φ2. It tells us that
Σ ⊕k y : C = Σ′ �R!a Γ and Σ′ ` g′2 : ∀R.E. As before we extract the trunk variable y : C
from Σ′ and Γ so that Σ′ �R!a Γ = (Σ′′ �R!a Γ′)⊕k y : C and Σ = Σ′′ �R!a Γ′. If y 6∈ FV (g′2)
then e = g′2 and the typing Σ′ ` g′2 : ∀R.E may be strengthened (Lem. 1(2)) to Σ′′ ` g′2 : ∀R.E,
i.e., Σ′′ ` e : ∀R.E, which completes the proof. If y ∈ FV (g′2) then y appears at depth k in
Σ′, specifically Σ′ = Σ′′ ⊕k y : C as well as Σ�k = (Σ′′ �R!a Γ′)�k = Σ′′�k. This means that
cut1 with φ1 is applicable to the typing Σ′ ` g′2 : ∀R.E to yield Σ′′ ` g′2Jg1/yK : ∀R.E which is
nothing but Σ′′ ` e : ∀R.E as required.

• The last case to treat is where φ = cut2 · (φ1, φ2) with e@a = g2Jg1/ŷK such that φ1 types
Σ�k ` ∅ �S!b g1 : C and φ2 is a typing of Σ ⊕k S?b〈ŷ : C〉 ` g2 : E. Note that g2 6= ŷ since
there is no typing Σ ⊕k S?b〈ŷ : C〉 ` ŷ : E. Since g2 6= ŷ we have g2 = g′2@a, e = g′2Jg1/ŷK
and the typing φ2 becomes Σ⊕k S?b〈ŷ : C〉 ` g′2@a : Ψ. It is not difficult, then, to obtain the
statement by induction hypothesis on typing φ2. The proof works exactly like in case of cut1.

Finally we come to tackle the (⇐) direction of the statement. Suppose, Σ = Σ′ �R!a Γ and
Σ′ ` e : ∀R.E. Clearly, Σ′, x : ∀R.E �R!a y : E,Γ ` y : E by Axm from which an application
of ∀L gives Σ′, x : ∀R.E �R!a Γ ` x@a : E. Into this derivation we can cut1 the well-typed
expression Σ′ ` e : ∀R.E and get Σ ` e@a : E. This proves the claim and completes the proof
of Case (2).
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Case (3) D ⊃ E. The direction (⇐) is trivial. For if Σ ` e1 : D ⊃ E and Σ ` e2 : D then
we take the derivation ⊃L · (Axm,Axm) for Σ, x : D ⊃ E, y : D ` x y : E and cut1 with the
typings of e1, e2, suitably weakened (Lem. 1(3)), to obtain Σ ` e1 e2 : E.

Now we address the (⇒) direction which is the more difficult part. Assume we have a derivation
of Σ ` e1 e2 : E. The end rule cannot be Ax f , Axm, ⊃R, ∧R, ∨Ri, ∨L, ∀R, ∃R or ∃L but must
be one of ⊃L, ∧Li, ∀L, cut1, cut2. Of these we only present ⊃L and ∀L. The other cases are
analogous.

• Suppose the derivation is φ = ⊃L · (φ1, φ2) where φ1 types Σ�k ` g1 : C1 while φ2 is a typing
derivation of Σ ⊕k w : C2 ` g2 : E for some trunk variable y : C1 ⊃ C2 at depth k in Σ, and
moreover e1 e2 = g2Jy g1/wK.

The easy case is where g2 = w, so that e1 e2 = y g1, or rather e1 = y and e2 = g1. Now, typing
φ2 specialises to Σ ⊕k w : C2 ` w : E which implies that E = C2 and w is a variable in the
active scope, i.e. Σ has depth k. But then also y is a variable in the active scope of Σ and we
trivially have Σ ` y : C1 ⊃ C2 on the one hand and Σ ` g1 : C1, since Σ�k = Σ. This is what
we are after.

The inductive case is when g2 is not the variable w but when the matching e1 e2 = g2Jy g1/wK
holds because g2 = g21 g22 and e1 = g21Jy g1/wK, e2 = g22Jy g1/wK. Here we invoke the induction
hypothesis on the typing derivation φ2 for g2. This gives us Σ ⊕k w : C2 ` g21 : D ⊃ E and
Σ⊕k w : C2 ` g22 : D for some type D. Now we may apply ⊃L with φ1 to both derivations to
get Σ ` e1 : D ⊃ E and Σ ` e2 : D as desired.

• If the derivation is φ = ∀L·φ1, the sub-derivation φ1 is of the shape Σ⊕k+1y : C ` e : E where
Σ = Σ1, x : ∀S.C �S!b Σ2 with trunk variable x at depth k and e1 e2 = eJx@b/yK. Obviously,
the expression e cannot be simply the variable y. Rather, e = e′1 e

′
2 with e1 = e′1Jx@b/yK and

e2 = e′2Jx@b/yK. We use the induction hypothesis on φ1 which gives us derivations Σ⊕k+1 y :
C ` e′1 : D ⊃ E and Σ⊕k+1 y : C ` e′2 : D. To both of these typings the rule ∀L is applicable,
obtaining Σ ` e1 : D ⊃ E and Σ ` e2 : D. This is what we need.

6 Constructor Completeness

Proposition 4 (Constructor Completeness).

1. Σ ` !a. e : F iff F = ∃R.E and Σ ` ∅ �R!a e : E.

2. Σ ` ?a. e : F iff F = ∀R.E and Σ�R!a ∅ ` e : E.

3. Σ ` λy.e : F iff F = D ⊃ E and Σ, y : D ` e : E.

4. Σ ` (e1, e2) : F iff F = D ∧ E and Σ ` e1 : D and Σ ` e2 : E.

5. Σ ` case e of [ι1 x1 → e1 | ι2 x2 → e2] : F iff for some depth k of Σ we have Σ�k ` e :
D ∨ E and Σ⊕k x1 : D ` e1 : F and Σ⊕k x2 : D ` e2 : F .

Proof. The proof proceeds by induction on the structure of typing derivations and uses the cut
rules. As before, only the modal constructors and function abstraction, cases (1)-(3) of Prop. 4
are discussed. The other cases (4)-(5) for pairing and case analysis are standard.
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Case (1) ∃R.E. The (⇐) direction of the statement is trivial since it is the same as rule ∃R.
For the (⇒) direction suppose φ is the derivation of Σ ` !a. e : F . We claim that F = ∃R.D
and Σ ` ∅ �R!a e : D. Clearly, the last rule of φ cannot be Ax f , Axm, ∃L, ∀R, ⊃R, ∧R, ∨Ri
or ∨L. If the last rule is ∃R the claim is immediate. All the left rules ⊃L, ∧Li, ∀L as well as
the cut rules, which are generic in the typing statement, easily commute with the inversion.

Case (2) ∀R.E. The direction (⇐) from Σ�R!a ∅ ` e : E to Σ ` ?a. e : ∀R.E is precisely the
rule ∀R. For (⇒) we proceed by induction on the last rule of the typing derivation Σ ` ?a. e : F .
This can only be ∀L, ⊃L, ∧Li or ∀R and the cut rules cut1, cut2. If it is ∀R, then the claim
follows immediately. The rules ∀L, ⊃L and ∧Li commute with the statement of the claim and
thus can be obtained by induction hypothesis. The same applies to cut1 and cut2 since both
are generic in the depth of the sequents. The extension of the context from Σ to Σ �R!a ∅ in
the inversion does not prevent the application of the cut rules. Thus, they follow by induction
hypothesis, too.

Case (3) D ⊃ E. Again, the direction (⇐) is simply the rule ⊃R. To argue the converse
direction (⇒) suppose we are given a typing derivation φ of Σ ` λy.e : F . The end rules Ax f ,
Axm, ∀R, ∃R, ∃L, ∧R, ∨Ri and ∨L are excluded. If the last rule of φ is ⊃R then we are
done immediately. The rules ∀L, ⊃L and ∧Li commute with the inversion, too, and hence they
follow by induction hypothesis. Similarly, the end rules cut1, cut2 can be pushed up the tree
as they remain applicable under extension of the active scope.

Observe that if λy.e = g2Jg1/x̂K arises from an application of cut2, then necessarily g2 6= x̂,
because x̂ is a branch variable while g2 has a trunk type. This means the constructor λy
is not substituted by g1, but rather g2 = λy.e′ with e = e′Jg1/x̂K. Thus, we can use the
induction hypothesis for the trunk typing Σ ⊕k R?a〈x̂ : C〉 ` λy.e′ : F rather than a branch
type Σ�k ` ∅ �R!a λy.e : C, for which we have not stated it.

7 Scope Shift

Proposition 5 (Scope Shift). Σ ` ∅ �R!a e : E iff Σ = Σ′, R?a〈Γ̂〉 and Σ �R!a Γ ` e′ : E for
some e′ with e = e′JΓ̂/ΓK.

Proof. For ease of notation let us abbreviate the substitution eJΓ̂/ΓK by e|Γ for any set of typed
trunk variables Γ. Observe that the (⇐) direction of Prop. 5 is simply an application of rule
Ax f (notice the implicit contraction permitted by the rule). For the (⇒) direction we show
by induction on derivations that for all typings φ of Σ ` ∅ �R!a e : E the context Σ must
contain a branch R?a〈Γ̂〉 in the active scope, i.e., Σ = Σ′, R?a〈Γ̂〉 and that φ can be reduced to
a typing derivation φ∗ for Σ�R!a Γ ` e′ : E of size not larger than that of φ such that e = e′|Γ.
Moreover, φ∗ is cut-free whenever φ is.

The proof is based on the observation that the branch typing ∅ �R!a e : E must have been
introduced by rule Ax f which depends on such a branch R?a〈Γ̂〉 in the active scope and none
of the left rules applicable to branch typings destroys it. In addition, all the left rules remain
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applicable after the scope shift Σ �R!a Γ ` e′ : E. Note that we can assume, without loss of
generality, that Γ̂ includes all branch variables of scope a in Σ (by weakening Lem. 1(3)).

Consider the last rule of the typing φ for Σ ` ∅ �R!a e : E, which can only be Ax f , one of the
left rules ∧Li, ∨L, ⊃L, ∃L, ∀L or one of the cut rules cut1, cut2. If the last rule is Ax f then
the statement follows immediately, φ = Ax f · φ∗ and φ∗ is strictly smaller. Similarly, all of the
left rules ∧Li, ∨L, ⊃L, ∀L permute with the scope shift, because (i) they do not involve the
branch variables R?a〈Γ̂〉 and (ii) they remain applicable after the context extension from Σ to
Σ�R!a Γ.

As an example for how left rules permute with the scope shift, suppose Σ ` ∅ �R!a e : E is
derived by ⊃L, i.e., there is a derivation φ1 of Σ�k ` e1 : C1 and φ2 of Σ⊕kz : C2 ` ∅ �R!a e

′ : E
such that e = e′Jy e1/zK and y : C1 ⊃ C2 is a trunk variable in Σ at depth k. By induction
hypothesis we know that Σ = Σ′, R?a〈Γ̂〉 and φ2 can be transformed (without size increase or
additional cut rules) into φ∗2 for Σ ⊕k z : C2 �R!a Γ ` e′′ : E with e′ = e′′|Γ. The rule ⊃L
remains applicable for the typing φ∗2, thereby generating Σ �R!a Γ ` e′′Jy e1/zK : E. This
proves the claim since (e′′Jy e1/zK)|Γ = (e′′|Γ)Jy e1/zK = e′Jy e1/zK = e. Observe that the trunk
variables Γ do not occur in the context Σ, by validity, and hence not in Σ�k. Also, by validity
of contexts, they are different from the variables y and z used in the rule ⊃L. Therefore, the
substitutions (·)Jy e1/zK and (·)|Γ commute.

The only left rule which does touch a branch variable is ∃L. However, it cannot remove the
context branch R?a〈Γ̂〉, seen in forward direction, because the filler reference a appears free in
the branch typing Σ ` ∅ �R!a e : E and rule ∃L requires the branch reference that it closes not
to be free in the typing. More precisely, suppose the derivation φ = ∃L · φ1 in question is

...φ1

Σ1, x : ∃S.C, S?b〈ŷ : C〉,Σ2 ` ∅ �R!a e
′ : E ∃L (b, ŷ fresh)

Σ1, x : ∃S.C,Σ2 ` ∅ �R!a let !b. ŷ = x in e′ : E

where Σ = Σ1, x : ∃S.C,Σ2 and e = let !b. y = x in e′. Then, since a and ŷ are required to be
fresh for the context and statement, we must have a 6= b. Now, when we apply the induction
hypothesis to φ1 we get a derivation φ∗1 of Σ′, R?a〈Γ̂〉 �R!a Γ ` e′′ : E with Σ1, x : ∃S.C, S?b〈ŷ :
C〉,Σ2 = Σ′, R?a〈Γ̂〉 and e′ = e′′|Γ. The transformed typing φ∗1 is not larger than φ1 and cut-
free if φ1 is. Since a 6= b we can be sure that the branch variables R?a〈Γ̂〉 are different from
S?b〈ŷ : C〉 (though we may have R = S). This means that R?a〈Γ̂〉 is contained in the active
scope of Σ1 or Σ2, i.e., Σ1,Σ2 = Σ′1,Σ

′
2, R?a〈Γ̂〉 and Σ′ = Σ′1, x : ∃S.C, S?b〈ŷ : C〉,Σ′2. Hence

rule ∃L remains applicable to φ∗1, yielding Σ1, x : ∃S.C,Σ2 �R!a Γ ` let !b. ŷ = x in e′′ : E
as required, considering that Σ = Σ1, x : ∃S.C,Σ2 = Σ′1, x : ∃S.C,Σ′2, R?a〈Γ̂〉 and (let !b. ŷ =
x in e′′)|Γ = let !b. ŷ = x in (e′′|Γ) = let !b. ŷ = x in e′ = e. The reduced typing derivation in
this case, thus, is φ∗ = ∃L · φ∗1.

The cut rule cut1 is handled trivially. It cannot touch the branch variables, whence it commutes
with the scope shift. The same applies to cut2 if the branch variables are not involved. The
only interesting case deserving separate attention is an application of cut2 where the branch
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R?a is actively involved in the cut. This is where Σ ` ∅ �R!a e : E arises from a derivation

...φ1

Σ�k ` ∅ �R!a f : F

...φ2

Σ⊕k R?a〈x̂ : F 〉 ` ∅ �R!a e
′ : E

cut2
Σ ` ∅ �R!a e

′Jf/x̂K : E

so that e = e′Jf/x̂K. In addition, x̂ is fresh and so does not occur as a branch variable in the
scope a of Σ.

The induction hypothesis applied to φ2 brings us Σ⊕k R?a〈x̂ : F 〉 = Σ′, R?a〈Γ̂〉 together with
a typing φ∗2 of Σ′, R?a〈Γ̂〉 �R!a Γ ` e′′ : E and e′ = e′′|Γ and such that Γ̂ includes all branch
variables in scope a of Σ. The match Σ⊕k R?a〈x̂ : F 〉 = Σ′, R?a〈Γ̂〉 implies that k must be the
depth of Σ, because the same scope reference a cannot appear at different depths simultaneously.
Thus, φ1 is Σ ` ∅ �R!a f : F and Σ⊕k R?a〈x̂ : F 〉 = Σ, R?a〈x̂ : F 〉 = Σ′, R?a〈Γ̂〉.

Moreover, the equation Σ ⊕k R?a〈x̂ : F 〉 = Σ′, R?a〈Γ̂〉 implies that Γ̂ = x̂ : F, Γ̂′ and Σ =
Σ′, R?a〈Γ̂′〉, where Γ̂′ does not contain x̂. In particular, this means the typing φ∗2 for e′′ is
actually of the form Σ′, R?a〈Γ̂〉 �R!a x : F,Γ′ ` e′′ : E. Now we apply the induction hypothesis
to the typing φ1, obtaining Σ = Σ′′, R?a〈Γ̂′′〉 and a typing φ′1 of Σ′′, R?a〈Γ̂′′〉 �R!a Γ′′ ` f ′ : F
with f = f ′|Γ′′ . Again, we may assume that Σ′′ does not contain branch variables in scope
a, making them all part of Γ̂′′. Then, the separations Σ = Σ′, R?a〈Γ̂′〉 and Σ = Σ′′, R?a〈Γ̂′′〉
are unique, so that Σ′′ = Σ′ and Γ′′ = Γ′. Thus φ′1, by weakening with x̂ : F (Lem. 1(3)),
turns into a derivation φ∗1 of Σ′, R?a〈Γ̂〉 �R!a Γ′ ` f ′ : F . We may now cut1 the derivation
φ∗1 and φ∗2 to obtain Σ �R!a Γ′ ` e′′Jf ′/xK : E. This is what we want because (e′′Jf ′/xK)|Γ′ =
(e′′|Γ)Jf ′|Γ′/x̂K = e′Jf ′|Γ′′/x̂K = e′Jf/x̂K = e. Notice that φ∗ = cut1 · (φ∗1, φ∗2) is not larger than
φ = cut2 · (φ1, φ2) since each φ∗i is at most of the size of φi, and it does not involve any extra
uses of cut1 or cut2 over and above what is contained in φi.

8 Subject Reduction

π1(e1, e2) −→β e1 βπ1

π2(e1, e2) −→β e2 βπ2

case ι1 e of [ι1 x1 → e1 | ι2 x2 → e2] −→β e1Je/x1K βcase1

case ι2 e of [ι1 x1 → e1 | ι2 x2 → e2] −→β e2Je/x2K βcase2

(λx. e1) e2 −→β e1Je2/xK βλ
(?a. e)@b −→β eJb/aK [β]

let !a. ŷ = !b. e1 in e2 −→β e2Je1/ŷ, b/aK 〈β〉

Figure 3: β-Contraction Rules.

Proposition 6 (Subject Reduction). If Σ ` e : Ψ and e −→−→βγ e
′ then Σ ` e′ : Ψ.

The proof of subject reduction proceeds with the help of two auxiliary results. First, we prove
Subject Contraction Prop. 7 which states that all basic contractions preserve typing. Second,
we prove the Subject Inversion Prop. 8 which generalises this to arbitrary contexts.
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πi(let !a. ŷ = e1 in e2) −→γ let !a. ŷ = e1 inπi e2 γlet1
(let !a. ŷ = e1 in e2) e3 −→γ let !a. ŷ = e1 in e2 e3 γlet2
(let !a. ŷ = e1 in e2)@b −→γ let !a. ŷ = e1 in (e2@b) γlet3
case (let !a. ŷ = e1 in e2)
of [ι1 x1 → e3 | ι2 x2 → e4] −→γ let !a. ŷ = e1 in

case e2 of [ι1 x1 → e3 | ι2 x2 → e4] γlet4
let !a. ŷ = let !b. ẑ = e1 in e2 in e3 −→γ let !b. ẑ = e1 in let !a. ŷ = e2 in e3 γlet5
πi(case e of [ι1 x1 → e1 | ι2 x2 → e2]) −→γ case e of [ι1 x1 → πi e1 | ι2 x2 → πi e2] γ case1
(case e of [ι1 x1 → e1, ι2 x2 → e2]) e3 −→γ case e of [ι1 x1 → e1 e3 | ι2 x2 → e2 e3] γ case2
(case e of [ι1 x1 → e1 | ι2 x2 → e2])@b −→γ case e of [ι1 x1 → e1@b | ι2 x2 → e2@b] γ case3
case (case e of case e of

[ι1 y1 → e1 | ι2 y2 → e2]) −→γ [ι1 y1 → case e1 of
of [ι1 x1 → e3 | ι2 x2 → e4] [ι1 x1 → e3 | ι2 x2 → e4],

ι2 y2 → case e2 of
[ι1 x1 → e3 | ι2 x2 → e4]] γ case4

let !a. ŷ =
case e of [ι1 x1 → e1 | ι2 x2 → e2] in e3 −→γ case e of

[ι1 x1 → let !a. ŷ = e1 in e3 |
ι2 x2 → let !a. ŷ = e2 in e3] γ case5

Side condition: a, ŷ not free in e3 or e4 in γlet2 or γlet4; a 6= b in γlet3; b, ẑ not free in e3

in γlet5; y1, y2 not free in e3 or e4 in γ case4; x1, x2 not free in e3 in γ case2 or γ case5.

Figure 4: γ-Contraction Rules (“Commuting Conversions”).

Proposition 7 (Subject Contraction). All β-contractions (Fig. 3) and γ-contractions (Fig. 4)
preserve typing, i.e., if Σ ` e : Ψ and e −→β e

′ or e −→γ e
′, then Σ ` e′ : Ψ.

Proof. We show that the β-contractions in Fig. 3 and commuting contractions of Fig. 4 preserve
typing. This follows directly from the local completeness properties Props. 3, 4 as well as scope
shift Prop. 5.

Before we go through the different redexes let us observe that it suffices to prove subject
contraction for trunk typings. For if we have a redex typed as a branch Σ ` ∅ �S!c e1 : E
we can always apply a scope shift (Prop. 5) of the branch typing to get Σ = Σ′, S?c〈Γ̂〉 and
Σ �S!c Γ ` e′1 : E such that e1 = e′1|Γ. Then, subject contraction for trunk typings is
applicable (in the advanced context) which gives Σ �S!c Γ ` e′2 : E, where e′2 is the redex of
e′1, with e2 = e′2|Γ, in each case. Finally, from there, rule Ax f lifts this to the branch typing
Σ ` ∅ �S!c e2 : E. So, from now on we only consider subject contraction for trunk typings.

Case [β]. Suppose Σ ` (?a. e)@b : E. We claim that also Σ ` eJb/aK : E. By destructor
inversion (Prop. 3(2)), we get Σ = Σ′ �S!b Γ and Σ′ ` ?a. e : ∀S.E. Further, constructor
inversion (Prop. 4(2)) permits us to conclude thatR = S and Σ′ �R!a ∅ ` e : E. We now weaken
the typing to introduce Γ (Lem. 1(3)) and translate the scope reference by variable renaming
into Σ′ �R!b Γ ` eJb/aK : E by a combination of weakening and contraction (Lem. 1(1,3)).
This is nothing but Σ ` eJb/aK : E as desired.
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Case 〈β〉. Suppose Σ ` let !a. x = !b. e1 in e2 : E. We apply the destructor inversion
(Prop. 3(1)) on this typing and obtain Σ�k ` !b. e1 : ∃R.D and Σ⊕kR?a〈x̂ : D〉 ` e2 : E at some
depth k. Constructor inversion (Prop. 4(1)) on the former implies Σ�k ` ∅ �R!b e1 : D. In the
latter we systematically rename a by b through a combination of weakening and contractions
on scope references. Then, we can apply cut2 to substitute this into the typing for e2, which
yields Σ ` e2Je1/x̂, b/aK : E as required.

Case βλ. The proof of subject reduction for standard β-reduction does not pose any difficulties
either. Given a typing Σ ` (λx.e1) e2 : E we first invoke destructor completeness (Prop. 3(3))
for Σ ` λx.e1 : D ⊃ E and Σ ` e2 : D and then constructor completeness (Prop. 4(3)) to
generate a typing Σ, x : D ` e1 : E. Both typings cut1 together lead us to the conclusion
Σ ` e1Je2/xK : E.

Case γlet2. Let us start from a well-typed expression Σ ` (let !a. ŷ = e1 in e2) e3 : E, where
a and ŷ are not free in e3. We claim that Σ ` let !a. ŷ = e1 in (e2 e3) : E. By inversion of
the destructor (Prop. 3(3)) we have Σ ` let !a. ŷ = e1 in e2 : D ⊃ E and Σ ` e3 : D. We
invert the let destructor (Prop. 3(1)) to extract typings Σ�k ` e1 : ∃R.C and Σ ⊕k R?a〈ŷ :
C〉 ` e2 : D ⊃ E. The type of e3 can be weakened (Lem. 1(3)) to Σ⊕k R?a〈ŷ : C〉 ` e3 : D so
that Σ⊕k R?a〈ŷ : C〉 ` e2 e3 : E by destructor completeness (Prop. 3(3)). From here we easily
assemble the desired typing Σ ` let !a. ŷ = e1 in (e2 e3) : E using destructor completeness
(Prop. 3(1)).

Case γlet3. Let us assume a well-typed expression Σ ` (let !a. ŷ = e1 in e2)@b : E where
b 6= a. We wish to prove that also Σ ` let !a. ŷ = e1 in (e2@b) : E. We go through the inversions
as follows: First, destructor inversion (Prop. 3(2)) yields Σ = Σ′ �S!b Γ and Σ′ ` let !a. ŷ =
e1 in e2 : ∀S.E. From there, another destructor inversion (Prop. 3(1)) yields Σ′�k ` e1 : ∃R.D
as well as Σ′⊕kR?a〈ŷ : D〉 ` e2 : ∀S.E at some depth k in Σ′. Notice that Σ′⊕kR?a〈ŷ : D〉 �S!b

Γ = Σ⊕kR?a〈ŷ : D〉 is a valid context since b 6= a. We can apply destructor completeness again
(Prop. 3(2), really an application of weakening Lem. 1(3), Axm, cut1 and rule ∀L) to derive
Σ⊕k R?a〈ŷ : D〉 ` e2@b : E, or with weakening Σ⊕k {x : ∃R.D,R?a〈ŷ : D〉} ` e2@b : E. This
can be subjected to an application of ∃L which gives Σ⊕kx : ∃R.D ` let !a. ŷ = x in (e2@b) : E.
Observe that Σ�k = Σ′�k, whence we can cut1 with the typing Σ′�k ` e1 : ∃R.D and so finally
arrive at Σ ` let !a. ŷ = e1 in (e2@b) : E.

Case γlet5. Suppose let !a. ŷ = (let !b. ẑ = e1 in e2) in e3 is of type E in context Σ and b, ẑ
not free in e3. By destructor inversion (Prop. 3(1)) the sub-expression let !b. ẑ = e1 in e2 has
a type ∃R.D in a pruned context Σ�k at some depth k, and e3 : E in context Σ⊕k R?a〈ŷ : D〉.
Since b, ẑ not free in e3 they are fresh for Σ⊕k R?a〈ŷ : D〉. Further, by a second application of
destructor inversion (Prop. 3(1), e1 has an existential type ∃S.C at some prefix Σ�k�d = Σ�d
(d ≤ k) of Σ�k so that e2 : ∃R.D in the extended context Σ�k ⊕d S?b〈ẑ : C〉. Note that e3 : E
in the (valid) weakened context Σ⊕kR?a〈ŷ : D〉⊕d S?b〈ẑ : C〉, by Lem. 1(3), and (Σ⊕d S?b〈ẑ :
C〉)�k = Σ�k ⊕d S?b〈ẑ : C〉. Hence by destructor completeness (Prop. 3(1)) the expression
let !a. ŷ = e2 in e3 has type E in context Σ ⊕d S?b〈ẑ : C〉. Finally, Σ�d ` e1 : ∃S.C plus
destructor completeness (Prop. 3(1)) yields the desired result Σ ` let !b. ẑ = e1 in (let !a. ŷ =
e2 in e3) : E.
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Prop. 7 does not say that reduction −→−→βγ preserves typing, i.e., when contractions are per-
formed in arbitrary syntactic contexts. However, this follows from the substitution inversion
property (Prop. 8) to be stated and proved next. Substitution Inversion is another important
consequence of Props. 3, 4 and 5.

To explain substitution inversion, consider a well-typed expression Σ ` f{e/~z} : Ψ arising
from a raw substitution of an expression e for a variable ~z with a single occurrence in another
expression f which singles out a unique occurrence of e in f{e/~z}. We write the variable ~z
in bold face to indicate that z has multiplicity 1. Substitution inversion separates the typing
Σ ` f{e/~z} : Ψ of the composite expression from the typing of the sub-expression e and the
typing of the surrounding “context” expression f .

Let us look at ordinary typed λ-calculus (i.e., without modalities) first. There, the type context
Σ is a single (active) scope Σ = Γ and the typing statement a trunk typing Ψ = F . Then,
every occurrence of a sub-expression e in f{e/~z} is typeable in an extension of the active scope
Γ, i.e., there exists Γ′ such that Γ,Γ′ ` e : E. The extension Γ′ contains all the local variables
that are free in e but bound in f at ~z. Expression e may be replaced by any other expression
e′ well-typed in the same way: More precisely, if Γ,Γ′ ` e′ : E then Γ ` f{e′/~z} : F . We can
express this by saying that the place holder or context hole ~z has type E with an additional
local scope Γ′ and write ~z : E[Γ′] and Γ, ~z : E[Γ′] ` f : F . In this way, the variable ~z turns into
a meta-variable to abstract the raw occurrence of the sub-expression e in its local context inside
f . The meta-variable ~z is specified with a contextual type [9] E[Γ′] to express that it represents
a context hole that can be filled with any expression of type E in the extended context Γ,Γ′.
We call Γ, ~z : E[Γ′] ` f : F a substitution inversion because we have removed e from f{e/~z}
and typed the syntactic context f all by itself. It is important to note that the meta-variable
~z abstracts a raw occurrence of ~z in f , to be filled by raw substitution f{e/~z} which binds all
free occurrences of local variables Γ′ in e, as opposed to capture avoiding substitution fJe/~zK
which does not.

In λCKn we can do the same inversion of raw substitution but with a richer notion of local con-
text. Since an expression f{e/~z} wraps up different computational contexts, the sub-expression
e must be typed in a local context Σ′ which not only extends but possibly also branches off from
the main context Σ at some depth of scoping. In addition, by moving into the local context Σ′

of e, we may have to activate some set Γ̂′ of branch variables of e, i.e., replace some occurrences
of branch variables ŷ in e by their trunk versions y. The typing of a meta-variable ~z in λCKn
may thus be written as follows

Σ1, ~z : Ψ′[Σ′1]Γ′ ; Σ2 ` f : Ψ, (1)

where Σ1 = Σ�n is some initial prefix of the global context, Σ′1 is a local context of variables
by which Σ1 must be extended and Γ′ is the set of trunk variables to be activated at ~z in
f . Formally, the (meta) typing (1) states that whenever Σ1 ⊕ Σ′1 ` e′ : Ψ′ implies Σ1,Σ2 `
f{e′JΓ̂′/Γ′K/~z} : Ψ. Observe that the depth of local context Σ′1 can be larger than that of Σ1,
so that Σ1 ⊕ Σ′1 is an extended context path which branches off from the main context path
Σ at depth k. In this way, different occurrences of sub-expressions e1, e2 may live in different
parts (active nodes) of a global context tree wrapped up inside f{e1/~z1}{e2/~z2}. Note the
semi-colon in (1) between the context scopes Σ1, ~z : Ψ′[Σ′1]Γ′ relevant for sub-expression e and
the context Σ2 which is only relevant for the composite expression f{e′JΓ̂′/Γ′K/~z} at top level.
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The semicolon prevents us from exchanging typings in the root of Σ2 with those in the active
scope of Σ1.

Example 1. Consider the context Σ = f : ∃S.C ⊃ ∀R.D, S?c〈ŷ : C〉 and the typing

Σ ` ?b. f(!c. ŷ)@b : ∀R.D (2)

which can be constructed without cut rules. In the typing derivation of (2) using the sequent
rules for `norm (Figs. 1 and 2) the sub-expression f(!c. ŷ) does not appear and thus is not
typed. However, it is easy to see that the sub-expression does have a type, viz. Σ ` f(!c. ŷ) :
∀R.D. This follows directly from the admissible inversion rules of Props. 3, 4. From (2)
and Prop. 4(2) we infer that Σ �R!b ∅ ` f(!c. ŷ)@b : D. From here, Prop. 3(2) implies that
Σ ` f(!c. ŷ) : ∀R.D. Indeed, we can build the typing of (2) in a purely syntax-driven fashion
along the sub-expressions of ?b. f(!c. ŷ)@b:

Σ ` f : ∃S.C ⊃ ∀R.D

Σ�S!c y : C ` y : C
Prop. 5

Σ ` ∅ �S!c ŷ : C
Prop. 4(1)

Σ ` !c. ŷ : ∃S.C
Prop. 3(3)

Σ ` f(!c. ŷ) : ∀R.D
Prop. 3(2)

Σ�R!b ∅ ` f(!c. ŷ)@b : D
Prop. 4(2)

Σ ` ?b. f(!c. ŷ)@b : ∀R.D

Notice that all these admissible typing rules are invertible and thus can be used equally well
for type analysis as for type synthesis.

Example 2 (Substitution Inversion). Consider the expression from Ex. 1, i.e., the typing

Σ ` ?b. f(!c. ŷ)@b : ∀R.D (3)

in context Σ = f : ∃S.C ⊃ ∀R.D, S?c〈ŷ : C〉. We have seen that the sub-expression f(!c. ŷ)@b :
D is typeable in the context Σ⊕ (∅ �R!b ∅) = Σ�R!b ∅ = f : ∃S.C ⊃ ∀R.D, S?c〈ŷ : C〉 �R!b ∅.
Obviously, any other expression e1 : D typeable in this extended context Σ⊕ (∅ �R!b ∅) gives
rise to Σ ` ?b. e1 : ∀R.D by rule ∀R (or Prop. 4(2)). We can denote this as

Σ, ~z : D[∅ �R!b ∅]∅; ∅ ` ?b. ~z : ∀R.D, (4)

where the meta-variable ~z is the place holder for the raw occurrence of the sub-expression
f(!c. y)@b in (3). The meta-variable ~z is specified by a contextual type D[∅ �R!b ∅]∅ which
states that ~z can be substituted by any well-formed term of type D in the context Σ extended
by ∅ �R!b ∅. Observe that f(!c. y)@b has a free scope reference b that gets captured by the raw
substitution, i.e., b is bound by ?b. ~z at ~z.

In contrast, the sub-expressions f(!c. ŷ) : ∀R.D and !c. ŷ : ∃S.C in (3) can be typed in the outer
context Σ. Given any Σ ` e2 : ∀R.D one obtains Σ ` ?b. e2@b : ∀R.D and every Σ ` e3 : ∃S.C
can be extended to type Σ ` ?b. (fe3)@b : ∀R.D. Using a meta-variable ~z we can state this as

Σ, ~z : ∀R.D[∅]∅; ∅ ` ?b. ~z@b : ∀R.D and Σ, ~z : ∃S.C[∅]∅; ∅ ` ?b. (f~z)@b : ∀R.D.

An interesting case is the branch variable ŷ as a sub-expression of (3) whose typing can be
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inverted both as a branch typing Σ ` ∅ �S!c ŷ : C or a trunk typing Σ �S!c y : C ` y : C.
Taking the former, we can see that for every branch expression Σ ` ∅ �S!c e4 : C we can
construct a typing Σ ` ?b. f(!c. e4)@b : ∀R.D. This means we have

Σ, ~z : (∅ �S!c C)[∅]∅; ∅ ` ?b. f(!c. ~z)@b : ∀R.D

as a statement of admissibility, On the other hand, given any Σ �S!c y : C ` e5 : C we also
obtain Σ ` ?b. f(!c. e5Jŷ/yK)@b : ∀R.D. Notice how the free references to the trunk variable
y inside e5 must be abstracted as branch variables ŷ. This is reflected in the associated meta
typing

Σ, ~z : C[∅ �S!c y : C]{y:C}; ∅ ` ?b. f(!c. ~z)@b : ∀R.D.

In the statement and proof of the Substitution Inversion Prop. 8 it is convenient to consider a
trunk variable x bound in an expression f at ~z, not only if ~z occurs in the scope of a binder
for x but also for its branch partner x̂. The idea is that when we substitute an expression
d with x free, as in f{d/~z}, then the trunk variable x must be renamed (”deactivated”) to x̂
and therefore it becomes bound. Again, e|Γ stands for eJΓ̂/ΓK, which we use for abbreviation
heavily in the proof of Prop. 8.

Proposition 8 (Substitution Inversion). Let Σ ` f{d/~z} : Ψ where ~z has multiplicity 1. Then,
there exists a context split Σ = Σ1,Σ2 where Σ1 = Σ�n for some n and typing contexts Σ′, Ψ′,
a set of trunk variables Γ′ and an expression d′ such that d = d′|Γ′ and Σ1 ⊕ Σ′ ` d′ : Ψ′ and
Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f : Ψ. Moreover, the following ”locality conditions” hold:

1. the extension context Σ′ has at least the depth of Σ1 and is compatible with Σ1, i.e.,
Σ1 ⊕ Σ′ is valid;

2. each variable of Σ′ is bound in f at ~z or contained in Γ′;

3. each variable in Γ′ which is not bound in f at ~z is both a branch variable in the active
scope of Σ1 and a trunk variable in Σ′ at the same depth.

Proof. We argue by induction on the structure of the expression f , more precisely the number
of operators, using the constructor and destructor inversion stated in Props. 3 and 4 as well
as Scope Shift Prop. 5. The latter permits us to reduce the statement of Prop. 8 for a branch
typing Ψ = ∅ �R!a F to that for trunk typings Ψ = F , albeit without reducing the size of the
expression. This is well-founded since the only case of a trunk typing to recur to branch typing
is in the case of an expression f = !a. e. However, by Prop. 4(1), this reduces to the strictly
smaller sub-expression e (which is then dealt with by Scope Shift Prop. 5).

• First, observe that the statement of the proposition is immediate for variables, i.e., if f = ~z.
Then, the typing φ gives Σ ` d : Ψ directly. Trivially, for any well-typed Σ ` e : Ψ we have
Σ ` f{e/~z} : Ψ and thus Σ, ~z : Ψ[∅]∅; ∅ ` f : Ψ. The locality conditions are obvious.

We begin by first handling all cases of trunk typings, i.e., where Σ ` f{d/~z} : F .

• The cases where f = let !a. ŷ = f1 in f2 and f = case f1 of [ι1 x1 → f2 | ι2 x2 → f3] are
essentially the same. We only cover the former case. Suppose f{d/~z} = let !a. ŷ = g1 in g2

and Σ ` f{d/~z} : F . By Lem. 3(1) we have Σ�k ` g1 : ∃R.D for some depth k of Σ and
Σ⊕k R?a〈ŷ : D〉 ` g2 : F .
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Let us assume first that g1 = f1, g2 = f2{d/~z} and ~z has a unique occurrence in f2. The
induction hypothesis can thus be applied to obtain a split (Σ ⊕k R?a〈ŷ : D〉) = Σ1,Σ2 and
admissible context extension Σ′, Ψ′, Γ′, d′ with d = d′|Γ′ as well as Σ1 ⊕ Σ′ ` d′ : Ψ′ and

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f2 : Ψ (5)

where each variable in Σ′ (compatible with Σ1 and of at least same depth) is bound in f2 at ~z
or included in Γ′. Further, every variable in Γ′ that is not bound in f2 at ~z is a branch variable
in the active scope of Σ1 and also a trunk variable in Σ′ at the same depth. Obviously, every
variable bound in f2 at ~z is bound in f at ~z.

1. If the branch R?a〈ŷ : D〉 occurs in Σ1 then Σ1 = Σ′1 ⊕k R?a〈ŷ : D〉 and Σ = Σ′1,Σ2.
Moreover, defining Σ′′ =df Σ′⊕kR?a〈ŷ : D〉 we get Σ1⊕Σ′ = Σ′1⊕Σ′′ and Σ′1⊕Σ′′ ` d′ : Ψ′.
Then, given a well-typed expression Σ′1⊕Σ′′ ` e : Ψ′ the induction hypothesis (5) implies
Σ1,Σ2 ` f2{e|Γ′/~z} : Ψ to which we apply rule ∃L, obtaining Σ′1,Σ2 ` let !a. ŷ =
f1 in (f2{e|Γ′/~z}) : Ψ. This implies the admissibility of

Σ′1, ~z : Ψ′[Σ′′]Γ′ ; Σ2 ` f : Ψ

since Σ = Σ′1,Σ2 and

f{e|Γ′/~z} = (let !a. ŷ = f1 in f2){e|Γ′/~z} = let !a. ŷ = f1 in (f2{e|Γ′/~z}).

Regarding the locality condition, consider any variable u ε Σ′′: either (i) u ε Σ′ and thus,
by induction hypothesis (5), u is bound in f2 at ~z (hence also in f at ~z) or u ∈ Γ′, or
(ii) u is one of the variables a, ŷ of the branch R?a〈ŷ : D〉 and thus bound in f at ~z.
Finally, consider any variable u ∈ Γ′ not bound in f at ~z, which means u 6= y. Such u
is not bound in f2 at ~z either, so that the induction hypothesis (5) implies û is a branch
variable in the active scope of Σ1 and u a trunk variable in Σ′ at the same depth. But
since u 6= y also û 6= ŷ which means û must be a branch variable in Σ′1. Also, no trunk
variables have been modified from Σ′ and Σ′′, so that u remains trunk in Σ′′ at the same
depth as û in Σ′1. The depths of Σ′1 and Σ1 are the same as well as those of Σ′′ and Σ′.

2. The other scenario is when the branch variable R?a〈ŷ : D〉 is fully inside Σ2, say Σ2 =
Σ′2⊕k−nR?a〈ŷ : D〉 where n is the depth of Σ1. In this case, Σ = Σ1,Σ

′
2 and the induction

hypothesis (5) implies Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ′2 ` let !a. ŷ = f1 in f2 : Ψ, which is the same as

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ′2 ` f : Ψ.

Here, the locality condition holds directly by induction hypothesis (5).

Next, consider the case that g2 = f2, g1 = f1{d/~z} and ~z has a unique occurrence in f1.
The induction hypothesis can thus be applied to obtain a split Σ�k = Σ1,Σ2 together with an
admissible context extension Σ′, Ψ′, Γ′, d′ with d = d′|Γ′ as well as Σ1 ⊕ Σ′ ` d′ : Ψ′ and

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f1 : ∃R.D (6)

for which also the locality conditions hold. Thus, whenever Σ1 ⊕ Σ′ ` e : Ψ′ this implies
Σ1,Σ2 ` f1{e|Γ′/~z} : ∃R.D. Since Σ1,Σ2 = Σ�k and Σ⊕kR?a〈ŷ : D〉 ` f2 : F the application of
Prop. 3(1) gives us Σ ` let !a. ŷ = f1{e|Γ′/~z} in f2 : F which is the same as Σ ` f{e|Γ′/~z} : F
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as desired. Overall, this shows

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2,Σ3 ` f : F,

where Σ3 is chosen so that Σ = Σ�k,Σ3 = Σ1,Σ2,Σ3. The locality conditions can be verified
from the induction hypothesis (6).

• The cases where f = ιi f
′ or f = πi f

′ are trivial, by induction hypothesis on the sub-
expression f ′.

• Suppose f = !a. f ′ where ~z has multiplicity 1 in f ′ and Σ ` !a. (f ′{d/~z}) : F . By Prop. 4(1)
we must have F = ∃R.E and Σ ` ∅ �R!a f

′{d/~z} : E. By induction hypothesis then

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` ∅ �R!a f
′ : E, (7)

for Σ′, Ψ′, Γ′, d′ with Σ1 ⊕ Σ′ ` d′ : Ψ′ and d = d′|Γ′ as well as Σ = Σ1,Σ2 = Σ�n,Σ2. Σ′ is
compatible with Σ1 and of depth no smaller than Σ1. Also, all variables in Σ′ are bound in f ′

at ~z or contained in Γ′. Also, each variable in Γ′ which is not bound in f ′ at ~z appears as a
branch variable in the active scope of Σ1 and as a trunk variable in Σ′ at the same depth.

The typing (7) gives Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f : ∃R.E, directly, by application of ∃R. More
precisely, assuming Σ1 ⊕ Σ′ ` e : Ψ′ is a typing of any other expression e, the induction
hypothesis (7) implies Σ1,Σ2 ` ∅ �R!a f

′{e|Γ′/~z} : E. To this we can apply rule ∃R, which
gives Σ1,Σ2 ` !a. (f ′{e|Γ′/~z}) : ∃R.G, which is the same as Σ1,Σ2 ` f{e|Γ′/~z} : ∃R.E as
!a. (f ′{e|Γ′/~z}) = (!a. f ′){e|Γ′/~z}. This proves that

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f : ∃R.E

as claimed. The locality condition is trivially satisfied by induction hypothesis (7) and since all
variables in Σ′ bound in f ′ at ~z are also bound in f at ~z.

• Suppose f = f ′@a and ~z has multiplicity 1 in f ′. Suppose Σ ` (f ′{d/~z})@a : F . By
Prop. 3(2) we have Σ = Σ′′ �R!a Γ such that Σ′′ ` f ′{d/~z} : ∀R.F . The induction hypothesis
on f ′ yields a split Σ′′ = Σ1,Σ2 together with local contexts Σ′, Ψ′ and an expression d′ and
trunk variables Γ′ such that d = d′|Γ′ and Σ1 ⊕ Σ′ ` d′ : Ψ′. Moreover,

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f ′ : ∀R.F (8)

together with the respective locality conditions. Any other typing Σ1 ⊕ Σ′ ` e : Ψ′ may
be put through the induction hypothesis (8) to generate a well-formed expression Σ1,Σ2 `
f ′{e|Γ′/~z} : ∀R.F . Another application of Prop. 3(2), this time the other direction, obtains
Σ ` f{e|Γ′/~z} : F since (f ′{e|Γ′/~z})@a = (f ′@a){e|Γ′/~z}. Overall, this proves

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 �R!a Γ ` f : F.

as required. The locality conditions follow from (8).

• The treatment of constructors f = λy.f ′ and f = ?a. f ′ is not difficult, either. These are
more interesting, though, since they extend the context as we dive down into the expression
f ′. We only discuss the latter, the former proceeds analogously. So, suppose f = ?b. f ′ with
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Σ ` ?b. (f ′{d/~z}) : F and ~z occurs free exactly once in f ′. From Prop. 4(2) we infer that
F = ∀S.E and Σ�S!b ∅ ` f ′{d/~z} : E, where b is fresh for Σ, by validity of the context.

By induction hypothesis we have Σ�S!b ∅ = Σ1,Σ2 and contexts Σ′, Ψ′, Γ′, d′ with d = d′|Γ′ ,
Σ1 ⊕ Σ′ ` d′ : Ψ′ and

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f ′ : E (9)

such that Σ′ is compatible with Σ1 and the locality conditions hold. This implies that for
all typings Σ1 ⊕ Σ′ ` e : Ψ′ we have Σ1,Σ2 ` f ′{e|Γ′/~z} : E. To this we can apply ∀R and
conclude Σ ` f{e|Γ′/~z} : ∀S.E because ?b. (f ′{e|Γ′/~z}) = (?b. f ′){e|Γ′/~z} = f{e|Γ′/~z}. As an
admissibility statement for meta-variable ~z this gives two cases:

1. If Σ1 = Σ �S!b ∅ and Σ2 = ∅, then (by compatibility of Σ′ with Σ1) Σ ⊕ Σ′ = Σ1 ⊕ Σ′,
whence

Σ, ~z : Ψ′[Σ′]Γ′ ; ∅ ` f : ∀S.E.

Regarding the locality conditions observe that every variable in Γ′ which is not bound in
f at ~z is not bound in f ′ at ~z. Hence, by induction hypothesis (9) this variable must be a
branch variable in the active scope of Σ1. However, the active scope of Σ1 is empty. This
proves that all variables in Γ′ are bound in f ′ at ~z and therefore in f at ~z, too. All other
locality conditions follow directly from the induction hypothesis (9). Notice, the depth of
Σ is smaller than that of Σ1.

2. If Σ = Σ1,Σ
′
2 and Σ′2 �S!b ∅ = Σ2 then we must write the meta-variable typing as

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ′2 ` f : ∀S.E.

and the locality conditions follow directly from (9).

• The constructor f = (f1, f2) and destructor f = f1 f2 are handled in a similar fashion. We
only discuss the latter. Let f = f1 f2 and f{d/~z} = g1 g2 with Σ ` g1 g2 : F . By Prop. 3(3),
Σ ` g1 : D ⊃ F and Σ ` g2 : D.

We distinguish the two cases, depending on whether ~z is free in f1 or f2. First suppose ~z occurs
free in f1 exactly once but not in f2, i.e., g2 = f2 and g1 = f1{d/~z}. The induction hypothesis
breaks up the outer context Σ as Σ = Σ1,Σ2 and provides local contexts Σ′, Ψ′ together with
an expression d′ and trunk variables Γ′ such that d = d′|Γ′ , Σ1 ⊕ Σ′ ` d′ : Ψ′ and

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f1 : D ⊃ F (10)

plus locality conditions. For any well-typed expression Σ1 ⊕ Σ′ ` e : Ψ′ the induction hy-
pothesis (10) generates the typing Σ1,Σ2 ` f1{e|Γ′/~z} : D ⊃ F from which an application
of Prop. 3(3) in backwards direction yields Σ ` (f1{e|Γ′/~z})f2 : F . But this is the same as
Σ ` f{e|Γ′/~z} : F , which proves

Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f : F

for which the locality conditions follow directly from (10). Finally, note that the case where ~z
occurs free in f2 exactly once but not in f1, i.e., g1 = f1 and g2 = f2{d/~z} is essentially the
same.
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• Finally, we treat all the cases where the expression at hand has a branch typing Σ ` ∅ �R!a

f{d/~z} : F wholesale, irrespective of the structure of f . We apply the Scope Shift Prop. 5 and
get Σ = Σ′′, R?a〈Γ̂〉 and Σ �R!a Γ ` g : F with f{d/~z} = g|Γ. Hence, f ′{d′/~z} = g such that
f = f ′|Γ and d = d′|Γ′ , where Γ′ ⊆ Γ is the subset of variables from Γ which are not bound in
f ′ at ~z and occur free in d′.

Now we invoke (by way of implicit induction hypothesis) the appropriate case proved above for
the trunk typing Σ�R!a Γ ` f ′{d′/~z} : F , depending on the top-level operator of f ′. Therefore,
we can split the context Σ �R!a Γ = Σ1,Σ2 and extract Σ′, Ψ′′, d′′, Γ′′ so that d′ = d′′|Γ′′ ,
together with Σ1 ⊕ Σ′ ` d′′ : Ψ′′ and

Σ1, ~z : Ψ′′[Σ′]Γ′′ ; Σ2 ` f ′ : F, (11)

such that Σ′ is compatible with Σ1 and at least of the same depth. Moreover, all variables in
Σ′ are bound in f ′ at ~z or contained in Γ′′, and each variable in Γ′′ which is not bound in f ′

at ~z is both a branch variable in the active scope of Σ1 and a trunk variable in Σ′ at the same
depth.

Note that d = d′|Γ′ = (d′′|Γ′′)|Γ′ = d′′|Γ′′∪Γ′ . Given any other typing Σ1 ⊕ Σ′ ` e : Ψ′′

the statement (11) implies Σ1,Σ2 ` f ′{e|Γ′′/~z} : F . To this we apply Ax f and conclude
Σ ` ∅ �R!a (f ′{e|Γ′′/~z})|Γ : F . One shows (f ′{e|Γ′′/~z})|Γ = (f ′|Γ){e|Γ′′∪Γ′/~z} = f{e|Γ′′∪Γ′/~z}
where we remember that Γ′ ⊆ Γ is the subset of variables from Γ that are not bound in f ′ at
~z. In sum,

Σ1 ⊕ Σ′ ` e : Ψ′′ ⇒ Σ ` ∅ �R!a f{e|Γ′′∪Γ′/~z} : F. (12)

To turn (12) into a typing of f with meta-variable ~z we must consider the context split Σ�R!a

Γ = Σ1,Σ2 with Σ = Σ′′, R?a〈Γ̂〉. There are two cases, depending on whether the scoping step
�R!a is part of Σ1 or Σ2. Note that in any case Σ1 = (Σ �R!a Γ)�n for some n, i.e., Σ1 is a
full prefix of Σ�R!a Γ.

(1) Suppose that Σ1 = Σ �R!a Γ and Σ2 = ∅. Then, n − 1 is the depth of Σ and scope Γ at
depth n in Σ1. Since Σ′ is compatible with Σ1 and has at least the same depth, it can be split
up as Σ′ = Σ′1 �R!a Σ′2 so that Σ1 ⊕ Σ′ = Σ⊕ (Σ′1 �R!a Γ,Σ′2). Then, by (12) we have shown

Σ, ~z : Ψ′′[Σ′1 �R!a Γ,Σ′2]Γ′′∪Γ′ ; ∅ ` ∅ �R!a f : F.

We claim that the locality condition is preserved. Since Γ (i.e., the active scope of Σ1) does
not contain branch variables, by the locality condition that comes with the induction hypoth-
esis (11), all variables in Γ′′ must be bound in f ′ at ~z and thus also in f at ~z. The variables in
Γ′ are not bound in f ′ at ~z, but they are (i) branch variables in the active scope of Σ (because
Σ = Σ′′, R?a〈Γ̂〉 and Γ′ ⊆ Γ) and (ii) trunk variables at the same depth in Σ′1 �R!a Γ,Σ′2
(because the depth of Σ′1 is identical to that of Σ and Γ′ ⊆ Γ). Further, by induction hypothe-
sis (11) all variables in Σ′1 �R!a Σ′2 = Σ′ which are not bound in f at ~z (and thus not bound
in f ′ at ~z) are contained in Γ′′ ⊆ Γ′ ∪ Γ′′. By definition, all variables in Γ that are not bound
in f at ~z are included in Γ′ ⊆ Γ′ ∪ Γ′′.

(2) The remaining case is Σ2 = Σ′2 �R!a Γ. Then, Σ = Σ′′, R?a〈Γ̂〉 = Σ1,Σ
′
2 and d = d′|Γ′ =
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(d′′|Γ′′)|Γ′ = d′′|Γ′′∪Γ′ . Then, (12) means

Σ1, ~z : Ψ′′[Σ′]Γ′′∪Γ′ ; Σ′2 ` ∅ �R!a f : F.

We claim that Γ′ ⊆ Γ′′ and thus the locality condition holds for this admissible typing by
induction hypothesis (11). Take any variable x ∈ Γ′. By definition x is occurs free in d′. If it
does not occur free in d′′ then we must have x ∈ Γ′′ because d′ = d′′|Γ′′ . If x is free in d′′ then
it must be in Σ1 or in Σ′ because of the typing Σ1⊕Σ′ ` d′′ : Ψ′′. But x ∈ Γ′ ⊆ Γ cannot be in
Σ1 because all trunk variables Γ are in fact part of Σ2 = Σ′2 �R!a Γ by assumption, since the
context Σ�R!a Γ = Σ1,Σ2 is well-formed. Hence, x is a trunk variable in Σ′ and (11) implies
x ∈ Γ′′ as claimed.

With substitution inversion Prop. 8 it is straight-forward to complete the proof of Subject
Reduction Prop. 6, i.e., that contractions preserve typing in arbitrary syntactic contexts. Let
e1 −→βγ e2 be a β- or γ-contraction and Σ ` f{e1/~z} : Ψ a single occurrence of the redex

e1 inside a well-typed syntactic context f . By Prop. 8, e1 = e′1JΓ̂
′/Γ′K for some set of trunk

variables Γ′ such that e′1 is typeable as Σ1 ⊕ Σ′ ` e′1 : Ψ′ in some local context Σ1 ⊕ Σ′

extending an initial prefix Σ1 = Σ�n of Σ. Moreover, we have Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f : Ψ where
Σ = Σ1,Σ2. Since contractions commute with the (capture avoiding) substitution JΓ̂′/Γ′K we
have e′1 −→βγ e′2 for some e′2 with e2 = e′2JΓ̂

′/Γ′K. On the other hand, basic contractions
are type preserving (Prop. 7), which means Σ1 ⊕ Σ′ ` e′2 : Ψ′. Then, the context typing
Σ1, ~z : Ψ′[Σ′]Γ′ ; Σ2 ` f : Ψ with meta-variable ~z ensures that Σ ` f{e2/~z} : Ψ as desired.

9 Strong Normalisation

To show strong normalisation we use the standard technique of embedding λCKn faithfully into
the simply typed λ-calculus with finite products and sums so that reductions in the former are
bounded by the length of reductions in the latter. Since the latter is strongly normalising [3],
the former must be, too. A natural embedding is to map all universal modalities ∀R.C into
function types CtR ⊃ C and all existentials ∃R.C into product types (CtR × C) + (CtR × C)
where CtR represents some fixed but arbitrary type, parametrised in R ∈ NR to encode contexts
explicitly. In other words, we identify contexts with the objects of type CtR and take scope
abstractions to be functional abstractions over this parameter. Context closures are objects
paired with elements from CtR, plus a choice in order to interpret the commuting conversion
of the let. The syntactic translation on types is

Ast = A

(C ∧D)st = Cst ×Dst

(C ∨D)st = Cst +Dst

(C ⊃ D)st = Cst → Dst

(∀R.C)st = CtR → Dst

(∃R.C)st = (CtR × Cst) + (CtR × Cst)

where A is an atomic type. On terms we put
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xst = x

ast = a

(λx.e)st = λx.est

(e1 e2)st = e1
st e2

st

(!b. e)st = ι1(b, est)

(?a. e)st = λa.est

(e@a)st = est a

(e1, e2)st = (e1
st , e2

st)

(πi e)
st = πi e

st

(ιi e)
st = ιi e

st

(case e of [ι1 y1 → e1 | ι2 y2 → e2])st

= case est of [ι1 y1 → e1
st | ι2 y2 → e2

st ]

(let !a. x̂ = e1 in e2)st

= case e1
st of[ι1(a, x)→ e2

st | ι2(a, x)→ e2
st ]

where x̂, x and a are branch, trunk and filler scope variables, respectively.

Proposition 9 (Strong Normalisation). The reduction relation −→−→βγ is strongly normalising
on well-typed expressions.

Proof. The interpretation (·)st is extended naturally to typing contexts and typing statements.
Every path context Σ is abstracted into a simply typed context Σst by putting (x : C,Σ)st =

x : Cst ,Σst , (R?a〈Γ̂〉,Σ)
st

= Γst , a : CtR,Σ
st and (R!a[Σ])st = a : CtR,Σ

st , which removes all
prefixes R?a〈·〉 and R!a[·] and creates a single scope. Note that if a variable occurs both as a
trunk and a branch, which is possible only at the same depth, by validity of the context both
typings have the same type and thus can be collapsed. For instance, the context Σ = {x : A, y :
B,R?b〈ẑ : C〉, R!b[v : B, z : C, T?c〈ŵ : D〉]} turns into

Σst = {x : Ast , y : Bst , b : CtR, z : Cst , v : Bst , c : CtT , w : Dst}

and a typing Ψ = ∅ �R!a E becomes Ψst = Est . One then shows by induction on the structure
of typing trees that whenever Σ ` e : Ψ we have Σst `λ est : Ψst in the simply typed λ-calculus
with finite products and sums.

The next step is to show that every contraction e1 −→βγ e2 is preserved across the collapse,
i.e., e1

st −→λ e2
st , where −→λ denotes a rewriting step in the simply typed λ-calculus. We

do this for the basic reductions from Fig. 3. For βλ this is immediate because ((λx.e1) e2)st =
(λx.e1

st) e2
st −→λ e1

stJe2
st/xK = (e1Je2/xK)st since the collapse function (·)st distributes over

substitution. Next, consider a reduction [β] of the form (?a. e)@b −→β eJb/aK. We have
((?a. e)@b)st = (λa.est) b −→λ estJb/aK = (eJb/aK)st . Finally a 〈β〉-contraction let !a. x̂ =
!b. e1 in e2 −→β e2Je1/x, b/aK also translates into a λ-reduction, viz.

(let !a. x̂ = !b. e1 in e2)st

= case (!b. e1)st of [ι1(a, x)→ e2
st | ι2(a, x)→ e2

st ]

= case ι1(b, e1
st) of [ι1(a, x)→ e2

st | ι2(a, x)→ e2
st ]

−→λ e2
stJb/a, e1

st/xK = (e2Jb/a, e1/xK)st .
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Commuting contractions are also preserved. As an example consider the γ-contraction γlet5:

(let !a. ŷ = let !b. ẑ = e1 in e2 in e3)st

= case (let !b. ẑ = e1 in e2)st of [ι1(a, y)→ e3
st | ι2(a, y)→ e3

st ]

= case (case e1
st of [ι1(b, z)→ e2

st | ι2(b, z)→ e2
st ]) of [ι1(a, y)→ e3

st | ι2(a, y)→ e3
st ]

−→λ case e1
st of [ι1(b, z)→ case e2

st of [ι1(a, y)→ e3
st | ι2(a, y)→ e3

st ]

| ι2(b, z)→ case e2
st of [ι1(a, y)→ e3

st | ι2(a, y)→ e3
st ] ]

= case e1
st of [ι1(b, z)→ (let !a. ŷ = e2 in e3)st | ι2(b, z)→ (let !a. ŷ = e2 in e3)st ]

= (let !b. ẑ = e1 in let !a. ŷ = e2 in e3)st .

The commutation −→λ is sound under the side condition of γlet5, viz. that b, z are not free
in e3.

10 Confluence

Proposition 10 (Confluence). Let e, e1, e2 be λCKn expressions. Then, if e −→−→β e1 and
e −→−→β e2 then there exists e′ such that e1 −→−→β e

′ and e2 −→−→β e
′.

Proof. The proof follows the standard method introduced by Tait and Martin-Löf [2]. Its main
tool is the definition of parallel β-reduction. e −→pβ e

′ in which a set of existing redexes in e
are reduced in parallel in one step to e′. The proof of confluence consists of three parts. First,
one shows that −→pβ enjoys the diamond property, i.e., if e −→pβ e1 and e −→pβ e2 then
there exists e′ such that e1 −→pβ e

′ and e2 −→pβ e
′. Secondly, one verifies that the diamond

property of −→pβ implies the diamond property of its reflexive, transitive closure −→−→pβ by a
straightforward induction and application of a strip lemma. The final step is to deduce the
confluence of −→−→β from the diamond property of −→−→pβ by proving −→−→pβ =−→−→β.

We have formalised the proof of confluence in the proof-assistant Abella [4] which supports
higher-order abstract syntax (HOAS) [10] and has been developed by Andrew Gacek, based
on the work of Gacek, Miller and Nadathur [5, 6]. In HOAS-based proof-assistants induction
usually requires to consider predicates inside contexts of local assumptions which formalise the
structure of typed settings. Since the type information is unnecessary in the confluence proof,
our development adopts the technique of Accattoli [1] which allows us to circumvent contexts
(which are artifacts in the untyped case, anyway). The Abella source code can be found in the
appendix, Sec. A. We greatfully acknowledge Alberto Momigliano’s contribution who suggested
the use of Abella and assisted us in getting started with the formalisation.
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A Abella Code

A.1 Abella Signature for λCKn

%%% Tait/Martin-Loef style proof of Church-Rosser using parallel reductions

%%

%%% Stephan Scheele, Alberto Momigliano :: Dec. 2012

%

%% This proof shows confluence for the (monomodal fragment of) lambda-CKn

%% for closed terms. Commuting conversions are omitted.

%

%% This work extends the work by Accattoli who gave an Abella proof of

%% confluence for the simple lambda calculus. Here, we extend this by

%% products, sums and contextual terms and associated reductions.

sig crcknV2.

kind tm type.

kind sc type.

type app tm -> tm -> tm.

type abs (tm -> tm) -> tm.

% products

type pair tm -> tm -> tm.

type fst tm -> tm.

type snd tm -> tm.

% sums

type case tm -> (tm -> tm) -> (tm -> tm) -> tm.

type inl tm -> tm.

type inr tm -> tm.

% diamond contextual type

type let tm -> (sc -> tm -> tm) -> tm.

type dia sc -> tm -> tm.

% box contextual type

type box (sc -> tm) -> tm.
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type atw sc -> tm -> tm.

A.2 Abella Proof Script

%%% Tait/Martin-Loef style proof of Church-Rosser using parallel reduction

%

%%% Stephan Scheele, Alberto Momigliano :: Dec. 2012

%

%% This proof shows confluence for the (monomodal fragment of) lambda-CKn

%% for closed terms. Commuting conversions are omitted.

%

%% This work extends the work by Accattoli who gave an Abella proof of

%% confluence for the simple lambda calculus. Here, we extend this by

%% products, sums and contextual terms and associated reductions.

Specification "crcknV2".

% enforce subordination rel.

Close tm, sc.

% set level of subgoals presented by Abella

Set subgoals 2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% The following part is copycat + extensions of Accattoli’s Abella proof of confluence of beta

%% reduction for the simple lambda calculus.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% We prove confluence of beta reduction through various steps:

%% - we define the term predicate to do induction on terms (Abella currently does

%% not allow induction on types) and prove a substitution lemma for it

%% - we prove the diamond property for the transitive closure of par1 (noted parN). The proof uses

%% the diamond property of par1 and a strip lemma.

%% - we define usual beta reduction (called beta_red1) and its transitive closure (called beta_redn).

%% - we relate parN and beta_redn, obtaining confluence (from the diamond property of parN).

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%

%%% The term and scope predicates

%%%%%%

Define term : tm -> prop, scope : sc -> prop by

nabla x, term x;

nabla s, scope s;

term (app M N) := term M /\ term N;

term (abs FM) := nabla x, term (FM x);

% contextual terms

term (let M FN) := nabla s, nabla x, term (FN s x) /\ term M;

term (dia S M) := scope S /\ term M;

term (box FN) := nabla s, term (FN s);

term (atw R M) := scope R /\ term M;

% product and sums

term (pair L R) := term L /\ term R;

term (fst L) := term L;

term (snd R) := term R;

term (case C FN FM) := term C /\ nabla x, term (FN x) /\ nabla y, term (FM y);

term (inl N) := term N;

term (inr M) := term M.

% term substitution lemma

Theorem tm_sub : forall M N, nabla x,

term (M x) ->

term N -> term (M N).

induction on 1. intros. case H1.

search.

search.

apply IH to H3 H2. apply IH to H4 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. apply IH to H4 H2. search.

apply IH to H4 H2. case H3. search.

apply IH to H3 H2. search.

apply IH to H4 H2. case H3. search.

apply IH to H3 H2. apply IH to H4 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. apply IH to H4 H2. apply IH to H5 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. search.

% scope substitution lemma

Theorem sc_sub : forall M S, nabla x,

term (M x) ->
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scope S -> term (M S).

induction on 1. intros. case H1.

search.

apply IH to H3 H2. apply IH to H4 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. apply IH to H4 H2. search.

apply IH to H4 H2. case H3. search.search.

apply IH to H3 H2. search.

apply IH to H4 H2. case H3. search.search.

% products and sums

apply IH to H3 H2. apply IH to H4 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. apply IH to H4 H2. apply IH to H5 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. search.

% definition of parallel reduction including let, dia, box and atw (con/de)-structors

Define par1 : tm -> tm -> prop, pars1: sc -> sc -> prop by

nabla x , par1 x x;

nabla s, pars1 s s;

par1 (app T1 S1) (app T2 S2) := par1 T1 T2 /\ par1 S1 S2;

par1 (abs S1) (abs S2) := nabla x, par1 (S1 x) (S2 x);

par1 (app (abs T1) S1) (T2 S2) := nabla x, par1 (T1 x) (T2 x) /\ par1 S1 S2;

% contextual

par1 (let M FN) (let M’ FN’) := par1 M M’ /\ nabla s, nabla x, par1 (FN s x) (FN’ s x);

par1 (dia S M) (dia S’ M’) := pars1 S S’ /\ par1 M M’;

par1 (let (dia S M) FP) (FP’ S’ M’) := pars1 S S’ /\ par1 M M’ /\ nabla s, nabla x, par1 (FP s x) (FP’ s x);

par1 (box FN) (box FN’) := nabla s, par1 (FN s) (FN’ s);

par1 (atw R (box FN)) (FN’ R’) := pars1 R R’ /\ nabla s, par1 (FN s) (FN’ s);

par1 (atw R M) (atw R’ N) := pars1 R R’ /\ par1 M N;

% products

par1 (fst M) (fst N) := par1 M N;

par1 (snd M) (snd N) := par1 M N;

par1 (pair T1 S1) (pair T2 S2) := par1 T1 T2 /\ par1 S1 S2;

par1 (fst (pair T1 S1)) T2 := par1 T1 T2 /\ term S1;

par1 (snd (pair T1 S1)) S2 := par1 S1 S2 /\ term T1;

% sums

par1 (inl M) (inl N) := par1 M N;

par1 (inr M) (inr N) := par1 M N;

par1 (case T1 FN FM) (case T2 FN’ FM’) := par1 T1 T2 /\ nabla x, par1 (FN x) (FN’ x) /\

nabla y, par1 (FM y) (FM’ y);

par1 (case (inl M) FN FM) (FN’ M’) := par1 M M’ /\ nabla x, par1 (FN x) (FN’ x) /\ nabla y, term (FM y);

par1 (case (inr M) FN FM) (FM’ M’) := par1 M M’ /\ nabla x, par1 (FM x) (FM’ x) /\ nabla y, term (FN y).

% the result of a par1 is a term/scope

Theorem par1_tm_sc :

(forall M N, par1 M N -> term M /\ term N) /\

(forall R S, pars1 R S -> scope R /\ scope S).

induction on 1 1. split. intros. case H1.

search.

apply IH to H2. apply IH to H3. search.

apply IH to H2. search.

apply IH to H2. apply IH to H3. apply tm_sub to H5 H7. search.

apply IH to H2. apply IH to H3. apply tm_sub to H6 H4. apply tm_sub to H7 H5.

search.

apply IH to H3. case H2.search.

apply IH to H3. apply IH to H4. apply IH1 to H2. apply sc_sub to H7 H9.

apply sc_sub to H8 H10. apply tm_sub to H11 H5.

apply tm_sub to H12 H6. search.

apply IH to H2. search.

apply IH1 to H2. apply IH to H3. apply sc_sub to H6 H4. apply sc_sub to H7 H5. search.

apply IH to H3. apply IH1 to H2. search.

% products and sums

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. apply IH to H3. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. apply IH to H3. apply IH to H4. search.

apply IH to H2. apply IH to H3. apply tm_sub to H8 H6. search.

apply IH to H2. apply IH to H3. apply tm_sub to H8 H6. search.

intros. case H1. search.

Split par1_tm_sc as par1_tm, par1_sc.

% substitution lemma for parallel reduction par1

Theorem par1_pars1_subst_lem:

(forall M N K1 K2, nabla x,

par1 (M x) (N x) -> par1 K1 K2 -> par1 (M K1) (N K2)) /\

(forall M N K1 K2, nabla x,

par1 (M x) (N x) -> pars1 K1 K2 -> par1 (M K1) (N K2)).
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induction on 1 1. split.

intros. case H1. search. search.

apply IH to H3 H2. apply IH to H4 H2. search.

apply IH to H3 H2. search.

apply IH to H4 H2. apply IH to H3 H2. search.

apply IH to H3 H2. apply IH to H4 H2. search.

apply IH to H4 H2. unfold. search.

search.

apply IH to H4 H2. apply IH to H5 H2. search.

apply IH to H3 H2. search.

apply IH to H4 H2. case H3. search.

apply IH to H4 H2. case H3. search.

% products and sums

apply IH to H3 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. apply IH to H4 H2. search.

apply IH to H3 H2. apply par1_tm to H2. apply tm_sub to H4 H6. search.

apply IH to H3 H2. apply par1_tm to H2. apply tm_sub to H4 H6. search.

apply IH to H3 H2. search.

apply IH to H3 H2. search.

apply IH to H3 H2. apply IH to H4 H2. apply IH to H5 H2. search.

apply IH to H3 H2. apply IH to H4 H2. apply par1_tm to H2. apply tm_sub to H5 H8. search.

apply IH to H3 H2. apply IH to H4 H2. apply par1_tm to H2. apply tm_sub to H5 H8. search.

intros. case H1. search.

apply IH1 to H3 H2. apply IH1 to H4 H2. search.

apply IH1 to H3 H2. search.

apply IH1 to H4 H2. apply IH1 to H3 H2. search.

apply IH1 to H3 H2. apply IH1 to H4 H2. search.

apply IH1 to H4 H2. unfold. case H3. search. search. search.

apply IH1 to H4 H2. apply IH1 to H5 H2. case H3. search. search.

apply IH1 to H3 H2. search.

apply IH1 to H4 H2. case H2. case H3. search. search. search.

apply IH1 to H4 H2. case H3. search. search.

% products and sums

apply IH1 to H3 H2. search.

apply IH1 to H3 H2. search.

apply IH1 to H3 H2. apply IH1 to H4 H2. search.

apply IH1 to H3 H2. apply par1_sc to H2. apply sc_sub to H4 H6. search.

apply IH1 to H3 H2. apply par1_sc to H2. apply sc_sub to H4 H6. search.

apply IH1 to H3 H2. search.

apply IH1 to H3 H2. search.

apply IH1 to H3 H2. apply IH1 to H4 H2. apply IH1 to H5 H2. search.

apply IH1 to H3 H2. apply IH1 to H4 H2. apply par1_sc to H2. apply sc_sub to H5 H8. search.

apply IH1 to H3 H2. apply IH1 to H4 H2. apply par1_sc to H2. apply sc_sub to H5 H8. search.

Split par1_pars1_subst_lem as par1_subst_lem, pars1_subst_lem.

% diamond property for par1

Theorem par1_diamond : forall T A1 A2,

par1 T A1 -> par1 T A2 -> exists V, par1 A1 V /\ par1 A2 V.

induction on 1. intros. case H1.

% var

case H2. search.

% app

case H2.

% app app

apply IH to H3 H5. apply IH to H4 H6. search.

% app abs

case H3. apply IH to H4 H6. apply IH to H7 H5. apply par1_subst_lem to H11 H9. search.

% abs

case H2. apply IH to H3 H4. search.

% app abs

case H2. case H5. apply IH to H3 H7. apply IH to H4 H6. apply par1_subst_lem to H8 H10.

apply par1_subst_lem to H9 H11. search.

% app

apply IH to H3 H5. apply IH to H4 H6. apply par1_subst_lem to H7 H9.

apply par1_subst_lem to H8 H10. search.

% let

case H2. apply IH to H3 H5. apply IH to H4 H6. search.

% let dia

case H3. apply IH to H4 H7. apply IH to H9 H6. apply pars1_subst_lem to H10 H5.

apply pars1_subst_lem to H11 H5. apply par1_subst_lem to H14 H12.

apply par1_subst_lem to H15 H13. case H8. case H5. search.

% dia dia

case H2. apply IH to H4 H6. case H3. case H5. search.

% app let dia

case H2. apply IH to H5 H7. case H6.apply IH to H4 H11. apply pars1_subst_lem to H8 H10.

apply pars1_subst_lem to H9 H10. apply par1_subst_lem to H14 H12.

apply par1_subst_lem to H15 H13. case H3. case H10. search.

% FP case

apply IH to H4 H7. apply IH to H5 H8. apply pars1_subst_lem to H11 H6.

apply pars1_subst_lem to H12 H6. apply par1_subst_lem to H13 H9.

apply par1_subst_lem to H14 H10. case H3. case H6. search.

% box new

case H2. apply IH to H3 H4. search.

% atw

case H2. apply IH to H4 H6. apply pars1_subst_lem to H7 H5.

apply pars1_subst_lem to H8 H5. case H3. case H5. search.
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case H6. apply IH to H4 H7. apply pars1_subst_lem to H8 H3. apply pars1_subst_lem to H9 H5.

case H3. case H5. search.

case H2. case H4. apply IH to H7 H6. apply pars1_subst_lem to H8 H3.

apply pars1_subst_lem to H9 H5. case H3. case H5. search.

apply IH to H4 H6. case H3. case H5. search.

% fst

case H2. apply IH to H3 H4. search.

% fst pair

case H3. apply IH to H6 H4. apply par1_tm to H7. search.

% snd

case H2. apply IH to H3 H4. search.

% snd pair

case H3. apply IH to H7 H4. apply par1_tm to H6. search.

% pair pair

case H2. apply IH to H3 H5. apply IH to H4 H6. search.

% fst pair

case H2. case H5. apply IH to H3 H6. apply par1_tm to H7. search.

apply IH to H3 H5. search.

% snd pair

case H2. case H5. apply IH to H3 H7. apply par1_tm to H6. search.

apply IH to H3 H5. search.

% inl

case H2. apply IH to H3 H4. search.

% inr

case H2. apply IH to H3 H4. search.

% case

case H2. apply IH to H3 H6. apply IH to H4 H7. apply IH to H5 H8. search.

% case inl

case H3. apply IH to H9 H6. apply IH to H4 H7. apply par1_subst_lem to H12 H10.

apply par1_subst_lem to H13 H11. apply par1_tm to H5. search.

% case inr

case H3. apply IH to H9 H6. apply IH to H5 H7. apply par1_subst_lem to H12 H10.

apply par1_subst_lem to H13 H11. apply par1_tm to H4. search.

% case inl R

case H2. case H6. apply IH to H3 H9. apply IH to H4 H7. apply par1_subst_lem to H12 H10.

apply par1_subst_lem to H13 H11. apply par1_tm to H8. search.

apply IH to H3 H6. apply IH to H4 H7. apply par1_subst_lem to H11 H9. apply par1_subst_lem to H12 H10. search.

% case inr R

case H2. case H6. apply IH to H3 H9. apply IH to H4 H8. apply par1_subst_lem to H12 H10.

apply par1_subst_lem to H13 H11. apply par1_tm to H7. search.

apply IH to H3 H6. apply IH to H4 H7. apply par1_subst_lem to H11 H9. apply par1_subst_lem to H12 H10. search.

%%%%%%%%

%% The reflexive and transitive closure parN of par1

%%%%%%%%

Define parN : tm -> tm -> prop, parsN : sc -> sc -> prop by

parN M M := term M;

parN M N := par1 M N;

parN M N := exists S, parN M S /\ parN S N;

parsN R R := scope R;

parsN R T := pars1 R T;

parsN R T := exists S, parsN R S /\ parsN S T.

Theorem parN_parsN_tm_sc :

(forall M N, parN M N -> term M /\ term N) /\

(forall R S, parsN R S -> scope R /\ scope S).

induction on 1 1. split. intros. case H1.

search.

apply par1_tm_sc. apply H3 to H2. search.

apply IH to H2. apply IH to H3. search.

intros. case H1. search. apply par1_tm_sc. apply H4 to H2. search.

apply IH1 to H2. apply IH1 to H3. search.

% strip lemma

Theorem parN_parsN_strip :

(forall X Y Z, parN X Y -> par1 X Z -> exists W, parN Z W /\ par1 Y W) /\

(forall X Y Z, parsN X Y -> pars1 X Z -> exists W, parsN Z W /\ pars1 Y W).

induction on 1 1. split. intros. case H1.

apply par1_tm_sc. apply H4 to H2. search.

apply par1_diamond to H2 H3. search.

apply IH to H3 H2. apply IH to H4 H6. search.

intros. case H1. apply par1_tm_sc. apply H5 to H2. search.

case H2. case H3.search.

apply IH1 to H3 H2. apply IH1 to H4 H6. search.

Theorem parN_diamond : forall X Y Z,

parN X Y ->

parN X Z -> exists U, parN Z U /\ parN Y U.

induction on 1. intros. case H1.

apply parN_parsN_tm_sc. apply H4 to H2. assert parN Z Z. search.

apply parN_parsN_strip. apply H4 to H2 H3. search.

apply IH to H3 H2. apply IH to H4 H6. search.
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%%%%%%%%%%%%%%%%%%%%%

%%% beta reduction (one step)

%%%%%%%%%%%%%%%%%%%%%

% define contextual 1-step beta reduction, beta for beta reductions and ...

Define beta : tm -> tm -> prop by

beta (app (abs M) N) (M N) := nabla x, term (M x) /\ term N;

beta (let (dia S M) FP) (FP S M) := nabla s, nabla x, term (FP s x) /\ scope S /\ term M;

beta (atw R (box FN)) (FN R) := nabla s, term (FN s) /\ scope R;

% products and sums

beta (fst (pair L R)) L := term L /\ term R;

beta (snd (pair L R)) R := term L /\ term R;

% sums

beta (case (inl M) FN FM) (FN M) := term M /\ nabla x, term (FN x) /\ nabla y, term (FM y);

beta (case (inr M) FN FM) (FM M) := term M /\ nabla x, term (FN x) /\ nabla y, term (FM y).

% ... beta_red1 captures the congruences + beta

Define beta_red1 : tm -> tm -> prop, beta_reds1 : sc -> sc -> prop by

beta_reds1 R S := scope R /\ scope S;

beta_red1 T S := beta T S;

beta_red1 (app M N) (app S N) := beta_red1 M S /\ term N;

beta_red1 (app N M) (app N S) := beta_red1 M S /\ term N;

beta_red1 (abs FM) (abs FN) := nabla x, beta_red1 (FM x) (FN x);

beta_red1 (let M FN) (let M FS) := nabla s, nabla x, beta_red1 (FN s x) (FS s x) /\

term M;

beta_red1 (let M FN) (let N FN) := nabla s, nabla x, beta_red1 M N /\ term (FN s x);

beta_red1 (dia S M) (dia S N) := beta_red1 M N /\ scope S;

beta_red1 (box FN) (box FM) := nabla s, beta_red1 (FN s) (FM s);

beta_red1 (atw R M) (atw R N) := beta_red1 M N /\ scope R;

% products

beta_red1 (fst M) (fst N) := beta_red1 M N;

beta_red1 (snd M) (snd N) := beta_red1 M N;

beta_red1 (pair L R) (pair L’ R) := beta_red1 L L’ /\ term R;

beta_red1 (pair L R) (pair L R’) := beta_red1 R R’ /\ term L;

% sums

beta_red1 (inl M) (inl N) := beta_red1 M N;

beta_red1 (inr M) (inr N) := beta_red1 M N;

beta_red1 (case C FN FM) (case C’ FN FM) := beta_red1 C C’ /\ nabla x, term (FN x) /\

nabla y, term (FM y);

beta_red1 (case C FN FM) (case C FN’ FM) := term C /\ nabla x, beta_red1 (FN x) (FN’ x) /\

nabla y, term (FM y);

beta_red1 (case C FN FM) (case C FN FM’) := term C /\ nabla x, beta_red1 (FM x) (FM’ x) /\

nabla y, term (FN y).

Set subgoals 1.

% beta_red1 of a term is a term

Theorem beta_red1_tm : forall M N,

beta_red1 M N -> term M /\ term N.

induction on 1. intros. case H1.

case H2. apply tm_sub to H3 H4. search.

apply sc_sub to H3 H4. apply tm_sub to H6 H5. search.

apply sc_sub to H3 H4. search.

search. search. apply tm_sub to H4 H3. search.

apply tm_sub to H5 H3. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H3. search.

apply IH to H3. search.

%%%%%%%%

%% The context and transitive closure beta_redn of beta_red1, and the lemmas showing that beta_redn passes to the context.

%%%%%%%%

Define beta_redn : tm -> tm -> prop by

beta_redn T T := term T;

beta_redn T S := beta_red1 T S;

beta_redn T S := exists M, beta_redn T M /\ beta_redn M S.

Theorem beta_redn_tm : forall M N,

beta_redn M N -> term M /\ term N.

induction on 1. intros. case H1.

search.

apply beta_red1_tm to H2. search.

apply IH to H2. apply IH to H3. search.
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Theorem beta_redn_abs : forall M N, nabla x,

beta_redn (M x) (N x) -> beta_redn (abs M) (abs N).

induction on 1. intros. case H1.

search.

search.

apply IH to H2. apply IH to H3. search.

Theorem beta_redn_appl : forall M N S,

beta_redn M N ->

term S -> beta_redn (app M S) (app N S).

induction on 1. intros. case H1.

search.

search.

apply IH to H3 H2. apply IH to H4 H2. search.

Theorem beta_redn_appr : forall M N S,

beta_redn M N ->

term S -> beta_redn (app S M) (app S N).

induction on 1. intros. case H1.

search.

search.

apply IH to H3 H2. apply IH to H4 H2. search.

Theorem beta_redn_app : forall M M’ N N’,

beta_redn M M’ -> beta_redn N N’ -> beta_redn (app M N) (app M’ N’).

intros. apply beta_redn_tm to H1. apply beta_redn_tm to H2.

apply beta_redn_appl to H1 H5.

apply beta_redn_appr to H2 H4. search.

Theorem beta_redn_reduct_abs : forall M M’ N N’, nabla x,

beta_redn (M x) (M’ x) -> beta_redn N N’ -> beta_redn (app (abs M) N) (M’ N’).

intros. apply beta_redn_tm to H1. apply beta_redn_tm to H2. apply beta_redn_abs to H1.

apply beta_redn_app to H7 H2. search.

% contextual terms of ckn

Theorem beta_redn_letr : forall FM FN M,

nabla s, nabla x,

beta_redn (FM s x) (FN s x) ->

term M -> beta_redn (let M FM) (let M FN).

induction on 1. intros. case H1. search.

search.

apply IH to H3 H2 with s = n1, x = n2.

apply IH to H4 H2 with s = n1, x = n2.

search.

Theorem beta_redn_letl : forall M N FM, nabla s, nabla x,

beta_redn M N -> term (FM s x) -> beta_redn (let M FM) (let N FM).

induction on 1. intros. case H1. search.

search.

apply IH to H3 H2 with s = n1, x = n2.

apply IH to H4 H2 with s = n1, x = n2.

search.

Theorem beta_redn_let : forall M M’ FN FN’, nabla s, nabla x,

beta_redn M M’ -> beta_redn (FN s x) (FN’ s x) -> beta_redn (let M FN) (let M’ FN’).

intros.

apply beta_redn_tm to H1. apply beta_redn_tm to H2.

apply beta_redn_letl to H1 H5 with s = n1, x = n2.

apply beta_redn_letr to H2 H4 with s = n1, x = n2.

search.

Theorem beta_redn_dia : forall M N S,

beta_redn M N ->

scope S -> beta_redn (dia S M) (dia S N).

induction on 1. intros. case H1. search.

apply beta_red1_tm to H3. search.

apply IH to H3 H2. apply IH to H4 H2. search.

Theorem beta_redn_box : forall FM FN,

nabla s, beta_redn (FM s) (FN s)

-> beta_redn (box FM) (box FN).

induction on 1. intros. case H1. search.

apply beta_red1_tm to H2. search.

apply IH to H2. apply IH to H3. search.

Theorem beta_redn_reduct_let : forall FM FM’ N N’ S, nabla s, nabla x,

beta_redn (FM s x) (FM’ s x) -> beta_redn N N’ ->

scope S -> beta_redn (let (dia S N) FM) (FM’ S N’).

intros. apply beta_redn_tm to H1. apply beta_redn_tm to H2. apply beta_redn_dia to H2 H3.

apply beta_redn_let to H8 H1 with s = n1, x = n2. search.

Theorem beta_redn_atw : forall M M’ S,

beta_redn M M’ -> scope S -> beta_redn (atw S M) (atw S M’).

induction on 1. intros. case H1. search. search. apply IH to H3 H2. apply IH to H4 H2. search.

Theorem beta_redn_reduct_atw : forall FM FM’ S, nabla s,

beta_redn (FM s) (FM’ s) -> scope S -> beta_redn (atw S (box FM)) (FM’ S).

intros. apply beta_redn_tm to H1. apply beta_redn_box to H1. apply beta_redn_atw to H5 H2. search.
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% products

Theorem beta_redn_fst : forall M N,

beta_redn M N -> beta_redn (fst M) (fst N).

induction on 1. intros. case H1. search. search.

apply IH to H2. apply IH to H3. search.

Theorem beta_redn_snd : forall M N,

beta_redn M N -> beta_redn (snd M) (snd N).

induction on 1. intros. case H1. search. search.

apply IH to H2. apply IH to H3. search.

Theorem beta_redn_pairl : forall L L’ R,

beta_redn L L’ -> term R -> beta_redn (pair L R) (pair L’ R).

induction on 1. intros. case H1. search. search.

apply IH to H3 H2. apply IH to H4 H2. search.

Theorem beta_redn_pairr : forall L R R’,

beta_redn R R’ -> term L -> beta_redn (pair L R) (pair L R’).

induction on 1. intros. case H1. search. search.

apply IH to H3 H2. apply IH to H4 H2. search.

Theorem beta_redn_pair : forall L L’ R R’,

beta_redn L L’ -> beta_redn R R’ -> beta_redn (pair L R) (pair L’ R’).

intros. apply beta_redn_tm to H1. apply beta_redn_tm to H2.

apply beta_redn_pairl to H1 H5.

apply beta_redn_pairr to H2 H4. search.

Theorem beta_redn_reduct_pairl : forall L L’ R,

beta_redn L L’ -> term R -> beta_redn (fst (pair L R)) L’.

intros. apply beta_redn_tm to H1. apply beta_redn_pairl to H1 H2. apply beta_redn_fst to H5. search.

Theorem beta_redn_reduct_pairr : forall L R R’,

beta_redn R R’ -> term L -> beta_redn (snd (pair L R)) R’.

intros. apply beta_redn_tm to H1. apply beta_redn_pairr to H1 H2. apply beta_redn_snd to H5. search.

% sums

Theorem beta_redn_inl : forall M N,

beta_redn M N -> beta_redn (inl M) (inl N).

induction on 1. intros. case H1. search. search.

apply IH to H2. apply IH to H3. search.

Theorem beta_redn_inr : forall M N,

beta_redn M N -> beta_redn (inr M) (inr N).

induction on 1. intros. case H1. search. search.

apply IH to H2. apply IH to H3. search.

Theorem beta_redn_casec : forall C C’ FN FM, nabla x,

beta_redn C C’ -> term (FN x) -> term (FM x) ->

beta_redn (case C FN FM) (case C’ FN FM).

induction on 1. intros. case H1. search. search.

apply IH to H4 H2 H3 with x = n1. apply IH to H5 H2 H3 with x = n1. search.

Theorem beta_redn_casel : forall C FN FN’ FM, nabla x,

beta_redn (FN x) (FN’ x) -> term C -> term (FM x) ->

beta_redn (case C FN FM) (case C FN’ FM).

induction on 1. intros. case H1. search. search.

apply IH to H4 H2 H3 with x = n1. apply IH to H5 H2 H3 with x = n1. search.

Theorem beta_redn_caser : forall C FN FM FM’,

nabla x, beta_redn (FM x) (FM’ x) -> term C -> term (FN x) ->

beta_redn (case C FN FM) (case C FN FM’).

induction on 1. intros. case H1. search. search.

apply IH to H4 H2 H3 with x = n1. apply IH to H5 H2 H3 with x = n1. search.

Theorem beta_redn_casecl : forall C C’ FN FN’ FM, nabla x,

beta_redn C C’ -> beta_redn (FN x) (FN’ x) -> term (FM x) ->

beta_redn (case C FN FM) (case C’ FN’ FM).

intros. apply beta_redn_tm to H1. apply beta_redn_tm to H2.

apply beta_redn_casec to H1 H6 H3.

apply beta_redn_casel to H2 H5 H3. search.

Theorem beta_redn_casecr : forall C C’ FN FM FM’, nabla x,

beta_redn C C’ -> beta_redn (FM x) (FM’ x) -> term (FN x) ->

beta_redn (case C FN FM) (case C’ FN FM’).

intros. apply beta_redn_tm to H1. apply beta_redn_tm to H2.

apply beta_redn_casec to H1 H3 H6.

apply beta_redn_caser to H2 H5 H3. search.

Theorem beta_redn_caselr : forall C FN FN’ FM FM’, nabla x,

term C -> beta_redn (FN x) (FN’ x) -> beta_redn (FM x) (FM’ x) ->

beta_redn (case C FN FM) (case C FN’ FM’).

intros. apply beta_redn_tm to H2. apply beta_redn_tm to H3.

apply beta_redn_casel to H2 H1 H6.

apply beta_redn_caser to H3 H1 H5. search.

Theorem beta_redn_caseclr : forall C C’ FN FN’ FM FM’, nabla x,

beta_redn C C’ -> beta_redn (FN x) (FN’ x) -> beta_redn (FM x) (FM’ x) ->

beta_redn (case C FN FM) (case C’ FN’ FM’).

intros. apply beta_redn_tm to H1. apply beta_redn_tm to H2. apply beta_redn_tm to H3.
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apply beta_redn_caselr to H4 H2 H3. apply beta_redn_casec to H1 H7 H9. search.

Theorem beta_redn_reduct_casel : forall M M’ FN FN’ FM,nabla x,

beta_redn M M’ -> beta_redn (FN x) (FN’ x) -> term (FM x) ->

beta_redn (case (inl M) FN FM) (FN’ M’).

intros. apply beta_redn_tm to H1. apply beta_redn_tm to H2.

apply beta_redn_inl to H1. apply beta_redn_tm to H8.

apply beta_redn_casecl to H8 H2 H3. search.

Theorem beta_redn_reduct_caser : forall M M’ FN FM FM’,nabla x,

beta_redn M M’ -> beta_redn (FM x) (FM’ x) -> term (FN x) ->

beta_redn (case (inr M) FN FM) (FM’ M’).

intros. apply beta_redn_tm to H1. apply beta_redn_tm to H2.

apply beta_redn_inr to H1. apply beta_redn_tm to H8.

apply beta_redn_casecr to H8 H2 H3. search.

%%%%%%%%

%% relation between beta_redn and parN, proving confluence of beta_redn via confluence of parN

%%%%%%%%

% reflexivity of par1

Theorem par1_refl : forall M,

term M -> par1 M M.

induction on 1. intros. case H1.

search.

apply IH to H2. apply IH to H3. search.

apply IH to H2. search.

apply IH to H2. apply IH to H3. search.

apply IH to H3. case H2. search.

apply IH to H2. search.

apply IH to H3. case H2. search.

apply IH to H2. apply IH to H3. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. apply IH to H3. apply IH to H4. search.

apply IH to H2. search.

apply IH to H2. search.

%beta_red1 contained in par1/parN

Theorem beta_red1_parN : forall M N,

beta_red1 M N -> par1 M N /\ parN M N.

induction on 1. intros. case H1.

case H2. apply par1_refl to H3. apply par1_refl to H4. search.

apply par1_refl to H3. apply par1_refl to H5. case H4. search.

apply par1_refl to H3. case H4. search.

apply par1_refl to H3. search.

apply par1_refl to H3. apply par1_refl to H4. search.

apply par1_refl to H3. apply par1_refl to H4. apply par1_refl to H5. search.

apply par1_refl to H3. apply par1_refl to H4.apply par1_refl to H5. search.

apply par1_refl to H3. apply IH to H2. search.

apply par1_refl to H3. apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. apply par1_refl to H3. search.

apply IH to H2. apply par1_refl to H3. search.

apply IH to H2. case H3. search.

apply IH to H2. search.

apply IH to H2. case H3. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. apply par1_refl to H3. search.

apply IH to H2. apply par1_refl to H3. search.

apply IH to H2. search.

apply IH to H2. search.

apply IH to H2. apply par1_refl to H3. apply par1_refl to H4. search.

apply IH to H3. apply par1_refl to H2. apply par1_refl to H4. search.

apply IH to H3. apply par1_refl to H2. apply par1_refl to H4. search.

% beta_redn contained in parN

Theorem beta_redn_parN : forall M N,

beta_redn M N -> parN M N.

induction on 1. intros. case H1.

search.

apply beta_red1_parN to H2. search.

apply IH to H2. apply IH to H3. search.

% par1 contained in beta_redn

Theorem par1_beta_redn : forall M N,

par1 M N -> beta_redn M N.

induction on 1. intros. case H1. search.

apply IH to H2. apply IH to H3. apply beta_redn_app to H4 H5. search.

apply IH to H2. apply beta_redn_abs to H3. search.

apply IH to H2. apply IH to H3. apply beta_redn_reduct_abs to H4 H5. search.

apply IH to H2. apply IH to H3. apply beta_redn_let to H4 H5 with s = n1, x = n2.

search.

apply IH to H3. apply par1_tm_sc. apply H6 to H2. apply beta_redn_dia to H4 H7.

case H7. case H2. case H8. search.

apply IH to H3. apply IH to H4. apply par1_tm_sc. apply H8 to H2.

apply beta_redn_reduct_let. apply H11 to H6 H5 H9 with s = n1, x = n2. case H9.
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case H10. case H2.case H2. search.

apply IH to H2. apply beta_redn_box to H3. search.

apply IH to H3. apply par1_tm_sc. apply H6 to H2. apply beta_redn_reduct_atw to H4 H7.

case H2. case H7. case H8. search.

apply IH to H3. apply par1_tm_sc. apply H6 to H2. apply beta_redn_atw to H4 H7. case H2.

case H7. case H8. search.

apply IH to H2. apply beta_redn_fst to H3. search.

apply IH to H2. apply beta_redn_snd to H3. search.

apply IH to H2. apply IH to H3. apply beta_redn_pair to H4 H5. search.

apply IH to H2. apply par1_tm to H2. apply beta_redn_pairl to H4 H3. apply beta_redn_fst to H7. search.

apply IH to H2. apply beta_redn_pairr to H4 H3. apply beta_redn_snd to H5. apply par1_tm to H2. search.

apply IH to H2. apply beta_redn_inl to H3. search.

apply IH to H2. apply beta_redn_inr to H3. search.

apply IH to H2. apply IH to H3. apply IH to H4. apply beta_redn_caseclr to H5 H6 H7. search.

apply IH to H2. apply IH to H3. apply beta_redn_reduct_casel to H5 H6 H4. search.

apply IH to H2. apply IH to H3. apply beta_redn_reduct_caser to H5 H6 H4. search.

% parN contained in beta_redn

Theorem parN_beta_redn : forall M N,

parN M N -> beta_redn M N.

induction on 1. intros. case H1.

search.

apply par1_beta_redn to H2. search.

apply IH to H2. apply IH to H3. search.

% confluence of beta_redn (via confluence of parN)

Theorem lck_confluence : forall M N S,

beta_redn S M ->

beta_redn S N -> exists U, beta_redn M U /\ beta_redn N U.

intros. apply beta_redn_parN to H1. apply beta_redn_parN to H2. apply parN_diamond to H3 H4.

apply parN_beta_redn to H5. apply parN_beta_redn to H6. search.
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