
BAMBERGER BEITRÄGE ZUR
WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK

ISSN 0937-3349

Nr. 102/Juli 2017

Clock-Synchronised Shared Objects for
Deterministic Concurrency

Joaquín Aguado, Michael Mendler, Marc Pouzet,
Partha Roop, Reinhard von Hanxleden

FAKULTÄT FÜR
WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK

OTTO-FRIEDRICH-UNIVERSITÄT BAMBERG

Slightly Updated Version: February 2018
Second Update: April 2018

Clock-Synchronised Shared Objects for
Deterministic Concurrency

(Update April 2018)?

Joaqúın Aguado1, Michael Mendler1, Marc Pouzet2,
Partha Roop3, and Reinhard von Hanxleden4

1 Otto-Friedrich-Universität Bamberg, Germany
2 École Normale Supérieure Paris, France
3 University of Auckland, New Zealand

4 Christian-Albrechts-Universität zu Kiel, Germany

Abstract. Traditional synchronous programming (SP) languages have
been the paradigm of choice for the design of safety critical systems as
they guarantee concurrent thread composition with observably deter-
ministic behaviour, also called determinacy. However, this determinacy
has a high price since the only means for communication between con-
current threads are shared signals. These only support simple built-in
data types under restrictive read and write access protocols which pro-
hibits modularity and behavioural abstractions. This contrast markedly
with main stream programming which has long discovered abstract data
types (ADTs) and the use of objects through which ADTs can be freely
shared. In SP these are available only via host language support. While
this achieves modularity, it sacrifices behavioural determinacy.

Can both developments be reconciled? This report combines the con-
cept of passive objects with SP to propose clock synchronised objects. We
use the main entry point of an object oriented (OO) program (“the main
method”) to create synchronous threads, which are allowed to make con-
current method invocations. Each object publishes a policy interface that
defines the admissibility of and precedence between concurrent method
accesses. Determinacy is then guaranteed for policy-coherent object im-
plementations under policy-conformant method scheduling. A program is
policy-constructive if it is deadlock-free. This yields a uniform approach
for integrating existing SP languages within the same computational set-
ting and extending them by an expressive component model that fills an
abstraction gap still prevalent in standard SP languages.

Technically, we introduce a kernel language for clock synchronized shared
objects, called deterministic concurrent language (DCoL). A reduction
semantics for DCoL is developed for which we prove determinacy and

? In this updated version we have fixed some typos and adjusted terminology to
bring the text in line with the conference publication: J. Aguado, M. Mendler,
M. Pouzet, P. Roop, R. von Hanxleden: Deterministic Concurrence: A Clock-
synchronised Shared Memory Approach. In European Symposium on Programming
(ESOP 2018), April 14-20, Thessaloniki 2018.

termination of constructive programs. We show that policy interfaces
are generic enough to subsume existing SP such as Esterel signals, the
recently proposed extension of sequentially constructive variables or more
expressive frameworks such as Kahn data-flow channels. This opens the
door to libraries of determinate shared objects encapsulating data and
control.

1 Introduction

Data race conditions pose significant problems for concurrent software [38].
These problems are aggravated with the rapid advances in multicore and many
core architectures. A recent survey of debugging methods of concurrent soft-
ware [6] over the past decade (2005-2014) observes: “[...] developers, testers, de-
buggers and researchers still face interesting problems in data race issues. Since
this bug is one of the most difficult bugs to reproduce researchers are still chal-
lenged by improving the available solutions.” Considering this there is even a
call for making parallel programming deterministic by construction [15]. While
this is hard to achieve for general-purpose concurrent programming, there exist
domain-specific concurrent languages which have made determinacy their hall-
mark from the outset. An example is the synchronous programming (SP) [7]
paradigm. The most well-known SP languages with long history are Signal [32],
Lustre [33] for data-flow or Esterel [12] for control-flow dominated systems or
Esterel V7 [51] for combined models. More recent examples of SP languages
are Lucid Synchrone [44] in data-flow style or Reactive ML [39], Quartz [48] or
SC [53] in control-flow style.

Synchronous Programming: Step-by-Step Determinacy. The trick used by the
synchronous model of computation (SMoC) is to reduce the programming of de-
terminate concurrent systems to the programming of clock-synchronised commu-
nicating reaction modules that operate in lock-step. At each clock tick, also called
macro-step or (synchronous) instant, each concurrent program module reads
inputs from the environment and executes a step function to change internal
memory and produce an output which is consumed by the environment during
the same instant. The so-called Synchrony Hypothesis assumes that scheduling
can be so arranged that the system’s reaction is always faster than its environ-
ment. In this way, the externally observable behaviour can be abstracted as a
synchronous Mealy automaton.

The presence of a global clock does not eliminate data races completely, how-
ever. Yet, it makes their effect remain contained within the temporal barriers of
the clock. Within a macro step, all micro-step accesses to shared memory must
be controlled by some other means. Here, traditional imperative SP languages
play it safe by offering signals as only means for data exchange between concur-
rent threads. Signals behave like shared variables for which all read and write
accesses occurring within a macro step are synchronised by a default-combine-
read protocol. It ensures that (1) at the beginning of each instant every signal is

2

initialised to a default value, (2) within each instant writes are scheduled before
the reads and (3) multiple writes to a (valued) signal are prevented unless the
user provides a commutative and associative combine function.

Programs which cannot be scheduled in this way are considered non-cons-
tructive [9] and rejected. As a consequence, all destructive updates of shared
data must be separated by a clock tick and thus require global synchronisation.
This is expensive in distributed implementations and makes data and control
abstraction extremely difficult. For complex applications that involve abstract
data types (ADTs), SP languages rely on a host language, such as C, to imple-
ment the required functionality. While explicit sharing of variables is prevented
by SP compilers, hidden sharing and race conditions are possible through the
host function calls. This determinacy leak is a risk for safety-critical applications
and jeopardises the mathematical simplicity of the SMoC.

Synchronous Programming and Objects. Considering the importance of ADTs
and the successes of the object-oriented (OO) paradigm in main-stream pro-
gramming, it is natural to look for a better integration of object models within
SP. Key benefits of the OO paradigm such as information hiding, cohesion, cou-
pling and separation of concerns are as important for safety-critical applications
as they are for main-stream software engineering. Could we leverage the elegance
of OO for ADT support combined with synchronous reactivity for determinacy?
This would require a generalisation of the concept of signals to that of clock-
synchronised shared ADTs. How this can be done is not obvious.

Object encapsulation itself is not entirely unknown in reactive program-
ming [18,42,5]. The idea of reactive object model (ROM) was first introduced by
Boussinot et al. [18] and has been further refined in subsequent approaches [49]
and also combined with OO standards such as UML [5]. Here a program is
a collection of reactive objects that operate synchronously relative to a global
clock, similar to SP. In spite of these advances in reactive objects, several central
questions remain. Any combination of SP with OO must strive to achieve the
best of both worlds, namely deterministic concurrency (from SP) combined with
data abstraction (from OO). In ROM [18] determinacy is indeed addressed, yet
it is achieved through maximally-conservative synchronisation, forcing each two
method invocations to be separated by a clock tick. This heavy global synchroni-
sation is expensive on a concurrent platform, often unnecessary and preventing
behavioural abstractions. While synchronous objects [4] are less restrictive due
to their reliance on Esterel-style signals for object synchronisation, they lack
more general shared object models beyond restrictive signals. In particular, like
all of the approaches on SP objects which we are aware of, they cannot han-
dle destructive updates of shared memory within a macro step while preserving
determinate behaviour.

Contributions. We propose a synchronous language with a notion of shared
objects that permit intra-instant destructive updates. To reconcile concurrent
sharing with determinacy, the shared objects have access policies associated with
their method interface expressing precedence and admissibility constraints. By

3

restricting the scheduling of concurrent method calls within each synchronous
clock instant, policy conformance eliminates all potential data races. This com-
bines the clock mechanism from SP for determinacy with the OO mechanism
for data abstraction. It exploits a natural trade-off between (i) the positioning
of the clock barrier instructions (pause) with (ii) the tightness of object policies
as restrictions on accesses not separated by the barrier. If an object behaves
deterministically under a given policy we call it policy-coherent. If a program
can be scheduled in a policy-conformant fashion without deadlock we call it
policy-constructive. While coherence is determined by the available confluence
of methods inside an object, constructiveness depends on the degree of concur-
rency of the environment outside the object. This is inspired by the policies of
Caspi et al. [21] defined over modes for accessing shared state variables. A key
contribution of this work is to reformulate the policies in [21] in the light of
recent work on sequential constructiveness [56] so they can be used to generalise
the semantics of SP signals to shared ADTs.

Our technical contributions are the following: We formally define the pol-
icy conformance for synchronous objects. We present the kernel deterministic
concurrent language language DCoL and its generic fixed-point semantics to
implement a constructive scheduling mechanism parametrised in arbitrary per-
object precedence policies. DCoL is both a minimalistic kernel language to study
the new mathematical concepts but can also act as an intermediate language
for compiling existing SP. We define the semantics as a structurally inductive
big-step reduction relation and call a program policy-constructive if the reduc-
tion is deadlock free. We prove that for policy-coherent objects, every policy-
constructive program is determinate. This extends the well-known SP notion of
constructiveness to general shared objects. In particular, it subsumes both the
notions of Berry-constructiveness [9] for Esterel and sequential constructiveness
for SCL [56]. This is the first time that these SP communication principles are
combined side-by-side in a single language. Moreover, it permits other prede-
fined communication structures to coexist safely under the same uniform prin-
ciple, such as data-flow variables [33], registers [45], Kahn channels [34], priority
queues, arrays as well as other ADTs implemented using OO libraries.

2 A Clock-Synchronised Object Language (DCoL)

This work studies the semantical foundations of an imperative kernel language,
called deterministic concurrent language (DCoL), to integrate policy-controlled
shared objects within a simple programming syntax. It comprises the operators
seen in Fig. 2.

The first two statements skip and pause are empty programs represent-
ing the two forms of immediate completion: skip terminates instantaneously,
while pause waits for the logical clock and terminates in the next instant. The
operators P || Q and P;Q are parallel interleaving and imperative sequential
composition of threads with the standard operational interpretation. Reading

4

P =df skip instantaneous termination
| pause wait for next instant (clock tick)
| P || P parallel composition
| P;P sequential composition
| if e thenP elseP conditional branching, e value expression
| letx = c.m(e) in P method call, x statically scoped value variable
| rec p. P recursive closure
| p process variable

Fig. 1. Syntax of DCoL

and destructive updating of shared memory is performed through the evalua-
tion of an method call c.m(e) in a synchronised object c ∈ O. The set of ob-
jects O defines the granularity of the available memory accesses. The construct
letx = c.m(e) in P calls method m of object c ∈ O with input parameter deter-
mined by a value expression e. It binds the return value to variable x and then
executes program P , which may depend on x, sequentially afterwards. The exe-
cution of c.m(e) in general has the side-effect of changing the internal memory
of c. In contrast, the evaluation of a value expression e is side-effect free.

It will be often more convenient to write letx = c.m(e) in P like an assign-
ment prefix x = c.m(e);P ignoring that x is not a memory but a stack-allocated
value variable. When P does not depend on the return value of the method call
then we write let = c.m(e) in P or even c.m(e);P . The exact syntax of value
expressions e is irrelevant for this work and left open. It could be as simple as
permitting only constant value literals or a full-fledged functional programming
language. Method calls without parameter are also written c.m instead of c.m().

The recursive closure rec p. P binds the behaviour P to the program label p
so it can be called from within the program P . Using this construct we can build
iterative behaviours. For instance, halt =df rec p. pause;p is the program that
synchronises with the clock indefinitely without any effect on the memory. We
assume that recursions rec p. P are (i) clock guarded, i.e., the label p is occurs
in the scope of at least one pause and (ii) thread-linear, i.e., all occurrences of
p are in the same thread. For instance, rec p. p is illegal as it violates (i) and
rec p. (pause;p || pause;p) is not permitted since it violates (ii).

An expression P closed if it does not contain any free process or value vari-
ables, i.e., any process variable p must appear in the scope of a recursion rec p. P
and each value variable in the scope of a method call letx = c.m(e). We will
assume throughout that programs are closed, clock-guarded and thread-linear.

Our syntax is somewhat minimalistic compared to existing full-fledged syn-
chronous programming languages. For instance, it does not provide control-flow
primitives for preemption, suspension or traps like in Quartz or Esterel. However,
these are not essential for an intermediate language. Recent work [46] has shown
how these these higher control primitives can be translated into the constructs

5

of the language SCL exploiting destructive update of sequentially constructive
(SC) variables. Since these are a special case of policy-synchronised objects,
our kernel language is at least as expressive as SCL. Hence, in particular, both
Quartz and Esterel can be compiled into DCoL.

3 Motivation and Examples

The restrictive semantics of traditional SP languages precludes object-oriented
component models, as they are now common in main-stream imperative pro-
gramming. In this section we first discuss the problem and then present two
extended examples to illustrate our new approach. Readers interested in the
mathematical semantics may skip this section and directly continue with Sec. 4.

The most complex memory structure that can be shared through signals are
arrays, e.g., in Lustre [47,40] or in the latest version Esterel V7 [11,51]. However,
what about sharing lists, queues and other more abstract behavioural structures
such as a user interface window? Defining such structures as objects, encapsu-
lating their behaviour inside methods and sharing them between threads creates
powerful abstraction mechanisms for concurrent object-oriented programming.
Of course, the flexibility depends on the programmer’s skills for safe synchroni-
sation of object accesses through low-level primitives such as semaphores, locks
or monitors. The strength of SP, in contrast, is to relieve the programmer from
this burden and make the compiler guarantee clock determinate and dead-lock
free scheduling. To do so, SP forces the programmer to express all shared inter-
action entirely through signals governed by the default-combine-read protocol.
As a consequence, all destructive updates must be separated by a clock tick and
thus require global synchronisation.5 This makes data and control abstraction
impossible for concurrent objects.

The pertinent limitation of SP languages is that they do not permit the
programmer to prescribe imperative sequential control flow within an instant.
There is no construct to express sequential execution order for destructive up-
dates of signals as shared objects. All such updates are considered concurrent
and thus must either be merged through a combination function or concern dis-
tinct signals. For instance, in languages such as Esterel V7 or Quartz, a parallel
composition6

(v = x.read;y. emit(v + 1)) || (x. emit(1);x. emit(5))

of signal emissions is only constructive if a commutative and associative function
is defined on the shared signal x to combine the values assigned to it. But then
we get the same behaviour if we swap the assignments of values 1 and 5, as in

(v = x.read;y. emit(v + 1)) || (x. emit(5);x. emit(1))

5 SP languages do support normal reference variables which may have complex data
types. These can be freely accessed from a single thread yet cannot be shared between
threads.

6 In Esterel syntax this program is written y⇐ ?x + 1 || (x⇐ 1;x⇐ 5).

6

or execute them in parallel as in

(v = x.read;y. emit(v + 1)) || x. emit(1) || x. emit(5).

What if we want the second emission x. emit(5) to override the first x. emit(1)
like in normal imperative programming and have the concurrent reading v =

x.read;y. emit(v + 1) see this updated value v = 5? Then, we must introduce a
pause statement to separate the emissions by a clock tick and delay the assign-
ment to y as in

(pause ;(v = x.read;y. emit(v + 1)) || (x. emit(1); pause ;x. emit(5)).

Consequently, the default initialisation of a signal within an instant is not ex-
pressible inside the language itself. In normal imperative code we could write
x = def ;P to make def a default value for a signal x in case program P does
not write x. In SP this does not work since any writing of x by P gets combined
with the default value def rather than destructively overwrite it.7

More seriously, the simple SP protocol prevents behavioural abstraction. For
instance, suppose nats is a synchronous reaction module, possibly composite
with its own internal clocking, which returns the stream of natural numbers.
Every time its step function nats.step is called it returns the next number and
increments its internal state. If we want to pair up two successive numbers within
one instant of an outer clock and output them in a single signal y we would write
something like x1 = nats.step;x2 = nats.step;y. emit(x1, x2) where x1, x2 are
thread-local value variables. This over-clocking is impossible in traditional SP
because there is no imperative sequential composition by virtue of which we
can call the step function of the same module instance twice within an instant.
Instead, the two calls nats.step are considered concurrent and thus create non-
determinacy in the value of y.8 To avoid a compiler error we must separate
the calls by a clock as in x1 = nats.step; pause ;x2 = nats.step;y. emit(x1, x2)
which breaks the intended clock abstraction.

As another natural example of a behavioural abstraction suppose x is a signal
whose values are pairs and we want to set the first component of x to e leaving
the second unchanged. Assume π1 and π2 are the projections functions on pairs.
In imperative code the access to the first element of x would be achieved by
x = (e, π2 x) or y = π2 x;x = (e, y) if we need to split off the reading of x

into a separate statement from the emission to x. However, in SP this is non-
constructive since the value of a signal x cannot be read before it is written.

7 The exception is if the default value happens to be the neutral element of the combi-
nation function. This is not normally the case when the default value is the signal’s
value from the previous instant or an environment input.

8 In Esterel V7 it is possible to use a module twice in a (non-imperative) sequential
composition x1 = nats.step;x2 = nats.step. However, then the two occurrences of
nats are two distinct instances of the module with their own internal state. Both calls
will thus return the same value. Calling modules by value (rather than reference) is a
way of solving the non-determinacy problem but not for achieving object-orientation.

7

Again, we would need to break the update through a clock tick. In Esterel we
would write9

v = x.read; pause ;x. emit(e, π2 v)

or v = x.pre;x. emit(e, π2 v) where x.pre refers to the value of x from the previous
instant.

Hence, if we were to use signals to represent general shared objects (of com-
plex type) every method call “x.m(e)” would thus have to be broken by a clock
tick either like in v = x.pre;x. emit(setm(v, e)) where the function setm deter-
mines the new state by which x is destructively updated, or as

v = x.read; pause ;x. emit(setm(v, e))

using a value variable v that stores the previous state of the object.

If we want more than one method call on the same object within a single
instant we must program explicit combination functions for the object type.10

However, this not only precludes destructive updates, like in the def value or the
nats examples above. Worse, the programmer cannot exploit method calls that
are computationally independent, without being forced to enrich the data types
by extraneous dependency information. For instance, suppose again the object
behind signal x is a pair (x1, x2) = x.read and methods mi act on the two compo-
nents separately, say setm1

((x1, x2), e) = (e, x2) and setm2
((x1, x2), e) = (x1, e).

Then, without fiddling with the signal data type, the only way to implement an
emission x. emit(e1, e2) by parallel composition is

v = x.pre;(x. emit(setm1
(v, e1)) || x. emit(setm2

(v, e2))).

Unfortunately, there is no commutative combination function fc on pairs of
values that could merge the two method calls to produce:

fc(setm1
((x1, x2), e1), setm2

((x1, x2), e2)) = fc((e1, x2), (x1, e2)) = (e1, e2)

for arbitrary xi and ei. The problem is that the function fc cannot tell from
the value pairs (e1, x2), (x1, e2) which of the components, in each case, is the
old and which is the updated value. There is no such information in the data.
The programmer is forced either to enrich the pair type by additional “indexing
flags” or to use two distinct signals and write x1. emit(e1) || x2. emit(e2) for
which no combination function is needed.

To sum up, generally speaking, the data abstraction problem of the tradi-
tional SMoC is that there is little programming language support to package up
a complex structure of synchronised signals as a synchronised signal of complex
data. A fortiori, it is not possible to abstract synchronous behaviour into signal
objects and share them between concurrent threads. Having observed that, let

9 The full syntax in DCoL would be let v = x.read in pause ;x. emit(e, π2 v)
10 In the Esterel V7 standard proposal [51] combination functions on arrays can be

defined but only on the primitive cells.

8

us stress that this limitation is not an artefact of language design. It is a natural
consequence of the conservative view of program constructiveness according to
which the synchronous clock is the only means to guarantee sequential ordering
and atomic execution of accesses to (shared) signals in a concurrent execution
environment. While this may be adequate for physical circuits and massively
parallel hardware, this is an overly pessimistic stand for sequential execution
platforms. It is well known how to use the physical clocks of the instruction
set architecture to implement sequential destructive updates and atomic execu-
tion of memory accesses within a single logical clock instant of the synchronous
programming abstraction. In this work we exploit this to generalise the signal
concept of traditonal SP to arbitrary complex data structures. In the following
two Secs. 3.1 and 3.2 we are going to illustrate our proposal by way of elaborated
examples.

3.1 Stop Watch – Extended Example

Consider a StopWatch that constantly displays timing information in minutes
and seconds. This StopWatch has two operation modes (stop and go), two input
signals (S and R) and a global clock that ticks every second. In the go mode the
StopWatch counts time in minutes and seconds from the ticks of the clock while
in the initial stop mode the timing information is kept unchanged. Initially, min-
utes and seconds counters are reset to 0. Signal S switches the StopWatch from
one mode of operation to the other. When the StopWatch enters or re-enters
the go mode, the time counting resumes on the next tick forwards from the cur-
rent values of the counters. The input signal R forces counting re-initialisation
to 0. If R is present alone (without S) then the StopWatch gets into the stop
mode. Otherwise, when R and S are present simultaneously, the StopWatch en-
ters immediately the go mode as Fig. 2a suggests. As a concrete example Fig. 2b
presents a possible response sequence of the SR StopWatch where rows corre-
spond to time slices of a clock ticking every second.

S
R S/ S/

R/

clk

R/ R,S/

R,S/
go

stop

H

(a) Modes and Signals

input mins secs operation
signals (x2) (x1) mode
– 0 0 stop
S 0 0 go
– 0 1 go
– 0 2 go
.
– 2 59 go
– 3 0 go
S 3 0 stop
S 3 0 go
– 3 1 go
R,S 0 0 go
.
– 1 30 go
R 0 0 stop

(b) Stimulus-response sequence

Fig. 2. SR StopWatch

9

The SR StopWatch implementation of Fig. 3 is supported by the following
clock–synchronised shared objects, i.e., structures encapsulating data and meth-
ods that can be accessed by various concurrent threads:

DispN.reset

𝑚𝑚 ← 0

start

- -

+

+

𝑆𝑆 𝑅𝑅

DispN.reset

𝑚𝑚 ← !𝑚𝑚 𝑚𝑚 ← 0

mode restart

count

-

-

+

+

𝑚𝑚 ∧ ¬(𝑅𝑅 ∨ 𝑆𝑆)

DispN.cnt1=60

DispN.inc(1) DispN.draw

DispN.set(0)

𝒎𝒎𝟏𝟏

render

𝒎𝒎𝟐𝟐 𝒎𝒎𝟑𝟑

𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐

𝒅𝒅𝟑𝟑

𝒅𝒅𝟒𝟒

𝒅𝒅𝟓𝟓

m region

DipsN
region

𝒎𝒎𝟎𝟎

𝒅𝒅𝟎𝟎

clk clk clk

clk 𝒓𝒓𝟎𝟎 𝒔𝒔𝟎𝟎

Fig. 3. SR StopWatch implementation

– m acts as a variable that stores the actual operation mode. Its internal state
is determined by a bit where bit = 0 indicates the stop mode and bit = 1
is for the go mode. Object m has a read method to access its current state.
Besides m can be initialised explicitly with method init(v) where v ∈ {0, 1}
and the state of m can be toggled with method update. For brevity, in Fig. 3,
we write m instead of m.read == 1, m← v in place of m.init(v) and m← !m
for m.update.

– R and S which operate as pure input signals like in SP have an internal
status that can be present or absent. All signals are implicitly initialised to
the default absent status at the beginning of each instant, that is every time
the clock ticks. Method emit sets the signal status to present and method
test returns true or false depending on whether the signal status is present
or not. For the signals in Fig. 3, we write R or S instead of R.test or S.test,

10

respectively. Note that the expression m∧¬(R∨S) in node m3 is a shorthand
for the conditional: m.read == 1 and not (R.test or S.test).

– Clock–synchronised object DispN is used to keep and display timing infor-
mation. It maintains to integers x1 and x2 in its internal state. The values
of x1 and x2 can be read through the methods cnt1 and cnt2, respectively.
It is also possible to render both numbers in a display by calling the draw
method or re-initialise both to 0 by calling the reset method. In addition,
method set(v) assigns the value v to x1 and, at the same time, adds 1 to the
current value of x2. The idea is that x2 counts the number of times that set
has occurred since the last reset. On the other hand, method inc(v) increases
the value of x1 by v but otherwise leaves x2 unaltered. As an illustration
Fig. 3.1 shows an interaction sequence with object DispN.

reset

inc(𝑣𝑣)
draw

cnt1
cnt2 set(𝑣𝑣)

method/signal x2 x1
DispN.reset 0 0
DispN.inc(3) 0 3
DispN.inc(2) 0 5
DispN.set(7) 1 7
DispN.inc(1) 1 8
DispN.set(0) 2 0
DispN.reset 0 0
DispN.set(9) 1 9

Fig. 4. Clock–synchronised object DispN

The SR StopWatch implementation begins with a single sequential thread
labelled start in Fig. 3 which explicitly initialises objects DispN and m, i.e., the
internal bit of m and the two variables x1 and x2 of DispN are set to 0. Then,
the computation forks in the following four concurrent threads:

– mode: If signal S is detected to be present in node s0, this thread changes
the operation mode (go, stop) by toggling the internal bit of object m in
node m2. Note that the nodes labelled clk indicate the control points where
the threads synchronise with the global clock tick.

– restart: In this thread, DispN and m are re-initialised in nodes m1 and d1,
respectively, every time signal R is present.

– count: This thread carries on the timing calculation by first considering the
increment in seconds and then, sequentially after but in the same instant,
adjust the number of minutes if required. Specifically, at every clock tick,
DispN.inc(1) in node d2 increases by 1 the number of seconds (stored in x1)
but just as long as the actual mode is go and signals S and R are both absent
as it is verified in node m3. Otherwise, when S or R are present, we know that
either the computation has just been stopped or it has just been restarted
in the present instant. The former means that x1 cannot be modified since

11

time is frozen. The later implies that the increment of x1 must only occur
after exactly one second has elapsed, that is at the next instant. This also
explains why count is placed after the initial tick (i.e., after a clk node),
namely counting only starts when the first second has elapsed. Then, every
60 seconds, as DispN.cnt1 = 60 checks, the execution of DispN.set(0) resets
x1 (seconds) to 0 and increases x2 (minutes) by 1 as required.

– render: This thread thread invokes method draw of DispN so that the cur-
rent counting information is displayed at each tick.

The SR StopWatch codification in the DCoL language is presented in Fig. 5.

module StopWatch
Signal R,S
SC m
Display DispN

DispN.reset ;
m.init(0) ;

rec loop.
– mode –
s = S.test ;
if s thenm.update else skip ;

pause

||

– restart –
r = R.test ;
if r thenm.init(0) ; DispN.reset else skip ;

pause

||

– count –
pause ;

m = m.read ;

s = S.test ;
r = R.test ;
ifm == 1 and not(s or r) thenDispN.inc(1) else skip ;

c1 = DispN.cnt1 ;

if c1 == 60 thenDispN.set(0) else skip
||

– render –
Dispn.draw ;

pause ;

loop

Fig. 5. The SR StopWatch in DCoL syntax

12

As with any concurrent system, problems arise when statements accessing the
same shared object interfere with each other causing nondeterminacy, metasta-
bility, data races, etc. This is so even when the method calls are considered
to be atomic and the system is globally synchronous. Clearly, synchrony (tick
alignment) can help in some cases, e.g., in Fig. 3 any conflict between nodes d4
and d5 disappears in the first instant because d4 cannot be executed then. Other
times, complementary conditionals eliminate any problem by making accesses
mutually exclusive, e.g., nodes d1 and d2 of Fig. 3 are guarded respectively by
the presence and absence of signal R. There are also situations in which meth-
ods are confluent (also called independent) meaning that they can be executed
in any order from any memory state without affecting the final object state,
e.g., nodes d3 and d5 in Fig. 3 are confluent (commute) since both read but do
not modify the internal state of DispN. Observe that the confluence of d3 and
d5 is a property of DispN.

A more general form of natural confluence occurs in methods of different
objects (acting on disjoint parts of the shared state) that do not communicate,
e.g., methods in nodes m2 and d1 of the StopWatch which exclusively interact
with objects m and DispN respectively are confluent in this general sense. In
Fig. 3, accesses to objects m and DispN appear in their corresponding region.
The idea is that methods belonging to different regions are all confluent. For
clarity, the S region, i.e., {s0,m3}, and the R region, i.e., {r0,m3}, are not
depicted in the figure. On the other hand, strict sequential composition, meaning
no reorders due to optimisations or otherwise, makes also conflicts disappear
e.g., the execution of nodes d2 and d3 is conflict free if statements are always
executed sequentially in the order they are listed in the code.

Despite all these positive situations, there are still object accesses in the pro-
gram which lead to nondeterministic behaviours, e.g., execution of m1 followed
by m2 results in the go mode but the execution of m2 and then m1 gives the
stop mode. Consequently computations need to be organised in a more system-
atic way in order to ensure determinate program responses. This report deals
with this problem. We frame execution orderings of concurrent synchronous com-
putations by means of a precedence relation. In principle, this relation indicates
which method (if any) could be executed now and which one can be scheduled
next. The two extreme cases of this precedence relation are: (i) a static, linear
and total order of statements and (ii) a complete scheduling freedom. In the for-
mer case, the determinacy problem gets solved by the programmer in a manner
that is essentially equivalent to codifying a purely sequential program. The latter
reduces to an empty precedence relation so determinacy can only be preserved
if all concurrent accesses to share objects are confluent to each other.

In the general scheme proposed in this work, each individual object is equipped
with its own policy. The intention of these local policies is to expose internal
object confluences. Intuitively, a policy is a locking mechanism to organise con-
current accesses to the object methods in such a way that the determinacy of
the object reaction is preserved.

13

3.2 Lift Controller – Extended Example

void stop()

Buttons Buffer

1

1

1

1

1 1

1

1

1

1

1

1

1 11 1

DoorFloorSensor

LiftBufferResolver

Timer

Motor
11

UnitController

int direction()

MT:Motor

void setDirectionUp()

void send(int)

int receive()

bool full()

bool empty()

bool serviced(int)

setServiced(int)

LB:LiftBuffer UC:UnitController

Lift

void setDirectionDown()

Fig. 6. Class diagram of a lift controller. The triangles in the classes signify that these
are clocked synchronous. Lift is the top-level aggregation of its components. For three
shared objects MT::Motor, LB::LiftBuffer and UC::UnitController methods are shown.

Our second extended example motivating the use of clock-synchronised ob-
jects subjected to synchronisation policies is a lift controller adapted from [52].
A class diagram is presented in Fig. 6. The main object is the Lift which is
active, as it implements the overall multi-threaded control logic, in the sense
of [13]. Threads in the Lift operate on various passive objects in the sense of [13],
which may be language-, library- or user-defined. We describe the active con-
trol implemented by Lift through its main thread and four concurrent tasks, a
request producer reqProd, a request consumer reqCons, a request server reqServ
and a status update thread statUpd. These threads and their interaction through
shared objects are seen in Fig. 7. The threads are pictured as ellipses and ob-
jects as rectangles. The edges visualise the method calls connecting threads with
objects. Objects accessed only by a single thread are omitted from Fig. 7.

The Active Main Object. We present below on pages 15–17 a sketch of the
lift controller example using C++ style syntax with DCoL extensions to enable
concurrent interactions between clock synchronised shared objects. The while

14

loops while(c.m()){P} are an abbreviation for

rec p. x = c.m();ifx thenP;p else skip

and the switch(C){...} branching is representable by nested conditionals in the
obvious way.

Line 1 includes a header file that supports input/output. Lines 2-7 define
some constants. We abstractly define the Lift class, which has a single entry point
in the main() method (lines 14–82). At the start of this method, the interface
objects are defined (lines 14–17), shared variables are declared (lines 18–21),
and the object instances are created (lines 22–28). These objects are analogous
to passive objects and concurrency is elicited by explicitly forking Esterel-style
threads using the || construct. The DCoL program is contained in lines 30–
82, consisting esssentially of an infinite loop in which the four threads reqProd,
reqCons, reqServ and statUpd are running side-by-side.

1 #include<iostream.h>

2 #define N 1000

3 #define IDLE 0

4 #define UP 1

5 #define DOWN 2

6 #define DOOROPEN 3

7 #define TIMEOUTVAL 15

8 public class Lift{

9 // This is an aggregation of the objects in Figure 1

10 // Details omitted due to space constraints

11 }

12 // The main entry point of the OO program

13 int main(){

14 // Interface

15 input BB: Buttons;

16 input FS: int=0; // FloorSensor

17 output StoppedAtFloor: int=0;

18 // Variables

19 int Direction=0, CurrentFloor=0, HighestPriority=0,

NextHighestPriority=0;

20 int State=IDLE;

21 BitVector PendingReq = new BitVector(); // library object

22 // Object instances

23 Resolver RR = new Resolver();

24 LiftBuffer LB = new LiftBuffer();

25 UnitController UC = new UnitController();

26 Timer TT = new Timer(TIMEOUTVAL);

27 Motor MT = new Motor();

28 Door DR = new Door();

29

30 while(1){

31 // Request producer thread (reqProd)

32 while(!LB.full()){

33 if(BB.present()){

15

34 int Direction = MT.direction(); //UP=1,DOWN=-1,STOP=0

35 int CurrentFloor = FS.value();

36 PendingRequest.update(BB.value());

37 int HighestPriority = RR.resolve(PendingRequest.value

(), Direction, CurrentFloor);

38 PendingRequest.remove(HighestPriority);

39 LB.send(HighestPriority);

40 }

41 pause;

42 }

43 pause;

44 ||

45 // Request consumer thread (reqCons)

46 while(!LB.empty()){

47 NextHighestPriority = LB.receive();

48 while(!UC.serviced(NextHighestPriority)){

49 pause;

50 }

51 }

52 pause;

53 ||

54 // Request servicing thread (reqServ)

55 while(!UC.serviced(NextHighestPriority)){

56 pause;

57 switch(State){

58 IDLE: MT.stop(); DR.close();

59 if(NextHighestPriority == FS.value()) State=IDLE;

60 if(NextHighestPriority > FS.value()) State=UP;

61 if(NextHighestPriority < FS.value()) State=DOWN;

62 break;

63 UP: MT.setDirectionUp(); DR.close();

64 if(NextHighestPriority > FS.value()) State=UP;

65 if(NextHighestPriority == FS.value()) State=DOOROPEN;

66 break;

67 DOWN: MT.setDirectionDown(); DR.close();

68 if(NextHighestPriority < FS.value()) State=DOWN;

69 if(NextHighestPriority == FS.value()) State=DOOROPEN;

70 break;

71 DOOROPEN: MT.stop(); DR.open(); TT.start();

StoppedAtFloor.emit(NextHighestPriority);

72 while(!TT.timeout()) pause;

73 DR.close(); State=IDLE;

74 UC.setServiced(NextHighestPriority); break;

75 }

76 }

77 pause;

78 ||

79 // Status updating thread (statUpd)

80 cout<<"The current status of the lift"<<State<<"\n";

81 pause;

16

82 } // end of while(1)

83 } // end of main

Request Producer (reqProd). Requests from the users are entered through a
BB::Buttons object. BB has a boolean status of present or absent. A button press
event sets the status to present. The status can be obtained with the BB.present
method, returning true if the signal is present and returns false otherwise. BB
also carries a value coding the button that is pressed which can be read using
the BB.value method. Each time BB is pressed, the RR.resolve method of a re-
quest resolver object RR is called to return the next highest priority request
to be serviced. This is based on position information extracted from a signal
FS::FloorSensor by calling FS.value, and direction information from the motor
component MT::Motor via MT.direction. The highest priority requested floor is
stored via LB.send in a bounded capacity priority queue LB::LiftBuffer, which is
implemented by extending a generic Buffer. The LB stores the pending requests
to be serviced in a priority order. A method LB.full tests for available space in
the buffer.

To prevent loosing requests, reqProd preserves the incoming requests in a
bit vector called PendReq which abstracts a special memory with methods Pen-
dReq.update, PendReq.value and PendReq.remove

Request Consumer. The reqCons thread picks up the requests from LB one
after the other using LB.empty and LB.receive and places them into a variable
NextHighestPr until they are serviced. The service status of the active request
is communicated through an object UC::UnitController which acts like a valued
signal with a boolean status of present or absent. A UC.SetServiced event from
the servicing thread reqServ sets the status to present. The status can be polled
with the UC.serviced method, returning true if a request has been serviced and
false otherwise. UC also communicates the last serviced request which can be
read using the UC.req method.

Request Server. The actual servicing of an active request is modelled as a state
machine which is implemented by a request server thread, called reqServ. De-
pending on a state variable State with values IDLE, UP, DOWN and DOOROPEN
it moves the lift to the appropriate floor. This is done by controlling the direc-
tion of MT::Motor with methods MT.setDirectionUp, MT.setDirectionDown and
MT.stop. When the lift arrives at the requested floor, observable from FS.value,
then reqServ opens and closes the door DR::Door for which it accesses methods
DR.close and DR.open. The opening time is determined by a timer TT::Timer
which can be started with TT.start and polled via TT.timeout. The current ser-
vice status of NextHighestPr is communicated back to the reqCons thread via
UC.setServiced.

Status Update. Finally, the sole purpose of the fourth thread in Lift, called
statUpd is to read the current State and output it to some environment display.

In [13] the authors introduce a classification of how concurrency is managed
in OO programs. This classification contrasts passive objects from active objects.
The passive approach considers threads and objects to be distinct. The task of

17

safe threading is delegated to the programmer (i.e. the synchronize keyword in
Java). Active objects, on the other hand, intertwine the concept of threading
with objects. Here an object is allowed to invoke methods concurrently. The
focus of the current article is on the safe threading using passive objects. In
particular, we investigate the problem of determinacy of passive objects that
encapsulate reactive computation.

LB

UC

Next
HighestPr

State

FS

MT
direction

set DirectionUp
set DirectionDown

reqServ

full

read

write

read

main
init

reqCons

read

serviced, req

LF

reqProd

statUpd

stop

value

object

thread

method prece‐
dence

Fig. 7. Threads and Shared Objects in the Lift Controller.

Potential Data Races due to Shared Objects. Fig. 7 illustrates how the
OO specification of a simple reactive program may generate concurrent threads
tangled up via shared objects. Even if we assume that there are no hidden
couplings between objects and all method calls are executed atomically (“Java
synchronised”), a free unmarshalled execution falls prone to data races. Since a
method call is both a read and a destructive update, the result of every method
call in general depends on the order in which it is executed in relation to other
calls on the same object. Where this order is not fixed, because of concurrency,
non-determinacy may result.

Suppose x = FS.value is the reading from reqProd and y = FS.value that
of reqServ. While the lift moves up between floor 2 and floor 3 the concurrent
reads x = FS.value || y = FS.value may either return values x = 2 and y = 3

18

or x = 3 and y = 2, depending on the scheduling order. Both threads now
have different views of which floor they are at. The brute force fix is to prohibit
the concurrent reading of FS which breaks the modular structure of our design.
A better solution is to synchronise FS with both threads reqProd and reqServ.
Using the SP approach we break up the interactions into reaction macro steps
(synchronous instant) using a clock and make sure that FS.value is constant
during each reaction step. Such FS we call coherent for its interface because it
maintains determinate behaviour for concurrent method calls during each macro
step. Its value of FS.value can only change with the clock tick and distinct con-
current readings cannot be confused as they belong to different steps. Concretely,
if pause denotes the clock synchronisation operation, then the reading x = 2 and
y = 3 can only occur for (x = FS.value;pause) || (pause;y = FS.value). This
is perfectly ok, because now both threads can disambiguate the readings x = 2
and y = 3 as belonging to different steps. Note that it does not matter whether
pause is linked with any physical clock or not.

Factorising coherence through a clock can be applied to concurrent method
calls on the other shared objects, too. For instance, consider the competition
between reqProd and reqServ in the access of the motor MT. Suppose the lift
is moving down and reqServ controls the motor to stop and then move up,
MT.stop;MT.setDirectionUp while reqProd is reading the direction with x =

MT.direction. Then, depending on the interleaving of the concurrent composition
(MT.stop;MT.setDirectionUp) || x = MT.direction the thread reqServ may see any
of x = DOWN, x = STOP or x = UP. This may have the effect that the servicing
of a user request depends on the internal timing of the thread scheduling. This is
not perhaps an issue for the user of the lift but a nightmare for program debug-
ging. Again a clock can help to prevent reqProd from reading the motor direction
at the “wrong” moments. There are many OO ways to do this. Yet, to be sure
that this is schedule-independent and does not introduce deadlocks, the most
reliable approach is again to factorise the problem through synchronous steps.
To resolve the conflict between reading and update, we require that the updates
{MT.setDirectionUp, MT.setDirectionDown, MT.stop} take precedence over any
concurrent read MT.direction, within each step. This scheduling constraint is
indicated by the dashed arrows in Fig. 7. We call these the policy imposed by
the object MT which guarantees coherence in the sense that all concurrent calls
not related by a precedence constraint are free and always return determinate
results.

Where a precedence exists, the policy-conformant scheduler must follow the
specified ordering. If there is a policy-conformant schedule we call the pro-
gram policy-constructive. For instance, MT.setDirectionUp || x = MT.direction
is policy-constructive and deterministically scheduled as MT.setDirectionUp;x =

MT.direction because of the precedence. If the program prescribes a sequential or-
dering already, as in x = MT.direction; MT.setDirectionUp, it is policy-conformant
to execute exactly as stated, irrespective of the precedence. The same applies to
the “self-precedences” indicated as an arrow in Fig. 7 around the update meth-
ods of MT. These precedences say that it is not permitted to call two updates

19

from concurrent threads. For instance, MT.stop || MT.setDirectionUp cannot be
scheduled in a policy-conformant way: No matter the ordering, we are violating
a precedence. Of course, this makes sense because concurrent updates intro-
duce non-determinacy. If both calls are separated by a clock barrier, however,
x = MT.stop || (pause; MT.setDirectionUp) the program is policy-constructive
again. Since the precedences only affect concurrent calls, if two updates are
called sequentially from the same thread, we have nothing to worry. The pro-
gram x = MT.direction || (MT.stop; MT.setDirectionUp) is policy-constructive
and scheduled MT.stop; MT.setDirectionUp;x = MT.direction.

The remaining shared objects in our Lift example are LB, UC and State.
Policies for UC and State follow the same principle: Any two method calls that
cannot be called concurrently with determinate result, must have a precedence
fixed between them. If not, the object must ensure coherence. Here, we motivate
two further aspects, viz. admissibility and the fact that policies can depend on
the call history. Consider the data races occurring for the shared buffer LB. In
general, the LB.full and LB.empty checks are each conflicting with value retrieval
LB.receive and value addition LB.send since the latter can change the result of the
former. It is natural to decree that sending and receiving always take precedence
over any testing of the filling state. Also, any two LB.send and any two LB.receive
must be sequentialised. These precedence relations are seen in Fig. 7. If these
precedences are observed (within each macro step) then LB.send and LB.receive
are independent and can occur in any order and number, provided the capacity
limits are observed. To this end, the policy of LB must expose an admissibility
constraint that at any moment the difference in the accumulated number of sends
and receives (#LB.send − #LB.receive) is greater than 0 and smaller than the
buffer capacity SIZE . In this way, the policy blocks any LB.send on a full and
LB.receive on an empty buffer. Blocking is avoided in the program by reqProd
checking LB.full and reqServ checking LB.empty.

As far as we are aware, there is currently no programming language, neither
OO nor SP, that would permit programming the lift controller directly in this
fashion. In SP, which is our target here, the programmer must recode the object
structure using standard modules and signals as the only on-board mechanisms
for thread communication. E.g., BB and FS could be directly coded as Esterel-
style valued signals. The state variable State however is not an Esterel signal
of any kind [51] because it is shared and destructively updated during a tick.
Instead, we could use the more liberal sequentially constructive variables of SC-
CEst [46]. However, for complex objects such as the motor MT or the buffer LB
neither Esterel signals or SCEst variables are sufficient. Both are ADTs encap-
sulating a complex behaviour, which may even wrap external program code. In
the following we introduce a semantical setting to reconstruct and extend SP
languages via the policy mechanism.

20

4 Synchronous Object Policies

In this section we introduce the notion of object policies as the core synchroni-
sation mechanism for our DCoL language. In particular, we demonstrate that
the generic policy model can be instantiated to integrate several forms of con-
structiveness developed in the literature for synchronous languages such as Berry
constructiveness of Esterel [9,43] or sequential constructiveness as introduced in
the SCCharts/SCL language [56].

4.1 Policies and Policy-conformant Scheduling

As a shared object c is accessed by method calls during an instant, it changes
its status in a policy domain PCc. The status contains constructive information
necessary to synchronise the method calls under an object-specific synchronisa-
tion policy. The policy expresses a constraint on the object statuses admissible
in the life cycle of the object during an instant. It acts as a contract between
the object and its environment. Under the assumption that the environment ac-
cesses the object only in a policy-conformant way, the object guarantees internal
coherence which implies determinacy of its reaction.

object

policy

policy‐conformant scheduler

concurrent
threads method call

object status

Fig. 8. Policy-conformant scheduler c as a wrapper shield to control accesses to object
c from concurrent threads.

The elements of the policy domain PCc contain constructive information
about the history and predicted future of method calls on c. The history is
determined by the sequence of accesses already performed on the object. The
future refers to the method calls which can still potentially be executed on c

by the concurrent environment. We structure object statuses ϕ ∈ PCc as formal
intervals ϕ = [µ, γ] ∈ PCc = Pc × Cc. The “lower bound” µ ∈ Pc is the history
part containing must information. It expresses what accesses the object has seen
already. The “upper bound” γ ∈ Cc is the can information which predicts the

21

possible future status of the object due to method calls that are still outstanding
in the concurrent environment. An interval ϕ codifies an “envelope of control”
for determinate and policy-conformant run-time scheduling. Suppose, at some
moment in the scheduling, the currently active threads try to execute method
calls mi on object c. Each thread sees the same must status µ but different
can information γi, since these record the potential future activities of all other
threads. Hence, an interval [µ, γ] should be thought of a thread-local interface to
the object. This is illustrated in Fig. 8.

This two-sided interval structure of object statuses generalises Berry’s con-
structive must-can semantics for Esterel [9]. Technically, we assume update op-
erations µ � m and m � γ where m ∈ Mc is a method name on c, ignoring
any parameter passed with the call and also any value returned by the object.
Then, the execution of a method call m(v) in the concurrent environment would
change the observable status of c from [µ,m� γ], where m lies in the future, to
the status [µ�m, γ] where m is added to the history. This amounts to a mono-
tonic increase [µ,m� γ] vc [µ�m, γ] in the information ordering vc associated
with PCc (defined below in Sec. 4.5). Further operations on the prediction Cc

that we will need are choice γ1 ⊕ γ2 for non-deterministic over-approximation
of program branching, concatenation γ1 · γ2 for sequential composition and the
interleaving product γ1 ⊗ γ2 for parallel composition of program context.

Here we study domains PCc generated from the class of policies defined
below in Def. 1. Let Mc be the methods of object c. A policy for c is a safety
and liveness property modelled using a deterministic state machine c with a
set of control states Pc and distinguished start state ε ∈ Pc. The call of a method
leads to a change of the control state. From a control state only a set of methods
are admissible. We write µ c ↓m to express that m ∈ Mc is admissible in
state µ ∈ Pc. An admissible m can be executed if there is no other admissible
method in the concurrent environment that has a higher precedence from the
current state. We write µ c m

′ → m to express that m′ has precedence over
m in state µ. When such m′ is concurrently executable, m has to be delayed.
Otherwise, m can be executed whereupon the policy takes a transition to a
new control state µ �m ∈ Pc. Note that µ c m

′ → m implies µ c ↓m and
µ c ↓m′. If two methods m and m′ are admissible and none takes priority
over the other, then both can be executed in any order with the same resulting
state µ�m�m′ = µ�m′ �m. In addition to transitions enabled by methods,
every policy machine has a special tick transition σ ∈ Pc → Pc to mark the
completion of the current synchronous instant. The presence of a σ-transition
indicates that the instant can be paused in this state. The formal definition of
precedence policies is given in the following Def. 1.

Definition 1. A policy for object c with method names Mc is a state machine
c = (Pc, ε,→) consisting of a set of control states Pc, an initial state ε ∈ Pc

and a labelled transition relation → ⊆ Pc × Lc × Pc with action labels Lc =
(Mc ∪ {σ}) × 2Mc . Instead of (µ1, (a, L), µ2) ∈ → we write µ1 −a:L→ µ2. We
then say action a is admissible in state µ1 and it is blocked by all m ∈ L. When

22

the blocking set L is irrelevant we drop it and write µ1 −a→ µ2. A policy must
always satisfy the Determinacy, Confluence and Maximal Progress conditions:

– Determinacy: If µ −a:L1→ µ1 and µ −a:L2→ µ2 then L1 = L2 and
µ1 = µ2.

– Confluence: If µ −a1:L1→ µ1 and µ −a2:L2→ µ2 are method calls which
do not block each other, i.e., a2 ∈ Mc \ L1 and a1 ∈ Mc \ L2, then for some
µ′ both µ1 −a2→ µ′ and µ2 −a1→ µ′.

– Maximal Progress: If µ −a→ µ1 and µ −σ:L→ µ2, then a ∈ L∪ {σ}. ut

Notation. We exploit the determinacy for actions a ∈ Mc ∪ {σ} and write µ� a
for the unique µ′ such that µ −a→ µ′, if it exists. It is convenient to identify
a method sequence m ∈ M∗c with the policy state ε �m ∈ Pc that is reached
by executing m in the policy automaton. Transition function � is extended to
sequences µ�m by induction, i.e., µ� ε = µ and µ� (mm) = (µ�m)�m.

We write µ c ↓m to state that m is admissible in state µ, i.e., µ −m→ µ′ for
some µ′ ∈ Pc. Further, µ c m1 → m2 expresses that in state µ an admissible
method m1 has precedence over another m2, i.e., µ c ↓m1, µ −m2:L2→ µ′

and m1 ∈ L2. Further, we let µ c m1 � m2 stand for µ c ↓m1, µ c ↓m2

and both µ 1c m1 → m2 and µ 1c m2 → m1. We say that m1 and m2 are
concurrently enabled in state µ. In this notation, the confluence property says
that if µ c m1 � m2 then µ�m1 c ↓m2, µ�m2 c ↓m1 and µ�m1 �m2 =
µ �m2 �m1. Finally, we write µ c ↓m if m is executable from state µ, i.e.,
m = ε or m = mm′, µ c ↓m and µ�m c ↓m′. If µ c ↓m we also denote
the final state as µ�m and say that method sequence m is admissible and state
µ�m is reachable. ut

Note that a state with µ 1c ↓m for all m ∈ Mc is a policy error state since
it has no outgoing transitions. In this case µ c ↓m iff m = ε. Like in safety
automata, once an accepted sequence of actions m is an error, all its extensions
mm, for any m ∈ Mc, are rejected, too.

The policy as a contract between the object and the scheduler indicates to the
scheduler if and when methods can be called concurrently without jeopardising
determinacy of the object’s reaction. Specifically, if µ c m � n, then the object
guarantees that the order in which methods m and n are executed is immaterial.
This is reflected in the fact that the resulting policy states µ�m�n and µ�n�m
are identical.

Example 1. The policy automaton for Esterel’s pure signals is given in Fig. 9.
Esterel valued signals are discussed below in Sec. 5. A pure signal s can assume
one of two control states, absent (0) or present (1), i.e., Ps = {0, 1}. The methods
of s are Ms = {present, emit}. A signal becomes present upon execution of the
emit method and if no emit is executed the signal is absent by default. Hence
the start state of the signal policy is ε = 0. There is no method to “unemit”
(unlike with SCEst [46]), instead, each signal status reset to 0 with the clock

23

single writer, multi‐reader data flow variable

prec

ߪ

ߪ

ߪ tick

prec

prec

ߪtick	ߪ

Esterel pure signal

Fig. 9. Esterel Pure Signal Policy.

tick, i.e., σ(µ) = 0. A thread can read the status with the present method.
Methods are always admissible, µ s ↓m for all µ ∈ Ps and m ∈ Ms, but
are subjected to a stateful precedence. A presence test on a signal that is not
emitted yet has to wait for pending emissions to take place. This is achieved
by giving emit precedence over present, i.e., 0 s emit → present. As a result,
emit and present are not confluent in state 0, i.e., 0 1s emit � present. This
makes sense, because no signal is emitted yet. While in state 0, the order of
method execution is crucial: If present is executed before the emit, the signal
returns 0 whereas if present happens after emit we see 1. This changes after the
first emit has occurred. Then the control state moves from 0 to 1 and switches
off the precedence. Now both methods are confluent, i.e., 1 s emit � present.
Indeed, once the signal has been emitted, a present test will always see status
1, before or after any further emit. Formally, the policy automaton’s transitions
are µ � emit = 1 and µ � present = µ for all µ ∈ Ps. The control states can be
identified by regular expressions, 0 ∼= present∗ and 1 ∼= emit · (present + emit)∗.

As seen in Fig. 9, the clock tick σ is admissible in any state. It always takes
the policy back to the start state 0. The maximal progress condition requires
that the clock is blocked by all methods emanating from the same state. These
precedences are implicit and omitted in Fig. 9 for simplicity. Formally, we have
0 −σ:Ms→ 0 and 1 −σ:Ms→ 0. ut

Comment on Esterel vs DCoL. In our semantics we distinguish between
sequential and concurrent object accesses. In a sequential composition P;Q ev-
erything in Q is strictly after anything in P . In a conditional11 if s1.present then
P else Q all accesses in P and Q are strictly after the present test s1.present.
This is different in Esterel which does not have strict sequential ordering. As
a result the two branches of a conditional can be decomposed in Esterel into a

11 Strictly, in our DCoL syntax we must write this as let v = s1.present in if v then

P else Q because we distinguish carefully between a method call and the value v
returned by it. For the present discussion this is irrelevant, however, so we do not
bother.

24

parallel composition:

if s1.present then P else Q
∼= if s1.present then P || if s1.present else Q (1)

so that the program branch Q is taken to be concurrent with the present test
guarding the execution of P and likewise P is considered concurrent with the
presence test guarding Q. Moreover, in a single branch if s1.present then P the
body P is concurrent with its own guard and thus can be decomposed

if s1.present then P
∼= if s1.present then s2.emit || if s2.present then P.

which makes explicit the concurrent relationship between P and the guard
if s1.present. This has the effect that if P emits s1, then the program if

s1.present then P is rejected. In our semantics we only reject the concurrent
version

Q1 =df if s1.present then s2.emit || if s2.present then s1.emit

but not the direct sequential

Q2 =df if s1.present then s1.emit

since in the latter the presence of s1 is decided strictly before the emission is
executed. The fact that s1 is emitted after it has been tested to be absent is
not considered a causality problem. In our setting, causality problems only exist
as cyclic dependencies between concurrent accesses. Similarly, Esterel will reject
a program s1.present;s1.emit while we accept it as good, again, because the
emission is happening strictly after the presence test.

Therefore, our policy in Fig 9 for Esterel signals generates a more liberal
use of signals accepting more programs than Esterel, due to strict sequential
ordering. In Esterel, the only sequential ordering available is through the pause
construct, i.e., via the clock tick. So, when we call the policy of Fig. 9 above
a policy of Esterel pure signals, then this is to be understood for the fragment
of programs in which there are no sequential accesses to the same signal. An
Esterel presence test present s then P can be simulated as if s.present then

s′.emit || if s′.present then P where s′ is a fresh auxiliary signal that must not
occur in P . Along the same line, an Esterel “sequential” composition P ;Q can
be simulated as P;s′.emit || if s′.present then Q with a fresh auxiliary signal
s′. This necessary recoding of Esterel is not a weakness of our language but just
makes explicit the essential concurrent nature of Esterel.

We could restrict our signal policy to come somewhat closer to Esterel by
making emit only admissible if there has not been a present test sequentially
before. Then, a program like if s1.present else s1.emit or s1.present;s1.emit
would be rejected. However, it would still permit if s1.present then s1.emit

25

which Esterel would reject. Through the choice of policy we cannot and do not
want to circumvent the key distinction between concurrent and sequential object
accesses of DCoL.

Observe that the identification (1) is sound in Esterel only because method
calls do not have any side effects. In the general setting captured by DCoL where
we do not preclude side effects in method calls the equivalence (1) does not hold:
two concurrent calls are not the same as one single call.

4.2 Enabling

The job of the scheduler wrapper shield is to make sure that concurrent sequences
of method calls are interleaved in such a way that the precedences prescribed by
the object’s policy are enforced. At the same time, concurrency should not be
restricted unnecessarily, exploiting the available method confluences in the pol-
icy. To this end we must lift the confluence relation µ c m � n from individual
methods to sequences of methods µ c m � n, executed by concurrent threads.
This is done in terms of an enabling relation [µ,m] c ↓n that explains, locally
for a given thread, whether or not a sequence method calls n is confluent with
a sequence of calls m to be executed in the thread’s concurrent environment.
This enabling relation will be an asymmetric decomposition of the confluence
relation in the sense that (i) it merely implies the admissibility of n but not
of the context sequence m and that (ii) mutual enabledness [µ,m] c ↓n and
[µ,n] c ↓m implies µ c m � n. Our notation [µ,m] c ↓n for the enabling
relation forms a context [µ,m] which combines the policy state µ ∈ Pc as the his-
tory of the object (must information) and the sequence m ∈ M∗c as a prediction
of the concurrent environment (can information).

The definition of [µ,m] c ↓n is by induction on the length on n. First,
consider the special case where n is a single method. We have [µ,m] c ↓n
iff method n is admissible in state µ and cannot be blocked by precedence by
any admissible execution of the environment methods m = m1m2 . . . ,mk, for as
long as these are not themselves blocked by n. Then, a sequence n = n1 n2 · · · nl
is enabled in [µ,m] if n is admissibly executable from µ and all method calls
remain enabled under environment m. Formally, [µ,m] c ↓n if for all 1 ≤ j ≤ l,
we have [µ� n1 n2 . . . nj−1,m] c ↓nj . Observe that [µ, ε] c ↓m is the same
as µ c ↓m. Finally, two method sequences m,n ∈ M∗c are concurrently enabled
in history µ, written µ c m � n, if both [µ,m] c ↓n and [µ,n] c ↓m. The
following definition formalises the notion of enabling in a more recursive fashion.
Alternatively, the relation can be defined as the least relation closed under the
rules given in Fig. 10.

Definition 2 (Enabling). Let c be an object with policy c on methods Mc.
Further, let µ ∈ Pc be a policy state, n ∈ Mc a method and m,n ∈ M∗c method
sequences. Then,

1. m enables n in µ, written [µ,m] c ↓n, if µ c ↓n and either (i) m = ε or
(ii) m = mm′ and if µ c ↓m then µ 1c m → n and if also µ 1c n → m
then [µ�m,m′] c ↓n.

26

2. m enables n in µ, written [µ,m] c ↓n, if (i) n = ε or (ii) n = nn′,
[µ,m] c ↓n and [µ� n,m] c ↓n′.

3. m and n are concurrently enabled in µ, written µ c m � n, if we have
both [µ,m] c ↓n and [µ,n] c ↓m. ut

µ c ↓ ε
µ c ↓n µ� n c ↓n

µ c ↓nn

µ c ↓n
[µ, ε] c ↓n

µ c ↓n µ 1c m→ n µ c n→ m

[µ,mm] c ↓n

µ c ↓n µ 1c m→ n µ 1c n→ m [µ�m,m] c ↓n
[µ,mm] c ↓n

[µ,m] c ↓n [µ� n,m] c ↓n
[µ,m] c ↓nn

[µ,n] c ↓m [µ,m] c ↓n
µ c m � n

Fig. 10. Policy-conformant enabling relation as an inductive relation. The rules for-
malise Definition 2. Note that the negative preconditions in the recursive definition of
the enabling relation [µ,m] c n do not refer to this same relation but to the pre-
cendence which is given and thus not part of the inductive definition. The enabling
relation is thus well-defined.

Example 2. The Esterel pure signal policy (see Fig. 9) always enables emit,
i.e., [µ,m] s ↓ emit for all m ∈ M∗s and µ ∈ Ps. A present is enabled, [µ,m] s

↓ present if µ = 1 or m does not contain an occurrence of emit, i.e., m ∈ present∗.
This is what we expect: present is enabled in status [µ,m] if µ, the policy status,
is already 1 or the environment prediction m excludes the occurrence of an
emit. Nonempty sequences m, n are concurrently enabled, µ s m � n, iff
µ = 1 or µ = 0 and both m,n ∈ present∗ or both m,n ∈ emit · (emit + present)∗.
These situations for m � n capture the determinacy (semantical confluence)
of method execution. If µ = 1 the signal is already present and thus the signal
status remains unchanged by any interleaving of sequences m,n ∈ M∗s . However,
as long as the signal is still absent, µ = 0, we get determinacy under arbitrary
interleaving only if m, n are sequences of present tests or both start with an
emit. Otherwise, if one of them starts with a present test and the other contains
an emit the order of interleaving is not determinate. The result of the present
in one thread depends on whether it is executed before or after the emit in the
other thread. ut

4.3 Two-threaded Policy-conformant Scheduling

In this section we study the mechanics of policy-conformant scheduling for the
special, but instructive, case of two threads. The reader interested to see the

27

application of the enabling relation in the application to DCoL may skip this
material and continue with Sec. 4.4.

Let us formalise the role of enabling for restricting concurrent object accesses.
We need to move from methods to actions, which carry additional threading in-
formation, and from sequences to equivalence classes of sequences, which models
uncontrollable scheduling uncertainty in the environment of an object. The re-
sulting behaviours, which will be called traces, are generated from execution
structures E = (A, I, λ), where A is a non-empty set of actions, I ⊆ A × A a
symmetric and irreflexive independence relation and λ a method labelling asso-
ciating a method λ(a) ∈ Mc with each action a ∈ A. Each a ∈ A is a potential
action by the environment whose effect is the call of the method λ(a). We extend
the labelling λ(a) ∈ M∗c to action sequences a ∈ A∗ in the usual way. The inde-
pendence relation I captures the unsynchronised concurrency between actions
in the sense that if (a1, a2) ∈ I then a1 and a2 are executed by concurrently ac-
tive threads. This relation defines a congruence ≡I on action sequences defined
as the reflexive, symmetric and transitive closure generated by the commuta-
tions a a1 a2 b ≡I a a2 a1 b for all (a1, a2) ∈ I. This congruence ≡I embodies
the scheduling uncertainty arising from concurrent execution. If a ≡I b and the
environment permits a under some schedule, then it must also permit b. The
equivalence class [a]≡I

⊆ A∗ of a single sequence a ∈ A∗ of an execution struc-
ture E = (A, I, λ) is called a trace [26]. A trace language is subset of action
sequences T ⊆ A∗ is which is closed under ≡I , i.e., if a ≡I b and a ∈ T then
b ∈ T .

Here, we do not develop a general trace theory for policy-conformant schedul-
ing in arbitrary execution structures. Instead, it will be enough to focus on
a special class of 2-threaded execution structures. Abstractly, 2-threaded exe-
cution structures (A, λ, I) are characterised by the condition that I is a full
bipartite graph on A, i.e., A = A1] A2 and I = (A1 × A2) ∪ (A2 × A1).
Concretely, consider two method sequences mt = mt0mt1 · · · mtnt

∈ M∗c , for
t = 1, 2. We run m1 and m2 concurrently in two separate threads using the
execution structure Ac,2 = Mc × {1, 2} such that λ(m, t) = m and (m1, t1) ≡I
(m2, t2) iff t1 6= t2. The method sequences mt induce the action sequences
at = mt@t =(mt0, t) (mt1, t) · · · (mtnt

, t) ∈ A∗c,2, for t = 1, 2. The full interleav-
ing a1 ⊗ a2 ⊆ A∗c,2 is a trace. Each sequence a ∈ a1 ⊗ a2 can be projected
into its two underlying sequences of methods λt(a) = mt for t = 1, 2. Due to
admissibility and precedence constraints, not every a ∈ a1 ⊗ a2 is necessarily
policy-conformant.

Definition 3 (Policy-conformant Execution). Let mt = mt0 mt1 · · · mtnt

be method sequences from M∗c and at = (mt0, t) (mt1, t) · · · (mtnt
, t) ∈ A∗c,2,

for t ∈ {1, 2}, the induced single-threaded actions sequences. A sequence c ∈
a1⊗a2 ⊆ A∗c,2 is called a policy-conformant 2-threaded execution (pc execution)
of m1 and m2 from state µ ∈ Pc if for each action (mt kt , t) such that c =
a (mt kt , t) b we have [µ� λ(a), λ3−t(b)] c ↓mt kt . ut

28

Notation. Let m1 ||µ m2 ⊆ A∗c,2 be the set of policy-conformant 2-threaded
executions for m1 and m2 from µ and write m1 || m2 for m1 ||ε m2. We
use µ c m1 || m2 to state that m1 ||µ m2 6= ∅. Note that m1 || m2 ⊆
m1@1⊗m2@2. We call the elements of m1 ||µ m2 observations of the (policy-
conformant) synchronisation. ut

Let us study some special cases of precedences policies from the point of view
of what pc executions they admit. Trivially, each admissible method sequence
m = m0m1 · · · mn ∈ M∗c induces single-threaded pc execution m ||µ ε = {a1 |
µ c ↓m} and ε ||µ m = {a2 | µ c ↓m} for at = (m0, t) (m1, t) · · · (mn, t) ∈
A∗c,2. In fact, m ||µ ε 6= ∅, or symmetrically ε ||µ m 6= ∅ is the same as the
admissibility µ c ↓m. It is interesting to observe that for general pc executions
c ∈ m1 ||µ m2 the projected method sequences λt(c) need not be admissible
by themselves in isolation. The admissibility of an action (m1 k1 , 1), say in c =
a (m1 k1 , 1) b may be due to thread 2 executing some other action (m2 k2 , 2)
before as part of a. For instance, if m1 k1 is a buffer read and the buffer is
empty in state µ, then it takes a buffer write (m2 k2 , 2) by a second thread to
make (m1 k1 , 1) for the first thread admissible. In this sense our notion of policy
enforces cooperation.

The degree of concurrency permitted by a policy is controlled by the prece-
dence relation. For instance, if the policy enforces a precedence between any
pair of admissible methods then there exists at most one pc execution. For-
mally, one shows that if for all µ ∈ Pc and µ c ↓m1 and µ c ↓m2 we
have12 µ c m1 → m2 or µ c m2 → m1, then a,a′ ∈ m1 ||µ m2 implies
a = a′. Note that in this case there does not need to exist an observation.
For instance, assuming µ ↓m we have µ m → m, so that the concurrent
composition m ||µ m is empty. The other extreme case is when there are no
precedences between any pair of admissible methods. Then, as a consequence of
the confluence properties of a policy, there cannot be any decrease in the set of
admissible methods. All the methods admissible in some state are admissible in
all successive states and pc schedules can be formed by arbitrary interleaving. A
method m can only be blocked by admissibility, until the policy state has been
updated to make m become admissible. This is the threshold technique behind
LVars [36]. Formally, suppose for all µ ∈ Pc and µ c ↓m1 and µ c ↓m2 we
have µ c m1 6→ m2 and µ c m2 6→ m1, or equivalently, µ c m1 � m2.
Then, if m1,m2 ∈ M∗c are admissible, every interleaving is a pc observation, i.e.,
m1 ||µ m2 = m1@1⊗m2@2 = {a ∈ A∗c,2 | λt(a) = mt}. In this case the policy
permits fully concurrent execution.

Example 3. Consider two threads t ∈ {1, 2} executing method sequences m1 =
a1 a2 and m2 = b1 b2 on some object c with Mc = {a1, a2, b1, b2}. Suppose there
are no admissibility restrictions, i.e., there is only a single initial state ε and
ε c ↓m for all m ∈ Mc. Through the precedence relation c we can enforce
different schedules. For instance, take the precedences indicated in Fig. 11 on

12 In particular, this means that each method has precedence over itself, µ c m→ m
for all m ∈ Mc.

29

Fig. 11. Policies enforcing sequential execution order. The only policy conformant
observation is a1 a2 || b1 b2 = {c} = {(b1, 2)(a1, 1)(a2, 1)(b2, 2)}.

the right, i.e., ε c b1 → a1 and ε c a2 → b1. We are interested in the set of pc
executions m1 || m2. As expected, Def. 3 permits as the only possible schedule
the interleaving c = (b1, 2)(a1, 1)(a2, 1)(b2, 2) which is generated through the en-
abling relation as illustrated on the left of Fig. 11 from top to bottom. There are
two vertical series of execution diagrams. The left series visualises the successive
enablings witnessing the conformance of c are [ε, a1a2] 1c ↓ b1, [b1, b2] 1c ↓ a1,
[b1a1, b2] 1c ↓ a2 and [b1a1a2, ε] 1c ↓ b2. The right series of execution diagrams
evaluates the enabling for the remaining scheduling choices and indicates that c
is the only possible pc execution. ut

The set of policy-conformant executions m1 ||µ m2 has a simple inductive
characterisation which will enable us to obtain a constructive and incremental
scheduling procedure for pc executions.

Lemma 1. The set of pc executions m1 ||µ m2 satisfies the following symmet-
ric construction rules:

1. (m, 1) c ∈ mm1 ||µ m2 iff [µ,m2] ↓m and c ∈m1 ||µ�m m2.
2. (m, 2) c ∈m1 ||µ mm2 iff [µ,m1] ↓m and c ∈m1 ||µ�m m2.

Lem. 1 can be used to extract recursive execution rules for concurrent com-
position. Let us write

µ `m1 || m2
(m,t)→ µ′ `m′1 || m′2 (2)

30

to state that from policy state µ, the 2-threaded composition µ `m1 || m2 has
a pc observation that starts with action (m, t) which advances the threads to
m′1 || m′2 and obtains a new policy state µ′. Formally such an action step (2)
states that c ∈ m′1 ||µ′ m

′
2 whenever (m, t) c ∈ m1 ||µ m2 and µ′ = µ � m.

Further, we can form the reflexive and transitive closure

µ `m1 || m2
a−→→ µ′ `m′1 || m′2 (3)

of (2) for a ∈ A∗c,2. Then the statement of Lem. 1 can be captured by the step
generation rules seen in Fig. 12 as expressed in Prop. 1 below.

[µ,m2] ↓m
(S1)

µ ` mm1 || m2
(m,1)→ µ�m `m1 || m2

[µ,m1] ↓m
(S2)

µ `m1 || mm2
(m,2)→ µ�m `m1 || m2

(S3)
µ `m1 || m2

ε−→→ µ `m1 || m2

µ `m1 || m2
a→ µ′ `m′1 || m′2 µ′ `m′1 || m′2

a−→→ µ′′ `m′′1 || m′′2 (S4)
µ `m1 || m2

aa−→→ µ′′ `m′′1 || m′′2

Fig. 12. Step generation rules for policy-conformant execution of two threads.

Proposition 1. a ∈m1 ||µ m2 iff µ `m1 || m2
a−→→ µ� λ(a) ` ε || ε.

Next we establish some key results highlighting important properties of the
notion of enabling. This will eventually permit us to prove that all pc executions
are “confluent.”

Lemma 2. If [µ,mm] c ↓n and [µ,n] c ↓m, then [µ�m,m] c ↓n.

The next Prop. 2 states that concurrent enabling is closed under prefixes and
interleaving.

Proposition 2. Let µ c m � n for m,n ∈ M∗c . Then, for each split m =
m1 m2 and n = n1 n2 we have µ c m1 � n1 and µ�µ′ is defined for arbitrary
µ′ ∈m1 ⊗ n1, such that µ� µ′ c m2 � n2.

Not surprisingly, concurrent enabling µ c m1 � m2 implies that both se-
quences m1 and m2 may be interleaved arbitrarily.

Proposition 3. Let µ ∈ Pc and mt ∈ M∗c with mt = mt0mt1 · · · mtnt
for

t ∈ {1, 2} two method sequences. Then µ c m1 � m2 iff a1 ⊗a2 = m1 ||µ m2,
where at = (mt0, t) (mt1, t), · · · (mtnt

, t) ∈ A∗c,2.

31

The following proposition shows that if there is a pc schedule to run two
method sequences concurrently such that each of the sequences can be the cho-
sen to be executed first, then both sequences can also be executed in arbitrary
interleaving. Here, pref (x) is the set of prefixes of a sequence x ∈ X∗ of elements
of a set X.

Proposition 4. Given sequences mt ∈ M∗c with mt = mt0mt1 · · · mtnt
for t ∈

{1, 2}. Let at = (mt0, t) (mt1, t), · · · (mtkt , t) for kt ≤ nt be prefixes of the action
sequences executing m1 and m2 in separate threads. If at ∈ pref (m1 ||µ m2)
for both t ∈ {1, 2}, then a1 ⊗ a2 ⊆ pref (m1 ||µ m2).

4.4 Coherence and Determinacy

Policies provide abstract information about the object behaviour in terms of
methods. These must be distinguished from the concrete execution of a method
call on the object. These have additional semantic behaviour in that firstly they
change the concrete state of the object based on the values passed as method
parameters and secondly they extract return values from the object. An object is
called coherent if the policy constitutes a sound abstraction of its concrete level
behaviour so that the abstract policy can be used for safe scheduling of actions.
More specifically, when two method sequences m1,m2 ∈ M∗c are concurrently
enabled in a policy state µ, i.e., µ c m1 � m2, the policy-conformant scheduler
will permit m1 and m2 to be executed in independent threads without synchro-
nisation. As established in Prop. 3 this will generate arbitrary interleavings of
method calls from m1 and m2. The object is called coherent if its reaction is de-
terminate for all sequences of method calls that project to such interleavings. As
it turns out, it suffices to require local coherence (see Def. 4 below) for all pairs
of method calls on all reachable object states. Under local object coherence we
will show more generally, that all policy-conformant executions yield the same
determinate response. We will call this global coherence.

From Methods to Method Calls. An method call m(v) combines a method m ∈
Mc with a single13 method parameter v ∈ D, where D is a universal domain
of values from which the method parameters and return values are taken. We
denote by Ac = {m(v) | m ∈ Mc, v ∈ D} the set of all method calls on object
c. Sequences of method calls α ∈ A∗c can be abstracted back into sequences of
methods α# ∈ M∗c by dropping the method parameters: ε# = ε and (m(v)α)# =
mα#.

Coherence concerns the semantics of method calls as state transformations.
Let Sc be the domain of memory states of the object c with initial state initc ∈
Sc. Each method call m(v) ∈ Ac corresponds to a semantical action [[m(v)]]c ∈
Sc → (D × Sc). If s ∈ Sc is the current state of the object then an execution
of a call m(v) of c returns a pair (u, s′) = [[m(v)]]c(s) where the first projection

13 This is without loss of generality since D may be closed and contain arbitrary tuples
of values. We use as notation for the empty tuple or “don’t care” value.

32

u = π1[[m(v)]]c(s) ∈ D is the return value from the call and the second projection
s′ = π2[[m(v)]]c(s) ∈ Sc is the new updated state of the object. For convenience,
we will denote u = π1[[m(v)]]c(s) by u = s.m(v) and s′ = π2[[m(v)]]c(s) by
s′ = s �m(v). The action notation is extended to sequences of calls α ∈ A∗c in
the natural way: s� ε = s and s� (m(v)α) = (s�m(v))� α.

For policy interpretation we assume an abstraction function mapping an
object state s ∈ Sc into a control state s# ∈ Pc of the policy automaton. Specif-
ically, init#c = ε. Further, we assume the abstraction commutes with method
execution in the sense that if we execute an admissible sequence of calls and
then abstract the final state, we get the same as if we executed the policy au-
tomaton on the abstracted state in the first place. Formally, if s# c ↓α# then
(s� α)# = s# � α# for all s ∈ Sc and α ∈ A∗c .

Definition 4 (Local Coherence). An object c with methods Mc is (locally)
policy-coherent for c if for any method calls a, b ∈ Ac whenever s# c a

� b#
for a state s ∈ Sc, then a and b are confluent in the sense that s.a = (s � b).a,
s.b = (s� a).b and s� a� b = s� b� a. ut

Example 4. Consider the Esterel pure signals with policy as defined on page 23.
Such signals do not carry any data value, so their memory state Ss = Ps =
{0, 1} coincides with the policy state. The methods have the expected semantical
effects: An emission emit does not return any value but sets the memory state
of s to “present” 1. Hence, s.emit = and s � emit = 1. The execution of a
s.present test is the identity on the memory state of the signal while the return
value extracts the status of the signal: s.present = s and s � present = s. This
semantics is coherent for the policy of Fig. 9 as one checks without difficulty.
We must consider confluence of the concurrent enablings s s emit � emit,
s s present � present for s ∈ {0, 1} as well as 1 s emit � present. The first two
are obvious, because any two emit and any two present are confluent, in each
state. In a competition between an emit and a present the execution order is
irrelevant in policy state s = 1 but matters if s = 0. Specifically, if s = 0 then
s.present = 0 whereas (s� emit).present = 1, which is different. ut

The interplay between scheduling freedom and object coherence for deter-
minacy can be highlighted by way of two extreme cases. The first are linear
precedence policies where µ c ↓m for all m ∈ Mc and µ c m → n is a linear
ordering on Mc, for all states µ. Then, for no state we have µ c m1 � m2,
so there is no concurrent enabling and thus no confluence requirement to sat-
isfy at all. The (deterministic) state transitions µ � m for µ c ↓m are un-
constrained. Coherence of such c is trivially satisfied whatever the semantics
of method calls. For any two admissible methods one takes precedence over
the other and thus the enabling relation becomes deterministic. There is, how-
ever, a risk of deadlock. To see this consider two non-empty method sequences
mi0 mi = mi0mi1 · · · mini

∈ M∗c , running concurrently. Since ↓ is total and →
linear we have [ε,m10] 1c ↓m20 and [ε,m20] c ↓m10, or [ε,m20] 1c ↓m10 and
[ε,m10] c ↓m20. Hence, the policy-conformant scheduler is forced to start exe-
cution with either m10 or with m20. Let us say [ε,m10] 1c ↓m20 in which case

33

m20 is blocked. Method m10 would be permitted if only m20 was to be executed
in the other thread, [ε,m20] c ↓m10. Yet it may be blocked [ε,m20 m2] 1c ↓m10

by a later method m2i, e.g, if ε�m20m21 · · ·m2i−1 c m2i → m10. This creates
a precedence cycle in which m10 takes precedence over the first method m20

of sequence m20 m2 while at the same time some method m2i in the sequence
has precedence over m10 in m10 m1. Such a scheduling deadlock is excluded if
we assume that threads always call methods in order of decreasing precedence.
Then, the precedence of each method call in m2 must be lower than that of
m20 and a fortiori also of m10. Thus, [ε,m20 m2] c ↓m10 and m10 can go
ahead. This yields the new history status µ = ε�m10 with the two concurrent
threads m1 = m11 m

′
1 and m20 m2 pending. By the same reasoning as above

we find that now either [m10,m11 m
′
1] c ↓m20 or [m10,m20 m] c ↓m11 must

hold. Continuing forward, the two threads m10 m and m20 m are interleaved in
a deadlock-free and deterministic fashion with method calls being scheduled in
order of decreasing precedence.

The other extreme case is where the policy makes all methods concurrently
enabled, i.e., µ c m1 � m2 for all histories µ and methods m1, m2. This occurs
for trivial precedence policies where ↓ is total and → the empty relation, for all
histories. Now we avoid deadlock completely and preserve maximal concurrency
in the scheduling of the methods but coherence imposes the strongest possi-
ble confluence condition: No matter in which order any two method calls are
scheduled, the resulting object state must be the same. This requires complete
isolation of the effects of any two methods.

The first extreme approach of linearly ordered accesses, without any conflu-
ence assumptions, is a standard technique of solving resource conflicts in op-
erating systems. The second extreme of free accesses under full confluence is
used, e.g., in the CR library [19]. The typical shared synchronous object, how-
ever, strikes a trade-off between these two extremes. It will impose a sensible
set of precedences that are strong enough to ensure coherent implementations
and thus determinacy for policy-conformant scheduling, while at the same time
being sufficiently relaxed to permit concurrent implementations and avoiding
unnecessary deadlocks risking that programs are rejected by the compiler as un-
schedulable. In the sequel we validate the general case and show that whatever
the policies, if the objects are coherent, then all policy-conformant interleavings
are indistinguishable for each object. More precisely, all generated sequences of
memory states and return values, when projected to a given object, are identical.

Schedule invariance starts with the observation that for a coherent object
every method call commutes with every sequence of method calls that it is
concurrently enabled with it. From the commutation of single actions we will
derive schedule invariance for the interleaving of arbitrary sequences of method
calls.

Proposition 5 (Local Action Commutation). Let object c be locally coher-
ent for policy c and s# a# � α# for a state s ∈ Sc, call a ∈ Ac and method
sequence α ∈ A∗c . Then, s� a� α = s� α� a and s.a = (s� α).a.

34

Example 5. The data-flow buffer LB in the lift controller of Sec. 4 is a shared
single-writer single-reader object14 with methods MLB = RdLB ∪ WrLB where
RdLB = {full, empty} and WrLB = {send, receive}. Each (destructive) method send
and receive can be operated only by a single thread in each instant, and also takes
priority over the capacity testing methods RdLB. This gives rise to the precedence
constraints µ LB send → m for m ∈ RdLB ∪ {send} and µ LB receive → n
for n ∈ RdLB ∪ {receive}. This leaves concurrency between send and receive
µ LB send � receive, which is the main point of any buffer, viz. to decouple
reading and writing.

However, we need to add an admissibility restriction to account for finite
buffer capacity. If the buffer is empty then receive cannot be executed and if
it is full then send must be blocked. This makes the policy stateful. A suitable
policy domain is PCxs = N× 2MLB with statuses [µ, γ] in which µ maintains the
current filling state of the buffer and γ ⊆ MLB records the accesses blocked by
the environment to enforce the above precedences. The initial state is ε = 0 and
the transition function such that µ� send = µ+ 1 and µ� receive = µ− 1, while
µ�m = µ for m ∈ RdLB. Then, a receive is enabled, [µ, γ] LB ↓ receive, if µ ≥ 1
and receive 6∈ γ. The former checks availability of data and the latter makes sure
we block if there is a concurrent receive. A send is enabled, [µ, γ] LB ↓ send, if
µ < SIZE and send 6∈ γ. If follows that µ LB send � receive iff 0 < µ < SIZE .
Under this condition it is easy to guarantee coherence since both operations send
and receive happily commute in this case. Enabling for m ∈ RdLB is independent
of state: We have [µ, γ] LB ↓m iff γ ∩WrLB = ∅.

To illustrate Prop. 5 consider the call sequence α = send(0) send(1) send(2),
writing values 0, 1, 2 into the buffer. Executing α will take the policy state to
µ = 3, i.e., ε � α# = 3. Take the two action sequences α1 = receive receive
and α2 = send(3) send(4). The former reads two values in sequence and the
latter sends two additional values 3, 4. They are concurrently enabled in the
sense 3 α#

1 � α
#
2 , because there are no precedence constraints between the

concurrent send and receive, and because no matter the interleaving all sends and
receives remain admissible in the policy. In particular, 3 receive � α#

2 . Hence,
by Prop. 5, since LB is coherent, all interleavings of α1 and α2 will generate the
same return values and final buffer state storing 2, 3 and 4 in this order. ut

4.5 Policy Domain and Information Collapse

In general, a thread is running in the context of several simultaneously active and
concurrent threads. At any moment, each of these competitor threads publishes
its own future potential method accesses to prevent others from non-confluent
object accesses. Therefore, the enabling context [µ,m] which ensures policy-
conformant execution of a given thread must be generalised to a context [µ, γ]
where γ ⊆ M∗ is a set of method sequences. The set γ is the nondeterministic

14 We can easily generalise to multi-reader by providing a different emptyi and receivei
methods for each thread i with read access.

35

interleaving of all method sequences possible in the environment. We define
[µ, γ] c ↓m if for all n ∈ γ it is the case that [µ,n] c ↓m. In this fashion,
the contexts [µ, γ] induce a policy domain PCc = Pc × Cc for each object c in
which the must information µ ∈ Pc is a policy state and the can information
γ ∈ Cc = 2M

∗
c collects an environment prediction. The elements of PCc act as

contexts for the enabling [µ, γ] c ↓m of method sequences m ∈ M∗c according
to Def. 2. The updating µ �m of the must state µ by a method m is given by
the policy automaton c. The natural update operation on the can prediction is
prefixing, i.e., m� γ = {mm |m ∈ γ}. A method call m(v) by thread running
in context [µ, γ] is enabled if [µ, γ] c ↓m and results in an updated local context
[µ�m, γ]. When the environment performs a method call m(v) then the context
changes from [µ, γ] to [µ � m, γ′] where m � γ ⊆ γ′. The contraction from γ
to γ′ in the can part has two reasons: It advances the prediction by removing
the prefix m and removes some non-determinism in the prediction due to the
availability of the return value from the call m(v).

Depending on the policy, not all of the rich structure of PCc is actually
needed. In fact, for finite state precedence policies we can collapse PCc into a
simple finite domain. To this end define a partial information ordering [µ1, γ1] vc

[µ2, γ2] on statuses if for all m ∈ M∗c , whenever [µ1, γ1] c ↓m then [µ2, γ2] c

↓m. For instance, from Lem. 2 it follows that if [µ,m1�γ] c ↓m1 and [µ,m] c

↓m1 then also [µ�m1, γ] c ↓m, whence [µ,m1 � γ] vc [µ�m1, γ]. Similarly,
if γ1 ⊆ γ2 then also [µ, γ2] vc [µ, γ1]. This means that executing a method from
the environment or restricting the environment always increases the object’s
execution status. Two statuses are information equivalent, [µ1, γ1] ∼=c [µ2, γ2] iff
both [µ1, γ1] vc [µ2, γ2] and [µ2, γ2] vc [µ1, γ1].

The can information γ ⊆ M∗c naively extracted from the program threads
running in a given environment may be very large or even infinite. In static
over-approximation or for finite state programs we can encode these as regular
expressions, e.g., as done in [21]. For precedence policies discussed in this work,
however, we can do even better. All we need to know is what methods are blocked
by the sequences in γ starting from any given state in the policy automaton. This
collapses PCc into a simple finite domain. To this end define a partial information
ordering [µ1, γ1] vc [µ2, γ2] on statuses if for all m ∈ M∗c , whenever [µ1, γ1] c

↓m then [µ2, γ2] c ↓m. Two statuses are equivalent, [µ1, γ1] ∼=c [µ2, γ2] iff both
[µ1, γ1] vc [µ2, γ2] and [µ2, γ2] vc [µ1, γ1]. We show that under the information-
theoretic equivalence ∼=c, the can domain can be collapsed into a finite set of
finite functions Cc

∼= Pc → 2Mc . More precisely, each γ̃ ∈ Cc associates to each
policy state µ the subset γ̃(µ) ⊆ Mc of methods blocked by the environment
in the sense that [µ, γ] c ↓n iff µ c ↓n and n 6∈ γ̃(µ). The set γ̃(µ) is the
subset of methods admissible at µ that cannot get blocked by the environment
executing any of the sequences in γ. Observe that Cc in this form is a finite set
and, more importantly, independent of the program size.

More precisely, the operator ˜ is a function from 2M
∗
c to Pc → 2Mc . More

precisely, we define for each γ ⊆ M∗c the blocking function γ̃ ∈ Pc → 2Mc as

36

follows:
γ̃(µ) =

⋃
m∈γ

blockNc (µ,m) ⊆ N ⊆ Mc,

where N = {n | µ c ↓n} and the blocked subset blockNc (µ,m) ⊆ N is defined
by recursion over m as follows:

blockXc (µ, ε) = ∅

blockXc (µ,mm) =

∅ if µ 1c ↓m
{n | µ c m→ n, n ∈ X}
∪ blockX

′

c (µ�m,m)
where X ′ = X \ {n | µ c n→ m}

otherwise.

Lemma 3. If γ 6= ∅, then [µ, γ] c ↓n iff µ c ↓n and n 6∈ γ̃(µ).

Lemma 4. If γ̃1 = γ̃2 then [µ, γ1] ∼=c [µ, γ2].

Thus, for a finite state policy the can prediction γ can be finitely tabulated
as γ̃ ∈ Pc → 2Mc . Its size is exponential in the number of policy states Pc and
methods Mc but constant in the size of the program. Note that γ̃ indeed needs
to be a function of the control state Pc: For a thread to execute an admissible
method n in status [µ, γ], we must check µ c ↓n and n 6∈ γ̃(µ). The status
then changes to [µ� n, γ]. This has the consequence that the next method n′ is
enabled if µ� n c ↓n′ and n′ 6∈ γ̃(µ� n).

Stateless (history independent) policies have a single state Pc = {ε} and we
can write ε c ↓m and ε c m1 → m2 to specify the policy. We may assume
ε c ↓m for all m ∈ Mc for otherwise m is universally disabled and we could
remove m from Mc at the outset. In this case a status reduces to [ε, γ̃(ε)] with

γ̃(ε) = {n | ∃m ∈ γ,m ∈ Mc. ε c m→ n, |m|m ≥ 1} ⊆ Mc,

where |m|m denotes to the number of occurrences of method m in m ∈ M∗c . A
method m is enabled in [ε, γ̃(ε)] if m 6∈ γ̃(ε). The blocking sets are generated

from ∅̃(ε) = ∅ by method prefixing (m� γ̃)(ε) = γ̃(ε) ∪ {n | ε c m→ n}.

Example 6. In the Esterel signal policy s (see Fig. 9) only the present method
is ever blocked, so γ̃(µ) ∈ {∅, {present}}. In state µ = 1 no method is blocked in
any can environment γ ∈ M∗s , so γ̃(1) = ∅. An analysis of the policy automaton
Fig. 9 shows that γ̃(0) = ∅ iff γ ⊆ present∗ and γ̃(0) = {present} iff γ 6⊆ present∗

or equivalently γ ∩ present∗ · emit · (emit + present)∗ 6= ∅, which means that the
blocking functions γ̃ only assume one of two possible values. One is the constant
function γ̃ = 0 such that 0(0) = ∅ = 0(1). The other is the function γ̃ = 1 with
1(0) = {present} and 1(1) = ∅. Applying this abstraction, Cs

∼= Ps → 2Ms ∼=
{0, 1} the enabling relation renders as follows: An emit is never blocked in [µ, γ̃]
for any µ and γ̃. A present is enabled only when no more emits are outstanding
for s in the context, or at least one has been executed already. This is when

37

γ̃(µ) = ∅ which is the same as µ = 1 or γ̃ = 0. Hence, [µ, γ̃] s ↓ present iff
[µ, γ̃] ∈ {[0, 0], [1, 0], [1, 1]}. The must status in each case decides if the signal
is present (µ = 1) or absent (µ = 0). A present is blocked if [µ, γ̃] = [0, 1]
which encodes an undecided situation: no emit has yet occurred while there is
still a potential concurrent emit possible in the environment. Thus, the present
must be blocked. The information ordering is [0, 1] vs [1, 0], [0, 1] vs [1, 1] and
[1, 0] ∼=s [1, 1] which defines a three-valued domain to control the policy of an
Esterel pure signal. PCs is isomorphic to the three-valued domain of Berry’s
must-can analysis for pure Esterel [9], see also [2]. ut

Example 7. Consider the shared motor MT from Sec. 3.2 with methods MMT =
WrMT ∪ RdMT where RdMT = {direction} is the direction read method and
WrMT = {stop, setDirectionUp, setDirectionDown} the direction changing writes.
The policy monitor of MT is history-free, with a single (initial) state PMT = {ε}
and trivial tick(ε) = ε. All methods are admissible in state ε, i.e., ε MT ↓m
for all m ∈ MMT. However, the precedence constraints (see Fig. 7) are quite
strong. They eliminate all concurrent writes, i.e., ε MT m1 → m2 for all
m1,m2 ∈ WrMT. Moreover, all WrMT methods take precedence over the RdMT

method, i.e., ε MT m → dir for all m ∈ WrMT. Following the above recipe, we
ask: Given a set γ ⊆ M∗MT of predicted environment sequences, which methods
are blocked? Well, if γ contains one Wr method, i.e., γ 6⊆ dir∗, then all MMT

are blocked. Otherwise, if γ ⊆ dir∗ no method is blocked. Hence, we only need
to distinguish between ∅ and MMT as blocking sets in the status, giving us two
statuses, PCMT = {[ε, ∅], [ε,MMT]}. This essentially means we can schedule MT
with a single bit of information. ut

5 Further Examples for Objects and Policies

We further illustrate our notion of shared synchronous object by discussing a
range of other examples for policy domains with general relevance in synchronous
programming. The reader may skip this section and move directly to Sec. 6 for
the definition of the operational semantics of DCoL.

5.1 Thread-local/Read-only Variables

In the most conservative setting the compiler and run-time will not guarantee any
order in the scheduling of concurrent accesses to shared variables. Therefore, in
order to avoid data races, destructive updates of each variable are restricted to a
single thread. We capture this using policies as follows: Let Mx = {read,write} be
the read and write methods of a variable x. When compiler and runtime cannot
guarantee any fixed scheduling, then concurrent write-write and read-write data
accesses are to be avoided. Hence, if x is ever written, it can only be accessed by
a single thread which owns this variable during the current synchronous instant.
This is expressed by the state-less policy

ε x write→ read ∧ read→ write ∧ write→ write. (4)

38

The two precedences write → read and read → write say that concurrent reads
and writes block each other. This eliminates read-write races. The third constraint
write → write does away with write-write races. Only concurrent reads remain
unordered, i.e., ε x read � read, hence they never block each other. Coherence of
the variable for the policy (4) according to Def. 4 holds if any two read accesses
x = x.read;y = x.read in sequence return the same values x = y in all memory
states s. This is the normal behaviour of memory variables where the reading
does not have a side-effect on the stored value.

The policy domain here is PCx = Px × Cx with Px = {ε} and Cx = {ε} →
2{read,write} the ordering [ε, γ̃1] v [ε, γ̃2] iff γ̃2(ε) ⊆ γ̃1(ε) and enabling such that
[ε, γ̃] x m iff m 6∈ γ̃(ε). The sets γ̃(ε) are generated from ∅ by prefixing with
methods. Here we find (read � γ̃)(ε) = γ̃(ε) ∪ {write} and (write � γ̃)(ε) =
{read,write}. There is no way to generate γ̃(ε) = {read}, i.e., no program context
that would only preempt read but not write. Hence, the policy domain collapses
to three values PCc

∼= {⊥ v 0 v >} where ⊥ = [ε, γ̃1], 0 = [ε, γ̃2] and > = [ε, γ̃3]
in which we have γ̃3(ε) = ∅, γ̃2(ε) = {write} and γ̃1(ε) = {read,write}.

Variables x under the policy (4) can be used either as thread-local objects
or as read-only shared objects. Concurrent communication under PCx is impos-
sible within a single clock instant but can occur if separated by tick barriers.
The policy permits that one thread writes into the variable in one tick and
another thread reads (and possible overwrites) it in the next tick. For instance,
x.write(5) || x = x.read will block while (x.write(5);pause) || (pause;x = x.read)
is schedulable under x. For complex programs it may be difficult to ascer-
tain that a write and a read are separated by a clock tick. Therefore, in tradi-
tional synchronous programming languages like Esterel, variables are statically
scoped and so either local to a fixed thread or read-only. This makes policy-
conformant schedulability trivial to verify. This is essentially the conservative
approach adopted by previous work on shared synchronous objects [18,4]: Since
each method is generally both a read and a write one decrees ε c m1 → m2

for all methods m1,m2 ∈ Mc. This prevents all forms of concurrent access and
forces a pause between any two method calls.

Note that if a variable x refers to an external sensor that is not synchronised
with the tick, coherence for ε x read � read is not guaranteed. In this case
the policy must be tightened by adding the extra precedence read→ read. This
eliminates concurrent reads such as y = x.read || x = x.read altogether. We still
permit sequential reads as in y = x.read;x = x.read, however.

5.2 Registered Write-Pause-Read Variables

Languages like concurrent revisions [19], VHDL [35] or ForeC [57] have used a
more powerful form of shared memory in which concurrent writes are permitted
but reads must be delayed by a tick. In other words, a read retrieves the value
from the previous tick rather than from the current tick. The state-less policy
for such a variable y is

ε y write→ read ∧ read→ write (5)

39

which is more powerful than (4) since it permits both concurrent reads ε y

read � read and writes ε y write � write. Coherence is achieved via combina-
tion/resolution functions which aggregate all writes within a tick. The resulting
value is schedule-independent if the combination function is commutative and
associative. This unique value is registered and available only in the next tick.

5.3 Multi-reader, Single-writer Variables

For intra-instant communication we need objects which can be written and read
from concurrent threads within the same tick. Examples are the single-writer,
multi-reader data flow variables in a synchronous data flow language like Lus-
tre [33]. The scheduling policy conservatively prohibits write-write data races
while read-write races are resolved by the scheduler making reads (consumers)
wait for the write (producer). The methods are Mz = {read,write} with policy

ε z write→ read ∧ write→ write. (6)

This is more permissive than (4) since writes do not have to wait for reads,
ε 1z read → write. Like for 4, we cannot perform a write as long as there
is another one predicted in the concurrent context so that a write can only
be executed by a single thread. Also, a read cannot be scheduled while there
is a concurrent write. Again, the precedences (6) are independent of history
and both methods are always admissible. Coherence for z is just as trivial
as for (4) since any two (well-behaved) reads are confluent. A program like
z.write(5) || x = z.read is now permitted under z since the write is always
scheduled before the read.

Policy 6 induces an enabling relation such that for both m ∈ {read,write}
we have [µ, γ̃] z ↓m, provided the prediction γ ⊆ M∗z does not contain write.
For this state-less policy the must information again can be represented as Pz =
{ε}. In the can information we only need to disambiguate those predictions
which contain a write access, and thus block both read and write, from those γ
which don’t contain a write access and thus do not block any method. This gives
γ̃(ε) ∈ {∅, {read,write}}. Both methods act on γ̃ as follows: read is the identity,
i.e., read � γ̃ = γ̃. The method write is the constant function (write � γ̃)(ε) =
{read,write}.

Policies (6) and (4) can implement data flow modes in which several con-
current computations write into a variable provided this happens in different
clock instants. To verify clock disjointness of such accesses is the main purpose
of the (type-directed) clock calculus used in [25] for modular code generation or
automata extensions [14] in synchronous data flow languages.

It is obvious that every program schedulable under the more conservative
policy (4) is also schedulable under (6). This corresponds to the fact that we can
always implement single-thread/read-only variables by single-writer multi-reader
variables. However, a program that is determinate for (6) under the defensive
write-before-read scheduling need not be determinate for (4) which does not

40

assume any ordering of concurrent read and writes. For instance, x.write(5) ||

x.read is determinate under (6) but not under (4).

5.4 Synchronous Data Flow Registers

Pouzet and Raymond in [45] highlight the role of shared register objects in the
modular scheduling of Lustre. These registers work in the opposite way from
data flow variables in that they must be read in a tick before their value is
overwritten, in contrast to variables (6) which must first be written before they
can be read. Registers r have a policy

ε r get→ set ∧ set→ set.

Combining variables and registers breaks causality cycles and permits us to
model cyclic data-flow networks. For instance,

(z = z.read;r.set(z + 1)) || (x = r.get;z.write(x+ 3))

is schedulable for register policy r and variable policy z although it has a cyclic
read-write dependency. It admits the unique schedule r.get; z.write; z.read; r.set
which first reads form the register, then writes the variable and finally overwrites
the register from the variable. Caspi et al. [21] introduce a shared object for
synchronous data-flow programming that combines the features of variables and
registers with a write method and two read methods last and curr to retrieve the
previous and the current value, respectively.

5.5 Kahn-style Data-flow Channels

Buffers are generalisations of both variables and registers for data flow. A data-
flow buffer xs is a shared single-writer multi-reader object with a single write
for the data producer and methods readi, i ∈ R for a single-threaded value
consumption. Each of these methods Mxs = {readi,write | i ∈ R} can only be
operated by a single thread in each tick, giving rise to the precedence constraints

µ xs write→ write ∧
∧
i∈R

readi → readi. (7)

This leaves concurrency between read and write µ xs write � readi and between
different reads, µ xs readi � readj for i 6= j. One thread can sequentially fill
the buffer while the consumers i ∈ R concurrently extract this same sequence
of values. This is coherent assuming that the implementation of xs maintains
independent FIFO buffers for each i ∈ R. Since writing write and reading readi
take place at two independent ends of the channel they commute, meaning that
x = xs.write(v) || y = xs.readi always produces the same result regardless the
scheduling order. If each i ∈ R has its own FIFO buffer, each consumer readi
sees exactly the same sequence of stream values on xs.

41

Observe that the precedences (7) do not depend on the policy state µ. How-
ever, now the policy xs is stateful regarding admissibility: A readi is only possi-
ble if the consumer i is slower than the producer, i.e., there have been more write
than readi accesses. This is a history-dependent precedence constraint that makes
the readi wait for a write when the buffer is empty. A suitable policy domain is
PCxs = NR × 2Mxs with statuses [µ, γ̃] in which the policy state µ(i) maintains
the current filling state of the buffer as observed by consumer thread i ∈ R and
γ̃ ⊆ Mxs records the accesses blocked by the environment to enforce the prece-
dences (7). Note that γ̃ as a function of the policy state γ̃(µ) is constant so we do
not need to mention the state parameter µ. The initial state is ε(i) = 0 and the
transition function such that (µ� write)(i) = µ(i) + 1, (µ� readi)(i) = µ(i)− 1
and (µ � readi)(j) = µ(i) if i 6= j. Then, a readi is enabled, [µ, γ̃] xs ↓ readi, if
µ(i) ≥ 1 and readi 6∈ γ̃. The former constraint µ(i) ≥ 1 ensures that consumer i is
blocked until the next write has added a new value to the buffer. The latter con-
straint readi 6∈ γ̃ blocks a read if there is a concurrent read by the same consumer
i ∈ R. In effect, by symmetry, this forces concurrent consumers to use distinct
indices in the set R. This is crucial since reading consumes data tokens from the
buffer. Two reads x = xs.readi || y = xs.readi produce different values x and y
depending on the order of execution. In contrast, two sequential reads by a single
consumer x = xs.readi;y = xs.readi do not pose any determinacy problem. Also,
concurrent reading by distinct consumers x = xs.readi || y = xs.readj for i 6= j
is ok, assuming that the buffer implementation of xs maintains independent
FIFO queues for each i ∈ R. Finally, the policy xs must prevent all concurrent
writes, checking the prediction: [µ, γ̃] xs ↓write iff write 6∈ γ̃. Sequential writes,
again, are innocuous. For bounded buffers we can add an admissibility condition
such that [µ, γ̃] xs ↓write iff write 6∈ γ̃ and µ(i) < cxs where cxs is the maximal
capacity.

During each clock instant the policy (7) makes each thread act as a sequen-
tial Kahn process [34] with non-blocking, exclusive, writes (assuming unbounded
buffers) and blocking reads to each buffer. Policy-conformant scheduling may
be implemented demand-driven in Kahn-McQueen co-routine style [34] or data-
driven as actor firings [37]. In general, schedulability under xs is undecidable for
Kahn networks with unbounded buffers. A significant body of literature however
exists on synchronous Kahn networks which adopt static restrictions to ensure
decidability. For instance, checking that all methods readi and write are stati-
cally allocated in line with (7) does away with tracking the γ̃ component of a
status. For the must counting in µ one can use synchronous data flow models
(see, e.g., [37] for an overview) or clock calculi [22,24,31], which are statically
decidable.

The policy (7) for buffers is a refinement of (6) for single-writer, multi-reader
variables. It is less restrictive in the sense that reads and writes are independent.
In contrast to variables, however, there are now restrictions on reading: Only
reads readi and readj from distinct consumer threads i 6= j are not blocking
each other. Each program that is schedulable under the buffer policy is also
schedulable under the more relaxed single-writer, multi-reader policy (6) if we

42

collapse all readi into a single read access. Of course, the semantics of the program
is changed in this way unless producer and consumers are strongly synchronised.
Implementing a buffer as a simple variable can be a significant efficiency opti-
misation.

5.6 Esterel Valued Signals

The objects considered so far do not permit instantaneous concurrent writes.
Such are supported by the signals of Esterel [12]. A simple instance are standard
combined valueonly signals (see e.g., Esterel V7 [51,43]) which carry values of
primitive data types like int, float, or simple composite types such as arrays.
The value of a signal s is persistent across ticks like a variable, yet it can be
written concurrently by several threads and still instantaneously be read during
the same tick. The policy for Esterel valued signals is seen in Fig. 13. It is history
dependent and is sensitive to the clock.

prec

ߪtick	ߪ

prec

ߪ

ߪ

Esterel pure signal

Esterel value‐only signal

ߪ tick

prec

Fig. 13. Policy s of a value-only Esterel signal s (without implicit initialisation).

The core methods are Ms = {pre, read,write}. The value of a signal may
be changed with the s.write(v) method, in Esterel syntax ?s ⇐ v. The current
value is read using x = s.read() and the previous value is available through
x = s.pre(). In Esterel syntax these reads are written x⇐ ?s and x⇐ pre(?s),
respectively. Since method pre reads the value of the previous instant, the pro-
gram ?s⇐ 10; pause ;y ⇐ pre(?s) yields y = 10. This previous value, however,
is not defined in the first tick and thereafter as long as no write (or other initial-
isation) has taken place. Similarly read is not permitted unless there has been a
write in the current or some earlier instant. Hence, in the empty environment,
both the programs y ⇐ ?s and pause ;y ⇐ pre(?s) are undefined. To account
for this, the policy has three states Ps = {ε, 0, 1} recording the initialisation
status, say as follows:

– ε ≈ “current and previous value undefined”;
– 0 ≈ “previous value undefined and current value defined”;
– 1 ≈ “both previous and current value defined”.

43

Admissibility then is defined µ s pre iff µ ≥ 1 and µ s read iff µ ≥ 0.
Further, the transitions are such that µ � read = µ � pre = µ, µ � write = 0
for all µ. The state 1 can only be reached when the clock ticks: σ(ε) = ε and
σ(µ) = 1 iff µ ≥ 0. This yields the policy automaton depicted in Fig. 13.

In addition to the restrictions arising from initialisation, there are prece-
dence constraints. Like for data-flow variables reads of the current value must
be scheduled after writes, so we have the policy constraint

µ s write→ read. (8)

In contrast, reading the previous value is concurrently enabled with any write,
µ s pre � write, and all reads are concurrently enabled with each other, i.e.,
µ s m1 � m2 for all m1,m2 ∈ {read, pre}. Also, µ s write � write which
permits concurrent writes. Since only read can be blocked the can part γ of a
policy status [µ, γ] only assumes one of two possible sets, γ ∈ Cs = {∅, {read}}.

Coherence for writes is achieved like in VHDL by accumulating all val-
ues using an associative and commutative combination function. For exam-
ple, suppose the combination function is addition. Then, a parallel composition
y ⇐ ?s − 1 || (?s ⇐ 10;?s ⇐ 5) deterministically assigns the value y = 14.
Because of the commutativity of the combination function we get the same
behaviour if we swap the assignments y ⇐ ?s − 1 || (?s ⇐ 5;?s ⇐ 10) or
execute them in parallel as in y ⇐ ?s − 1 || ?s ⇐ 5 || ?s ⇐ 10. Notice that
sequential composition cannot be used for destructive update like in normal im-
perative programming. What if we want the second emission ?s⇐ 5 to override
the first ?s ⇐ 10 and have the concurrent reading y ⇐ ?s − 1 see this up-
dated value, resulting in y = 4? Then, we must introduce a pause statement
to separate the emissions by a clock tick and delay the assignment to y as in
pause ;y ⇐ ?s − 1 || (?s ⇐ 10; pause ;?s ⇐ 5). Note that the Esterel policy
forbids that a signal first be read and then written back in the same instant.
E.g., (x ⇐ ?s1;?s2 ⇐ x + 1) || (x ⇐ ?s2 + 2;?s1 ⇐ x) is not schedulable
while conforming to si because of the cycle arising from the policy precedences
si write→ read and the sequential program order forcing si.read to be executed
strictly before s2−i.write, for i = 1, 2.

5.7 Sequentially Constructive (SC) Variables

The sequentially constructive variables of the SCL language [56,54] combine
the features of normal variables which can be destructively updated but not
shared with the features of Esterel signals which can be accessed concurrently
but not destructively overwritten within a tick. The advantage is that one does
not need to distinguish between variables and signals as in Esterel and exploit
the traditional style of imperative programming also for signals. Moreover, it has
been shown [1] that the possibility of reusing signals with destructive update can
save pauses and make programs more succinct compared to Esterel. 5.7

44

A sequentially constructive variable sc supports three different types of ac-
cess methods Msc = Rsc ∪ Isc ∪ Usc, classified reads R = {r}, absolute writes
Isc = {i} for initialisation and relative writes Usc = {u1, u2, . . . , un} for up-
dates. The method sc.r returns the memory value stored in sc. An absolute
write sc.i(v) destructively overwrites sc with a new value v. In a relative write
sc.ui(v) the value v is used to update the memory state of sc in a manner pre-
determined by the particular update type ui ∈ Usc. Examples of typical update
functions are increment for counting, maximum or disjunction for arithmetical
or logical value accumulation, respectively. For instance, counting is the key op-
erator to implement join synchronisation of concurrent threads in the SaxoRT
compiler for Esterel [23]. Each concurrent region has an associated join counter
that is initialised to the number of forked threads. Each time a thread terminates
it counts down. When the counter reaches zero, the join synchroniser passes con-
trol to the code after the join in program order. To highlight the analogy with
imperative assignments in the sequel, we will use the syntax sc i= v and sc ui= v
for absolute and relative writes sc.i(v) and sc.ui(v), respectively.

The so-called init-update-read (IUR) protocol of SCL organises the concurrent
variable accesses on a given variable into three phases. Absolute writes are used
in the first computation phase during a tick, the so-called initialisation, to set
a variable to some fixed start value. Only one thread can initialise an SCL
variable.This initialisation phase takes precedence over any relative write of the
same variable. The relative writes are used in the second, so-called update phase
of a tick to compute a final value through iterative accumulation. This iterated
update can be contributed to from several concurrent threads, but using the
same update method ui ∈ Usc. When no more update is possible, the total
aggregated value of sc can be read by arbitrarily many concurrent threads. This
is the read phase of the protocol. In sum, the policy is history-free and specified
by the precedences

ε sc i→ i ∧
∧

ui∈Usc

(i→ ui ∧ i→ r ∧ ui → r) ∧
∧

ui 6=uj∈Usc

ui → uj (9)

without admissibility restrictions, i.e., ε sc ↓m for all m ∈ Msc. The prece-
dences i → ui, i → r and ui → r of (9) capture the IUR protocol order. The
precedences ui → uj and i → i preclude any competing concurrent relative
writes (updates) of different types and competing concurrent absolute writes
(inits), respectively. However, concurrent reads and concurrent updates of the
same type are possible, i.e., ε sc r � r and ε sc ui � ui as are concurrent inits
and reads, ε sc i � r.

Note that the IUR protocol only constrains the concurrent accesses on the
same variable. Hence, read and writes can be executed in arbitrary order by
a single thread or by concurrent threads on different variables. Also the init,
update and read phases are per variable and can be interleaved for different
variables during a tick. The induced policy domain PCsc = Psc × Csc is trivial
in the must part Psc = {ε} because it is stateless. To control the enabling under

45

the IUR precedences the can information records the set of blocked methods,
i.e., Csc = 2Msc with enabling such that [ε, γ] ↓m iff m 6∈ γ and the information
order [ε, γ1] vsc [ε, γ2] iff γ2 ⊆ γ1. For a single update Usc = {u} the policy
has the property that {i, u} ∩ γ 6= ∅ implies γ = {i, r, u}, making PCsc a 3-
valued lattice PCsc = {[ε, {i, u, r}] vsc [ε, {r}] vsc [ε, ∅]}. A signal initially starts
off in status [ε, {i, u, r}]. As soon as the init phase is completed, i.e., no more
initialisations i are predicted in the environment, the status moves up to [ε, {r}].
This enables the updates u but still blocks the reads. When the updates are
completed and the status contracts to [ε, {}], then read methods calls r are
permitted.

In SCL [55,56] concurrent initialisations sc i= v1 || sc i= v2 are permitted
if they write the same value v1 = v2. This is coherent since the two writes are
confluent, i.e., the order of execution is immaterial. The policy (9) precludes
two such concurrent absolute writes. The more liberal model is obtained if we
consider the value v part of the method call. I.e., we put Isc = {i(v) | v ∈ D}
with precedence i(v) → i(v′) if v 6= v′. Note that even under the less liberal
policy (9) two absolute writes carrying different values can appear in the same
program provided they come from a single thread. For example, sc i= 5;sc i= 3
and if b then sc i= 5 else sc i= 3 are fine, because all accesses are sequential
successors in program order or in mutually exclusive control-flow branches of
the same thread. In this way, absolute writes have the full power of imperative
single-writer, multi-reader variables (6) which are more powerful than Esterel’s
thread local/read-only variables (4). For example, the composition y ⇐ ?sc−1 ||

(?sc⇐ 10;?sc⇐ 5) discussed above now first executes the destructive overwrite
?sc ⇐ 10;?sc ⇐ 5 and then the read y ⇐ ?sc− 1 yielding y = 4, without any
combination function. Another advance of SCL is that in contrast to Esterel
or Quartz variables, absolute writes in SCL can coexist, in the same instant
and for the same variable, with concurrent relative writes that are multi-writer,
multi-reader.

Relative writes sc u= v are destructive updates with lower priority than ab-
solute writes. They are scheduled by (9) to wait for concurrent initialisations to
have completed. In traditional synchronous languages such as Esterel or Quartz
such destructive updates must be performed by a single thread during each in-
stant. In contrast, SCL permits valued signals to accumulate their value from
several concurrent writers. To resolve the write-write conflicts an implicit bi-
nary update function updu is applied that merges all concurrent updates. For
coherence, this function has to satisfy the condition that updu(updu(x, y1), y2) =
updu(updu(x, y2), y1) for all values x, y1 and y2. More precisely, each relative write
sc u= v behaves like the assignment sc ← updu(sc, v). The property of update
functions makes sure that update composition is not only associative but also
commutative, i.e., updu(v1)◦updu(v2) = upd(v2)◦updu(v1), where updu(e) is the
action function updu(v) =df λx. updu(x, v). Consequently, if two relative writes
sc u= v1 and sc u= v2 use the same update function they are confluent. This
ensures coherence for the policy (9). A parallel composition sc u= v1 || sc u= v2
then behaves like the assignment sc ← updu(updu(sc, v1), v2). Note that every

46

update method u ∈ Usc comes with its own specific update function updu. In this
way, different update functions are accommodated within the same program, as
long as they do not occur together in the same tick or, if they do, their occur-
rence is sequentially ordered during each instant to preserve schedulability under
the IUR policy.

It has been observed that Esterel’s signals can be modelled as SCL vari-
ables [46]. For pure signals, for instance, signal emission is implemented as a
relative write x ↑= true with the update function upd↑(x, b) = x or b. While in
Esterel signals are implicitly initialised to false at the beginning of each tick, in
SCL this is done by an explicit absolute write x i= false in the initialisation phase
of the IUR protocol. As demonstrated in [1] the presence of explicit resets allows
for improved succinctness in the representation of Esterel programs. There is
also an expressiveness benefit. E.g., using the SC policy (9) it is possible to add
dual Esterel signals that are initially set to true with an absolute write x i= true
and then “un-emitted” by relative writes x ↓= false encapsulating the update
function upd↓(x, b) = x and b. The two relative writes are treated as distinct up-
date methods {↑, ↓} ⊆ Ux. The policy (9) ensures determinacy by precluding
that these two update schemes are ever mixed in a concurrent context. In this
way, our policy (9) extends [56,54] where it is assumed that a program uses at
most one update function.

It has been shown [1] that the possibility of reusing signals with destructive
update can save pauses and make programs more succinct compared to Esterel.
In [46] it is shown how Esterel’s standard valued signals can be emulated by
a combination of absolute and relative writes for both signal status and signal
value.

6 Policy-based Semantics of DCoL

The policy-controlled shared objects introduced in the previous Sec. 4 are con-
ceived to act as the communication mechanism of a novel clock-synchronised
model of computation for deterministic, cycle-based, concurrent programming in
the tradition of synchronous programming languages. In this section we develop
the semantics of DCoL from Sec. 2. This can be viewed both as a generic object-
based reconstruction of synchronous programming in the spirit of [2] and as an
intermediate language for the modular compilation of traditional synchronous
languages along the lines of [41,14,45].

6.1 Must/Can Execution Contexts

We assume the set of objects is statically fixed and each c ∈ O has a set of (unary,
for simplicity) methods Mc and policies c. There is a fixed value domain D for
all method parameters and return values. Objects are passive and each method
c.m is (atomically) executed in the calling thread and semantically behaving like
a function [[c.m]] = [[m]]c ∈ D → Sc → (D × Sc), where Sc is the set of possible

47

memory states of c with initial default state initc ∈ Sc. The object state Sc
contains the full memory of the object and includes the policy state. Besides a
tick function σ ∈ Sc → Sc resets (refreshes) the memory state at each clock tick.

Our semantics bundles together the memories and policies for all objects into
a global context Σ;Π with memory Σ as the must context and prediction Π as
the can context. For policy control we assume an abstraction function mapping
an object state s ∈ Sc into a control state s# ∈ Pc of the policy automaton. The
global memory Σ ∈

∏
c∈O Sc assigns a local memory Σ.c ∈ Sc and local policy

state (must context) (Σ.c)# ∈ Pc to each object c. We write init for the initial
memory that has init .c = initc and (init .c)# = ε ∈ Pc. The memory is updated
every time a method is called or the clock tick is completed. Action postfixing for
method calls is lifted to memories in the obvious way, i.e., (Σ�c.m(v)).c′ = Σ.c′

if c′ 6= c and (Σ � c.m(v)).c = Σ.c �m(v). A clock transition Σ −σ→ Σ′ is
defined if (Σ′.c)# = (Σ.c)# � σ is defined for all c ∈ O.

The notation Σ.c stresses the object view that considers Σ as a global “envi-
ronment object” and each object name c ∈ O as a global “method” to address a
specific object in the environment Σ. The special property of this global object Σ
is that all its “methods” c are isolated (distinct objects do not share state) and
therefore no inter-object policy is needed to control concurrent accesses Σ.c1
and Σ.c2 to different local objects c1 6= c2. Our theory can be extended by
inter-object policies to manage coupling between objects that share state. Note
that nested shared sub-objects are taken care of by our intra-object policies as
in [21].

Regarding the prediction Π (can context) we follow the policy-generic con-
struction from Secs. 4.1 and 4.4 with a “free” coding of predictions as sequences
of method calls. The can context Π ⊆ M∗ × {0, 1}, where M = {c.m | c ∈
O,m ∈ Mc}, contains all method sequences predicted in the environment stop-
pered with a completion code 0 if the sequence ends in termination or 1 if it
ends in pausing. The symbols ⊥0, ⊥1 and > are the terminated , paused and
fully unconstrained can contexts, respectively, with ⊥0 = {(ε, 0)}, ⊥1 = {(ε, 1)}
and > = M∗ × {0, 1} for all c ∈ O. We lift method prefixing to can contexts,
c.m�Π = {(c.mm, c) | (m, c) ∈ Π}.

Both context parts together, Σ;Π, form the control envelope for executing a
program thread. A sequence of method calls m ∈ A∗ is enabled in context Σ;Π
if for all c ∈ O and (n, d) ∈ Π we have

[(Σ.c)#, πc(n)] c ↓ πc(m#) (10)

according to Def. 2, where πc(m) ∈ M∗c is the projection of a sequence of method
calls m ∈ M∗ to the sub-sequences of method calls on variable c. Formally,
πc(ε) = ε, πc(c.mm) = mπc(m) and πc(c

′.mm) = m.c if c′ 6= c. We ab-
breviate the enabling relation (10) by [Σ,Π] ↓m. When an enabled method
call c.m(v) is executed in Σ;Π, this advances the must context from Σ to
Σ′ = Σ � c.m(v) but leaves the can context Π unchanged since the latter de-
scribes the environment of the thread. Therefore, the total context change of

48

a step against the environment is Σ;Π → Σ � c.m(v);Π If the method call
is performed instead inside the environment, then c.m(v) comes from the can
context Π for which we must have c.m � Πe ⊆ Π. The original can context
Π then contracts to Πe. The total context change of an environment step is
Σ;Π → Σ � c.m(v);Πe for some v ∈ D.

6.2 Constructive Semantics of DCoL

To formalise our semantics it is technically expedient to keep track of completion
status of each active thread inside the syntax of the program expression. This
gives a syntax for processes which are distinguished from programs in that each
parallel composition P1 k1||k2 P2 is labelled by completion codes ki ∈ {⊥, 0, 1}
which indicate whether each thread is waiting (unfinished) ki = ⊥, terminated
0 or pausing ki = 1. Since our semantics removes a process from the parallel as
soon as it terminates then the code ki = 0 cannot occur. An expression P1 || P2

is considered a special case of a process with ki = ⊥.

Sequence

Σ;Π ` P m
=⇒ Σ′ `k′ P ′ k′ 6= 0

Seq1
Σ;Π ` P;Q m

=⇒ Σ′ `k′ P ′;Q

Σ;Π ` P m1==⇒ Σ′ `0 P ′ Σ′;Π ` Q m2==⇒ Σ′′ `k′ Q′ Seq2
Σ;Π ` P;Q m1m2====⇒ Σ′′ `k′ Q′

Completion

Cmp1
Σ;Π ` skip

ε
=⇒ Σ `0 skip

Cmp2
Σ;Π ` pause

ε
=⇒ Σ `1 pause

Recursion

Σ;Π ` P{rec p. P/p} m
=⇒ Σ′ `k′ P ′ Rec

Σ;Π ` rec p. P
m
=⇒ Σ′ `k′ P ′

Fig. 14. DCoL Reduction Step Semantics for Sequence, Completion and Recursion.

The formal semantics is given by a reduction relation on processes

Σ;Π ` P m
=⇒ Σ′ `k′ P ′ (11)

specified by the inductive rules seen in Fig. 14 for sequential composition, com-
pletion statements and recursion, and in Fig. 15 for method calls, conditional
and parallel composition. The relation (11) determines an instantaneous sequen-
tial reduction step of process P , called an sstep, that follows a multi-variable
sequence of enabled method methods calls m ∈ A∗, where A = {c.m(v) | c ∈

49

Method Call

[Σ,Π] ↓ c.m eval(e) = v Σ � c.m(v);Π ` P{Σ.c.m(v)/x} m
=⇒ Σ′ `k′ P ′ Let1

Σ;Π ` letx = c.m(e) in P
c.m(v)m
=====⇒ Σ′ `k′ P ′

Let2
Σ;Π ` letx = c.m(e) in P

ε
=⇒ Σ `⊥ letx = c.m(e) in P

Conditional

eval(e) = true Σ;Π ` P m
=⇒ Σ′ `k′ P ′ Cnd1

Σ;Π ` if e thenP elseQ
m
=⇒ Σ′ `k′ P ′

eval(e) = false Σ;Π ` Q m
=⇒ Σ′ `k′ Q′ Cnd2

Σ;Π ` if e thenP elseQ
m
=⇒ Σ′ `k′ Q′

Parallel

Σ;Π ⊗ can(Q) ` P m
=⇒ Σ′ `k′ P ′ k′ 6= 0

Par1
Σ;Π ` P k||kQ Q

m
=⇒ Σ′ `k′ukQ

P ′ k′||kQ Q

Σ;Π ⊗ can(Q) ` P m
=⇒ Σ′ `0 P ′

Par2
Σ;Π ` P k||kQ Q

m
=⇒ Σ′ `kQ Q

Σ;Π ⊗ can(P) ` Q m
=⇒ Σ′ `k′ Q′ k′ 6= 0

Par3
Σ;Π ` P kP||k Q

m
=⇒ Σ′ `kPuk′ P kP||k′ Q

′

Σ;Π ⊗ can(P) ` Q m
=⇒ Σ′ `0 Q′

Par4
Σ;Π ` P kP||k Q

m
=⇒ Σ′ `kP P

Fig. 15. DCoL Reduction Step Semantics for Method Calls, Conditional and Parallel.

O,m(v) ∈ Ac}. All these method calls appear in sequential program order inside
P . The sequence m does not include any context switches between concurrent
threads that may be active inside P . For communication between threads, sev-
eral ssteps must be chained up, as described later. The sstep (11) results in an
updated memory Σ′ and residual process P ′. The subscript k′ is a completion
code, described below.

A sequential reduction (11) is performed in a context consisting of an object
state Σ (must information) and an environment prediction Π (can information).
The context Σ contains the current state of all objects as these have been up-
dated sequentially before control passes to P . The prediction context Π records
all potentially outstanding method calls from threads running concurrently with
P in the environment. The operational semantics ensures that whenever the
reduction (11) is possible then m is enabled, i.e., [Σ,Π] c ↓m.

50

can(skip) = ⊥0

can(pause) = ⊥1

can(p) = ⊥0

can(rec p. P) = can(P)

can(P;Q) =

{
can(P) if can(P) ⊆ M∗ × {1}
can(P) · can(Q) otherwise

can(letx = c.m(e) in P) = c.m� can(P)

can(if e thenP elseQ) =

can(P) if eval(e) = true

can(Q) if eval(e) = false

can(P) ⊕ can(Q) otherwise

can(P || Q) = can(P)⊗ can(Q).

Fig. 16. Computing the can Prediction of a DCoL process P .

Assuming the reader is familiar with structural operational semantics, most
of the rules in Figs. 14 and 15 should be straightforward. Seq1 is the case of a
sequential P ;Q where P pauses or waits (k′ 6= 0) and Seq2 is where P terminates
and control passes into Q. The statements skip and pause are handled by rules
Cmp1 and Cmp2. The rule Rec explains the behaviour of recursion rec p.P by
syntactic unfolding of the recursion body P . All interaction with the memory
takes place in the method calls letx = c.m(e) in P . Rule Let1 is applicable
when the method call is enabled, i.e., Σ;Π ↓ c.m. Since processes are closed,
the argument expression e must evaluate, eval(e) = v, and we obtain the new
object memory Σ � c.m(v) and return value Σ.c.m(v). The return value is
substituted for the local (stack allocated) identifier x, giving the continuation
process P{Σ.c.m(v)/x} which is run in the updated memory Σ�c.m(v);Π. The
prediction Π remains the same. The second rule Let2 is used when the method
call is blocked or the thread wants to wait and yield to the scheduler. The
rules for conditionals Cnd1, Cnd2 are straight-forward. More interesting are the
sstep rules Par1–Par4 for parallel composition (cf. Fig (15) which implement non-
determinate thread switching. It is here where we need to generate predictions
and pass them between the threads to exercise the policy control.

The key operation is the computation of the can-prediction can(P) of a pro-
cess P to obtain an over-approximation of the set of possible method sequences
potentially executed by P . The set can(P), which is defined in Fig 16, is extracted
from the structure of P using prefixing c.m �Π ′, choice Π ′1 ⊕Π ′2 = Π ′1 ∪Π ′2,
parallel Π ′1 ⊗ Π ′2 and sequential composition Π ′1 · Π ′2. Sequential composition
is obtained pairwise on stoppered sequences such that (m, 0) · (n, c) = (mn, c)
and (m, 1) · (n, c) = (m, 1). As a consequence, ⊥0 ·Π ′ = Π ′ and ⊥1 ·Π ′ = ⊥1.
Parallel composition is pairwise free interleaving with synchronisation on com-
pletion codes. Specifically, a product (m, c)⊗(n, d) generates all interleavings of

51

m and n with a completion that models a parallel composition that terminates
iff both threads terminate and pauses if one pauses. Formally, (m, c)⊗ (n, d) =
{(c,max(c, d)) | c ∈ m ⊗ n}. Thus, Π ′P ⊗ Π ′Q = ⊥0 iff Π ′P = ⊥0 = Π ′Q and
Π ′P ⊗Π ′Q = ⊥1 if Π ′P = ⊥1 = Π ′Q, or Π ′P = ⊥0 and Π ′Q = ⊥1, or Π ′P = ⊥1 and
Π ′Q = ⊥0. Observe that the recursion in can() for the rec operator must always
terminate because processes are clock guarded by assumption.

The rule Par1 exercises a parallel P k||kQ Q by performing an sstep in P . This
sstep is taken in the extended context Σ;Π ⊗ can(Q) in which the prediction
of the active sibling thread Q is added to the method prediction Π for the
outer environment in which the parent P || Q is running. In this way, Q can
block method calls of P . When P finally yields as P ′ with a non-terminating
completion code, 0 6= k′ ∈ {⊥, 1}, the parallel completes as P ′ k′||kQ Q with
code k′ukQ. This operation is defined k1uk2 = 1 if k1 = 1 = k2 and k1uk2 = ⊥,
otherwise. When P terminates its sstep as P ′ with code k′ = 0 then we need rule
Par2 which removes child P ′ from the parallel composition. The rules Par3,Par4
are symmetrical to Par1,Par2. They run the right child Q of a parallel P kP||k Q.

6.3 Completion and Stability

We say a process P ′ is 0-stable if P ′ = skip and 1-stable if P ′ = pause or
P ′ = P ′1;P

′
2 and P ′1 is 1-stable, or P ′ = P ′1 1||1 P ′2, and P ′i are 1-stable. A

process is stable if it is 0-stable or 1-stable. We call a process expression well-
formed if in each sub-expression P1 k1||k2 P2 of P the completion annotations are
matching with the processes, i.e., if ki 6= ⊥ then Pi is ki-stable. Stable processes
are well-formed by definition. For stable processes we define a (syntactic) tick
function which steps a stable process to the next tick. It is defined such that

σ(skip) = skip

σ(pause) = skip

σ(P ′1;P
′
2) = σ(P ′1);P ′2

σ(P ′1 k1||k2 P
′
2) = σ(P ′1)||σ(P ′2).

Lemma 5. Let P be well-formed and Σ;Π ` P m
=⇒ Σ′ `k′ P ′. Then,

1. If P is closed then P ′ is closed.
2. P ′ is k-stable iff k′ 6= ⊥
3. [Σ,Π] ↓m, Σ′ = Σ �m and m� can(P ′) ⊆ can(P)
4. If P is k-stable then k′ = k, Σ′ = Σ and P ′ = P .

6.4 Sequential Processes

Purely sequential processes P are constructed without the parallel composition
operator. They behave like standard imperative programs with method calls
as destructive updates. If we execute such P in a context Σ;⊥0 then it can

52

complete in a single sstep without being blocked, i.e., Σ;⊥0 ` P =⇒ Σ∗ `k∗ P ∗
with k∗ ∈ {0, 1}. The response Σ∗ = Σ �m arises from a maximal sequence of
method calls m performed deterministically and in sequential order as prescribed
by P . Since ssteps do not have to be maximal, every prefix of m also forms an
sstep. More precisely, we can show that for each prefix split m = nm′ we
have Σ;⊥0 ` P =⇒ Σ � n ` P ′ such that Σ � n;⊥0 ` P ′ =⇒ Σ∗ `k∗ P ∗.
Sequential processes P cannot be blocked unless the can prediction Π for the
environment in (11) contains method calls. The environment Π lets P execute
until it either completes or reaches a method call c.m(e) which is blocked by Π.
Formally, Σ;Π ` P =⇒ Σ′ `⊥ P ′ where P ′ = letx = c.m(e) in P ′′ such that
[Σ′,n] 1 ↓ c.m for some n ∈ Π.

6.5 Concurrency

To get an idea of how contexts act to synchronise parallel processes let us look
at a simple abstract scenario. Take two sequential processes P1 and P2 running
concurrently in a closed environment. This means (i) none of the two threads
forks any children (and thereby creates nested inner instances of a synchronisa-
tion protocol) and (ii) the threads have sole access to shared objects and need
not synchronise with their joint environment.

Let Σ be an object context modelling a given initial memory in which the
processes are interacting. Generally, the execution covered by an sstep

Σ;⊥0 ` P1 ⊥||⊥ P2
m
=⇒ Σ′ `k′ P ′1 k′1||k′2 P

′
2 (12)

only involves method calls m from one of the two threads Pi that are enabled
under their associated object protocol given the prediction ⊥0 for the environ-
ment. The initial can prediction ⊥0 models a static environment in which the
process P1 ⊥||⊥ P2 is not stopped by any externally pending object accesses but
can freely run to completion. However, the child threads P1 and P2 will have
to synchronise with each other to implement the object protocols. This is done
through the predictions Πi = can(Pi) extracted from their residual process code.
The predictions, obtained by syntactic recursion as defined in Fig. 16, specify (as
an over-approximation) the possible method calls pending Pi (for well-formed
processes). These are exchanged between the sibling threads and used as locks
to ensure non-confluent method calls are executed in the prescribed determinis-
tic order. The predictions can also be initialised with the sound and maximally
conservative Πi = >.

The rules for parallel composition permit us to create an sstep (12) by
scheduling any of the two threads. Suppose, we decide to run process P1 first.
This means we execute P1 in the extended context Σ;Π2

Σ;Π2 ` P1 =⇒ Σ′ `k′1 P
′
1 (13)

in which Π2 are the predictions recorded for the concurrent sibling P2. This has
the effect that P1 will not execute a method call c.m(e) if another non-confluent

53

method call c.m′(e′) with higher priority is predicted to happen in P2 by Π2.
If P1 reaches such a method call c.m(e), it will block. When P1 finally yields
back with object state Σ′ and residual process P ′1, it exports in Π ′1 = can(P ′1)
any method calls still pending on its side, including the method call it blocks
on. Taking into account that ⊥0 ⊗ Π2 = Π2, the rule for parallel composition
lifts (13) to give an initial sstep of the composition:

Σ;⊥0 ` P1 ⊥||⊥ P2 =⇒ Σ′ `k′ P ′1 k′1||⊥ P2 (14)

with completion code k′ = k′1 u ⊥ = k′1. If the sstep (13) is not maximal, then
we can extend the reduction (13) and re-schedule P ′1 from P ′1 k′1||⊥ P2 in (14).

If the sstep (14) is maximal, then P ′1 is either stable, i.e., can(Π ′1) ∈ {⊥0,⊥1},
or of the form P ′1 = letx = c.m(e) in P ′′1 where it blocks on the method c.m(e)
because [Σ′, Π2] 1 ↓ c.m(v), where v = eval(e). We can now switch over the
other process P2 to make progress:

Σ′;Π ′1 ` P2 =⇒ Σ′′ `k′2 P
′
2. (15)

Assuming, that (15) is maximal we reach a state in which P ′2 is either stable or
blocked. In the parallel composition we obtain

Σ′;⊥0 ` P ′1 k′1||⊥ P2 =⇒ Σ′′ `k′′ P ′1 k′1||k′2 P
′
2

where k′′ = k′1 u k′2. Since now in the parallel composition P ′1 k′1
||k′2 P ′2 the

prediction of P ′2 has narrowed to Π ′2 = can(P ′2), the first process P ′1 blocked
on c.m(e) may be enabled. Specifically, we may find [Σ′′, Π ′2] ↓ c.m(v) and
therefore, say,

Σ′′;Π ′2 ` P ′1 =⇒ Σ′′′ `k′′1 P
′′
1 (16)

which implies

Σ′′;⊥0 ` P ′1 k′1||k′2 P
′
2 =⇒ Σ′′′ `k′′′ P ′′1 k′′1

||k′2 P
′
2

with k′′′ = k′′1 u k′2. Observe that the change from [Σ′, Π2] to [Σ′′, Π ′2] is a
contraction of the control context arising from a sstep of P2 that unlocks P ′1.

In this way, we can switch arbitrarily between both threads, until we stabilise
or block, each time reducing the control context for the other thread. Overall,
this generates an iterated sequence of configurations

Σn1+n2 ;⊥0 `kn1+n2 P
n1
1 k

n1
1
||kn2

2
Pn2
2

with increasingly reduced reactions Pni
i . We will show (Thm. 2) that for clock-

guarded processes this sequence must converge to a fixed point Pni
i = Pni+1

i

after a finite number of steps. The fixed point then determines if all variables
receive a defined value and both threads complete (terminate or pause), i.e., Pni

i

is kni
i -stable. Otherwise, if a thread i = 1, 2 stutters on an incomplete prediction

Πni
i = can(Pni

i) 6∈ {⊥0,⊥1}, then the the program is not constructive and must
be rejected.

54

Example 8. Let us animate the semantics on the program snippet

P || Q =df (MT.stop; MT.setDirectionUp) || MT.direction

taken from the lift controller introduced in Sec. 3.2. Considering our syntactic
conventions, the DCoL long forms of P and Q are

P =df let = MT.stop in let = MT.setDirectionUp in skip

Q =df let = MT.direction in skip.

Since MT’s policy is stateless we always have Σ# = ε. The first sstep is then ex-
ecuted from the global constructive context Σ;Π with no concurrent prediction
Π = ⊥0. This gives initial configuration Σ;Π `0 P || Q. Note that

can(P) = {(MT.stop MT.setDirectionUp, 0)}
can(Q) = {(MT.direction, 0)}.

Then the only applicable reduction rules of Fig. 15 are Par for parallel com-
position. Using rules Par1 or Par2 we can execute P in context Σ;ΠQ where
ΠQ = ⊥0 ⊗ can(Q) = can(Q) or we sstep Q in context Σ;ΠP with rule Par1 or
Par2 where ΠP = ⊥0 ⊗ can(P) = can(P).

Notice that MT policy gives direction the lowest precedence and so the policy
enabling forQ fails, i.e., [Σ,ΠP] 1 ↓MT.direction. Indeed, we have (Σ.MT)# MT

stop→ direction. If we execute Q using Par3 we only get the empty sequence

Σ; can(P) ` Q ε
=⇒ Σ `⊥ Q Par3

Σ;⊥0 ` P ⊥||⊥ Q
ε

=⇒ Σ `⊥ P ⊥||⊥ Q

On the other hand, the both method calls of P are enabled as the only method
MT.direction fromΠQ does not have precedence over MT.stop or MT.setDirection.
Formally, we have [Σ,ΠQ] ↓MT.stop and [Σ1, ΠQ] ↓MT.setDirection where
Σ1 = Σ �MT.stop. Then, with rule Par1,

Cmp1
Σ2;ΠQ ` skip

ε
=⇒ Σ2 `0 skip Let1

Σ1;ΠQ ` let = MT.setDirection in skip
m2=⇒ Σ2 `0 skip Let1

Σ;ΠQ ` let = MT.stop in P1
m1m2====⇒ Σ2 `0 skip Par2

Σ;⊥0 ` P ⊥||⊥ Q =⇒ Σ2 `⊥ Q

where m2 = MT.setDirection, m1 = MT.stop and

Σ2 = Σ �MT.stop�MT.setDirection.

The single sstep Σ;⊥0 ` P ⊥||⊥ Q =⇒ Σ2 `⊥ Q has completely evaluated P ,
thereby generating an updated memory Σ2. Now we can switch over and run Q
from Σ2:

Cmp1
Σ3;⊥0 ` skip

ε
=⇒ Σ3 `0 skip Let1

Σ2;⊥0 ` let = MT.direction in skip
m3=⇒ Σ3 `0 skip

55

where m3 = MT.direction and Σ3 = Σ2�MT.direction. Overall, we have obtained
a sequence of method calls m = m1m2m3 in a reduction

Σ ` P||Q m⇒⇒ Σ3 ` skip,

forming a terminating macro-step (see Def. 6). ut

6.6 Determinacy, Termination and Constructiveness

Determinacy is a trivial property of the constructive semantics of Esterel [9,2]
resulting from the fact that the [must , can] behaviour of a parallel composition
P || Q is a function of the [must , can] contribution of its parallel processes P
and Q. In DCoL we compute the behaviour not through a function but an sstep
scheduling relation which reduces P and Q in an interleaving fashion. This is
necessary to carry around memory for the imperative update of data structures.
As a consequence, the reduction rules for parallel processes P || Q are non-
deterministic. We can first take an sstep of P , which modifies the object context
in some way, and then continue to let Q take an sstep possibly executing further
method calls on the object sequentially afterwards. Or, we first execute the
accesses from Q and then from P . Due to the coupling through the object state
there is a risk of data races, whence it is not obvious why the result should be
the same.

Determinacy of DCoL is a result of two components, monotonicity of policy-
conformant scheduling and object coherence. Monotonicity ensures that when-
ever a method is executable and policy-enabled it remains policy-enabled un-
der arbitrary micro steps of the environment. Symmetrically, the environment
cannot be blocked by a thread taking policy-enabled computation steps. This
monotonicity, expressed in the following Prop. 6 is a result of the properties of
policy-enabling and policy-conformant scheduling.

An environment step Σ;Π
n−→→ Σ1;Π1 captures a change of context per-

formed by executing a method sequence n from the prediction Π. Formally, it is
defined by the condition that (i) the method sequence n must both be enabled
in state Σ, i.e., Σ ↓n, and (ii) be predicted by Π, i.e., n�Π1 ⊆ Π, and (iii)
the resulting object state Σ1 arises by executing n on Σ, i.e., Σ1 = Σ � n. We
suppress the label n and write Σ;Π −→→ Σ1;Π1 if the sequence of method calls
is irrelevant. Notice that Σ;Π −→→ Σ;Π1 whenever Π1 ⊆ Π. It is easy to show
that environment steps preserve enabling (cf. Lem. 9), i.e., if Σ;Π

n−→→ Σ1;Π1

and [Σ,Π] ↓m, then also [Σ1, Π1] ↓m. The following Monotonicity Propo-
sition 6 shows that for coherent objects every process execution is preserved
under environment steps.

Proposition 6 (Monotonicity). Suppose all objects are policy-coherent. Let

Σ;Π ` P
m
=⇒ Σ′ `k′ P ′ be an sstep of process P and Σ;Π

n−→→ Σ1;Π1 an
environment step such that [Σ,m] ↓n. Then, Σ1;Π1 ` P

m
=⇒ Σ′1 `k′ P ′.

56

The second building block for determinacy is object coherence. Consider a
context Σ;ΠQ in which we run an sstep of P with prediction ΠQ for concurrent
process Q, resulting in a final memory Σ′P arising from executing a sequence mP

of method calls from P . Because of the policy constraint, the sequence mP must
be enabled under all predictions n ∈ ΠQ, i.e., [Σ,n] c mP . Suppose, on the
other side, we sstep the process Q in the same memory Σ with prediction ΠP for
P , resulting in an action sequence mQ and final memory Σ′Q. Then, by the same
reasoning, [Σ,n] c mQ for all n ∈ ΠP . But since mP is an actual execution
of P it must be in the prediction for P , i.e., mP ∈ ΠP and symmetrically,
mQ ∈ ΠQ. But then we have [Σ,mQ] c mP and [Σ,mP] c mP which means
Σ c mP � mQ. Now if the semantics of method calls is policy-coherent then
the Monotonicity Property 6 can be exploited to derive a confluence property
for processes which guarantees that mP can still be executed by P in state Σ′Q
and mQ by Q in state Σ′P , and both lead to the same final memory. This is the
content of following main Diamond Property Thm. 1. It generalises Prop. 5 for
action sequences to processes generating such method calls.

Theorem 1 (Diamond Property). If all objects are policy-coherent then the

sstep semantics is confluent. Formally, given two derivations Σ;Π ` P
m1==⇒

Σ1 `k1 P1 and Σ;Π ` P m2==⇒ Σ2 `k2 P2, Then, there exist Σ′, k′ and P ′ such

that Σ1;Π ` P1
n1=⇒ Σ′ `k′ P ′ and Σ1;Π ` P2

n2=⇒ Σ′ `k′ P ′.

The Diamond Property 1 shows that no matter how we schedule the ssteps
of local threads to create an sstep of a parallel composition, the final result will
not diverge. This does not guarantee completion of a process. However, it implies
that the question of whether P blocks or makes progress does not depend on
the order in which concurrent threads are scheduled. Either a process completes
or it does not. There are no two different ways in which a process can block
or complete. All ssteps in a process can be scheduled with maximal parallelism
without interference.

A main program P is run at the top level in a “environmentally closed” form
of reductions (11) where the environment prediction is empty Π = ⊥0 and thus
acts neutrally. We iterate such ssteps to construct a macro-step reaction. Let us
write

Σ ` P =⇒ Σ′ ` P ′ (17)

if there exists k′, m such thatΣ;⊥0 ` P
m
=⇒ Σ′ `k′ P ′. One shows that =⇒ is well-

founded for clock-guarded processes in the sense that it has no infinite chains.
To prove termination we measure the progress of an iterated sstep reduction
by way of a convergence ordering P � P ′ (Def. 5 in the appendix) such that
whenever Σ ` P =⇒ Σ′ ` P ′ we have P � P ′.

Definition 5. The convergence ordering P � P ′ on processes is given as the
reflexive, transitive and congruence closure of the following primitive contraction
rules

57

– if e thenP elseQ ≺ P
– if e thenP elseQ ≺ Q
– letx = c.m(e) in P ≺ P{v/x} for every value v ∈ D
– P;Q ≺ Q if P is 0-stable
– rec p. P ≺ P{rec p. P/p}. ut

We show that � is well-founded for clock-guarded processes (Lem. 10 in the
appendix) in the sense that it has no infinite increasing chains. We can then infer
that all residual processes obtained by iterating ssteps from a process P are �-
reducts of P which must eventually reach a final process that is not �-increasing
any more.

Theorem 2 (Termination). Let P0, P1, P2, . . . and Σ0, Σ1, Σ2, . . . be sequences
of processes and memories, respectively, with Σi ` Pi =⇒ Σi+1 ` Pi+1. If P0 is
clock-guarded then Pi � Pi+1 and there exists n ≥ 0 such that Σn = Σi and
Pn = Pi for all i ≥ n.

The fixed point semantics will iterate (17) until it reaches a P ∗ such that
P � P ∗ and Σ∗ ` P ∗ =⇒ Σ∗ ` P ∗. By Termination Thm. 2 this must exist for
clock-guarded processes. If can(P ∗) = ⊥0 then P ∗ is 0-stable and the program
P has terminated. If can(P ∗) = ⊥1, the residual P ∗ is pausing and the next
macro state of P .

Definition 6 (Macro Step). We write

Σ ` P m⇒⇒ Σ′ ` P ′ (18)

if there exist processes P0, P1, P2, . . . , Pn and sequences of method calls m1,
m2, . . .mn such that for all 1 ≤ i ≤ n,

Σi−1;⊥0 ` Pi−1
mi==⇒ Σi `ki Pi,

where m = m1 m2 · · ·mn, P0 = P , Σ0 = Σ, Σn = Σ′ and Pn = P ′. We
call 18 a macro step if (18) is maximal, i.e., if Σ′ ` P ′ ⇒⇒ Σ′′ ` P ′′ implies
Σ′ = Σ′′ and P ′ = P ′′. The macro step is called stabilising if (i) the final process
P ′ is stable, i.e., kn 6= ⊥ (by Lem. 5) and (ii) the clock is admissible, i.e., if
(Σ′.c)# � σ is defined for all c ∈ O. The macro-step is pausing if kn = 1 and
terminating if kn = 0. ut

When the method sequence m is irrelevant we write Σ ` P ⇒⇒ Σ′ ` P ′

instead of Σ ` P m⇒⇒ Σ′ ` P ′. Note that condition (i) on the final completion
code k′, the definition of macro steps expresses a safety property: No thread in
P ′ may be blocked on a method call. In contrast, condition (ii), which requires
the admissibility of the clock function σ, expresses a liveness property: The
execution of m must bring each object into a policy state in which the clock can
tick. In this way, an object policy can make the clock wait for certain method
calls to happen before it permits the clock to proceed.

58

Given a macro-step Σ ` P ⇒⇒ Σ′ ` P ′, then the next tick starts in memory
Σ′′ with Σ′ −σ→ Σ′′ (see page 48) and process P ′ = skip if the macro-step
is terminating, or the process σ(P ′) if it is pausing, where σ(pause;P) = P ,
σ(P‖Q) = σ(P)‖σ(Q) and σ(P ;Q) = σ(P);Q. Note that the clock step Σ′ −σ→
Σ′′ only constrains the abstract policy state of each object, not necessarily their
memory content. In this way, we can model external environment objects which
introduce an arbitrary new memory Σ′′ with every clock tick. The Determinacy
Thm. 3 implies that all macro steps starting with the same Σ′′ must yield the
same instantaneous response. It does not say that all Σ′′ generated from a clock
step Σ′ −σ→ Σ′′ must be the same.

Theorem 3 (Macro Step Determinism). If all objects are policy-coherent,
then for two macro-steps Σ ` P ⇒⇒ Σ1 ` P1 and Σ ` P ⇒⇒ Σ2 ` P2 we have
Σ1 = Σ2 and P1 = P2.

A program is constructive if it generates an infinite sequences of stabilising
macro steps.

Definition 7 (Constructiveness). A program P is policy-constructive, for a
set of policy-coherent objects, if for arbritrary initial memory Σ all reachable
macro steps of P are stabilising. ut

A non-constructive program will, after some tick, end up in a fixed point
P ∗ with can(P ∗) 6∈ {⊥0,⊥1}. Then P ∗ is stuck involving a set of active child
threads waiting for each other in a policy-induced precedence cycle. Note that
policy-constructiveness guarantees deadlock-free schedulability. For determinacy
we also need policy-coherence of all objects. Finally, we present two important
results for DCoL showing that we are conservatively extending existing SP se-
mantics.

Finally, we present two important results for DCoL showing that we are
conservatively extending existing SP semantics. Thew follwing two fragments
are involved:

– A DCoL program using only sequentially constructive variables [56] as de-
scribed in Sec. 5.7 is called a DCoL-SC program.

– DCoL programs using only pure signals subject to the policy of Ex. 1 (Fig. 9)
are expressive complete for the pure instantaneous fragment of Esterel [9].
See also the discussions on page 24. Esterel signal emissions emit s are syn-
tactic sugar for s.emit();; A presence test pres s then P else Q is an
abbreviation of

if s.pres() thenP elseQ.

Sequential composition P;Q in Esterel behaves like a parallel composition in
which the schedule is forced to run P to termination before it can pass control
to Q. In DCoL this is (P;s′.emit();) || (s′.pres() then Q else skip) with
fresh signal s′ not occurring in either P or Q. This suggests the following
definition: A program P is a (pure instantaneous) DCoL-Esterel program if

59

(i) P only uses pure signals and (ii) P does not use pause or rec and (iii) P
does not contain sequentially nested occurrences of signal accesses.

Theorem 4 (Esterel and Sequential Constructiveness).

1. If an DCoL-Esterel program P is policy-constructive according to Def. 7 iff
it is Berry-constructive in the sense of [9].

2. If a DCoL-SC program P is policy-constructive according to Def. 7 then it
is sequentially constructive in the sense of [56].

1 CSOL module P10

2 void main() {

3 x, y = new SC bool

4 x.i(0); y.i(0); // s1

5 [x.u(1); // s2

6 let v = x.r in y.u(v); //

s3

7]

8 ||

9 [let v = y.r

10 in if (v == 0) // s4

11 then x.u(0); // s5

12]

13 }

y == 0
+

P10

x = 0

‐
x = 1

y = x

x,y = 0
s1

s2

s3

s4

s5prec

prec

Fig. 17. The program P10 is sequentially constructive but not policy-constructive.

It is interesting to note that the second statement in Thm. 4 is not invert-
ible. Policy-constructiveness for SC-variables induced by our semantics is more
restrictive than that given in [56]. The operational semantics of [56] defines a
program to be sequentially constructive if (i) there exists a policy-conformant
schedule and (ii) all policy-conformant schedules yield the same response. Now
consider the program P10 in Fig. 17 with Boolean SC-variables x and y. If P10 is
executed under free interleaving, i.e., without any synchronisation between the
threads, then its behaviour is non-deterministic. The schedule σ1 = s1, s2, s3, s4
yields x = y = 1, σ2 = s1, s4, s2, s3, s5 yields x = 0, y = 1 and the schedule
σ3 = s1, s4, s2, s5, s3 produces the final memory x = y = 0. However, enforcing
the SC-policy on x and y, we find that only the schedule σ1 is admissible. In
schedule σ2 variable x is written in s5 after it has been read in s3. In sched-
ule σ3 we have a violation on variable y which is written in s3 after it has
been read in s4. Hence, only one schedule is actually admissible and thus the
program is trivial deterministic under policy-conformant scheduling. To imple-
ment this operational definition of constructiveness back-tracking is needed. Our
sstep scheduling based on must-can statuses presented here is not as generous.

60

It rejects P10 as non-constructive. This is a more conservative interpretation
of sequential constructivess which does not depend on backtracking. There is
a good physical justificaton for this rejection, as a hardware circuit generated
from P10 is not delay insensitive; in that sense, we follow the argument for
Berry-constructiveness, which is also grounded in delay insensitive circuits.

7 Related Work

Traditional threading models are non-deterministic to start with and the pro-
grammer is burdened with the immense task of pruning this non-determinism.
This is increasingly challenged by views such as those of Lee [38] or Bocchino et
al. [15] who rightly argue in favour of language support for determinism. Many
languages have been proposed in this spirit, namely to offer determinism as a
fundamental language design principle. We will consider these attempts under
the several categories.

Fixed protocol for shared data. Recent examples range from specialised
languages for embedded systems such as SHIM [28] to a general-purpose paral-
lel programming model called concurrent revisions developed by Microsoft [19].
These approaches introduce an unique protocol for data exchange between con-
current processes.

SHIM [28] introduces a model for combined hardware software systems typ-
ically encountered in embedded systems. Here, the concurrent processes (either
hardware or software) communicate using point to point (restricted) Kahn chan-
nels using blocking reads and blocking writes. SHIM programs are shown to be
deterministic by construction as the states of each process is finite and deter-
ministic and further the data produced and consumed over any channel is also
shown to be deterministic.

While SHIM is developed as a language for programming embedded systems
without any focus on explicit parallelism extraction, concurrent revisions [19]
introduce a generic programming model for parallel programming that is deter-
ministic. This model supports fork-join parallelism and processes are allowed
to make concurrent modifications to shared data by creating local copies that
are eventually merged using suitable (programmer specified) merge functions at
join boundaries.

However, like the deterministic SP programming model [7] introduced earlier,
both SHIM and concurrent revisions lack support for more expressive shared
ADTs essential for programming complex systems. Caromel et al. [20], on the
other hand, offer determinism with asynchronously communicating active objects
(ADTs) equipped with a process calculus semantics. Here, an active object is
a sequential thread. Active objects communicate using futures and synchronise
via Kahn-MacQueen [34] co-routines for deterministic data exchange.

Our approach subsumes Kahn buffers of SHIM and the local-copy-merge pro-
tocol of concurrent revisions by an appropriate choice of method interface and

61

policy. None of these approaches [28,19,20] uses a clock as a central barrier
mechanism like we advocate here for the SMoC.

The developed framework also subsumes the communication protocols of
earlier deterministic languages such as SHIM and concurrent revisions. SHIM
buffers are a subset of Kahn buffers, which can be modelled using our policies.
Specifically, SHIM buffers are modelled in our framework as a two-way handshake
protocol between sending and receiving processes. The local copy merge protocol
of concurrent revisions is also nicely subsumed in the current framework in the
following way. Like concurrent revisions, we support the fork-join paradigm. At
every fork, a copy method call can be made to create local copes and writes
to these copies have no precedence or admissibility requirements, except that
the write are parametrised by the respective thread IDs. Such parametrisation
of the write method may be automatically generated by the compiler. At the
join, these parametric copies are merged using the user specified merge function
that merges these copies in a fixed order, like concurrent revisions. Thus, our ap-
proach subsumes the fixed protocol -based approaches and generalises the existing
clock-driven shared objects, which use either signal -based object communication
for determinism or have no determinism guarantee when communicating with
objects through so called interface objects.

Coherent memory models for shared data. Whether clocked or not, our
approach depends on the availability of object classes that are provably coherent
for their policy. If we do not want to burden the programmer with this verification
task it is sensible to restrict instantiation to pre-defined language or library
classes. Besides the standard objects of SP (data-flow, sequentially constructive
variables, Kahn channels, signals) such objects can be obtained from existing
research on coherent memory models [30,16].

Unlike the protocol oriented approaches above, some approaches have been
developed based on coherency of the underlying memory models [30] especially
for shared objects. While object oriented (OO) languages such as Java and C++

have gained immense popularity due to their seamless encapsulation of ADTs,
the challenge of concurrent programming using objects is an active area of re-
search. Bocchino et el. [16] propose deterministic parallel Java (DPJ) which has
a type and effect system to ensure that parallel heap accesses remain safe. Data
structures such as arrays, trees, and sets can be accessed in parallel as long as
accesses can be shown to use non-overlapping regions.

Grace [8] promises a deterministic run-time through the adoption of fork-
join parallelism combined memory protection and a sequential commit protocol.
However, there is no guarantee on the determinism of such custom synchroni-
sation protocols. These have to be additionally verified using custom and often
expensive proof systems [27]. Also, conventional OO languages have no support
for reactive computation, essential for most safety-critical systems.

A powerful technique to generate coherent shared memory structure for func-
tional programs has recently been proposed by Kuper et al. [36]. They introduce

62

lattice-based data structures, called LVars, in which all write accesses produce
a monotonic value increase in the lattice and all read accesses are blocked until
the memory value has passed a read-specific threshold. Each variable’s domain is
organised as a lattice of states with ⊥ and > representing an empty new location
and an error, respectively. A write operation of the form put lv v computes the
least upper bound (join) of the current state of lv and the value v. The read
operation get lv θ blocks until the state of lv reaches a value in the threshold set
θ, and from then on any execution of get lv θ will return the same value indepen-
dently of any interleaved execution of a put. Because of monotonicity all writes
are confluent with each other. Since reads are blocked each LVar data type can
thus be used in DCoL as a coherent class of objects with a threshold-determined
policy.

Note that [30,16,8,36] do not consider clocked objects and [36] also do not
treat destructive sequential updates as we do.

Clock-driven shared objects. Object encapsulation is not entirely unknown
in reactive programming. The idea of reactive object model (ROM) [18] was
first introduced by Boussinot et al. and subsequently further refined [49] and
combined with OO standards such as UML [5]. Here a program is a collection of
reactive objects that operate synchronously relative to a global clock, similar to
SP. Each object, in turn, is an encapsulation of a set of methods and data, where
the methods share this data. ROM relied on a simplified assumption, where each
method invocation is separated into instants.

André et al. [4] generalised the ROM idea to that of synchronous objects,
which behave like synchronous modules (in Esterel or Lustre). The program is
divided into a collection of synchronous and standard objects. While the latter in-
teract using messages, the former use signals like in SP. Communication between
standard and synchronous objects has to be managed using special interface ob-
jects. The framework supports OO features such as aggregation, encapsulation
and inheritance yet communication is restricted to standard Esterel-style signals.
However, the issue of determinism for the composition of synchronous objects
with standard objects is not considered.

A concrete implementation of synchronous objects in Java is proposed in [42].
Here, a run-time system is used to provide a cyclic schedule of the objects during
an instant. This approach assumes that outputs from the objects can be read
only in the next instant (similar to the SL programming language [17]) and so
does not support instantaneous communication like we do.

Finally, it should be mentioned that synchronous objects arise naturally in
modular compilation [41,29,14,45]. The first time these have been exposed at
the language level for use by programmers is in [21]. That work has strongly
inspired our use of policies here. While the approach of [21] offers mechanism
for deterministic management of shared variables through ADT-like interfaces it
has three serious limitations: (1) Modes express data-flow equations rather than
imperative method procedures and so are not directly suitable for control-flow

63

programming; (2) Policies do not distinguish between two modes being called
sequentially by the same thread, which can be permitted, and two methods being
called by different threads in parallel, which may have to be prohibited. This
makes policies too restrictive in the light of the recent more liberal notion of
sequential constructiveness [56]; (3) Finally, and most importantly, the notion of
policy-soundness does not use policies prescriptively as a contract to be fulfilled
by the scheduler but instead only descriptively as an invariant of the program
code. Hence, policies in [21] cannot be used to generalise the semantics of SP
signals to shared ADTs.

The second source of inspiration is the sequentially constructive model of
synchronous computation introduced recently in [56] for the synchronous im-
perative core language SCL. This and the subsequent investigation [2] made
it clear how the constructive semantics of Esterel can be reconstructed from a
scheduling point of view as standard destructive variables plus synchronisation
protocol. The present work can be seen as a combination of [56] (sequential con-
structiveness) and [21] (policies). This core acts as an intermediate language for
the graphical language SCCharts [54] and the textual language SCEst [46] which
are proposed as sequentially constructive extensions of the well-known control-
flow languages SyncCharts [3] and Esterel [43]. By presenting our new analysis
of sequential constructiveness for SCL our results become applicable both for
SCCharts and SCEst.

The term ‘constructive’ semantics has been coined by Berry [9]. In [2] it was
shown how it can be recoded as a fixed-point in an interval domain which we
generalise here to policy enabling statuses [µ, γ]. Talpin et al. [50] recently gave
a constructive semantics of multi-clock synchronous programs using a 6-valued
lattice domain to model signal synchronisation via fixed-point semantics. It is
an open problem if this lattice can be generated as a policy domain PC in our
sense and how our approach could be generalised to multiple clocks.

8 Conclusion

To the best of our knowledge, we offer the first formal semantics for clocked
synchronous objects that permit destructive updates within a macro-step and
preserve determinacy. This semantics suggests a novel software engineering ap-
proach combining clocks from SP with the notion of ADT encapsulation from
OO, through an additional layer of concurrency control using policies. The poli-
cies discussed in the report include Esterel signals [10], sequentially constructive
variables [56], data-flow variables and registered variables in Lustre [33], chan-
nels used in Kahn processes [34] and other, more general, types of object sharing,
not possible before. The fact that these enforce determinacy distinguishes them
from the policies in the BDL framework [13] for C++ and because they they
permit destructive updates makes them different from the policies in the work
of Caspi et al. [21].

64

We introduce a kernel language (DCoL) for clock synchronised shared ob-
jects. A big-step fixed-point semantics for DCoL is developed for which we prove
determinacy and termination of constructive programs. We show that policy
interfaces are generic enough to subsume existing SP such as Esterel signals,
the recently proposed extension of sequentially constructive variables or more
expressive frameworks such as Kahn data-flow channels. This opens the door to
libraries of shared objects encapsulating data and control determinately under
different degrees of clock synchronisation.

Our work focuses on the mathematical semantics of policies and construc-
tive execution of DCoL. We make some simplifying assumptions that render
the theory somewhat less general than it could be. First, we assume all objects
are pre-programmed and imported as compiled objects. In future work we plan
to extend the language to provide constructs to encapsulate DCoL programs
as objects along the lines of [21]. This will bring us to explore nested objects
and inter-object policies such as “doors must not not open when lift is in be-
tween floors”. Proving coherence for nested objects amounts to verifying that
the outer policy is strong enough to ensure the methods validate the policies of
the shared inner objects. A second limitation is our assumption that all method
calls are atomic. We believe the theory can be generalised for non-atomic meth-
ods albeit at the price of a significant increase in the complexity of calculating
can predictions. Third, method parameters are passed by-value rather than “by
reference”. This is necessary for having objects imported as black box exter-
nal code. Method parameters passing objects by-reference would also introduce
aliasing issues which we do not address. Fourth, in our present setting the policy
update Σ � c.m does not observe method parameters. This is an abstraction
to facilitate static analyses. In principle, to increase expressiveness, the method
parameters could be included, too, but again complicate over-approximation for
can information.

Our next steps will be to construct a compiler for DCoL including construc-
tiveness analyses. We envisage that for most practical purposes simple static
cycle-checks will suffice using conservative history-free over-approximations of
the policy constraints. This is as efficient as existing analysis in existing SP
compilers but fully-generic in the policies. We conjecture that for finite state
binary programs and finite-state policies the full constructiveness analysis ac-
cording to Def. 7 has the same complexity as the constructiveness analysis for
Esterel. Finally, we plan to extend our theory to permit policies express liveness
constraints as in [21]. This can be done by adding explicit accept states to the
policy automaton.

Who is Policing the Policies? Policies are ADT interface contracts separat-
ing the implementation and the use context of an object. They depend on both
sides of the interface to cooperate. On the user side this is policy-conformant
scheduling and on the implementor side this is policy-coherence.

65

Policy-conformant scheduling can be enforced at run-time or statically at
compile time. If this is impossible, the constructiveness problem manifests itself
as a run-time deadlock or policy error, or by the compiler rejecting code gen-
eration. Schedulability is an interplay between the policy and the application
program. When a constructiveness violation occurs the policy can be relaxed or
the program changed. The former pushes the problem to the implementor side of
the contract who then faces a stronger coherence requirement. The latter forces
the user to refine the program adding more pauses to break the causality cycles
or disambiguating memory accesses with static single assignment. An example
of this has been presented in [46][Sec. IV].

Policy coherence, on the other side, can be enforced by buffering and isolation
of memory accesses. Depending on the intended object behaviour there is only
a limited amount of confluence that is possible between method calls without
losing the necessary semantic interaction between the methods. Also buffering
is memory expensive so the object implementor may have an interest in keeping
the policy strict. But then if the implementation is distributed. If the objects are
predefined in the language, like in Esterel or SCCharts, coherence is achieved
by the compiler and the run-time system. If the objects are themselves defined
by an application program it is the implementors responsibility to verify coher-
ence for the code implementing the objects’ methods. It is interesting to note
that if the objects are themselves synchronous programs and the tick function
is required to be deterministic, then checking coherence itself comes down to
checking constructiveness of the object code. This gives rise to a hierarchical
constructiveness verification task such as discussed in [21]. This can be done
using a theorem prover or assisted by a type checker. Since the purpose of this
report is to introduce the idea of policy-driven synchronous programming, we
leave such methodological aspects to future work.

References

1. J. Aguado, M. Mendler, R. v. Hanxleden, and I. Fuhrmann. Grounding syn-
chronous deterministic concurrency in sequential programming. In Proceedings
of the 23rd European Symposium on Programming (ESOP’14), LNCS 8410, pages
229–248, Grenoble, France, April 2014. Springer.

2. J. Aguado, M. Mendler, R. von Hanxleden, and I. Fuhrmann. Denotational fixed-
point semantics for constructive scheduling of synchronous concurrency. Acta In-
formatica, 52(4):393–442, 2015.

3. C. André. Semantics of SyncCharts. Technical Report ISRN I3S/RR–2003–24–FR,
I3S Laboratory, Sophia-Antipolis, France, April 2003.

4. C. André, F. Boulanger, M-A. Péraldi, J-P. Rigault, and G. Vidal-Naquet. Ob-
jects and synchronous programming. RAIRO-APII-JESA-Journal Europeen des
Systemes Automatises, 31(3):417–432, 1997.

5. C. André, M-A. Peraldi-Frati, and J-P. Rigault. Integrating the synchronous
paradigm into UML. In International Conference on the UML, pages 163–178,
2002.

66

6. S. A. Asadollah, D. Sundmark, S. Eldh, H. Hansson, and W. Afzal. 10 years of
research on debugging concurrent and multicore software: a systematic mapping
study. Software Quality Journal, pages 1–34, 2016.

7. A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Si-
mone. The Synchronous Languages Twelve Years Later. In Proc. IEEE, volume 91,
pages 64–83. IEEE Press, January 2003.

8. E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multithreaded pro-
gramming for C/C++. ACM sigplan notices, 44(10):81–96, 2009.

9. G. Berry. The Constructive Semantics of Pure Esterel. Draft Book, 1999. ftp:

//ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps.
10. G. Berry. The Foundations of Esterel. In Proof, Language and Interaction: Essays

in Honour of Robin Milner, pages 425–454. MIT Press, 2000.
11. G. Berry. Esterel v7: From verified formal specification to efficient industrial de-

signs. In M. Cerioli, editor, Fundamental Approaches to Software Engineering
FASE 2005, volume 3442 of LNCS, pages 1–1. Springer, 2005.

12. G. Berry and G. Gonthier. The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation. Science of Computer Programming, 19(2):87–
152, November 1992.

13. F. Bertrand and M. Augeraud. BDL: A specialized language for per-object reactive
control. IEEE transactions on software engineering, 25(3):347–362, 1999.

14. D. Biernacki, J-L. Colaço, G. Hamon, and M. Pouzet. Clock-directed Modular
Code Generation of Synchronous Data-flow Languages. In LCTES’08, Tucson,
AZ, USA, June 2008.

15. R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel programming must be
deterministic by default. In Proceedings of the First USENIX conference on Hot
topics in parallelism, pages 4–4, 2009.

16. R. L. Bocchino Jr, V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli,
J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A type and effect system for
deterministic parallel java. ACM Sigplan Notices, 44(10):97–116, 2009.

17. F. Boussinot and R. De Simone. The SL synchronous language. IEEE Transactions
on Software Engineering, 22(4):256–266, 1996.

18. F. Boussinot, G. Doumenc, and J-B. Stefani. Reactive objects. Annales des
télécommunications, 51(9-10):459–473, 1996.

19. S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually consistent
transactions. In European Symposium on Programming, pages 67–86, 2012.

20. D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous and deterministic ob-
jects. ACM SIGPLAN Notices, 39(1):123–134, 2004.

21. P. Caspi, J-L. Colac̃o, L. Gérard, M. Pouzet, and P. Raymond. Synchronous objects
with scheduling policies: Introducing safe shared memory in lustre. SIGPLAN Not.,
44(7):11–20, June 2009.

22. P. Caspi and M. Pouzet. Synchronous Kahn networks. In ICFP’96, conference on
Functional programming, pages 226–238, New York, NY, USA, 1996. ACM Press.

23. Etienne Closse, Michel Poize, Jacques Pulou, Patrick Venier, and Daniel Weil.
SAXO-RT: Interpreting Esterel semantic on a sequential execution structure. In
Florence Maraninchi, Alain Girault, and Eric Rutten, editors, Electronic Notes in
Theoretical Computer Science. Elsevier, July 2002. http://www.elsevier.com/

gej-ng/31/29/23/117/53/34/65.5.010.pdf.
24. A. Cohen, M. Duranton, Ch. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N-

synchronous Kahn networks: A relaxed model of synchrony for real-time systems.
In POPL’06, pages 180–193, New York, NY, USA, 2006. ACM.

67

ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
http://www.elsevier.com/gej-ng/31/29/23/117/53/34/65.5.010.pdf
http://www.elsevier.com/gej-ng/31/29/23/117/53/34/65.5.010.pdf

25. J.-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension of synchronous
data-flow with state machines. In ACM Int’l Conf. EMSOFT’05, 2005.

26. V. Dieckert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
27. Mike Dodds, Suresh Jagannathan, Matthew J Parkinson, Kasper Svendsen, and

Lars Birkedal. Verifying custom synchronization constructs using higher-order
separation logic. ACM Transactions on Programming Languages and Systems
(TOPLAS), 38(2):4, 2016.

28. S. A. Edwards and O. Tardieu. SHIM: A deterministic model for heterogeneous
embedded systems. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 14(8):854–867, 2006.

29. S.A. Edwards, V. Kapadia, and M. Halas. Compiling Esterel into Static Discrete-
Event Code. In SLAP’04, Barcelona, Spain, March 2004.

30. C. Flanagan and S. Qadeer. A type and effect system for atomicity. ACM SIG-
PLAN Notices, 38(5):338–349, 2003.

31. Adrien G. A Synchronous Functional Language with Integer Clocks. PhD thesis,
ENS Paris, 2016.

32. P. Le Guernic, T. Goutier, M. Le Borgne, and C. Le Maire. Programming real
time applications with SIGNAL. In Proceedings of the IEEE, volume 79, pages
1321–1336. IEEE Press, September 1991.

33. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow
programming language LUSTRE. Proc. of the IEEE, 79(9):1305–1320, Sep 1991.

34. G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress, pages 993–998, 1977.

35. C. D. Kloos and P. Breuer, editors. Formal Semantics for VHDL. Kluwer, 1995.
36. L. Kuper, A. Turon, N. R. Krishnaswami, and R. R. Newton. Freeze after writing:

Quasi-deterministic parallel programming with LVars. In Principles of Program-
ming Languages (POPL’14), pages 257–270, New York, USA, 2014. ACM.

37. E. A. Lee and T. M. Parks. Dataflow process networks. In Proceedings of the
IEEE, pages 773–799, May 1995.

38. E.A. Lee. The problem with Threads. Computer, 39(5):33–42, May 2006.
39. L. Mandel and M. Pouzet. ReactiveML, a reactive extension to ML. In Proceedings

of 7th ACM SIGPLAN International Symposium on Principles and Practice of
Declarative Programming (PPDP’05), Lisbon, Portugal, July 2005.

40. L. Morel. Efficient compilation of array iterators for lustre. In Synchronous Lan-
guages, Applications and Programming (SLAP 2002), Grenoble, April 2002.

41. H. Olivier, P. Laurent, Yann L, B, and N. Eric. Cronos: A Separate Compilation
Toolset for Modular Esterel Applications. In World Congress on Formal Methods,
volume 1709 of LNCS, pages 1836–1853. Springer, September 1999.

42. C. Passerone, C. Sansoe, L. Lavagno, R. McGeer, J. Martin, R. Passerone, and
A. Sangiovanni-Vincentelli. Modeling reactive systems in Java. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 3(4):515–523, 1998.

43. D. Potop-Butucaru, S.A. Edwards, and G. Berry. Compiling Esterel. Springer, 1st
edition, May 2007.

44. M. Pouzet. Lucid Synchrone, un langage synchrone d’ordre supérieur. Mémoire
d’habilitation, Université Paris 6, November 2002.

45. M. Pouzet and P. Raymond. Modular static scheduling of synchronous data-flow
networks - an efficient symbolic representation. Design Autom. for Emb. Sys.,
14(3):165–192, 2010.

46. K. Rathlev, S. Smyth, Ch. Motika, R. von Hanxleden, and M. Mendler. SCEst:
Sequentially Constructive Esterel. In MEMOCODE 2015, Texas, USA, 2015.

68

47. F. Rocheteau and N. Halbwachs. Pollux, a lustre-based hardware design envi-
ronment. In P. Quinton and Y. Robert, editors, Algorithms and Parallel VLSI
Architectures II, June 1994.

48. K. Schneider. The Synchronous Programming Language Quartz. Internal re-
port 375, Department of Computer Science, University of Kaiserslautern, Kaiser-
slautern, Germany, December 2009.

49. J-P Talpin, A. Benveniste, B. Caillaud, C. Jard, Z. Bouziane, and H. Canon. BDL, a
language of distributed reactive objects. In Object-Oriented Real-time Distributed
Computing, 1998.(ISORC 98) Proceedings. 1998 First International Symposium
on, pages 196–205. IEEE, 1998.

50. J.-P. Talpin, J. Brandt, M. Gemünde, K. Schneider, and S.K. Shukla. Constructive
polychronous systems. Sci. of Comp. Prog., 96(3):377–394, Dec. 2014.

51. Esterel Technologies. The Esterel v7 Reference Manual Version v7 30 – initial
IEEE standardization proposal. Technical report, Esterel Technologies, November
2005.

52. F Vahid and T Givargis. Embedded System Design: A Unified Hardware/Software
Introduction. John Wiley and Sons, 2002.

53. R. von Hanxleden. SyncCharts in C—A Proposal for Light-Weight, Deterministic
Concurrency. In EMSOFT’09, pages 225–234, Grenoble, France, Oct. 2009.

54. R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado,
S. Mercer, and O. O’Brien. SCCharts: Sequentially Constructive Statecharts for
safety-critical applications. In Proc. PLDI’14, Edinburgh, UK, June 2014. ACM.

55. R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika,
S. Mercer, and O. O’Brien. Sequentially Constructive Concurrency—A conserva-
tive extension of the synchronous model of computation. In Proc. DATE’13, pages
581–586, Grenoble, France, March 2013. IEEE.

56. R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika,
S. Mercer, O. O’Brien, and P. Roop. Sequentially Constructive Concurrency—A
conservative extension of the synchronous model of computation. ACM TECS,
13(4s):144:1–144:26, July 2014.

57. E. Yip, P. S. Roop, M. Biglari-Abhari, and A. Girault. Programming and timing
analysis of parallel programs on multicores. In 13th International Conference on
Application of Concurrency to System Design (ACSD’13), Barcelona, Spain, 8-10
July, 2013, pages 160–169, 2013.

69

A Appendix

A.1 Proofs of Section 4

Lemma 1. The set of pc executions m1 ||µ m2 satisfies the following symmet-
ric construction rules:

1. (m, 1) c ∈ mm1 ||µ m2 iff [µ,m2] ↓m and c ∈m1 ||µ�m m2.
2. (m, 2) c ∈m1 ||µ mm2 iff [µ,m1] ↓m and c ∈m1 ||µ�m m2.

Proof. We first show direction (⇐), i.e., that || is closed under the inductive
construction rules. It suffices to verify the first clause 1, since the constructions
and thus the proof are symmetric. Let [µ,m2] ↓m and c ∈m1 ||µ�m m2. Note
that by definition of enabling the assumption [µ,m2] ↓m implies µ c ↓m.
Hence the state µ � m exists. We claim that (m, 1) c is a policy-conformant
execution of mm1 and m2 from state µ according to Def. 3. Pick any action
(mt kt , t) of (m, 1) c such that (m, 1) c = a (mt kt , t) b. We distinguish two cases.

First, if the action is executed by thread t = 2 or by thread t = 1 but
kt = k1 ≥ 1, then the method mt kt lies inside c. This implies that there must
be a cut c = a′ (mt kt , t) b such that a = (m, 1)a′. From the assumption c ∈
m1 ||µ�m m2 we infer [µ�m�λ(a′), λ2−t(b)] c ↓mt kt applying the induction
hypothesis. But m�λ(a′) = λ(a) whence we have [µ�λ(a), λ2−t(b)] c ↓mt kt .
This is what we need for (m, 1) c = a (mt kt , t) b to be policy-conformant.

The second, more interesting case, is when the action (mt kt , t) is identical to
(m, 1), i.e., t = 1 and kt = k1 = 0. Then, a = ε and b = c. In particular, this
means λ(a) = ε and that λ2(c) = m2. Hence, the goal [µ � λ(a), λ2−t(b)] c

↓mt kt comes down to showing [µ,m2] c ↓m. But this is exactly our assump-
tion.

It remains to prove the directions (⇒) of clauses 1 and 2. Again, by sym-
metry it suffices to treat the first. We suppose (m, 1) c ∈ mm1 ||µ m2. We
must prove that [µ,m2] ↓m and c ∈ m1 ||µ�m m2. From our assump-
tion (m, 1) c ∈ mm1 ||µ m2 the definition of policy-conformance entails the
enabling [µ, λ2(c)] c ↓m. Clearly, m2 = λ2((m, 1) c) = λ2(c) and so we
have [µ,m2] c ↓m. This is the first item we are after. Next let us see that
c ∈m1 ||µ�m m2. To this end select any action as in c = a (mt kt , t) b. We must
show [µ � m � λ(a), λ2−t(b)] c ↓mt kt . But we have (m, 1) c = a′ (mt kt , t) b
with a′ = (m, 1)a. Thus, the assumption (m, 1) c ∈ mm1 ||µ m2 implies
[µ � λ(a′), λ2−t(b)] c ↓mt kt . Considering that µ � λ(a′) = µ �m � λ(a) we
have what we need. ut

Proposition 1. a ∈m1 ||µ m2 iff µ `m1 || m2
a−→→ µ� λ(a) ` ε || ε.

Proof. The proof is quite straightforward. Let a ∈ m1 ||µ m2. We prove by

induction on the combined length of m1 and m2 that µ ` m1 || m2
a−→→

µ � λ(a) ` ε || ε. When m1 = ε is empty the statement a ∈ ε ||µ m2 is the
same as µ ↓m2. On the other side it is not difficult to see that µ ` ε ||

70

m2
a−→→ µ� λ(a) ` ε || ε iff λ(a) = m2 and µ ↓m2. This proves Prop. 1 for

m1 = ε. Symmetrically we argue if m2 = ε.

Suppose both m1 and m2 are non-empty. Since a ∈ m1 ||µ m2 it cannot
be empty either, say a = (m, 1)a′ and m1 = mm′1. The case a = (m, 2)a′ is
symmetric. Lem. 1 implies [µ,m2] ↓m and a′ ∈ m′1 ||µ�m m2. The former
induces the step

µ ` mm′1 || m2
(m,1)→ µ�m `m′1 || m2

by the first rule in Fig. 12. By induction hypothesis, the latter means

µ�m `m′1 || m2
a′−→→ µ�m� λ(a′) ` ε || ε.

This makes the step rule in Fig. 12 applicable to give µ ` m1 || m2
a−→→

µ� λ(a) ` ε || ε overall.This proves direction (⇒) of the proposition.

The opposite direction (⇐) is just as simple. Given a derivation

µ `m1 || m2
a−→→ µ� λ(a) ` ε || ε. (19)

we argue by the length of this derivation that a ∈ m1 ||µ m2. If the step (19)
is derived by rule (S3), we must have a = ε and m1 = ε = m2. But then
a ∈m1 ||µ m2 is obvious because ε ∈ ε ||µ ε. If (19) is derived by rule (S4) we
must have a = aa′ and two derivations

µ `m1 || m2
a→ µ′ `m′1 || m′2 (20)

µ′ `m′1 || m′2
a′−→→ µ� λ(a) ` ε || ε, (21)

where (20) is obtained either via (S1) or (S2). Let us look at (S1), the case (S2)
being symmetrical. Then a = (m, 1), m = mm′1, m2 = m′2, µ′ = µ �m and
[µ,m2] ↓m. Note that µ�λ(a) = µ�λ((m, 1)a′) = µ�m�λ(a′). Considering
this, the derivation (21) can be passed to the induction hypothesis which implies
a′ ∈m′1 ||µ�m m2. This can be combined with [µ,m2] ↓m and Lem. 1 yields
(m, 1)a′ ∈ mm′1 ||µ m2 which is our desired goal a ∈m1 ||µ m2. ut

Lemma 2. If [µ,mm] c ↓n and [µ,n] c ↓m, then [µ�m,m] c ↓n.

Proof. We prove the Lemma by induction on the length of n. For n = ε the
statement is trivial. So, let n = nn′ and [µ,mm] c ↓nn and [µ, nn] c ↓m.
Using Def. 2 the former unfolds into [µ,mm] c ↓n and [µ � n,mm] c ↓n.
Now, considering [µ, nn] c ↓m and [µ,mm] c ↓n together, under Def. 2,
implies µ c ↓m, µ c ↓n and both µ 1c m → n and µ 1c n → m (in
other words, µ c m � n) as well as [µ � n,n] c ↓m and [µ �m,m] c ↓n.
At this point we apply the induction hypothesis to [µ � n,mm] c ↓n and
[µ�n,n] c ↓m to conclude [µ�n�m,m] c ↓n, or in fact [µ�m�n,m] c ↓n,
because µ� n�m = µ�m� n by the confluence property of policies. The two
enabling [µ�m� n,m] c ↓n and [µ�m,m] c ↓n prove our inductive goal,
viz. [µ�m,m] c ↓nn. ut

71

Lemma 6. Concurrent enabling satisfies the following properties:

1. It is symmetric, i.e., if µ c m � n then µ c n � m.
2. µ c ↓m iff µ c m � ε.
3. We have µ c mm � nn if and only if µ c m � n and both µ�n c mm �

n and µ�m c m � nn.
4. If µ c m � n then for every c1, c2 ∈m⊗ n we have µ� c1 = µ� c2.
5. If µ c m � n1n2 then µ c m � n1.
6. If µ c m � nn then µ� n c m � n.

Proof. Symmetry of � is obvious from the definition. To verify clause 2, all we
need is to observe that [µ,m] c ↓ ε is always true and that [µ, ε] c ↓m is the
same as µ c ↓m by Def. 2. Hence, µ c ↓m if and only if µ c m � ε.

To show clause 3 in direction (⇐), suppose µ c m � n, i.e., the following are
true: µ c ↓n, µ c ↓m, µ 6c m→ n, µ 6c n→ m. Further let µ�n c mm �
n and µ�m c m � nn. The latter two facts, by Def. 2, expand into the four
enabling relations [µ� n,mm] c ↓n, [µ� n,n] c ↓mm, [µ�m,nn] c ↓m
and [µ � m,m] c ↓nn. Clause 2 of Def. 2 derives [µ � n,n] c ↓m from
[µ�n,n] c ↓mm, and likewise [µ�m,m] c ↓n from [µ�m,m] c ↓nn. But
from [µ�m,m] c ↓n we obtain [µ,mm] c ↓n under the given assumptions.
Together with the enabling [µ � n,mm] c ↓n this gives [µ,mm] c ↓nn by
clause 2 of Def. 2. By a completely symmetrical argument we get [µ, nn] c

↓mm, and thus µ c mm � nn which is what was to be shown.
Vice versa, clause 3 in direction (⇒), let us assume that µ c mm � nn,

i.e., [µ,mm] c ↓nn and [µ, nn] c ↓mm. The former yields

[µ,mm] c ↓n and [µ� n,mm] c ↓n

and the latter gives

[µ, nn] c ↓m and [µ�m,nn] c ↓m.

From [µ,mm] c ↓n we infer µ c ↓n and further if µ c ↓m then µ 1c m→ n
as well as [µ �m,m] c ↓n (provided µ 1c n → m). Likewise symmetrically,
from [µ, nn] c ↓m it follows that µ c ↓m and further if µ c ↓n then
µ 1c n→ m as well as [µ�n,n] c ↓m (provided µ 1c m→ n). In combination,
this means that first µ c ↓n and µ c ↓m, second µ 1c m→ n and µ 1c n→ m
and finally third, both [µ �m,m] c ↓n and [µ � n,n] c ↓m. In particular,
then, µ c m � n. Further, from [µ � m,m] c ↓n and [µ � m,nn] c ↓m
our Lem. 2 obtains [µ�m� n,n] c ↓m, or, because of confluence of policies,
equivalently [µ� n�m,n] c ↓m. This, together with [µ� n,n] c ↓m finally
yields [µ � n,n] c ↓mm by Def. 2. Combined with [µ � n,mm] c ↓n from
above this finally proves µ � n c mm � n. The proof of µ �m c m � nn
proceeds symmetrically, exchanging methods n and m.

Clause 4. We proceed by induction on m and n. If either n = ε or m = ε the
statement is trivial, because then m⊗ n = {m} or m⊗ n = {n}, respectively.

72

Fig. 18. Illustration of the constructions used in the proof of Clause 4.

Hence, c1 = c2 in the statement of Clause 4. So, let m = mm′ and n = nn′. The
assumption are µ c mm′ � nn′ and c1, c2 ∈ mm′ ⊗ nn′. Exploiting Clauses 1
and 3, the assumption implies

µ�m c m
′ � nn′ (22)

µ� n c mm′ � n′. (23)

Let us start with the case where both c1 and c2 start with m, i.e., c1 = mc′1
and c2 = mc′2, where c′1, c

′
2 ∈ m′ ⊗ nn′. Exploiting Clause 3, the assumption

implies µ�m c m
′ � nn′ and thus by induction hypothesis µ�c1 = µ�m�c′1 =

µ�m� c′2 = µ� c2. The argument is symmetrical if both c1 and c2 start with
n.

It remains to tackle the case where c1 = mc′1 and c2 = nc′2 (or the other
way around, with the role of n and m swapped) with c′1 ∈ m′ ⊗ nn′ and c′2 ∈
mm′ ⊗ n′. The following proof construction is visualised in Fig. A.1 for the
convenience of the reader. The sequences must pass through the other method
at some point. Say, c′1 = c′11nc

′
12 and c′2 = c′21mc′22, where m′ = c′11m

′′,
n′ = c′21n

′′, c′12 ∈ m′′ ⊗ n′ and c′22 ∈ m′ ⊗ n′′. By Clause 6 we infer that
µ � n c mc′11m

′′ � c′21n
′′ and symmetrically µ � m c c′11m

′′ � nc′21n′′.
From here, another application of Clause 6 yields µ� n�m c c

′
11m

′′ � c′21n′′
and symmetrically µ � m � n c c′11m

′′ � c′21n
′′. By Clause 3 we know that

µ c m � n and therefore

µ� n�m = µ′ = µ�m� n. (24)

Hence, µ′ c c
′
11m

′′ � c′21n′′. Also, observe that c′12 ∈m′′ ⊗ c′21n
′′ and so that

c′11c
′
12 ∈ c′11m

′′⊗ c′21n
′′. Symmetrically, we have c′21c

′
22 ∈ c′11m

′′⊗ c′21n
′′. This

73

means that by the induction hypothesis,

µ�m� n� c′11c
′
12 = µ� n�m� c′21c

′
22. (25)

The next step is to use Clauses 2 and 5 on (22) to get µ � m c c′11 � n,
remembering that m′ = c′11m

′′ and to get µ � n c m � c′21, remembering
that n′ = c′21n

′′. Again, applying the induction hypothesis on these concurrent
independencies, produces

µ�m� c′11n = µ�m� nc′11 (26)

µ� n�m� c′21 = µ� n� c′21m. (27)

With equations (22)–(26) we have all the transformations to prove the desired
result:

µ� c1 = µ�mc′11nc
′
12

= (µ�m� c′11n)� c′12

= (µ�m� nc′11)� c′12

= µ�m� n� c′11c
′
12

= µ� n�m� c′21c
′
22

= (µ� n�m� c′21)� c′22

= (µ� n� c′21m)� c′22

= µ� n� c′21mc′22

= µ� c2.

Clause 5. Suppose µ c m � n1n2. We prove µ c m � n1 by simultaneous
induction on (the sum of the sizes of) m and n1. If m = ε the statement is trivial
by definition and the fact that µ c ε � k is the same as µ c ↓k by Clause 2.
If n1 = ε, then the assumption µ c m � n2 gives [µ,n2] c ↓m which implies
µ c ↓m. But this is the same as µ m � ε by Clause 2. So let n1 = nn′1 and
m = mm′. We use Clause 6 to infer µ c m � n and both µ�n c mm′ � n′1n2

and µ�m c m
′ � nn′1n2. The induction hypothesis now permits us to remove

the suffix n2 to obtain µ�n c mm′ � n′1 and µ�m c m
′ � nn′1. Reassembling

via Clause 3 yields the desired result µ c mm′ � nn′1.

Clause 6. This follows from Clause 3 essentially. If m = ε then the assumption
µ c ε � nn is the same as µ c ↓nn from which it follows that µ c ↓n and
µ� n c ↓n. The latter is µ� n c ε � n which was to be shown. If m = mm′

the assumption is µ c mm′ � nn and the desired result follows directly from
Clause 3. ut

Proposition 2. Let µ c m � n for m,n ∈ M∗c . Then, for each split m =
m1 m2 and n = n1 n2 we have µ c m1 � n1 and µ�µ′ is defined for arbitrary
µ′ ∈m1 ⊗ n1, such that µ� µ′ c m2 � n2.

Proof. Omitted, follows from Lem. 6. ut

74

Proposition 3. Let µ ∈ Pc and mt ∈ M∗c with mt = mt0mt1 · · · mtnt
for

t ∈ {1, 2} two method sequences. Then µ c m1 � m2 iff a1 ⊗a2 = m1 ||µ m2,
where at = (mt0, t) (mt1, t), · · · (mtnt , t) ∈ A∗c,2.

Proof. The proof is by induction on the sum n1 + n2 of the lengths of m1 and
m2. If n1 + n2 ≤ 1 the statement is trivial to establish. On the one hand, we
have ε ⊗ a = {a} = a ⊗ ε and m1 ||µ ε = {a1 | µ c ↓m1} while ε ||µ m2 =
{a2 | µ c ↓m2}. Hence, the equality a1 ⊗ a2 = m1 ||µ m2, when a1 = ε or
a2 = ε is nothing but the statement µ c ↓mt for both t = {1, 2}. On the other
hand, both µ c ε � m and µ c m � ε are also equivalent to the admissibility
µ c ↓m, by clause 2 of Lem. 6. Thus, assume n1 ≥ 1 and n2 ≥ 1 for the rest
of the proof.

We start with the direction (⇒) and assume µ c m1 � m2. Because of
Prop. 2 the assumption µ c m1 � m2 implies that µ �m10 c m′1 � m2 and
µ �m20 c m1 � m′2, where m′t = mt1 · · · mtnt

. In addition, [µ,m2] c ↓m10

and [µ,m1] c ↓m20 by clause 2 of Def. 2. By induction hypothesis we infer
a′1 ⊗ a2 = m′1 ||µ�m10 m2 and a1 ⊗ a′2 = m1 ||µ�m20 m′2. These facts entitle
us to invoke clause 3 of Lem. 1 and conclude

a1 ⊗ a2 = (m10, 1) (a′1 ⊗ a2) ∪ (m20, 2) (a1 ⊗ a′2)

= (m10, 1) (m′1 ||µ�m10 m2) ∪ (m20, 2) (m1 ||µ�m20 m′2)

⊆m1 ||µ m2

as required. Observe that the opposite inclusion m1 ||µ m2 ⊆ a1⊗a2 is trivial.

Now turning to direction (⇐) we assume a1 ⊗ a2 ⊆m1 ||µ m2. This imme-
diately yields

(m10, 1) (a′1 ⊗ a2) ⊆m1 ||µ m2 (28)

(m20, 2) (a1 ⊗ a′2) ⊆m1 ||µ m2. (29)

Observe that a′1 ⊗ a2 6= ∅ and a1 ⊗ a′2 6= ∅ whatever a′1, a, a′2 and a2. Hence,
Lem. 1 from (28) and (29) directly implies that [µ,m2] c ↓m10, [µ,m1] ↓m20

as well as a′1⊗a2 ⊆m′1 ||µ�m10
m2 and a1⊗a′2 ⊆m1 ||µ�m20

m′2. This brings
into play the induction hypothesis to conclude that µ �m10 c m′1 � m2 and
µ�m20 c m1 � m′2. From here, then, clause 3 of Lem. 6 proves µ c m1 � m2.

ut

Proposition 4. Given sequences mt ∈ M∗c with mt = mt0mt1 · · · mtnt
for t ∈

{1, 2}. Let at = (mt0, t) (mt1, t), · · · (mtkt , t) for kt ≤ nt be prefixes of the action
sequences executing m1 and m2 in separate threads. If at ∈ pref (m1 ||µ m2)
for both t ∈ {1, 2}, then a1 ⊗ a2 ⊆ pref (m1 ||µ m2).

Proof. The proof is by induction on the sum k1+k2 of the lengths of both action
sequences. For k1+k2 ≤ 1 the statement of the proposition is trivial, because a⊗
ε = {a} = ε⊗a. In the sequel, let k1 ≥ 1 and k2 ≥ 1. Hence, mt = mt0 m

′
t ∈ M∗c

with mt = mt1 · · · mtnt and at = (mt0, t)a
′
t and a′ = (mt1, t) · · · (mtnt , t). We

75

assume that a1,a2 ∈ pref (m1 ||µ m2). Since a1 starts with action (m10, 1) and
a2 starts with (m20, 2), by the recursive characterisation of pc schedules, Lem. 1,
we must have m1 ||µ m2 = (m10, 1)T1∪(m20, 2)T2 where T1 = m′1 ||µ�m10 m2

and T2 = m1 ||µ�m20 m′2 such that, in addition, (m20, 2) ∈ pref (T1) and
(m10, 1) ∈ pref (T2). Further, since a1 ∈ pref (m1 ||µ m2) it follows that
a′1 ∈ pref (T1). Similarly, we get a′2 ∈ pref (T2). Hence, implicitly by unique-
ness of pc schedules, it follows that (m20, 2)−1 T1 = m′1 ||µ�m10m20

m′2 and
(m10, 1)−1 T2 = m′1 ||µ�m20m10 m′2. By the confluence property of precedence
policies Def. 1, we have µ�m10m20 = µ�m20m10. Let this policy state be re-
ferred to as µ′. Therefore, we get (m20, 2)−1 T1 = m′1 ||µ12

m′2 = (m10, 1)−1 T2.

Now pick an arbitrary interleaving b ∈ a1⊗a2. We claim that b ∈m1 ||µ m2.
We perform a case analysis on the first action of b. Without loss of general-
ity, say b = (m10, 1) b′ where b′ ∈ a′1 ⊗ a2. First note that a′1 ∈ pref (T1) =
pref (m′1 ||µ�m10

m2). We claim that we also have a2 ∈ pref (m′1 ||µ�m10
m2).

Recall that (m10, 1) ∈ pref (T2) and a′2 ∈ pref (T2) where T2 = m1 ||µ�m20 m′2.
By induction hypothesis, then,

(m10, 1)a′2 ∈ (m10, 1)⊗ a′2 ⊆ pref (m1 ||µ�m20
m′2).

But then a′2 ∈ (m10, 1)−1pref (m1 ||µ�m20
m′2) = pref ((m10, 1)−1(m1 ||µ�m20

m′2)) and from here, by Lem 1,

a′2 ∈ pref (m′1 ||µ�m20m10 m′2)

= pref (m′1 ||µ�m10m20 m′2)

= pref ((m20, 2)−1 T1)

= (m20, 2)−1 pref (T1).

Now this implies a2 = (m20, 2)a′2 ∈ pref (T1) = pref (m′1 ||µ�m10 m2) as
desired. Thus, at this point, we have a2 ∈ pref (m′1 ||µ�m10

m2) and a′1 ∈
pref (T1) = pref (m′1 ||µ�m10

m2). We can thus again invoke the induction hy-
pothesis and infer b′ ∈ a′1 ⊗ a2 ⊆ pref (m′1 ||µ�m10

m2) = pref (T1). Finally,
this means that b ∈ (m10, 1) pref (T1) = pref ((m10, 1)T1) ⊆ pref (m1 ||µ m2),
as desired. ut

Proposition 5 (Local Action Commutation). Let object c be locally coher-
ent for policy c and s# a# � α# for a state s ∈ Sc, call a ∈ Ac and method
sequence α ∈ A∗c . Then, s� a� α = s� α� a and s.a = (s� α).a.

Proof. Follows from local coherence Def. 4 by induction on the length of α. The
statement is trivial if α = ε. For the induction step let α = b β for b ∈ Ac.
The assumption s# a# � (b β)# implies both s# a# � b# as well as
(s � b)# a# � β#, considering that s# � b# = (s � b)# and (b β)# = b# β#.
By induction hypothesis and coherence then we thus get

s� a� b β = s� a� b� β = s� b� a� β = s� b� β � a = s� b β � a

and s.a = (s� b).a = ((s� b)� β).a = (s� b β).a. ut

76

Lemma 3. If γ 6= ∅, then [µ, γ] c ↓n iff µ c ↓n and n 6∈ γ̃(µ).

Proof. First note that the statement of the Lemma follows from showing that
for each m ∈ γ we have

[µ,m] c ↓n iff n ∈ N \ blockNc (µ,m) (30)

where N = {n | µ c ↓n}. For if [µ, γ] c ↓n then for each m ∈ γ we must have
[µ,m] c ↓n. By Def. 2, this implies µ c ↓n since γ 6= ∅. Thus, n ∈ N . Further,
by (30), n 6∈ blockNc (µ,m). But if for all m ∈ γ we have n 6∈ blockNc (µ,m) then a-
fortiori also n 6∈ γ̃(µ) by definition of γ̃. Vice versa, if µ c ↓n and n 6∈ γ̃(µ), then
for every m ∈ γ we have n 6∈ blockNc (µ,m) and therefore, by (30), [µ,m] c ↓n.
But this implies [µ, γ] c ↓n. Hence, (30) implies the Lemma.

In the following we prove (30) by induction on m. The base case m = ε
is trivial, considering that blockNc (µ, ε) = ∅ and [µ, ε] c ↓n iff n ∈ N . For
the inductive case, note that blockXc (µ′,m′) ⊆ X, whence if n 6∈ X, then also

n 6∈ blockXc (µ′,m′). Moreover, n ∈ blockXc (µ′,m′) iff n ∈ X ∩ block{n}c (µ′,m′).

(⇒) Assume m = mm′ and [µ,mm′] c ↓n. By Def. 2 this implies that n ∈
N and both (i) µ 1c m→ n as well as (ii) if µ 1c n→ m then [µ�m,m′] c ↓n.
Now if µ 1c ↓m then the statement is trivial, given that blockNc (µ,mm′) = ∅.
So, assume µ c ↓m. Then, the first part (i) implies that

blockNc (µ,mm′) = blockN
′

c (µ�m,m′) (31)

N ′ = N \ {n | µ c n → m}. We make a case analysis: If µ c n → m then

n 6∈ N ′. This implies n 6∈ blockN
′

c (µ�m,m′) and thus also n 6∈ blockNc (µ,mm′)
by (31) as desired. The other case is when µ 1c n → m where we can exploit
(ii) to get [µ � m,m′] c ↓n. Now we use the induction hypothesis to infer
n ∈ X \ blockXc (µ � m,m′) where X = {n | µ � m c ↓n}. We claim that
N ′ ⊆ X. To see this let n ∈ N ′, i.e., µ c ↓n and µ 1c n → m. Since it
also holds that µ 1c n → m, we have µ c n � m, whence by the Confluence
Property of policies it follows that µ�m c ↓n. This shows n ∈ X as claimed.

Now since N ′ ⊆ X and n 6∈ blockXc (µ�m,m′) we infer n 6∈ blockN
′

c (µ�m,m′)
and from this, finally, n 6∈ blockNc (µ,mm)

(⇐) To tackle the other direction of (30) let us assume n ∈ N and n 6∈
blockNc (µ,mm′). If µ 1c ↓m then n ∈ N gives us [µ,mm′] c ↓n directly from
Def. 2. If µ c ↓m then n 6∈ blockNc (µ,mm′) implies µ 1c m → n as well as

n 6∈ blockN
′

c (µ � m,m′) where N ′ = N \ {n | µ c n → m}. If we now also
assume µ 1c n→ m then n ∈ N ′ and µ c n � m. By Confluence of policies the
latter give us µ�m c ↓n. So, n ∈ X where X = {n | µ�m c ↓n}. But n 6∈
blockN

′

c (µ �m,m′) in particular means n 6∈ block{n}c (µ �m,m′) and therefore
n 6∈ blockXc (µ�m,m′). Thus, by induction hypothesis on (30), [µ�m,m′] c ↓n.
But this is precisely what we need in order to infer [µ,mm′] c ↓n in this case,
by Def. 2. ut

77

Lemma 4. If γ̃1 = γ̃2 then [µ, γ1] ∼=c [µ, γ2].

Proof. Suppose γ̃1 = γ̃2 and [µ, γ1] c ↓n. Then µ c ↓n, in particular. By
Lem. 3, n 6∈ γ̃1(µ) and thus also n 6∈ γ̃2(µ) by assumption. Therefore, by the
other direction of Lem. 3, we conclude [µ, γ2] c ↓n. The direction [µ, γ2] c

↓n⇒ [µ, γ1] c ↓n is of course symmetrical. ut

A.2 Proofs of Section 6

We begin with some basic observations about the ssteps.

Lemma 5. Let P be well-formed and Σ;Π ` P m
=⇒ Σ′ `k′ P ′. Then,

1. If P is closed then P ′ is closed.
2. P ′ is k-stable iff k′ 6= ⊥
3. [Σ,Π] ↓m, Σ′ = Σ �m and m� can(P ′) ⊆ can(P)
4. If P is k-stable then k′ = k, Σ′ = Σ and P ′ = P .

Proof. Omitted The proof is by induction on derivations. Moreover, we ex-
ploit the fact that can is invariant under value and process substitutions, i.e.,
can(P{u/x}) = can(P) and can(P{Q/p}) = can(P). The latter holds because
we assume that all occurrences of process variables are guarded by a pause.
The guardedness on process variable is not necessary if we permit predictions
to be arbitrary regular languages, rather than only sets of finite sequences as
we do here. The second part of the lemma is also easily verified by induction on
derivations. The key observation is that the check for permission of a method
call is monotonic in the can prediction under inverse subset inclusion. ut

Lemma 7 (Totality). For every context Σ;Π and closed process P , there exist

m, Σ′, k′ and P ′ such that Σ;Π ` P m
=⇒ Σ′ `k′ P ′.

Proof. Omitted.

Lemma 8 (Transitivity). If Σ;Π ` P
m
=⇒ Σ′ `k′ P ′ and Σ′;Π ` P ′

n
=⇒

Σ′′ `k′′ P ′′, then Σ;Π ` P mn
==⇒ Σ′′ `k′′ P ′′.

Proof. Omitted.

Lemma 9. Let Σ;Π
n−→→ Σ′;Π ′ be an environment step. Then, for an arbitrary

sequence of method calls and prediction Π1,

1. If [Σ,Π] ↓m then [Σ′, Π ′] ↓m
2. Σ;Π ⊗Π1

n−→→ Σ′;Π ′ ⊗Π1

Proof. Omitted.

The following proposition expresses monotonicity of execution under com-
patible environment steps.

78

Proposition 6 (Monotonicity). Suppose all objects are policy-coherent. Let

Σ;Π ` P
m
=⇒ Σ′ `k′ P ′ be an sstep of process P and Σ;Π

n−→→ Σ1;Π1 an
environment step such that [Σ,m] ↓n. Then, Σ1;Π1 ` P

m
=⇒ Σ′1 `k′ P ′.

Proof. The proof is by induction on the derivation

Σ;Π ` P m
=⇒ Σ′ `k′ P ′. (32)

• Suppose the last rule leading to (32) is a method call

...(D)

Σ � c.m(v);Π ` P{u/x} m
=⇒ Σ′ `k′ P ′ Let1

Σ;Π ` letx = c.m(e) in P
c.m(v)m
======⇒ Σ′ `k′ P ′

which is enabled [Σ,Π] ↓ o.m, the method argument evaluates as v = eval(e)
and the method’s return value is u = Σ.c.m(v). Assume an environment step

Σ;Π
n−→→ Σ1;Π1, i.e., Σ1 = Σ�n, n�Π1 ⊆ Π, such that [Σ, c.m(v)m] ↓n.

From Lem. 5 we get [Σ,Π] ↓ o.m(v)m. Together with n � Π1 ⊆ Π this
implies [Σ,n] ↓ o.m(v)m and also [Σ � n, Π1] ↓ o.m(v)m. In particular,
this means Σ c.m(v) � n. Applying Action Commutation Prop. 5 to this
concurrent enabling implies

Σ � n� c.m(v) = Σ � c.m(v)� n (33)

Σ.c.m(v) = (Σ � n).c.m(v) (34)

In effect, (33) means Σ1�c.m(v) = Σ�n�c.m(v) = Σ�c.m(v)�n, so that we

have an environment step Σ�c.m(v);Π
n−→→ Σ1�c.m(v);Π1. Considering that

[Σ, c.m(v)m] ↓n implies [Σ � c.m(v),m] ↓n we can apply the induction
hypothesis to the derivation (D) to obtain

Σ1 � c.m(v);Π1 ` P{u/x}
m
=⇒ Σ′1 `k′ P ′ (35)

where, Σ′1 = Σ1 � m. Next recall Lem. 9 which guarantees that Σ;Π
n−→→

Σ1;Π1 and [Σ,Π] ↓ o.m implies [Σ1, Π1] ↓ o.m. Also, equation (34) means
u = Σ.c.m(v) = (Σ � n).c.m(v) = Σ1.c.m(v). Therefore, the evaluation rule
Let1 for method calls permits us to transform (35) into

Σ1;Π1 ` letx = c.m(e) in P
c.m(v)m
======⇒ Σ′1 `k′ P ′ (36)

as required.

• Consider parallel composition derived from

...(D)

Σ;Π ⊗ can(Q) ` P m
=⇒ Σ′ `k′ P ′ k′ 6= 0

Par1
Σ;Π ` P k||kQ Q

m
=⇒ Σ′ `k′ukQ P ′ k′||kQ Q

79

together with an environment step Σ;Π
n−→→ Σ1;Π1 which means Σ1 = Σ � n

and n � Π1 ⊆ Π. Also, we assume the environment step is compatible with
the process step, i.e., such that [Σ,m] ↓n. The subderivation (D) implies
Σ′ = Σ�m and m� can(P ′) ⊆ can(P) by Lem. 5 and Lem. 9 gives us Σ;Π ⊗
can(Q)

n−→→ Σ1;Π1 ⊗ can(Q). Therefore, we can use the induction hypothesis
on the premise (D) of the above derivation to obtain a shifted computation

Σ1;Π1 ⊗ can(Q) ` P m
=⇒ Σ′1 `k′ P ′.

We now apply the rule Par1 for parallel composition and obtain the shifted sstep

Σ1;Π1 ` P k||kQ Q
m
=⇒ Σ′1 `k′ukQ P ′ k′||kQ Q.

This is what we wanted. The other rules Par2, Par3 and Par4 are treated in
essentially the same way.

The remaining cases are omitted. ut

The Monotonicity Prop. 6 is instrumental to prove the following Thm. 1
which expresses the coherence of our semantics regarding the policy-conformant
execution of concurrent threads.

Theorem 1 (Diamond Property). If all objects are policy-coherent then the

sstep semantics is confluent. Formally, given two derivations Σ;Π ` P
m1==⇒

Σ1 `k1 P1 and Σ;Π ` P m2==⇒ Σ2 `k2 P2, Then, there exist Σ′, k′ and P ′ such

that Σ1;Π ` P1
n1=⇒ Σ′ `k′ P ′ and Σ1;Π ` P2

n2=⇒ Σ′ `k′ P ′.

Proof. The proof is by induction on the structure of the process P generating
the derivations Σ;Π ` P =⇒ Σi `ki Pi.

For P = skip and P = pause the statement is trivial because these processes
generate unique ssteps through rules Cmp1 and Cmp2. Formally, in these cases

the assumptions Σ;Π ` P mi==⇒ Σi `ki Pi imply that m1 = ε = m2, Σ1 = Σ =
Σ2, k1 = k = k2 and P1 = P = P2. Hence, the claim of the theorem is satisfied
with n1 = ε = n2, k′ = k and P ′ = P .

Another trivial case arises when the diverging ssteps Σ;Π ` P mi==⇒ Σi `ki Pi
are both generated by the very same reduction rule Seqi, Rec, Leti, Cndi or Pari.

Then, the existence of reconverging reductions Σi;Π ` Pi
ni=⇒ Σ′ `k′ P ′ is

immediately guaranteed by induction hypothesis applied to the premises of the
reduction derivation.

• Since the two rules Cnd1 and Cnd2 are mutually exclusive, there cannot be any
competition between them. We only need to consider two different derivations
using the same rule Cnd1 or two derivations via Cnd2. But these are trivial to
handle by induction hypothesis.

80

• A critical case are ssteps of a parallel process P || Q in which two different
execution orderings are taken:

Σ;Π ⊗ can(Q) ` P m1==⇒ Σ1 `k1 P ′ k1 6= 0
Par1

Σ;Π ` P kP||kQ Q
m1==⇒ Σ1 `k1ukQ P ′ k1||kQ Q (37)

Σ;Π ⊗ can(P) ` Q m2==⇒ Σ2 `k2 Q′ k2 6= 0
Par3

Σ;Π ` P kP||kQ Q
m2==⇒ Σ2 `kPuk2 P kP||k2 Q

′ (38)

First, note that m1�can(P ′) ⊆ can(P) and m2�can(Q′) ⊆ can(Q) by Lem. 5.
From this we calculate

m1 � (Π ⊗ can(P ′)) ⊆ Π ⊗ (m1 � can(P ′)) ⊆ Π ⊗ can(P)

m2 � (Π ⊗ can(Q′)) ⊆ Π ⊗ (m2 � can(Q′)) ⊆ Π ⊗ can(Q).

Therefore we have environment steps

Σ;Π ⊗ can(P)
m1−→→ Σ1;Π ⊗ can(P ′)

Σ;Π ⊗ can(Q)
m2−→→ Σ2;Π ⊗ can(Q′).

Since Lem. 5 also tells us that [Σ;Π ⊗ can(Q)] ↓m1 and [Σ;Π ⊗ can(P)]
↓m2, we conclude [Σ,m1] ↓m2 and [Σ,m2] ↓m1, which is the same as
Σ m1 � m2. Thus, we can apply the Prop. 6 and have shifted steps

Σ1;Π ⊗ can(P ′) ` Q m2==⇒ Σ′1 `k2 Q′ (39)

Σ2;Π ⊗ can(Q′) ` P m1==⇒ Σ′2 `k1 P ′ (40)

for some Σ′1 = Σ1 �m2 = Σ �m1 �m2 and Σ′2 = Σ2 �m1 = Σ �m2 �m1.
Since Σ m1 � m2 both states are identical Σ′1 = Σ′ = Σ′2 by coherence
We can now apply apply the operational rule Par3 for parallel composition and
extend the derivation (39) to obtain

Σ1;Π ` P ′ k1||kQ Q
m2==⇒ Σ′ `k1uk2 P ′ k1||k2 Q′

and Par1 for the derivation (40) to generate

Σ2;Π ` P kP||k2 Q
′ m1==⇒ Σ′ `k1uk2 P ′ k1||k2 Q′

which are the desired “reconverging” derivations in the statement of the theorem,
bringing both derivations (37) and (38) together again.

Another source of non-determinism for a parallel composition arises from two
different ssteps within a single thread. For instance,

Σ;Π ⊗ can(Q) ` P m1==⇒ Σ1 `k′1 P
′
1 k′1 6= 0

Par1
Σ;Π ` P k||kQ Q

m1==⇒ Σ1 `k′1ukQ P ′1 k′1||kQ Q (41)

Σ;Π ⊗ can(Q) ` P m2==⇒ Σ2 `k′2 P
′
2 k′2 6= 0

Par1
Σ;Π ` P k||kQ Q

m2==⇒ Σ2 `k′2ukQ P ′2 k′2||kQ Q (42)

81

Here we can apply the induction hypothesis directly to both ssteps (41) and (42).
This obtains reconverging ssteps for the local thread P , say Σ2;Π ⊗ can(Q) `
P ′2

n2=⇒ Σ′ `k′ P ′ andΣ1;Π⊗can(Q) ` P ′1
n1=⇒ Σ′ `k′ P ′. Using Par1 these can be

embedded into reconverging ssteps for the parallel, viz., Σ2;Π ` P ′2 k′2||kQ Q
n2=⇒

Σ′ ` P ′ k′||kQ Q and Σ1;Π `k′uk P ′1 k′1
||kQ Q

n1=⇒ Σ′ `k′uk P ′ k′||kQ Q. The
case of a competition between two instances of Par3 is handled symmetrically.

A competition between two instances of Par2 or two instances of Par4 is trivial
because these instances generate the very same final configuration Σ′ `k Q or
Σ′ `k P . An application of Lem. 7 then does the trick to close the diamond.
The other cases are handled similarly.

• Next let us look at method calls at which point the thread may choose to yield
to the scheduler for switching to another thread or executing the method call.
Suppose given two ssteps

Σ;Π ` letx = c.m(e) in P
m1==⇒ Σ1 `k1 P1 (43)

Σ;Π ` letx = c.m(e) in P
m2==⇒ Σ2 `k2 P2. (44)

The interesting case is when one of these, say (43) is by rule Let1

... (D1)

Σ � c.m(v);Π ` P{u/x} m
=⇒ Σ1 `k1 P1 Let1

Σ;Π ` letx = c.m(e) in P
c.m(v)m
======⇒ Σ1 `k1 P1

where [Σ,Π] ↓ c.m, v = eval(e) and u = Σ.c.m(v), while the other (44) is a
yielding step:

Let2
Σ;Π ` letx = c.m(e) in P

ε
=⇒ Σ `⊥ letx = c.m(e) in P

By Lem. 7 there must exist a derivation for P1 from Σ1, say Σ1;Π `k1 P1
n
=⇒

Σ2 `k2 P2. Using Transitivity Lem. 8 this can be combined with (D1) to give

Σ � c.m(v);Π ` P{u/x} mn
==⇒ Σ2 `k2 P2. Invoking rule Let1 to this obtains

Σ;Π ` letx = c.m(e) in P
c.m(v)mn
=======⇒ Σ2 `k2 P2. Thus, Σ2 `k2 P2 can

act as the required reconverging configuration to resolve the non-determinism
between Let1 and Let2. Choice situations between two Let1 are easy to resolve
by induction hypothesis. The rule Let2 cannot be in conflict with itself. ut

Theorem 3 (Macro Step Determinism). If all objects are policy-coherent,
then for two macro-steps Σ ` P ⇒⇒ Σ1 ` P1 and Σ ` P ⇒⇒ Σ2 ` P2 we have
Σ1 = Σ2 and P1 = P2.

Proof. Follows from Thm. 1 and the maximality property of macro steps.

82

Reflexive and transitive closure means that P � P and if P � Q � R
then P � R. Congruence closure means that if P � P ′ and Q � Q′ then
if e thenP elseQ ≺ if e thenP ′ elseQ′, letx = c.m(e) in P � letx =
c.m(e) in P ′, P Π1||Π2 Q � P ′ Π1||Π2 Q′ and P;Q � P ′;Q. Note that a
sequential process pause;Q is a normal form, i.e., it cannot be reduced.

Lemma 10.

1. The relation � is antisymmetric and thus a partial ordering, i.e., P1 � P2

and P2 � P1 then P1 = P2.
2. The relation � is up-bounded, i.e., it has no infinite increasing chains.
3. A process is � maximal iff if P is stable.
4. If Σ;Π `k P =⇒ Σ′;Π ′ `k′ P ′, then P � P ′.

Proof. To argue up-boundedness and antisymmetry we define the depth of a
process P as the maximal number of operators on all maximal instantaneous
sequential control flow paths (i.e., we stop at the first pause). One shows that
each primitive contraction strictly reduces the depth of a process. The only
tricky case is the recursion unfolding rec p. P ≺ P{rec p. P/p} which in general
increases the total number of operators by substitution. However, by assumption,
the occurrence of the process variable p in P must be guarded behind a pause

statement. Hence, the depth of P{rec p. P/p} is identical to the depth of P
which is one smaller than that of rec p. P . As a consequence, if P � Q then the
depth of P is strictly larger as that of Q or P = Q. This implies antisymmetry.
Further, since the depth of a process is finite, � is up-bounded. Regarding the
connection of maximality and stability consider that by definition a maximal
process cannot contain an conditional, method call, or recursion. By induction
in each occurrence of a sequential composition P ;Q the first process P must be 1-
stable. But such P ;Q are 1-stable by definition. Since both remaining statements
skip and pause are stable and parallel composition P || Q preserves stability, it
follows that each maximal process must be stable. The reverse direction, that a
stable process is maximal is trivial from the definition of �. The proof of the last
claim that an sstep either does not change the process or strictly increases in ≺
ordering is by simple induction on the derivation of an sstep using the inductive
definition of the ordering relation. ut

Theorem 2 (Termination). Let P0, P1, P2, . . . and Σ0, Σ1, Σ2, . . . be sequences
of processes and memories, respectively, with Σi ` Pi =⇒ Σi+1 ` Pi+1. If P0 is
clock-guarded then Pi � Pi+1 and there exists n ≥ 0 such that Σn = Σi and
Pn = Pi for all i ≥ n.

Proof. This is a direct corollary of Lem. 10 from which we infer that all residual
processes obtained by iterating ssteps from a program P are all �-reducts of P
that must eventually reach a final process that is not changed any more. ut

Theorem 4 (Esterel and Sequential Constructiveness).

1. If an DCoL-Esterel program P is policy-constructive according to Def. 7 iff
it is Berry-constructive in the sense of [9].

83

2. If a DCoL-SC program P is policy-constructive according to Def. 7 then it
is sequentially constructive in the sense of [56].

Proof (Sketch). Take the second statement first. Sequential constructiveness [56]
says that (i) P has an sc-admissible schedule and (ii) all sc-admissible schedules
lead to the same macro step response (in all ticks, under all environment inputs).
An sc-admissible schedule is one in which the SC-policy on each shared variable
is fulfilled. I.e., there is no concurrent write after a read and no concurrent
absolute write (init) after a relative write (update). Our first observation is that
the method sequence m in an sstep

Σ;Π `0 P
m
=⇒ Σ′;Π ′ `k′ P ′ (45)

is always sc-admissible. This is a direct result of the policy-conformance of m.
Let us write

Σ ` P n−→ Σ′′ ` P ′′ (46)

to express that in the operational semantics of [56] some sequence of method
calls n ∈ M∗, not necessarily sc-admissible, is executable by P , changing an
initial memory Σ into a final memory Σ′′ and residual program P ′′. In [56]
the execution of a program is defined in terms of configurations consisting of
thread pools with explicit fork and join operations. Here we identify these thread
pools with process terms of DCoL. The key idea of the conservativity proof is to
establish a simulation relation between (policy-conformant) ssteps (45) and sc-
admissible method sequences (46). The simulation relation intuitively says that
each sstep (45) covers every sc-admissible sequence (46) up to interleaving. The
universal quantification is a result of the constructive use of the can prediction
Π in (45).

To define the covering property we first observe that every sstep (45) is an
execution of a number of active threads in P with minimal context switching.
Contexts are switched only when the policy’s precedences require a thread to wait
for another. Technically one shows that the method sequence m of an sstep (45)
can be split into a sequence of thread-specific blocks m ∈m1 m2 · · · mk where
each mi is a method sequence from a different thread of P . The covering property
now says that every maximal sc-admissible method sequence n out of P has a
prefix n1, with n = n1 n2 and n1 ∈ m1 ⊗m2 ⊗ · · · ⊗mk. Moreover, we have
Σ ` P n1−→ Σ′ ` P ′ n2−→ Σ′′ ` P ′′. In particular, if P ′ is stable then n2 = ε and
Σ ` P n−→ Σ′ ` P ′. Note that if P is blocked, i.e., the only sstep is m = ε,
then this covering is trivially satisfied by n1 = ε for any sequence n. If, however,
there exists a non-empty sstep, then at least one mi is non-empty and thus n1

cannot be empty either.
So, assume P is policy-constructive. Then, there exists a sequence of non-

empty ssteps Σi ` Pi =⇒ Σi+1 ` Pi+1 taking P to a stable process P ∗ in
some final memory Σ∗. Suppose the concatenation of all these ssteps is the
sequence m. This shows, first of all, that P admits of at least one sc-admissible
method sequence, satisfying condition (i) of sequential constructiveness. What

84

remains is to see why all sc-admissible executions end up in Σ∗ and P ∗. This is
the covering property. It guarantees (by induction on the number of ssteps) that

every maximal sc-admissible execution Σ ` P n−→ Σ′′ ` P ′′ is a reordering of the
sstep sequence m. Hence, all maximal sc-admissible executions must converge
in P ∗ and Σ∗. This proves condition (ii) of sequential constructiveness.

Now let us turn to the first statement of Thm. 4. Recall the policy domain
of pure signals (in finite collapsed form) with Ps = {0, 1}, Cs = {∅, {present}}
and PCs = {[0, ∅], [0, {present}], [1, ∅]}. For convenience let us abbreviate the can
information as a boolean, too, viz. ∅ ∼= 0 and {present} ∼= 1. Hence, we write
PCs = {[0, 0], [0, 1], [1, 0]}. The actual memory state of a signal can also be one
of two values, “present” (1) or “absent” (0), i.e., Ss = {0, 1}. The control state
of the policy automaton can be derived by identity 0# = 0 and 1# = 1. Since
the domains PCs, Ps, Cs and Ss are identical for every signal s, we drop the
subscript and write PC, P, C and S henceforth.

Let us look at the execution of pure instantaneous and parallel Esterel pro-
grams in the DCoL semantics. Let P be an instantaneous Esterel program with
pure signals s1, s2, . . . , sn. A multi-signal context Σ;Π, in collapsed form, con-
sists of binary vectors Σ ∈ Sn = {0, 1}n and Π ∈ Cn = {0, 1}n. The initial
memory state is ε = (0, 0, . . . , 0). The minimal (least constraining) can predic-
tion is ⊥ = (0, 0, . . . , 0), the maximal (most constraining) is > = (1, 1, . . . , 1).

For the Esterel signal domain C one shows that the operations Π1 ⊕ Π2,
Π1 ⊗ Π2 and s.m � Π that we need to compute predictions for our Esterel
fragment, are easy to compute considering Πi as Boolean vectors. Specifically,
we have Π1 ⊗Π2 = Π1 ∨Π2. Also, the set union permits logical interpretation,
Π1⊕Π2 = Π1 ∨Π2. Prefixing is given as πj(si.present�Π) = πj(Π) for all i, j,
deriving from present � γ ⊆ present∗ iff γ ⊆ present∗, and further πj(si.emit �
Π) = πj(Π) if i 6= j, while πi(si.emit � Π) = 1 because emit � γ 6⊆ present∗

whatever γ is. In other notation, emit si�Π = Π[si = 1] denoting an update of
the ith component of vector Π by value 1.

Next one exploits the special feature of a parallel Esterel program P that
no object in P has two method calls in sequence. A direct consequence of this
is that Σ;Π `k P =⇒ Σ′;Π ′1 `k′1 P

′ is derivable iff Σ;Π ⊗ can(P) `k P =⇒
Σ′;Π ′1 `k′1 P

′. Adding the prediction can(P) to the environment Π cannot block
any method in P . To see this consider that the only method that can be blocked
(by a precedence constraint) in Esterel is a present test and this only by emit
on the same signal. Therefore, if a method is blocked in P under Π ⊗ can(P)
that is not already blocked by Π, then P must contain an occurrence of emit
sequentially after an occurrence of a (blocked) present. Note that the emit cannot
be sequentially before the blocked present because then the precedence on present
would be switched off, and thus the present not block in the first place.

Since we can add the prediction can(P) of P to the environment Π⊗can(P)
without blocking any method call on a signal that would not be blocked in Π
already, we can simplify the rules for parallel composition in a first step as follows

85

without losing executions

Σ;Π1 ⊗Π2 `k P =⇒ Σ′;Π ′1 `k′1 P
′ Σ′;Π1 ⊗Π2 `k Q =⇒ Σ′′;Π ′2 `k′2 Q

′

Σ;⊥ `k P Π1
||Π2

Q =⇒ Σ′′;Π ′1 ⊗ Π ′2 `k′1uk′2 P
′
Π′1
||Π′2 Q

′

But now both rules for parallel have become identical which makes the opera-
tional semantics deterministic. For each program operator and context there is
exactly one rule applicable. Further, since Πi = can(Pi) and thus Π1 ⊗ Π2 =
can(P Π1||Π2 Q) the local context annotations in a parallel composition become
redundant. We can drop them and rewrite the rule as follows:

Σ; can(P||Q) `k P =⇒ Σ′;Π ′1 `k′1 P
′ Σ′; can(P||Q) `k Q =⇒ Σ′′;Π ′2 `k′2 Q

′

Σ;⊥ `k P||Q =⇒ Σ′′;Π ′1 ⊗ Π ′2 `k′1uk′2 P
′||Q′

The next step is to observe that for pure signals the status can only switch from
absent to present, never back. There is no “unemit” method. Hence, in each
sstep Σ;Π `0 P =⇒ Σ′;Π ′ `k′ P ′ the memory must grow monotonically, i.e.,
Σ ≤ Σ′. As a consequence, so one shows, the rules for parallel can be rewritten
as a fully symmetric rule

Σ;Π `k P =⇒ Σ′1;Π ′1 `k′1 P
′ Σ;Π `k Q =⇒ Σ′2;Π ′2 `k′2 Q

′

Σ;Π `k P||Q =⇒ Σ′1 ∨Σ′2;Π ′1 ⊗ Π ′2 `k′1uk′2 P
′||Q′

where Π ≤ can(P || Q) without losing derivability. The final step is to show
that for each operator the associated rule transforms the start context Σ;Π to a
response context Σ′;Π ′ in precisely the same way as defined in Berry’s ternary
constructive must-can semantics [9]. ut

86

Bamberger Beiträge zur Wirtschaftsinformatik

Nr. 1 (1989) Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universität Bamberg (Nachdruck Dez.
1990)

Nr. 2 (1990) Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle für PROLOG

Nr. 3 (1990) Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Nr. 4 (1990) Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Nr. 5 (1990) Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Nr. 6 (1991) Augsburger W., Rieder H., Schwab J.: Systemtheoretische Repräsentation von
Strukturen und Bewertungsfunktionen über zeitabhängigen betrieblichen numeri-
schen Daten

Nr. 7 (1991) Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell für eine modulare
Bewertung von Kennzahlenwerten für den Endanwender

Nr. 8 (1991) Schwab J.: Ein computergestütztes Modellierungssystem zur Kennzahlenbewertung

Nr. 9 (1992) Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell
in das Strukturierte Entity-Relationship-Modell

Nr. 10 (1992) Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Nr. 11 (1992) Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Nr. 12 (1992) Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Nr. 13 (1992) Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Nr. 14 (1992) Esswein W.: Das Rollenmodell der Organsiation: Die Berücksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Nr. 15 (1992) Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Nr. 16 (1992) Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Nr. 17 (1993) Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stützten Bürovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Überwachung von Vorgängen. Dissertation

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1st
edition, June 1994

Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2nd edition, November 1994

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschäftsprozessen

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universität als Instrument zur zielgerichte-
ten Lenkung von Universitätsprozessen

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsräume. Ein Ansatz für ver-
teilte Führungsinformationssysteme

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschäftsprozessen auf der Grundlage
des SOM-Ansatzes

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestützten kooperativen Arbeit

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschäftsprozesse

Nr. 32 (1995) Gunzenhäuser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Nr. 33 (1995) Sinz, E.J.: Kann das Geschäftsprozeßmodell der Unternehmung das unterneh-
mensweite Datenschema ablösen?

Nr. 34 (1995) Sinz E.J.: Ansätze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstützung
durch workflow-orientierte Anwendungssysteme

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichwörter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Düsseldorf 1996

Nr. 37 (1996) Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Nr. 38 (1996) Ferstl O.K., Schäfer R.: Eine Lernumgebung für die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Nr. 39 (1996) Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten für Portfolio-Ansätze

Nr. 40 (1997) Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, München 1997

Nr. 41 (1997) Sinz E.J.: Analyse und Gestaltung universitärer Geschäftsprozesse und Anwen-
dungssysteme. Angenommen für: Informatik ’97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft für Informatik, Aachen 24.-26.9.1997

Nr. 42 (1997) Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects –
fachliche Bausteine für die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen für: HMD – Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Nr. 43 (1997): Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) – A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz
J., Schmidt G., and Shaw M., Volume I, Springer 1997

 Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2nd Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer
1998

Nr. 44 (1997) Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin – Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. – 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Nr. 45 (1998) Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, München 1998

Nr. 46 (1998) Sinz E.J.: Prozeßgestaltung und Prozeßunterstützung im Prüfungswesen. Erschie-
nen in: Proceedings Workshop „Informationssysteme für das Hochschulmanage-
ment“. Aachen, September 1997

Nr. 47 (1998) Sinz, E.J.:, Wismans B.: Das „Elektronische Prüfungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Nr. 48 (1998) Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering

Nr. 49 (1998) Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems

Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel,
July, 1999 (Springer, Lecture Notes)

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems – ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Nr. 52 (1999) Sinz E.J., Böhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems für Hochschulen. Angenommen für: Workshop „Unternehmen Hoch-
schule“ im Rahmen der 29. Jahrestagung der Gesellschaft für Informatik, Pader-
born, 6. Oktober 1999

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfü-
gig modifizierter Fassung angenommen für: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, München
1999

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Nr. 55 (2000) Böhnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen für Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Nr. 57 (2000) Böhnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Nr. 59 (2001) Sinz E.J., Böhnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems für das Hochschulwesen. Angenommen für:
WI-IF 2001, Augsburg, 19.-21. September 2001

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen für: Workshop „Unternehmen Hochschule 2001“ im Rahmen der
Jahrestagung der Gesellschaft für Informatik, Wien 25. – 28. September 2001

Änderung des Titels der Schriftenreihe Bamberger Beiträge zur Wirtschaftsinformatik in Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Note: The title of our technical report series has been changed from Bamberger Beiträge zur
Wirtschaftsinformatik to Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik
starting with TR No. 61

Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik

Nr. 61 (2002) Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Nr. 62 (2002) Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System für das Hochschulwesen. Erscheint
in: Beiträge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut für
Hochschulforschung und Hochschulplanung, München 2002

Nr. 63 (2005) Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Nr. 64 (2005) Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 – 263; Reihe education quality forum, herausgegeben durch
das Centrum für eCompetence in Hochschulen NRW, Band 2, Münster/New
York/München/Berlin: Waxmann 2005

Nr. 65 (2006) Schönberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Nr. 66 (2006) Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Röglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Nr. 67 (2006) Marco Fischer, Andreas Grünert, Sebastian Hudert, Stefan König, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems,
April 2006

Nr. 68 (2006) Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the
Exactness of Ternary Simulation

Nr. 69 (2007) Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol
Framework . February 2007

Nr. 70 (2007) Thomas Meins: Integration eines allgemeinen Service-Centers für PC-und
Medientechnik an der Universität Bamberg – Analyse und Realisierungs-
Szenarien. February 2007 (out of print)

Nr. 71 (2007) Andreas Grünert: Life-cycle assistance capabilities of cooperating Software Agents
for Virtual Enterprises. März 2007

Nr. 72 (2007) Michael Mendler, Gerald Lüttgen: Is Observational Congruence on μ-Expressions
Axiomatisable in Equational Horn Logic?

Nr. 73 (2007) Martin Schissler: out of print

Nr. 74 (2007) Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
74, Bamberg University, October 2007. ISSN 0937-3349.

Nr. 75 (2008) Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing
Technologies Convention (PET-CON 2008.1). Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University,
April 2008. ISSN 0937-3349.

Nr. 76 (2008) Gregor Scheithauer, Guido Wirtz: Applying Business Process Management
Systems – A Case Study. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-
3349.

Nr. 77 (2008) Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for
Abstraction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN
0937-3349.

Nr. 78 (2008) Gregor Scheithauer, Matthias Winkler: A Service Description Framework for
Service Ecosystems. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349.

Nr. 79 (2008) Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better
Performances. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349.

Nr. 80 (2009) Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger, Guido Wirtz: QoS Enabled
B2B Integration. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 80, Bamberg University, May 2009. ISSN 0937-3349.

Nr. 81 (2009) Ute Schmid, Emanuel Kitzelmann, Rinus Plasmeijer (Eds.): Proceedings of the
ACM SIGPLAN Workshop on Approaches and Applications of Inductive
Programming (AAIP'09), affiliated with ICFP 2009, Edinburgh, Scotland,
September 2009. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 81, Bamberg University, September 2009. ISSN 0937-3349.

Nr. 82 (2009) Ute Schmid, Marco Ragni, Markus Knauff (Eds.): Proceedings of the KI 2009
Workshop Complex Cognition, Paderborn, Germany, September 15, 2009.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
82, Bamberg University, October 2009. ISSN 0937-3349.

Nr. 83 (2009) Andreas Schönberger, Christian Wilms and Guido Wirtz: A Requirements Analysis
of Business-to-Business Integration. Bamberger Beiträge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 83, Bamberg University, December 2009. ISSN
0937-3349.

Nr. 84 (2010) Werner Zirkel, Guido Wirtz: A Process for Identifying Predictive Correlation
Patterns in Service Management Systems. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 84, Bamberg University,
February 2010. ISSN 0937-3349.

Nr. 85 (2010) Jan Tobias Mühlberg und Gerald Lüttgen: Symbolic Object Code Analysis.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
85, Bamberg University, February 2010. ISSN 0937-3349.

Nr. 86 (2010) Werner Zirkel, Guido Wirtz: Proaktives Problem Management durch
Eventkorrelation – ein Best Practice Ansatz. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 86, Bamberg University,
August 2010. ISSN 0937-3349.

Nr. 87 (2010) Johannes Schwalb, Andreas Schönberger: Analyzing the Interoperability of WS-
Security and WS-ReliableMessaging Implementations. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 87, Bamberg University,
September 2010. ISSN 0937-3349.

Nr. 88 (2011) Jörg Lenhard: A Pattern-based Analysis of WS-BPEL and Windows Workflow.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
88, Bamberg University, March 2011. ISSN 0937-3349.

Nr. 89 (2011) Andreas Henrich, Christoph Schlieder, Ute Schmid [eds.]: Visibility in Information
Spaces and in Geographic Environments – Post-Proceedings of the KI’11
Workshop. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 89, Bamberg University, December 2011. ISSN 0937-3349.

Nr. 90 (2012) Simon Harrer, Jörg Lenhard: Betsy - A BPEL Engine Test System. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 90, Bamberg
University, July 2012. ISSN 0937-3349.

Nr. 91 (2013) Michael Mendler, Stephan Scheele: On the Computational Interpretation of CKn
for Contextual Information Processing - Ancillary Material. Bamberger Beiträge
zur Wirtschaftsinformatik und Angewandten Informatik Nr. 91, Bamberg
University, May 2013. ISSN 0937-3349.

Nr. 92 (2013) Matthias Geiger: BPMN 2.0 Process Model Serialization Constraints. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 92, Bamberg
University, May 2013. ISSN 0937-3349.

Nr. 93 (2014) Cedric Röck, Simon Harrer: Literature Survey of Performance Benchmarking
Approaches of BPEL Engines. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 93, Bamberg University, May 2014. ISSN 0937-
3349.

Nr. 94 (2014) Joaquin Aguado, Michael Mendler, Reinhard von Hanxleden, Insa Fuhrmann:
Grounding Synchronous Deterministic Concurrency in Sequential Programming.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
94, Bamberg University, August 2014. ISSN 0937-3349.

Nr. 95 (2014) Michael Mendler, Bruno Bodin, Partha S Roop, Jia Jie Wang: WCRT for
Synchronous Programs: Studying the Tick Alignment Problem. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 95, Bamberg
University, August 2014. ISSN 0937-3349.

Nr. 96 (2015) Joaquin Aguado, Michael Mendler, Reinhard von Hanxleden, Insa Fuhrmann:
Denotational Fixed-Point Semantics for Constructive Scheduling of Synchronous
Concurrency. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 96, Bamberg University, April 2015. ISSN 0937-3349.

Nr. 97 (2015) Thomas Benker: Konzeption einer Komponentenarchitektur für prozessorientierte
OLTP- & OLAP-Anwendungssysteme. Bamberger Beiträge zur Wirtschafts-
informatik und Angewandten Informatik Nr. 97, Bamberg University, Oktober
2015. ISSN 0937-3349.

Nr. 98 (2016) Sascha Fendrich, Gerald Lüttgen: A Generalised Theory of Interface Automata,
Component Compatibility and Error. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 98, Bamberg University,
March 2016. ISSN 0937-3349.

Nr. 99 (2014) Christian Preißinger, Simon Harrer: Static Analysis Rules of the BPEL
Specification: Tagging, Formalization and Tests. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 99, Bamberg University,
August 2014. ISSN 0937-3349.

Nr. 100 (2016) Cedrik Röck, Stefan Kolb: Nucleus - Unified Deployment and Management for
Platform as a Service. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 100, Bamberg University, March 2016. ISSN 0937-
3349.

Nr. 101 (2016) Michael Mendler, Partha S. Roop, Bruno Bodin: A Novel WCET Semantics of
Synchronous Programs. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 101, Bamberg University, June 2016. ISSN 0937-
3349.

Nr. 102 (2017) Joaquín Aguado, Michael Mendler, Marc Pouzet, Partha Roop, Reinhard von
Hanxleden: Clock-Synchronised Shared Objects for Deterministic Concurrency.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
102, Bamberg University, July 2017. ISSN 0937-3349.

	Clock-Synchronised Shared Objects for Deterministic Concurrency

