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Towards a Model-Theory for Esterel

Gerald Liittgen and M. Mendler*

Abstract

Esterel is a synchronous language for reactive—system design, which builds the core
of the commercial design tool Esterel Studio. This paper shows how the constructive
semantics of a combinational fragment of Esterel, as presented by Berry, can be derived
in a model-theoretic fashion, thus complementing the existing behavioral, operational,
and circuit-based approaches to Esterel semantics. Technically, Esterel programs are read
as formulas in propositional intuitionistic logic, which are interpreted over simple linear
Kripke structures, also referred to as Godel valuations. The central result of this paper
characterizes Esterel reactions as specific Godel valuations, called response models. It is
also shown that the approach is compositional in the structure of Esterel programs.

These results are an important step towards explaining the logic behind Esterel’s con-
structive semantics. Moreover, the intuitionistic setting advocated in this paper nicely
links to Pnueli and Shalev’s original semantics of Harel’s Statecharts, another synchronous
language for reactive—system design. This offers interesting insights into the similarities of
and the differences between Esterel and Statecharts semantics.

1 Introduction

Esterel is a textual imperative language, developed by Berry since the 1980s, for specifying
the behavior of reactive systems [2, 7]. The language provides primitives for decomposing
reactions sequentially and concurrently, where concurrent reactions might involve a complex
exchange of signals. The semantics of Esterel is based on the idea of cycle—based reaction where
first the statuses of the input signals, as defined by the system’s environment, are sampled at
the beginning of each cycle, then the system’s reaction, in the form of the emission of further
signals, is determined, and finally the new signal statuses are output to the environment.
The semantics of Esterel has significantly evolved over the years, around the key principles of
synchrony, reactivity, determinism, and causality [1, 3]. The synchrony requirement reflects
the mechanism behind cycle-based reaction and is mathematically modeled via the perfect
synchrony hypothesis. This hypothesis ensures that reactions and the propagations of signals
are instantaneous, which is an idealized system behavior that is nevertheless often reflected in
practice: reactive systems usually perform much faster than their environments. Determinism
demands reactions to be uniquely determined by the system environment’s inputs. This is a
property very much desired, since nondeterministic systems are often difficult to understand;
sometimes encountered system bugs might even not be reproducible. Causality refers to the
requirement that the reason for a signal being emitted or not emitted in a system reaction
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must be traced back to the input signals provided by the environment. While this property is
very natural, it is quite hard to enforce in a simple mathematical way. In earlier approaches to
Esterel semantics, causality was dealt with in a preprocessing step: only Esterel programs were
considered which could be shown to be causal by means of a static analysis [3]. Such static
checks, however, compute approximations of causality which sometimes reject programs that
were perfectly causal from a semantic point of view. In his recent draft book [1], Berry describes
a much improved version of Esterel semantics that is founded on the idea of constructiveness
and that encodes the principle of causality in a precise, not an approximative, way. Berry also
established the coincidence of three constructive styles of Esterel semantics, a behavioral or
fixed—point semantics, an operational semantics, and a circuit semantics, thereby testifying to
the mathematical elegance and robustness of the latest version of Esterel semantics. Today,
this constructive semantics builds the core of the commercial design tool Esterel Studio which
is employed by major companies in the avionics, automotive, and communications industry [5].

In this paper we present a novel model-theoretic account of Esterel semantics, for a frag-
ment of the language dealing with instantaneous reactions. Our approach reads Esterel pro-
grams as simple propositional formulas in intuitionistic logic which correspond to the must and
cannot functions, as defined in Berry’s behavioral semantics [1]. These functions determine
which signals must and, respectively, cannot be emitted relative to some given statuses of the
input signals that specify whether a signal is known to be present or absent. Our propositional
formulas are interpreted in an intuitionistic way over linear Kripke structures [15], to which we
refer to as Godel valuations. In this setting we obtain our two main results: we first character-
ize valid Esterel reactions as specific Godel valuations that respect the principle of causality.
In addition we show that our approach is compositional in the structure of Esterel programs,
which is one of the virtues of Berry’s behavioral semantics.

The motivations for the suggested model-theoretic approach to Esterel semantics are three-
fold. To begin with, our results provide a first step towards explaining the logic behind Esterel’s
constructive semantics. Although Berry in his book considers a semantics based on the three—
valued Scott domain, that approach leads to an algebraic rather than a logical semantics.
Secondly, our intuitionistic model-theoretic approach links Esterel’s semantics to the original
variant of Statecharts semantics [11, 12, 13], as conceived by Harel, Pnueli and Shalev [14].
Like Esterel, Statecharts [8] is a popular language for reactive-system design that obeys the
perfect synchrony hypothesis and causality. However, Statecharts permits nondeterminism and
non-reactivity, and signal statuses might be inferred by speculation. In this light, our results
suggest a way for extending Esterel by a concept of nondeterminism. This is of particular
importance when interfacing Esterel with design or verification methodologies, many of which
are based on abstraction or refinement techniques. Third, our setting might be used for estab-
lishing full-abstractness results for Esterel, similar to the ones obtained for Statecharts [12].

2 Esterel and its Behavioral Semantics

In this section we first present the simple but nontrivial combinational fragment of Esterel
considered in the remainder of the paper, and recall its constructive behavioral semantics
as defined in [1]. This semantics is essentially a fixed—point semantics which we will then
characterize in terms of separability, a notion that is adapted from Statecharts where it is
employed for encoding causality [14].
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2.1 Syntax and Behavioral Semantics

The fragment of Esterel we are considering deals with instantaneous reactions, i.e., single
reaction cycles. Its syntax is defined by the following BNF, where s stands for a signal name
taken from some finite universe S.

P = 0 nothing
| s emit s
| s=17(P) present s then P
| s=07(P) present s else P
| P|P PIIP

In analogy to digital circuits, we refer to programs in this fragment as combinational programs.
Note that this fragment is nontrivial since it already allows one to study many interesting issues
of Esterel semantics. Esterel’s more general choice statement “present s then P else (7 can
be recovered in our syntax by the term s=17(P) | s=07(Q). Treating the then— and else—
branches separately will prove to be notationally convenient later-on, particularly in Sec. 4. In
this paper we omit the combinational operators for sequential composition and signal definition.
A consequence of this omission is that the completion codes needed in the behavioral semantics
definition for the full language [1] become obsolete.

The constructive behavioral semantics uses a fixed—point construction on so-called partial
events. A partial event is simply a consistent set F of signal statuses of the form s=1 and s=0;
in particular, for any signal s, set E is not allowed to contain both s=1 and s=0. Status s=1
represents the fact that s is positively known to be present, while status s=0 means that s is
positively known to be absent. Signals not in £ have an unknown status. A partial event F is
called complete if it contains either s=1 or s=0, for every signal s. One can consider partial
events as intuitionistic valuations of signals and complete events as their classical two—valued
completion.

The behavior of an Esterel program P is usually studied with respect to an event Ej

determining the status of all input signals i € I = {i1,...,i,} C S. In this paper we do
away with distinguished input signals, thereby simplifying our notational presentation. This
is possible since the behavior of P under I is equivalent to the behavior of P |ij, |- |4,
where the indexes ji,...,jm € {l,...,n} are exactly those for which i;,=1 € E;. The

standard Esterel semantics, as well as the model-theoretic semantics developed here, are fully
compatible with this point of view.

We now reproduce the definition of the Must and Cannot functions over partial events [1],
which are in the center of Berry’s constructive behavioral semantics and are inductively defined
as follows, where Sy denotes the set {s=0]|s € S}.

Must (0, E) =qr 0
Must(!s, E) =qf {s=1}

Must(P,E) ifs=1¢€E
Must(s=17(P), E) =q4¢ ust(P, B) - if 5 )

0 otherwise

Must(P,E) ifs=0 ¢ E
Must(s=07(P), E) —g 4 TustI>E) ifs=0c

0 otherwise
Must(P|Q, E) =qf Must(P, E) U Must(Q, E)
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Cannot (0, E) =ar So
Cannot(!s, E) =ar So \ {s=0}
S if s=0€ E
Cannot(s=17(P),E) =gt 0 ne )
Cannot(P, E) otherwise
S ifs=1e E
Cannot(s=07(P),E) =gt 0 ne 6
Cannot(P, E) otherwise
Cannot(P|Q, E) =4t Cannot(P, E) N Cannot(Q, E)

Intuitively, Must(P, E) and Cannot(P, E), where P is a combinational Esterel program and E
is a partial event, denote the partial events including all signals that P must and cannot emit,
respectively, relative to E. As expected, the Must and Cannot functions satisfy the property
As.s=1 € Must(P, E) and s=0 € Cannot(P, E), for any P and E. Moreover, both functions
are monotonic in F. With these auxiliary definitions we can now state Esterel’s constructive
behavioral semantics. Every program P defines a monotonic function [P] on partial events:

[PI(O) =4¢ Must(P,0) U Cannot(P,0).

We say that [P] is the response function of P. If O is the least fized—point of [P], then O is
called the response of P, written P | O. Moreover, program P is called constructive, if O is
complete. Observe that the response P |} O is on partial events O. The behavioral semantics,
however, is only the classical part where O is complete. In this case we write P | O.

Let us illustrate this semantics by means of an example. Consider the program P =g
a=17(a=07(!b)) |a=07(!c) | b=07(!d). Although in this example none of the signals a, b, ¢, d has
an unguarded emit, it still produces the constructive response P | {a=0,b=0,c=1,d=1}. Here
and elsewhere we omit from the response all absent signals that do not syntactically occur
in the program at hand. The first iteration of the fixed-point construction gives [P](0)) =
{a=0} since P does not contain an emit statement for signal a, i.e., Cannot(P,()) = {a=0}.
Then, the second iteration decides the two left most signal guards and identifies P with !c |
b=07(!d) which produces [P]({a=0}) = {a=0,b=0,c=1}. Finally, a third iteration yields
[P]({a=0,b=0,c=1}) = {a=0,b=0,c=1,d=1}, and the fixed point is reached.

The example demonstrates two salient features of the constructive semantics that deserve
to be highlighted. Firstly, the fixed—point construction corresponds to the derivation of logical
consequences regarding the presence and absence of signals. This deductive closure implements
a causality chain of abstract signal propagations. Only those facts that can positively be
determined from the specification of the system in finitely many steps are considered in the
final response. Secondly, there is an asymmetry in the treatment of positive and negative signal
facts. While the presence of signals is always derived from emit statements explicitly contained
in the program text, the absence of a signal is inferred indirectly from the absence of emits.
This amounts to a form of default assumption which is also known from Statecharts, namely
that signals are assumed to be absent whenever it is “safe” to do so [8, 14]. Both languages,
however, differ in what they consider “safe”; more will be said about this in Sec. 5. In the
above example, a is (assumed to be) absent outright since it positively cannot be emitted by
the program. Moreover, b is absent since a=0, and thus the emit !0 in a=17(a=07(!b)) is
positively not reachable.
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2.2 Inseparability and Admissibility

In analogy to Pnueli and Shalev’s declarative semantics for Statecharts [14] we define a notion
of inseparability. It provides for an alternative characterization of the minimality condition of
the least fixed—point of [P], which is useful for our later model-theoretical analysis. A partial
event O is called inseparable for P if [P](O")N (O \ O') # 0, for all 0" C O. In other words, O
is inseparable if it does not contain any proper subset O’ that is closed under [P]. Informally,
this is the requirement that O be internally causal with respect to the response function, i.e.,
every signal status in O has a causal justification in terms of iterated applications of [P]. The
relationship between causality and inseparability is discussed in more detail in [12].

Proposition 2.1 Let O be a fized point of [P], for some Esterel program P. Then, O is
inseparable for P if and only if O is the least fized point of [P].

Proof: For direction (=), suppose that O is an inseparable fixed point and that O’ is another
fixed point. Assume further O € O’ i.e., ONO" C O. Then, because of the inseparability of O,
there must exist some s € O\ (ONO’) = O\ O’ with s € [P](ONO’). Since [P] is monotonic,
[PI(ONO") C[PJ(O") = O'". Hence we derive (O \ O') N O # B, which is a contradiction.

For direction (<), suppose that O is the least fixed point and that O’ C O is a proper
subset. Assume further that O is obtained by the approximation sequence [P]°(0) C [P]'(0)
[P]?(0) € --- € [P]™(0) = O, where [P]°(0) = 0 and [P]**1(0) = [P]([P]*(0)). Let k be the
largest index such that [P]¥(()) C O'. Then, 0 < k < n and [P]*T1(0) n (O \ O') # 0. By
monotonicity, [P]*(#) C O’ implies [P]**!(#) C [P](O"). Thus, there exists some s € O \ O’
such that s € [P](O’). But this implies that O is inseparable, as desired. O

Following Pnueli and Shalev’s terminology we call a partial event O admissible for P, if O
is an inseparable fixed point of [P]. Hence, by Prop. 2.1, admissibility for Esterel coincides
with the least fixed—point property. Note that the notion of admissibility can also be used
for non—-monotonic response functions such as those involved in the semantics of Statecharts,
where least fixed points do not always exist [14].

3 A Model-theoretic Semantics for Esterel

In this section we give a model-theoretic characterization of the behavioral semantics of com-
binational Esterel programs. First, such programs are read as formulas in propositional logic,
essentially by translating the Must and Cannot functions into predicates. These formulas are
then interpreted in the style of intuitionistic logics, over simple linear Kripke structures to
which we refer as Godel evaluations.

3.1 Intuitionistic Logic Translation

We associate with each combinational program P and each signal s two predicates Must (P, s)
and Cannot(P, s), whose intuitionistic model-theoretic semantics precisely captures the Must
and Cannot functions. The atomic propositions employed in these predicates, besides true
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and false, are the signal statuses s=1 and s=0, with the obvious interpretations. We start
off with the Must(P, s) predicate, for some signal s, which is defined along the structure of P.
Intuitively, Must (P, s) should hold exactly if P must emit signal s, i.e., s is driven 1 in P and
hence the statement s=1 becomes true.

Must(0,s) =qr false

true ifa=s
Must(la,s) =qr i
false otherwise
Must(a=17(P),s) =qr a=1 A Must(P,s)
Must(a=07(P),s) =qr a=0 A Must(P,s)
Must(P|Q,s) =qr Must(P,s) V Must(Q,s)

Obviously, Must (P, s) does not say anything about when s is driven 0, i.e., when s=0 should be
true. Because of the asymmetry between 1 and 0 in Esterel, this needs some care. In contrast
to 1, the signal value 0 is a weak kind of value, in the sense that s is held at 0 only in so far
as neither P nor its environment emits s. In other words, 0 is a default value only. For this
reason we cannot use the validity of s=0 directly in order to express that s is kept at 0. For if
our logical specification of P would allow us to infer s=0 in some situation, then value 0 could
no longer be overridden by some emit, since s=0 A s=1 is logically inconsistent. However, we
can define a weaker “default pull-down” of s by the formula sx~0 =4t —s=1 D s=0. It states
that if ns=1 is true, i.e., we are positively sure that s will never be emitted, then s=0 is true.
Otherwise, nothing is known about the status of s. Note that while s=0 A s=1 is inconsistent,
s~0 A s=1 is equivalent to s=1, as desired. Thus, a weak 0 still permits s to be emitted.

We now turn our attention to the Cannot(P,s) predicate whose definition requires us to
decide in which situations one may specify a default pull-down of s. If we simply specified s~0
for any signal s, then we would essentially be saying that all signals eventually stabilize to 0
or 1. This would rule out the possibility that a signal value is truly undefined, i.e., neither s=1
nor s=0 is valid. The eminent truth—value gap is an essential feature of Esterel which reflects its
circuit semantics [1] where one needs to account for subtle electrical phenomena, such as meta—
stability and signal oscillations, which can occur in synchronous circuits with asynchronous
feedback. In Esterel semantics, one may only conclude that signal s is 0 when P cannot
emit s. This is the case, in particular, when s does not syntactically occur in any emit
statement inside P, which means that P cannot possibly drive s high.

Let predicate Cannot(P,s) be the formalization of this statement; it is defined along the
structure of P.

Cannot(0,s) =qf true

true if a # s
Cannot(la,s) =g i
false otherwise
Cannot(a=17(P),s) =g a=0 V Cannot(P,s)
Cannot(a=07(P),s) =g a=1 V Cannot(P,s)

Cannot(P|Q,s) =g¢ Cannot(P,s) A Cannot(Q,s)

Then, the translation Spec(P) of a combinational Esterel program P into propositional logic
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simply is

spec(P) =4 [\ (Must(P,s) D s=1) A (Cannot(P,s) D s=0),
SES

where “D” stands for logical implication. Before formally defining our model-theoretic se-
mantics we consider a simple example: P* =4 s1=07(!s2) | Iss. According to the above
definitions we derive the following propositional formula for Spec(P*), considering only those
signals which actually occur in P*:
Spec(P*) = (((s1=0 A false) V false) D s1=1) A
(((s1=1 V true) A true) D s1=0) A
(((s1=0 A true) V true) D sa=1) A
(((s1=1 V false) A false) D s9=0)
In the spirit of model-theoretic semantics, one would first consider the models of Spec(P*)
according to classical propositional logic. In this case one would obtain the classical mod-
els {s1=0,s9=1} and {s;=1,s9=1}. However, only the former describes a valid response in
Esterel. The latter model’s conclusion s;=1 is not causally justified; it seems to come from
nowhere. Note that the classical model {s;=1, so=1} is also minimal since no proper subset
is a classical model. Hence, the classical logical semantics of our specification Spec(P*) is not
expressive enough for explaining the Esterel semantics of P*. In the remainder of this paper
we show that intuitionistic logic, a specific constructive logic more expressive than classical
logic, is suited to identify those classical models of Spec(P*) that indeed correspond to valid
Esterel responses.

3.2 Intuitionistic Semantics and Godel Valuations

The structures we consider for evaluating our propositional formulas intuitionistically are linear
Kripke structures, of length two, over partial events. We refer to these structures as Godel
valuations, since Godel was the first to study this class of structures as possible truth values
for intuitionistic logic [6]. More precisely, a Goédel valuation is a pair (Eq, E9) of partial events
such that Fy C FE,. Intuitively, (F, E»2) validates s=1 if and only if s=1 € Ej, and it
validates s=0 if and only if s=0 € FE;. The second component FEs is used for interpreting
negation: (FEq, Es) validates —s=1 if and only if s=1 ¢ Fs, and (E;, Fy) validates —s=0 if
and only if s=0 ¢ E,. Then, (E1, Es) is a model of Spec(P), written (E1, Es) = Spec(P), if
(E1, E9) validates formula Spec(P) in the intuitionistic sense [15]. Formally, for a sequence of
partial events K = (Ey, F»,... , E,) and for some index i such that 1 < i < n, we define the
validity of some formula ¢ in K at index ¢ along the structure of ¢ as follows:

K,i = true always K,ikE= ¢ ifft Vj>i K, jH¢

K,i |= false never KiE¢ony iff KilE¢and K,ifE1y
K,iks=1 iff s=1¢ E KikEo¢vy iff KilkdorK,ikEq

K,i|=s=0 iff s=0¢ E Kil¢o¢ iff Vj>i K,jl= ¢implies K, j | .

Then, K = ¢ if K,1 |= ¢. This definition implies that all G6del valuations satisfy —(s=1As=0),
for any signal s. An important special case is when both components are identical, i.e., E; =
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E5. Then (E1, E) also satisfies the classical axioms of the Excluded Middle, s=1V —s=1 and
s=0V —s=0. Therefore, we call such valuations classical. Another special case of a Godel
valuation that needs mentioning occurs if the second component E5 is a complete event, i.e.,
if for all signals s, either s=1 € Ey or s=0 € Ey. Then, we have (Ei, Es) = = (s=1V s=0)
which means that signal s is eventually driven to either 1 or 0. When (F1, E3) |= ¢ we call
(E1, E2) a Godel model of ¢.

Having formally defined the semantics we may simplify the propositional formula Spec(P*)
of our example program P*. Here, we use = to denote logical equivalence.

Spec(P*) = false D s1=1 A true D $1=0 A true D so=1 A false D $9x0
s1~0 A so=1.

It is not difficult to verify that exactly the Godel valuations ({s;=0,se=1}, {s1=0, so=1}),
({s2=1}, {s1=1,s2=1}), and ({s1=1,s2=1},{s1=1, so=1}) are the models of Spec(P*), be-
cause so=1 specifies that signal so must always be present and s;~0 specifies that the status
of s; must be determined eventually.

We conclude this section by considering some of the illuminating examples given in Berry’s
book [1]; for each example we state its corresponding simplified propositional formula as well
as the formula’s Godel models, relative to the domain of signal names occurring in the example
program on hand.

o P =ar s=17(!s)|s=07(!s):

Spec(Py) = ((s=1V s=0) D s=1) A ((s=0 A s=1) D s=x0)
= ((s=1V s=0) D s=1) A (false D sx0)
= s=0Ds=1 = -s=0
Models (0,0), (0,{s=1}), ({s=1},{s=1})

o Py =q¢ s=07(!s):
Spec(P3) = (s=0D2s=1) A (s=1Dsx0) = -s=0 A true = -s=0
Models :  (0,0), (0,{s=1}), ({s=1},{s=1})
L] P4 =df 821?(!8):
Spec(Py) = (s=1Ds=1) A (s=0D sx0) = true A true = true
Models = (0,0), (0,{s=1}), (0,{s=0}), ({s=1},{s=1}), ({s=0}, {s=0})
® P6 =df 81:1?(!82)|82:1?(!81):

Spec(Ps) = (s1=1D so=1) A (51=0 D s9%0) A (s2=1 D s1=1) A (52=0 D s1x0)
Models H (@,0), (@,{81:1,82:1}), ({81:1,82:1},{81:1,82:1}),
(@,{81:0,82:0}), ({81:0,82:0},{81:0,82:0})

We now formally show that the Must and Cannot predicates correctly encode the Must and
Cannot functions, as suggested in the previous section.
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Proposition 3.1 Let (E', E) be a Godel valuation, P a combinational program, and s € S.

1. (E',E) EMust(P,s) if and only if s=1 € Must(P,E'").
2. (E',E) |= Cannot (P, s) if and only if s=0 € Cannot(P, E").

Proof: The proofs of both statements proceed by induction on the structure of P. For the
basic programs 0 and !a, the two statements follow trivially. For the inductive cases we separate
the directions (=) and (<=).

(Part 1, =) Consider the program a=17(P) such that Must(a=1?(P),s) = a=1 A Must(P, s).
Thus, (E', E) E Must(a=17(P), s) implies both (E', E) = a=1, i.e., a=1 € E', and (E',E) |=
Must(P,s). As a consequence, s=1 € Must(P, E') by the induction hypothesis. This implies
s=1 € Must(a=17(P),E'’) by the definition of the function Must. The case for a=07(P) is
analogous. Finally, (E', F) |= Must(P | Q, s) means either (E', E) = Must(P,s) or (E', E) |=
Must(Q,s). By induction hypothesis, s=1 € Must(P,E') or s=1 € Must(Q, E’), whence
s=1 € Must(P|Q, E').

(Part 1, <) Consider a=17(P), for which s=1 € Must(a=1?(P), E') means a=1 € E' and
s=1 € Must(P, E'). By induction hypothesis, (E', E) = Must(P, s). Together with a=1 € E’,
whence (E', E) = a=1, this implies (E', E) = Must(a=1?(P), s). The induction case a=07(P)
is analogous. We examine the case of a parallel composition P |Q. Here, s=1 € Must(P|Q, E')
means s=1 € Must(P, E') or s=1 € Must(Q, E'). We may now apply the induction hypothesis
to obtain at least one of (E', F) |=Must(P, s) or (E', E) = Must(Q, s), which implies (E', E) =
Must(P|Q, s), as desired.

(Part 2, =) We begin with a program a=17(P) for which we have Cannot(a=17(P),s) =
a=0 V Cannot(P,s). There are two cases to consider: (1) (E', E) = a=0 and (2) (E',E) |=
Cannot(P,s). In the former case we have a=0 € E' and hence Cannot(a=1?(P),E') = Sy.
In the latter case we obtain by induction hypothesis s=0 € Cannot(P, E'), such that s=0 €
Cannot(a=17(P), E') is guaranteed. The induction case for a=07(P) is similar. The other
inductive case is P | @, for which Cannot(P | ,s) = Cannot(P,s) A Cannot(Q,s). Then,
(E',E) |= Cannot(P,s) and (E', E) |= Cannot((Q, s). The induction hypothesis yields s=0 €
Cannot(P,E') and s=0 € Cannot(P, E'), whence s=0 € Cannot(P|Q, E").

(Part 2, <) For s=0 € Cannot(a=1?(P), E') there are two possibilities: (1) a=0 € E', or (2)
a=0 ¢ E' and s=0 € Cannot(P,E"). In the former case we obtain (E’, E) = a=0 which triv-
ially implies (E', E) = Cannot(a=17(P), s). In the latter case we have (E’, E) |= Cannot(P, s)
by induction hypothesis, whence (E’, E) = Cannot(a=17(P),s), too. The induction case
for a=07(P) is analogous. Finally, let s=0 € Cannot(P | Q,E'), i.e., s=0 € Cannot(P, E")
and s=0 € Cannot(Q, E"). By induction hypothesis, (E’, F) |= Cannot(P,s) and (E',E) |=
Cannot(Q, s), which implies (E', F) |= Cannot(P, s) A Cannot((,s) = Cannot(P|Q, s). O

3.3 Model-theoretic Characterization of Esterel Semantics
As demonstrated earlier, not every (minimal) classical model of the propositional formula

Spec(P) corresponds to a valid response of P according to Esterel’s behavioral semantics.
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This is due to the fact that Spec(P) implicitly contains negations in the propositions sx0.
The right notion in the response of negation is that of a response model which turns out to
characterize exactly the desired Esterel responses.

Definition 3.2 (Response Model) Let P be a combinational Esterel program and E be a
partial event. Then, E is a response model of Spec(P) if (1) (E,E) = Spec(P), i.e., E
is a classical model of Spec(P), and if (2) E' = E, for all Gddel valuations (E', E) with
(E',E) |= Spec(P).

Note that this definition heavily borrows from our intuitionistic interpretation of Spec(P) and
is adapted from an earlier paper by the authors on the semantics of Statecharts. It guarantees
that the considered models are not only classical models but also respect the principle of
causality. In order to see this, consider a Godel evaluation (E', E) such that (E', E) |= Spec(P).
Intuitively, if E' # E, then the proper inclusion E' C E corresponds to a non-causal reaction
in the construction of E, implying that some of the additional signal statuses in £\ E' have
been introduced due to some external effect and are not solely causally dependent on the ones
in E'. On the other hand, if there is no Gédel valuation ending in E other than (E, E) itself,
then all signal statuses in £ must be causally justified.

For example, the Godel valuation ({se=1},{s1=1,s9=1}) is an intuitionistic model of
Spec(P*), for our combinational example program P* = s1=07(!s2)|!s2, which is a witness to
the fact that {s;=1,s0=1} is not a response model. Indeed, Esterel’s declarative semantics
rejects the emission of s; since it is not causally justified. The assertion of signal s; cannot be
inferred from the partial event {ss=1}. On the other hand, {s;=0,s9=1} is a response model
for Spec(Fy), and it is as well a valid response in Esterel. Similarly to this reasoning, one can
check that only the empty set is a response model of Py, P3, P;, and Ps. Since the event () is
not complete, these programs are rejected by Esterel’s semantics. We may now formally state
and prove our main theorem.

Theorem 3.3 (Characterization) Let P be a combinational program and O be a partial
event. Then, P | O if and only if O is a response model of Spec(P).

Thus, O is a constructive Esterel response iff O is complete and a response model of Spec(P).
Proof: By Prop. 2.1, it is sufficient to prove that O is a response model of Spec(P) if and
only if O is admissible for P. We start off with the direction “response model = admissible”.
Given a response model O of Spec(P) we prove that O is admissible by showing the following:

1) s=1 € O implies s=1 € Must(p, O),

)
2) s=0 € O implies s=0 € Cannot(p,O),
3)
)

(
(
(3) [PI(0) € O, and
(

4) O is inseparable for P.

From Statements (1) and (2) we get O C [P](O), which together with Statement (3) shows
that O is a fixed point of [ P]. Note that Statements (1)-(4) are equivalent to O being admissible
for P, which in turn is equivalent, by Prop. 2.1, to O being the least fixed point of [P].
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(1). Let s=1 € O and O’ =4¢ O \ {s=1}. Since O is a response model we know (0O, 0) |=
Spec(P) and (O',0) [~ Spec(P). It is not difficult to show that the assumption (O,0) =
Spec(P), and thus (O,0) = A, Cannot(P,a) D a~0, implies (0’,0) = A, Cannot(P,a) D
a~0 as well. This is due to the fact that the difference between O’ and O is a positive
signal s=1 and that this difference does not change validity of any a~0 predicate, and that
Cannot(P, a) can only become false, so the implication Cannot(P,a) D ax0 can only become
“more true.” Hence we must have (O',0) P~ Must(P,a) D a=1 for some signal a, and this
can only be ¢ = s. This means (O',0) |= Must(P, s). From Prop. 3.1(1) we conclude s=1 €
Must(P,0") C Must(P,O).

(2). Here we are looking at a negative signal s=0 € O, which we remove in O’ =4 O\ {s=0}.
Since O is a response model, (O, O) £ Spec(P). The only possibility for this to be the case is if
(0',0) E Cannot (P, s) and (O, 0) [~ s~0. This is due to the fact that none of the implications
Must(P,a) D a=1, for any signal a, and none of the implications Cannot(P,a) D a0, for
any signal a # s, can become false in reducing O to O’ by removing the negative signal
status s=0 from O. But (O’, O) = Cannot(P, s) implies by Prop. 3.1(2) s=0 € Cannot(P,0") C
Cannot(P,0).

(3). Let s=1 € [P](O), ie., s=1 € Must(P,0). We apply Prop. 3.1(1) with E' =
E = O to derive (O,0) = Must(P,s). Since (0,0) = A,Must(P,a) D a=1, this implies
(0,0) = s=1, whence s=1 € O. Further, let s=0 € [P](0O), i.e., s=0 € Cannot(P,O). From
Prop. 3.1(2) we get (O, 0) k= Cannot(P,s). Since by assumption (O,0) = A, Cannot(P,a) D
a=0, this implies (O,0) | s=~0. Hence, s = b € O, for some b € {0,1}. Now consider
O =4t O\ {s = b}. Then, (O',0) = Spec(P) as O is a response model. But this must be
because (O, 0) [~ Cannot(P,s) D s~0 since we must have (0’,0) | Must(P,s) D s=1. For
otherwise, by Prop. 3.1(1), s=1 € Must(P,O) which contradicts s=0 € Cannot(P,O). Now,
(0',0) F Cannot(P,s) D s~0 implies (O',0) = s=0 which can only be if b = 0. Thus,
5=0 € O as desired.

(4). To show that O is inseparable, let O' C O be given. Because O is a response
model, (0’,0) & Spec(P). Suppose then, (0',0) & A, Must(P,a) D a=1. Since (0,0) |=
A, Must(P,a) D a=1, Prop. 3.1(1) implies there exists some s=1 ¢ O’ such that s=1 €
Must(P,0") C [P](O'). Furthermore, by monotonicity of Must, we have s=1 € Must(P,O).
By another application of Prop. 3.1(1) then, we infer s=1 € O. This shows that s=1 €
[P](O") N (O \ O'). It remains to consider the case (O',0) [~ Cannot(P,s) D s~0 for some
s. Since (0,0) [ Cannot(P,s) D sx0 this can only be because (O',0) |= Cannot(P,s)
and s=0 € O\ O'; this follows from the intuitionistic semantics. The former implies s=0 €
Cannot(P,0") C [P](O') by Prop. 3.1(2). So, in the second case, too, we find that [P](O") N
(O\ O') # 0. This completes the proof that O is inseparable.

We now prove direction “admissible = response model”. Let O be admissible for P, i.e.
O = [P](O) and [P](O") N (O"\ O) # 0, for all 0" C O. We claim that O is a response model
of Spec(P), i.e., (O,0) [= Spec(P) and (O', 0) } Spec(P), for all O' C O.

First, let us check that (O, O) = Spec(P). It is easy to show that (O, O) |= Cannot(P,s) D
s=0, for all signals s. For if (O, O) |= Cannot (P, s), then s=0 € Cannot(P, O) by Prop. 3.1(2).
Thus, s=0 € [P](O) = O, whence (O, O) = sx0. Similarly, (O,0) = Must(P,s) D sx0, for
all signals s: By Prop. 3.1(2), the premise (O, O) = Must(P,s) implies s=1 € Must(P,0) C
[P](O). Since O = [P](O), we have s=1 € O and thus (O, 0) = s=1.
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Next, let O C O be given. Because of the property of admissibility, the set [P](O")N(O\0O’)
is nonempty. Suppose there is some s=1 € [P](O')\ O'. Then, s=1 € Must(P,O') and s=1 ¢
O', whence by Prop. 3.1(1), (O, O) = Must(P, s). Since s=1 ¢ O, we have (O', O) £ s=1 and
thus (O', O) £ Spec(P). On the other hand, suppose there is some s=0 € [P](O’) N (0 \ O'),
i.e., s=0 € Cannot(P,0"), and s=0 € O\ O'. The former implies (O’,0) |= Cannot(P,s)
by Prop. 3.1(2). The latter implies (O, 0) (£~ s~0. Hence, (O',0) F~ Spec(P). This proves
that O is a response model of Spec(P) and completes the proof of the theorem. a

4 A Note on Compositionality

In Sec. 3 we showed how to derive a propositional formula Spec(P) for a given combina-
tional program P. This was done with the help of the predicates Must and Cannot, both
of which are defined via structural induction on P, which lead to the logical specification
Spec(P,s) =qgf Must(P,s) D s=1 A Cannot(P,s) D s=0, for every signal s. The formula
Spec(P, s) itself, however, is not declared directly along the structure of P, yet. In this
section we show that Spec(P,s) can indeed be defined structurally for the constructive re-
sponses under the additional assumption that every signal stabilizes eventually, i.e., the axioms
—=(s=0 V s=1), for all signals s, are assumed to hold from now on. Our derivation uses some
standard theorems valid in intuitionistic logic [15].

Theorem 4.1 Let P and @ be combinational programs and s € S be a signal. Then,

Spec(P|Q,s) = (Mp Ds=1) A (C; D s=0)
Spec(a=17(P),s) = (My D s=1) A (Cy D s~0)
Spec(a=07(Q),s) = (M3 Ds=1) A (C3 D s~0)

where

M; =4 (Spec
Ci =4 (Spec

My =4 a=1 A (Spec(P,s) D s=1)
Co =g a=0 V ((Spec(P,s) V —Spec(P,s)) D sx0)
M3 =4 a=0 A (Spec(Q,s) D s=1)
C; =4 a=1V ((Spec(Q,s) V —Spec(Q,s)) D sx0).

Proof sketch: The observation underlying the inductive characterization is that Must (P, s)
can be recovered from Spec(P, s) as Spec(P, s) D s=1 and that Cannot(P, s) can be recovered
as (Spec(P, s) V —Spec(P,s)) D s~0. Using case analysis, one verifies the equivalences
Must(P,s) A =—s=1 = (Spec(P,s) D s=1) A -—s=1
Must(P,s) A =—s=0 = (Spec(P,s) D s=1) A ——s=0

from which it follows that Must(P, s) = Spec(P,s) D s=1.
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To show Cannot(P,s) = (Spec(P,s) V —Spec(P,s)) D s~0 we use a fourfold case analysis:

Cannot(P,s) A =—s=1 A —Must(P,s) =

((Spec(P,s) V =Spec(P,s)) D s~0) A =—s=1 A —Must(P, s)
Cannot(P,s) A =—s=1 A =—Must(P,s) =

((Spec(P, s) V —Spec(P,s)) D sx~0) A =—s=1 A =—Must(P,s)
Cannot(P,s) A =—s=0 A —Must(P,s) =

((Spec(P,s) V =Spec(P,s)) D s~0) A =—s=0 A —Must(P, s)
Cannot(P,s) A =—s=0 A —=—Must(P,s) =

((Spec(P, s) V —Spec(P,s)) D sx0) A =—s=0 A =—Must(P,s)

The details of these proofs are not too difficult but tedious. For the last of these equivalences
one also needs the fact that -—Must(P,s) = —Cannot(P,s). O

5 Discussion and Related Work

This section discusses our model-theoretic approach to Esterel semantics in the light of related
work, with a focus on the semantic relation between Esterel and Statecharts. The intuitionistic
semantics presented in this paper has been used previously by the authors to characterize
Pnueli and Shalev’s step semantics for the parallel, combinational fragment of Statecharts [14],
which is not equipped with an explicit nondeterministic—choice construct. More precisely, it is
shown in [11] that if every Statecharts transition ay,... ,a;,b1,... ,by/ c1,... ,cp, is read as an
implication (a1 A- - -AaiA=byA---A=bp,) D (c1/A- - -Acy) and parallel composition as conjunction,
then the Godel models of the resulting Statecharts formula provide a compositional and fully—
abstract semantics for Pnueli and Shalev’s macro steps. In [13], this semantic interpretation
is generalized to the full Statecharts language.

In the present paper we used the same model-theoretic principles to characterize the re-
active semantics of combinational Esterel programs in terms of propositional logic formulas.
From the point of view of our model-theory, Esterel can now be seen as a refinement of State-
charts, and Statecharts can be seen as a specialization of Esterel. To be precise, (the parallel
fragment of) Statecharts coincides with the special Esterel theory (for combinational programs)
in which, for all signals s, the axiom s~0 is assumed. Indeed, if we add the axiom A g s~0
to our logic, then the implications Cannot(P, s) D sx0 in Spec(P) all collapse to true and s=0
becomes equivalent to —~s=1. We may then simply identify a=1 with the name ¢ and consider a
as a propositional atom. For example, the program a=17(b=07(!c)) would thus translate, up
to logical equivalence, into the formula (a=1 A =b=1) D c¢=1, which has the same semantics
as the Statecharts transition a,l_)/ c. Similarly, one can show that under the axiom A, g s~0,
parallel composition reduces to conjunction, i.e., Spec(P; | P») = Spec(P;) A Spec(P) so that
Esterel essentially “collapses” to Statecharts.

Another interesting way to look at the relationship between Esterel and Statecharts is to
observe that the translation Spec(P) essentially offers a faithful embedding of Esterel into
Statecharts. Consider the program P = a=17(b=07(la) | !b). Its translation yields, modulo
some trivial simplifications, the formula

Spec(P) = ((a=1Ab=0)Da=1) A ((b=1A—-a=1) D a=0) A
(a=1Db=1) A ((a=0A —b=1) D b=0)
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which corresponds to the Statecharts program
a=1,b=0/a=1 | b=1,a=1/a=0 | a=1/b=1 | a=0,b=1/b=0.

Our results now imply that the execution of this program in Statecharts, under arbitrary
external inputs, yields exactly the same responses as if P was executed under the fixed—point
semantics of Esterel. Note that in this execution of Spec(P) under the operational semantics
of Statecharts, any additional assumption of the form s~0, which translates into the State-
charts transition s=1/s=0, effectively allows us to speculate on the absence of s at any time
in the construction of a Statecharts response. As pointed out above, it is the omission of these
assumptions that makes Esterel a refinement of Statecharts. Moreover, our framework offers
the possibility to mix Esterel and Statecharts consistently: we can introduce sx0 selectively for
those signals that we wish to subject to a “speculative” Statecharts regime, while for all other
signals we keep the strict rule of Esterel that forces the absence of a signal to be justified in a
constructive, non—speculative way. In this context it is worth noting that the nondeterminism
in Statecharts’ parallel fragment is solely due to negations; without negative triggers, parallel
Statecharts programs would be fully deterministic like Esterel.

A quite different way of giving a logical account of Esterel is to encode or axiomatize
Esterel’s semantics directly in a suitable predicate logic. For instance, in [10] the semantics is
formalized in the constructive higher—order logic of the Calculus of Constructions [4], and its
implementation in Coq [9] was used to verify the correctness of Berry’s circuit translation [1]
for a large fragment of Esterel. To achieve these results, the approach taken in [10] uses a
deep embedding in the Calculus of Constructions. Our translation corresponds to a shallow
embedding, and it is an embedding in propositional rather than in higher-order logic. Our
approach is also distinct from Berry’s logical semantics of “constructive value propagation”
(Chap. 10.3 in [1]). Berry’s logical semantics for Esterel circuits is presented in terms of
a predicate I, R + e < b with the interpretation “for input I and (register) state R, the
propositional expression e (built from wires and constant values) constructively evaluates to
the Boolean value b.” The predicate I, R F e — b is an inductive relation defined by a set
of derivation rules similar to a logic calculus (“fact-to-fact propagation”). However, it is not
clear to us in which sense these rules establish a logic, in particular what the logical status and
model theoretic semantics of the expressions e in this relation are. The relationship with our
logic translation still needs to be investigated.

Let us finally mention a couple of other open problems that we hope to address in future
work. Firstly, while we have shown compositionality of our model-theoretic semantics for
Esterel, the full-abstractness question is still open. In fact, we conjecture that two Esterel
programs P and ) have the same partial responses in all contexts if and only if Spec(P) and
Spec(Q®) have the same Gédel models. Secondly, note that we have verified the compositionality
of Spec(P) in the structure of P only relative to a fixed signal, i.e., we have shown how to
construct the models of Spec(P|Q,s) from those of Spec(P, s) and Spec(Q, s), for any fixed
signal s. One might also try to obtain the models of Spec(P | ) from those of Spec(P)
and Spec(®). Thirdly, our model-theoretic semantics needs to be extended to cover other
combinational operators of Esterel, in particular local signal declarations.
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6 Conclusions and Future Work

This paper presents a novel, model-theoretic account of the semantics of a combinational
fragment of Esterel, which complements the declarative, operational, and circuit-based ap-
proaches developed by Berry [1]. Our technical setting is based on propositional intuitionistic
logic where formulas are interpreted over Godel valuations. The obtained characterization of
Esterel semantics via Godel models suggests that the simple approach of explaining signal
statuses in a three-valued Scott domain, which leads to a Kleene-style algebraic semantics as
detailed in [1], may not be sufficiently expressive: it is too coarse since it only provides an
algebra of signal values but not of truth values. In this light, the results presented in this
paper promise to be a significant step forward in finding a native logic for Esterel, thereby
explaining what kind of constructive logic Esterel is based on. Moreover, our setting enables
one to explore the similarities of Esterel and Statecharts. This suggests ways of extending
Esterel by a concept of nondeterminism so that abstraction—-based or refinement—based design
and verification techniques become available to Esterel users.

Regarding future work we are planning to extend our results to a richer fragment of Esterel,
for which first a way must be found to handle signal hiding within our intuitionistic setting.
Moreover, it needs to be checked whether a full-abstraction theorem for our semantics based
on Godel valuations, similar to the one we established for Statecharts semantics [12], will hold.
Last, but not least, our approach is expected to yield an axiomatization of Esterel semantics on
the basis of a lattice—theoretic characterization of the Godel valuations that arise in the Esterel
semantics. Similar work is currently under way for Statecharts where such a characterization
has already been developed [12]. From our point of view, this work is of particular importance
as it would allow for a simple, axiomatic comparison between Statecharts and Esterel semantics.
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