
BAMBERGER BEITRÄGE ZUR
WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK

ISSN 0937-3349

Nr. 95/August 2014

WCRT for Synchronous Programs:
Studying the Tick Alignment Problem

Michael Mendler, Bruno Bodin,
Partha S. Roop, Jia Jie Wang

FAKULTÄT FÜR
WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK

OTTO-FRIEDRICH-UNIVERSITÄT BAMBERG

Upd
ate

d N
ov

em
be

r 2
01

4

Worst-case Reaction Time
for Synchronous Programs:

Studying the Tick Alignment Problem

Michael Mendler∗
Bamberg University

Germany
michael.mendler@uni-bamberg.de

Bruno Bodin
University of Edinburgh

United Kingdom
bbodin@inf.ed.ac.uk

Partha S Roop
University of Auckland

New Zealand
p.roop@auckland.ac.nz

Jia Jie Wang
University of Auckland

New Zealand
jwan232@aucklanduni.ac.nz

Abstract

Synchronous programs are ideally suited for the design of safety critical systems
as they provide guarantees on determinism and deadlock freedom. In addition to such
functional guarantees, guarantees on timing are also necessary. In this report, we
study the problem of static worst case reaction time (WCRT) analysis of synchronous
programs.

While, there have been many recent attempts at studying this problem from the
point of view of scalability and precision, one crucial aspect is yet to be examined from
a fundamental viewpoint. Concurrent threads in a synchronous programs must align
during every reaction, a problem that has been termed as the tick alignment problem
(TAP), i.e., infeasible ticks that never align in practice must be ruled out for precision.
We, for the first time, study TAP in the guise of a number theoretic formulation in
order to not only explore its lower bound complexity, but also to develop heuristics
that work well in practice. The developed algorithm that is based on the Maximum
Weight Clique Problem. Extensive benchmarking reveals the relative superiority of
the proposed approach. While being optimal it is also more efficient compared to one
of the most efficient of known techniques, ILPC , which uses iterative approximation
with integer linear programming techniques. Finally, using insights from the proposed
TAP formulation, we develop a refinement of ILPC , called ILPCP , that excels in
comparison to all known techniques for WCRT analysis.

1 Introduction

The synchronous paradigm [3] is ideal for designing safety critical systems in aviation,
automotive and industrial automation. Synchronous languages offer a simple mechanism,
based on a logical global clock, for thread synchronization. This removes the inter-leavings
and associated non-determinism of asynchronous composition, resulting in a framework
that is more amenable for static analysis for functional correctness. The issue of timing
correctness is at the heart of many real-time safety critical systems and is the topic of
our interest. Considering the simplicity of synchronous composition, an obvious conjec-
ture would be that timing correctness of synchronous programs should also be simpler
∗The author is supported by a grant from the German Science Foundation (DFG ME 1427/6-1).

1

Upd
ate

d N
ov

em
be

r 2
01

4

in comparison. Is this conjecture valid? This aspect is the central theme of the current
investigation.

Timing correctness of synchronous programs is closely intertwined with that of the
synchrony hypothesis, which asserts that the synchronous program operates infinitely fast
relative to its environment. Practical implementations validate this by ensuring that inputs
from the environment never happen at a rate that is faster than the worst case reaction
time (WCRT) of any synchronous reaction (also known as tick). Compared to the problem
of worst case execution time (WCET) [16] of sequential programs, WCRT analysis has
received much less attention. However, interest in this topic has been growing, with many
recent attempts that primarily explore the trade-off between precision and analysis time.
We may broadly classify these under the following categories:

1. Maximum thread cost [4, 10]: These approaches compute the maximum tick lengths
for every thread (termed their local ticks) and then computes the sum of these
maximum local ticks to determine the WCRT. These, while being the fastest known
approache, have been shown to produce large overestimates.

2. Implicit path enumeration [7, 8]: These approaches rely on integer linear program-
ming (ILP) to model the flow constraints of a control flow graph and are inspired
by traditional ILP-based techniques for WCET analysis of sequential programs [16].
Hence, they first convert the concurrent control flow of the synchronous program into
its sequential equivalent before applying the ILP formulation. They can be used for
pruning infeasible paths to obtain very precise WCRT values. However, have a
higher complexity (NP hard) compared to the polynomial complexity of approach-1.
We call this approach as ILPs (ILP sequential).

3. State exploration [9, 18]: These approaches work directly on the concurrent control
flow to accurately compute the worst case tick length by examining all possible
synchronous thread inter-leavings that are valid. These approaches compute precise
WCRT value at the expense of exponential worst case complexity. In a recent paper,
Wang et al. [15] have compared model checking [14], reachability [9], and ILPs [7].
This shows that reachability works best in practice compared to the other techniques
for large state space (10 million states and beyond).

4. Iterative tightening [15, 13]: Wang et al. [15] noticed that there is a trade-off between
approach-1 and the other approaches based on either path enumeration (approach-
2) or state exploration (approach-3). They have developed an iterative refinement
based approach called ILPC (ILP concurrent), by the creation of two different ILP
models on the concurrent control flow graph. The first model is used to compute
an over-approximation using the maximum cost of local ticks and uses a second ILP
model to check if the computed over-approximation is infeasible (i.e., the associated
ticks won’t align during execution). They iteratively refine this until the most precise
value is computed. They have shown that ILPC performs the best among known
approaches for large benchmarks. Independently from this, a strategy for iterative
tightening has been proposed by Raymond et al. [13] for the ILPS method (approach-
2). They employ flow facts or infeasibility properties (verified as invariants using a
model-checker) at the high-level source language (Lustre) to derive low-level path
constraints on the scheduled sequential program to guide the ILP solver towards
tighter WCRT values.

These recent attempts at solving the WCRT problem have been guided mainly by prac-
tical considerations. Existing general-purpose analysis algorithms (ILP, model-checking,

2

Upd
ate

d N
ov

em
be

r 2
01

4

SAT-solving, micro-architectural modelling tools) are applied to different synchronous lan-
guages and (precision-timed) hardware architectures. Investigations of the WCRT problem
from a language- and architecture-independent perspective are rare. Because of the in-
herent complexity of the problem it seems almost unavoidable that efficiency, scalability
and precision can only be measured using benchmarks rather than analytical methods.
However, it seems clear too, that if the WCRT problem is only studied in highly specific,
incompatible engineering contexts, the results on WCRT analysis methods become scien-
tifically meaningless. Yet, as the importance of WCRT analysis is increasingly recognised
and the synchronous programming methodologies become more varied, it is essential to im-
prove our understanding of the fundamental logical and algorithmic nature of the WCRT
problem. This is a prerequisite to obtain a sound basis for terminological distinctions
characterising the different practical algorithms and to carry over the results on WCRT
analysis from one practical scenario to another. How can we obtain universal benchmark
suites to compare our results? What do we know about the algorithmic complexity of the
WCRT problem?

In this paper we consider one fundamental and language-independent aspect of the
WCRT problem that has been termed as the tick alignment problem (TAP). Concurrent
threads in a synchronous program jointly switch from one tick to the next and thus must
align their reactions. Infeasible ticks that never align must be ruled out for precision.
Even if the timing is independent of the communication, and the duration of each tick in
each thread is known, calculating the exact timing of the synchronous composition is non-
trivial. Experimental evidence from recent papers such as [15] indicate that the worst case
complexity of this problem may be exponential. However, the lower-bound complexity of
TAP has neither been studied nor established. Our work aims to close this gap. The main
contributions reported here are:

1. We provide a polynomial transformation from an intermediate representation of syn-
chronous programs called a tick cost automaton (TCA) to an equivalent monocyclic
form (m-TCA) using max-plus power series.

2. We show how this transformation facilitates the development of a number theoretic
formulation to solve TAP based on solving linear congruences using the well-known
Chinese Remainder Theorem.

3. Based on the number-theoretic analysis we are able to study TAP as a graph-
theoretic problem with a view to understanding its lower bound complexity. More
specifically, we relate TAP to the well-known maximal (weighted) clique problem [17,
11].

4. We strengthen one of the most efficient WCRT analysis techniques based on iterative
narrowing, called ILPC , by pairwise compatibility checking introduced here. The
proposed algorithm, called ILPCP is shown through extensive benchmarking to be
the best known method for solving TAP.

5. Our experiments show that heuristic polynomial algorithms from the number and
graph theoretic specification can compute precise WCRT values for many practical
TAP benchmarks.

Our results suggest that TAP is an interesting candidate for a universal WCRT prob-
lem, as it seems to be practically solvable in polynomial time but whose lower-bound
computational complexity, as far as we are aware, is still unknown.

3

Upd
ate

d N
ov

em
be

r 2
01

4

1.1 Overview and organization

We assume that synchronous programs can be converted to a set of finite automata, which
we term as tick cost automata (defined in Section 2). Such a transformation is feasible and
used by earlier approaches such as [14, 1]. Given a set of TCAs that operate synchronously,
we propose a transformation to convert them to a monocyclic form in Section 2 derived
from an algebraic coding as max-plus power series. Following this, we present a number-
theoretic formulation of TAP in Section 4. We present an algorithm for solving the TAP
problem in Section 5 followed by benchmarking in Section 6. The report is concluded in
the final Section 7.

2 Tick Cost Automata and the Tick Alignment Problem

The timing behaviour of a synchronous program and its parts is modelled by a tick cost
automaton, or TCA for short. A TCA is an abstract representation of a sequential (single-
threaded) synchronous program in which all data dependencies have been abstracted away
while the control-flow structure is preserved. Computing the WCRT of such a TCA yields
an over-approximation of the WCRT of the underlying synchronous program which ignores
the potential infeasibility of flow paths arising from conditional tests on data. Solutions
for this intra-thread sensitization problem are well-known and not treated here. Instead,
our focus is on the inter-thread sensitisation problem that arises from the synchronous
coupling of ticks across concurrent TCAs.

Definition 2.1 A tick cost automaton (TCA) is a tuple A = 〈Q,→, e, F 〉, where Q is
a finite set of states partitioned into the set of transient states and pause states, Q =
Qt]Qp. The distinguished entry state e ∈ Qt and all the exit states F ⊆ Qt are transient.
The transition relation → ⊆ Q × N × Q is labelled by natural numbers and we write
d : q1 → q2 for (q1, d, q2) ∈ →.

A TCA is a finite state automaton where the states model the control points of the
program and the transitions the possible executions paths between them, labelled by the
time needed to reach one control point from the other. A transient state is a control
point which, when entered, is instantaneously left in the same tick. In contrast, when
the control flow reaches a pause state it pauses and waits for the next synchronous clock
tick. Following the terminology of [10] we can distinguish four types of finite and complete
execution paths in a TCA:

• A through path is any sequence of transient states connected by transitions, starting
in the entry state e and ending in some exit state f ∈ F . These correspond to
computations in which the TCA is entered and exited instantaneously within the
same tick.

• A sink path starts in e, passes through an arbitrary number of transient states and
then ends in a pause state f ∈ Qp. On a sink path a synchronous tick enters the
TCA and then pauses inside it.

• An internal path begins and ends in a pause state, while all intermediate states
are transient. These paths capture the normal synchronous operation where control
fully resides in the TCA during a tick.

• A source path begins in a pause state but then only visits transient states until it
ends in an exit state. These correspond to executions in which the TCA is active at
the beginning but then instantaneously left during the tick.

4

Upd
ate

d N
ov

em
be

r 2
01

4

The through and sink paths together correspond to executions of the so-called surface
behaviour of the TCA, i.e., instantaneous executions entering the TCA until they either
reach a first pause or exit the TCA. The internal and source paths constitute the so-called
depth behaviour of the TCA.

The timing of a TCA is captured in the labels of the transitions. These express an
instantaneous duration quantified by natural numbers N and counting low-level instruction
cycles of a processor or some other operationally meaningful physical unit of time. Note
that since we abstract from the data communications of a synchronous program, TCAs
are non-deterministic and the transition times are safe over-approximations of the exact
execution time which may depend on the environment input or other low-level parameters
not modelled by the TCAs.

M. Mendler RePP 2014 @ Grenoble 1

8

18

31

5

217

12

32

20

tick(A2)

A

A3

A4

A1

A0

24
A5

A2

Max‐Plus Expansion

A*

32

12

36

A6
A*0

A*1

A*2

M. Mendler RePP 2014 @ Grenoble 50

8

18

31

5

217

12

32

20

tick(A2)

A

A3

A4

A1

A0

24A5

A2

Max‐Plus Expansion

A*

32

12

36

A6
A*0

A*1

A*2

Figure 1: A TCA A (left) and its equivalent linear reduced form A∗ (right) (see Sec. 3.2).

An example of a TCA is shown in Fig. 1 on the left which represents the abstract
tick automaton of a synchronous program with time annotations to describe the maximal
duration of synchronous instants. This automaton A has transient states A0, A5 and A6
drawn as solid circles, and pause states A1, A2, A3 and A4 drawn as two half-circles. The
transient entry node A6 is indicated by a transition arrow without source state. There
are no exit states in this automaton.

Each pause state is split into two parts. The upper half of each pause state represents
the surface of the state which, when reached, causes the end of the instant. The control
flow pauses there to wait for the clock tick. The occurrence of the clock tick switches
activation from tick(Ai) to the lower half of the state, called the depth, from where the
successive instant then is started. To express the synchronising behaviour of the clock tick
we always use tick(q) for the surface and q for the depth of a pause state in a TCA. This
is indicated only for state A2 in Fig. 1 but applies to all other pause states, too.

Any internal path starts the automaton in some pause state Ai (the depth part) at
the beginning of the tick, then activates a sequence of transitions through transient states
and finally pauses in tick(Aj) of a successor state Aj (the surface part). For instance,
in A an instant might start in A2 and end in tick(A3) with a maximal duration of 31
time units, or end in tick(A4) after maximal 32 time units. An example of a sink path
for A of Fig. 1 begins in A6 and ends in tick(A1) or in tick(A2). As can be seen the
TCA A has no through paths and no source paths. This means, whenever the execution
of an instant enters A (though A6) it remains inside A for the current and all successive
ticks. It is important to keep in mind that the choices for sink or internal paths is merely

5

Upd
ate

d N
ov

em
be

r 2
01

4

a non-determinism of modelling not a non-determinism of execution. It is resolved at
run time by the actual synchronous program whose timing behaviour is modelled by A.
The non-determinism arises naturally in the compositional translation from synchronous
programs to TCAs (see [14, 1]) as soon as we abstract from data and signal dependencies.
We shall see below in Sec. 3.2 how the non-determinism can be eliminated by reduction to
an equivalent linear reduced form. For our example TCA A this deterministic and reduced
TCA B is seen on the right of Fig. 1.

Note that a general TCA can contain transient cycles, i.e., loops in which all states are
transient. However, synchronous programs are usually verified to be constructive, which
implies they do not have (executable) instantaneous cycles. Hence, we may assume in this
report that each cycle in a TCA contains at least one pause state.1 Another simplification
that we will make for the present purposes is to assume that a TCA has neither source nor
through paths, like the example automaton in Fig. 1. This is the same as saying that there
are no exit states, ı.e. if A = 〈Q,→, e, F 〉 then F = ∅. Of course, exit states are important
for sequential composition of TCAs. However, as we will only be concerned with parallel
composition in this report, we can do without them. So, the surface behaviour of the
TCAs considered here consists of paths from the entry state to the first pause state and
the depth behaviour consists of paths between pause states.

Let us now look at how a TCA models a WCRT problem. In the timing analysis of
a synchronous tick the transition delays must be added up along transient paths through
the TCA. Let us write d : q0 � qk, for k ≥ 1, if there exists a (possibly empty) sequence of
transient states q1, q2, . . . , qk−1 ∈ Qt such that d1 : q0 → q1, d2 : q1 → q2, ..., dk : qk−1 →
qk, and d = d1 + d2 + · · ·+ dk.

Definition 2.2 The worst case reaction time of a TCA A is

wcrt(A) df= max {d | d : q0 � qk, q0, qk ∈ Q},

which returns the maximum cost of any transient path in A.

Note that our definition of wcrt(A), which refers to arbitrary start and end states
q0, qk ∈ Q, is somewhat more general than the traditional definition of synchronous WCRT
which is taken as the maximum delay between any two pause states, i.e., the maximal
length of an internal path. Our definition of wcrt(A) measures all the transient parts of
A, too. Specifically, it also covers the time it takes to reach the first pause state from the
entry state of A (sink paths), the time from any pause state to reach an exit of A (source
paths), and the instantaneous delay from the entry of A to an exit that does not reach
any pause state (through). We have chosen Def. 2.2 to match the generality of the notion
of a TCA in Def. 2.1, although we will later essentially talk about internal paths only.

In the example A of Fig. 1 (left) the maximal cost transient path is

A4→ A5→ tick(A1)

of weight 36, so that wcrt(A) = 36. It is easy to compute wcrt(A) for any TCA, in
polynomial time, by dynamic programming techniques, e.g., using a suitable modification
of Floyd-Warshall’s all-pairs shortest path algorithm [5].

The WCRT problem becomes computationally interesting when we look at a parallel
composition of TCAs. In a synchronous multi-threaded composition A‖B, the two TCAs

1This is an over-simplification in the sense that the abstraction from data may force a TCA A to have
instantaneous cycles in order to remain finite. However, on a transient cycle the WCRT is either 0 or ∞,
so that the cycle can either be ignored, or the timing analysis stops with wcrt(A) =∞.

6

Upd
ate

d N
ov

em
be

r 2
01

4

A and B run concurrently by interleaving their transitions. They synchronise their ticks
so that A‖B reaches a pause state whenever both A and B reach a pause state. As soon
as one component reaches a pause state it stops and waits for the other to reach a pause.

Definition 2.3 For any two TCAs A = 〈QA,→A, eA〉 and B = 〈QB,→B, eB〉 their syn-
chronous multi-threaded product A‖B = 〈Q,→, e〉 is given as follows: The set of pause
and transient states are given as

• Q df= Qt]Qp

• Qp
df= QAp ×QBp

• Qt
df= (QAt ×QBt) ∪ (tick(QAp)×QBt) ∪ (QAt × tick(QBp)),

where tick(Q) df= {tick(q) | q ∈ Q}. The entry state is e df= (eA, eB) and the transition
relation → is the least relation closed under the following rules:

qB ∈ QB qA ∈ QA, rA ∈ QAt d : qA →A rA (asy1)
d : (qA, qB)→ (rA, qB)

qA ∈ QA qB ∈ QB, rB ∈ QBt d : qB →B rB (asy2)
d : (qA, qB)→ (qA, rB)

pB ∈ QBp qA ∈ QA, pA ∈ QAp d1 : qA →A pA (syn1)
d1 : (qA, tick(pB))→ (pA, pB)

pA ∈ QAp qB ∈ QB, pB ∈ QBp d2 : qB →B pB (syn2)
d2 : (tick(pA), qB))→ (pA, pB)

qB ∈ QB qA ∈ QA, pA ∈ QAp d1 : qA →A pA (syn3)
d1 : (qA, qB)→ (tick(pA), qB)

qA ∈ QA qB ∈ QB, pB ∈ QBp d2 : qB →B pB (syn4)
d2 : (qA, qB)→ (qA, tick(pB))

Def. 2.3 models a synchronised interleaving of two TCAs. The interleaving can be seen
from the fact that each transition of C‖D (and the associated delay) stems from exactly
one transition of the component TCAs.

As an example consider the parallel composition C‖D shown in Fig. 2. The entry
state of C‖D is (C0, D0) which is transient. From there either one of the TCAs can make
a move, specifically 5 : (C0, D0) → (tick(C1), D0) or 1 : (C0, D0) → (C0, tick(D1)), by
rules asy1 or asy2, respectively. Both successor states (tick(C1), D0) and (C0, tick(D1))
are still transient. The tick prefix in tick(C1) and tick(D1) indicates that the TCA which
has moved has reached a pause state and now is waiting for the other to finish the tick.
E.g., in (tick(C1), D0) the automaton C waits in its pause state C1 while D is still in
the transient entry state D0. As soon as D moves into it pause state D1, too, we reach
the global state (C1, D1). This happens in the transition 1 : (tick(C1), D0) → (C1, D1)
generated by rule syn2. Notice that the tick prefix is removed, making (C1, D1) a pause
state of the composite TCA C‖D.

7

Upd
ate

d N
ov

em
be

r 2
01

4

1

13

12

1

12 3

5

C

D
C1

C2

C0

C3

C4

D2

D1

D0

C0,D0

tick(C1),D0 C0,tick(D1)

5 1

C1,D1

1 5

tick(C2),D1 C1,tick(D2)

C2,D2

12 1

tick(C3),D2 C2,tick(D1)

C3,D1

3 13

1 12

C4,D2

tick(C4),D1 C3,tick(D2)

12

C4,tick(D1)tick(C3),D2

13 3

2

12 2
1 3

3 1

Figure 2: A synchronous product of TCAs C and D with aligned pause states (left) and
the composite TCA C‖D (right).

The operation ‖ is associative and commutative in the sense that (A‖B)‖C and
A‖(B‖C), and A‖B and B‖A respectively, are isomorphic TCAs, i.e., the same automa-
ton modulo the representation of their states. Therefore, we can use the operator ‖ as a
multi-ary combinator without need to write brackets.

Our Def. 2.3 captures the timing behaviour of synchronous composition in the sense
that if AP and AQ are abstractions of synchronous programs P and Q, respectively, then
AP ‖AQ is sound with respect to the executions of the tick-synchronized multi-threaded
composition P‖Q of P and Q. However, just like AP and AQ are abstractions of the
execution semantics of P and Q, the composition AP ‖AQ of their TCAs, in general,
is a sound over-approximation of the control paths executable by P‖Q. In particular,
wcrt(AP ‖AQ) cannot be precise because P and Q communicate through signal values,
which introduces additional scheduling constraints that would need the tracking of signal
data in AP , AQ and in Def. 2.3, which we ignore. We will see that even under this
drastic simplification of parallel composition both the WCRT problem itself as well as the
achievable precision of the WCRT results are non-trivial.

Definition 2.4 The Tick Alignment Optimisation Problem TAP is the problem to com-
pute wcrt(T) for an arbitrary parallel composition T = T1‖T2‖ · · · ‖Tn of TCAs Ti with
i = 1, . . . , n.

Let us have a look at our example C‖D from Fig. 2. By inspecting the transition system
for C‖D on the right of Fig. 2 we can work out that the longest transient execution path
has duration

wcrt(C‖D) = 16 = 13 + 3 = 3 + 13 : (C2, D2) � (C3, D1).

8

Upd
ate

d N
ov

em
be

r 2
01

4

To understand the tick alignment problem it is important to observe that the worst case
reaction time wcrt(C‖D) is smaller than the sum of the WCRT of the two component
processes which is wcrt(C) + wcrt(D) = 13 + 12 = 26. The reason is that the two pause
states from which these worst case behaviours are observable, viz. C2 and D1, never
come to be active in the same tick. They are not tick aligned. The pause states which
are tick aligned are indicated by the dotted lines connecting C and D in Fig. 2. These
are the pairs of states that appear as reachable pause states in the composite TCA, viz.
{(C1, D1), (C2, D2), (C3, D1), (C4, D2)}. The pause state (C2, D1) which is included as
a pause state in the generic Def. 2.3 of C‖D is not reachable.

3 Max-Plus Semantics of TCA

In order to solve the Tick Alignment Problem it is useful to study the algebraic manip-
ulations on TCAs based on a notion of equivalence that preserves the WCRT semantics
of the automata. For our purposes the canonical definition is to stipulate A ∼= B iff both
A and B generate the same WCRT for all parallel contexts C, i.e., for all TCAs C we
have wcrt(A‖C) = wcrt(B‖C). Trivially, this yields an equivalence relation such that
A ∼= B implies wcrt(A) = wcrt(B) and which is a congruence for parallel composition, i.e.,
if A ∼= B then A‖C ∼= B‖C in all parallel contexts C. The practical importance of the
equivalence ∼= is that it turns TCAs into an algebra and permits us to reduce the problem
of computing wcrt(A‖B) to the problem of computing wcrt(A∗‖B∗) where A∗ and B∗ are
simplified versions of A and B with A ∼= A∗ and B ∼= B∗. The next step is to identify an
expressively complete set of operators on TCAs and ∼=-simplification rules for TCAs using
these operators.

3.1 Formal Max-Plus Power Series

Specifically, it turns out that TCAs correspond to formal power series in the max-plus
algebra (N∞,⊕,�, 0,1) where N∞

df= N∪{−∞} and ⊕ stands for the maximum and � for
addition on N∞. Both binary operators ⊕ and � are commutative, associative and have
the neutral elements 0 df= −∞ and 1

df= 0, respectively, i.e., x⊕ 0 = x and x� 1 = x. The
constant 0 is absorbing for �, i.e., x� 0 = 0� x = 0. Finally, � distributes over ⊕, i.e.,
x � (y ⊕ z) = (x � y) ⊕ (x � y) which is the same as x + max(y, z) = max(x + y, x + z).
However, ⊕ does not distribute over �, for instance, 4⊕ (5� 2) = max(4, 5 + 2) = 7 while
(4 ⊕ 5) � (4 ⊕ 2) = max(4, 5) + max(4, 2) = 9. This explains the choice of notation �
and ⊕ to highlight the multiplicative and additive nature, respectively, of the operators.2
As in standard arithmetic we write multiplicative expressions x � y also without the
operator simply as x y. A comprehensive study of the theory of max-plus algebra, and its
generalisation, the dioids, can be found in [2]. The important role of this structure for
solving path problems is highlighted also in [5], where it is called a semiring.

The structure N∞ plays the role of scalars in our algebra of TCAs where each TCA is
identified, up to ∼=, with a formal power series, or fps for short,

F [X] = F0 ⊕ F1X ⊕ F2X
2 ⊕ F3X

3 · · · (1)

with scalars Fi ∈ N∞ and where exponentiation is repeated multiplication, i.e., X0 = 1

and Xk+1 = XXk = X � Xk. Such a fps (1) stores an infinite sequence of numbers
F0, F1, F2, F3, . . . as the coefficients of the base polynomials Xk. In contrast to normal
power series a formal power series does not need to converge as a function of variable X.

2We are grateful to Alain Girault who pointed out to us the rather natural notation for the constants
0 and 1.

9

Upd
ate

d N
ov

em
be

r 2
01

4

For instance, considering that 1k = 1 � 1 � · · · � 1 = k we have F [1] = F0 ⊕ F1 � 1 ⊕
F2� 2⊕F3� 3⊕ · · · which diverges to ∞, unless all but a finite number of coefficients Fk
are 0. Also, F [1] = F0 ⊕ F1 ⊕ F2 ⊕ · · · only converges if the number series F0, F1, F2, . . .
is bounded. In this case F [1] is the maximum of all the coefficients. All the sequences
considered in this report, which are generated by finite-state TCAs, are bounded. Hence,
F [1] is always defined. When A[X] codes the successive maximal tick lengths, or reaction
times, of a finite state synchronous program modelled by a TCA A, then A[1] = wcrt(A) is
the worst-case reaction time across all ticks. The value A[0] = A0, which always exists, is
the surface delay, i.e., the time from entering the program until the first pause is reached.

In the following, we let N∞[X] denote the set of fps over N∞, which is max-plus algebra
N∞ freely extended by a formal variable X to build denumerably infinite polynomials. It is
important to keep in mind that the semantics of a fps F [X] ∈ N∞[X] is not what it does as
a function of X, but the number series F0, F1, F2, . . . generated by it. In the following we
use the fact that every fps A[X] can be uniquely written in the form A[X] = A0⊕XA′[X]
where the scalar A0 is the initial coefficient (head) and A′[X] = A1⊕A2X

1⊕A3X
2⊕ · · ·

is the first derivative (tail) of A[X] containing all the remaining coefficients.

3.2 Reducing TCAs to Linear Form

Now, if every TCA A corresponds to a formal power series A[X] then it should be possible
to constructA from operators in N∞[X]. The idea is that each state q ∈ Q ofA corresponds
to a fps q[X] that describes the worst-case sequence of tick costs generated by A when
started in q. The fps for A then is A[X] = e[X] for the entry state e of A. We need
the following three operators, delay prefix, pause prefix and parallel composition on fps to
represent every TAP3 as a system of recursive equations on fps:

• Delay Prefix
The delay prefix composition A0 ; B[X] for a scalar A0 ∈ N∞ and a fps B[X] =
B0 ⊕X B′[X] is given by

A0 ; B[X] = (A0 �B0)⊕X B′[X]. (2)

The TCA A0 ; B[X] starts execution with a tick cost of A0 and then instantaneously
passes control to the TCA B for the rest of the current instant and all following ticks.

• Pause Prefix
The pause prefix tick(A[X]) is defined by

tick(A[X]) = 1⊕X A[X]. (3)

The TCA tick(A[X]) adds an initial pause node before starting A[X]. It pauses the
current tick and then behaves like A[X] from the second tick onwards.

• Parallel Composition
The parallel composition A[X]‖B[X] of two fps A[X] = A0 ⊕X A′[X] and B[X] =
B0 ⊕X B′[X] is given by

(A0 ⊕XA′[X]) ‖ (B0 ⊕XB′[X])
= (A0 �B0)⊕X (A′[X] ‖B′[X]). (4)

The TCA A[X]‖B[X] executes the tick steps from A[X] and B[X] synchronously,
but adds the tick costs to account for the interleaving at the level of the instantaneous
transitions (multi-threaded semantics).

3We recall that for simplicity the TCAs considered here do not have exit states. This permits us to
describe TCAs and their parallel composition solely in terms of prefix operators.

10

Upd
ate

d N
ov

em
be

r 2
01

4

Using these operators on N∞[X] together with the basic laws of max-plus algebra N∞
we can construct for every TCA A = 〈Q, e,→〉 an equivalent normal form representation
A∗ of its corresponding fps A[X]. This normal form TCA A∗ is reduced since the only
transient state is the entry state and it is linear since the transition relation has no
branching.

We illustrate the formal transformations by way of the example automaton A from
Fig. 1. Considering each state as a generator fps Ai = Ai[X] of tick costs and writing
down the equations that arise from the transitions connecting them, we get:

A = A6 = (5 ; A0)⊕ (8 ; tick(A2)) (5)
A0 = 7 ; tick(A1) (6)
A1 = 21 ; tick(A2) (7)
A2 = (31 ; tick(A3))⊕ (32 ; tick(A4)) (8)
A3 = (18 ; tick(A3))⊕ (20 ; tick(A4)) (9)
A4 = 24 ; A5 (10)
A5 = 12 ; tick(A1) (11)

Let us explain the first equation (5), the others are constructed in a similar fashion. First
note that the sum ⊕ in equation (5) expresses the non-deterministic choice between the
two transitions out of state A6, i.e., going to the transient node A0 within 5 time units
or to the surface tick(A2) of the pause state A2 within 8 time units. In both cases, the
operator ; prefixes the outgoing delay cost 5 or 8 to the target state A0 or tick(A2),
respectively.

Now note that the surface part tick(A2) of A2 immediately returns control and then
behaves like the depth part A2 one tick later. This is expressed by the Pause Prefix Law
(3) which gives tick(A2) = 1⊕XA2. Then, using the Delay Prefix Law (2) on the second
transition, we get A0 = 8 ; tick(A2) = 8 ; (1 ⊕ XA2) = (8 � 1) ⊕ XA2 = 8 ⊕ XA2.
Similarly, we get A0 = 7 ; tick(A1) = 7⊕XA1 from the second equation (6). Substituting
both into (5) yields A6 = (5 ; A0) ⊕ (8 ; tick(A2)) = (5 ; (7 ⊕ XA1)) ⊕ 8 ⊕ XA2 =
(5 � 7) ⊕XA1 ⊕ 8 ⊕XA2 = 12 ⊕X(A1 ⊕ A2) with another application of Delay Prefix
and the laws of max-plus algebra. This tells us that the worst case cost of the first tick of
A (started from A6) is 12 and the remaining ticks are described by A1⊕A2. This makes
sense since we do not know if we continue in A1 or A2, whence we must take the worst
case, which is the maximum ⊕.

Continuing in this fashion, we obtain a normal form representation of A[X], system-
atically evaluating and substituting the equations (5)–(11). Overall, we find:

A∗[X] = A6[X] = 12⊕ 32X ⊕ 36X2 ⊕ 36X3 ⊕ · · ·

which corresponds to a reduced linear TCA A∗ ∼= A as seen on the right of Fig. 1. From
it we can read off the maximal tick length wcrt(A) = wcrt(A∗) = A∗[1] = 36.

As the above example illustrates, any TCA can be transformed into a reduced linear
TCA using the laws of max-plus algebra and the (delay, pause) prefix laws. In general, a
TCA in reduced linear form, also called a l–TCA, looks like

A = Aτ ⊕Xk Aφ (12)
Aτ = t0 ⊕ t1X ⊕ · · · ⊕ tkXk

Aφ = r0X ⊕ · · · ⊕ rn−1X
n ⊕XnAφ

11

Upd
ate

d N
ov

em
be

r 2
01

4

M. Mendler RePP 2014 @ Grenoble 6

...t0 t1 t2 tk

r0 r1 rn−2
rn−1

...
Aφ

Aτ

Figure 3: A reduced linear TCA A with transient part Aτ and cyclic part Aφ.

with an initial transient sequence Aτ and the recurrent iterative loop Aφ. We call τ(A) df=
k ≥ 0 the transient length4 and φ(A) df= n ≥ 1 the cycle length5 of A. Note, the transient
length indicates the number of ticks needed before the TCA reaches its stationary cyclic
behaviour. The special case of an l–TCA A (12) in which τ(A) = 0 is referred to as a
monocyclic TCA, or m–TCA for short. The general reduced linear TCA is seen in Fig. 3.

For example consider the reduced linear TCA A∗ from Fig. 1. It has transient length
τ(A∗) = 1 and cycle length φ(A∗) = 1. The transient part is (A∗)τ = 12 ⊕ 32X and its
recurrent part is (A∗)φ = 36X ⊕ X (A∗)φ. The TCA C from Fig. 2 is in reduced linear
form with transient length of τ(C) = 2 and cycle length φ(C) = 2. The transient part is
Cτ = 5⊕ 1X ⊕ 13X2 and the recurrent part Cφ = 2X ⊕ 1X2 ⊕X2Cφ. Neither A nor C
is monocyclic. On the other hand TCA D in Fig. 2 is monocyclic.

Proposition 3.1 Let A be an arbitrary TCA, specified through a finite set of equations in
N∞[X] with operations {⊕,�, ;, tick}. Then, using the Delay and Pause Prefix Laws (2)
and (3) together with the laws of max-plus algebra, A can be transformed in polynomial
time into a l–TCA A∗ of shape (12) with A ∼= A∗.

Let us call a TAP (see Def. 2.4) in which all tick cost automata are l–TCAs an l–TAP.
Similarly, a m–TAP is a TAP in which all automata are m–TCAs. Prop. 3.1 gives us a
normalisation procedure to reduce an arbitrary TAP to an l–TAP of reduced linear TCAs,
and then unfold until we are left with an m–TAP.

Algorithm 3.2 (UNFOLD) Given TCAs Ti and a TAP T = T1‖T2‖ · · · ‖Tn:

1. Use Prop. 3.1 to obtain the equivalent reduced linear form T ∗i of each Ti.

2. Repeatedly use the Parallel Composition Law (4) on the TAP

T ∗ = T ∗1 ‖T ∗2 ‖ · · · ‖T ∗n

to factor out the transient parts of the T ∗i , i.e., to bring T ∗ into the equivalent form
T ∗ = T ∗,τ ⊕Xk T ∗,φ where

T ∗,φ = T ∗φ1 ‖T
∗,φ
2 ‖ · · · ‖T

∗,φ
n

is an m–TAP in which all T ∗,φi are m–TCAs, i.e., such that τ(T ∗,φi) = 0. Each T ∗,φi
is a cyclic shift of the recurrent part of the associated T ∗i , i.e., their cycle lengths are
identical.

4Note that the term ‘transient’ here does not refer to instantaneous behaviour or transient states. It
refers to the initial transient phase at the tick level.

5Every fps F [X] has at least a cycle length of 1 since F [X] = F [X]⊕ 0 and 0 = 0⊕X0.

12

Upd
ate

d N
ov

em
be

r 2
01

4

UNFOLD reduces the problem of computing wcrt(T) for a TAP T = T1 ‖ T2 ‖ · · · ‖ Tn
involving arbitrary TCAs Ti to computing wcrt(T ∗,τ) for an l–TAP T ∗,τ (the transient
part) and computing wcrt(T ∗,φ) for a TAP T ∗,φ = T ∗,φ1 ‖T

∗,φ
2 ‖ · · · ‖T ∗,φn consisting entirely

of monocyclic TCAs T ∗,φi . Both steps 1 and 2 of Alg. 3.2 are polynomial of asymptotic
complexity Θ(nmax(τ∗1 , . . . , τ∗n)) where τ∗i are the transient lengths of the T ∗i resulting
from Step 1. The overall result is obtained by maximum,

wcrt(T) = max(wcrt(T ∗,τ),wcrt(T ∗,φ)).

The brute force approach to solve m–TAP instances is by reachability and state expansion.

Algorithm 3.3 (EXPAND) Given l–TCAs Ti and TAP T = T1‖T2‖ · · · ‖Tn. Repeatedly
use the Parallel Expansion Law (4) to obtain an equivalent reduced linear form T ∗ of T .
Then, wcrt(T) = wcrt(T ∗).

Alg. 3.3 is of exponential complexity Θ(n lcm(φ∗1, . . . , φ∗n)), where φ∗i are the cycle
lengths of the T ∗i .

M. Mendler RePP 2014 @ Grenoble

2

3

54

11

12

1413

1

E

F
C1

C2

C0

C3

C4 D3

D2

D1

D0

1¯11

2¯12

3¯13

4¯14

5¯12 4¯13

5¯14

4¯125¯13

EkF

Figure 4: The parallel expansion (EXPAND) of E‖F (right) for the l–TCAs E and F
(left).

For illustration consider Fig. 4 which shows the result of applying EXPAND on the
parallel composition E‖F of the l–TCAs seen on the left. Note how the cycle length of the
composition is the product φ(E‖F) = 6 = 2 · 3 = φ(E) ·φ(F) while the transient length is
the maximum τ(E‖F) = 2 = max(2, 0) = max(τ(E), τ(F)) We can read off the WCRT as
wcrt(E‖F) = 5� 14 = 19.

For m–TAP instances there is a standard case in which a parallel operator can be
eliminated in polynomial time, viz. if the cycle length of one m–TCA divides that of
another.

Proposition 3.4 Let Ti =
⊕φi−1
j=0 tijX

j+1 ⊕Xφi Ti for i = 1, 2 be two m–TCAs such that
φ1 divides φ2, i.e., gcd(φ1, φ2) = φ1. Then, T1‖T2 ∼= T where τ(T) = 0, φ(T) = φ2 and

T =
φ2−1⊕
j=0

(t1(jmodφ1) + t2j)Xj+1 ⊕Xφ2 T.

13

Upd
ate

d N
ov

em
be

r 2
01

4

The equivalence reduction T1‖T2 ∼= T of Prop. 3.4 can be conducted in PTIME, e.g.,
by repeated application of the Parallel Expansion Law. This gives rise to the REDUCE
algorithm which can be used in Alg. 3.2 as part of Step 2 to simplify the recurrent part
T ∗,φ further.

Algorithm 3.5 (REDUCE)

f = 0
i = 1
w h i l e i < l e n (T) :

i f l e n (T[i]) < l e n (T[f]) :
T[i] ,T[f] = T[f] ,T[i]

i f l e n (T[i]) % l e n (T[f]) == 0 :
T[f]=[x + y f o r x , y in z i p (T[f] ∗ (l e n (T[i]) / l e n (T[f])) ,T[i])]
T[i] ,T[−1] = T[−1] ,T[i]
T = T[: −1]

i = i + 1
r e t u r n T

The algorithm 3.5 can be thought of as being composed of two premiere actions:
duplication and fusion. If the cycle length of one m–TAP divides the length of another,
then the shorter one is multiplied by duplicating transitions to have the same number of
transitions as the longer one, and these two m–TCAs are then fused into a single m–TCA
by summing their transition costs.

Where such an m–TAP reduction is not possible we are facing the complexity problem
of the Parallel Expansion in Step 3 of Alg. 3.3 which bears the risk of a state-space
explosion. So, for efficiency, we cannot eliminate parallel composition completely in Step 3
but instead need other techniques which preserve some degree of concurrency. To this end,
it will be helpful to transform m–TAPs into an equivalent graph-theoretic maximum cost
clique problem based on the number-theoretic structure of the associated m–TCAs.

4 The Tick Alignment Graph and Maximum Weight Cliques

From now on we generally assume that T = T1‖T2‖ · · · ‖Tn is an m–TAP, i. e., all TCAs Ti
are monocyclic. Each m–TCA Ti can be identified with a function that associates a tick
cost Ti(j) ∈ N with each index 0 ≤ j < φi representing the j-th transition counted from
the start of the m–TCA, called a transition offset. For instance, for the m–TCA Aφ in
Fig. 3 we have Aφ(j) = rj . Then, the problem of computing wcrt(T) amounts to finding
the the maximum sum T1(t1) + T2(t2) + · · ·+ Tn(tn) for any selection of transition offsets
0 ≤ ti < φi that are tick aligned, i.e., for which there exists a global tick count k such that
k ≡φi ti for all 1 ≤ i ≤ n. Here and in the following x ≡m y stands for congruence modulo
m, i.e., x mod m = y mod m. Formally, then

wcrt(T) = max {T1(t1) + T2(t2) + · · ·+ Tn(tn) | ∃k ≥ 0.∀1 ≤ i ≤ n. 0 ≤ ti < φi, k ≡φi ti}.

Consider the m–TAP T = T1‖T2‖T3‖T4 seen in Fig. 5, where the m–TCA T1 has the
cycle length φ(T1) = 3 and in max-plus notation is T1 = 1X ⊕ 4X2 ⊕ 5X3 ⊕ X3 T1 or
as a tick cost function T1(0) = 1, T1(1) = 4 and T1(2) = 5. The other three m–TCAs
T2–T4 are specified in an analogous way. If we start each TCA Ti in its entry state,
indicated by the small horizontal arrow, then in the k-th tick it executes the transition
with cost Ti(k mod φ(Ti)). Consequently, as highlighted by the red dotted line in Fig. 5
the sum T1(2) + T2(0) + T3(2) + T4(0) = 5 + 2 + 1 + 3 = 11 is aligned since for k = 2

14

Upd
ate

d N
ov

em
be

r 2
01

4

the TCAs T1 and T3 execute the transition with offset k mod 3 = 2 and TCAs T2 and
T4 both execute the transition with offset k mod 2 = 0. On the other hand, the sum
wcrt(T1)+wcrt(T2)+wcrt(T3)+wcrt(T4) = 5+2+3+3 = T1(2)+T2(0)+T3(0)+t4(0) = 13
is not aligned: There is no global tick count k such that k mod 3 = 2 and at the same time
k mod 3 = 0 which would be necessary to make T1 and T3 to reach their locally maximal
tick costs T1(2) = 5 and T3(0) = 3 simultaneously.

large‐tap

M. Mendler RePP 2014 @ Grenoble 9

1

4

5
2 1

T1 T2

3
3

T4

3

1

1

T3

Figure 5: An m–TAP instance composed of 4 threads. Its WCRT is 9 and occurs when
the transitions T1(2), T2(0), T3(2) and T4(0) are executed.

Proposition 4.1 (Chinese Remainder Theorem)
Given an m–TAP T = T1‖T2‖ · · · ‖Tn where φi = φ(Ti) is the cycle length of Ti for
1 ≤ i ≤ n. A candidate sum

T1(t1) + T2(t2) + · · ·+ Tn(tn),

with transition offsets 0 ≤ ti < φi, is aligned in T iff for all pairs of indices 1 ≤ i1, i2 ≤ n,
we have ti1 ≡gcd(φi1 ,φi2) ti2.

Proposition 4.1 suggest a decision procedure. We build a tick alignment graph con-
necting a transition ti1 of one m–TCA with a transition ti2 from another m–TCA iff
ti1 mod g{i1,i2} = ti2 mod g{i1,i2}, where g{i1,i2} = gcd(φ(Ti1), φ(Ti2)). We then search for a
fully connected subset of transitions, one from each m–TCA with maximal weight. Since
every transition in each thread is connected (aligned) with some transition in every other
thread, this is the same as searching for a maximal weight clique.

Let us make this more precise. Let G = (V,E,w) be a finite undirected graph with
vertices V , symmetric and reflexive edge relation E ⊆ V ×V and node weights w : V → N.
We write v1 ↔E v2 for (v1, v2) ∈ E. A subset C ⊆ V is a clique if it is fully connected,
i.e., for all v1, v2 ∈ C, v1 ↔E v2. The weight w(S) of a subset S ⊆ V is w(S) df=

∑
{w(v) |

v ∈ S}.

Definition 4.2 (Tick Alignment Graph – TAG)
Let T = T1‖T2‖ · · · ‖Tn be an m–TAP with cycle lengths φi = φ(Ti) and pairwise greatest
common divisors g{i1,i2}

df= gcd(φi1 , φi2) for 1 ≤ i, i1, i2 ≤ n. The tick alignment graph
(TAG) GT = 〈VT , ET , wT 〉 induced by T is defined by:

• VT
df= {(i, j) | 1 ≤ i ≤ n, 0 ≤ j < φi}

• (i1, j1)↔ET (i2, j2) iff j1 ≡g{i1,i2} j2

• wT (i, j) df= Ti(j).

15

Upd
ate

d N
ov

em
be

r 2
01

4

For our example m–TAP T from Fig. 5 the tick alignment graph GT is shown in
Fig. 6 on the top. The nodes of GT representing transitions of T are drawn as boxes
to distinguish them from the states of the m–TCAs in Fig. 5. Inside each box we have
written the formal representation (i, j) of the vertex. Its weight wT (i, j) is given by the
number above the box. The edges in the TAG connect nodes (i1, j1) and (i2, j2) iff the
thread offsets satisfy j1 ≡g{i1,i2} j2 where g{i1,i2} = gcd(φi1 , φi2) and φi = φ(Ti). These
“connectivity parameters” are given in the graph seen on the bottom of Fig. 6.

Notice in Fig. 5 that no two nodes of the same thread are connected. Indeed, they can
never occur together in the same tick. Formally, this is because j1 6≡φi j2 for all j1 6= j2,
considering that φi = g{i,i} = gcd(φi, φi). As a consequence we have (i, j1) 6↔ET (i, j2)
for all 1 ≤ i ≤ n whenever j1 6= j2. On the other hand, as can be seen, threads with
relatively prime cycle lengths have all their nodes fully connected between them. For
instance, g{1,2} = gcd(φ1, φ2) = gcd(3, 2) = 1 so that j1 ≡g{1,2}≡g{1,2} 0 ≡g{1,2} j2 for any
j1 and j2. So, e. g., all nodes (1, j1) in T1 are connected with all nodes (2, j2) in T2.

Given these connections in GT , a clique C = {(1, 2), (2, 0), (3, 2), (4, 0)} with maximal
weight WT (C) = 11 is highlighted in Fig. 6 by thick red lines. Another clique with
weight 10 is C ′ = {(1, 1), (2, 0), (3, 1), (4, 0)}. These cliques correspond to the two aligned
candidate sums T1(2) + T2(0) + T3(2) + T4(0) and T1(1) + T2(0) + T3(1) + T4(0) and the
two ways of generating the tick cost of the composite TCA T1‖T2‖T3‖T4 for tick counts
k = 2 and k = 4, respectively.

(4,1)

(4,0)

(2,1)
(3,1)

(2,0)

large‐tag

M. Mendler RePP 2014 @ Grenoble 11

1

2

3

3

(1,2)

(1,0)
1

5

4
(1,1)

(3,2)

(3,0)
3

1

1

φ1 = 3

φ2 = 2

g1,2 =
1

g1,3 = 3

g2,3 = 1

φ3 = 3T1

T2
T3

T4
φ4 = 2

g2,4
= 1

g
2
,4
=
2g1,4 = 1

Figure 6: The tick alignment graph for the TAP from Fig. 5 and a clique of maximal
weight 11 on the top. The graph on the bottom indicates the cycle lengths φi of the four
threads Ti and the greatest common divisors gi,j = gcd(φi, φj) connecting them.

Proposition 4.3 (Reduction to Max Weight Clique Problem (MWCP))
Let T = T1‖T2‖ · · · ‖Tn be an m–TAP with cycle lengths φi = φ(Ti) and m = maxiφi their
maximum.

• The associated TAG GT can be computed in O(n2m2) time and has size O(nm)
vertices and O(n2m2) edges.

16

Upd
ate

d N
ov

em
be

r 2
01

4

• A candidate sum of the m–TAP T ,

T1(t1) + T2(t2) + · · ·+ Tn(tn),

for 0 ≤ ti < φi, is aligned in T iff the nodes C = {(i, ti) | 1 ≤ i ≤ n} form a clique
in the TAG GT .

• To check a candidate sum C is a clique takes O(n2) time.

• wcrt(T) = max {wT (C) | C clique in GT }.

Prop. 4.3 reduces the TAP for m–TAP instances to the Maximum Weight Clique
Problem (MWCP), which is known to be NP-complete for arbitrary graphs [12]. This
means that TAP is in NP which is already more information than we get from Alg. 3.3
which only shows that TAP is in EXPTIME. However, this is still unsatisfactory because
it does not provide a lower bound on the computational complexity of TAP.

In the appendix (Sec. A) we show that it is possible to reduce any instance of MWCP
for an arbitrary graph G with n nodes to a m–TAP TG. However, this recoding depends
on the generation of O(n2) distinct prime numbers pi, obtaining an instance TG of TAP of
size O(nΠi pi) if the cycles are represented explicitly. This is an exponential space blow-up
in the m–TAP instance and so the reduction does not imply NP-hardness of m–TAP. Also,
even if the transitions of the TAP TG were coded implicitly in polynomial space, it is not
clear if the generation of n distinct prime number is in PTIME. Certainly the generation
of the n first distinct prime numbers is highly unlikely to be PTIME for otherwise the
number factorisation problem would be in PTIME, too, which is believed not to be the
case (RSA encryption would be pointless if it were).

This suggests that m–TAP—or MWCP on tick alignment graphs, for that matter—may
well be polynomial in practice. After all, the tick alignment graphs generated from TAP
instances are not arbitrary graphs but have specific structure arising from the number-
theoretic relationships of the cycle lengths involved. One important such special property,
which we will exploit later, is captured by the following Prop. 4.4.

Proposition 4.4 Let T = T1‖T2‖ · · · ‖Tn be an m–TAP with cycle lengths φi = φ(Ti).
Every clique C ⊆ VT of GT = 〈VT , ET , wT 〉 can be extended to a clique C ′ ⊇ C containing
one node from each thread, i.e., for all 1 ≤ i ≤ n there is a 0 ≤ j < φi with (i, j) ∈ C ′.

5 Practical Algorithms for TAP

As an application of the theoretical results from the previous sections we now describe our
experiments with practical algorithms both for the exact solution of the TAP, in Sec. 5.1, as
well as polynomial approximations, in Sec. 5.2. We start with some terminology regarding
the proposed algorithms in this section.

• Exact algorithms: These algorithms are optimal but exhibit an exponential worst-
case behaviour. We start with an algorithm for the MWCP called wclique. Follow-
ing this we present an improved algorithm called ILPCP which extends an iterative
narrowing based algorithm called ILPC using pairwise constraints during the nar-
rowing process that converges faster.

17

Upd
ate

d N
ov

em
be

r 2
01

4

• Approximation algorithms: These algorithms are PTIME at the expense of a loss of
precision. We propose an approach called MaxCy to compute the maximum cost cycle
in a TAG. We also propose a variant of MaxCy called MaxCy+Reduce that applies the
technique presented in Algorithm 3.5. Finally, we compare our techniques to existing
techniques based on forming the sum of the maximum tick costs in the threads, called
MaxTC.

5.1 Exact Computation of WCRT

Many algorithms have been proposed to solve the MWCP. The most well-known are en-
codings in Integer Linear Programming (ILP) style, see e.g. [12], or branch-and-bound
search algorithms such as [11, 17]. All these can be applied to obtain exact solutions for
the TAP via Prop. 4.3. Though these algorithms, solving an NP-complete problem, have
exponential worst-case behaviour on arbitrary graphs, it is not known how they fare on
tick alignment graphs. We conducted experiments to find out and the results are reported
in Sec. 6.

Alongside, we observe that the incremental ILPC algorithm [15], an effective WCRT
evaluation method, is also based on similar approaches. Starting from this observation,
we compare the linear programming formulation of ILPC with the most common linear
formulation of the MWCP. This results in a simple but extremely efficient improvement
of ILPC , which we term as ILPCP .

5.1.1 The Global ILP Formulation of MWCP

For a weighted graph G = (V,E,w), let Ḡ = (V, Ē, w) be the complement graph such that
Ē = {(u, v) | u, v ∈ V, u 6= v and (u, v) 6∈ E}. Then, if GT = 〈VT , ET , wT 〉 is the TAG
induced by a TAP T , according to Prop. 4.3, we obtain an exact ILP solution for wcrt(T)
from the following zero-one linear program, which is probably one of the most common
formulation of the MWCP on GT , called the edge formulation [12]:

Algorithm 5.1 (ILPMWCP)

Maximize
∑

(i,j)∈VT wT (i, j)·Ei(j) with
{
Ei1(j1) + Ei2(j2) ≤ 1, for all (i1, j1)↔ĒT

(i2, j2)
Ei(j) ∈ {0, 1}, for all (i, j) ∈ VT .

Recall that for a thread offset (i, j) ∈ VT , i. e., 0 ≤ j < φi, the value wT (i, j) = Ti(j) is
its tick cost. Each Ei(j) is a Boolean variable that indicates if the offset is part of the
selected combination. So, each constraint (i1, j1)↔ĒT

(i2, j2), by modelling the absence of
a connection in the TAG GT , ensures that the two corresponding thread tick costs Ti1(j1)
and Ti2(j2) will not be considered as aligned, i.e., active during the same tick. All thread
offsets selected by the Ei(j) satisfying the constraints form a clique.

5.1.2 The Iterative ILPC Approach

The iterative ILPC algorithm [15] starts from a relaxation of the above linear program,
called ILPBASE:

Algorithm 5.2 (ILPBASE or Maximum Thread Cost Approach)

Maximize
∑

(i,j)∈VT wT (i, j) · Ei(j) with
{ ∑φ(Ti)−1

j=0 Ei(j) = 1, for all i ∈ {1, . . . , n}
Ei(j) ∈ {0, 1}, for all (i, j) ∈ VT .

18

Upd
ate

d N
ov

em
be

r 2
01

4

This linear program ILPBASE is equivalent to solving the above ILPMWCP on the relaxed
TAG G∗T in which all offsets between different threads are connected. This only ensures
that transitions in the same thread are not considered together for a candidate sum. Since
G∗T is an edge extension ofGT , the result of ILPBASE is an upper bound over-approximation
of the result from ILPMWCP. In fact, ILPBASE can be computed in PTIME and gives the
same WCRT as the Maximum Thread Cost (MaxTC) approach [4, 10].

The maximum weight solution
∑

(i,j)∈VT wT (i, j) · Ei(j) obtained from ILPBASE as a
candidate sum may or may not be aligned. More precisely, let C = {(i, j) | Ei(j) =
1, (i, j) ∈ VT } be the candidate set selected in ILPBASE. Then, wcrt(T) = wT (C) iff C is a
clique in GT which can be checked in PTIME, see Prop. 4.3. If C is not a clique, then the
strategy of ILPC is to improve the ILPBASE model iteratively by adding new constraints
that rule out these detected infeasible combinations until finally reaching a valid one.
The infeasibility of tick combinations C is confirmed using another linear program called
ILPCHECK.6

For example, on the previous TAP of Fig. 5, solving the ILPBASE problem might result
in the candidate set C = {(1, 2), (2, 0), (3, 0), (4, 0)} selecting from each thread an offset of
maximum cost, thereby yielding the total tick costs T1(2) + T2(0) + T3(0) + T4(0) = 13.
Using ILPCHECK, we detect it is an infeasible combination. Specifically, the nodes (1, 2)
and (3, 0) are not aligned in GT because 2 6≡3 0 where 3 = gcd(3, 3) = gcd(φ(T1), φ(T3)).
Therefore, the following constraint (13) is added to the ILPBASE problem:

E1(2) + E2(0) + E3(0) + E4(0) < 4. (13)

This constraint expresses that these offsets will never be activated together at the same
time. By solving ILPBASE a second time, the candidate set C will be excluded and the
maximal solution is given by the candidate set C ′ = {(1, 2), (2, 0), (3, 0), (3, 1)} with weight
wT (C ′) = 13. Again, ILPCHECK finds out this set is infeasible and generates the constraint

E1(2) + E2(0) + E3(0) + E4(1) < 4. (14)

Now, when ILPBASE is iterated for the third time under both (13) and (14), in this case,
the exact solution appears.

5.1.3 Improved Iterative ILPCP Method

By taking into account our theoretical analysis, we improve the ILPC method in two
points:

• We propose a polynomial alternative to ILPCHECK.

• We strengthen the infeasible combination constraint using the MWCP formulation.

In the proposed polynomial version of ILPCHECK, we check all pairs of offsets for align-
ment, i.e., for a connection in the TAG. Each missing edge in TG not only witnesses the
infeasibility of the given candidate sum but also of others. We can take advantage of
this information to tighten up the ILPBASE so we need fewer iterations. Note that while
ILPC only ruled out a specific candidate sum, we propose to rule out every candidate sum
that shares some infeasible pair of offsets with the specific candidate sum currently under
check. These new pairwise constraints are then exactly corresponding to those of the edge
formulation of MWCP.

6The programs ILPBASE and ILPCHECK generate and check, respectively, tick alignment not just for
tick costs in m–TAPs but general sequential-parallel program structures.

19

Upd
ate

d N
ov

em
be

r 2
01

4

If C is any combination of nodes in a TAG GT , we denote by Ξ(C) the list of infeasible
pairs of thread offsets from C. Formally, we define for each C ⊆ VT

Ξ(C) df= {((i1, j1), (i2, j2)) | (i1, j1), (i2, j2) ∈ C and (i1, j1)↔ĒT
(i2, j2)}.

From these we generate the ILP constraints

Ei1(j1) + Ei2(j2) ≤ 1, for all ((i1, j1), (i2, j2)) ∈ Ξ(C) (15)

to narrow the ILPBASE formulation for better precision. Note that if we choose C = VT
then we have maximum precision, since we are completing ILPBASE to become equivalent
to ILPMWCP. The fact that Ξ(C) is obtained from a small candidate set C which generates
an upper bound on the WCRT make this approach more focused than Algorithm 5.1.

For example, in Fig. 5, considering the infeasible candidate sum T1(2)+T2(0)+T3(0)+
T4(0), we have Ξ({(1, 2), (2, 0), (3, 0), (4, 0)}) = [((1, 2), (3, 0))]. Now we just have to add
the constraint E1(2) + E3(0) ≤ 1 to ILPBASE. This constraint is not only valid for all
cliques, it is also stronger than the constraint (13) used in ILPCHECK. That is, it rules out
the infeasible sum T1(2)+T2(0)+T3(0)+T4(0) like (13) does, and also T1(2)+T2(0)+T3(0)+
T4(1) like (14), as well as T1(2) + T2(1) + T3(0) + T4(0) and T1(2) + T2(1) + T3(0) + T4(1).
In this way only one iteration is needed to hit the exact solution.

5.2 MaxCY Polynomial Approximation

Producing the exact solution is not always a requirement. Good over-estimations may
be tight enough. One canonical way to obtain approximations of wcrt(T) for a m–TAP
instance T proceeds by computing the maximum weight of all quasi-cliques in the associ-
ated TAG GT , where a quasi-clique is some suitable relaxation of the clique structure as
defined in the following Prop. 5.3.

Proposition 5.3 Let QuasiClique ⊆ 2VT be a class of subsets of nodes of a TAG GT =
(VT , ET , wT) which contains all cliques of GT in the following sense: For every clique
C ⊆ VT there exists an extension C ′ ⊇ C with C ′ ∈ QuasiClique. Then, wcrt(T) ≤
max {wT (C) | C ∈ QuasiClique}.

A notion of quasi-clique in Prop. 5.3 is interesting for WCRT analysis if the maximum
weight quasi-clique can be found in PTIME. Two simple examples are the following:

• (MaxAll) Considering every subset C ⊆ VT as a quasi-clique, then the maximum
weight quasi-clique is VT which simply yields the sum of all costs

∑
v∈VT wT (v) =∑

i,j Ti(j) which is a trivial upper bound of wcrt(T).

• (MaxTC) A tighter result is achieved by taking a quasi-clique to be a subset C ⊆ VT
that contains at most one node from each thread. Formally, C ∈ QuasiClique iff
(i, j1) ∈ C and (i, j2) ∈ C implies j1 = j2. The maximum weight such quasi-clique
Cmax then arises from the selection of the maximum offset from each thread. In
other words, max {wT (C) | C ∈ QuasiClique} =

∑
i maxj Ti(j) which is nothing but

the Maximum Thread Cost approach [4, 10], also specified by ILPBASE.

There are even more constrained notions of quasi-cliques that can be maximised in
PTIME such as bi-partite sub-graphs or triangulated sub-graphs. For a discussion and
review of literature see [12]. Here we propose a new approach, called MaxCY, based on
(directed) cycles as a notion of quasi-clique. To this end, we fix an arbitrary total ordering,
or permutation,

π = [Tπ(1), Tπ(2), . . . , Tπ(n)]
on the threads of an m–TAP instance T = T1‖T2‖ · · · ‖Tn. This generates a cyclic structure
on the threads which can be used to direct the edges in the tick alignment graph GT .

20

Upd
ate

d N
ov

em
be

r 2
01

4

Definition 5.4 (Directed Neighbourhood TAG) Let GT
df= 〈VT , ET , wT 〉 be a TAG

and π a permutation on {1, 2, . . . , n}. We define the π-directed neighbourhood TAG GπT
df=

〈VT , EπT , wT 〉, with the same nodes and weights as GT , by selecting the edge directions
EπT ⊆ ET according to π, i.e., (i1, j1)→EπT

(i2, j2) iff (i1, j1)↔ET (i2, j2) and there exists
a 1 ≤ i ≤ n such that i1 = π(i) and i2 = π(i+ 1 mod n).

Def. 5.4 creates a directed neighbourhood version GπT of GT in which we can search for
cycles. Note that in the original graph the edge set ET is symmetric by definition. What
EπT then is doing is to select those directions from the symmetric pairs that are compatible
with the sequence π(1), π(2), . . . , π(n) induced by the permutation.

Let us call a cycle C ⊆ VT in GπT a π-cycle of GT . One can show that π-cycles form a
notion of quasi-cliques according to Prop. 5.3. This follows since every clique in GT can
be extended to a clique C ′ ⊇ C which contains one node from each thread, by Prop. 4.4.
This clique C ′ then is a π-cycle, for any permutation π, because it is fully connected.

The computation of the maximal weight π-cycle is very similar to the Maximum Cycle
Mean (MCM) Problem for which there exist several PTIME algorithms. A comparative
study of existing algorithms is available in [6]. The soundness of Alg. 5.5 follows from
Prop. 5.3.

Algorithm 5.5 (MaxCY) Let T be an m–TAP instance. Select a total thread order-
ing π and transform T into its π-directed neighbourhood TAG GπT . Then, wcrt(T) ≤
max {wT (C) | C cycle in GπT }.

Consider the TAG GT from Fig. 6 with the natural ordering π0 = [T1, T2, T3, T4].
The resulting π0-directed TAG Gπ0

T is shown in Fig. 7. Also, by thick red lines, a cycle
C = {(1, 2), (2, 0), (3, 0), (4, 0)} with maximal weight w(C) = 13 is outlined. TWe know
this is an over-estimation of wcrt(T) as the optimal tick cost is 11. It is not a clique
because nodes (1, 2) and (3, 0) are not connected in GT , for instance. If we had chosen a
different ordering such as π1

df= [T1, T3, T2, T4] then the set C = {(1, 2), (2, 0), (3, 2), (4, 0)}
of weight 10 would not be a cycle. Instead, the directed neighbourhood graph Gπ1

T has
the maximal weight cycle C ′ = {(1, 2), (3, 2), (2, 0), (4, 0)} of weight w(C ′) = 11 which is
exact.

(4,1)

(4,0)

(2,1)
(3,1)

(2,0)

large‐directed‐tag‐2

M. Mendler RePP 2014 @ Grenoble 13

1

2

3

3

(1,2)

(1,0)
1

5

4
(1,1)

(3,2)

(3,0)
3

1

1

(4,1)

(4,0)

(2,1)
(3,1)

(2,0)

large‐directed‐tag‐3

M. Mendler RePP 2014 @ Grenoble 14

1

2

3

3

(1,2)

(1,0)
1

5

4
(1,1)

(3,2)

(3,0)
3

1

1

Figure 7: The π0-directed neighbourhood TAG Gπ0
T for GT of Fig. 6 together with a cycle

of maximal weight 13 (left) and the π1-directed neighbourhood TAG Gπ1
T with a cycle of

maximum weight 11 (right).

Finally, we propose an improvement over MaxCY called MaxCY+Reduce. This re-
duces the sensitivity of Alg. 5.5 to the ordering. Here, the m–TAP instance is simplified
using Alg. 3.5 before the directed neighbourhood TAG is created. This simple transforma-
tion has no effect on the overall complexity of a m–TAP instance (as the greatest common

21

Upd
ate

d N
ov

em
be

r 2
01

4

divisor of thread lengths is the same), but we experimentally find that it significantly
reduces the order effect. The reason is that by merging threads of commensurable length
we ensure that they will be considered as direct neighbours in the search for cycles.

This can be seen clearly in our example TAG of Fig. 6 for T = T1‖T2‖T3|T4 in which
the pair of threads T1 and T3 as well as the pair T2 and T4 each have the same cycle
length. Each of these pairs is merged into a single m–TCA by Alg. 3.5, say T1‖T3 ∼= T13
and T2‖T4 ∼= T24, as seen in Fig. 8. As a result, in the reduced m–TCA T ∗ = T13‖T24 the
indicated clique of maximum weight 11 is also a maximum weight cycle in GπT ∗ for any
ordering π.

(4,1)

(4,0)

(2,1)
(3,1)

(2,0)

large‐reduced‐tag

M. Mendler RePP 2014 @ Grenoble 15

1+3

2+3

(1,2)

(1,0)

5+1

4+1
(1,1)

(3,2)

(3,0)
1+3

Figure 8: The m–TAP instance of Fig. 6 reduced by Alg. 3.5 as T = T1‖T2‖T3|T4 ∼=
T13‖T24 = T ∗.

6 Results

We start our evaluation of the proposed and existing optimal/exact techniques. Hence,
we evaluate the performance and precision of solving TAP as a Maximal Weighted Clique
Problem [17, 11] as described in Section 4 and compare this method with ILPC [15] and
StateExploration [9, 18]. ILPCP, our improved version of ILPC, is also considered.

In a second part, we compare the approximate methods proposed in Sec. 5 with the
only other existing approximate method, the Maximum Thread Cost [4, 10].

These experiments was did both on real-life and synthetics benchmarks. The real-life
benchmark come from a set of synchronous applications previously proposed by Wang
et al. [15] from which it was easy to extract TAP instances (names and sizes of these
applications is presented in Table 1). On the other hand, we also produced a synthetic
benchmark of exactly 8000 m–TAP of varying complexity, i.e., the least common multiple
of the cycle lengths of the constituent TCAs (as discussed in Sec. 3) with a range of thread
numbers, of thread sizes and of state duration between 1 and 20, all randomly determine
using an uniform distribution. This benchmark allow use to evaluate both scalability and
accuracy of our methods. It was not needed to produce samples of bigger size, as the
complexity of TAP problem doesn’t come from the size of an application but from the
overall lcm of its thread sizes.

6.1 WClique and ILPCP : Two exact methods

The Maximal Weighted Clique Problem was extensively studied in the past, and there
already exist several effective algorithms to solve it. The WClique program [11] is one of
them and publicly available.

22

Upd
ate

d N
ov

em
be

r 2
01

4

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
se

c)

Instance complexity (lcm)

StateExploration
WClique

ILPc
ILPcp

Figure 9: Benchmark results for exact algorithms

In order to obtain an accurate performance estimation of our proposed method, we
used our synthetic benchmarks. We then compare the computation time of WClique with
the ILPC algorithm proposed by Wang et al. [15] (see Sec. 5.1.2), a full state exploration
and ILPCP , our proposed improvement of ILPC (see Sec. 5.1.3).

The Fig. 9 presents the results from our evaluation. Every point is corresponding
to a particular instance of TAP and the lines show the average trend of each evaluated
method. It is interesting to note that, as the complexity of the instances is growing,
the performance of WClique are revealing better than the state exploration. Futhermore,
WClique is also superior to ILPC in any case. This can be explained from the fact that
ILPC is a domain-specific algorithm designed to fully solve general instances of TAP not
just m–TAP. On the other hand, WClique aims to solve MWCP, which is a different,
possibly more general problem. We are yet to show the exact complexity equivalence of
MWCP and TAP.

.

6.2 MaxCY and Polynomial Approximations

As the directed neighbourhood graph method MaxCY (see Sec. 5.2) is an approximation
algorithm, we do not expect optimal results. Therefore, it is crucial to evaluate its precision
in relative terms, comparing with other polynomial algorithms, and in absolute terms
how far off it falls from the exact WCRT. For this purpose, we present two different
kinds of evaluations, the first based on TAP instances derived from real-life synchronous
applications and the second using synthetically generated instances of m–TAP.

For the first set of experiments, we selected the TAP instances extracted from the
applications proposed by Wang et al. [15]. We compared the proposed polynomial method

23

Upd
ate

d N
ov

em
be

r 2
01

4

MaxCY in combination with UNFOLD (Alg. 3.2) relative to the Maximum Thread Cost
(MaxTC) method [4, 10] and exact solutions computed using any exact method as ILPCP.

Name #threads MaxTC MaxCY+U Exact
ChannelProtocol 7 21 21 21

Flasher 13 39 37 37
RobotSonar 7 35 28 28
Synthetic1 7 35 35 35
Synthetic2 7 35 33 33
DrillStation 19 226 170 170

CruiseControl 36 108 91 91
RailroadCrossing 46 276 205 205

WaterMonitor 45 225 126 126
Overestimate 34% 0% 0%

Table 1: Evaluation of our approximation on real-life applications. MaxCY+U includes
UNFOLD and MaxCY.

Comparing to the only existing approximate method MaxTC by giving the exact solu-
tion at each time, our method seems to be extremely efficient, on these particular bench-
marks. If this is a general pattern this would indicate that the state space explosion prob-
lem does not happen for real-life synchronous programs. Note that in these benchmarks
the TCAs are not monocyclic and therefore MaxCY+U includes UNFOLD to separate the
transient from the recurrent part of the TAP and taking the maximum over both parts.

Our second set of experiments, based on the synthetic benchmarks, attempted a more
exhaustive analysis of the precision of the MaxCY approximation method without the
bias to synchronous programs. Indeed, as we have seen in Sec. 5.2, MaxCY is rather
sensitive to the thread ordering used in the cycle search. To alleviate this we introduce
the REDUCE method (Alg. 3.5) to increase the coupling in the directed neighbourhood
graph.

24

Upd
ate

d N
ov

em
be

r 2
01

4

-10

0

10

20

30

40

O
v
e

rh
e

a
d

 (
%

)

Instance result ordered by size (#Thread)

MaxTC
MaxCY

MaxCY + Reduce

Figure 10: Improving the precision of MaxCY through REDUCE thread merging.

Fig. 10 presents the results of these experiments. As is clearly observable, on the
synthetic benchmarks, REDUCE yields an effective improvement of the WCRT approxi-
mation using MaxCY and compared to the existing MaxTC.

7 Conclusions

Synchronous programs react to the environment using discrete instants, called reactions.
Worst case reaction time analysis (WCRT) is essential to validate the correctness of the
implementation of a program on an given architecture (processor and associated memory
hierarchy). Precise analysis requires the elimination of infeasible control-flow paths arising
from infeasible state combinations from concurrent threads, known as the tick alignment
problem (TAP).

This report presents, for the first time, a number theoretic formulation to solve the
TAP for synchronous programs. We start by representing synchronous threads using the
formal notion of a tick cost automaton (TCA) which defines an adequate abstract timing
semantics for synchronous programs. The problem of WCRT analysis is thereby reduced
to the formal manipulations of TCAs. We develop a max-plus algebraic transformation to
normalise TCAs to a monocyclic form. This transformation facilitates the transformation
of TAP to the the Maximum Weight Clique Problem (MWCP) by using the well-known
Chinese remainder theorem. The WClique algorithm for MWCP provides the optimal
solution to TAP. While it is easy to see that the WCRT algorithm based on MWCP is
NP-hard, our exploration of the lower bound of TAP is yet unresolved (see the Appendix
for an attempt to reduce an instance of MWCP to TAP).

We have also developed several heuristics in order to solve TAP using PTIME al-
gorithms. We have compared the exact methods based on reachability, integer linear
programming (ILP) and MWCP with the developed approximation algorithms. Results

25

Upd
ate

d N
ov

em
be

r 2
01

4

reveal that MWCP is superior to ILPC, the most efficient and precise of known methods.
Lastly, the proposed approximations, while being non-optimal in theory, work well in prac-
tice, suggesting that the tick alignment problem on synchronous programs may exhibit
polynomial behaviour.

In the future, we will further explore the lower bound complexity of TAP and study
further approximations of real-life benchmarks. From our observations, we think that it
could be fruitful to concentrate part of our future efforts on the adaption of a MWCP solv-
ing algorithm (like WClique) to the specificity of TAP instances arising from synchronous
programs.

References

[1] S. Andalam, P.S. Roop, and A. Girault. Pruning infeasible paths for tight wcrt
analysis of synchronous programs. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, pages 1 –6, march 2011.

[2] F. L. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronisation and
Linearity. John Wiley & Sons, 1992.

[3] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Si-
mone. The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64
– 83, Jan 2003.

[4] Marian Boldt, Claus Traulsen, and Reinhard von Hanxleden. Worst Case Reaction
Time Analysis of Concurrent Reactive Programs. Electronic Notes in Theoretical
Computer Science, 203(4):65–79, June 2008.

[5] T. A. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[6] Ali Dasdan, Sandy S. Irani, and Rajesh K. Gupta. Efficient algorithms for optimum
cycle mean and optimum cost to time ratio problems. Design Automation Conference
(DAC’99), pages 37–42, 1999.

[7] Lei Ju, Bach Khoa Huynh, Samarjit Chakraborty, and Abhik Roychoudhury. Context-
sensitive timing analysis of Esterel programs. In DAC ’09: Proceedings of the 46th
Annual Design Automation Conference, pages 870–873, New York, NY, USA, 2009.
ACM.

[8] Lei Ju, Bach Khoa Huynh, Abhik Roychoudhury, and Samarjit Chakraborty. Perfor-
mance debugging of esterel specifications. Real-Time Systems, 48(5):570–600, 2012.

[9] Matthew Kuo, Roopak Sinha, and Partha S. Roop. Efficient WCRT analysis of
synchronous programs using reachability. Proceedings of the 48th Design Automation
Conference on - DAC ’11, page 480, 2011.

[10] Michael Mendler, Reinhard von Hanxleden, and Claus Traulsen. WCRT Algebra and
Interfaces for Esterel-Style Synchronous Processing. In Proceedings of the Design,
Automation and Test in Europe Conference (DATE’09), Nice, France, April 2009.

[11] P. J. R. Österg̊ard. A new algorithm for the maximum-weight clique problem. Nordic
Journal of Computing, 8:424–436, 2001.

[12] P. M. Pardalos and J. Xue. The maximum clique problem. Journal of Global Opti-
mization, 4:301–321, 1994.

26

Upd
ate

d N
ov

em
be

r 2
01

4

[13] P. Raymond, C. Maiza, C. Parent-Vigouroux, and F. Carrier. Timing analysis en-
hancement for synchronous programs. In Real-time Networks and Systems RTNS
2013, pages 141–150, 2013.

[14] Partha S. Roop, Sidharta Andalam, Reinhard von Hanxleden, Simon Yuan, and Claus
Traulsen. Tight WCRT analysis of synchronous C programs. Proceedings of the
2009 international conference on Compilers, architecture, and synthesis for embedded
systems - CASES ’09, page 205, 2009.

[15] Jia Jie Wang, Partha S. Roop, and Sidharta Andalam. ILPc : A novel approach for
scalable timing analysis of synchronous programs. In CASE 2013, 2013.

[16] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,
Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and
Per Stenström. The worst-case execution-time problem—overview of methods and
survey of tools. Trans. on Embedded Computing Sys., 7(3):1–53, 2008.

[17] K. Yamaguchi and S. Masuda. A new exact algorithm for the maximum weight
clique problem. In 23rd Int’l Techn. Conf. on Circuits, Systems, Computers and
Communications (ITC-CSCC 2008), pages 317–320, 2008.

[18] E. Yip, P. S. Roop, and M. Biglari-Abhari. Timing analysis of parallel programs on
multicores. In ACM IEEE Int’l Conf. on Cyber-Physical Systems ICCPS’13, Philadel-
phia, April 2013. ACM.

27

Upd
ate

d N
ov

em
be

r 2
01

4

A Reduction of MWCP to m–TAP

We present a reduction of the Maximum Weight Clique Problem to the m–TAP which
depends on computing O(n2) different primes for a graph with n vertices.

We illustrate the technique by way of an example. Consider the graph G on the
left in Fig. 11 consisting of vertices v1–v4 and edges e1–e4. We will write vi ↔G vj to
state that there is an edge between vi and vj in G. The right of Fig. 11 depicts a TAP
consisting of four m-TCAs, TG = {T1, T2, T3, T4}, one for each vertex of G. The edges of
G are represented in TG by a solid line connecting the corresponding m-TCAs, while the
absence of an edge in G is coded by a dotted line in TG. Let us call the former connected
and the latter disconnected. So, T1, T2, T4 are mutually connected, T3 is connected to T4
but T1 and T3 as well as T2 and T3 are disconnected. The connections in TG are labelled
by distinct prime numbers p{1,2} = 2, p{2,4} = 3, p{1,4} = 5, p{3,4} = 7, p{1,3} = 11 and
p{2,3} = 13. In addition, we use four other distinct prime numbers p1 = 17, p2 = 19,
p3 = 23 and p4 = 29, corresponding to implicit self-loops at nodes T1, T2, T3 and T4
respectively.

v1

v4

T1

T4

T2T3
p2,3

e1

e2e4

e3 v2v3

p1,2

p1,4

p1,3

TGG k1 = 1

k4 = 1

p2,4
k2 = 1

p3,4
k3 = 21736

Figure 11: An undirected graph G (left) coded as a tick alignment problem TG (right).

The cycle length of each m-TCA in TG is the product of the prime numbers associated
with the connections between Ti and all other Tj and the prime number pi:

φ(T1) = p1 · p{1,2} · p{1,3} · p{1,4} = 17 · 2 · 11 · 5 = 1870
φ(T2) = p2 · p{1,2} · p{2,3} · p{2,4} = 19 · 2 · 13 · 3 = 1482
φ(T3) = p3 · p{1,3} · p{2,3} · p{3,4} = 23 · 11 · 13 · 7 = 23023
φ(T4) = p4 · p{3,4} · p{1,4} · p{2,4} = 29 · 7 · 5 · 3 = 3045.

In general, φ(Ti) = pi·φ′(Ti) where φ′(Ti)
df= Πi6=jp{i,j}. Thus, the greatest common divisors

of the cycle lengths correspond to the prime numbers connecting the two m-TCAs in TG,
i.e., gcd(φ(Ti), φ(Tj)) = p{i,j}.

Next we choose the tick costs for each m-TCA in a one-hot fashion such that Ti(ki) = 1
for exactly one transition index 0 < ki < φ(Ti) and Ti(x) = 0 for all other x 6= ki and
0 ≤ x < φ(Ti). In other words, the m-TCA Ti has a tick cost of 0 for all transitions except
the transition indexed by ki, for which the tick cost is 1. We call these tick offsets ki > 0
the active mode of the Ti. The active modes are chosen in such a way that

ki ≡pi 1 (16)
ki ≡p{i,j} kj ⇔ vi ↔G vj (17)

A strategy to assign the active modes according to (16) and (17) is to start with any
set of nodes forming a clique7, say the three mutually connected m-TCAs {T1, T2, T4} and

7This could be a single node, so we do not need to find a clique for this construction.

28

Upd
ate

d N
ov

em
be

r 2
01

4

assign the same active mode k1 = k2 = k4 = 1 to all of them, thereby satisfying both (16)
and (17). It remains to find a suitable k3 such that k3 mod p{3,4} = k4 mod p{3,4} = 1
(as T3 and T4 are connected) and at the same time k3 mod p{2,3} 6= 1 = k2 mod p{2,3}
and k3 mod p{1,3} 6= 1 = k1 mod p{1,3} because T3 is not connected to either T1 or T2.
A canonical way to achieve this is to put k3 mod p{1,3} = 0, k3 mod p{2,3} = 0 and
k3 mod p3 = 1. Since p3, p{3,4}, p{1,3}, p{2,3} are distinct prime numbers, by the CRT, the
constraints on k3 can be solved uniquely in the range 0 ≤ k3 < φ(T3). The solution is
k3 = 21736.

At this point we have constructed TG = {T1, T2, T3, T4} in which each m-TCA Ti has
tick cost 1 in the active mode 0 ≤ ki < φ(Ti) and 0 otherwise. This means that the cost
TG(k) of T in any tick k can be at most 4. More precisely, if TG(k) = d then exactly d of
the m-TCAs have reached their active mode at tick k. Formally, there is a set of distinct
indices C ⊆ {1, 2, 3, 4} such that |C| = d and k mod φ(Ti) = ki for all i ∈ C. This implies
by Prop. 4.1 that for all i, j ∈ C, ki mod p{i,j} = kj mod p{i,j}. Thus, by (17), all m-TCAs
in C are connected, i.e., vi ↔ vj for all i, j ∈ C. This is the same as saying that the set
of nodes V df= {vi | i ∈ C} is a clique in the graph G of Fig. 11. This shows that at every
tick when the TCA TG produces a joint cost of d we have identified a clique of size d in
the graph G.

For instance, TG(6583291) = 2 arising from T3 and T4 reaching their active mode
because 6583291 mod 23023 = 21736 = k3, 6583291 mod 3045 = 1 = k4 while T1 and T2
are outside of their active mode, which is verified by calculating 6583291 mod 1870 = 891 6=
1 = k1 and 6583291 mod 1482 = 247 6= 1 = k2. Hence, the tick count 6583291 activates
the clique {T3, T4}. The clique {T1, T2, T4} is active at tick count k = 1, TG(1) = 3 while
T3 is not active since k3 = 21736 6= 1.

The other direction holds, too. Let C ⊆ {1, 2, 3, 4} be the set of indices of a clique
{vi | i ∈ C} in the graph G. We claim that there is a tick count k such that TG(k) = d
where d = |C| and moreover that the d m-TCAs in active mode, producing the tick cost
d at tick count k, are precisely the Ti for i ∈ C. Observe that these m-TCAs Ti are all
mutually connected in TG since C is a clique in G.

Now we select for each m-TCA Ti a transition index 0 ≤ ti < φ(Ti) so that ti
df= ki

if i ∈ C and for i ∈ {1, 2, 3, 4} \ C we find a number ti such that ti mod pi = 0 and
ti mod p{i,j} = ki mod p{i,j} for all i 6= j. Such ti must exist by the Chinese Remainder
Theorem. By construction of the active modes ki, any two m-TCAs Ti, Tj in this way
satisfy ti mod p{i,j} = tj mod p{i,j}. By Prop. 4.1 this implies that there is a tick count k
such that k mod φ(Ti) = ti. Thus, all Ti with i ∈ C are in their active mode ki in tick k
so that Ti(k) = 1. The other m-TCAs Tj , for j ∈ {1, 2, 3, 4} \ C, satisfy tj 6= kj , because
tj mod pj = 0 6= 1 = kj mod pj . Hence, they are not active, i.e., Tj(k) = 0. This means
TG(k) =

∑
i Ti(k) =

∑
i∈C 1 = d, so we have found a tick count such that the tick cost of

TG is precisely the size of the clique C.
This shows that deciding if G has a maximum weight clique of size d is equivalent to

deciding if wcrt(TG) = d. Modulo the generation of O(n2) distinct prime numbers, this
would seem to show that m–TAP is at least as hard as the maximum weight clique problem.
However, it is not known if we can such distinct primes in polynomial time. Certainly,
generating the first n primes is unlikely to be polynomial since this would imply that the
prime factorization problem of RSA cryptography is polynomial which is believed to be
even probabilistic polynomial time intractable. Even if we could get hold of O(n2) distinct
primes the explicit size of the generated m–TAP is O(nΠi,jp{i,j}) and hence exponential.
So, our reduction does not prove m–TAP is NP-hard. For us at least, this remains an
open question.

29

Upd
ate

d N
ov

em
be

r 2
01

4

Bamberger Beiträge zur Wirtschaftsinformatik

Nr. 1 (1989) Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universität Bamberg (Nachdruck Dez.
1990)

Nr. 2 (1990) Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle für PROLOG

Nr. 3 (1990) Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Nr. 4 (1990) Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Nr. 5 (1990) Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Nr. 6 (1991) Augsburger W., Rieder H., Schwab J.: Systemtheoretische Repräsentation von
Strukturen und Bewertungsfunktionen über zeitabhängigen betrieblichen numeri-
schen Daten

Nr. 7 (1991) Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell für eine modulare
Bewertung von Kennzahlenwerten für den Endanwender

Nr. 8 (1991) Schwab J.: Ein computergestütztes Modellierungssystem zur Kennzahlenbewertung

Nr. 9 (1992) Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell
in das Strukturierte Entity-Relationship-Modell

Nr. 10 (1992) Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Nr. 11 (1992) Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Nr. 12 (1992) Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Nr. 13 (1992) Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Nr. 14 (1992) Esswein W.: Das Rollenmodell der Organsiation: Die Berücksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Nr. 15 (1992) Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Nr. 16 (1992) Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Nr. 17 (1993) Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stützten Bürovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Überwachung von Vorgängen. Dissertation

Upd
ate

d N
ov

em
be

r 2
01

4

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1st
edition, June 1994

 Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2nd edition, November 1994

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschäftsprozessen

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universität als Instrument zur zielgerichte-
ten Lenkung von Universitätsprozessen

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsräume. Ein Ansatz für ver-
teilte Führungsinformationssysteme

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschäftsprozessen auf der Grundlage
des SOM-Ansatzes

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestützten kooperativen Arbeit

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschäftsprozesse

Nr. 32 (1995) Gunzenhäuser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Nr. 33 (1995) Sinz, E.J.: Kann das Geschäftsprozeßmodell der Unternehmung das unterneh-
mensweite Datenschema ablösen?

Nr. 34 (1995) Sinz E.J.: Ansätze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstützung
durch workflow-orientierte Anwendungssysteme

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichwörter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Düsseldorf 1996

Upd
ate

d N
ov

em
be

r 2
01

4

Nr. 37 (1996) Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Nr. 38 (1996) Ferstl O.K., Schäfer R.: Eine Lernumgebung für die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Nr. 39 (1996) Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten für Portfolio-Ansätze

Nr. 40 (1997) Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, München 1997

Nr. 41 (1997) Sinz E.J.: Analyse und Gestaltung universitärer Geschäftsprozesse und Anwen-
dungssysteme. Angenommen für: Informatik ’97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft für Informatik, Aachen 24.-26.9.1997

Nr. 42 (1997) Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects –
fachliche Bausteine für die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen für: HMD – Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Nr. 43 (1997): Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) – A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz
J., Schmidt G., and Shaw M., Volume I, Springer 1997

 Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2nd Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer
1998

Nr. 44 (1997) Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin – Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. – 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Nr. 45 (1998) Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, München 1998

Nr. 46 (1998) Sinz E.J.: Prozeßgestaltung und Prozeßunterstützung im Prüfungswesen. Erschie-
nen in: Proceedings Workshop „Informationssysteme für das Hochschulmanage-
ment“. Aachen, September 1997

Nr. 47 (1998) Sinz, E.J.:, Wismans B.: Das „Elektronische Prüfungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Nr. 48 (1998) Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering

Nr. 49 (1998) Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems

Upd
ate

d N
ov

em
be

r 2
01

4

Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel,
July, 1999 (Springer, Lecture Notes)

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems – ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Nr. 52 (1999) Sinz E.J., Böhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems für Hochschulen. Angenommen für: Workshop „Unternehmen Hoch-
schule“ im Rahmen der 29. Jahrestagung der Gesellschaft für Informatik, Pader-
born, 6. Oktober 1999

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfü-
gig modifizierter Fassung angenommen für: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, München
1999

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Nr. 55 (2000) Böhnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen für Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Nr. 57 (2000) Böhnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Nr. 59 (2001) Sinz E.J., Böhnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems für das Hochschulwesen. Angenommen für:
WI-IF 2001, Augsburg, 19.-21. September 2001

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen für: Workshop „Unternehmen Hochschule 2001“ im Rahmen der
Jahrestagung der Gesellschaft für Informatik, Wien 25. – 28. September 2001

Änderung des Titels der Schriftenreihe Bamberger Beiträge zur Wirtschaftsinformatik in Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Note: The title of our technical report series has been changed from Bamberger Beiträge zur
Wirtschaftsinformatik to Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik
starting with TR No. 61

Upd
ate

d N
ov

em
be

r 2
01

4

Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik

Nr. 61 (2002) Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Nr. 62 (2002) Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System für das Hochschulwesen. Erscheint
in: Beiträge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut für
Hochschulforschung und Hochschulplanung, München 2002

Nr. 63 (2005) Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Nr. 64 (2005) Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 – 263; Reihe education quality forum, herausgegeben durch
das Centrum für eCompetence in Hochschulen NRW, Band 2, Münster/New
York/München/Berlin: Waxmann 2005

Nr. 65 (2006) Schönberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Nr. 66 (2006) Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Röglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Nr. 67 (2006) Marco Fischer, Andreas Grünert, Sebastian Hudert, Stefan König, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems,
April 2006

Nr. 68 (2006) Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the
Exactness of Ternary Simulation

Nr. 69 (2007) Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol
Framework . February 2007

Nr. 70 (2007) Thomas Meins: Integration eines allgemeinen Service-Centers für PC-und
Medientechnik an der Universität Bamberg – Analyse und Realisierungs-
Szenarien. February 2007 (out of print)

Nr. 71 (2007) Andreas Grünert: Life-cycle assistance capabilities of cooperating Software Agents
for Virtual Enterprises. März 2007

Nr. 72 (2007) Michael Mendler, Gerald Lüttgen: Is Observational Congruence on μ-Expressions
Axiomatisable in Equational Horn Logic?

Nr. 73 (2007) Martin Schissler: out of print

Nr. 74 (2007) Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
74, Bamberg University, October 2007. ISSN 0937-3349.

Upd
ate

d N
ov

em
be

r 2
01

4

Nr. 75 (2008) Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing
Technologies Convention (PET-CON 2008.1). Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University,
April 2008. ISSN 0937-3349.

Nr. 76 (2008) Gregor Scheithauer, Guido Wirtz: Applying Business Process Management
Systems – A Case Study. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-
3349.

Nr. 77 (2008) Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for
Abstraction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN
0937-3349.

Nr. 78 (2008) Gregor Scheithauer, Matthias Winkler: A Service Description Framework for
Service Ecosystems. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349.

Nr. 79 (2008) Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better
Performances. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349.

Nr. 80 (2009) Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger, Guido Wirtz: QoS Enabled
B2B Integration. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 80, Bamberg University, May 2009. ISSN 0937-3349.

Nr. 81 (2009) Ute Schmid, Emanuel Kitzelmann, Rinus Plasmeijer (Eds.): Proceedings of the
ACM SIGPLAN Workshop on Approaches and Applications of Inductive
Programming (AAIP'09), affiliated with ICFP 2009, Edinburgh, Scotland,
September 2009. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 81, Bamberg University, September 2009. ISSN 0937-3349.

Nr. 82 (2009) Ute Schmid, Marco Ragni, Markus Knauff (Eds.): Proceedings of the KI 2009
Workshop Complex Cognition, Paderborn, Germany, September 15, 2009.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
82, Bamberg University, October 2009. ISSN 0937-3349.

Nr. 83 (2009) Andreas Schönberger, Christian Wilms and Guido Wirtz: A Requirements Analysis
of Business-to-Business Integration. Bamberger Beiträge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 83, Bamberg University, December 2009. ISSN
0937-3349.

Nr. 84 (2010) Werner Zirkel, Guido Wirtz: A Process for Identifying Predictive Correlation
Patterns in Service Management Systems. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 84, Bamberg University,
February 2010. ISSN 0937-3349.

Nr. 85 (2010) Jan Tobias Mühlberg und Gerald Lüttgen: Symbolic Object Code Analysis.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
85, Bamberg University, February 2010. ISSN 0937-3349.

Upd
ate

d N
ov

em
be

r 2
01

4

Nr. 86 (2010) Werner Zirkel, Guido Wirtz: Proaktives Problem Management durch
Eventkorrelation – ein Best Practice Ansatz. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 86, Bamberg University,
August 2010. ISSN 0937-3349.

Nr. 87 (2010) Johannes Schwalb, Andreas Schönberger: Analyzing the Interoperability of WS-
Security and WS-ReliableMessaging Implementations. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 87, Bamberg University,
September 2010. ISSN 0937-3349.

Nr. 88 (2011) Jörg Lenhard: A Pattern-based Analysis of WS-BPEL and Windows Workflow.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
88, Bamberg University, March 2011. ISSN 0937-3349.

Nr. 89 (2011) Andreas Henrich, Christoph Schlieder, Ute Schmid [eds.]: Visibility in Information
Spaces and in Geographic Environments – Post-Proceedings of the KI’11
Workshop. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 89, Bamberg University, December 2011. ISSN 0937-3349.

Nr. 90 (2012) Simon Harrer, Jörg Lenhard: Betsy - A BPEL Engine Test System. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 90, Bamberg
University, July 2012. ISSN 0937-3349.

Nr. 91 (2013) Michael Mendler, Stephan Scheele: On the Computational Interpretation of CKn
for Contextual Information Processing - Ancillary Material. Bamberger Beiträge
zur Wirtschaftsinformatik und Angewandten Informatik Nr. 91, Bamberg
University, May 2013. ISSN 0937-3349.

Nr. 92 (2013) Matthias Geiger: BPMN 2.0 Process Model Serialization Constraints. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 92, Bamberg
University, May 2013. ISSN 0937-3349.

Nr. 93 (2014) Cedric Röck, Simon Harrer: Literature Survey of Performance Benchmarking
Approaches of BPEL Engines. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 93, Bamberg University, May 2014. ISSN 0937-
3349.

Nr. 94 (2014) Joaquin Aguado, Michael Mendler, Reinhard von Hanxleden, Insa Fuhrmann:
Grounding Synchronous Deterministic Concurrency in Sequential Programming.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
94, Bamberg University, August 2014. ISSN 0937-3349.

Nr. 95 (2014) Michael Mendler, Bruno Bodin, Partha S Roop, Jia Jie Wang: WCRT for
Synchronous Programs: Studying the Tick Alignment Problem. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 95, Bamberg
University, August 2014. ISSN 0937-3349.

Upd
ate

d N
ov

em
be

r 2
01

4

Upd
ate

d N
ov

em
be

r 2
01

4

