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Abstract

This paper presents a novel model-theoretic account of
Harel, Pnueli and Shalev’s original step semantics of the
visual specification language Statecharts. The graphical
syntax of a Statechart is read, directly and structurally,
as a formula in propositional logic. This proposition cap-
tures all the logical constraints imposed by the diagram
on the Statechart’s semantics, i.e., the possible sets of
transitions that can be taken together to perform a valid
Statecharts step, and their effects on Statecharts config-
urations. The paper’s main result shows that the correct
semantics is uniquely described by the intuitionistic in-
terpretation of Statecharts formulas, whereas the naive
classical interpretation is insufficient. The advocated in-
tuitionistic approach not only gives a correct, clear and
direct logical account of Statecharts’ semantics, but also
permits the integration of Statecharts with formal valida-
tion tools, such as theorem provers.

Keywords: Statecharts, model-theoretic semantics, intu-
itionistic logic

1 Introduction

Statecharts is a visual formalism, introduced by Harel in
the mid Eighties [4], for specifying the behavior of reac-
tive systems, i.e., concurrent systems that are character-
ized by their ongoing interaction with their environment.
It extends finite—state machines with concepts of hierar-
chy (“OR states”), so that one may speak of a state as
having sub-states, concurrency (“AND states”), thereby
allowing the definition of systems having simultaneously
active subsystems, and priority, so that one may express
that certain system events have precedence over others.
Despite Statecharts’ popularity with system engineers and
an increasing wealth of related tools [7], its semantics re-
mains an active and quite controversially debated field of
research [5, 13, 14, 15, 18, 19], which led to the emer-
gence of many Statecharts dialects [22]. The original
Statecharts semantics, as conceived by Harel, Pnueli and

Shalev [6, 18], is a two-level step semantics which re-
flects the behavior of globally synchronous, locally asyn-
chronous systems in an intuitive way: a Statechart may
react to an event by engaging in an enabled transition,
thereby performing a so—called micro step, which may
generate new events, as described by the transition’s ac-
tion, that may in turn trigger new transitions while dis-
abling others. When this chain reaction comes to a halt,
one execution step, a so—called macro step, is complete.
The semantic principle underlying the maximality of a
macro step is often referred to as synchrony hypothesis [2]
and the one underlying the chain-reaction—style trigger-
ing of transitions as causality. In a seminal paper pub-
lished in the early Nineties [18], Pnueli and Shalev for-
malized this step semantics obeying the synchrony hy-
pothesis and causality in an operational and a declarative
style, and showed both variants to coincide. Despite this
mathematical elegance, their semantic accounts have not
been adopted in tool implementations, mainly because of
the complexity in the construction of Statecharts steps and
the lack of compositionality.

This paper proposes, for the first time in the litera-
ture, a model—-theoretic approach to defining Statecharts
semantics. Related but quite different approaches have
previously been investigated for Modecharts [9], a graph-
ical language for specifying real-time systems, and Es-
terel [2], which is a fextual language for modeling reac-
tive systems. The idea suggested in this paper is to read
the diagrammatic elements of a given Statechart, together
with the implicit static semantics, as a formula in propo-
sitional logic. Intuitively, events, state names and transi-
tion names are taken to be atomic propositions and tran-
sition labels are logically interpreted as “trigger implies
action,” where a trigger is a conjunction of events and
negated events describing under which condition a tran-
sition fires, and where an action corresponds to the con-
junction of the events generated by firing the transition
under consideration. In addition, the static semantics in-
cludes the structure of a Statechart and consists of rules
such as the following: (i) an OR state is active if and only
if one of its sub—states is active, (ii) an AND state is ac-
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tive if and only if all of its sub—states are active, (iii) only
mutually concurrent transitions may be included in the
same macro step. Given a Statecharts formula, its models
are expected to indicate which transitions might be taken
together to perform a valid macro step, in the sense of
Harel, Pnueli and Shalev. Our results, however, show that
the straightforward approach of interpreting Statecharts
formulas in classical logic, which is tempting to system
engineers unaware of the subtleties of Statecharts’ step se-
mantics, does not work since some classical models give
rise to invalid macro steps. The reason is that the two—
valued classical logic is insufficient for reflecting State-
charts’ principle of causality, where events cannot only be
present or absent within a system step, but either causally
present, non—causally present, or absent. This suggests
interpreting Statecharts formulas intuitionistically, rather
than classically. Indeed, within the intuitionistic setting
we are able to characterize exactly those classical models
of Statecharts formulas, which correspond to valid State-
charts macro steps.

The strength of our model-theoretic approach lies in
the simplicity of structurally inferring the original seman-
tics of a Statechart from its hierarchical diagrammatic no-
tation. In addition to providing insights in the semantics
of Statecharts, the results of this paper lend themselves
for integrating the Statecharts formalism with declarative
languages, such as Prolog, and formal verification tools,
such as the theorem provers HOL [3], Isabelle [17] and
PVS [16]. Indeed, our approach corresponds to a shallow
encoding of Statecharts and, thus, for the manipulation of
individual Statecharts designs, providing direct access to
the algorithmic technology available in a theorem prover.
In particular, automated tactics at the propositional level
can be used, with the proviso that they preserve the un-
derlying intuitionistic semantics. This direction for fu-
ture work is made even more attractive by the fact that
the intuitionistic framework also permits the adaptation of
compositionality and full-abstractness results for State-
charts [11]; these properties are particularly important for
facilitating component—based system design and valida-
tion within the Statecharts specification formalism.

2 Statecharts Formulas

In this section we show how a formula in propositional
logic can be derived from the visual description of a given
Statechart. The model-theoretic framework for interpret-
ing such a Statecharts formula is provided in the next sec-
tion, in such a way that the models of the formula directly
correspond to the executions of those transitions which
can fire together to perform a macro step of the Statechart
under consideration.

Figure 1: Example Statechart

Instead of presenting a formal account of Statecharts’
visual syntax, we illustrate its diagrammatic notation by
means of an example Statechart depicted in Figure 1. The
state hierarchy of this Statechart is reflected in the nesting
of states: The root s is an AND—state, in signs s € AND,
which has the two OR-states s; and s, as children, in
signs 51,52 € OR and child(s) = {s1,s2}. The OR-state s;
contains in turn the two states s11 and s»», which are con-
nected via the transition #; and are referred to as basic
states since they are not refined further. OR-state s; is
refined by another OR-state sp1 and the basic state s2,
which are connected via transition #4. Finally, s; de-
scribes a state machine with the three basic states s311,
s212 and 5213, and the transitions ¢, and #3.

From now on let SC be an arbitrary but fixed State-
chart with a set S of states, a set T of transitions, and a
set [E of events. The state hierarchy of SC leads to an im-
plicit semantic condition describing which states can be
active together at any given time during the execution of
the Statechart. Intuitively, the root r of a Statechart is al-
ways active. An AND-state reflects that its children states
are running in parallel, i.e., an AND-state is active if and
only if all of its children are active. An OR—state denotes
a sequential state machine which is active if and only if
exactly one of its children states is active. In Statecharts,
a configuration, i.e., a set of states, that obeys the above
rules is referred to as valid configuration. Logically, these
rules can be encoded by the formula CONFIG(C) =4¢

cnnan AN A

SESNAND s' echild(s)

ANV (€l =ci)A =C(s"))

SESNOR ' echild(s) s"echild(s)\{s'}

(C(s) =C() A

where C is a unary predicate which will later be inter-
preted by a configuration C such that C(s") is valid if and
only if s’ € C holds. Since configurations are always fi-
nite, it is obvious that we could have written CONFIG,
and similar the other formulas which we are going to
present below, as a formula in propositional logic rather
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than in predicate logic; however, we find that the use of
predicates improves readability. In our example State-
chart, the initial configuration consists of the set of states
that are pointed to by the small arrows, namely Cj,;r =
{s,81,82,811,521 }, which obviously validates the proposi-
tion CONFIG(C;,;,)-

Before introducing the logical encoding of transi-
tions we present the architecture of the Statechart for-
mula MACRO—-STEP relative to some fixed Statechart SC:

which is parameterized in the predicates C, E, T, A,
and C' standing for a configuration C, a set of events E,
a set of transition names 7, a set of events A, and a con-
figuration C', respectively. Intuitively, MACRO—-STEP de-
scribes the macro steps of SC, i.e., the formula is expected
to hold if (i) C is a valid configuration of SC, (ii) T corre-
sponds to a macro step of SC in this configuration when
the environment offers the events in E, as well as (iii) A is
the set of events generated by T, and C' is the valid con-
figuration reached when performing the macro step 7.

We now turn to the logical formalization of a State-
chart transition, which we illustrate using transition #, of
our example Statechart in Figure 1. For notational con-
venience we denote the source state of a Statecharts tran-
sition ¢ by source(r) and its target state by target(z), i.e.,
source(t,) = s»11 and target(t;) = s212. Moreover, a tran-
sition label in Statecharts is a pair of event sets, where the
first component is referred to as trigger and may include
negated events, and the second component is referred to
as action. Furthermore, we write trigger™ (¢) for the pos-
itive events included in the trigger of ¢ and trigger—(7)
for the negated ones, as well as action(¢) for the events
in the action of 7. In our example, triggert(s;) = {b},
trigger— (t2) = {c}, and action(z,) = {a}. Then, for a tran-
sition ¢ to fire, three conditions must be satisfied; the first
two are determined by Statecharts’ hierarchical structure,
and the last one emerges from the transition’s label of the
form “trigger implies action.”

e First, + must exit a state that is active in the current
configuration C, i.e., ¢t must be relevant [18]. For-
mally, RELEVANT(z,C) =g4¢ C(source(r)); in our ex-
ample, RELEVANT(t2,C) = C(s211)-

e Second, 7 can only fire if all other transitions within
the potential macro step T are consistent with t, i.e.,
they are all located in different sub—states of the
smallest enclosed AND—state in which ¢ is contained
and, thus, are “orthogonal” or “concurrent” to ¢. For
convenience, we refer to Pnueli and Shalev’s notion
of the set consistent(t) which includes all transitions

of SC that are consistent with 7; it is defined along
the state hierarchy of SC. This yields the formula

CONSISTENT(¢,T) =gf /\
t'¢consistent({r})

=L (t)

which states that transitions inconsistent with ¢ can-
not be included in the considered macro step T.
In our example, consistent({,}) = {t1,%2}, whence
CONSISTENT(ty,T) = =T (t3) A—T (t4).

e Third, ¢ can only fire if the events in trigger® (¢), but
not the events in trigger—(¢), are offered by the en-
vironment E or are included in the generated event
set A, i.e., are broadcasted by other transitions firing
in the same macro step. This may be written in our
logical formalism as TRIGGERED(#,E,A) =g¢

A EE@VAEQ) A A (FE@E)A-AG).

ectrigger™ (1) ectrigger™ (7)

In our example, TRIGGERED (3, E,A) is the formula
(E(b) VA(D)) A (mE(c) A—A(c)).

According to the synchrony hypothesis adopted in State-
charts, a transition 7 satisfying the abovementioned three
conditions must fire, thereby implying the following:

e First, firing ¢ generates the events in its action,
i.e., action(¢) C A or, as formula, ACTION(7,4) =g4¢
Aeeaction(r) A(e). Thus, ACTION(2,A) = A(a) in our
example.

e Second, t must be included in the macro step 7 under
consideration; formally, T (z).

e Third, transition ¢ enters and initializes its target
state target(r), which implies that target(z), as well
as all states in the default configuration for the State-
chart with root target(¢) must be included in the tar-
get configuration C'. Formally, DEFAULT(t,C") =4t
Nsedefauttarget(r)) C (8), Where default(s’) denotes the
default configuration of some state s, as defined
by Pnueli and Shalev in [18] along the state hier-
archy of s'. In our example, default(target(r,)) =
default(sa12) = {s212} since s212 is a basic state,
whence DEFAULT(t2,C') = C'(s212).

Note that each fired transition explicitly activates the de-
fault configuration of its target state. However, we also
have to ensure that every state s in the current config-
uration C, which is not deactivated by the firing of any
transition in 7, must also be included in the target con-
figuration C'. In this case, we say that s idles for T and
formally define IDLE(C,T,C’") =4¢

/\ (C(s)A /\(I(t) D (s L target(t)))) D C'(s),

SES teT
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where s; L s means as in Pnueli and Shalev’s ac-
count [18] that state s; is orthogonal to s7, i.e., both states
are located in different sub—states of the smallest AND—
state enclosing them. In the IDLE predicate, the sub—
formula A,crT(f) D (s L target(z)) encodes the condi-
tion under which state s must remain idle, namely if the
target states of all transitions included in the current step
are orthogonal to s. We finally define the desired formula

/\ (RELEVANT(z,C) A CONSISTENT(Z,T) A
teT

TRIGGERED(¢,E,A)) D
(ACTION(#,A) A T(t) A DEFAULT(z,C"))
A IDLE(C,T,C) .

This formula directly reflects our interpretation of transi-

tion labels by reading “,” in triggers and actions as event

conjunction, “=” in front of events as negation, and “/”
as implication. In our example, the conjunct for #; is

Summarizing, we have shown how a Statecharts diagram
can be intuitively read as and encoded by a formula in
predicate logic or, in fact, propositional logic. The re-
sulting Statecharts formula captures all constraints on the
state hierarchy and macro—step transition semantics that
can be derived structurally from the diagram. Although
not shown in our example, our approach can also handle
interlevel transitions, i.e., transitions crossing the border-
lines of states, and can be easily adapted to cope with state
references, i.e., trigger events of the form iny, for s € S,
and implicit priorities on transitions imposed by the state
hierarchy [5]. However, for incorporating the concept of
history states included in some Statecharts dialects, our
work would have to be extended.

3 Model-theoretic Semantics

In the following we define and analyze two semantic in-
terpretations of Statecharts formulas, one using classi-
cal logic and the other one based on intuitionistic logic.
Both rely on structures of the form M = (C,E,T,A,C"),
where C,C' CS, E,ACE and T C T. Our goal is to
characterize the macro steps of a given Statechart, in
the sense of Pnueli and Shalev, as models of the step—
construction predicate MACRO—STEP. Accordingly, we
call a structure M Pnueli-Shalev step, or PS—step for

Figure 2: Insufficiency of classical logic

short, if (i) C and C’ are valid configurations in the State-
chart under consideration, (i) T is a set of transitions re-
sulting from the step—construction algorithm a la Pnueli
and Shalev [18] with respect to the source configuration C
and the environment E, (iii) A is the set of events gener-
ated by T, and (iv) C’ is the target configuration reached
when executing the transitions 7 in C. For a structure
M = (C,E,T,A,C") we use its components to interpret

comes an interpretation of MACRO—STEP.

Classical interpretation. As usual, an interpretation M
is called a classical model of MACRO—STEP, if M vali-
dates MACRO—STEP in the usual sense of classical logic.
Unfortunately, from a classical point of view, MACRO—
STEP is too loose, meaning that not every classical model
corresponds to a PS—step. To see this, consider the ex-
ample Statechart depicted in Figure 2 on the left, in its
initial configuration Cy =g4¢ {s,s1,52,511,521}. The con-
figuration that would be obtained by the firing of both
transitions 71 and 5 is C| =gr {s,51,52,512,522 }. Although
in the empty environment E = {} neither of the two
transitions is enabled, the associated transition predicate

(Clsi) A (E(a)VA(a))) D (AD)AL(t1) AC (s12))
(Cls21) A(E(D)VA(D))) D (Ala) AT(t2) AC'(522))

for transitions #; and #, respectively, possesses the clas-
sical model (Cy1,{},{t1,2},{a,b},C}). In fact, for every
T D {t1,1o} and A D {a,b}, the structure (Cy,{},T,A,C})
is a classical model of MACRO-STEP for this example.
However, none of these is a PS—step. The actual PS—step
of the example configuration, in the empty environment,
is the empty step (C1,{},{},{},C1) which is also a classi-
cal model. In general, every PS—step is a classical model
but not vice versa. Thus, the question is how to distin-
guish PS—steps from other, non—desired classical models.
The reason why classical models are too loose is that they
do not enforce causality which is a basic ingredient of
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Pnueli and Shalev’s step semantics. Causality demands
that every transition included in a macro step must be
causally triggered by the effects of some other transition
in an uninterrupted causal chain that can be traced back to
the events E offered by the environment. In the classical
step (C1,{},{r1,12},{a,b},C}) above, none of the transi-
tions #; and 7, is forced by such a causal chain; instead, 7,
and £, trigger each other in a cyclic dependency.
Observing that the actual PS—step (C1,{},{},{},C1)
is the smallest classical solution in the example above,
one might hypothesize that we should look for the min-
imal classical models. This, however, does not quite
work, either. A counterexample is the Statechart in Fig-
ure 2 on the right. In this case the initial configuration is
Dy =g {s,51}, the target configuration D} =g {s, 52}, and
we consider again the empty environment. The conjunct
for transition # in the transition predicate TRANS reads

(C(s1) A(=E(a) A=A(a))) D (A(B) AL(t) AC (52))-

Here, both (D1, {},{r},{b},D}) and (D1,{},{},{a},D1)
are minimal classical models, but only the first one is a
valid PS—step. The event « in the second model is con-
sistent with the Statechart’s step behavior but is spurious
in that it is not generated causally from within the State-
chart itself. We might say that a is a non—causal or con-
tingent event which is injected by the environment. Ac-
cordingly, it seems that we need at least three truth values
to represent the membership relationship for the set A: an
event a may be (i) absent from A, and it may be present in
two ways, either (ii) causally forced by the reaction of the
Statechart, or (iii) non—causally if it is injected by the en-
vironment. An analogue statement is valid for the set T'.
Consequently, the classical principle of the excluded mid-
dle, i.e., A(a) V —A(a) in our notation, must be given up.

Intuitionistic interpretation. The invalidity of the law
of the excluded middle for Statecharts semantics moti-
vates intuitionistic logic, which is a refinement of clas-
sical logic, as a candidate for our model-theoretic ap-
proach. Here, we consider the classical models as fi-
nal structures M, of nonempty, strictly increasing se-
quences M = (M|,M;,...,M,), for n € N, of classical
structures, called intuitionistic sequence structures, or se-
quence structures for short. In this context, “strictly in-
creasing” means that M; C M;q, for all 1 <i <n, where
the ordering is defined pointwise. Every such sequence
ending in the classical model M,, explicates the internal
causality structure of the final structure M,. The idea is
that each proper inclusion M; C M; corresponds to a
non—causal step in the construction of M,,, implying that
some of the additional elements in M;y; \ M;, where “\”
is again defined pointwise, have been introduced due to

some external effect and are not solely causally depen-
dent on M;. In particular, if there is no non-trivial se-
quence structure ending in M, other than M, itself, then
all elements contained in the components of M,, must be
causally present. This gives the desired criterion for iden-
tifying the PS—steps among the classical models. In the
following we make this intuition formally precise.

A sequence structure M is an intuitionistic sequence
model of MACRO-STEP, if each M; satisfies MACRO—
STEP in the intuitionistic sense [21], i.e., when inter-
preting implication “D” and negation “—” as follows:
OME=¢DvwifVj>i M; = ¢ implies M; |= v, and
(i) M; |= ~¢ if Vj > i. M; |# ¢. Observe that in the spe-
cial case where M is a single structure, we have that M
is a sequence model of MACRO-STEP if and only if it is
a classical model. This means that the classical models
of MACRO-STEP are precisely the final structures of all
sequence models of MACRO-STEP. As indicated before
we are interested in those classical structures that are not
final elements in any nontrivial sequence structure. For-
mally, a sequence model M of length 1, i.e., a classical
model, is called a response model, if there does not ex-
ist a sequence model N = (N, N2, ...,Ni) of length k > 1
such that M = Ny and in which the components E; in all
N; = (G,,E;,T;,A;,C}), for 1 <i <k, are identical; the con-
dition that the E; are constant reflects the idea that the ini-
tial input events are causally present by definition. This
refinement of the notion of a classical model paves the
way to our main theorem which characterizes PS—steps in
terms of response models.

Theorem 3.1 Let SC be a Statechart, MACRO—STEP be
its Statecharts formula, and M be a structure. Then, M is
a PS—step in SC if and only if M is a response model of
MACRO-STEP.

For deciding whether a classical model (C,E,T,A,C') is
a response model we only need to test the components T
and A: if N = (N;,N,,...,N;) with & > 1 is a sequence
model of MACRO-STEP such that Ny = (C,E,T,A,C"),
then the first and last components of each N;, for 1 <
i < k, must be identical to C and C’, respectively. This
is because C; = C; if C; C C; and if both CONFIG(C))
and CONFIG(C,) hold.

To conclude this section, let us revisit the two exam-
ples of Figure 2. For the Statechart on the left we find
that none of the classical models (C1,{},T,A,C}), with
T D {t1,i2} and A D {a,b}, is a response model. In-
deed, the formula MACRO—STEP possesses the sequence
model ((C1,{},{},{}.C}),(C1,{},T,A,C})) of length 2,
which shows that none of the elements in 7 and A are
causal. On the other hand, (C1,{},{},{},C1) is not only
the smallest classical model but also a response model.
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For the Statechart on the right in Figure 2 we find that
only the minimal classical model (Dy,{},{t},{b},D>) is
a response model. The other one, (D1,{},{},{a},D1),
is not a response model, since we have that the se-

quence model ((Dl7{}7{}7{}>D1)7(Dlv{}v{}v{a}le))

of length 2 witnesses that a is non—causally introduced.

4 Discussion and Related Work

This section discusses our approach in the context of re-
lated work. Perhaps the most striking feature of our log-
ical encoding of Statecharts’ two—level step semantics is
that it is essentially of a propositional nature. This is sur-
prising since the explicit formalization in logic of both the
operational and the declarative semantics given by Pnueli
and Shalev [18] require second—order constructions. Re-
garding their operational semantics, the logical encoding
of the step—construction algorithm would have to involve
existential quantification over a—priori unbounded execu-
tion paths. In the declarative semantics, Pnueli and Shalev
make use of the genuine second—order property of in-
separability which encodes the principle of causality. In
contrast, causality is captured in our intuitionistic setting
by the notion of a response model, i.e., externally in the
model theory rather than in Statecharts formulas.

In a previous paper [11], the authors have shown
that the intuitionistic approach to Statecharts semantics
not only provides for a compositional refinement of the
macro—step construction of Pnueli and Shalev, but also
leads to a fully—abstract semantics in terms of linear, in-
tuitionistic Kripke structures. However, the work pre-
sented in [11] only focuses on single, fixed macro steps
and abstracted from target configurations. In contrast,
the encoding given above covers the full transition rela-
tion between arbitrary Statecharts configurations. How-
ever, a subtle question relating to the role of transition
names remains. Notice that our encoding makes essential
use of transition names as events and implicitly assumes
that all transitions of a Statechart have distinct names.
This, of course, is consistent with the standard presenta-
tion of the macro—step construction [18] which uses tran-
sition names, too. However, since transition names can-
not be observed by the environment of a Statechart, it
should be possible to do away with them. From the re-
sults in [11] it is clear that, within our setting, transition
names are essential for capturing the choice between con-
flicting transitions in an OR—state. The reason for this
is that our linear Kripke models cannot encode nondeter-
ministic choice. Consequently, choices must be handled
by auxiliary propositional constants that act as mutual ex-
clusion events, for which simply the unambiguous transi-
tion names may be taken. Unfortunately, the straightfor-

ward approaches for abstracting from these names, such
as via existential quantification, are incompatible with our
notion of response model. However, we believe that by
extending the model theory to branching Kripke struc-
tures instead of linear ones and by suitably modifying the
definition of a response model, it should be possible to
eliminate transition names in Statecharts formulas.

The approach of translating Statecharts into proposi-
tional formulas, as presented in this paper, falls into the
class of shallow embeddings, which is distinguished from
the class of deep embeddings. Both are possible strate-
gies available for integrating a diagrammatic design lan-
guage, such as Statecharts, with formal specification and
validation techniques based on logic, such as provided by
theorem provers [3, 16, 17]. In a deep embedding, the
designs expressed in the diagrammatic language are con-
sidered as object—level terms in the logic, whose seman-
tics is captured by axioms and rules. The advantage of
this technique is that it allows one to use the logic formal-
ism to derive not only properties of individual designs but
also meta—theorems about the whole of the design lan-
guage. However, when one is mainly interested in indi-
vidual designs, the shallow—embedding strategy may be
more beneficial. It translates designs not into the terms of
the logic but into formulas that specify the designs’ be-
haviors directly. In a shallow embedding, the rules and
derivation mechanisms of the logic formalism manipulate
designs themselves rather than just statements about de-
signs. This has the advantage that the algorithmic tech-
nology built into the formal specification and validation
framework, such as proof tactics within theorem provers,
is immediately available to handle individual designs.

Other semantic dialects of Statecharts have been either
defined operationally in process—algebraic settings [10,
12, 14, 20] or denotationally as in [8]. However, more
closely related to our approach is research conducted for
the diagrammatic real-time specification language Mode-
charts [9] and the textual reactive—system specification
language Esterel [2]. Jahanian and Mok [9] gave a shal-
low embedding of Modecharts into a first-order predicate
logic. The first—order setting is mainly used to express
absolute timing properties, but also for defining causal
chains of steps. This setting suffices since Modecharts has
a flat micro—step semantics, rather than a layered micro—
and macro—step semantics as the original Statecharts lan-
guage. In contrast to Modecharts but similar to State-
charts, Esterel has a two-level step semantics encapsu-
lating the synchrony hypothesis. Recently, Berry [1] has
given an embedding of Esterel in propositional logic via a
compilation into constructive circuits. Similar to our ap-
proach, his encoding follows the rules of a constructive
logic rather than the ones of classical logic.
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5 Conclusions and Future Work

This paper presented, for the first time in the literature,
a model-theoretic account of Harel, Pnueli and Shalev’s
original Statecharts semantics [18], which showed that the
propositional logic underlying Statecharts is intuitionis-
tic rather than classical. The use of an intuitionistic ap-
proach to Statecharts is not accidental: it is embodied in
the explicit notion of causality within Statecharts’ step se-
mantics and is also supported by recent compositionality
and full-abstractness results for Statecharts obtained by
the authors [11]. Equally important, the model-theoretic
approach of this paper lays the foundation for integrat-
ing Statecharts with formal verification tools, in particular
with theorem provers.

Regarding future work we plan to implement our ap-
proach within the theorem prover PVS [16] in order to
facilitate formal reasoning about Statecharts. Moreover,
we intend to extend our intuitionistic framework in a way
that permits for the hiding of transition names, which re-
quires the identification of an intuitionistic operator for
encoding transition choices.
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