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Abstract

In this report, we introduce an abstract interval domain I(D,P) and associated fixed point
semantics for reasoning about concurrent and sequential variable accesses within a synchronous
cycle-based model of computation. The interval domain captures must (lower bound) and cannot
(upper bound) information to approximate the synchronisation status of variables consisting of a
value status D and an init status P. We use this domain for a new behavioural definition of Berry’s
causality analysis for Esterel. This gives a compact and uniform understanding of Esterel-style
constructiveness for shared-memory multi-threaded programs. Using this new domain-theoretic
characterisation we show that Berry’s constructive semantics is a conservative approximation of
the recently proposed sequentially constructive (SC) model of computation. We prove that every
Berry-constructive program is sequentially constructive, i.e., deterministic and deadlock-free under
sequentially admissible scheduling. This gives, for the first time, a natural interpretation of Berry-
constructiveness for main-stream imperative programming in terms of scheduling, where previous
results were cast in terms of synchronous circuits. It also opens the door to a direct mapping of
Esterel’s signal mechanism into boolean variables that can be set and reset arbitrarily within a tick.
We illustrate the practical usefulness of this mapping by discussing how signal reincarnation is
handled efficiently by this transformation, which is of complexity that is linear in program size, in
contrast to earlier techniques that had, at best, potentially quadratic overhead.

Keywords: Concurrency, determinism, constructiveness, Mealy reactive systems, synchronous
programming, Esterel.

I. INTRODUCTION

If traditional main-stream programming was largely single-threaded and sequential, the
new multi-core processing age raises the incentives for concurrent programming. However,
multi-threaded, shared memory programming is notoriously difficult because of data races
(write-write, read-write conflicts) which jeopardize the functional correctness and predictability
of program behavior. The main-stream answer to avoid the non-determinism are elementary
synchronization primitives, such as monitors, semaphores and locks. Stemming from the early
days of concurrent programming, these general-purpose operators are safe in the hands of an
expert but not necessarily in the hands of the novice [23], [27].

This work is part of the PRETSY project and supported by the German National Research Council DFG (HA 4407/6-1,
ME 1427/6-1). Preliminary result were presented at Synchron 2013, 19th November 2013, Dagstuhl, Germany, and at the
European Symposium on Programming ESOP’14, 9th April 2014, Grenoble, France.



An approach which does not rely on “spaghetti-style” synchronization through low-level
primitives, is the synchronous model of computation (SMoC). SMoC is a disciplined synchro-
nization regime based on logical clocks and signals as the key synchronization mechanisms.
To ensure determinism and bounded response, it enforces a strict cycle-based communication
pattern between concurrent threads, which abstracts the principle of deterministic input-output
Mealy machines.

A synchronous computation, consisting of a system and an environment, is generally
described by an ordered sequence of reactions, each one occurring at a global clock tick
acting as a synchronization barrier. In a synchronous program, these ticks are derived from
explicit clocks, as in Lustre [14] or Signal [22], or from statements such as Esterel’s [10]
pause which establish precisely identifiable configurations or global states of the system in
question. What happens, then, between two ticks, i.e., within a macro-step, is a change from
one system configuration to the next. This change results from the combined (concurrent or
interleaved) execution of the system’s individual statements, or micro-steps, that are scheduled
and active during the current macro-step. The environment, in turn, perceives macro-steps
as atomic (instantaneous) computations during which it cannot intervene at all. Instead, the
environment’s observations and interactions can only occur at the places delimited by the
pause, namely stable configurations. This modeling is known as the Synchrony Hypothesis.

This abstraction has led to the family of synchronous languages [6], which have been used
successfully in particular in safety-critical embedded systems, such as avionics applications.
The synchrony abstraction naturally leads to a fixed-point semantics, where all variables that
are computed as part of a reaction have a unique value throughout the reaction. In data-flow
oriented synchronous languages, such as Lustre or SCADE [20], this means that for each
variable, there must be a unique defining equation, leading to a declarative programming style.
In imperative, control-flow oriented languages, such as Esterel, SyncCharts [4] or Quartz [39],
the synchrony abstraction means that a signal—a special type of variable, discussed in detail
later—must not be modified after it has been read (“write-before-read protocol”). This protocol
leads to the notion of constructiveness, also referred to as causality; a program is considered
constructive if and only if this “write-before-read” protocol is neither too stringent to create
deadlocks, nor too lax to permit non-determinism. Programs that are not constructive must
be rejected at compile time. The possibility for compile-time reasoning, which eliminates
run-time deadlock and non-determinism, is one of the strengths of synchronous programming.

The synchrony abstraction has proven to be useful in practice. Its sound mathematical
basis allows formal reasoning and verification. However, the construction principles used so
far mainly in synchronous languages can be naturally generalized and mapped to familiar,
sequential programming concepts as used in C or Java. This not only allows a fresh look
at existing synchronous languages, including more efficient compilation strategies, but also
leads to natural extensions that facilitate a familiar, sequential programming style. In this
vein, we recently introduced the notion of sequential constructiveness (SC) [46], [47], [48]
to integrate SMoC with main-stream sequential languages such as Java or C. The idea is to
reconstruct signals and their synchronization properties in terms of variables and scheduling
constraints on variable accesses. SC leaves more control to the programmer than traditional
SMoC would permit. SC exploits the fact that the program-prescribed sequencing of statements
can typically be implemented reliably by the compiler on the run-time system. This assumption
is not usually made in traditional SMoC which targets sequential hardware circuits as the
run-time architecture. The SMoC advantage is that it offers more robustness with respect to the
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admissible run-time models regarding reordering of statements, while SC is more permissive
and more flexible to use in the context of sequential programming.

Contributions. In this report, we investigate the formal semantical relationship between SC
and SMoC (restricted to boolean programs) which has been discussed only informally before.
Our results offer an interpretation of SC as a clocked scheduling protocol which, within a
single clock tick, supports arbitrary sequences of concurrent “init;update;read” accesses on
shared variables. This reduces the number of required clock cycles compared to SMoC which
does not permit such repetitions. The contributions of this report are as follows:
• We introduce the class of ∆0-constructive programs for multi-threaded shared memory

programs in which one concurrent “init;update;read”1 cycle is permitted and initializations
are under the programmer’s control. This generalizes Berry’s notion of constructiveness
for Esterel which we identify as a relaxation ∆1 of the ∆0 class in which all initializations
are implicit. We call ∆1 the class of Berry-constructive programs and ∆0 the strongly
Berry-constructive programs.

• We present both levels of constructiveness ∆0 and ∆1 as approximations to SC in the form
of fixed point analyses in abstract domains of signal statuses. Concretely, ∆1 is equivalent
to ternary analysis, which is known to be related to delay-insensitive boolean circuits,
while ∆0 refines this naturally in a domain of approximation intervals I(D,P). This
brings a novel characterization of Berry’s must-cannot analysis that suggests extensions
to other data types.

• We show that both ∆0 and ∆1 are properly included in SC, referred to as ∆∗, which
permits arbitrarily many repetitions of concurrent “init;update;read” cycles. This proves
formally that (pure) SC is indeed a conservative extension of (pure) Esterel thus solving
an open problem [47].

• Finally, to illustrate the usefulness of SC (beyond ∆1), we show by example how two
initializations during one tick implements efficiently some forms of signal reincarnation,
known in SMoC as the “schizophrenia” problem. Ample earlier work suggests that
code transformations for separating signal incarnations require at least quadratic-size
code duplication [8], [38], [42]. We here argue that this is a consequence of working at
∆1-level. We show that in ∆∗ a code transformation that separates signal incarnations
can be implemented in linear size.

Overview. We start in Sec. II with a discussion on how synchronous signals can be represented
using variables in shared memory multi-threading. We illustrate the SC model of synchronous
computation and its role for the proper sequencing of signal initialization. Sec. III provides
the technical setup for our results and the operational reference semantics. This includes the
definition of a kernel language for pure boolean programs (Sec. III-A), the formal definition
of its operational semantics of micro steps and macro steps (Sec. III-B) and the notion of
sequential constructiveness, here called ∆∗-constructiveness (Sec. III-C). In Sec. IV we present
an approximation of ∆∗-constructiveness in terms of a denotational fixed point semantics. We
first introduce the semantic information domains on which the fixed point is approximated.
This consists of status information on variables (Sec. IV-A) inducing an associated notion of
signal environment (Sec. IV-B) and a domain specifying the completion status of a program
(Sec. IV-C). Finally, the class of strongly Berry-constructive, or ∆0-constructive programs,
is defined (Sec. IV-D). Sec. V then contains our main result. We prove that the fixed point

1We use the semicolon “init;update;read” rather than a hyphen “init-update-read” to stress the strict sequential ordering
between the phases.
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semantics is sound with respect to the operational semantics, i.e., that ∆0-constructiveness
provides a conservative over-approximation of ∆∗-constructiveness. In Sec. 13 we study the
relationship between ∆0 and Berry’s notion of constructiveness introduced for Esterel, which
we formulate as a special case of the ∆0 semantics, called ∆1. Finally, Sec. VII sums up the
results and comments on related work.

II. GROUNDING SYNCHRONOUS SIGNALS IN SEQUENTIAL VARIABLES

Before a formal treatment of the subject matter in later sections, we will set the stage by
comparing signals, a key SMoC concept to achieve deterministic concurrency, with variables,
familiar from sequential languages as C and Java.

A. Signals in a sequential setting
A SMoC signal comprises a status and a value. The status of a signal is per default absent

in each tick and its value set to an initial value. If and when a signal is emitted its status
becomes present in the current tick. With each emission the signal’s value is updated, typically
by way of an (associative and commutative) combination function. As soon as a configuration
is reached in which the value of a variable is never updated again, its value can be read. Any
reading of a signal’s value or reacting to its absent status has to wait for stabilization. On the
other hand, a reaction to the present status (as opposed to reading its value) can safely take
place after the first emission. This synchronization protocol, characteristic to all Esterel-style
SMoCs, corresponds to a single “init;update;read” cycle which enforces deterministic reactions.
Programs which are also deadlock free are called causal or constructive.

Fig. 1a shows schizo-strl, an example of how signals are used in Esterel, taken from Tardieu
and de Simone [42]. In the initial tick, the present S statement in lines 7–9 emits O if S is
present. This is the only possible emission of O in the first tick; hence, as S cannot be emitted,
O is not emitted. The pause statement in line 11 then terminates the current tick. In the next
tick, control resumes in line 12 where the emit S makes S present, however, the local scope
of S is left immediately afterwards with the end in line 13. When, after looping around, the
scope of S is re-entered in line 6, a fresh instance of S is installed that has not been emitted
yet, so the test for the presence of S in lines 7–9 fails again.

Signals that may become absent and present in the same tick, such as S in schizo-strl, are
called schizophrenic. Schizophrenic signals bring a risk for non-determinism, for example,
when synthesizing hardware, as signal wires must have a stable voltage. Thus a number of
strategies have been proposed to eliminate schizophrenia by code transformations [8], [38],
[42]. These transformations essentially duplicate loop bodies when they contain local signal
scopes that might be left and re-entered in the same tick, as illustrated in schizo-cured-strl in
Fig. 1b. This approach “cures” the schizophrenia problem, but could lead to an exponential
code increase.

This can be improved by distinguishing surface and depth [8] of a (compound) statement
S, where S in this case is the body of the loop. The surface is the part that can be executed
in the same tick when entering S, and the depth is the part of S that can be executed in
subsequent ticks. The basic idea is to split S into a surface copy SC and a depth copy SD,
where pauses in SC are replaced by a “gotopause” that transfers control to the corresponding
pause in SD [42]. The schizo-cured2-strl version in Fig. 1c illustrates this approach, where in
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1 module
2 schizo−strl
3 output O;
4
5 loop
6 signal S in
7 present S
8 then
9 emit O

10 end;
11 pause;
12 emit S;
13 end;
14 end loop
15 end module

(a) The original Esterel
version [42]. The out-
put signal O is commu-
nicated to the environ-
ment at each tick. The
local signal S is not
observable from the out-
side.

1 module
2 schizo−cured−strl
3 output O;
4
5 loop
6 signal S in
7 present S then
8 emit O
9 end;

10 pause;
11 emit S;
12 end;
13 signal S’ in
14 present S’ then
15 emit O
16 end;
17 pause;
18 emit S’;
19 end;
20 end loop

(b) Esterel version with
schizophrenia cured by
duplicating the loop body
(exponential complexity). Just
for clarity, we renamed the
second copy of S to S’.

1 module
2 schizo−cured2−strl
3 output O;
4
5 loop
6 % Surface
7 signal S in
8 present S then
9 emit O

10 end;
11 end;
12
13 % Depth
14 signal S’ in
15 pause;
16 emit S’;
17 end;
18 end loop

(c) Esterel version with
schizophrenia cured by
splitting the loop body into
surface and depth (quadratic
complexity).

1 schizo−seq−scl
2 (output bool O)
3 {
4 while (true) {
5 bool S;
6
7 // Surf init
8 S = false;
9 O = S;

10 pause;
11 // Depth init
12 S = false;
13 // Emit
14 S = true;
15 }
16 }

(d) An SCL version, still se-
quential, with boolean flags O
and S. S is explicitly initialized
to false (“absent”) when enter-
ing its scope (“surface initial-
ization”) and at the subsequent
tick (“depth initialization”).

1 schizo−conc−scl
2 (output bool O)
3 {
4 while (true) {
5 bool S, Term;
6
7 Term = false;
8 fork
9 O = S;

10 pause;
11 // Emit
12 S = true;
13 Term = true;
14 par
15 while (true) {
16 // Init
17 S = false;
18 if ( Term)
19 break;
20 pause;
21 }
22 join ;
23 }
24 }

(e) SCL version with initializa-
tions of S in a separate thread
concurrent to the scope of S.

1 schizo−conc−cured−scl
2 (output bool O)
3 {
4 while (true) {
5 bool S, Term;
6
7 // Surf init
8 S = false;
9 Term = false;

10 fork
11 O = S;
12 pause;
13 // Emit
14 S = true;
15 Term = true;
16 par
17 do {
18 pause;
19 // Depth init
20 S = false;
21 } while (! Term);
22 join ;
23 }
24 }

(f) SCL version with separate sur-
face and depth initializations of S
to cure schizophrenia (linear com-
plexity).

1 schizo−conc−
2 cured2−scl
3 (output bool O)
4 {
5 while (true) {
6 { // Surface
7 bool S;
8
9 fork

10 O = S;
11 par
12 // Init
13 S = false;
14 join ;
15 };
16 { // Depth
17 bool S’;
18
19 fork
20 pause;
21 // Emit
22 S’ = true;
23 par
24 pause;
25 // Init
26 S’ = false;
27 join ;
28 }
29 }
30 }

(g) SCL version derived from
schizo-cured2-strl (quadratic
complexity).

1 schizo−scl
2 (output
3 bool O)
4 {
5 while (true)
6 {
7 signal S;
8
9 O =

10 present(S);
11 pause;
12 emit(S);
13 }
14 }

(h) SCL version that
provides signals as syn-
tactic sugar on top of
variables, instead of be-
ing separate entities.

Fig. 1: The schizo example illustrating the correspondence between Esterel signals and boolean,
sequentially controlled variables.
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this case the gotopause is optimized away. However, this approach can still lead to a quadratic
code size increase in the worst case.

B. Emulating signals with variables in a sequential setting
The schizo-seq-scl code in Fig. 1d shows a functionally equivalent version of schizo-strl

that replaces signals O and S by boolean variables of the same name. The constant false is
interpreted as signal absence and true as signal presence. We here use a C-like language,
called SCL [47], which basically extends C by synchronous primitives, such as pause, which
delineates ticks as in Esterel. We will henceforth treat O as if it were a simple boolean variable
to begin with, and will focus on how the signal-like behavior of S is emulated. We could do
the same for O, but this would complicate the examples and the discussion.

As in schizo-strl, the scope of S is embedded in an infinite loop. In the initial tick, S is
initialized to false (absent) in line 8, which is implicit in the signal mechanism employed
in the Esterel version. Then the assignment O = S sets O to false as well, and the program
pauses in line 10. In the next tick, S is again initialized to false, then “emitted” by setting it
to true, but then—after looping around—again set to false in line 8 before its value is copied
to O again. Thus, as in the original Esterel version, O is correctly considered to be absent.

From a practical perspective, the explicit initialization to absent imposes a certain additional
effort, even though it may sometimes be superfluous, such as in schizo-seq-scl where the second
initialization of S is followed immediately by an emission. However, the aforementioned
schizophrenia issue that arises at the signal-based view (as in Esterel) can be elegantly handled
by the variable-based approach (as in SCL). Specifically, it is enough to duplicate only the
initialization of a signal, into a “surface initialization” and a “depth initialization,” as done in
schizo-seq-scl, to make signal schizophrenia issues disappear even when synthesizing hardware.
To see why, consider the trace of assignment statements executed by schizo-seq-scl after the
pause: S = false (init, line 12); S = true (emit, line 14, followed by looping around); S = false
(line 8); O = S. These four assignment statements can be mapped directly to distinct gates and
wires, with different wires corresponding to the possible different valuations of S, which at
the software level would correspond to a static single assignment (SSA) form [5].

To summarize so far, the signals used in schizo-strl can be replaced by boolean variables
that are explicitly initialized to false (absent) before they are possibly updated to true (present).
The schizophrenic nature of a signal can then be resolved by sequential re-initialization. This is
possible because in the single-threaded imperative program schizo-seq-scl, on looping around,
the initialization in line 8 is guaranteed to happen sequentially after the emission in line 14,
and because this overwriting of S is effective before the reading in line 9. Note that this is
not possible in a SMoC language such as Quartz, where sequencing “;” does not enforce
sequential execution order but models concurrent data flow (“sequentiality by expression”). In
Quartz the two programs S = false; S = true and S = true; S = false would give the same unique
result depending on the combination function used to merge the booleans true and false.

In contrast to Quartz, Esterel provides variables with sequential overwriting, in addition
to signals, and schizo-seq-scl could indeed be written with boolean variables, too. However,
the real power of signals comes into play when having potentially concurrent emitters and
readers. This is permitted for signals, not normally for variables, which do not allow concurrent

6



readers or writers2 This restriction on concurrent variable sharing is not too surprising, as
concurrent variable writes would generate possible non-determinism, if concurrent threads
try to write different values to the same variable. For the same reason, we cannot simply
have each thread that might emit a signal do its own explicit signal initialization, as then
the signal emission done by one thread might be overwritten by the initialization done by
another thread. It is precisely to avoid such data races that the use of signals is subjected to
constructivity constraints by the compiler. In order to emulate signals we must specifically
recover the implicit “init;update;read” protocol of SMoCs in terms of scheduling constraints
on variable accesses. We shall look at this in the next subsection.

C. Signals in a concurrent setting
To fully emulate signals, we want to allow concurrent writes, but must make sure, firstly,

that initializing writes (S = false) precede non-initializing, or updating writes (S = true). Note
that in the original SCL proposal [47], [46], updates take the form of “relative writes” such
as S = S or true, which are a slightly generalized variant of Esterel’s commutative/associative
combination functions, i.e., logical ‘or’ in this case. However, we here replace these by the
simpler, equivalent S = true. Secondly, we also must adhere to the write-before-read protocol,
as is standard in synchronous languages. With such an “init;update;read” protocol [46], [47],
for concurrent (not sequential!) variable accesses in place, we can emulate signals even in a
concurrent setting, as is illustrated in the schizo-conc-scl code in Fig. 1e. This is still equivalent
to the non-concurrent schizo-seq-scl, but uses concurrency for separating the initialization of
S from the original code. The point of this example is two-fold: 1) it illustrates how to handle
signals in a concurrent setting, and 2) it presents a way to initialize signals in a way that
scales up well to signal scopes that contain an arbitrary number of tick boundaries (pause
statements) that would otherwise each require an explicit initialization of every signal at every
pause statement.

In more detail, the main loop of schizo-conc-scl contains two concurrent threads: the first,
“main thread” (lines 8–13) corresponds to the original schizo-strl code; the second, “auxiliary
thread” (lines 15–21) handles the initialization of S. The main thread begins by setting an
auxiliary flag Term to false in line 8, indicating that the scope of S has not been left yet. The
auxiliary thread begins by setting S to false in line 17 as the default value for the tick. Both
concurrent statements Term = false and S = false are confluent with each other (see Def. 3) and
thus may be executed in any order. However, the second statement O = S of the main thread in
line 9, which reads S, must wait for the initialization S = false by the concurrent thread in line
17. Likewise, the test of variable Term by the auxiliary thread in line 18 must wait for the
initialization by the main thread in line 8. Overall, this means the auxiliary thread initializes S
and subsequently pauses, because Term is false. The break, which breaks out of the enclosing
while loop, lines 15–21, is not executed. Concurrently, the main thread initializes Term to
false and sets O to the same status as S, which is false, and pauses. In the second tick, the
auxiliary thread initializes S to false again, after which the main thread emits S in line 12, as
required by the init-before-update scheduling. Then, the main thread first sets the Term flag
in line 13 and terminates. Only then, by write-before-read, the auxiliary thread moves on to
execute the conditional in line 18, which makes it break out of the loop and terminate as well.

2The Esterel V7 reference manual and IEEE standardization proposal [19][p. 68], states: “In Esterel Studio we require a
variable not to be shared by two concurrent threads: a variable read by one branch of a parallel cannot be read nor written
by any other branch of the parallel. [...] More subtle static analysis could be performed by other compilers.”

7



Because now both forked threads have terminated, the whole fork/join terminates. Through the
outer loop computation starts over again, still in the same trick, including a second execution
of S = false and ultimately setting O = S (= false/absent), just as in the Esterel program.

In schizo-conc-scl, the back-and-forth scheduling between the concurrent threads that just
happens to put everything in the right order is induced by the aforementioned “init;update;read”
protocol. Had we implemented the same behavior in, say, Java or Posix threads, there would
have been race conditions between the concurrent accesses to the variables S and Term.
This would have opened the door to non-deterministic behavior, depending, for example, on
whether Term is first read or first written to in the second tick. To achieve deterministic
behavior, equivalent to the Esterel program, we impose the “init;update;read” scheduling
regime for concurrent variable accesses, just like Esterel imposes a write-before-read regime
for all (concurrent or sequential) signal accesses.

D. Curing schizophrenia with concurrent variables
We now have shown how to emulate concurrent signals with concurrent variables. However,

the solution shown in schizo-conc-scl again uses signal S in a schizophrenic fashion. This is
manifested in the duplicated execution of the S = false statement in line 17 from the second tick
onwards. We also refer to this as statement reincarnation, which is generally problematic when
mapping to hardware. However, we now have the advantage of having direct access to the
signal initialization. We now can cure schizophrenia of signals efficiently by just duplicating
the reincarnated initialization statement in line 17 of schizo-conc-scl, again into a surface
initialization and a depth initialization. This results in the schizo-conc-cured-scl code in Fig. 1f,
where the surface initialization is seen in line 8 and the depth initialization in line 20. We
invite the reader to inspect this code and validate that no statement reincarnation takes place.
This emulation of signals with variables could also be done as a compilation/pre-processing
step, providing signals as syntactic sugar as illustrated in schizo-scl in Fig. 1h.

What has effectively happened when transforming schizo-conc-scl to schizo-conc-cured-scl
is a partial unrolling of the loop, pulling the surface part of the auxiliary thread in front of
the fork. It is here safe to do so because we can easily deduce that the main thread is not
instantaneous, i.e., must execute a pause statement, thus Term being false when it is first
tested in the auxiliary thread. Incidentally, this unrolling also makes the spurious instantaneous
control flow cycle that the auxiliary thread has introduced in schizo-conc-scl disappear. Thus
this transformation has fixed two issues, schizophrenia and a false cycle. Both of these issues
are unproblematic for software, but would be problematic for hardware synthesis.

The shared variable usage in schizo-conc-cured-scl relies on two differences/extensions
relative to the Esterel-style signal usage: ∆0) we split an emit into an explicit initialization
followed by an update, and ∆2) we allow sequential (!) re-initialization after an update,
corresponding to an “unemit.” Both is uncritical from the view of C-like languages. However,
in terms of semantics, ∆2 does not necessarily follow from ∆0. In fact, to prove our main
theorem, which is that Esterel-style constructiveness implies sequential constructiveness, we
do not need ∆2. There is an alternative path from schizo-strl to an SCL version that handles
schizophrenia but does not need ∆2. As it turns out, the existing Esterel-level transformations
for curing schizophrenia also make the re-initializations in the SCL-equivalents disappear.
For example, the schizophrenia-free schizo-cured2-strl can be mapped to schizo-conc-cured2-
scl (including some clean-up optimizations) shown in Fig. 1g, which uses ∆0, but not ∆2.
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Therefore, in the theory presented subsequently in this report, we restrict ourselves to ∆0. An
extension of the theory to ∆2 seems plausible, but has not been done yet.

E. Re-introducing signals—as syntactic sugar for shared variables
The reasoning we have performed when going from the original, signal-based schizo-strl

version of the example to the different variable-based versions could fairly easily be done by
a compiler as well. Probably the approach of schizo-seq-scl is preferable for this particular
example, as there is just one thread, and comparatively few pause statements (only one) that
require an initialization of S. For the general case, the concurrent approach used in schizo-conc-
scl is a reasonable default strategy. However, depending on the downstream synthesis path,
schizophrenia and/or control flow cycles might be an issue, in which case schizo-conc-cured-scl
would be the best approach. The schizo-conc-cured2-scl would also be a possible target, if
one wanted to apply the formal semantics of Esterel (Berry-constructiveness) as presented
subsequently.

It is therefore feasible to provide signals at the SCL level as well, as illustrated in schizo-scl
in Fig. 1h. This code is again as compact as the original Esterel version, and the programmer
does not have to bother with explicit initialization. Now, however, signals are merely “syntactic
sugar” on top of shared variables. Their semantics can be handled by a rather simple pre-
processing step in form of source-level transformations, without stepping down from the
original programming language to some lower-level implementation language as is needed for
Esterel or Quartz.

III. MODEL AND CONSTRUCTIVENESS OF PURE SC (∆∗)
Synchronous computations relate to classical automata in the sense that macro-steps

correspond to automata transitions and configurations are discrete time points (automata
states) on which system and environment can communicate (synchronize) with each other.
At this level of modeling, under the Synchrony Hypothesis where a macro-step appears as
an atomic input/output interaction, a synchronous program can be analyzed by the standard
techniques of automata (FSM) theory. However, in synchronous programming languages which
generate Mealy as opposed to Moore automata, the standard automata theory breaks down.
Since their outputs depend instantaneously on the inputs, the atomicity assumption creates a
tangled causality cycle when Mealy automata are composed. Since each program acts as the
environment of the other, the Synchrony Hypothesis forces each system to react faster than
the sum of the others. To resolve this paradox and to prevent deadlock and non-determinism,
the synchronous interaction must satisfy stringent constructiveness requirements. Note that to
study these constructiveness issues it is expedient to focus on the semantics of single ticks.
Once these are understood, the standard automata theory can kick in to chain up individual
ticks to the full behavior of a synchronous program.

A. Language and Terminology
For our further elaborations, we need a language that focuses on the micro-step computations

of a system. This language, referred to as pSCL3 contains the necessary control structures
for capturing multiple variable accesses as they occur inside macro-steps. pSCL abstracts

3The letter ‘p’ stands for “pure” indicating not only that signal variables in pSCL carry boolean status but also that pSCL
is a minimalist version of SCL in an abstract algebraic syntax.
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syntactic and control particularities of existing synchronous languages not directly related to
our analysis. This not only provides generality to the results but also avoids over-complicating
our formal treatment. pSCL is pure in the sense that it manipulates boolean variables from a
finite set V , which carry information over time by changing value in B = {0, 1}. A variable
s ∈ V with value γ ∈ B is denoted by sγ , where 0, 1 are used to code, respectively, the
logical statuses False (absent, initialized) and True (present, updated) of a synchronous signal.
The syntax of pSCL is given by the following BNF of abstract operators, where we also note
the corresponding concrete syntax in SCL [47] (and Esterel [10]) if these are different:

P := ε nothing
| π pause
| ¡s s = false (implicit unemit s in Esterel)
| !s s = true (emit s in Esterel)
| s ? P : P if s thenP elseP (present s then P else P in Esterel)
| P ||P forkP parP join
| P ; P
| rec p. P p : P declare program label (implicit in Esterel loop)
| p goto p jump to label (generalises Esterel iteration)

Intuitively, the empty statement ε indicates that a given program has been terminated instan-
taneously. That is, ε corresponds to the completion situation in which there are no further
tasks to be performed in this or any subsequent macro-step. The pause control π forces a
program to yield and wait for a global tick. This means that the execution cannot not proceed
any further during the current macro-step but it will be resumed in the next instant. The reset
(init) ¡s and set (update) !s constructs modify the value of s ∈ V to s0 or s1, respectively.
The conditional control s ? P : Q has the usual interpretation in the sense that depending on
the status 1 or 0 of the guard variable s either P or Q are executed. Parallel composition
P ||Q forks P and Q, so the statements of both are executed concurrently. This composition
terminates (joins) when both components terminate, i.e., both are completed in the sense of ε,
not waiting in a pause π. When just one of the two components in P ||Q terminates while the
other pauses, then P ||Q pauses and the computation continues from the statements of the other
component until it terminates, too. In the sequential composition P ; Q, the statements of P
are first completely executed. Then, the control is transferred to Q which, in turn, determines
the behavior of the composition thereafter. The operator rec p. P introduces a loop label or
process name p that can be used in its body P to jump back and reiterate the process using p
as a jump label. The semantics is so that rec p. P is equivalent to its unfolding P{rec p. P/p},
where P{Q/p} denotes syntactic substitution.

By default, a conditional binds tighter than sequential composition, which in turn binds
tighter than parallel composition; the loop prefix rec p has weakest binding power. As usual,
brackets can be used for grouping statements to override the default associations. For instance,
in the expression rec p. x ? ε : p; !y the scope of the loop extends to the end of the expression
as in rec p. ((x ? ε : p); !y) whereas (rec p. x ? ε : p); !y limits the scope to leave !y outside
the loop. Similarly, brackets are needed, as in rec p. x ? ε : (p; !y), to include !y into the else
branch of the conditional.

The loop construct, freely used, is as powerful as recursion in process algebras (general
theory of deterministic concurrent systems, see e.g. the textbook [7]), which is too much for
our present purposes. We impose three well-formedness conditions on pSCL expressions:
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• No jumps out of an enclosing parallel composition. Formally, in every loop rec p. P the
label p must not lie within the scope of a parallel operator ‖. For instance, rec q. P ||(!x; q)
is not permitted while P ||(rec q. !x; q) is ok.

This makes sure that the static control structure of a program is a serial-parallel graph
and the number of concurrently running threads is statically bounded by this graph. In
particular any given static thread cannot be concurrently instantiated more than once; A
fresh thread instance only runs sequentially after all previous instances of the same static
thread have terminated.

• Every loop rec p. P is clock guarded, i.e., every free occurrence of label p in P lies
within the sequential scope of a pause π. For instance, rec p. π ; p ; ¡s is clock guarded
whereas rec p. !s ; p ; ¡s is not.

Clock guarded processes are guaranteed to generate finite, terminating macro-steps.

• No loop label occurs both free and bound in an expression, where the notion of a free
and bound label is as usual. For instance, rec p. ¡s ; (rec q. p ; q) ; q) is not allowed,
whereas rec p. ¡s ; (rec r. p ; r) ; q) is ok.

This restriction avoids capturing of any free variable of rec p. P by a loop recursion in
P in the syntactic unfolding P{rec p. P/p}.

As a syntactic convenience we write y = x to mean x ? !y : ¡y for any x, y ∈ V . We
also (sometimes, unsystematically) write s = 1 (P ) and s = 0 (Q) as shorthand notations
for s ? P : ε and s ? ε : Q, respectively. Recursion-free expressions, i.e., those without
the rec construct will be called finite programs, or fprogs for short, and those which contain
neither rec nor pauses π are referred to as combinational programs, or cprogs, for short.

Example 1. As an illustration on how pSCL expressions are a compact representation of
programs take the SCL program

fork S = true par S = false; O = S join; fork O’ = S’ par S’ = false join

which in pSCL syntax reads (!s || (¡s ; o = s)) ; (o′ = s′ || ¡s′). The reaction of this program
is so that the status of both o and s is 1 and that of o′ and s′ is 0 if the “init;update;read”
protocol of SC is used as defined in Sec. III-B below.

Due to the sequential program order of SC the execution of the parallel composition
o′ = s′ || ¡s′ has to wait for the parallel !s ||(¡s ; o = s) to terminate. In the scheduling of the
parallel !s ||(¡s ; o = s) the initialization ¡s is scheduled before the update !s and only then
the reading o = s. Since s is not changed again its status remains 1 (present) for the reaction.
In the successor o′ = s′ || ¡s′ the assignment o′ = s′ has to wait for the initialization ¡s′, so o′

becomes 0 (absent). ♦

It is important to note that in SC [46], [47], where sequential composition is prescriptive,
the reaction on o and o′ in Ex. 1 would be exactly the same if both s and s′ were the same
signal variable as in the program (!s || (¡s ; o = s)) ; (o′ = s || ¡s). Since !s || (¡s ; o = s) is
executed strictly before o′ = s || ¡s the signal s is first set to 1 so the response on o is the
same. Only then, sequentially afterwards, the execution of ¡s ; o = s can take place. This
overwrites the value of s by 0 and passes this result out to o′. In other words, by exploiting
a transient behavior on a single variable s we produce the same output on o and o′, where
before in Ex. 1 we used two variables s and s′ with different (yet each unique) status to
separate the two sequential states of the transient on s. Under the SC protocol of admissible
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“init;update;read” schedules the transient on s is not observable (other than through the outputs
o and o′) because every concurrent observer has to postpone its reading of s until the variable
is stable, i.e., until after termination of the reset ¡s in ¡s ; o = s. So, for the concurrent
environment of (!s ||(¡s ; o = s)) ; (o′ = s || ¡s) the variable s receives the unique final status 0.
In standard SMoCs, notably Esterel and Quartz it is not possible to program transients in this
way, on signals like s that are shared between concurrent threads. However, our examples
in the previous Sec. II-A show that this is useful to code schizophrenic signals in terms of
boolean variables without non-linear code expansion. Let us look at the pSCL representation
of some of these examples next.

Example 2. As an illustration on how pSCL can be employed for coding specific macro-steps
of SCL programs, consider schizo-seq-scl (Fig. 1d). At the initial tick, after entering the while
loop and until the program pauses at line 10, the sequence of statements executed are s =
false; o = s; pause. In pSCL this is represented by the expression ¡s ; o = s ; π. It says that
s is reset (initialized to 0) then variable o is assigned the status value s0, viz. absence and
finally the behavior pauses. From the second tick onwards, always starting and ending in the
pause at line 10, the macro-step behavior of schizo-seq-scl is given by the pSCL expression
¡s ; !s ; ¡s ; o = s ; π, or, in SCL, the sequence of statements s = false; s = true; s = false; o =
s; pause, again ignoring the test of the while loop when wrapping around. In words, first
reset s (initialize) then, in order, set (update) and reset it (initialize) again, finally copy the
status of s0 to variable o and pause. The full program and its sequence of macro steps can
be represented by either one of the equivalent pSCL expressions

rec p. ¡s ; o = s ; π ; ¡s ; !s ; p or ¡s ; o = s ; π ; rec q. ¡s ; !s ; ¡s ; o = s ; π ; q

where the second unfolds the loop to separate the surface behavior (first macro step up to the
first pause) from the depth behavior (second and later macro steps). ♦

Example 3. As a more complex example involving also concurrency consider schizo-conc-
cured-scl (Fig. 1f). The full program is coded by the pSCL expression

P 0
1f := rec p. ¡s ; ((¡term ; o = s ; π ; !s ; !term) ‖ Q) ; p

where Q := rec q. π ; ¡s ; term ? ε : q. Let us extract its individual macro-steps, thereby
getting rid of loops. The surface behavior of P 0

1f is obtained by unfolding the loops

¡s ; ((¡term ; o = s ; π ; !s ; !term) ‖ (π ; ¡s ; term ? ε : Q)) ; P 0
1f

and extracting the code up to and including the first pauses downstream through all concurrent
threads. In this case, the surface is specified by the expression ¡s ; (¡term ; o = s ; π ‖ π)
which covers the initial ¡s and the surface behaviors of the two threads until they reach their
first pause. In this first macro-step, thus, s is reset and sequentially afterwards the first thread
resets term and copies the 0 status of s to output o. The second thread behaves as π which
pauses immediately.

The depth behavior begins with the second tick in which both threads start from their
pauses, according to the pSCL expression P 1

1f := (!s ; !term || ¡s ; term ? ε : Q) ; P o
1f , which

after unfolding is the same as

(!s ; !term || ¡s ; term ? ε : (π ; ¡s ; term ? ε : Q)) ;

¡s ; ((¡term ; o = s ; π ; !s ; !term) ‖ (π ; ¡s ; term ? ε : Q)) ; P 0
1f

12



The second tick is given by the surface of this expression which is of the form P ′ ; ¡s ; Q′

where
P ′ := !s ; !term || ¡s ; term ? ε : π and Q′ := ¡term ; o = s ; π ||π.

First, the parallel composition P ′ is scheduled and executed as follows: Under the concurrent
“init;update;read” protocol, initially, s is reset (init) and then variables s and term are set
(update) in this order. After this, term is tested (read) and since its status is 1 the empty
statement ε is executed, whereupon the parallel composition P ′ joins and terminates. Thus,
control continues instantaneously with the ¡s statement of the expression P ′ ; ¡s ; Q′ which
resets variable s once more. Finally, the expression Q′ gets scheduled: Since the second thread
of Q′ is a pause π, it completes immediately and waits for the next tick. In the first thread,
term is reset again (init) and the status of s0 is copied to variable o. Then this thread reaches
π and pauses, too. As it turns out, the third macro-step is again given by the expression P 1

1f ,
so that we only need two (reachable) sequential macro states to describe the Mealy automaton
for schizo-conc-cured-scl, viz. the states coded by P 0

1f and P 1
1f .

Note the characteristic feature of sequentially constructive behavior in this example: The
final observable response of P ′ ; ¡s ; Q′ at the output o is determined by the final status 0 of
s, although during the computation of P ′ both signals s and term are set present. In SC a
variable can undergo transients which are not externally observable. ♦

The imperative statements of a pSCL program describe statically (possible) discrete changes
of state at the level of micro-steps. Here, an execution instance of a micro-step is called an
action. The computation of a concurrent program gets described by a collection of threads
(concurrent program fragments), each one performing actions independently and interacting
with each other according to some pre-established rules of admissible scheduling, specifically,
the “init;update;read” protocol to be specified below. The protocol depends on a distinction
of actions happening sequentially after each other and actions happening concurrently. The
sequential order is instantiated from sequential composition P ;Q. Parallel composition P ‖ Q
is the construct that provides the required thread topology for achieving concurrency. The
resulting tree-like structure of the parallel construct determines statically which actions belong
to which individual static thread. At run-time, these static threads get instantiated and executed.
Every one of such instantiations must have its own local control-state and, therefore, is
considered a process. From this perspective, the configuration capturing the global state of a
concurrent program at any given moment is determined by the local control state of all its
processes together with a shared global memory.

As in synchronous programming, a micro-step can take place when at least one process
is active, i.e., when it is able to execute an action realizing a statement other than π. In
this manner, a micro-step produces a change in the configuration resulting from a process
executing an action that modifies its own local control state and possibly the global memory.
Thus, in the course of an instant, active processes induce micro-steps until every process either
terminates or reaches a pause completing with this a macro-step. Then, from the resulting
configuration, the environment can provide a fresh stimulus for continuing the computation
with a new macro-step occurring in the next instant.

In the next Sec. III-B we define the notion of a free unconstrained execution for pSCL
programs and then in Sec. III-C introduce the admissibility restriction imposed by the
“init;update;read” protocol. Based on this we can then define the class of sequentially
constructive pSCL programs.
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B. Operational Free Scheduling Semantics
In our operational model, a process T is defined by its own current control-state, or state in

short, which contains: (i) information about the precise position of T in the tree structure of
forked processes and (ii) control-flow references to specific parts of the code. Formally, T is
given by a triplet 〈id, prog, next〉 where we write T.id, T.prog or T.next for referring to the
individual elements of T which are called, respectively, (thread) identifier, current-program
and next-control. Concretely,
• T.id is a non-empty sequence containing an alternation of natural numbers and the

symbols l, r that always starts and ends with a number. For instance, 0.l.5 and 1.r.3.l.7
are identifiers but 0.r and r.1.r.2 are not. Intuitively, 1.r.3.l.7 identifies a control state
reached after 7 micro-steps in the sequential execution of the left (l) child thread of a
fork that has been instantiated after 3 steps within the right (r) child of an outermost fork
that has sequential index 1 in the execution of the root thread of the program. We use
TI = N · ({l, r} ·N)∗ to denote the set of possible thread identifiers and the meta-variable
ι to range over the elements of TI .

• T.prog is the pSCL expression that is currently scheduled to generate T ’s actions. Since
current-programs are pSCL expressions we use the meta-variables P , Q, etc., to range
over these.

• T.next is a list of future program fragments that can be converted into actions sequentially
after T.prog has terminated instantaneously. This list is extended when a sequential
composition is executed in T.prog. We use the meta-variable Ks to range over next-
controls.

The identifier T.id separates sequential from parallel control-flow information useful for
localizing T in the current execution and joining previously forked processes that have
terminated. The intuition is that the numbers in the identifier are associated with the sequential
steps taken by the process. The symbols (l for left and r for right) recall the path of previous
parallel forks from which the process has emerged.

To compare the sequential depth of processes we use the (partial) lexicographic order ≺
on thread identifiers TI . The natural numbers are ordered in the usual way, i.e., 0 < 1 < 2 . . .
while the symbols l, r are considered incomparable. Thus, for identifiers ι = d1 . . . dn and
ι′ = d′1 . . . d

′
m we have that ι ≺ ι′ iff

• ι is a proper prefix of ι′, i.e., n < m and ∀1 ≤ j ≤ n. dj = d′j , or
• ι is lexically below ι′, i.e., there is 0 ≤ i < n such that ∀1 ≤ j ≤ i we have dj = d′j and
di+1 < d′i+1.

For instance, 0.r.2 ≺ 0.r.2.l.1 and 0.r.2.l.1 ≺ 0.r.4 but 0.r.2 6≺ 0.l.2.l.1 and 0.r.2 6≺ 0.l.4
because the labels l and r are incomparable. We write � for the reflexive closure of ≺, i.e.,
ι � ι′ iff ι ≺ ι′ or ι = ι′.

The order (TI ,�) contains both the thread hierarchy and sequencing in program order.
Sometimes we are only interested in the depth of a process in the thread hierarchy. To extract
this we define a thread projection function th(ι) ∈ {l, r}∗ which drops from ι all sequencing
numbers. For example, th(0.r.2.l.1) = r.l and th(0) = ε, where ε denotes the empty sequence.
Then, the sequence th(T.id) can be interpreted as the static thread identifier of process T .
In contrast, T.id ∈ TI should be thought of as a thread instance identifier. We will use the
symbol � also for the standard prefix order on static thread identifiers {l, r}∗. For example,
ε � r.l � r.l.l � r.l.l.
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Note that there is no relationship between ι ≺ ι′ and the prefix order on th(ι) and th(ι′).
The sequential successor ι′, in general, can both be a descendant or an ancestor of ι in the
thread hierarchy. For instance, we have 0.r.2.l.1 � 0.r.4 but th(0.r.2.l.1) = r.l is not a prefix
of r = th(0.r.4). The ordering 0.r.2.l.1 � 0.r.4 expresses that the 4th action of the right
child of the root thread happens sequentially after the l.1 successor within the 2nd action of
the same child. This 2nd action 0.r.2.l.1 is a sequential predecessor but a descendant of the
4th action in the thread hierarchy. In the other direction, 0.r.2 is a sequential predecessor of
0.r.2.l.1 but r = th(0.r.2) is an ancestor of r.l = th(0.r.2.l.1).

The sequential enumeration for identifier ι is computed by an increment function inc(ι)
which increases by 1 the last number of the identifier ι, e.g., inc(1.r.6) = 1.r.7.

Formally, the global memory is a boolean valuation function ρ : V → B which stores the
current value for each variable. The action of a process T (relative to a given memory ρ)
produces a new memory ρ′ and a set of successor processes S. Thus, any action is completely
specified by the update function ρ′ := upd(T, ρ) and the succession function S := nxt(T, ρ)
according to the following Def. 1:

Definition 1. For a given x ∈ V , the update function is defined by:

upd(T, ρ)(x) :=


0 if T.prog = ¡s and x = s

1 if T.prog = !s and x = s

ρ(x) otherwise.

This says that for a given variable s ∈ V , if T performs a reset ¡s then s is changed to 0, if
T performs a set !s then s is changed to 1, otherwise, s keeps its value from the previous
memory. We define the succession nxt(T, ρ) by case analysis on T.prog and T.next:

nxt(〈ι, P, [ ]〉, ρ) := ∅ if P ≡ ε, P ≡ ¡s or P ≡ !s (1)
nxt(〈ι, P,Q::Ks〉, ρ) := {〈inc(ι), Q,Ks〉} if P ≡ ε, P ≡ ¡s or P ≡ !s (2)
nxt(〈ι, P ; Q,Ks〉, ρ) := {〈ι, P,Q::Ks〉} (3)

nxt(〈ι, rec p. P,Ks〉, ρ) := {〈ι, P{rec p. P/p},Ks〉} (4)

nxt(〈ι, s ? P : Q,Ks〉, ρ) :=

{
{〈inc(ι), P,Ks〉} if ρ(s) = 1

{〈inc(ι), Q,Ks〉} otherwise
(5)

nxt(〈ι, P ||Q,Ks〉, ρ) := {〈ι, ε,Ks〉, 〈ι.l.0, P, [ ]〉, 〈ι.r.0, Q, [ ]〉}. (6)

Let us explain the different cases in the definition of nxt one by one:
• If the program T.prog is one of the atomic statements empty ε, set !s or reset ¡s and the

list of continuation processes in the next-control T.next is empty [ ], then the process
(after execution) is terminated and disappears from the configuration. This is achieved by
setting the succession to be the empty set.

• If T.prog is empty one of the atomic statements and the list of continuation processes in
T.next is a non-empty list Q::Ks , then we start Q in a new process with next-control
Ks and a sequentially incremented index inc(ι).

• If T.prog is a sequential composition P ; Q then we start P in a new process with the
same identifier and add Q to the front of the next-control list. The identifier does not
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increment since we do not consider the new process 〈ι, P,Q::Ks〉 a sequential successor
but only a structural replacement.

• A loop T.prog = rec p. P behaves like its unfolding P{rec p. P/p}, without modification
to the identifier and next-controls.

• Next consider a process with conditional program T.prog = s ? P : Q in memory ρ.
Depending on whether the memory value for the variable s is 1 or 0 we install the P or
the Q branch, respectively, with an incremented identifier and the same next-control. The
identifier is incremented because the branches are considered as being executed strictly
after the conditional test, in sequential program order.

• Finally, executing a parallel program T.prog = P ‖ Q instantiates the two sub-threads P
and Q in their own process 〈ι.l.0, P, [ ]〉 and 〈ι.r.0, Q, [ ]〉, respectively, with a fresh and
empty next-control but extended identifiers. The process P is the left child of the parent
process 〈ι, P ||Q,Ks〉. Therefore, we add the suffix l.0 to the parent’s identifier, and
analogously r.0 for the right child Q. At the same time that the parent process forks its
two children it transforms itself into a join process 〈ι, ε,Ks〉. Since ι ≺ ι.l.0 and ι ≺ ι.r.0
both children have strictly larger identifiers. Since only processes with maximal identifiers
are executable (see below) the join process must wait for the children to terminate before
it can release the next-controls Ks , or terminate itself in case Ks = [ ].

Note that there is no clause for the succession of a pausing process or a process label, i.e.,
nxt(〈ι, π,Ks〉, ρ) and nxt(〈ι, p,Ks〉, ρ) are undefined. This is no problem since (i) program π
is never executed in a micro-step action but only by the next global clock tick (see below),
and (ii) we are only interested in the behavior of closed pSCL expressions which do not have
any free process labels.

Example 4. Consider the process T0 = 〈0, ¡s ; o = s, [ ]〉 with T0.prog containing the pSCL
expression corresponding to program schizo-seq-scl (Fig. 1d) for the initial tick. Starting
from a memory ρ0 that gives value 1 to every variable, let T0 make its first action to obtain
new memory ρ1 = upd(T0, ρ0) and a set of successors S1 = nxt(T0, ρ0) according to (3).
As it is easy to see, this action does not modify the memory, i.e., ρ1 = ρ0 and results in a
singleton set S1 = {T1} where T1 = 〈0, ¡s, [o = s]〉. Basically, this action has separated the
two sequential statements of the original program. Now proceeding with T1 from ρ1, we come
to execute the reset ¡s, obtaining ρ2 and successors S2. Memory ρ2 now gives value 1 to all
the variables except for s whose value is changed to 0. Following (2), the succession is the
singleton S2 = {T2} with process T2 = 〈1, o = s, [ ]〉. Notice the increment of the identifier
which reflects the fact that execution has passed a sequential composition operator. Now recall
that o = s stands for the conditional s ? !o : ¡o, so the value of s is tested in memory ρ2.
We have ρ2(s) = 0, whence ρ3 = ρ2 and S3 = {T3} with T3 = 〈2, ¡o, [ ]〉 as described by (5).
From here, the reset ¡o yields a new memory ρ4 in which the value of every variable is 1
apart from o and s that have value 0. Since S4 = ∅ by (1), there are no more processes from
which we can continue. This completes the computation by instantaneous termination. ♦

Let us combine the update and succession functions for a single process to define the
micro-steps of an arbitrary set of processes running concurrently.

Definition 2. A configuration is given by a pair (Σ, ρ), where ρ is the global memory and Σ,
called the process pool, is a finite set of (closed) processes such that
• all identifiers are distinct, i.e., for all T1, T2 ∈ Σ, if T1.id = T2.id then T1 = T2;
• the sequential ordering of identifiers coincides with the thread hierarchy, i.e., for all
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T1, T2 ∈ Σ, we have T1.id � T2.id iff th(T1.id) � th(T2.id) (prefix ordering);
• the identifiers form a full thread tree, i.e., for each T ∈ Σ and every prefix (ancestor)
t ∈ {r, l}∗ with t � th(T.id), there is a process T ′ ∈ Σ of T with th(T ′.id) = t and for
any two T1, T2 ∈ Σ there is a common ancestor T ∈ Σ so that th(T.id) � th(T1.id) and
th(T.id) � th(T2.id).

The micro-step execution to be defined shortly will maintain this structural invariant of
process pools. Note that in every process pool there is a root process Root ∈ Σ whose identifier
Root.id is a single natural number n with th(Root.id) = th(n) = ε.

We call a process T ∈ Σ pausing when T.prog = π. T is active if T.id is �-maximal
(identifier order) in Σ and T is not pausing. T is waiting if is neither pausing nor active. A
configuration Σ is quiescent if it does not contain any active processes or, in other words, if
all the processes T ∈ Σ are waiting or pausing. Note that for any memory ρ, a configuration
of the form (∅, ρ) is trivially quiescent.

From a given non-quiescent configuration (Σ, ρ) and a selection T ∈ Σ of an active process,
we can let T execute its first action to produce a micro-step

(Σ, ρ)
T→µs (Σ′, ρ′),

where in the free scheduling there is no constraint on T other than it being active. The resulting
memory

ρ′ := upd(T, ρ)

is computed directly from the upd function. The new process pool Σ′ is obtained by removing
T from Σ and replacing it by the set of successors generated by nxt , i.e.,

Σ′ := Σ \ {T} ∪ nxt(T, ρ).

Note that in the free schedule both the next process pool Σ′ and the updated memory ρ′

only depend on the active process T that is executed and the current memory ρ. They do not
depend on the other states in Σ. Since the successor configuration is uniquely determined
by (Σ, ρ) and T , we may write (Σ′, ρ′) = T (Σ, ρ).

In a micro-sequence R the scheduler runs through a succession

R = (Σ0, ρ0)
T1→µs (Σ1, ρ1)

T2→µs · · ·
Tk→µs (Σk, ρk) (7)

of micro-steps obtained from the interleaving of process actions. We let �µs be the reflexive
and transitive closure of →µs. More precisely, we write

R : (Σ0, ρ0)�µs (Σk, ρk)

to express that there exists a micro-sequence R, not necessarily maximal, from configuration
(Σ0, ρ0) to (Σk, ρk). We can view R as a function mapping each index 1 ≤ j ≤ k to the process
R(j) = Tj executed at micro-step j and len(R) = k is the length of the micro-sequence,
i.e., the number of actions executed.

A synchronous instant, or instant for short, abbreviated

R : (Σ0, ρ0) =⇒µs (Σk, ρk). (8)

is a maximal micro-sequence that reaches a final quiescent configuration (Σk, ρk).

17



({T0}, ρ0) ({T1}, ρ0) ({T20, T21, T22}, ρ0)

({T20, T31, T22}, ρ0) ({T20, T21, T32}, ρ0)

({T20, T31, T32}, ρ0)({T20, T41, T22}, ρ11) ({T20, T21, T42}, ρ12)

({T20, T41, T32}, ρ11) ({T20, T31, T42}, ρ12)

({T20, T41, T42}, ρ11)({T20, T41, T42}, ρ12)

({T20}, ρ21)

({T20, T42}, ρ21)

({T20, T32}, ρ21)

({T20, T42}, ρ22)

({T20, T522}, ρ22)

¡s

({T20, T521}, ρ22)

;

({T20}, ρ22)

!term !s

!s

term?

¡s

;

;

;

;

;

({T20, T31, T522}, ρ12)

({T20, T41, T522}, ρ11)

fork

({T20, T522}, ρ21)

¡s

!term

!term

!termterm?

term?

²

({T3}, ρ21)

;

¡s

!s

!s

term?

term?

!term

join

({T20, T41, T522}, ρ12)

({T3}, ρ22) pausing

A

B
({T20, T22}, ρ21)

!term

;

pausing

({T20, T521}, ρ21)
²

join

Fig. 2: The free scheduling graph of process T0 of Ex. 5.

There are two ways in which the final configuration (Σk, ρk) may be quiescent. If Σk is
empty, then we say that the instant is terminated instantaneously. When (Σk, ρk) is quiescent
but not empty then the instant is pausing. All remaining processes are waiting for the clock
to tick. Such a clock tick

(Σk, ρk) =⇒tick (Σ′, ρ′)

consists of replacing every pausing process 〈ι d, π,Ks〉 ∈ Σk by a new process 〈ι 0, ε,Ks〉 ∈ Σ′

preserving the sequential identifier of all ancestors but restarting the current thread at sequence
number 0. The new memory ρ′ preserves all internal and output variables but permits the
environment to change all input variables for the next macro-step. For the investigations in this
report, however, we are only interested in single macro-steps generate by the surface behavior
of pSCL expressions. Therefore, we will not be concerned with clock ticks any further.

Example 5. Let (Σ0, ρ0) be a configuration where ρ0 gives value 0 to every variable and the
process pool Σ0 = {T0} consists of the following root process:

T0 = 〈0, (!s ; !term || ¡s ; term ? ε : π) ; Q, [ ]〉.
If Q = ¡s ; (¡term ; o = s ; π || π), then this is precisely the macro-step behavior schizo-
conc-cured-scl (Fig. 1f) from its second tick onwards, as explained in Ex. 3. The complete
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computation graph for the free scheduling from (Σ0, ρ0), up to activation of Q, is depicted in
Fig. 2. The processes are abbreviated as follows:

T0 = 〈0, (!s ; !term ‖ ¡s ; term ? ε : π) ; Q, [ ]〉 T31 = 〈0.l.0, !s, [!term]〉
T1 = 〈0, !s ; !term ‖ ¡s ; term ? ε : π, [Q]〉 T32 = 〈0.r.0, ¡s, [term ? ε : π]〉
T20 = 〈0, ε, [Q]〉 T41 = 〈0.l.1, !term, [ ]〉
T21 = 〈0.l.0, !s ; !term, [ ]〉 T42 = 〈0.r.1, term ? ε : π, [ ]〉
T22 = 〈0.r.0, ¡s ; term ? ε : π, [ ]〉 T3 = 〈1, Q, [ ]〉
T521 = 〈0.r.2, ε, [ ]〉 T522 = 〈0.r.2, π, [ ]〉

Each edge in Fig. 2 is a single micro-step. For better readability we do not use the selected
process Ti as the label but instead the primitive operator executed in the action, i.e., a
sequential composition (;), set statements (!s, !term), reset (¡s), the empty program (ε), a fork
or a join. The shaded regions named A and B will be explained later.

Since T0 is active it can induce the micro-step (Σ0, ρ0)→µs (Σ1, ρ0) where Σ1 = {T1}. Then,
letting T1 do its action (Σ1, ρ0)→µs (Σ2, ρ0) we obtain a succession Σ2 = {T20, T21, T22} of
three processes as a result of executing the parallel fork, the parent T20 and its two children
T21 and T22. Observe that in Σ2 the two children are active but the parent with identifier
0 is waiting, because 0 ≺ 0.l.0 and 0 ≺ 0.r.0. The parent T20 plays the role of a join in
the sense that it cannot execute any action until the two children terminate and its own
identifier becomes maximal again. Let us suppose that first T21 and then T22 are scheduled
to get (Σ2, ρ0) �µs (Σ4, ρ0) with Σ4 = {T20, T31, T32}, where T31 and T32 are both active.
Here things become interesting since the chosen scheduling order will result in different
configurations. For if (Σ4, ρ0)�µs (Σ6, ρ11) results from scheduling T32 followed by T31, then
first the reset ¡s is performed and thereafter the set !s, so that ρ11(s) = 1. On the other
hand, if first T31 is picked and then T32 does its initial action, then (Σ4, ρ0) �µs (Σ6, ρ12)
with ρ12(s) = 0. Although the resulting process pool Σ6 = {T20, T41, T42} is the same in both
configurations, the global memory is not. Continuing the schedule from configuration (Σ6, ρ11)
we see that there is a race between the reading of variable term by T42 and the write to
term by T41. If we first execute T41, then the conditional T42 will activate its ‘then’-branch ε.
Therefore, we eventually reach the configuration (Σ9, ρ21) with Σ9 = {T3} and the memory
satisfies ρ21(s) = ρ21(term) = 1. Now program Q is active in T3 and instantaneously takes
over control for the rest of the micro-sequence computation. On the other hand, if in (Σ6, ρ11)
the process T42 first gets to test the value of term , which is 0, before T41 sets it to 1, then the

‘else’-branch is selected and we end up in the configuration (Σ8, ρ21) where Σ8 = {T20, T522}.
This configuration is quiescent as it contains no active processes. The program Q is waiting in
the join process T20 which has a strictly smaller identifier than process T522 which is pausing.
No progress can be made until the next clock tick makes T522 disappear from the configuration,
thereby activating T20. Note that the conflict between T41 and T42 in (Σ6, ρ11) results in a
non-determinism of control, viz. either executing Q in the same instant or not. On the other
hand, the race between T31 and T32 in (Σ4, ρ0) generates nondeterminacy of the final memory
in that we can either pause in ({T20, T522}, ρ22) of region A or in ({T20, T522}, ρ21) of region
B which have the same process pool but different variable assignments. ♦

Not surprisingly, as demonstrated in Ex. 5 the selection strategy applied in the free scheduling
of a program determines the final memory content at the end of a macro-step. Such non-
determinacy can be eliminated by restricting the free scheduling to so-called admissible
schedules that are natural for the programmer and at the same time reliably implemented on
the chosen run-time platform by a trusted compiler. A canonical such notion of admissibility
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is obtained from enforcing the “init;update;read” protocol which decrees that all concurrent
initializations ¡s must take place before any concurrent update !s which in turn must both
be scheduled before any concurrent read, i.e., any conditional test s ? P : Q on s. This will
eliminate the scheduling regions called A and B in Fig. 2 and enforce determinacy.

The “init;update;read” protocol can be refined by limiting the number of initializations that
are permitted during a single macro-step on any variable. The most liberal stand, allowing
an arbitrary number of sequential “init;update;read” cycles leads to the notion of sequential
constructiveness, or ∆∗-constructiveness, which is introduced in the next section.

C. ∆∗ Constructiveness
As was illustrated in Ex. 3, a (well-formed) pSCL program can be separated into its

individual macro-step reactions, each of which is expressible without loops. Since the main
results in this report concern the scheduling of actions inside a single finite macro-step, without
loss of generality, henceforth we will consider pSCL programs without loops, referred to as
finite programs or fprogs for short. In addition, since each of these fprogs only describes a
single instant, we are only interested in its surface behavior. The depth behavior belongs to
the next synchronous instant and is captured by a different (continuation) fprog.

The “init;update;read” protocol of SC imposes a natural execution order on the accesses to
a variable during a macro-step. In the general setting [46], [47] this depends on classifying the
write accesses into so-called absolute writes for initialization, and so-called relative writes to
perform the update. This classification is not fixed but leaves room for different interpretations
in specific compilers, specific application domains or even specific programs. The key criterion
is that the order in which any two relative writes are executed must be immaterial, i.e., result
in the same (or at least observably equivalent) memory states, so that all concurrent relative
writes may be scheduled freely without jeopardizing determinacy. A typical class of relative
writes is obtained by assignments of the form x = f(x, ex), where f is a commutative and
associative binary function and ex an arbitrary expression which does not depend on x. Such
functions f are known as combination functions in SMoCs (see, e.g. [10], [4], [39]) or as
resolution functions in VHDL (see, e.g. [25]). Once the relative writes have been determined,
all other write accesses are classified as absolute writes in SC.

The “init;update;read” protocol also applies to pure signals in SMoCs. The signal emission
emit x in pure Esterel, for instance, is an update on boolean values with logical disjunction
|| acting as the combination function, i.e., the assignment x = x || true. This is equivalent
to the constant assignment x = true which corresponds to the set operation !x in pSCL. Any
write that sets a signal to absent is an absolute write in SC terminology. Such resets x = false,
which are implicit in Esterel, now become first class write accesses ¡s in pSCL under the
control of the programmer. The “init;update;read” protocol (implemented by the compiler)
makes sure the resets are scheduled before any set. Since reads are scheduled after any write,
the variables’ boolean values perfectly reflect the synchronous semantics of signals: A signal
variable x is read to be present (value true) by the concurrent environment if x is emitted by
the system, and x is read as absent (value false) if x is initialized and never emitted.

To ensure determinacy the SC model of computation does not permit two concurrent writes
happening within the same macro-step unless they are confluent. For relative writes this is
guaranteed by definition. Absolute writes also may be confluent with each other. For instance
consider the pSCL expression P ‖ ((!s ‖ !s) ; Q). Trivially, the two concurrent resets on signal
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s can be executed in any order without affecting its concurrent context P or its sequential
context Q. Similarly, once a signal s has been emitted, and thus its value is set to 1, later
emissions may safely happen after any read of s, provided there has not been any reset in
between. For instance, in !s ; (s ? !s ; P1 : P2 ‖ !s) ; Q the order of execution between the
test s? and the concurrent !s does not influence the result. Similarly, the emission !s in the
‘then’-branch of the conditional takes place after the read, which is innocuous as the value of
s has been set already. Generally speaking, the strict “init;update;read” ordering in the setting
of SC is applied only to variable accesses that are both concurrent and non-confluent. The
following Defs. 3 and 4 formalise this idea which is instrumental to understand synchronous
signals in terms of shared memory variables.

Definition 3 (Independence of Processes). Two processes T1, T2 are called conflicting in a
configuration (Σ, ρ) if
(i) T1, T2 ∈ Σ are both active in Σ and

(ii) T1(T2(Σ, ρ)) 6= T2(T1(Σ, ρ))

Processes T1, T2 are confluent with each other, or independent in (Σ, ρ), written T1 ∼(Σ,ρ) T2,
if there is no micro-sequence (Σ, ρ) �µs (Σ′, ρ′) such that T1 and T2 are conflicting in
(Σ′, ρ′).

Example 6. As an illustration consider once more Example 5. Processes T31 and T32 are
conflicting in configuration (Σ4, ρ0) = ({T20, T31, T32}, ρ0) because, as we have seen, both are
active in this configuration and, moreover, different execution orders lead to different results.
Since the action of T31 is !s (update) and the action of T32 is the reset ¡s (init), the scheduling
protocol gives precedence to T32. Similarly, T41 and T42 are in conflict in configuration
(Σ6, ρ12) with Σ6 = {T20, T41, T42} as can be seen from Fig. 2. For their part, processes T21

and T22 are independent or confluent in (Σ2, ρ0) with Σ2 = {T20, T21, T22}. This is so because
in every micro-sequence (Σ2, ρ0)�µs (Σ′, ρ′) the only configuration in which both T21 and
T22 are active is precisely (Σ2, ρ0). Furthermore, as can be seen from Fig. 2, the order of
execution is unimportant in this case, namely T21(T22(Σ2, ρ0)) = T21(T22(Σ2, ρ0)) = (Σ4, ρ0),
where Σ4 = {T20, T31, T32}. Note that since the initial action of both T21 and T22 is the
breaking up of the sequential composition, and thus not variable accesses, their ordering is
unconstrained by the “init;update;read” scheduling protocol. ♦

For a micro-sequence or synchronous instant R a process instance of R is given by a
pair ni = (T, i) with 1 ≤ i ≤ len(R) where T = R(i). This indexing internalizes the
happens-before relation directly on the process actions and permits us to view R as a linearly
ordered set of actions.

Example 7. Take the micro-sequence R1 : (Σ0, ρ0)�µs (Σ10, ρ10) of Ex. 5 with len(R1) = 10
and R1 = T0, T1, T21, T22, T32, T31, T41, T42, T521, T20. It maps the micro-step indices 1 ≤
i ≤ 10 to actions R1(i) defined by the order of execution, i.e., R1(1) = T0, R1(2) = T1,
R1(3) = T21, and so on and so forth. Hence, n1 = (T0, 1), n2 = (T1, 2), n3 = (T21, 3), n4 =
(T22, 4), . . . , n10 = (T20, 10) are all the process instances of R1. Note the sequence of
process identifiers R1(i).id in this sequence is 0, 0, 0.l.0, 0.r.0, 0.r.0, 0.l.0, 0.l.1, 0.r.1, 0.r.2, 0.
So, different process instances do not necessarily have different identifiers. However, the
actions consisting of atomic program statements in the sequence R1, those are ¡s, !s, !term,
?term and ε, all have distinct identifiers. ♦
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Definition 4 (Concurrency, Confluence and Scheduling Order). Consider a micro-sequence

R : (Σ0, ρ0)�µs (Σk, ρk)

and two of its process instances ni1 = (R(i1), i1) and ni2 = (R(i2), i2). We define the
following relations between ni1 and ni2:

1) ni1 and ni2 are concurrent, ni1 | ni2, if R(i1).id 6� R(i2).id and R(i2).id 6� R(i1).id.
2) ni1 precedes ni2, abbreviated ni1 →pre ni2, if ni1 | ni2 and either:

(i) ni1 performs a reset ¡s or set !s on a variable s that is read (tested) by ni2, or
(ii) ni1 performs a reset ¡s on a variable s on which ni2 performs a set !s.

3) ni1 and ni2 are confluent or independent in R, written ni1 ∼R ni2, if R(i1) ∼(Σj ,ρj)

R(i2), where j = min(i1, i2)− 1.
4) ni1 happens before ni2 in R, indicated ni1 →R ni2, if i1 < i2.

Example 8. From the micro–sequence R1 of Ex. 7, we have the following. Clearly, n3 →R1 n5

since R1(3) = T21 is scheduled (happens) before R1(5) = T32. This does not imply that
T21 is a sequential predecessor of T32 in program order. In fact, we have n2 | n5 precisely
because the identifier T21.id = 0.l.0 and T32.id = 0.r.0 are �-incomparable. Note that the
concurrency relation is static in the sense that it indicates that the processes could (but must
not) be both active in some configuration. In the same order of ideas, n2 and n4 are not
concurrent since R1(2) = T1.id = 0 � 0.r.0 = T22.id = R1(4) which indicates that T1 is a
sequential predecessor of T22. Observe that non-concurrent (sequential) processes, such as T1

and T22, when appearing in the same sequence, always do so according to the �-order of
their identifiers, i.e., n2 →R1 n4. ♦

Comparing Def. 4 with the corresponding definition in the general setting of SC (Def. 4,
Def. 8 and Def. 9 in [47]) two remarks are in order:

• First, as seen in Def. 4(1) concurrency of processes can now be defined simply by
comparing the process identifiers as these contain sequencing information. Whenever two
identifiers T1.id and T2.id are �-incomparable the processes T1 and T2 are concurrent.
This implies that they belong to concurrent static threads, i.e., th(T1.id) and th(T2.id)
are incomparable under the prefix ordering in {l, r}∗. The converse does not hold as the
following example shows:
Example 9. Consider the expression ((!s ; P1) ‖ P2) ; (Q1 ‖ Q2). The execution of P1

leads to a process with identifier T1.id = 0.l.1 as the second micro-state in the left child
thread of root. The later execution of Q2 starts up with the identifier T2.id = d.r.0 as
the first micro-state of the right child thread which is instantiated from the fork Q1 ‖ Q2

that appeared with some sequential index d ≥ 1 after the join of (!s ; P1) ‖ P2. Now,
obviously th(T1.id) = l and th(T2.id) = r which are incomparable. However, T1 and T2

are not concurrent since T2 is a sequential successor of T1. This is witnessed under the
≺-order which gives T1.id = 0.l.1 ≺ d.r.0 = T2.id. ♦
In [47] the “processes” are statement nodes of a sequential concurrent control flow graph
(SCG) together with a scheduling status. They do not contain dynamic sequence identifiers.
Instead, concurrency is derived by checking that both nodes have been spawned from
the same instance of their least common ancestor fork in the static thread graph (cf.
Def. 4 in [47]). Since this definition needs the full context of the micro-sequence R
the concurrency relation is written ni1 |R ni2 in [47] rather than ni1 | ni2 as here. The
fact that concurrency is derived from the sequentiality relation �, rather than being a
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primitive concept, motivates the choice of the term “sequentially” constructive for our
new model of synchronous of computation.

• The second remark concerns clause (2) of Def. 4 which captures the essence of the
“init;update;read” protocol. In the general formulation of SC we must also impose a
precedence relation between any two concurrent absolute writes since these are not
necessarily confluent with each other. This is not needed here for pSCL in which the
only absolute write is the reset ¡s. It suffices to order initializations before updates, see
Def. 4(2)(i) and writes before reads, see Def. 4(2)(ii). Another, though minor, difference
is that here the precedence ordering is defined independently from whether the process
instances are confluent or not. Precedence according to the formulation in [47] not
only requires concurrency like our Def. 4 does, but also non-confluence. Here, we find
it more perspicuous to leave confluence aside and take care of it in the definition of
∆∗-admissibility Def. 5 below, which coincides with the notion of sequential admissibility
(cf. Def. 10 in [47]).

Definition 5 (∆∗-Admissibility). A micro-sequence R is ∆∗-admissible iff for all process
instances in R, with 1 ≤ i1, i2 ≤ len(R) and n1,2 = (R(i1,2), i1,2), the following ∆∗ scheduling
condition is satisfied: Whenever ni1 precedes ni2 according to protocol order, then ni1 happens
before ni2 or both are confluent in R. Formally, if ni1 →pre ni2, then ni1 →R ni2 or
ni1 ∼R ni2.

The following definition coincides with the notion of sequential constructiveness (cf. [46],
[47]) for the special case of fprogs and only refers to the surface behavior:

Definition 6 (∆∗-Constructiveness). A fprog P is ∆∗-constructive (SC) iff for all initial
configurations (Σ0, ρ0), where Σ0 = {〈0, P, [ ]〉},
(i) there exists a ∆∗-admissible synchronous instant (Σ0, ρ0) =⇒µs (Σk, ρk) and

(ii) every ∆∗-admissible synchronous instant leads to the same configuration (Σk, ρk).

Note that in Def. 6 the final configurations (Σk, ρk) always have a process pool Σk in
which all remaining processes are pausing. This is so because any synchronous instant, by
definition, reaches a quiescent configuration without active processes. Hence, there may be at
most pausing processes left over. However, for fprogs without pause construct, the unique
reachable quiescent process pool is empty Σk = ∅.

Example 10. Consider P := s ? (x = 0 (!y)) : (y = 0 (!x)). This program does not
contain any parallel operator. Thus, for arbitrary initial memories, P admits of exactly
one schedule. Further, since P does not generate any concurrent variable accesses, every
schedule is ∆∗-admissible. Hence, P is ∆∗-constructive. The binary-branching conditional
can be coded equivalently in terms of a parallel composition of one-sided conditionals
P ′ := (s = 1 (x = 0 (!y))) ||(s = 0 (y = 0 (!x))). This now contains a parallel composition
operator. Still, because the concurrent accesses x = 0 and !x to x (and analogously to y)
are guarded by the value of s and mutually exclusive, no single execution actually contains
concurrent accesses to x (or y). Therefore, again every schedule is ∆∗-admissible. In fact,
one can show that every micro-step of P ′ can be simulated by zero or one micro-step of P so
that the sequence of memories produced are the same for both programs. This implies that P ′

is ∆∗-constructive and equivalent to P .
Note that the final response of each program P and P ′ depends on the initial condition.

For ρ0(s) = ρ0(x) = ρ0(y) = 0 the final memory ρk has ρk(s) = ρk(y) = 0 and ρk(x) = 1,
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whereas for initial memory ρ′0(s) = 1 and ρ′0(x) = ρ′0(y) = 0 we get ρ′k(s) = ρ′k(x) = 0 and
ρ′k(y) = 1. ♦

∆∗-constructiveness captures responsiveness and determinacy under non-determinism arising
from thread scheduling. As highlighted in Ex. 10 this does not preclude that a program produces
different final responses for different initial memories. In fact, the response usually depends
on the initial value of variables that act as input variables. This form of non-determinism is
normally not considered harmful since the value of input variables are assumed to be safely
controlled and synchronized by the “environment” of a program. However, it may sometimes
be necessary to enforce determinism for output variables. The final value of a variable that
acts as an output is usually supposed to be uniquely (causally) determined by the program. It
should not depend on the output variables’ initial memory state if this initial memory is not
under control of the program but the compiler, operating or run-time system. For instance, in
standard Java/C programming one might be tempted to assume all memory is initialized to
binary 0, at run-time, before the program starts. Obviously, in view of modern security attacks
it would be haphazardous to rely on any default initializations outside of the application
program. Therefore, it may be useful to strengthen the notion of constructiveness to include
some form of robustness under external non-determinism also regarding initial memory and
external input.

A general form of constructiveness that allows us to make assumptions on the run-time
guaranteeing certain default initializations and at the same time expressing robustness under
the remaining environmental uncertainty can be obtained by using partial equivalence relations
on memories. A partial equivalence relation is a subset Π of disjoint (non-empty) sets π of
memories ρ. Two memories ρ1 and ρ2 are equivalent with respect to Π, written ρ1 ≡Π ρ2 if
there exists an equivalence cluster π ∈ Π such that ρ1 ∈ π and ρ2 ∈ π. The relation ≡Π is
obviously symmetric by definition. It is transitive because the equivalence clusters in Π are
all disjoint. On the other hand, ≡Π is not reflexive in general, since ρ 6≡Π ρ iff there exists no
cluster π ∈ Π such that ρ ∈ π. Such ρ are sometimes referred to as partial elements, hence
the name ‘partial’ equivalence relation. We now use such partial equivalence relations to refine
the definition of ∆∗-constructiveness. Partial memories are used to express don’t cares, i.e.,
initial memories that are guaranteed never to occur at run-time and the clusters express any
remaining uncontrollable non-determinism about the initial conditions.

Definition 7 (∆Π
∗ -Constructiveness). Let Π be a partial equivalence relation on memories, i.e.,

on functions V → B. Then, a fprog P is ∆Π
∗ -constructive, or ∆∗-constructive with respect to

Π, iff for all initial configurations (Σ0, ρ0), where Σ0 = {〈0, P, [ ]〉} and ρ0 ≡Π ρ0,
(i) there exists a ∆∗-admissible synchronous instant (Σ0, ρ0) =⇒µs (Σk, ρk) and

(ii) every ∆∗-admissible synchronous instant from every initial configuration (Σ0, ρ
′
0) such

that ρ′0 ≡Π ρ0 leads to the same final configuration (Σk, ρk).

Generally, the more partial elements we have in Π the fewer initial memories we include
in the constructiveness requirement of Def. 7, and the larger the clusters become the more
robustness we get. Obviously, ∆∗-constructiveness according to Def. 6 is the same as ∆Id

∗ -
constructiveness, according to Def. 7, with respect to the identity relation Id as the partial
equivalence. Note that for the identity relation Id we have ρ0 ≡Id ρ′0 iff ρ0 = ρ′0, i.e., there
are no partial elements and all clusters are singletons. For any subset M ⊆ V → B of
memories we can consider the partial identity Id(M) = {{ρ} | ρ ∈ X}. For this relation,
then, constructiveness ∆

Id(M)
∗ restricts scheduling independence of Def. 6 to initial memories
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in M . In this way, default initializations can be accommodated for a weakened notion of
constructiveness. For instance, pure signals in Esterel have a default initialization to status
0. On the other hand, a stronger form of constructiveness would be needed to accommodate
initial jitter on output variables. For any set of (output) variables O ⊆ V let Out(O) be the
(total) equivalence relation such that ρ1 ≡Out(O) ρ2 iff ρ1(x) = ρ2(x) for all x ∈ V \O. This
says that ρ1 and ρ2 may differ in their value on variables O but are identical otherwise. For
this relation, then, constructiveness ∆

Out(O)
∗ requires that the final response of a program must

be deterministic under arbitrary ∆∗-admissible scheduling and arbitrary initial values on the
(output) variables O, for any fixed initial memory on the other variables V \O.

Example 11. Let us revisit Ex. 10 with program P := s ? (x = 0 (!y)) : (y = 0 (!x)) from
the refined point of view. It is ∆∗-constructive under Def. 6 but not ∆

Out(O)
∗ -constructive

if we consider O = {x, y} as the set of output variables which are meant to be uniquely
determined by the execution of P regardless their initial value. Indeed, if the initial condition
is ρ0(s) = ρ0(x) = ρ0(y) = 0 the final memory ρk has ρk(s) = ρk(y) = 0 and ρk(x) = 1,
whereas for initial memory ρ′0(s) = ρ′0(x) = 0 and ρ′0(y) = 1 we get ρ′k(s) = ρ′k(x) = 0
and ρ′k(y) = 1. Hence, the final value of output x depends on the initial value of output y.
Since ρ0 ≡Out(O) ρ0 and ρ0 ≡Out(O) ρ

′
0 the execution of P violates condition (ii) of Def. 7 for

Π = Out(O). ♦

Observe that just like partial equivalences can be used to parameterise ∆∗-constructiveness
on the initial memories, expressing a form of controllability, we can use partial equivalences
to parameterise ∆∗-constructiveness with a notion of observability Π for the final memory.
Specifically, the partial elements ρk 6≡Π ρk of Π would be final memories that must never
be obtained in any ∆∗-admissible execution, and the clustering ρk ≡Π ρ′k would express that
two possible outcomes ρk and ρ′k count as identical, as their difference cannot be externally
observed. An example would be fully external side-effects such as those caused by a printf
statement in C. We leave the exploration of such general notions of constructiveness to future
work. In this report we will consider only the following cases of ∆Π

∗ :
• Π = Id({ρ0}) for initial memory ρ0(x) = 0 that sets all x ∈ V to 0. This is the

∆1-analysis and weak Berry-constructiveness in Sec. VI;
• Π = Out(O) where O are all the variables that statically occur with write accesses in a

given program. This is the ∆0-analysis and strong Berry-constructiveness in Sec. IV-D.

IV. ∆0-CONSTRUCTIVENESS: AN ABSTRACTION FOR ∆∗-ANALYSIS

In earlier work [46] we have presented a simple static criterion for the analysis of SC-
constructiveness, called ASC-schedulability. It is based on static orderings →seq and →wir on
program statements. The former describes sequential program order and the latter statically
over-approximates the constraints imposed by the “init;update;read” protocol, viz. →pre in the
sense of Def. 4. It was shown that if the static ordering induced by →wir and →seq does not
contain any cycles with →wir edges, then the program is SC-constructive [46].

Example 12. Consider the expression P || Q where P is x ? ε : !y and Q is the fprog
y ? ε : !x. The left component P sets y to 1 if x is 0 and the right sub-expression Q sets x to
1 if y is 0. This is not ASC schedulable, because there is a static dependency cycle “P -read-x
→seq P -write-y →pre Q-read-y →seq Q-write-x →pre P -read-x” which includes →pre edges.
Indeed, if both variables x, y are initially 0, the response of P ||Q is non-determinate (under
∆∗-admissible scheduling). If P is first executed to termination and then Q, we get the

25



final memory x = 0, y = 1; otherwise, if we first execute Q and then P the result will be
x = 1, y = 0. Hence, P ||Q is not ∆∗-constructive. ♦

Since the ASC test is purely static it cannot deal with data dependencies. This unnecessarily
rejects programs as non-constructive although the causality cycles involving →wir are not
executable in the run-time control flow.

Example 13. Take the fprogs P and Q as in Ex. 12. Modify their parallel composition to run
concurrently with a process that sets x to 1, i.e., P ||Q || !x. Now, by the SC rules the set !x has
to be executed before the test x? in P , which means that P does not write !y at all but behaves
like ε. As a consequence, for any given initial memory ρ0, all ∆∗-admissible executions of
P ||Q || !x produce the same determinate response, viz. where x = 1 and y = ρ0(y) is the
initial value. The fprog is ∆∗-constructive. Obviously, it is still not ASC-schedulable as defined
in [46] since the static causality cycle4 involving →wir still exists. ♦

We now introduce ∆0 as an approximation to ∆∗-constructiveness on finite pSCL programs
which does account for data dependencies. It can deal with the difference of a variable retaining
its original initial value from the initial memory (pristine), being initialized to 0 and then either
remaining 0 (signal absence) or being set to 1 (signal presence). This includes monotonic
value changes from 0 to 1 but is restricted to a single “init;update;read” cycle within a logical
tick rather than arbitrarily many as would be permitted by ∆∗-constructiveness. It is thus
more restricted than ∆∗ and essentially corresponds to Berry’s notion of constructiveness in
Esterel, yet is able to deal with explicit initialisations which requires the ability to cope with
prescriptive sequencing.

A. Semantic Domain I(D,P) of Signal Statuses.
The ∆0 constructiveness analysis takes place in an abstract domain of information values

which describe the sequential and concurrent interaction of signals. Instead of distinguishing
just two signal statuses “absent” and “present” as in traditional SMoC, we consider the
sequential behavior of a variable (during each instant) as taking place in a linearly ordered
4-valued domain D := {⊥ ≤ 0 ≤ 1 ≤ >}. The linear ordering ≤ captures a trajectory through
a single instance of the “init;update;read” protocol. Every declared variable starts off initially
in status ⊥ (pristine, fixed-but-unknown). It can later be reset (i.e., initialised) to 0 and then,
possibly, set (i.e., updated) to 1. On the other hand, changes from status 1 back to 0 are not
permitted. Any attempt to reset a variable sequentially after it has been set results in the value
>, denoting a ∆0 model crash. The status x> indicates that more than one “init;update;read”
cycle is necessary to analyze the final response of x. If this is intended, then an analysis for
∆2 or above may resolve the case. Clearly, ≤ induces a lattice structure on D with minimal
element ⊥, maximal element > and the join (max) and meet (min) operations obtained in the
obvious fashion.

Observe the difference between the variable values B = {0, 1}, which appear at “run-time”
as defined in the operational semantics (Sec. III-B), and the variable statuses D, which are the
basis of constructiveness analysis. The latter lifts our description to a higher level in which
the semantics of variables is enriched to reflect the fact that they are controlled by an implicit
synchronization protocol. It is the enriched semantic domain D that turns a variable into a

4In the technical report [47][Def. 13] we have relaxed the notion of ASC-schedulability to permit more informed static
approximations of the precedence relation →pre . According to that relaxed notion the write-read dependency edge “Q-write-x
→pre P -read-x” can be dropped, so the static cycle is broken.
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Fig. 3: Interval Domain I(D) for Approximating Signal Statuses.

synchronized signal. We now go one step further in the abstraction. In the ∆0 analysis we
operate on predictions of variable statuses. Possible statuses of variables are approximated
by closed intervals I(D) := {[a, b] | a, b ∈ D, a ≤ b} over D. An interval [a, b] ∈ I(D) in
this 10-valued domain corresponds to the set of statuses set([a, b]) = {x | a ≤ x ≤ b} ⊆ D.
Intervals [a, b] such that a < b denote uncertain information, i.e., a potential non-determinate
response. Such a general interval represents an approximation to the final (stable) state of a
variable from its two ends, the lower bound a and the upper bound b. An interval status [a, b]
associated with a variable x ∈ V can thus be read as follows: “the executions of the statements
so far ensure that x has currently status a, yet it cannot be excluded that some statements
might be executed which could increase the status of x up to b”. In this vein, the intervals
[a, a] correspond to crisp, statuses which are naturally identified with the values ⊥ = [⊥,⊥],
0 = [0, 0], 1 = [1, 1] and > = [>,>] of D, respectively, i.e., D ⊂ I(D). A variable s ∈ V
with status γ ∈ I(D) is denoted by sγ .

Example 14. Assume that the status of x is not decided yet, say, it is x[⊥,>]. Then, computing
the reaction of fprog P = ¡s ; x ? !s : ε, the interval for s will be [0, 1]. The status s[0,1] for
variable s indicates that a reset ¡s must definitively be executed. Also, there is at least one set
!s that can potentially be executed, but is not guaranteed, which is why the status of s ranges
between 0 and 1. On the other hand, the response of P on variable x returns the status x⊥

reflecting the fact that x is guaranteed not to be accessed by P , therefore retaining its initial
pristine value. ♦

On the status domain I(D) we can define two natural orderings:

• The point-wise ordering [a1, b1] � [a2, b2] iff a1 ≤ a2 and b1 ≤ b2, and
• the (inverse) inclusion ordering [a1, b1] v [a2, b2] iff set([a2, b2]) ⊆ set([a1, b1]),

which endow I(D) with a full lattice structure for � and a lower semi-lattice structure for
v. The point-wise lattice 〈I(D),�〉 has minimum element [⊥,⊥] and the minimum for the
inclusion semi-lattice 〈I(D),v〉 is [⊥,>]. The element [>,>] is a maximal element for both
orderings but it is the maximum only for �. For v all singleton intervals [a, a] are maximal.
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Join ∨ and meet ∧ for the �-lattice are obtained in the point-wise manner:

[a1, b1] ∨ [a2, b2] = [max(a1, a2),max(b1, b2)]

[a1, b1] ∧ [a2, b2] = [min(a1, a2),min(b1, b2)].

In the inclusion v-lattice the meet u is

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)].

The semi-lattice 〈I(D),v〉 does not possess joins, but it is consistent complete, i.e., whenever
in a nonempty subset ∅ 6= X ⊆ D any two elements x1, x2 ∈ X have an upper bound y ∈ D,
i.e., x1 v y and x2 v y, then there exists the least upper bound tX = u{y | ∀x ∈ X. x v y}.
This will give us least fixed points.

Fig. 3 illustrates the two-dimensional lattice structure of I(D). The vertical direction
(upwards, green arrows) corresponds to � and captures the sequential dimension of the
statuses. The horizontal direction (right-to-left, blue arrows) is the inclusion ordering v and
expresses the degree of precision of the approximation. The most precise status description is
given by the crisp values on the left side, which are v-maximal and order-isomorphic to the
embedded domain D. The least precise information value is the interval [⊥,>] on the right.

Observe that well-known ternary domain of Kleene for the fixed-point analysis of Pure
Esterel [9], [37] or cyclic boolean circuits [30], [32] is captured, as indicated in Fig. 3, by the
inner part with values [0, 0] (“present”), [1, 1] (“absent”) and [0, 1] (“undefined”). In ternary
analysis all signal variables are implicitly assumed initialized, hence no need for ⊥. Moreover,
since there is no reset operator and thus programs cannot fail the monotonic single-change
requirement, there is no need for > either in the standard SMoC. This ternary fragment of
I(D) corresponds to three-valued Kleene logic with ∨ disjunction and ∧ logical conjunction.
Fig. 3 visualizes clearly how the 10-valued domain I(D) offers an extended playground to
represent the logic of explicit initialization. The following Ex. 15 illustrates how we can use
the domain I(D) in the fixed point analysis to navigate in both dimensions � and v for
determining the instantaneous response of a fprog.

Example 15. An initial crisp s[0,0] generated by ¡s can develop sequentially into the status
s[1,1] if a set operation must be executed on the variable afterwards, i.e., as in ¡s ; !s. However,
s[0,0] may also sequentially transform into s[0,1] by a potential set operation, which is guarded
by an undecided conditional and thus not yet known to be executed as in ¡s ; x ? !s : ε
(cf. Ex. 14). Moreover, if this potential set operation on s is sequentially followed by a potential
reset, i.e., ¡s ; x ? !s : ε ; y ? ¡s : ε, then s[0,1] increases further in �-order and ends up in
s[0,>]. All these calculated predictions for the status of s are made without any information
on the variables x and y, i.e., assuming both have status [⊥,>].

In the course of the analysis of the fprog’s context, we might eventually obtain a more
precise description of y and as a consequence, also a more precise status for s. Let us suppose
we could pin down the possible status of y to y[0,0], which lies to the left of y[⊥,>] in the
diagram of Fig. 3, because [0, 0] w [⊥,>]. This updated status for y makes the reset ¡s in
¡s ; x ? !s : ε ; y ? ¡s : ε un-executable. Thus, the model crash s> is no longer possible and
the information status of s can be improved, too, viz. to s[0,1] w s[0,>]. Finally, if also x is
receives a crisp value, say x[1,1] w x[⊥,>], then the status of s further narrows to the crisp
s[1,1] w s[0,1]. ♦

It is important to observe that the information domain I(D) does not allow us to express
arbitrary subsets of statuses. For instance, there is no representation of the constraint that a
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variable’s status is either 0 or > but not ⊥ or 1, i.e., an abstract value for the set {0,>}. Such
general subsets of D do not have the upper and lower structure necessary for our analysis. In
particular, note that there is a difference between saying that a variable’s status lies in the
interval [0, 1] and saying its status is an element of the set {0, 1}, i.e., that its status is either
0 or 1. The latter would justify a binary case analysis on the fixed but unknown status while
the former does not. Indeed, using the interval [0, 1] we do not permit the status to be fixed as
either 0 or 1 but only as an abstract “range”. This is captures the constructive interpretation
of Esterel-style causality analysis and is explained in more detail with the following Ex. 16.

Example 16. Take the fprog P = ¡s ; x ? !s : ε ; x ? ¡s : ε which is like in Ex. 15 but now
both variables x and y are identified. The fact that the status of input x is known to lie in the
set {0, 1} may be expressed in two ways: We can say (a) the status is x[0,0] or x[1,1] or (b)
the status is x[0,1].

In case (a) we could argue that the final response of s in P must be [0, 0] or [>,>]:
• if x has status [0, 0] then both ‘else’-branches are executed and P behaves like ¡s ; ε ; ε.

Therefore, s receives status [0, 0];
• if x has status [1, 1], then both ‘then’-branches are taken and P is equivalent to ¡s ; !s ; ¡s.

Since here s undergoes a second reset its final status is [>,>].
This case analysis performs two independent symbolic simulations in which the status of x is
assumed to have a fixed but unknown stable value.

The second option (b) represents the status of x by the single interval [0, 1] which is a
more conservative approximation. Since each conditional test in P sees the value of x as
unknown in the range [0, 1] they may independently reach different decisions. This generates
two further options, viz. that P behaves like ¡s ; !s ; ε or ¡s ; ε ; ¡s. In the former scenario the
final status of s is [1, 1] a value that is excluded in case (a). In case (b) we do not make the
assumption that the two conditional tests of x read the same value if this value is undefined.
This is the conservative standpoint for Berry’s notion of constructivity where we never assume
a signal is stable until we also have its value. E.g., if signal x switches from 0 to 1 in the
environment and this change gets delayed from the point of view of the second test, then the
second reading x ? ¡s : ε of x in P may still see x at 0 while the first reading x ? !s : ε
already sees the new value 1.

Notice that symbolic simulation under scheme (b) is exponentially more efficient compared
to scheme (a) since for n unknown input variables we only need one evaluation pass with
every variable initialized to [0, 1] or [⊥,>]. Under scheme (a), if there are n input variables
we need to perform 2n different evaluations if each is stable in {0, 1} or even 4n under full
uncertainty {⊥, 0, 1,>}. ♦

In our analysis it would be possible to use the pristine status ⊥ as a constructive way to
code a fixed unknown rather than an undecided value. The status x⊥ represents a variable x
whose value is static and uniquely determined by the memory at the beginning of the macro
tick. Every time where we evaluate a conditional on a variable that has crisp status ⊥ we could
safely try both branches and combine the responses that we get from both branches. However,
just like the external non-determinism discussed in Ex. 16, this creates an exponential blow-up
of the complexity of the symbolic evaluation. Therefore, we will not adopt this interpretation.
Instead we treat ⊥ as an undecided value and block the evaluation of conditionals.

There is one logical refinement to the domain I(D) that we need to make in order to keep
properly track of the completion of the initialization phase on each variable. According to the
synchronous “init;update;read” protocol a set !s contained in a program can only go ahead if it
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is guaranteed that no reset ¡s on this variable is possibly outstanding. There is no information
yet in the intervals of I(D) to express that no reset is outstanding. For instance, the status
s[0,1] specifies that the initialization of s has been started and that there is a waiting update
access on s, but it does not tell if there are any other resets ¡s still pending. However, this
is important in the constructive scheduling, because only if the initialization phase has been
completed, the waiting update !s is permitted to proceed changing the status to s[1,1].

To capture the termination of the initialization phase of the “init;update;read” protocol, we
now enrich the interval domain by an additional token r ∈ P = {0, 1, 2}, called the init status.
The status 2 expresses that the “init“ phase is ongoing and a reset is still predicted. The
status 1 means that no more resets are outstanding, i.e., the init phase is completed but the
protocol is still running through the “update;read” phases. Finally, when the “update;read” is
finished, and thus the value of the variables and control flow fully determined, the init status
0 is obtained.

As for I(D) there are natural sequential and information-theoretic orderings on P as seen
in Fig. 4. The sequential ordering � is given by 0 � 1 � 2 which reflects the fact that in
sequential order a finished computation (0) must first become blocked at a set or a conditional
test (1) to start a running protocol, before it reaches a predicted reset ¡s which witnesses an
incomplete initialization (2) for the reset variable s. In contrast, the information ordering on
P is the opposite, 2 v 1 v 0, which models the narrowing of behavior that occurs when the
status of variables becomes more and more decided. The init status 2 is least informative. It
says that the protocol is contingent and that there may still be potential resets outstanding.
With the value 1 the computation is still contingent but it guarantees that no resets are possible.
Finally, 0 is the tightest status for it says that the protocol is finished actual and that no resets
are possible.

The domain (P,�,v) is a lattice for both � and v in which only the semi-lattice structure
will be relevant induced by the join operations r1 ∨ r2 = r1 u r2 = max(r1, r2). Our definition
of constructive behaviors will be based on a fixed point analysis in the product domain

I(D,P) = {([l, u], r) | [l, u] ∈ D, r ∈ P} = I(D)× P.

We will write a typical element ([l, u], r) ∈ I(D,P) more compactly as [l, u]:r and refer to the
interval [l, u] as the value status to separate it from the init status r. If r = 0 we simply write
[l, u] instead of [l, u]:0 or even a instead of [a, a]:0. In this fashion we naturally consider D
as a subset of I(D,P). Generally, as before, when an interval is a singleton we write it as an
element in D, even if its init status is not 0. For instance, 0:1 is the same as [0, 0]:1 or ⊥:2
stands for [⊥,⊥]:2.
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Fig. 5: The extended interval domain I(D,P) including the init status P = {0, 1, 2}.

The orderings v and � on I(D,P) are inherited component-wise from the corresponding
orderings in the domains I(D) and P, respectively. The init status is logically part of the
upper bound and so we define the upper and lower projections on I(D,P) by stipulating

upp([l, u]:r) := [⊥, u]:r and low([l, u]:r) := [l,>]:2.

The same is obtained if we define the upper projection separately on P as the identity, i.e.,
upp(r) = r for all r ∈ P and the lower projection as the constant function low(r) = 2 for all
r ∈ P. Then, upp and low on I(D,P) are obtained component-wise from upp and low on
I(D) and P, respectively.

Note that I(D,P) is essentially a tripling of I(D), extending the domain I(D) by the
information contained in P.5 This is illustrated Fig. 5, where the domain D is contained in
the form of singleton intervals within the dotted regions.

Example 17. Consider the fprog P := ¡s ; x ? !s : ¡s. Suppose we do not know anything
about the status of x in the current environment. This is captured by the status x[⊥,>]:2 which
is the v-minimal element in I(D,P). It not only leaves open the full range [⊥,>] for the
value status of x. The init status 2 models an unfinished “init” and a possible outstanding
reset on x. Now, if the status of x is so maximally undetermined, the conditional x ? !s : ¡s
is undecided. We cannot say if the initial reset ¡s in P is followed by the set !s or the reset
¡s. Consequently, the response of P for s will be [0, 1]:2. The init status 2 indicates that the
protocol execution of P on s is speculative and that there is a possible reset on s which
may become active. The response of P on variable x, on the other hand, yields x⊥:1 because
the value status is guaranteed to remain pristine but that the computation is nevertheless
speculative (because of the blocked conditional test on x).

When the state of x becomes decided with a crisp x0 = x[0,0]:0, then the conditional is
switched through into the left branch containing the reset ¡s and the response of P for s
refines into 0 = [0, 0]:0, too. When x is decided present x1 then the conditional is unblocked
and the set !s is executed. Hence, the response for s becomes 1 = [1, 1]:0. Both responses for
s have init status 0 stating that the “init;update;read” protocol on s is completed. ♦

5The extra P dimension for indicating predicted resets has been missing in our publication [2] where this fixed point
analysis was introduced for the first time. This was a mistake which we are correcting here.
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Example 18. Consider a reset followed by a set, i.e., the fprog P := ¡x ; !x. Let us schedule
the actions of P starting from the sequential status S0 = x⊥, or equivalently, S0 = x[⊥,⊥]:0.
This represents a fully determined initial memory of unknown value. The reset ¡x is the first
action of P to be scheduled, raising the status of x to S1 = x0. The init status is still 0 because
the reset terminates instantaneously. Thus, we reach the set P ′ := !x as the continuation
program. To be scheduled the set must wait for the completion of the init phase which depends
on the concurrent environment. In the environment C0 := x[⊥,>]:2 our sequential thread is
blocked at the set. However, what we can conclude about the sequential response of P is that
x undergoes a reset and then possibly a set, yielding the final status S2 := x[0,1]:1. We cannot
put the lower bound to 1 because we have no guarantee that the set is actually executed. Also,
the init status 1 informs the environment that the “init;update” in P is blocked but P does
not produce any further resets, if it ever were to be continued. Assuming that P is running
alone by itself we can strengthen the initial approximation C0 of the environment by C1 := S2

and reanalyze P , again from the sequential status S0. Now as we reach the set !x, the refined
environment C1 with init status 1 unblocks the set !x and we obtain the final sequential status
S3 := x1. ♦

B. Environments for Constructive Semantics.
The status of variables and their evolution over time are kept in discrete structures, called

environments E : V → I(D,P) mapping each variable x to a status E(x) ∈ I(D,P). The
orderings and (semi-)lattice operations are lifted to environments by stipulating

E1 E E2 iff for all x ∈ V . E1(x)E E2(x) for E ∈ {�,v}
(E1 � E2)(x) = E1(x)� E2(x) for � ∈ {∨,∧,u} and x ∈ V .

If E(x) = [l, u]:r then we will also write x[l,u]:r ∈ E and further xa ∈ E when E(x) = a =
[a, a] = [a, a]:0. Using this notation we can view environments as sets of variable statuses
E = {x[l,u]:r | E(x) = [l, u]:r, x ∈ V } with the property that if x[l,u]:r ∈ E and x[l′,u′]:r′ ∈ E,
then l = l′, u = u′ and r = r′. It is convenient to identify the values [l, u]:r ∈ I(D,P) with
constant environments such that ([l, u]:r)(x) = [l, u]:r for all x ∈ V . We will heavily make
use of this convention, which makes I(D,P) appear as a sub-domain of the function space of
environments.

Definition 8. An environment E is called
1) decided if for all variables x ∈ V there exists b ∈ {0, 1} such that b:1 v E(x),
2) crisp if for all variables x ∈ V there exists b ∈ {0, 1} such that b = b:0 v E(x),
3) ternary if E(x) ∈ {0, 1, [0, 1]}, for all variables x ∈ V
4) crash-free if E(x) � 1:2, for all variables x ∈ V
5) init-complete if E(x) � >:1, for all variables x ∈ V
6) synchronized if (i) E(x) = [l, u]:0 implies l = u, and (ii) ⊥:1 � E(x) implies ∀y.⊥:1 �

E(y), for all variables x ∈ V .

All our environments will be synchronized as described in Def. 8(6). Part (i) of the invariant
is a result of the fact that as soon as the init status becomes 0, indicating that the “init;update”
for a variable x is finished, then the value status is decided. The second part (ii) says that
if some variable has init status above 1, then all the variables’ init status is above 1. Hence
the difference between a completed schedule marked by 0 and a contingent schedule marked
by one of {1, 2} is a feature of the whole environment rather than an individual variable.
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Although we shall later only generate synchronized environments (see Prop. 7) we will state
the results in this section for general environments.

An environment E in which all entries are one-sided lower intervals, i.e., in which x[l,u]:r ∈ E
implies u = > and r = 2 is called a lower environment. Equivalently, E is a lower environment
iff [⊥,>]:2 � E. An environment E is an upper environment if for all x ∈ V there is u, r
with E(x) = [⊥, u]:r, or equivalently, if E � [⊥,>]:2. Every environment can be separated
into its lower and upper projections

low(E) := {x[l,>]:2 | x[l,u]:r ∈ E} upp(E) := {x[⊥,u]:r | x[l,u]:r ∈ E},

so that
E = low(E) t upp(E) = u{X | low(E) v X and upp(E) v X},

where the join t exists since low(E) v E and upp(E) v E, i.e., low(E) and upp(E) are
always consistent. It is easy to see that upper and lower projections can in fact be expressed
in terms of the lattice operations as stated in the following Lem. 1:

Lemma 1.
1) low(E) = E ∨ [⊥,>]:2 = E u >:2
2) upp(E) = E ∧ [⊥,>]:2 = E u ⊥:0 = E u ⊥.

Proof: Trivial from the definitions of low and upp.

We use the set-like notation {〈xγ11 , x
γ2
2 , . . . , x

γn
n 〉} to specify a finite environment that explicitly

sets the status for the listed variables xi and implicitly defines the status ⊥ for all other
variables z ∈ V \ {x1, x2, . . . , xn}. Then, the empty environment {〈 〉} = ⊥ = [⊥,⊥]:0 is the
neutral element for ∨ which acts as the operator for set-like union.

Example 19. Let S1 = {〈x0, y[0,>]:2〉} and S2 = {〈x[⊥,1]:1, z[0,1]〉}. Then, S1 = {〈x0〉} ∨ {〈y[0,>]:2〉},
S2 = {〈x[⊥,1]:1〉} ∨ {〈z[0,1]〉} and

S1 ∨ S2 = {〈x0∨[⊥,1]:1, y[0,>]:2∨⊥, z⊥∨ [0,1] 〉} = {〈x[0,1]:1, y[0,>]:2, z[0,1] 〉}

S1 u S2 = {〈x0u[⊥,1]:1, y[0,>]:2u⊥, z⊥u [0,1] 〉} = {〈x[⊥,1]:1, y[⊥,>]:2, z[⊥,1] 〉}.

♦

In the rest of this sub-section we list some elementary results which will come in handy
later. These results all express inherent properties of the domain (I(D,P),�,∨,v,u) but are
phrased here in more general form for environments.

Proposition 1. Upper and lower projections are idempotent, monotonic with respect to both
orderings E ∈ {�,v} and these ordering can be split into upper and lower projections:

1) low(low(E)) = low(E), upp(upp(E)) = upp(E)
2) If E E E ′ then low(E)E low(E ′) and upp(E)E upp(E ′)
3) If low(E)E low(E ′) and upp(E)E upp(E ′) then E E E ′.

Proof: The first part (1) is obvious from the definition of low and upp. For the second
(2) and third part (3) regarding ordering � observe that [l, u]:r � [l′, u′]:r′ iff l ≤ l′, u ≤ u′

and r � r′ which holds exactly in case that [l,>]:2 � [l′,>]:2 and [⊥, u]:r � [⊥, u′]:r′. For
ordering v we note that [l, u]:r v [l′, u′]:r′ iff l ≤ l′, u′ ≤ u and r′ � r, which is the same as
[l,>]:2 v [l′,>]:2 and [⊥, u]:r v [⊥, u′]:r′.
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Both orderings � and v are linked up in tight reciprocity connections mediated by the
projections. The connection is summed up in our next Prop. 2:

Proposition 2.
1) low(E1) v E2 iff E1 � low(E2)
2) upp(E2) v E1 iff E2 � upp(E1)
3) low(E1) � E2 iff E1 � low(E2) � E2

4) E1 v upp(E2) iff E1 v upp(E1) v E2.

Proof: For (1) we calculate [l,>]:2 v [l′, u′]:r′ iff l ≤ l′ iff [l, u]:r ≤ [l′,>]:2; (2) holds
since [⊥, u′]:r′ v [l, u]:r iff u ≤ u′ and r � r′ iff [⊥, u]:r � [l′, u′]:r′; (3) is obtained from
observing that [l,>]:2 � [l′, u′]:r′ iff l ≤ l′, u′ = > and r′ = 2 which is equivalent to
[l, u]:r � [l′,>]:2 and [l′,>]:2 � [l′, u′]:r′. Finally, (4) is true because [l, u]:r v [⊥, u′]:r′ iff
l = ⊥, u′ ≤ u and r′ � r which is the same as [⊥, u]:r v [l′, u′]:r′ and [l, u]:r v [⊥, u]:r.

Proposition 3. In the �–lattice, low is inflationary and upp is deflationary. In the v–lattice,
both projection operators are deflationary. Formally,

1) E � low(E), upp(E) � E
2) low(E) v E, upp(E) v E.

Proof: Statement (1) follows from the observation that ⊥ and > are the minimum and
the maximum, respectively, in the ≤-ordering of D, and that 2 is �-maximum in P. Statement
(2) follows from (1) and the connections from Prop. 2(1,2).

With the previous observations we can use the projection operations to define each ordering
� and v in terms of the other. Both orderings together express the same information as each
of the orderings by itself does in combination with the projections:

Lemma 2. For environments E1, E2 we have
1) E1 v E2 iff low(E1) � low(E2) and upp(E2) � upp(E1)
2) E1 � E2 iff low(E1) v low(E2) and upp(E2) v upp(E1).

Proof: Both statements are easy to establish directly from the definitions. Alternatively,
they can be obtained by abstract reasoning from the previous propositions. For instance, suppose
E1 v E2. Then, by Prop. 1(2,3) this is the same as low(E1) v low(E2) and upp(E1) v
upp(E2). But by Prop. 2(1,2) and Prop. 1(1) these are equivalent to E1 � low(E2) and
upp(E2) � E1, which in turn are equivalent to low(E1) � low(E2) and upp(E2) � upp(E1),
by Prop. 1(1,2) and Prop. 3(1). In a similar fashion we obtain statement (2) from Props. 1, 2
and 3(2).

We have seen in Prop. 2 that lower and upper projections connect the two ordering structures
v and �. They are in fact algebraic homomorphism:

Proposition 4. The lower and upper projections distribute over � ∈ {∨,∧,u}. Formally,
1) low(E1 � E2) = low(E1)� low(E2)
2) upp(E1 � E2) = upp(E1)� upp(E2).

Proof: Trivial from the definitions.

Another obvious but key result is the monotonicity and distributivity of the (semi–)lattice
operations:
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Proposition 5. All the operators ∨, ∧ and u are monotonic in both the �–lattice and the
v–semi-lattice. Furthermore, both operators ∨, u distribute over each other, i.e., E1�1 (E2�2

E3) = (E1 �1 E2)�2 (E1 �1 E3) for �1,�2 ∈ {∨,∧,u}.
Proof: Since ∨ and ∧ are join and meet for � they must be monotonic for �. Similarly,

u is the meet for v, whence it is monotonic for v. What is not obvious is that ∨ and ∧ are
monotonic for v, and u is monotonic for �, too. This is seen as follows:

Suppose E1 v E ′1 and E2 v E ′2. Then, both low(Ei) � low(E ′i) and upp(E ′i) � upp(Ei) by
Lem. 2. Now, on the one hand, low(E1 ∨E2) = low(E1) ∨ low(E2) � low(E ′1) ∨ low(E ′2) =
low(E ′1∨E ′2) and upp(E ′1∨E ′2) = upp(E ′1)∨upp(E ′2) � upp(E1)∨upp(E2) = upp(E1∨E2),
by assumption, Prop. 4 and monotonicity of ∨ for �. Hence, E1 ∨ E2 v E ′1 ∨ E ′2 as claimed,
again using Lem. 2. The same reasoning works to show that ∧ is monotonic for v and that
u is monotonic for �. Distributivity follows from the laws

max(a1,min(a2, a3)) = min(max(a1, a2),max(a1, a3))

min(a1,max(a2, a3)) = max(min(a1, a2),min(a1, a3))

max(a1,max(a2, a3)) = max(max(a1, a2),max(a1, a3)).

The following final Lem. 3 collects some specific consequences of the universal properties
of the domain (I(D,P),�,∨,v,u) which will be used in our later development.

Lemma 3.
1) low(upp(E)) = low(⊥) = [⊥,>]:2 = upp(>:2) = upp(low(E))
2) E1 ∨ low(upp(E2)) = low(E1)
3) E1 ∨ upp(E2) v E1

4) If low(E1) v low(E2), then E1 ∨ upp(E2) v E2.

Proof: (1) and (2) are obvious from the definitions. Concerning (3) first observe that
E1 � E1 ∨ upp(E2) as ∨ is the join with respect to �. By Lem. 2(2) this implies

upp(E1 ∨ upp(E2)) v upp(E1). (9)

We can also show
low(E1 ∨ upp(E2)) = low(E1) (10)

for the lower projections. First, by statement (2) of the Lemma, Props. 4(1) and 1(1) we
compute

low(E1 ∨ upp(E2)) = low(E1) ∨ low(upp(E2)) = low(low(E1)) = low(E1)

which proves (10) as claimed. Prop. 1(3) permits us to combine (9) and (10) to obtain
E1 ∨ upp(E2) v E1 as claimed in statement (3) of the Lemma. Suppose low(E1) v low(E2).
Then, E1 � low(E2) by Prop. 1(1) and Prop. 2(1), whence (10) implies

low(E1 ∨ upp(E2)) = low(E1) � low(low(E2)) = low(E2) (11)

using Prop. 1(1,2). Next, we have E1 � E1 ∨ upp(E2) by the properties of the join ∨. Also,
the inclusion upp(E2) � E1 ∨ upp(E2) implies

upp(E2) = upp(upp(E2)) � upp(E1 ∨ upp(E2)) (12)

again using Prop. 1(1,2). Another application of Lem. 2, combining the inequations (11) and
(12) for lower and upper projections, proves E1 ∨ upp(E2) v E2, which is statement (4) of
the Lemma, as desired.
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Fig. 6: The domain I(C) of completion codes.

C. Completion Codes
Now that the technical apparatus of signal status and environments is in place we can take

the first step towards the definition of constructiveness via a denotational fixed point semantics.
What we will do first, in this section, is to look at the completion behavior of a program in a
given concurrent environment. Like the value and the init status of variables, the completion
behavior, too, will be approximated in an information domain of completion statuses.

The sequential completion status for a program P in a concurrent environment C is given by
a set of completion codes cmpl 〈〈P,C〉〉 ⊆ C = {⊥, 0, 1}. The code 0 stands for instantaneous
termination, 1 for pausing and ⊥ for “blocked”, to model the situation when a program’s
control flow is stuck at a conditional test for which it cannot be decided which branch is
taken, or at a set for which there are still resets possibly outstanding, so that we are not sure if
it will be ready to go ahead. The subset cmpl 〈〈P,C〉〉 of codes models our uncertainty about
the actual completion status of P , analogous to the status intervals I(D) for signal variables.
Not all of the eight subsets of {⊥, 0, 1} are needed, though, only those which are interval-like
in a sense to be explained, and these are

I(C) := {{⊥, 0}, {⊥, 1}, {⊥, 0, 1}, {0}, {1}}.
The elements of I(C) can be generated systematically as constructive approximation intervals
[a, b) of completion codes in the lattice a, b ∈ C∪{>} = {⊥, 0, 1,>} ordered as ⊥ ≤ 0, 1 ≤ >
while 0 6≤ 1 and 1 6≤ 0 are incomparable. An interval [a, b) ⊆ C stands for the set of codes
[a, b) := {x | a ≤ x 6≥ b}. Then, I(C) corresponds to the set non-empty intervals [a, b), i.e.,
I(C) = {[a, b) | b 6≤ a}. Notice the overloading of notation: The lattice ≤ on (extended)
completion codes C ∪ {>} is different from the lattice ≤ on signal statuses D. Since we will
not mix both, the context will always disambiguate the two domains.

I(C), like I(D) and its extension I(D,P), forms a meet semi-lattice under the inverse set
inclusion ordering v, i.e., γ1 v γ2 iff γ2 ⊆ γ1. The completion status {⊥, 0, 1} is the minimal
element in I(C) and the meet u is γ1 u γ2 = γ2 u γ1 = γ1 if γ1 v γ2 and γ1 u γ2 = {⊥, 0, 1}
if γ1 and γ2 are v-incomparable. Let ⊕ be the strict lifting of boolean summation to C, i.e.,
0⊕ 1 = 1 = 1⊕ 0 = 1⊕ 1 and 0⊕ 0 = 0, while x⊕ y = ⊥ iff x = ⊥ or y = ⊥. This can
then further be lifted to completion intervals,

γ1 ⊕ γ2 := {x⊕ y | x ∈ γ1, y ∈ γ2}.
The upper projection is given by

upp(γ) := {x | ∃y ∈ γ. x ≤ y}.
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⊕ {⊥, 0, 1} {⊥, 0} {⊥, 1} {0} {1}
{⊥, 0, 1} {⊥, 0, 1} {⊥, 0, 1} {⊥, 1} {⊥, 0, 1} {⊥, 1}
{⊥, 0} {⊥, 0, 1} {⊥, 0} {⊥, 1} {⊥, 0} {⊥, 1}
{⊥, 1} {⊥, 1} {⊥, 1} {⊥, 1} {⊥, 1} {⊥, 1}
{0} {⊥, 0, 1} {⊥, 0} {⊥, 1} {0} {1}
{1} {⊥, 1} {⊥, 1} {⊥, 1} {1} {1}
u {⊥, 0, 1} {⊥, 0} {⊥, 1} {0} {1}

{⊥, 0, 1} {⊥, 0, 1} {⊥, 0, 1} {⊥, 0, 1} {⊥, 0, 1} {⊥, 0, 1}
{⊥, 0} {⊥, 0, 1} {⊥, 0} {⊥, 0, 1} {⊥, 0} {⊥, 0, 1}
{⊥, 1} {⊥, 0, 1} {⊥, 0, 1} {⊥, 1} {⊥, 0, 1} {⊥, 1}
{0} {⊥, 0, 1} {⊥, 0} {⊥, 0, 1} {0} {⊥, 0, 1}
{1} {⊥, 0, 1} {⊥, 0, 1} {⊥, 1} {⊥, 0, 1} {1}

upp
{⊥, 0, 1} {⊥, 0, 1}
{⊥, 0} {⊥, 0}
{⊥, 1} {⊥, 1}
{0} {⊥, 0}
{1} {⊥, 1}

Fig. 7: The operations ⊕, u and upp on completion statuses.

One shows that ⊕ and upp are well-defined on I(C) and monotonic with respect to v. The
operations are explicitly tabled in Fig. 7.

cmpl 〈〈P,C〉〉 := {0} if P is one of ε, ¡s

cmpl 〈〈!s, C〉〉 :=

{
{0} if [⊥,>]:1 v C(s)

{⊥, 0} otherwise

cmpl 〈〈π,C〉〉 := {1}

cmpl 〈〈P ||Q,C〉〉 := cmpl 〈〈P,C〉〉 ⊕ cmpl 〈〈Q,C〉〉

cmpl 〈〈P ; Q,C〉〉 :=

{
cmpl 〈〈P,C〉〉 if 0 6∈ cmpl 〈〈P,C〉〉
cmpl 〈〈P,C〉〉 ⊕ cmpl 〈〈Q,C〉〉 otherwise

cmpl 〈〈s ? P : Q,C〉〉 :=


cmpl 〈〈P,C〉〉 if 1:1 v C(s)

cmpl 〈〈Q,C〉〉 if 0:1 v C(s)

upp(cmpl 〈〈P,C〉〉) u cmpl 〈〈Q,C〉〉) otherwise

Fig. 8: Computing completion codes in I(C) for fprogs.

37



The function cmpl 〈〈P,C〉〉 ∈ I(C) is structurally recursive on P as seen in Fig. 8:
• The empty program and the reset ¡s terminate instantaneously which generates the only

possible completion code. Hence cmpl 〈〈P,C〉〉 = {0}.
• A set !s can only terminate if there are no contingent resets on s and this is the only way

in which it can complete. Therefore, if [⊥,>]:1 v C then cmpl 〈〈!s, C〉〉 = {0} otherwise
if the set hangs then cmpl 〈〈!s, C〉〉 = {⊥, 0} expressing that the program may terminate
(0) or not complete at all (⊥). Let us remark that the condition [⊥,>]:1 v C is equivalent
to C(s) � >:1.

• A pause π necessarily completes but can only pause, i.e., cmpl 〈〈π,C〉〉 = {1}.
• A parallel composition P ‖ Q can terminate instantaneously only if both threads P and
Q can terminate and it can pause if at least one of them can pause while the other can
pause or terminate. This synchronization is coded by the operation ⊕ on the completion
codes, leading to cmpl 〈〈P ‖ Q,C〉〉 = cmpl 〈〈P,C〉〉 ⊕ cmpl 〈〈Q,C〉〉.

• If in a sequential composition P ; Q the first program P cannot terminate instantaneously,
i.e., if 0 6∈ cmpl 〈〈P,C〉〉, then the control flow does not pass into Q and the completion
behavior P ; Q is fully determined by that of P . Therefore, we put cmpl 〈〈P ; Q,C〉〉 =
cmpl 〈〈P,C〉〉 in this case. If however, 0 ∈ cmpl 〈〈P,C〉〉, then the sequential composition
behaves exactly as a parallel: cmpl 〈〈P ; Q,C〉〉 = cmpl 〈〈P,C〉〉 ⊕ cmpl 〈〈Q,C〉〉.

• Finally we come to look at the completion of a conditional s ? P : Q. Obviously,
whenever the value of the variable s is decided, i.e., b:1 v C(s) for b ∈ {0, 1}, then the
completion of s ? P : Q is derived from that of the respective branch that is executed.
The more subtle case is when s is undecided and the conditional blocks. Then, the set of
possible completion codes is obtained from the union of the completion codes of P and
Q, respectively, together with the code ⊥ to express the blocking. This gives cmpl 〈〈s ?
P : Q,C〉〉 = cmpl 〈〈P,C〉〉 ∪ cmpl 〈〈Q,C〉〉 ∪ {⊥} = upp(cmpl 〈〈P,C〉〉 u cmpl 〈〈Q,C〉〉).
We remark that b:1 v C(s) can also be expressed as b � C(s) � b:1.

One shows by induction on P that if P is purely combinational, i.e., it does not contain
the π operator, then cmpl 〈〈P,C〉〉 = {0} or cmpl 〈〈P,C〉〉 = {⊥, 0}. Furthermore, it is easy
to see that the only way in which the status ⊥ can enter the completion set is through the
‘otherwise’ case of a set or a conditional. More strictly, we have ⊥ ∈ cmpl 〈〈P,C〉〉 iff (i) the
control flow reaches some set !s in P which is blocked on the condition [⊥,>]:1 6v C(s), or
(ii) if a conditional s ? P ′ : Q′ executed in P for which the guard variable s is undecided,
i.e., 1:1 6v C(s) and 0:1 6v C(s).

Example 20. The completion statuses {0} and {1} are obtained from the pSCL expressions ε
and π, respectively. The statuses {⊥, 0} and {⊥, 1} are the completion codes for expressions
x ? ε : ε and x ? π : π in every concurrent environment C with 0:1 6v C(x) and 1:1 6v C(x),
respectively. If x is undecided in this way, we get cmpl 〈〈x ? ε : π,C〉〉 = {⊥, 0, 1}. The
completion statuses {⊥, 0} and {⊥, 1} may also be obtained from programs !x ; ε and !x ; π,
respectively, in an environment C where ⊥:2 � C(x). ♦

It is quite instructive to relate our definition to the completion codes of Esterel [9] by
defining the sets

mustk(P,C) := {0 | cmpl 〈〈P,C〉〉 = {0}} ∪ {1 | cmpl 〈〈P,C〉〉 = {1}}
cannotk(P,C) := {0 | 0 6∈ cmpl 〈〈P,C〉〉} ∪ {1 | 1 6∈ cmpl 〈〈P,C〉〉}

cank(P,C) := {0, 1} \ cannotk(P,C) = cmpl 〈〈P,C〉〉 \ {⊥}
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of completion codes that must and cannot/can be obtained by program P in environment C,
respectively. We observe that mustk(P,C)∩ cannotk(P,C) = ∅ and that both mustk(P,C) 6=
{0, 1} and cannotk(P,C) 6= {0, 1}. This makes sense since must and cannot completions are
contradictory and there is no program which must terminate and must pause at the same time,
or cannot terminate and cannot pause at the same time. Since we do not consider completion
codes for traps, every program can at least potentially terminate or pause. More specifically,
mustk(P,C) and cannotk(P,C) are either empty ∅ or a singleton set {0} or {1}. Also,
directly from the definition we find that if mustk(P,C) is a singleton, then cannotk(P,C)
is the complementary singleton set, i.e., mustk(P,C) = {0} implies cannotk(P,C) = {1}
and mustk(P,C) = {1} implies cannotk(P,C) = {0}. Finally, mustk(P,C) = ∅ iff ⊥ ∈
cmpl 〈〈P,C〉〉 and cannotk(P,C) = ∅ iff cmpl 〈〈P,C〉〉 = {⊥, 0, 1}.

The must and cannot sets introduced above play an analogous role to the lower and upper
bounds in I(D) in forming a ‘dual–rail’ logic. Let us take a look at the mustk sets and see
how they are computed for the different operators of the language. This will also establish
the equivalence with the definition of these sets in Esterel for all operators (except ¡s which
does not exist in Esterel) as promised above:
• The primitive statements have mustk(ε, C) = mustk(!s, C) = {0} and mustk(π,C) =
{1}.

• Suppose 0 6∈ mustk(P,C) which is equivalent to cmpl 〈〈P,C〉〉 6= {0}. In all cases one
shows that 0 6∈ mustk(P ; Q,C) and also that 1 ∈ mustk(P ; Q,C) iff 1 ∈ mustk(P,C).
This is because γ1⊕ γ2 = {0} iff γ1 = γ2 = {0}. Thus, mustk(P ; Q,C) = mustk(P,C)
if 0 6∈ mustk(P,C). On the other hand, if 0 ∈ mustk(P,C), i.e., cmpl 〈〈P,C〉〉 = {0}, then
cmpl 〈〈P ; Q,C〉〉 = cmpl 〈〈P,C〉〉 ⊕ cmpl 〈〈Q,C〉〉 = {0} ⊕ cmpl 〈〈Q,C〉〉 = cmpl 〈〈Q,C〉〉
by definition and thus mustk(P ; Q,C) = mustk(Q,C). Overall,

mustk(P ; Q,C) =

{
mustk(P,C) if 0 6∈ mustk(P,C)

mustk(Q,C) otherwise.

• For parallel composition, the following holds (refer to the table in Fig. 7):
– mustk(P ‖ Q,C) = ∅ iff mustk(P,C) = ∅ or mustk(Q,C) = ∅;
– mustk(P ‖ Q,C) = {0} iff mustk(P,C) = {0} and mustk(Q,C) = {0};
– mustk(P ‖ Q,C) = {1} iff either mustk(P,C) = {1} and mustk(Q,C) 6= ∅, or

mustk(Q,C) = {1} and mustk(P,C) 6= ∅.
This can be summarized as

mustk(P ‖ Q,C) = Max (mustk(P,C),mustk(Q,C)),

where Max (A,B) = {a ⊕ b | a ∈ A, b ∈ B} = {max(a, b) | a ∈ A, b ∈ B} for subsets
A,B ⊆ {0, 1}.

• Finally, since always ⊥ ∈ upp(cmpl 〈〈P,C〉〉 u cmpl 〈〈Q,C〉〉) we find mustk(s ? P :
Q,C) = ∅ if 1:1 6v C(s) and 0:1 6v C(s), by definition. Hence, for conditionals

mustk(s ? P : Q,C) =


mustk(P,C) if 1:1 v C(s)

mustk(Q,C) if 0:1 v C(s)

∅ otherwise.

Now we turn to the cannotk sets which form the other rail of the completion logic:
• For the primitive statements cannotk(ε, C) = cannotk(!s, C) = {1} and cannotk(π,C) =
{0}, or in positive terms, cank(ε, C) = cank(!s, C) = {0} and cank(π,C) = {1}.
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• The definition for conditional statements directly implies that if 1:1 v C(s) then
cannotk(s ? P : Q,C) = cannotk(P,C) and if 0:1 v C(s) then cannotk(s ? P :
Q,C) = cannotk(Q,C). If both 1:1 6v C(s) and 0:1 6v C(s) then one can show that
cannotk(s ? P : Q,C) = cannotk(P,C) ∩ cannotk(Q,C). This is because, in this case,
cmpl 〈〈s ? P : Q,C〉〉 = upp(cmpl 〈〈P,C〉〉) u upp(cmpl 〈〈Q,C〉〉) and since for boolean
a ∈ {0, 1}, we have that a 6∈ γ1 u γ2 iff a 6∈ γ1 and a 6∈ γ2, as well as a 6∈ upp γ iff
a 6∈ γ. In terms of can-sets

cank(s ? P : Q,C) =


cank(P,C) if 1:1 v C(s)

cank(Q,C) if 0:1 v C(s)

cank(P,C) ∪ cank(Q,C) otherwise.

• For the parallel operator observe that 1 ∈ γ1 ⊕ γ2 iff 1 ∈ γ1 or 1 ∈ γ2. I.e., a parallel
cannot pause if both concurrent branches cannot pause; Further, 0 ∈ γ1 ⊕ γ2 iff 0 ∈ γ1

and 0 ∈ γ2, for all γ1, γ2 ∈ I(C). In other words, a parallel cannot terminate if one of its
branches cannot terminate. This leads to

cank(P ‖ Q,C) = Max (cank(P,C), cank(Q,C)).

• The sequential composition makes the following case distinction: First suppose 0 ∈
cannotk(P,C) or equivalently, 0 6∈ cmpl 〈〈P,C〉〉. Then, the definition implies that
cannotk(P ; Q,C) = cannotk(P,C). What if 0 ∈ cmpl 〈〈P,C〉〉? Since then cmpl 〈〈P ;
Q,C〉〉 = cmpl 〈〈P,C〉〉⊕cmpl 〈〈Q,C〉〉 we get 0 ∈ cmpl 〈〈P ; Q,C〉〉 iff 0 ∈ cmpl 〈〈Q,C〉〉.
Also, a ∈ cmpl 〈〈P ; Q,C〉〉 iff a ∈ cmpl 〈〈P,C〉〉 or a ∈ cmpl 〈〈Q,C〉〉 for all a ∈ {⊥, 1}.
This can be summed up as

cmpl 〈〈P ; Q,C〉〉 = (cmpl 〈〈P,C〉〉 \ {0}) ∪ cmpl 〈〈Q,C〉〉.

Hence,

cank(P ; Q,C) =

{
cank(P,C) if 0 6∈ cank(P,C)

(cank(P,C) \ {0}) ∪ cank(Q,C) otherwise.

This shows recovers precisely the definition in [9] of the sets mustk(P,C) and cank(P,C)
of completion codes that must and can be computed for a program P in environment C.

D. Strong Berry Constructiveness ∆0

Based on the computation of completion codes we can now introduce our extended version
of Berry’s causality analysis for Esterel, which includes initialization. This analysis defines
the class of strongly Berry constructive, also called ∆0-constructive, programs (cf. Def. 9
below). The analysis for ∆0 over-approximates ∆∗ (sequential constructiveness) for pure
SC programs by performing an abstract program simulation using the interval environments
I(D,P) introduced above. To keep matters simple we consider only finite pSCL programs
(fprogs), i.e., programs without rec. This is without loss of generality. Since well-formed pSCL
programs are clock-guarded, we can unfold all loops and extract finite rec-free expressions
that fully describe the program’s macro step reactions, as suggested in Ex. 3.

The denotational semantics of a fprog P is given by a function 〈〈P 〉〉SC that determines
constructive information on the instantaneous response of P to an external stimulus consisting
of a sequential environment S and a concurrent environment C. The sequential context S can
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be thought of as an initialization under which P is activated. It represents knowledge about
the status of variables sequentially before P is started. In contrast, the parallel environment C
contains the external stimulus which is concurrent with P . The lower bound low 〈〈P 〉〉SC of
the response tells us what P must do to the variables and the upper bound upp 〈〈P 〉〉SC is the
status level that the variables may reach upon execution of P .

〈〈ε〉〉SC := S

〈〈π〉〉SC := S

〈〈¡s〉〉SC :=



S ∨ {〈s>〉} if 1 � S(s) � >
S ∨ {〈s>:2〉} 1:1 � S(s)

S ∨ {〈s0〉} if S(s) � 0

S ∨ {〈s0:2〉} if ⊥:1 � S(s) � 0:2

S ∨ {〈s[0,>]:2〉} if [⊥, 1]:1 � S(s) � [0,>]:2

〈〈!s〉〉SC :=

{
S ∨ {〈s1〉} if [⊥,>]:1 v C(s)

S ∨ {〈s[⊥,1]〉} ∨ ⊥:1 otherwise

〈〈P ||Q〉〉SC := 〈〈P 〉〉SC ∨ 〈〈Q〉〉SC

〈〈s ? P : Q〉〉SC :=


〈〈P 〉〉SC if 1:1 v C(s)

〈〈Q〉〉SC if 0:1 v C(s)

S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈Q〉〉S∨⊥:1

C otherwise

〈〈P ; Q〉〉SC :=


〈〈P 〉〉SC if 0 6∈ cmpl 〈〈P,C〉〉
〈〈Q〉〉〈〈P 〉〉

S
C

C if cmpl 〈〈P,C〉〉 = {0}
〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉

S
C

C otherwise

Fig. 9: ∆0 Analysis for fprogs. The function cmpl 〈〈P,C〉〉 was defined in Fig. 8.

The function 〈〈P 〉〉SC is defined by recursion on the structure of the fprog P as seen in Fig. 9.

• The empty fprog 〈〈ε〉〉SC passes out its sequential stimulus S and does not add anything to
it. The same applies to the pausing program π.

• The result of resetting a variable 〈〈¡s〉〉SC depends on the init status for s and on whether
the sequential stimulus S has already reached the value status 1 for s or not:

– If 1 � S(s) � >, then S(s) = [l, u]:r where the value status [l, u] is one of
{1, [1,>],>} and the init status is r = 0. This indicates that s must have been set
sequentially before the execution of the reset ¡s. Hence, we must crash s since a change
from 1 to 0 falls outside of the ∆0 model. Also, r = 0 means that the scheduling
control flow has reached the reset ¡s and since it terminates instantaneously the down-
stream computation continues with the init status 0. All variables x 6= s retain their
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status from S. This is what S∨{〈s>〉} achieves, viz. (S∨{〈s>〉})(s) = S(s)∨{〈s>〉}(s) =
S(s) ∨ > = > and (S ∨ {〈s>〉})(x) = S(x) ∨ {〈s>〉}(x) = S(x) ∨ ⊥ = S(x).

– If 1:1 � S(s) then S(s) = [l, u]:r with a value status [l, u] in the set {1, [1,>],>}
as above, but now the init status is r � 1. Hence the up-stream computation must
have set the variable but is still contingent, so that the ¡s is speculative. In this case
we crash the value status and raise the init status to 2 since the reset is executed
only speculatively. We must consider it as a possibly outstanding reset. The response,
therefore is S ∨ {〈s>:2〉}.

– If S(s) � 0 then the sequential value status of s is one of S(s) ∈ {⊥, [⊥, 0], 0}, again
with init status 0. This says that the up-stream computation is terminated and s cannot
have been set. So, we can execute the reset by returning (S∨{〈s0〉})(s) = S(s)∨0 = 0.
The init status stays 0 because the schedule passes the reset ¡s which terminates
instantaneously and control is passed to the downstream computation.

– If ⊥:1 � S(s) � 0:2 then S(s) = [l, u]:r with u ≤ 0 and 1 � r. The constraint
u ≤ 0 again guarantees that s is not set before while 1 � r tells us that the up-stream
schedule is contingent. Consequently, we must put the init status to 2 to record that
the reset ¡s is only speculative. This gives the response (S ∨ {〈s0:2〉})(s) = 0:2.

– Finally, the remaining cases are S(s) = [l, u]:r, where [l, u] is one of the intervals
{[0, 1], [⊥, 1], [0,>], [⊥,>]} and 1 � r. These cases are subsumed by the constraint
[⊥, 1]:1 � S(s) � [0,>]:2. Now the up-stream schedule that leads to the reset
is speculative. Also the status of s is contingent: We can neither be sure that a
set on s must have happened earlier, nor that it cannot have happened. In this
situation the response of executing the reset ¡s is also contingent between 0 (if no
set happens earlier) and > (if a set takes place earlier). This gives the response
(S∨{〈s[0,>]:2〉})(s) = [0,>]:2. Note that the init status must be 2 because the speculative
control flow passes a reset.

The reader may notice that the cases on S(s) in the definition of 〈〈¡s〉〉SC are disjoint but
not complete for the full set I(D,P). For instance, the interval S(s) = [0, 1]:0 = [0, 1]
does not fall into any of the five cases. However, the case analysis is complete for
synchronized environments which is sufficient since our semantics only generates those.
This is stated in Prop. 7 below.

• The “init;update;read” protocol permits a set !s to be executed only if and when the init
phase on s has been completed. This is checked by the condition [⊥,>]:1 v C(s) on the
environment which is the same as C(s) � >:1. If C(s) � >:1 then C(s) = [l, u]:r with
r � 1. Thus, there cannot be any contingent reset still outstanding and we can execute the
set !s which terminates instantaneously. This gives the response (S∨{〈s1〉})(s) = S(s)∨1.
On the other hand, if C(s) 6� >:1, then the update !s is blocked and only executed
speculatively. In this case, the set !s only forces the status of s to be in the interval [⊥, 1].
This leaves open if the set is actually executed or not. Also, the init status for all variables
must be set to 1 in order to inform any sequential successor that its execution is only
speculative rather than factual. Hence our definition of the response as S ∨{〈s[⊥,1]〉} ∨⊥:1.

• The response of a parallel 〈〈P ||Q〉〉SC is obtained by letting each of the children P , Q react
to the S and C environments, independently, and then combine their responses using ∨.
This implements a logical disjunction on boolean values and implements the idea that in
∆∗-admissible executions resets happen before any concurrent sets of a variable. If one of
〈〈P 〉〉SC or 〈〈Q〉〉SC generates a > crash on some variable, then the composition 〈〈P ||Q〉〉SC
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does so, too. Also the init status of combined with the join ∨ operator: The schedule
of the “init;update” phases on a variable s in the parallel composition is completed,
〈〈P ||Q〉〉SC(s) � >:0 if and only if the scheduling of both threads is completed, i.e., if
both 〈〈P 〉〉SC(s) � >:0 and 〈〈Q〉〉SC(s) � >:0 Further, the schedule of P ||Q is blocked and
has a speculative reset, 〈〈P ||Q〉〉SC(s) � ⊥:2 iff in one of the threads a reset is pending,
i.e., if 〈〈P 〉〉SC(s) � ⊥:2 or 〈〈Q〉〉SC(s) � ⊥:2.

• In order to derive information about the variables’ status under arbitrary ∆∗-admissible
scheduling, conditionals need to be evaluated cautiously. The result of a branching test
s ? P : Q can only be predicted if and when the value of s has been firmly established in
the concurrent environment as a decided 0 or 1 under all possible schedules and no further
reset is pending. Accordingly, if 1:1 v C(s) then 〈〈s ? P : Q〉〉SC behaves like 〈〈P 〉〉SC
and if 0:1 v C(s) the result of the evaluation is 〈〈Q〉〉SC . As long as the value of s is still
undecided, i.e., if 1:1 6v C(s) and 0:1 6v C(s), the init phase is either not completed or it
is but we cannot know if branch P or Q will be executed. However, what we safely know
is that at least the write accesses already recorded in the sequential environment S must
become effective. This gives the condition low 〈〈s ? P : Q〉〉SC = low(S) for the lower
bound. A write access may be produced by s ? P : Q if it may be generated by S or by
one of the branches P or Q. So, we speculatively compute the response of P and Q in the
sequential environment S ∨⊥:1. This raises the init status of all variables to 1 (or above)
in order to mark all write accesses in P and Q as speculative. This implies upp 〈〈s ?
P : Q〉〉SC = upp(S) ∨ upp 〈〈P 〉〉S∨⊥:1

C ∨ upp 〈〈Q〉〉S∨⊥:1
C for the upper bound. Both can be

expressed by the single equation 〈〈s ? P : Q〉〉SC = S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈Q〉〉S∨⊥:1

C

which is seen as follows:

low(S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈Q〉〉S∨⊥:1

C )

= low(S) ∨ low upp(〈〈P 〉〉S∨⊥:1
C ∨ 〈〈Q〉〉S∨⊥:1

C )

= low(low(S)) = low(S)

by Lem. 3(2) and the properties of ∨ and the projections upp and low . Similarly,

upp(S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈Q〉〉S∨⊥:1

C )

= upp(S) ∨ upp upp 〈〈P 〉〉S∨⊥:1
C ∨ upp upp 〈〈Q〉〉S∨⊥:1

C

= upp(S) ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈Q〉〉S∨⊥:1

C .

Using the inflationary properties S � S ∨ ⊥:1 � 〈〈P 〉〉S∨⊥:1
C and S � 〈〈Q〉〉S∨⊥:1

C one can
show that S ∨ upp 〈〈P 〉〉S∨⊥:1

C ∨ upp 〈〈Q〉〉S∨⊥:1
C is the same as S u 〈〈P 〉〉S∨⊥:1

C u 〈〈Q〉〉S∨⊥:1
C ,

i.e., the best over-approximation of S and both reactions 〈〈P 〉〉S∨⊥:1
C and 〈〈Q〉〉S∨⊥:1

C . It is
here that the meet operator u is hidden in the semantics.

• The response of a sequential composition depends P ; Q depends on a set of possible
completion codes cmpl 〈〈P,C〉〉 ⊆ {⊥, 0, 1} from which we can tell whether P is known
to terminate or pause or neither. The code 0 stands for instantaneous termination, 1 for
pausing and ⊥ for “unknown” or “blocked”, to model the situation when P ’s control
flow is stuck at a conditional test which cannot be decided, or at a set that is waiting
for the end of the “init” phase. If 0 6∈ cmpl 〈〈P,C〉〉 = {1} then the P cannot terminate
instantaneously. In this case, Q will never be executed in the current instant, so that
〈〈P ; Q〉〉SC = 〈〈P 〉〉SC . If cmpl 〈〈P,C〉〉 = {0}, then 0 is the only possible completion code,
whence P is guaranteed to terminate instantaneously. Thus, the overall response 〈〈P ; Q〉〉SC
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is that of Q reacting to the concurrent stimulus C and using the response 〈〈P 〉〉SC as
the sequential stimulus. Otherwise, if 0 ∈ cmpl 〈〈P,C〉〉 6= {0} and cmpl 〈〈P,C〉〉 6= {0},
then the completion status is contingent. Thus, it is not known yet how P will complete
and, as a consequence, if Q will be executed. Therefore, we can only say a variable
must be written by P ; Q if it must be written by P in the present environments S
and C. This leads to low 〈〈P ; Q〉〉SC = low 〈〈P 〉〉SC . As regards upper bounds, a variable
may be written by P ; Q if it may be written by Q with the response of P as its
sequential stimulus: upp 〈〈P ; Q〉〉SC = upp 〈〈Q〉〉〈〈P 〉〉

S
C

C . One can show, as above in the
case of conditionals, that both lower and upper bound equations can be combined into
〈〈P ; Q〉〉SC = 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉

S
C

C , or equivalently 〈〈P ; Q〉〉SC = 〈〈P 〉〉SC u 〈〈Q〉〉
〈〈P 〉〉SC
C .

Example 21. Consider the fprog P := (x ? ε : (!y ‖ !z)) ‖ (y ? ε : !x) which extends Ex. 12
slightly. Take the environments S := {〈 〉} = ⊥ and C0 := [⊥,>]:2. The response 〈〈P 〉〉SC0

is the
information to be got from a single pass through P without letting P communicate with itself.
In doing that the sequential environment S sums up the status of all variables that has been
established by the upstream control flow as the execution reaches P . The environment C0

accumulates our information about the global status of all variables, including the concurrent
environment in which P is running. Considering that neither x nor y is decided in C0, both
the conditionals in P block. Since the updates !x, !y, !z guarded behind the conditional tests
may potentially be executed and there is no outstanding reset, the variables’ expected status
is at least ⊥ and at most 1, i.e., 〈〈P 〉〉SC0

= ⊥:1 ∨ {〈x[⊥,1], y[⊥,1], z[⊥,1]〉}. The init status 1 says
that the computation for all variables is incomplete yet there is no contingent reset for any
of them. Indeed, this is what the calculation using Fig. 9 obtains: The response of the first
thread is

〈〈x ? ε : (!y ‖ !z)〉〉SC0
= S ∨ upp 〈〈ε〉〉S∨⊥:1

C0
∨ upp 〈〈!y ‖ !z〉〉S∨⊥:1

C0

= ⊥ ∨ upp 〈〈ε〉〉⊥∨⊥:1
C0

∨ upp 〈〈!y ‖ !z〉〉⊥∨⊥:1
C0

= upp 〈〈ε〉〉⊥:1
C0
∨ upp 〈〈!y ‖ !z〉〉⊥:1

C0

= upp(⊥:1) ∨ upp(〈〈!y〉〉⊥:1
C0
∨ 〈〈!z〉〉⊥:1

C0
)

= ⊥:1 ∨ upp(⊥:1 ∨ {〈y[⊥,1]〉} ∨ ⊥:1 ∨ {〈z[⊥,1]〉})
= ⊥:1 ∨ upp(⊥:1) ∨ upp({〈y[⊥,1]〉} ∨ {〈z[⊥,1]〉})
= ⊥:1 ∨ {〈y[⊥,1], z[⊥,1]〉}.

Similarly, we obtain 〈〈y ? ε : !x〉〉SC0
= ⊥:1 ∨ {〈x[⊥,1]〉} for the second thread. Joined together,

the parallel composition then is

〈〈P 〉〉SC0
= ⊥:1 ∨ {〈y[⊥,1], z[⊥,1]〉} ∨ ⊥:1 ∨ {〈x[⊥,1]〉} = ⊥:1 ∨ {〈x[⊥,1], y[⊥,1], z[⊥,1]〉}

as claimed.

Without further assumptions on the environment this is the end of the story, none of the
variables’ value status can be decided beyond [⊥, 1]. One shows that cmpl 〈〈P,C0〉〉 = {⊥, 0},
which says that P cannot pause but may terminate instantaneously.

Now put P in parallel with fprog Q := ¡x ‖ !y in order to decide the status of variables
x and z. Running Q from S and C0 gives 〈〈Q〉〉SC0

= ⊥:1 ∨ {〈x0, y[⊥,1]〉}. The response is
contingent because the set !y cannot proceed in C0 which does not exclude further resets on
y. Therefore,

C1 := 〈〈P ‖ Q〉〉SC0
= ⊥:1 ∨ {〈x[⊥,1], y[⊥,1], z[⊥,1]〉} ∨ {〈x0, y[⊥,1]〉} = ⊥:1 ∨ {〈x[0,1], y[⊥,1], z[⊥,1]〉}.
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This says that x must be reset but may be set later (stabilizing without crash), y and z may
remain pristine or stabilize at 1. In addition, the init status of all variables is 1, excluding
any further possible resets arising from P ‖ Q. Notice that C1 is a more precise description
of the response compared to C0, i.e., C0 @ C1.

The remaining uncertainty arises because the single application of the response function
〈〈P ‖ Q〉〉SC0

blocks the setting of y in the write access in Q. For this, P ‖ Q needs to
communicate with itself to find out that the set !y can proceed. This is achieved by running a
second pass, now feeding the concurrent environment C1 instead of C0. Since C1 indicates
a completed “init” phase for y, the set !y in Q is unblocked. We find 〈〈Q〉〉SC1

= {〈x0, y1〉}.
Regarding P , the refined environment C1 does not change anything and so

C2 := 〈〈P ‖ Q〉〉SC1
= ⊥:1 ∨ {〈x[⊥,1], y[⊥,1], z[⊥,1]〉} ∨ {〈x0, y1〉} = ⊥:1 ∨ {〈x[0,1], y1, z[⊥,1]〉}.

The schedule is still contingent because x and y remain undecided in C1 and therefore the
conditional tests of x and y in P stay blocked. However, now in C2 the value status of y is
decided to be 1. Again, we can see that C1 @ C2, i.e., the environment has contracted.

The next iteration with C2 propagates the updated value to the conditional reading of y in P .
The conditional in the second thread of P is turned off which makes the set !x non-executable,
eliminating the possibility that x might be set. The calculation for the second thread of P is
〈〈y ? ε : !x〉〉SC2

= 〈〈ε〉〉SC2
= S = ⊥. It terminates, i.e., cmpl 〈〈y ? ε : !x,C2〉〉 = {0}, as one

shows without difficulty from the definition in Fig. 8. The first thread still does not terminate
because x remains undecided in C2 and we have 〈〈x ? ε : (!y ‖ !z)〉〉SC2

= ⊥:1∨{〈y[⊥,1], z[⊥,1]〉}
as before. This means 〈〈P 〉〉SC2

= ⊥:1∨{〈y[⊥,1], z[⊥,1]〉}∨⊥ = ⊥:1∨{〈y[⊥,1], z[⊥,1]〉}. The evaluation
of Q does not change as it is already crisp, 〈〈Q〉〉SC2

= {〈x0, y1〉}. Thus, overall, this gives the
refined response

C3 := 〈〈P ‖ Q〉〉SC2
= ⊥:1 ∨ {〈y[⊥,1], z[⊥,1]〉} ∨ {〈x0, y1〉} = ⊥:1 ∨ {〈x0, y1, z[⊥,1]〉}.

which is an even more precise status description, C2 @ C3, since C3 now also endows variable
x with a crisp value 0. As a result, the conditional in the first thread of P must execute !y
and !z which finally resolves the status of z: 〈〈x ? ε : (!y ‖ !z)〉〉SC3

= 〈〈!y ‖ !z〉〉SC3
= {〈y1, z1〉}

which yields

C4 := 〈〈P ‖ Q〉〉SC3
= 〈〈P 〉〉SC3

∨ 〈〈Q〉〉SC3

= 〈〈x ? ε : (!y ‖ !z)〉〉SC3
∨ 〈〈y ? ε : !x〉〉SC3

∨ 〈〈Q〉〉SC3

= {〈y1, z1〉} ∨ ⊥ ∨ {〈x0, y1〉} = {〈x0, y1, z1〉}.

The environment C4, which satisfies C3 @ C4, is a crisp fixed point, 〈〈P ‖ Q〉〉SC4
= C4, in

which the parallel composition P ‖ Q finally terminates instantaneously, i.e., cmpl 〈〈P ‖
Q,C4〉〉 = {0}. ♦

Ex. 21 is what we shall call a ∆0-constructive program (cf. Def. 9) which generates a crisp
fixed point response. This implies (cf. Thm. 1) that the program is ∆∗-schedulable. There are
however programs which cannot be scheduled because they contain a causal cycle which makes
the schedule lock up. These deadlocks arise from the “init;update;read” protocol constraint
that compels read accesses to wait for the prior completion of all possible write accesses and
sets to wait for the completion of any possible resets. The following two examples illustrates
the typical cases of deadlocks.

Example 22. The program P1 := !x ; ¡y ‖ !y ; ¡x is not constructive. Indeed it does not admit
of any ∆∗-admissible schedule because in all its free schedules a reset action happens after a
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concurrent set action to the same variable. Hence, each schedule violates ∆∗-admissibility.
Also, the final memory is non-determinate and depends on the schedule. If we chose the
sequence !x ; !y ; ¡x ; ¡y the final memory has y = 0, whereas if we schedule !x ; ¡y ; !y ; ¡x
the we get y = 1.

If we run the fixed point analysis the problem becomes visible as a deadlock: From S := ⊥
and C0 := [⊥,>]:2 the two concurrent sets !x and !y both block so that 〈〈!x〉〉SC0

= ⊥:1∨{〈x[⊥,1]〉}
and 〈〈!y〉〉SC0

= ⊥:1 ∨ {〈y[⊥,1]〉} as well as cmpl 〈〈!x,C0〉〉 = cmpl 〈〈!y, C0〉〉 = {⊥, 0}. Then,
because the sets guard the resets ¡y and ¡x, respectively, their init status is set to 2:

〈〈P1〉〉SC0
= 〈〈!x ; ¡y ‖ !y ; ¡x〉〉SC0

= 〈〈!x ; ¡y〉〉SC0
∨ 〈〈!y ; ¡x〉〉SC0

= 〈〈!x〉〉SC0
∨ upp 〈〈¡y〉〉

〈〈!x〉〉SC0
C0

∨ 〈〈!y〉〉SC0
∨ upp 〈〈¡x〉〉

〈〈!y〉〉SC0
C0

= ⊥:1 ∨ {〈x[⊥,1]〉} ∨ upp 〈〈¡y〉〉⊥:1∨{〈x[⊥,1]〉}
C0

∨ ⊥:1 ∨ {〈y[⊥,1]〉} ∨ upp 〈〈¡x〉〉⊥:1∨{〈y[⊥,1]〉}
C0

= ⊥:1 ∨ {〈x[⊥,1]〉} ∨ {〈y[⊥,1]〉}
∨ upp(⊥:1 ∨ {〈x[⊥,1]〉} ∨ {〈y0:2〉}) ∨ upp(⊥:1 ∨ {〈y[⊥,1]〉} ∨ {〈x0:2〉})

= ⊥:1 ∨ {〈x[⊥,1]〉} ∨ {〈x[⊥,1]〉} ∨ {〈x[⊥,0]:2〉} ∨ {〈y[⊥,1]〉} ∨ {〈y[⊥,0]:2〉} ∨ {〈y[⊥,1]〉}
= ⊥:1 ∨ {〈x[⊥,1]:2〉} ∨ {〈y[⊥,1]:2〉}.

In this updated environment C1 := 〈〈P1〉〉SC0
both variables still indicate contingent resets. As a

consequence, in the next iteration the sets !x and !y again block, whence 〈〈P1〉〉SC1
= C1. This

fixed point C1 is not crisp (not even decided) and therefore constitutes a scheduling deadlock.
Observe that the deadlock is detected with the help of the init flag not reducing from 2 to
1.6 ♦

Example 23. Another unschedulable program is the P2 := x ? ε : !y ‖ y ? ε : !x discussed in
Ex. 12. It is not ∆∗-constructive because it fails to have any ∆∗-admissible schedules. Every
execution order forces a set to happen concurrently after a read and both are not guaranteed
to be confluent (depends on the initial memory). Our domain-theoretic analysis of P2 obtains
C1 := 〈〈P1〉〉SC0

= ⊥:1 ∨ {〈x[⊥,1], y[⊥,1]〉} and then 〈〈P1〉〉SC1
= C1, again choosing S := ⊥ and

C0 := [⊥,>]:2. The fixed point C1 is undecided and therefore P1 not ∆0-constructive (Def. 9
below). ♦

Proposition 6. The functional 〈〈P 〉〉SC is inflationary in the sequential environment S with
respect to �.

Proof: We show S � 〈〈P 〉〉SC for all S by induction on the structure of P .

• The cases P = ε and P = π are trivial since 〈〈P 〉〉SC = S implies S � 〈〈P 〉〉SC by reflexivity.

• For !s: Since ∨ is the join in the �-lattice we have S � S∨{〈s1〉} and S � S∨{〈s[⊥,1]〉}∨⊥:1.
Hence, S � 〈〈!s〉〉SC whether [⊥,>]:1 v C(s) or not.

• For ¡s: Again, S � S ∨ {〈sγ〉} = 〈〈¡s〉〉SC in all cases of γ ∈ {>, 0, 0:2, [0,>]:2,>:2}.
• For P || Q: Assume by induction hypothesis that S � 〈〈P 〉〉SC and S � 〈〈Q〉〉SC . Since
S = S∨S, monotonicity of ∨ gives us S∨S � 〈〈P 〉〉SC ∨〈〈Q〉〉SC , and thus S � 〈〈P 〉〉SC ∨〈〈Q〉〉SC .
The definition 〈〈P ||Q〉〉SC = 〈〈P 〉〉SC ∨ 〈〈Q〉〉SC implies S � 〈〈P ||Q〉〉SC .

6The absence of the init status would make this program P1 ∆0-constructive in the semantics published in [2], which is
not what we intended. This mistake is fixed with the extended semantics presented in this report.
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• For P ; Q: The induction hypothesis applied for P and Q yields the inequalities

S � 〈〈P 〉〉SC � 〈〈Q〉〉
〈〈P 〉〉SC
C . (13)

Since the upper projection is �-monotonic, (13) implies upp(S) � upp 〈〈P 〉〉SC . Further, using
�-monotonicity of ∨ and upp, we find

S � S ∨ upp(S) � 〈〈P 〉〉SC ∨ upp 〈〈P 〉〉SC � 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉
S
C

C . (14)

Finally, by definition, 〈〈P ; Q〉〉SC is either 〈〈P 〉〉SC , 〈〈Q〉〉〈〈P 〉〉
S
C

C or 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉
S
C

C ,
depending on cmpl 〈〈P,C〉〉, which results in S � 〈〈P ; Q〉〉SC , from (13) or (14) respectively,
as desired.

• For the conditionals: By induction hypothesis both S � 〈〈P 〉〉SC and S � 〈〈Q〉〉SC . Further,
S � S ∨ upp 〈〈P 〉〉S∨⊥:1

C ∨ upp 〈〈Q〉〉S∨⊥:1
C exploiting the properties of ∨. The fact that 〈〈P 〉〉SC ,

〈〈Q〉〉SC and S∨upp 〈〈P 〉〉S∨⊥:1
C ∨upp 〈〈Q〉〉S∨⊥:1

C are the only possible responses of the conditionals
implies S � 〈〈s ? P : Q〉〉SC .

Example 24. Note that 〈〈P 〉〉SC is not in general inflationary in S wrt v. For instance, if
[⊥,>]:1 v C(x) then 〈〈!x〉〉⊥C(x) = 1, but ⊥ 6v 1. ♦

The completion codes cmpl 〈〈P,C〉〉 control the analysis of sequential composition. As long
as P does not terminate or pause for sure, i.e., as long as ⊥ ∈ cmpl 〈〈P,C〉〉, a sequential
successor Q only influences the calculation for P ; Q to reduce the ‘can/cannot’ (upper bound)
information on signal statuses, never the ‘must’ (lower bound) information. This is similar to
the treatment of conditionals s ? P : Q in which we block the ‘must’ reaction rail of P and
Q until variable s becomes decided. Until this happens the conditional does not terminate.
One can show that in our semantics of synchronized environments, completion and crisp
reactions are closely related.

Proposition 7.
1) If S is synchronized then 〈〈P 〉〉SC is synchronized.
2) Let S be synchronized. Then, 〈〈P 〉〉SC is crisp iff S is crisp and ⊥ 6∈ cmpl 〈〈P,C〉〉, or

equivalently, iff S is crisp and cmpl 〈〈P,C〉〉 = {0} or cmpl 〈〈P,C〉〉 = {1}.

Proof: (1) Suppose 〈〈P 〉〉SC(x) = [l, u]:0 for a given variable x ∈ V . One shows l = u
without difficulty by induction on P . What is important to observe is that the init status 0
right away excludes the contingent (blocking) cases of a variable access when P is a set
!s, reset ¡s, conditional s ? P ′ : Q′ or a sequential P ′ ; Q′. Then, the claim is a matter
of straightforward induction on P ′ and Q′. For a reset ¡s, either x 6= s, where the claim
follows from the assumption on S, or x = s and only the cases that 〈〈¡x〉〉SC = S ∨ {〈x>〉},
〈〈¡x〉〉SC = S ∨ {〈x0〉} remain. Here, too we can use the assumption that S is synchronized,
as for the inductive case where P is ε and π. Finally, for parallel composition P ′ ‖ Q′ and
generally for all other cases, we exploit that E1(x) ∨ E2(x) � >:0 iff both E1(x) � >:0
and E2(x) � >:0. This implies that E1 ∨ E2 is crisp iff both E1 and E2 are crisp exploiting
that both E1 and E2 are synchronized (which is obtained in each case from the induction
hypothesis).

The second property of being synchronized is that if ⊥:1 � 〈〈P 〉〉SC(x) for one variable x ∈ V ,
then ⊥:1 � 〈〈P 〉〉SC(y) for all variables y. This is obvious by induction on P , considering how
the init status is set above 1 in the definition of 〈〈P 〉〉SC along the different cases. This time we
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use the fact that ⊥:1 � E1(x) ∨ E2(x) iff ⊥:1 � E1(x) or ⊥:1 � E2(x). For the inductive
step of a reset one observes that ⊥:1 � 〈〈¡s〉〉SC(x) iff ⊥:1 � S(x) whether x = s or x 6= s.

(2) Note that the claim that⊥ 6∈ cmpl 〈〈P,C〉〉 is equivalent to the disjunction of cmpl 〈〈P,C〉〉 =
{0} or cmpl 〈〈P,C〉〉 = {1} is obvious from the definition of the completion codes (see Fig. 6).
Recall that an environment E is crisp if E(s) = [a, a]:0 = a ∈ D for each s ∈ V . The proof is
by induction on the structure of P , along the recursive definitions of 〈〈P 〉〉SC and cmpl 〈〈P,C〉〉.
Because of statement (1) of the Prop. 7 and the assumption that S is synchronized, all of
the environments 〈〈P ′〉〉SC obtained for the sub-programs P ′ of P are synchronized, too. A
synchronized environment E is crisp iff E � >:0 and it is not crisp iff there exists a variable
s such that E(x) � ⊥:1.
• The cases of P = ε and P = π are trivial.
• We have cmpl 〈〈¡s, C〉〉 = {0} so that we must show 〈〈¡s〉〉SC is crisp iff S is crisp. The

crucial observation is that for a reset 〈〈¡s〉〉SC in a crisp sequential environment S only the
two cases S∨{〈s>〉} or S∨{〈s0〉} apply which both preserve crispness. Vice versa, if 〈〈¡s〉〉SC
is crisp then the only possible cases are 〈〈¡s〉〉SC = S ∨ {〈s>〉} or 〈〈¡s〉〉SC = S ∨ {〈s0〉}. All
others generate the init status 2 on variable s which contradicts crispness. But then either
1 � S(s) � > or S(s) � 0 which, exploiting the assumption that S is synchronized,
implies that S(s) is crisp. For all other variables x 6= s crispness follows from the
assumption because S(x) = S(x) ∨ ⊥ = S(x) ∨ {〈sa〉}(x) = (S ∨ {〈sa〉})(x) = 〈〈¡s〉〉SC(x)
for both a ∈ {0,>}.

• Suppose [⊥,>]:1 6v C(s), whence cmpl 〈〈!s, C〉〉 = {⊥, 0}. We must show that 〈〈!s〉〉SC is
not crisp. But this is obvious since then 〈〈!s〉〉SC = S ∨{〈s[⊥,1]〉} ∨⊥:1 which gives variable
s the status S(s) ∨ [⊥, 1]:1. Now assume [⊥,>]:1 v C(s), so that cmpl 〈〈!s, C〉〉 = {0}
and 〈〈!s〉〉SC = S ∨ {〈s1〉}. As above we argue that then 〈〈!s〉〉SC is crisp iff S is crisp.

• The inductive proof for a parallel composition succeeds, because on the one hand,
⊥ 6∈ cmpl 〈〈P ‖ Q,C〉〉 = cmpl 〈〈P,C〉〉 ⊕ cmpl 〈〈Q,C〉〉 iff ⊥ 6∈ cmpl 〈〈P,C〉〉 and ⊥ 6∈
cmpl 〈〈Q,C〉〉 and on the other hand a join E1 ∨E2 of two synchronized environments is
crisp iff and only if both E1 and E2 are crisp. Both 〈〈P 〉〉SC and 〈〈Q〉〉SC are synchronized
by Prop. 7(1).

• To handle a conditional 〈〈s ? P : Q〉〉SC let us look at undecided case first, i.e., where
1:1 6v C(s) and 0:1 6v C(s). Then, ⊥ ∈ upp(cmpl 〈〈P,C〉〉 u cmpl 〈〈Q,C〉〉) = cmpl 〈〈s ?
P : Q,C〉〉 by definition of the upp abstraction. We can infer that 〈〈s ? P : Q〉〉SC =
S∨upp 〈〈P 〉〉S∨⊥:1

C ∨upp 〈〈Q〉〉S∨⊥:1
C is not crisp, using the in-equations ⊥:1 = upp(⊥:1) �

upp(S ∨ ⊥:1) � upp 〈〈P 〉〉S∨⊥:1
C � 〈〈s ? P : Q〉〉SC .

What if the conditional is decided, 1:1 v C(s) or 0:1 v C(s)? Then 〈〈s ? P : Q〉〉SC =
〈〈P 〉〉SC or 〈〈s ? P : Q〉〉SC = 〈〈Q〉〉SC and the claim follows directly from the induction
hypothesis.

• The last operator is the sequential composition. First observe that if 0 6∈ cmpl 〈〈P,C〉〉 then
〈〈P ; Q〉〉SC = 〈〈P 〉〉SC and cmpl 〈〈P ; Q,C〉〉 = cmpl 〈〈P,C〉〉. Then, the claim is obtained
from the induction hypothesis without detours. So, assume 0 ∈ cmpl 〈〈P,C〉〉 henceforth.
But this means cmpl 〈〈P ; Q,C〉〉 = cmpl 〈〈P,C〉〉 ⊕ cmpl 〈〈Q,C〉〉, and further that

⊥ 6∈ cmpl 〈〈P ; Q,C〉〉 iff cmpl 〈〈P,C〉〉 = {0} and ⊥ 6∈ cmpl 〈〈Q,C〉〉. (15)

If in fact cmpl 〈〈P,C〉〉 = {0} then (i) by induction hypothesis on P , we can conclude
that (i) 〈〈P 〉〉SC is crisp iff S is crisp; further, we have (ii) 〈〈P ; Q〉〉SC = 〈〈Q〉〉〈〈P 〉〉

S
C

C and, due
to (15), (iii) ⊥ 6∈ cmpl 〈〈P ; Q,C〉〉 iff ⊥ 6∈ cmpl 〈〈Q,C〉〉. From here the claim follows
by induction hypothesis on Q, considering that 〈〈P 〉〉SC is synchronized by Prop. 7(1).
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If cmpl 〈〈P,C〉〉 6= {0}, i.e., cmpl 〈〈P,C〉〉 = {⊥, 0}, then by (15) we have ⊥ ∈ cmpl 〈〈P ;
Q,C〉〉. We show that 〈〈P ; Q〉〉SC is not crisp. This follows because by induction hypothesis
on P the environment 〈〈P 〉〉SC is not crisp. Yet, it is synchronized, which means that
⊥:1 � 〈〈P 〉〉SC(x) for some x ∈ V . On the other hand, in this case 〈〈P ; Q〉〉SC = 〈〈P 〉〉SC ∨
upp 〈〈Q〉〉〈〈P 〉〉

S
C

C . Thus, ⊥:1 � 〈〈P 〉〉SC(x) � 〈〈P 〉〉SC(x) ∨ upp 〈〈Q〉〉〈〈P 〉〉
S
C

C (x) = 〈〈P ; Q〉〉SC(x).
This shows that 〈〈P ; Q〉〉SC is not crisp as required.

While 〈〈P 〉〉SC describes the instantaneous behavior of P in a recursive fashion, the construc-
tive response of P running by itself is obtained by the least fixed point

µC.〈〈P 〉〉SC =
⊔
i≥0

Ci, (16)

where C0 := [⊥,>]:2 and Ci+1 := 〈〈P 〉〉SCi
. Note that the sequential environment S is not

updated in the iteration. This reflects the fact that the fixed point approximates the reaction
always from the beginning of and concurrent with P . The environment S is an initialization
which captures the sequential history of the thread P which remains fixed each time the
iteration takes place. The fixed point µC.〈〈P 〉〉SC closes P off against its concurrent environment
C. It lets P communicate with itself by treating P as its own concurrent context. In the fixed
point the concurrent environment of P depends on the response of P which depends on the
concurrent context of P , and so on and so forth. For the fixed point to exist the termination
function cmpl 〈〈P,C〉〉 and functional 〈〈P 〉〉SC must be well-behaved. This is the content of the
following Props. 6, 8 and 9. We do not use more than elementary fixed point theory over finite
domains, here. For a detailed exposition of the technical background the reader is referred
to [15].

Proposition 8 (Monotonicity of Completion). The functional cmpl 〈〈P,E〉〉 is monotonic with
respect to v in E.

Proof: Suppose E1 v E2. We show cmpl 〈〈P,E1〉〉 v cmpl 〈〈P,E2〉〉, or which is the same,
cmpl 〈〈P,E2〉〉 ⊆ cmpl 〈〈P,E1〉〉, by induction on the structure of P .
• For the base cases P ∈ {ε, ¡s} the statement is trivial since cmpl 〈〈P,E1〉〉 = {0} =
cmpl 〈〈P,E2〉〉. For P = π we have cmpl 〈〈P,E1〉〉 = {1} = cmpl 〈〈P,E2〉〉.
• For P = !s we observe that {⊥, 0} v {0} and that if E1(s) = α1:r1 with r1 � 1 is given
and E1 v E2 then we also have E2(s) = α2:r2 and r2 � r1 � 1.
• For parallel composition P ||Q the induction step follows directly from monotonicity of ⊕
and the induction hypothesis.
• The crucial case for sequential composition is when 0 ∈ cmpl 〈〈P,E1〉〉, for which cmpl 〈〈P ;
Q,E1〉〉 = cmpl 〈〈P,E1〉〉 ⊕ cmpl 〈〈Q,E1〉〉, yet 0 6∈ cmpl 〈〈P,E2〉〉 when the completion
function switches to cmpl 〈〈P ; Q,E2〉〉 = cmpl 〈〈P,E2〉〉. We must show that cmpl 〈〈P,E2〉〉 ⊆
cmpl 〈〈P,E1〉〉 ⊕ cmpl 〈〈Q,E1〉〉. By induction hypothesis cmpl 〈〈P,E2〉〉 ⊆ cmpl 〈〈P,E1〉〉 \ {0},
so it suffices to prove cmpl 〈〈P,E1〉〉 \ {0} ⊆ cmpl 〈〈P,E1〉〉 ⊕ cmpl 〈〈Q,E1〉〉. This inclusion
only needs to hold for codes ⊥ and 1. But this follows since a ∈ γ1 ⊕ γ2 iff a ∈ γ1 or a ∈ γ2

for a ∈ {⊥, 1} and γ1, γ2 ∈ I(C).
• First, suppose 0:1 6v E2 and 1:1 6v E2. Then, the assumption E1 v E2 implies also
0:1 6v E1 and 1:1 6v E1. For the completion codes we get cmpl 〈〈s ? P : Q,E2〉〉 =
upp(cmpl 〈〈P,E2〉〉 u cmpl 〈〈Q,E2〉〉) ⊆ upp(cmpl 〈〈P,E1〉〉 u cmpl 〈〈Q,E1〉〉) = cmpl 〈〈s ? P :
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Q,E1〉〉 using the induction hypothesis and monotonicity of upp and u. If 1:1 v E2 then
cmpl 〈〈s ? P : Q,E2〉〉 = cmpl 〈〈P,E2〉〉. Also, we must have 0:1 6v E1. Otherwise, if 0:1 v E1,
then by E1 v E2, both 1:1 v E2 and 0:1 v E2 which is impossible. Therefore, cmpl 〈〈s ?
P : Q,E1〉〉 is either (i) cmpl 〈〈P,E1〉〉 or (ii) upp(cmpl 〈〈P,E1〉〉 u cmpl 〈〈Q,E1〉〉). In either
case, cmpl 〈〈P,E1〉〉 ⊆ cmpl 〈〈s ? P : Q,E1〉〉 since the operators upp and u are ⊆-increasing.
Overall, cmpl 〈〈s ? P : Q,E2〉〉 = cmpl 〈〈P,E2〉〉 ⊆ cmpl 〈〈P,E1〉〉 ⊆ cmpl 〈〈s ? P : Q,E1〉〉,
by induction hypothesis, as desired. For 0:1 v E2 we argue in a similar fashion.

Proposition 9 (Monotonicity of Prediction). The functional 〈〈P 〉〉SE is monotonic with respect
to v in both the concurrent environment E and the sequential environment S and monotonic
for � in S.

Proof: To begin with, let us argue monotonicity for � in the sequential environment, i.e.,
to show that S1 � S2 implies 〈〈P 〉〉S1

E � 〈〈P 〉〉
S2
E . We proceed essentially as above by induction

on P . Most cases follow directly by induction hypothesis and �-monotonicity of the operators
∨ and upp used in the definition of 〈〈 〉〉SE . The only interesting induction step is the one
where the sequential environment S is used in a case analysis, viz. in the definition of 〈〈¡s〉〉SE .
There, an increase S1 � S2 may result in the following switch-overs:
• We may have 1 � S1(s) � > and 1:1 � S2(s). This results in an increase 〈〈¡s〉〉S1

E =
S1 ∨ {〈s>〉} � S2 ∨ {〈s>〉} � S2 ∨ {〈s>:2〉} = 〈〈¡s〉〉S2

E .
• For S1 we may have S1(s) � 0 and for S2 any one of the other conditions in the definition

of 〈〈¡s〉〉S2
E holding true. This is fine since then 〈〈¡s〉〉S1

E = S1 ∨ {〈s0〉} and 0 � γ for all
γ ∈ {>, 0:2, [0,>]:2,>:2}.

• The environment S1 may satisfy ⊥:1 � S1(s) � 0:2 while for the increased S2 we may
find a switch to [⊥, 1]:1 � S2(s) � [0,>]:2 or 1:1 � S2(s). This is covered by the
inequations 0:2 � [0,>]:2 and 0:2 � >:2.

• The situation where [⊥, 1]:1 � S1(s) � [0,>]:2 may change to 1:1 � S2(s), yet we have
[0,>]:2 � >:2 which produces an increase 〈〈¡s〉〉S1

E � 〈〈¡s〉〉
S2
E .

No other switch-over is possible. Specifically, if S1 � S2 then 1:1 � S1(s) implies also
1:1 � S2(s).

Now we prove monotonicity with respect to v. Suppose S1 v S2 and E1 v E2. We show
〈〈P 〉〉S1

E1
v 〈〈P 〉〉S2

E2
by induction on the structure of P . For notational compactness let us

generally abbreviate 〈〈P 〉〉Si
Ei

as 〈〈P 〉〉ii wherever possible. Also, notice that [1,>] v [l, u] is
equivalent to 1 � [l, u] and [⊥, 0] v [l, u] is the same as [l, u] � 0.

• For P = ε and P = π the statement is trivial because 〈〈P 〉〉11 = S1 v S2 = 〈〈P 〉〉22.

• If E1(s) = α1:r1 with r1 � 1 then also E2(s) = α2:r2 with r2 � r1 � 1. Then, since ∨
is monotonic for v we have 〈〈!s〉〉11 = S1 ∨ {〈s1〉} v S2 ∨ {〈s1〉} = 〈〈!s〉〉22. Further, note that
(S1∨{〈s[⊥,1]〉}∨⊥:1)(s) = S1(s)∨ [⊥, 1]∨⊥:1 = S1(s)∨ [⊥, 1]:1 v S2(s)∨1 and for x 6= s we
calculate (S1∨{〈s[⊥,1]〉}∨⊥:1)(x) = S1(x)∨⊥:1 v S2(x)∨⊥ = S2(x). Hence, 〈〈!s〉〉11 v 〈〈!s〉〉22
in all other cases, too.

• First note that [0,>]:2 is v-minimal among all statuses γ ∈ {>, 0, 0:2,>:2}. Hence, if
S1(s) = [l1, u1]:r1 with 1 � r1, l1 � 0 and 1 � u1 we have 〈〈¡s〉〉11 = S1 ∨ {〈s[0,>]:2〉} v S2 ∨
{〈s[0,>]:2〉} v 〈〈¡s〉〉22 by monotonicity. If 1 � S1(s) � > then S1 v S2 implies 1 � S2(s) � >,
too, and if S1(s) � 0, then also S2(s) � 0. Hence, 〈〈¡s〉〉11 = S1 ∨ {〈sγ〉} v S2 ∨ {〈sγ〉} = 〈〈¡s〉〉22
independently of whether γ = 0 or γ = >. The only remaining cases are S1(s) = α1:r1 with
1 � r1 and (i) α1 � 0 or (ii) α1 � 1. From S1 v S2 it follows that S2(s) = α2:r2 with α2 � 0
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in case (i) and α2 � 1 in case (ii). On top of that, in each case either 1 � r2 or r2 = 0. For
(i) the result then follows directly since 〈〈¡s〉〉11 = S1 ∨ {〈s0:2〉} v S2 ∨ {〈sγ〉} = 〈〈¡s〉〉22 for both
γ = 0:2 or γ = 0. For (ii) we observe that 〈〈¡s〉〉11 = S1 ∨ {〈s>:2〉} v S2 ∨ {〈sγ〉} = 〈〈¡s〉〉22 for
both γ ∈ {>:2,>}.
• Parallel composition P ||Q is handled by induction hypothesis and monotonicity:

〈〈P ||Q〉〉11 = 〈〈P 〉〉11 ∨ 〈〈Q〉〉11 v 〈〈P 〉〉22 ∨ 〈〈Q〉〉22 = 〈〈P ||Q〉〉22.

• Sequential composition P ; Q needs more effort. Suppose first that 0 ∈ cmpl 〈〈P,E2〉〉 and
cmpl 〈〈P,E2〉〉 6= {0}. Then, by monotonicity of the completion function, Prop. 8, we also
have 0 ∈ cmpl 〈〈P,E1〉〉 and cmpl 〈〈P,E1〉〉 6= {0}. In this case we get

〈〈P ; Q〉〉11 = 〈〈P 〉〉11 ∨ upp 〈〈Q〉〉〈〈P 〉〉
1
1

1 v 〈〈P 〉〉22 ∨ upp 〈〈Q〉〉〈〈P 〉〉
2
2

2 = 〈〈P ; Q〉〉22
by induction hypothesis and v-monotonicity of ∨ and upp. Similarly, if 0 6∈ cmpl 〈〈P,E1〉〉
then also 0 6∈ cmpl 〈〈P,E2〉〉. We calculate

〈〈P ; Q〉〉11 = 〈〈P 〉〉11 v 〈〈P 〉〉22 = 〈〈P ; Q〉〉22.

Now consider the case that cmpl 〈〈P,E1〉〉 = {0} and thus also cmpl 〈〈P,E2〉〉 = {0} by
monotonicity Prop. 8. Then,

〈〈P ; Q〉〉11 = 〈〈Q〉〉〈〈P 〉〉
1
1

1 v 〈〈Q〉〉〈〈P 〉〉
2
2

2 = 〈〈P ; Q〉〉22
again exploiting the induction hypothesis and monotonicity of 〈〈 〉〉 in the sequential input. If
0 6∈ cmpl 〈〈P,E1〉〉 = {1}, then also 0 6∈ cmpl 〈〈P,E2〉〉 = {1} and thus 〈〈P ; Q〉〉11 = 〈〈P 〉〉11 v
〈〈P 〉〉22 by induction hypothesis.

It remains to treat the cases where 0 ∈ cmpl 〈〈P,E1〉〉 and cmpl 〈〈P,E1〉〉 6= {0}, while
either (i) cmpl 〈〈P,E2〉〉 = {0} or (ii) 0 6∈ cmpl 〈〈P,E2〉〉. Consider case (i) first: Since
upp 〈〈Q〉〉〈〈P 〉〉

1
1

1 v 〈〈Q〉〉〈〈P 〉〉
1
1

1 by Lem. 3 and monotonicity of ∨ for v, the inflationary property
Prop. 6

〈〈P ; Q〉〉11 = 〈〈P 〉〉11 ∨ upp 〈〈Q〉〉〈〈P 〉〉
1
1

1

v 〈〈P 〉〉11 ∨ 〈〈Q〉〉
〈〈P 〉〉11
1 = 〈〈Q〉〉〈〈P 〉〉

1
1

1 v 〈〈Q〉〉〈〈P 〉〉
2
2

2 = 〈〈P ; Q〉〉22
using the induction hypothesis. For (ii) we argue as follows:

〈〈P ; Q〉〉11 = 〈〈P 〉〉11 ∨ upp 〈〈Q〉〉〈〈P 〉〉
1
1

1 v 〈〈P 〉〉11 v 〈〈P 〉〉22 = 〈〈P ; Q〉〉22
by induction hypothesis and Lem. 3(3). This concludes the case of sequential composition.

• Next consider a branching s ? P : Q. The first case which we take a look at is when variable
s does not have a decided boolean value in the environment E2, i.e., when 1:1 6v E2(s) and
0:1 6v E2(s). This also means that 1:1 6v E1(s) and 0:1 6v E1(s) because E1 v E2. Then,

〈〈s ? P : Q〉〉11 = S1 ∨ upp 〈〈P 〉〉S1∨⊥:1
1 ∨ upp 〈〈Q〉〉S1∨⊥:1

1

v S2 ∨ upp 〈〈P 〉〉S2∨⊥:1
2 ∨ upp 〈〈Q〉〉S2∨⊥:1

2 = 〈〈s ? P : Q〉〉22
by induction hypothesis and monotonicity of ∨ and upp with respect to v. It remains to
verify the cases when s is decided in the increased environment E2, i.e., when 1:1 v E2(s)
or 0:1 v E2(s).
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To start with let us assume 0:1 v E2(s), i.e., 〈〈s ? P : Q〉〉22 = 〈〈Q〉〉22. If also 0:1 v E1(s)
we are done immediately since then 〈〈s ? P : Q〉〉11 = 〈〈Q〉〉11 v 〈〈Q〉〉22 = 〈〈s ? P : Q〉〉22 by
induction hypothesis. What if 0:1 6v E1(s)? Then, certainly we also have 1:1 6v E1(s), because
otherwise this would contradict the assumption 0:1 v E2(s) and the inclusion E1 v E2.
Hence, since then 1:1 6v E1(s), the reaction of s ? P : Q in S1, E1 is determined as
〈〈s ? P : Q〉〉11 = S1 ∨ upp 〈〈P 〉〉S1∨⊥:1

1 ∨ upp 〈〈Q〉〉S1∨⊥:1
1 . Since by Prop. 4, Prop. 1(1), Prop. 6,

Lem. 2(2) and Lem. 3(2) we have

low(S1 ∨ upp 〈〈P 〉〉S1∨⊥:1
1 ∨ upp 〈〈Q〉〉S1∨⊥:1

1 )

= low(S1) ∨ low upp(〈〈P 〉〉S1∨⊥:1
1 ∨ 〈〈Q〉〉S1∨⊥:1

1 )

= low low(S1) = low(S1) v low 〈〈Q〉〉11.

The inequation S1 � S1∨⊥:1 together with monotonicity of 〈〈 〉〉S in the sequential environment
S (proved above) and monotonicity of upp with respect to � implies

upp〈〈Q〉〉11 � upp〈〈Q〉〉S1∨⊥:1
1 � S1 ∨ upp〈〈P 〉〉S1∨⊥:1

1 ∨ upp〈〈Q〉〉S1∨⊥:1
1

and then Lem. 2(2) and Prop. 1(1) means

upp(S1 ∨ upp〈〈P 〉〉S1∨⊥:1
1 ∨ upp〈〈Q〉〉S1∨⊥:1

1 ) v upp upp 〈〈Q〉〉11 = upp 〈〈Q〉〉11.

Now we can invoke Prop. 1(3) to get

〈〈s ? P : Q〉〉11 = S1 ∨ upp〈〈P 〉〉S1∨⊥:1
1 ∨ upp〈〈Q〉〉S1∨⊥:1

1

v 〈〈Q〉〉11 v 〈〈Q〉〉22 = 〈〈s ? P : Q〉〉22
by the induction hypothesis.

It remains to treat the case 1:1 v E2(s), i.e., 〈〈s ? P : Q〉〉22 = 〈〈P 〉〉22. If also 1:1 v E1(s)
the desired result follows directly from the induction hypothesis, because 〈〈s ? P : Q〉〉11 =
〈〈P 〉〉11 v 〈〈P 〉〉22 = 〈〈s ? P : Q〉〉22. Otherwise, if 1:1 6v E1(s) then it must also be the case that
0:1 6v E1(s) for otherwise the inclusion E1 v E2 would imply 0:1 v E2(s), in contradiction
with the assumption 1:1 v E2(s). Thus,

〈〈s ? P : Q〉〉11 = S1 ∨ upp〈〈P 〉〉S1∨⊥:1
1 ∨ upp〈〈Q〉〉S1∨⊥:1

1

v 〈〈P 〉〉11 v 〈〈P 〉〉22 = 〈〈s ? P : Q〉〉22
using the same argument as above.

The following Ex. 25 shows that 〈〈P 〉〉SE is not in general monotonic for � in the concurrent
environment E. The reason is that we permit reaction to absence.

Example 25. Consider the fprog x = 0 (!y) which emits y iff x is absent. Assume y0 ∈ S and
x[0,1]:1 ∈ E1. Then, y[0,1]:1 ∈ S∨upp(S∨⊥:1∨{〈y1〉}) = S∨upp 〈〈!y〉〉S∨⊥:1

E1
= 〈〈x = 0 (!y)〉〉SE1

.
Next, choose E2 so that the state of x is �-increased to x1:1 ∈ E2 leaving all other variables
as they were in E1. Then, E1 � E2 because [0, 1]:1 � 1:1. Now the conditional is decided,
i.e., it is switched off, and we get the reaction y0 ∈ S = 〈〈x = 0 (!y)〉〉SE2

. Obviously, the
status of y has increased in the information ordering v but not in the � ordering. Specifically,
we have [0, 1]:1 � 1:1 (change in state of variable x) but [0, 1]:1 6� 0 (change in state of in
variable y), contradicting �-monotonicity. ♦

The Monotonicity Prop. 9 together with finiteness of I(D,P) implies that the least fixed point
µC.〈〈P 〉〉SC given by (16) is well-defined, for any sequential environment S, if we start from
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an initial concurrent environment C0 that is a post-fixed point of 〈〈P 〉〉S , i.e., if C0 v 〈〈P 〉〉SC0
.

The concurrent environment satisfying this trivially is C0 = [⊥,>]:2. This is the least element
wrt v which codes null-information about the concurrent environment. With this choice of
C0, the sequential environment S is in fact arbitrary as far as the existence of the fixed point
is concerned. We then have Ci v Ci+1 and (16) is the stationary limit of this monotonically
increasing sequence, which must exist because of the finiteness of I(D,P).

For any given initialization S, we can also choose a somewhat less conservative C0. By
Prop. 6 the functional 〈〈P 〉〉SC is inflationary in S wrt �, i.e., S � 〈〈P 〉〉SC0

. This suggests that
for a given S the canonical choice of an initial concurrent environment is C0 = low(S). This
is the tightest over-approximation of S, C0 v S, such that C0 v 〈〈P 〉〉SC0

, whatever the value
of 〈〈P 〉〉SC0

. For instance, suppose we start with the sequential environment S0 = 0 which
initializes all variables to a crisp 0 up front. This forces the final response µC.〈〈P 〉〉S0

C to have
0 as a lower bound, too. Therefore, we can give the concurrent environment a head start with
C0 = [0,>]:2.

We are now finally ready to state our first definition of constructiveness.

Definition 9 (∆0-Constructiveness). A fprog P is ∆0-constructive or strongly Berry-constructive
iff for all variables x ∈ V we have (µC.〈〈P 〉〉⊥C)(x) ∈ {⊥, 0, 1}.

As stated in Def. 9, an fprog is ∆0-constructive if its 〈〈 〉〉 fixed point is crisp and associates
with every variable a unique reaction status ⊥ (pristine, unchanged), 0 (initialized by reset
and not updated) or 1 (updated by set and never re-initialized later). The crisp status > is
excluded because it indicates that the variable is known to be re-initialized by P sequentially
after having been updated. This is not tracked by ∆0 as it requires ∆2 analysis capabilities.
On the other hand, ∆0 is stronger, i.e., more permissive, than simple static ASC-schedulability
(cf. [46]).

Example 26. As seen in Ex. 21 the fprog P ‖ Q ‖ R with P := x ? ε : (!y ‖ !z),
Q := y ? ε : !x and R := ¡x ‖ !y has the fixed point µC.〈〈P ‖ Q ‖ R〉〉⊥C = {〈x0, y1, z1〉} and
thus is ∆0-constructive. However, because of the static cycle of accesses “Q-read-y →seq Q-
write-x →pre P -read-x →seq P -write-y →pre Q-read-y” the program is not ASC-schedulable
in the sense of [46]. ♦

We will show that (i) ∆0-constructiveness is closely related to Berry’s notion of construc-
tiveness in Esterel and (ii) that it is a conservative extension of ∆∗-constructiveness. To begin
with, the following Ex. 27 testifies to that ∆0 is a proper over-approximation of ∆∗, i.e., that
there are programs which are ∆∗-constructive but not ∆0-constructive.

Example 27. Consider the fprog P := s ? !x : !x. In the operational execution of P the
variable x will necessarily be set to value 1, independent of the initial memory value of s. Thus,
P is ∆∗-constructive. However, the ∆0 response in environments S := ⊥ and C := [⊥,>]:2
gives the approximating fixed point 〈〈P 〉〉SC = {〈x[⊥,1]〉} ∨ ⊥:1 which does not warrant the
conclusion that x must have status 1. All it says is that x cannot crash. The ∆0 analysis is
not permitted to assume that any one of the conditional branches must actually be executed.
Constructively, this is the safe take, since S(s) = ⊥ only means s has not been written yet. It
does not imply the status of s cannot change to 0 or 1 by the environment as a computational
result of executing the conditional and P communicating x1 into the environment. Thus,
assuming s has a fixed (but unknown) value 0 or 1, could create causality loops. While the
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fprog is still part of an open computation context in which the status of s may causally depend
on the execution of the conditional’s branches, Berry constructiveness does not speculatively
try s0 and s1 separately to see what happens. For instance, if we put P in parallel with
Q := x = 1 (!s) we create a causality loop. The fprog P ‖ Q has no ∆∗-admissible executions
if x = s = 0 in the initial memory. ♦

From the inflationary behavior of 〈〈 〉〉 with respect to � it follows easily that the binary
conditional s ? P : Q is equivalent to the parallel composition s = 1 (P ) ||s = 0 (Q) of its
one-sided branches: If 1:1 v C(s) then

〈〈s = 1 (P ) ||s = 0 (Q)〉〉SC = 〈〈s = 1 (P )〉〉SC ∨ 〈〈s = 0 (Q)〉〉SC
= 〈〈P 〉〉SC ∨ 〈〈ε〉〉SC = 〈〈P 〉〉SC ∨ S = 〈〈P 〉〉SC = 〈〈s ? P : Q〉〉SC .

Dually, if 0:1 v C(s) we compute 〈〈s = 1 (P ) ||s = 0 (Q)〉〉SC = 〈〈Q〉〉SC = 〈〈s ? P : Q〉〉SC in
the same fashion. In the third case, if 1:1 6v C(s) and 0:1 6v C(s) we get

〈〈s = 1 (P ) ||s = 0 (Q)〉〉SC
= 〈〈s = 1 (P )〉〉SC ∨ 〈〈s = 0 (Q)〉〉SC
= S ∨ upp 〈〈P 〉〉S∨⊥:1

C ∨ upp 〈〈ε〉〉S∨⊥:1
C ∨ S ∨ upp 〈〈ε〉〉S∨⊥:1

C ∨ upp 〈〈Q〉〉S∨⊥:1
C

= S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈ε〉〉S∨⊥:1

C ∨ upp 〈〈Q〉〉S∨⊥:1
C

= S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ S ∨ ⊥:1 ∨ upp 〈〈Q〉〉S∨⊥:1

C

= S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp (⊥:1 ∨ 〈〈Q〉〉S∨⊥:1

C )

= S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈Q〉〉S∨⊥:1

C = 〈〈s ? P : Q〉〉SC .

observing that firstly ⊥:1 = upp(⊥:1) and thus ⊥:1 ∨ upp(E) = upp(⊥:1 ∨ E); as well as
secondly that ⊥:1 � S ∨ ⊥:1 � 〈〈Q〉〉S∨⊥:1

C implies ⊥:1 ∨ 〈〈Q〉〉S∨⊥:1
C = 〈〈Q〉〉S∨⊥:1

C .

V. ∆0-CONSTRUCTIVENESS IMPLIES ∆∗-CONSTRUCTIVENESS

In this section we present our main theorem (Thm. 1 below) stating that every ∆0-constructive
fprog is also ∆∗-constructive, i.e., sequentially constructive as introduced in [46], [47], [48].
This guarantees (see Def. 6) firstly ∆∗-Responsiveness, i.e., that there exists a deadlock-free
execution instant under the “init;update;read” synchronization protocol, and secondly ∆∗-
Determinacy, i.e., every maximal such ∆∗-admissible execution generates the same quiescent
configuration as the macro tick response of the program.

The key element in the conservativity proof is to relate the abstract values in D and P
used in the fixed point analysis with the operational behavior of process executions. These
status values are interpreted as abstractions of the write accesses in a finite sequence of micro
steps generating what we call the sequential state of each thread. More precisely, a sequential
state is a function µ which assigns each possible thread identifier ι ∈ TI to a sequential
environment µ(ι) : V → D × P subject to the condition that ι � ι′ implies µ(ι′) � µ(ι).
The idea is that µ(ι) codes the local view of a thread instance ι about the sequential status
of the variable values. So, if ι ≺ ι′ then ι′ is a (sequential) descendant of thread ι all of
whose memory write accesses are visible to the waiting ancestor thread ι. The fact that the
view of the ancestor ι is wider, also encompassing other threads (e.g., siblings of ι and their
descendants) running concurrently with ι, is captured by the constraint µ(ι′) � µ(ι). The
descendant ι′ is behind the parent since the parent ι sees all variable accesses of all its active
children while ι′ only knows about its own.
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With the following definition of the sequential yield we are interpreting the actions of a
micro-sequence as an incremental update of a sequential state. The pairs in D× P are treated
naturally as elements of I(D,P), viz. (a, r) ∈ D × P is the same as [a, a]:r ∈ I(D,P) and
therefore written a:r. In this way, all operations on environments over I(D,P) can be used
for the sequential environments, too.

Definition 10 (Sequential Yield). Let R be a finite sequence of micro-steps R : (Σ0, ρ0)�µs

(Σn, ρn) and C an environment. We define the sequential yield [R]C : TI → V → D×P of R
by iteration through R, as follows: If R = ε, then [R]C(ι)(x) := ⊥ = ⊥:0 for all ι ∈ TI and
x ∈ V . Otherwise, suppose R = R′, Tn consists of a sequence R′ : (Σ1, ρ1)�µs (Σn−1, ρn−1)
followed by a final action Tn : (Σn−1, ρn−1)→µs (Σn, ρn). Then, [R]C is computed from [R′]C
by case analysis on the action Tn.

Generally, the yield does not change for all threads concurrent to Tn.id , i.e., for all κ ∈ TI
such that κ 6� Tn.id and Tn.id 6� κ we have [R]C(κ) := [R′]C(κ). Also, if the next control
is a non-empty list Tn.next = Q::Ks ′ and the program Tn.prog ∈ {ε, !s, ¡s} instantaneously
terminating, then the execution of Tn installs the process 〈inc(ι), Q,Ks ′〉. This incremented
thread inherits the sequential state from ι. In this case we put [R]C(inc(ι)) := [R]C(ι).
Otherwise, if Tn.prog ∈ {ε, !s, ¡s} and Ks = [ ] is empty, then [R]C(inc(ι)) := [R′]C(ι).

In all other cases, for ancestor and descendant threads κ, the new yield [R]C(κ) is determined
according to the following clauses:

1) Executing a sequential composition or the empty statement does not change the yield.
Formally, if Tn.prog ∈ {P ; Q, ε}, then [R]C(κ) := [R′]C(κ);

2) Executing a conditional which is undecided in environment C raises the init status of the
thread and its ancestors to 1; otherwise, if the test is decided in C the yield is preserved.
Formally, if Tn = 〈ι, s ? P : Q,Ks〉 and both 1:1 6v C(s) and 0:1 6v C(s), we put
[R]C(κ) := [R′]C(κ)∨⊥:1 for all κ � inc(ι); Otherwise, if 1:1 v C(s), 0:1 v C(s) or
κ 6� inc(ι) we define [R]C(κ) := [R′]C(κ);

3) Upon forking a parallel process we copy the sequential status of the parent thread to its
two children. Formally, if Tn = 〈ι, P ||Q,Ks〉, then [R]C(ι.l.0) = [R]C(ι.r.0) := [R′]C(ι)
and for all κ 6= ι.r.0 and κ 6= ι.l.0 we have [R]C(κ) := [R′]C(κ);

4) A set !s increases the sequential yield of s in the executing thread and its ancestors
and also the speculation status (for all variables) if the set is blocked by C due to a
potentially pending reset. Formally, suppose Tn = 〈ι, !s,Ks〉. Then, for all inc(ι) ≺ κ,
[R]C(κ) := [R′]C(κ) and for all κ � ι,
• if [⊥,>]:1 v C(s) then [R]C(κ)(s) := [R′]C(κ)(s)∨1 and [R]C(κ)(x) := [R′]C(κ)(x)

for all variables x 6= s. More compactly, [R]C(κ) := [R′]C(κ) ∨ {〈s1〉};
• if [⊥,>]:1 6v C(s) then [R]C(κ)(s) := [R′]C(κ)(s) ∨ 1:1 and [R]C(κ)(x) :=

[R′]C(κ)(x) ∨ ⊥:1 for x 6= s. More compactly, [R]C(κ) := [R′]C(κ) ∨ {〈s1〉} ∨ ⊥:1.

5) A reset ¡s increases the sequential yield for s to 0 if the status is still smaller than 0,
or to > if the status of s in the thread is already at or above 1. At the same time, if the
thread has entered the speculative mode, then the reset ¡s raises the speculation status
to 2. Formally, if Tn = 〈ι, ¡s,Ks〉, then [R]C(κ)(x) := [R′]C(κ)(x) for all inc(ι) ≺ κ
or x 6= s; Otherwise, for all κ � ι we put
• [R]C(κ)(s) := [R′]C(κ)(s) ∨ > if 1 � [R′]C(ι)(s) � >;
• [R]C(κ)(s) := [R′]C(κ)(s) ∨ >:2 if 1:1 � [R′]C(ι)(s);
• [R]C(κ)(s) := [R′]C(κ)(s) ∨ 0 if [R′]C(ι)(s) � 0;
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• [R]C(κ)(s) := [R′]C(κ)(s) ∨ 0:2 if ⊥:1 � [R′]C(ι)(s) � 0:2;

Observe that a sequential state µ assigns a crisp status µ(ι)(x) = a:r ∈ D× P ⊂ I(D,P)
to every thread identifier ι ∈ TI and variable x ∈ V . A special case is the totally pristine
sequential state µ⊥ with µ⊥(ι) = ⊥ for all ι ∈ TI . This is the yield [ε]C of the empty micro
sequence. Also, if a thread identifier ι does not occur in (any action of) a micro-sequence R,
then [R]C(ι) = ⊥. Moreover, the yield operation is monotonic, i.e., if R is a prefix of R′ then
[R]C(ι) � [R′]C(ι).

Lemma 4. Let R : (Σ0, ρ0)�µs (Σn, ρn) be a ∆∗-admissible micro-step sequence and C an
environment. Then, [R]C is consistent for the final memory ρn in the following sense:
(i) If [R]C(Root.id)(x) � ⊥:2 then ρ0(x) = ρn(x);

(ii) If [R]C(Root.id)(x) = b:r with b ∈ {0, 1} ⊂ D then ρn(x) = b;
(iii) If [R]C(Root.id)(x) � 1 then there exists a micro step 1 ≤ i ≤ n such that Ti.prog = !x

and for all T ∈ Σn with Ti.id � T.id we have 1 � [R]C(T.id)(x).

Proof: For R = ε the claim (i) is trivial and also (ii) and (iii) by the choice of µ0. For
the induction step we assume (i)–(iii) for the yield µn = [R]C of sequence R : (Σ0, ρ0)�µs

(Σn, ρn) and consider one additional action Tn+1 : (Σn, ρn) →µs (Σn+1, ρn+1) extending R.
We show that the yield µn+1 = [R, Tn+1]C also satisfies (i)–(iii). Now, µn+1 is updated from
µn = [R]C according to the rules of Def. 10 by action Tn+1.

For case (i) we exploit the fact that if µn+1(Root.id)(x) � ⊥:2 then µn(Root.id)(x) � ⊥:2
and ρn+1(x) = ρn(x). The former follows from the inflationary nature of forming the yield.
The latter holds because the only way in which we could have ρn+1(x) 6= ρn(x) is when Tn+1

is a set or a reset access on x which necessarily implies µn+1(Root.id)(x) � 0 in contradiction
to the assumption. Hence, µn(Root.id)(x) � ⊥:2, so that in combination with the induction
hypothesis ρ0(x) = ρn(x), the claim (i) follows.

Condition (ii) of the Lemma needs more thought and a case analysis. By way of contradiction
suppose that µn+1(Root.id)(x) = 0:r and ρn+1(x) = 1. We can exclude the case that Tn+1.prog
is a reset ¡x, because this cannot result in the memory value ρn+1(x) = 1. If Tn+1.prog is
not a write access (set or reset), then by Def. 10, µn+1(Root.id)(x) = 0:r implies that
also µn(Root.id)(x) = 0:r′ as well as ρn(x) = ρn+1(x) = 1. However, this contradicts the
induction hypothesis which would enforce ρn(x) = 0. This means that Tn+1.prog must be
a write access !x. But if Tn+1.prog = !x then µn+1(Root.id)(x) = µn(Root.id)(x) ∨ 1 or
µn+1(Root.id)(x) = µn(Root.id)(x) ∨ 1:1, contradicting the assumption, where we observe
that Root � Tn+1.id.

Now, suppose µn+1(Root.id)(x) = 1:r and ρn+1(x) = 0. Then, Tn+1.prog must be a reset
¡x. It has to be a write access for otherwise we would get a contradiction to the induction
hypothesis as above, yet it cannot be a !x because of the final memory value ρn+1(x) = 0.
By definition of µn+1 this means the reset action is executed either with µn(Tn+1.id)(x) � 0
and 1:r = µn+1(Root.id)(x) = µn(Root.id)(x) ∨ 0 or with ⊥:1 � µn(Tn+1.id)(x) � 0:2
and then 1:r = µn+1(Root.id)(x) = µn(Root.id)(x) ∨ 0:2. Either case can only be true if
µn(Root.id)(x) � 1. The other situations for executing a reset on x, viz. 1 � µn(Tn+1.id)(x) �
> or 1:1 � µn(Tn+1.id)(x) would result in µn+1(Root.id)(x) � >.

Now we can use the induction hypothesis (iii) on µn, i.e., conclude that there exists a micro
step 1 ≤ i ≤ n with Ti.prog = !x and Ti.id 6� Tn+1.id (consider that µn(Tn+1.id)(x) � 0:2).
The former implies that µi(Ti.id)(x) � 1 by Def. 10. But then, Tn+1.id 6� Ti.id, because
otherwise if Tn+1.id � Ti.id, by the monotonicity of sequential states and the yield function, it
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would have to be the case that µi(Ti.id) � µi(Tn+1.id) � µn+1(Tn+1.id) � 0:2, contradicting
µi(Ti.id) � 1. Thus, both Ti.id 6� Tn+1.id and Tn+1.id 6� Ti.id, i.e, the reset action ¡x with
identifier Tn+1.id and the set !x with identifier Ti.id are concurrent. One can show that by
admissibility all reads between i and n+ 1 must be confluent with the reset Tn+1. Therefore,
there is a configuration reachable from (Σi, ρi) in which Ti and Tn+1 conflict. But then the
micro sequence R, Tn+1 would not be ∆∗-admissible, containing a concurrent reset after a set.

This completes the proof of case (ii) of the Lemma. It remains to argue for (iii). But this is
simple, without explicit induction: The only way in which the initial state µ0(Root.id) = ⊥
can change to µn(Root.id)(x) � 1, by construction Def. 10, is if some action of R is a set !x.
But if this set access is executed in a thread identifier Ti.id, so that µi(Ti.id)(x) � 1, then all
its descendants Ti.id � ι becoming active afterwards, at steps j > i, inherit this value and
thus satisfy µj(ι)(x) � 1.

The strategy for proving the inclusion ∆0 ⊆ ∆∗ is to show that the fixed point µC.〈〈P 〉〉⊥C ∈
I(D,P) computes sound information about the sequential yield of every ∆∗-admissible micro-
step sequence R of P . More specifically, we show that µC.〈〈P 〉〉⊥C is an abstract predictor for
the ∆∗-admissible behavior of P in the sense that (i) the yield of every ∆∗-admissible micro-
sequence lies within the window specified by µC.〈〈P 〉〉⊥C and (ii) there exists a ∆∗-admissible
instant. This is done by induction on the structure of P . However, since the fixed point of a
composite expression cannot be obtained from the fixed points of its sub-expressions, induction
on P for the full fixed point µC.〈〈P 〉〉⊥C does not work. Instead, we need to break up the fixed
point and do an outer induction along the iteration that obtains the fixed point in the limit. The
idea is to extract the logical meaning of a single iteration step Ci+1 = 〈〈P 〉〉SCi

as a conditional
specification of the ∆∗-admissible behavior of P assuming a sequential environment S and
concurrent environment Ci. This can then be proven by induction on P .

The main observation is that a single application of the response functional 〈〈P 〉〉SCi
covers

the behavior of an initial slice of P consisting of an atomic “read;update” burst of P .
The initialization for reading is given by the concurrent environment Ci from which P
sequentially updates some variables in S and finally waits to read new values from its
concurrent environment. In such a slice, control branching is decided entirely in terms of
the variables whose values are decided in Ci and not on variables whose value may be
changing as a result of executing P . In particular, the execution covered by a slice decided
from Ci does not involve any concurrent communication between the processes inside P .
The communication between threads is handled by feeding back the result Ci+1 as the new
concurrent environment in the next iteration Ci+2 = 〈〈P 〉〉SCi+1

of the response functional. The
end of a slice is called the stopping index.

Definition 11 (Stopping Index). Let R : (Σ0, ρ0)�µs (Σn, ρn) be a finite micro-sequence and
C an environment. A process or action Ti ∈ Σi for 0 ≤ i < n is called C-blocked if Ti is
active in Σi and either
• Ti.prog is a branching x ? Q : R and the status of x is undecided in C, i.e., 0:1 6v C(x)

and 1:1 6v C(x), or
• Ti.prog is a set !x and the concurrent environment indicates an incomplete initialization

phase, i.e., [⊥,>]:1 6v C(x).
In all other cases, the process or action Ti is called C-enabled. Let 〈ιP , P,Ks〉 ∈ Σi be active
in Σi. The C-stopping index of program P in R is the earliest step index i ≤ t ≤ n such that
• P pauses, or
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• P has terminated instantaneously and handed over to the first program Q in the next
control Ks = Q :: Ks ′, or

• all descendants of ιP are C-blocked.

Note that the C-stopping index of a program in a micro-sequence R may not exist if R is
not long enough with respect to the environment C. This happens when R still has an active
process from P in its last configuration and this process is not C-blocked.

Definition 12 (C-Consistency). Let R : (Σ0, ρ0) �µs (Σn, ρn) be a micro sequence and C
an environment. We say a read action Ti.prog = x ? P : Q with 0 < i ≤ n is C-consistent
in R if b:1 v C(x) for b ∈ B implies ρi−1(x) = b. A thread ι is called C-consistent in R if
all read actions performed by all descendants of ι in R are C-consistent. A configuration
(Σ, ρ) is called C-consistent if every thread in Σ is C-consistent for every free schedule from
(Σ, ρ).

Note that if a read action is C ′-consistent and C v C ′ then the read is also C-consistent.

Proposition 10 (Soundness of the Lower/Must Prediction).
Let R : (Σ0, ρ0)�µs (Σn, ρn) be a micro sequence with an active process 〈ιP , P,Ks〉 in Σs,
0 < s ≤ n, and C an environment such that ιP is C-consistent in R and n the C-stopping
index of P in R.
(i) If cmpl 〈〈P,C〉〉 = {0} then P instantaneously terminates at step n by executing an action

of the form ε, ¡s, !s; If cmpl 〈〈P,C〉〉 = {1} then P pauses at step n where the last of its
descendants has reached the action π.

(ii) If S � low [R@s]C(ιP ) then 〈〈P 〉〉SC � low [R@n]C(ιP ).

Proof: Both parts (i) and (ii) of the proposition are shown by induction on P :

• If P = ε or P = π then 〈〈P 〉〉SC = S. The micro sequence R contains no write access at
all by a descendant of P between s and n. Therefore, [R@s]C(ιP ) = [R@n]C(ιP ) and
further low [R@n]C(ιP ) = low [R@s]C(ιP ) � S = 〈〈P 〉〉SC , by assumption.
Regarding statement (i) note that cmpl 〈〈ε, C〉〉 = {0} and at the C-stopping index n the
program P = ε terminates instantaneously, while cmpl 〈〈π,C〉〉 = {1} and at the C-stop,
n = s the program P pauses.

• For P = !x the prediction is 〈〈P 〉〉SC = S ∨ {〈x1〉} if [⊥,>]:1 v C(x) and 〈〈P 〉〉SC =
S ∨ {〈x[⊥,1]〉} ∨ ⊥:1, if [⊥,>]:1 6v C(x). The assumption is S � low [R@s]C(ιP ). Note
that independently of whether the set is executed by R or not, if [⊥,>]:1 6v C(x), then we
find 〈〈P 〉〉SC = S∨{〈x[⊥,1]〉}∨⊥:1 � low [R@s]C(ιP )∨{〈x[⊥,1]〉}∨⊥:1 � low [R@s]C(ιP )∨
[⊥,>]:2 = low low [R@s]C(ιP ) = low [R@s]C(ιP ) � low [R@n]C(ιP ).
Hence, it remains to consider the case that [⊥,>]:1 v C(x) for statement (ii). Then, the
set action !x of P is C-enabled. So, the C-stop at n occurs because ιP is finally selected
and executed, at which moment P also terminates. By Def. 10(4), low [R@n]C(ιP ) =
low([R@n−1]C(ιP )∨{〈x1〉}) = low([R@s]C(ιP )∨{〈x1〉}) = low [R@s]C(ιP )∨low {〈x1〉} �
S ∨ low {〈x1〉} � S ∨ {〈x1〉}, as desired.
Further, observe that cmpl 〈〈P,C〉〉 = {0} implies [⊥,>]:1 v C(x) in which case P is
C-enabled and executed at the C-stopping index n, where P terminates instantaneously.
Since cmpl 〈〈P,C〉〉 6= {1} statement (i) of the proposition is proven.
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• Suppose P = ¡x and S � low [R@s]C(ιP ). This write action is the first and only one
of process P in R. Since a reset is never blocked, by assumption, n is the step in R
when the reset action is executed, i.e., the C-stop occurs. At this point P terminates
instantaneously which validates statement (i) in view of the fact that cmpl 〈〈P,C〉〉 = {0}.
Moreover, by Def. 10(5),

[R@n]C(ιP ) = [R@n− 1]C(ιP ) ∨ {〈x>〉} if 1 � [R@n− 1]C(ιP )(x) � >
[R@n]C(ιP ) = [R@n− 1]C(ιP ) ∨ {〈x>:2〉} if 1:1 � [R@n− 1]C(ιP )(x)

[R@n]C(ιP ) = [R@n− 1]C(ιP ) ∨ {〈x0〉} if [R@n− 1]C(ιP )(x) � 0

[R@n]C(ιP ) = [R@n− 1]C(ιP ) ∨ {〈x0:2〉} if ⊥:1 � [R@n− 1]C(ιP )(x) � 0:2.

We lump these four cases in two parts to treat statement (ii) of the proposition:
– Firstly, observe that low(>) = >:2 = low(>:2) and therefore low{〈xδ〉} � {〈x>:2〉} for
δ ∈ {>,>:2}. This implies that in the first two cases where 1 � [R@n−1]C(ιP )(x) �
> or 1:1 � [R@n − 1]C(ιP )(x) we can calculate as follows: low [R@n]C(ιP ) =
low([R@n − 1]C(ιP ) ∨ {〈xδ〉}) = low [R@s]C(ιP ) ∨ low {〈xδ〉} � low [R@s]C(ιP ) ∨
{〈x>:2〉} � S∨{〈x>:2〉} � 〈〈P 〉〉SC . The last in-equation holds, because ∨ is �-monotonic
and >:2 is maximal under � and thus γ � >:2 for all γ ∈ {>, 0, 0:2, [0,>]:2,>:2}.

– Secondly, consider that if [R@n−1]C(ιP )(x) � δ where δ ∈ {0, 0:2} the assumption
yields S(x) � low [R@s]C(ιP )(x) = low [R@n − 1]C(ιP )(x) � low(δ) = [0,>]:2.
This implies S(x) = [l, u]:r where l � 0. Hence, 〈〈P 〉〉SC = S ∨ {〈xγ〉} where γ ∈
{0, 0:2, [0,>]:2}. Moreover, low{〈xδ〉} = {〈x[0,>]:2〉}. Now we find low [R@n]C(ιP ) =
low([R@n − 1]C(ιP ) ∨ {〈xδ〉}) = low [R@s]C(ιP ) ∨ low {〈xδ〉} � S ∨ {〈x[0,>]:2〉} �
S ∨ {〈xγ〉} = 〈〈P 〉〉SC since γ � [0,>]:2 for every γ ∈ {0, 0:2, [0,>]:2}.

• Let us look at parallel composition P || Q. We assume S � low [R@s]C(ιP||Q). As
n is the C-stop of ιP||Q there must be an index s < j ≤ n where the forking of
the parallel statement is executed. This results in a configuration (Σj, ρj) in which
both sub-programs P and Q are activated as child processes, 〈ιP , P, [ ]〉 ∈ Σj and
〈ιQ, Q, [ ]〉 ∈ Σj with ιP = ιP||Q.l.0 and ιQ = ιP||Q.r.0. Between steps s and j all actions of
R are concurrent to ιP||Q, so that [R@j]C(ιP||Q) = [R@s]C(ιP||Q). Also, by Def. 10(3) we
have [R@j]C(ιP ) = [R@j]C(ιP||Q) = [R@j]C(ιQ). Since ιP||Q is C-consistent in R, also
ιP||Q � ιP and ιP||Q � ιQ are C-consistent in R. We can apply the induction hypothesis on
P and Q from position j in the sequence. To this end let j ≤ tP , tQ ≤ n be the C-stopping
indices for each, which must exist, because otherwise P ‖ Q would not have reached
its C-stop at n. This implies 〈〈P 〉〉SC � low [R@tP ]C(ιP ) and 〈〈Q〉〉SC � low [R@tQ]C(ιQ).
Suppose j ≤ tP ≤ tQ, i.e., the C-stopping index for ιP||Q is n = max(tP , tQ) = tQ.
Then, 〈〈P 〉〉SC � low [R@tP ]C(ιP ) � low [R@tQ]C(ιP ) = low [R@n]C(ιP||Q) as well as
〈〈Q〉〉SC � low [R@tQ]C(ιQ) = low [R@n]C(ιP||Q). From this we conclude

〈〈P ||Q〉〉SC = 〈〈P 〉〉SC ∨ 〈〈Q〉〉SC � low [R@n]C(ιP||Q).

The other case tQ < tP = n is argued analogously.
Finally, suppose {c} = cmpl 〈〈P ||Q,C〉〉 = cmpl 〈〈P,C〉〉⊕cmpl 〈〈Q,C〉〉 where c ∈ {0, 1}.
The definition of ⊕ implies that cmpl 〈〈P,C〉〉 = {cP} and cmpl 〈〈Q,C〉〉 = {cQ} with
max(cP , cQ) = c. For if one of these completion sets contains ⊥ then cmpl 〈〈P ||Q,C〉〉
would contain ⊥, too. So, if c = 0 then we must have both cmpl 〈〈P,C〉〉 = {0} and
cmpl 〈〈Q,C〉〉 = {0}. By induction hypothesis both P and Q terminate instantaneously
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at their C-stop, whence P ||Q terminates at the last of them, i.e., at n. If c = 1 then
max(cP , cQ) = 1 and therefore, by induction, both threads P and Q are terminating
instantaneously or pausing at their C-stop, but at least one of them is pausing. Hence,
P ||Q is pausing at the C-stop with index n.

• Let a conditional test x ? P : Q with identifier ιx ?P :Q be active in (Σs, ρs) and
S � low [R@s]C(ιx ?P :Q). We must relate the lower bound of the abstract prediction
〈〈x ? P : Q〉〉SC with the the yield [R@n]C(ιx ?P :Q), where n is the C-stopping index of
program x ? P : Q in R. For this to occur, the branch test must be executed at some step
s < j ≤ n before. At this point j, the value of x is determined from the memory ρj−1(x)
and control branches into either P or Q. The successor configuration (Σj, ρj) contains
either 〈ιP , P,Ks〉 as an active process if ρj−1(x) = 1, or 〈ιQ, Q,Ks〉 if ρj−1(x) = 0. In
either case, ιP = ιQ = inc(ιP ;Q). If the status of x is decided in C, i.e., if 0:1 v C(x)
or 1:1 v C(x), we call the test of x at step j a non-speculative branching, otherwise a
speculative branching step. Since the process 〈ιx ?P :Q, x ? P : Q,Ks〉 does not execute
any write access between s and j, we must have [R@s]C(ιx ?P :Q) = [R@j]C(ιx ?P :Q).

The simplest case is the speculative case where the branching is C-blocked and s = n is
already the C-stopping index of program x ? P : Q. From Prop. 4(2) and Lem. 3(1,2)
we obtain

〈〈x ? P : Q〉〉SC = S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈Q〉〉S∨⊥:1

C

= S ∨ upp(〈〈P 〉〉S∨⊥:1
C ∨ 〈〈Q〉〉S∨⊥:1

C )

= S ∨ ((〈〈P 〉〉S∨⊥:1
C ∨ 〈〈Q〉〉S∨⊥:1

C ) ∧ [⊥,>]:2)

� S ∨ [⊥,>]:2

= low(S)

� low low [R@s]C(ιx ?P :Q)

= low [R@s]C(ιx ?P :Q) = low [R@n]C(ιx ?P :Q)

which is what we are after for statement (ii) of the proposition.
Regarding the proof of statement (i) consider that cmpl 〈〈x ? P : Q,C〉〉 = {c} can
only hold true if 0:1 v C(x) or 1:1 v C(x), i.e. if the branching is non-speculative.
Otherwise, cmpl 〈〈x ? P : Q,C〉〉 = upp(cmpl 〈〈P,C〉〉 u cmpl 〈〈Q,C〉〉) which would
result in ⊥ ∈ cmpl 〈〈x ? P : Q,C〉〉.
Now suppose the branching is non-speculative, say 1:1 v C(x). Then, the fact that ιx ?P :Q

is C-consistent means that ρj−1(x) = 1 and we know that the branch P is taken in
R. Therefore, the process 〈ιP , P,Ks〉 is part of the process pool Σj and [R@j]C(ιP ) =
[R@s]C(ιx ?P :Q). Then the C-stopping index n of x ? P : Q is at the same time the
C-stopping index of P . Since ιx ?P :Q is C-consistent in R it follows that ιP is C-consistent
in R. Also, S � low [R@s]C(ιx ?P :Q) = low [R@j]C(ιP ) by Def. 10(2). Therefore, the
induction hypothesis can be invoked to give 〈〈P 〉〉SC � low [R@n]C(ιP ). From this it
follows that

〈〈x ? P : Q〉〉SC = 〈〈P 〉〉SC � low [R@n]C(ιP ) = low [R@n]C(ιx ?P :Q),

where the last equation holds because every thread that is a proper descendant of
ιx ?P :Q is at the same time a descendant of ιP = inc(ιx ?P :Q). Hence the sequential
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status [R@n]C(ιx ?P :Q) cannot be larger than [R@n]C(ιP ). The same reasoning applies if
0:1 v C(x), leading to

〈〈x ? P : Q〉〉SC � low [R@n]C(ιx ?P :Q),

where n is the C-stopping index of Q and thus of x ? P : Q.
Also, note that statement (i) is obtained trivially by induction hypothesis in case the
branching is decided since then cmpl 〈〈x ? P : Q,C〉〉 = cmpl 〈〈P,C〉〉 or cmpl 〈〈x ? P :
Q,C〉〉 = cmpl 〈〈Q,C〉〉 and at the C-stop the conditional program x ? P : Q completes
(terminates or pauses) if P completes or Q completes, respectively.

• Finally, consider a sequential composition P ; Q active in (Σs, ρs) with id ιP ;Q and
S = [R@s]C(ιP ;Q). Before its C-stop at n the thread ιP ;Q must perform its first
“sequentialization” action, say at micro-step s < j ≤ n. Then, the statement is broken
up so that Σj contains the process 〈ιP , P,Q::Ks〉 and ιP ;Q = ιP . Since all actions in R
between s and j are taken by threads concurrent to ιP ;Q, we have

[R@j]C(ιP ) = [R@j − 1]C(ιP ;Q) = [R@s]C(ιP ;Q)

by Def. 10(1). By assumption, ιP is C-consistent. Let j ≤ k ≤ n be the C-stopping
index of P which must exist because n is the C-stop of P ; Q, so we must pass through
the C-stop of P . The induction hypothesis on P then says

〈〈P 〉〉SC � low [R@k]C(ιP ). (17)

Recall that n ≥ k is the C-stopping index of program P ; Q. Since ιP ;Q = ιP it follows
from (17) that 〈〈P 〉〉SC � low [R@k]C(ιP ) � low [R@n]C(ιP ) = low [R@n]C(ιP ;Q). Now,
if 0 ∈ cmpl 〈〈P,C〉〉 and cmpl 〈〈P,C〉〉 6= {0} then our claim for statement (ii) follows:

〈〈P ; Q〉〉SC = 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉
S
C

C

= 〈〈P 〉〉SC ∨ (〈〈Q〉〉〈〈P 〉〉
S
C

C ∧ [⊥,>]:2)

� 〈〈P 〉〉SC ∨ [⊥,>]:2 = low 〈〈P 〉〉SC
� low low [R@n]C(ιP ;Q) = low [R@n]C(ιP ;Q).

Statement (i) is trivially satisfied since in this situation cmpl 〈〈P ; Q,C〉〉 6= {0} and
cmpl 〈〈P ; Q,C〉〉 6= {1}.
The second case is that 0 6∈ cmpl 〈〈P,C〉〉 or cmpl 〈〈P,C〉〉 = {0}. Suppose the latter
holds, i.e., cmpl 〈〈P,C〉〉 = {0}. Then, by part (i) of Prop. 10(i) the stopping index k of
P is actually the termination point so that 〈ιQ, Q,Ks〉 ∈ Σk. Since ιP ;Q = ιP � ιQ, both
ιQ is C-consistent in R and Def. 10(1) gives [R@k]C(ιP ) = [R@k]C(ιQ). The stopping
index of program P ; Q is then also the stopping index of Q. We can use the induction
hypothesis on Q to conclude from (17)

〈〈P ; Q〉〉SC = 〈〈Q〉〉〈〈P 〉〉
S
C

C � low [R@n]C(ιQ) = low [R@n]C(ιP ;Q)

thus settling statement (ii). Moreover, if cmpl 〈〈P,C〉〉 = {0} then cmpl 〈〈P ; Q,C〉〉 = {c}
for c ∈ {0, 1} implies that cmpl 〈〈Q,C〉〉 = {c}. Thus, we can regress to the induction
hypothesis on Q to argue that x ? P : Q completes at the C-stop n which coincides
with the C-stop of Q. This proves statement (i).
The remaining case is when 0 6∈ cmpl 〈〈P,C〉〉. But then by Prop. 11(i) P cannot terminate
instantaneously at its C-stopping index k, and thus it cannot pass on control to Q at
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step k. This means we have n = k, i.e., the C-stop of P is already the C-stop of
P ; Q. Then, (17) together with the definition of the fixed point 〈〈P ; Q〉〉SC = 〈〈P 〉〉SC and
[R@k]C(ιP ) = [R@k]C(ιP ;Q) = [R@n]C(ιP ;Q) obtains the desired result for statement (ii)
of the proposition. Also, cmpl 〈〈P ; Q,C〉〉 = cmpl 〈〈P,C〉〉, whence cmpl 〈〈P ; Q,C〉〉 =
{c} implies c = 1 which tells us that P must pause at its C-stop, by induction hypothesis.
Hence, P ; Q pauses at n. This deals with statement (i) of the proposition.

Proposition 11 (Soundness of Upper/Cannot Prediction). Let R : (Σ0, ρ0) �µs (Σn, ρn) be
a finite micro sequence with an active process 〈ιP , P,Ks〉 ∈ Σs, 0 ≤ s ≤ n, and C an
environment such that ιP is C-consistent in R. Suppose that all actions executed between s
and n are from processes concurrent to ιP or from descendants of P . In particular, there are
no actions from the continuation list Ks . Then,
(i) If 0 6∈ cmpl 〈〈P,C〉〉 then at least one descendant of P is active or pausing in Σn and if

1 6∈ cmpl 〈〈P,C〉〉 then not all descendants of P in Σn, if there are any, are pausing.
(ii) upp [R@s]C(ιP ) � S implies upp [R@n]C(ιP ) � 〈〈P 〉〉SC .

Proof: We proceed by induction on the structure of the program and the length of the
continuation list Ks . Note that the statements (i) and (ii) of the Prop. 11 hold trivially, if
program P does not perform any actions between s and n. In this case, upp [R@n]C(ιP ) =
upp [R@s]C(ιP ) � S � 〈〈P 〉〉SC by the inflationary nature of the prediction (Prop. 6). Hence,
in the following we may assume for (ii) that P performs at least one action after s. Note that
this deals with the case P = π which cannot perform any actions at all for both (i) and (ii).

• Let P = ε and upp [R@s]C(ιP ) � S. As there is no write access performed by
ιP , the sequential yield remains constant, i.e., [R@s]C(ιP ) = [R@n]C(ιP ). Therefore,
upp [R@n]C(ιP ) = upp [R@s]C(ιP ) � S = 〈〈P 〉〉SC as desired. This proves (ii).
The case for statement (i) of Prop. 11 is trivial because cmpl 〈〈P,C〉〉 = {0} and P cannot
pause.

• Let P = !x for which the prediction is 〈〈P 〉〉SC = S ∨ {〈x1〉} if [⊥,>]:1 v C(x), whereas
it is 〈〈P 〉〉SC = S ∨ {〈x[⊥,1]〉} ∨ ⊥:1, otherwise. The only action of ιP after s is the set !x.
Suppose first that [⊥,>]:1 v C(x). By Def. 10(4), [R@n]C(ιP ) = [R@s]C(ιP ) ∨ {〈x1〉}.
From this we obtain

upp [R@n]C(ιP ) = upp([R@s]C(ιP ) ∨ {〈x1〉})
= upp [R@s]C(ιP ) ∨ upp {〈x1〉}
� S ∨ {〈x[⊥,1]〉} � S ∨ {〈x1〉} = 〈〈P 〉〉SC

as required. The last in-equation holds because {〈x[⊥,1]〉} � {〈x1〉}. Second, consider the
case [⊥,>]:1 6v C(x). Here, by Def. 10(4), we get

upp [R@n]C(ιP ) = upp([R@s]C(ιP ) ∨ {〈x1〉} ∨ ⊥:1)

= upp [R@s]C(ιP ) ∨ upp{〈x1〉} ∨ upp(⊥:1)

= upp upp [R@s]C(ιP ) ∨ upp upp{〈x1〉} ∨ upp(⊥:1)

� upp(S) ∨ upp {〈x[⊥,1]〉} ∨ upp(⊥:1)

= upp(S ∨ {〈x[⊥,1]〉} ∨ ⊥:1)

= upp 〈〈P 〉〉SC � 〈〈P 〉〉SC .
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Again, statement (i) of Prop. 11 is trivial in this case because 0 ∈ cmpl 〈〈P,C〉〉, whatever
the environment C looks like, and also P cannot pause.

• Suppose P = ¡x and upp [R@s]C(ιP ) � S. Suppose that all actions performed by ιP
between s and n are from processes concurrent to ιP or from descendants of P , and
that the reset is performed at step s < t ≤ n. Hence, [R@s]C(ιP ) = [R@t− 1]C(ιP ) and
[R@n]C(ιP ) = [R@t]C(ιP ). We must show upp [R@n]C(ιP ) � 〈〈P 〉〉SC . Let us see what
we have got on both sides of the desired inequation: One the left hand side,

upp [R@n]C(ιP ) = upp [R@t]C(ιP )

= upp([R@t− 1]C(ιP ) ∨ {〈xδ〉}
= upp [R@t− 1]C(ιP ) ∨ upp {〈xδ〉}
= upp [R@s]C(ιP ) ∨ upp {〈xδ〉}
� S ∨ upp {〈xδ〉},

where δ is chosen in accordance with Def. 10(5) so that
d1) δ = > if 1 � [R@s]C(ιP )(x) � >
d2) δ = >:2 if 1:1 � [R@s]C(ιP )(x)
d3) δ = 0 if [R@s]C(ιP )(x) � 0
d4) δ = 0:2 if ⊥:1 � [R@s]C(ιP )(x) � 0:2.
On the other right-hand side we have 〈〈P 〉〉SC = S ∨ {〈xγ〉} where γ is determined from
the sequential status S as follows
g1) γ = > if 1 � S(x) � >
g2) γ = >:2 if 1:1 � S(x)
g3) γ = 0 if S(x) � 0
g4) γ = 0:2 if ⊥:1 � S(x) � 0:2
g5) γ = [0,>]:2 if [⊥, 1]:1 � S(x) � [0,>]:2.

We now observe that the constraint upp [R@s]C(ιP )(x) � S(x) enforces a logical coupling
between the cases (d1)–(d4) and (g1)–(g5) such that always upp {〈xδ〉} � {〈xγ〉}. This then
proves that upp [R@n]C(ιP ) � S ∨ upp {〈xδ〉} � S ∨ {〈xγ〉} = 〈〈P 〉〉SC . We proceed by case
analysis on S(x) = [l, u]:r:
• If both u ≥ 1 and r � 1 then we have the cases (g2) or (g5), i.e., γ ∈ {>:2, [0,>]:2}
and thus upp {〈xδ〉} � {〈xγ〉} is trivially true.
• Next, we may have u ≥ 1 and r = 0 which implies 1 � S(s) � >, i.e., we have
case (g1) where γ = >. But also, upp [R@s]C(ιP )(x) � S(x) � >. Hence, the only
possible solution for δ is (d3). Now the argument is completed by the approximation
upp {〈xδ〉} = upp {〈x0〉} = {〈x[⊥,0]〉} � {〈x>〉} = {〈xγ〉}.
• If u ≤ 0 and r = 0 then upp [R@s]C(ιP )(x) � S(x) � 0 which means we are looking
at case (g3) and (d3) in which case upp {〈xδ〉} = upp {〈x0〉} � {〈x0〉} = {〈xγ〉}.
• If u ≤ 0 and r � 0 then ⊥:1 � S(x) � 0:2 and upp [R@s]C(ιP )(x) � S(x) � 0:2.
This gives case (g4) and either (d3) or (d4), i.e., δ ∈ {0, 0:2}. In either case, γ = 0:2
and upp {〈xδ〉} � {〈xγ〉} as one verifies readily.

Since 0 ∈ cmpl 〈〈P,C〉〉 and P cannot pause, the proof of statement (i) of the proposition
is trivial. This complete the case of P = ¡x for Prop. 11.

• Let us look at parallel composition P ||Q. The interval between s and n must contain
the initial forking action 〈ιP||Q, P ||Q,Ks〉 executed at some index s < t ≤ n in R.
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Remember that we may assume that the program performs at least one action in R
and this action must be the forking. As a result, the processes 〈ιP , P, [ ]〉 and 〈ιQ, Q, [ ]〉
are activated in Σt. Thereafter, all actions from ιP||Q are actions of the children ιP or
ιQ, in some interleaving, possibly followed by the execution of the join 〈ιP||Q, ε,Ks〉.
Both ιP � ιP||Q and ιQ � ιP||Q must be C-consistent in R, because ιP||Q is C-consistent
in R by assumption. Therefore, the induction hypothesis applies to both P and Q,
taking t as the point of prediction. Also, since both children inherit the yield of their
parent, [R@s]C(ιP||Q) = [R@t]C(ιP||Q) = [R@t]C(ιP ) = [R@t]C(ιQ). Therefore, both
upp [R@t]C(ιP ) = upp [R@s]C(ιP||Q) � S and upp [R@t]C(ιQ) � S, by assumption. The
induction hypothesis obtains

upp [R@n]C(ιP ) � 〈〈P 〉〉SC and upp [R@n]C(ιQ) � 〈〈Q〉〉SC .

Moreover, since all write actions of ιP||Q between t and n are write actions of either ιP
or of ιQ, we have [R@n]C(ιP||Q) = [R@n]C(ιP ) ∨ [R@n]C(ιQ). Thus,

upp [R@n]C(ιP||Q) = upp([R@n]C(ιP ) ∨ [R@n]C(ιQ))

= upp [R@n]C(ιP ) ∨ upp [R@n]C(ιQ)

� 〈〈P 〉〉SC ∨ 〈〈Q〉〉SC = 〈〈P ||Q〉〉SC .

Finally, suppose 0 6∈ cmpl 〈〈P ||Q,C〉〉 = cmpl 〈〈P,C〉〉 ⊕ cmpl 〈〈Q,C〉〉. The definition of
⊕ implies 0 6∈ cmpl 〈〈P,C〉〉 or 0 6∈ cmpl 〈〈Q,C〉〉. Hence, by induction hypothesis the
final process pool Σn must contain descendants from P or Q that are active or pausing.
As these are descendants of P ||Q, this means that program P ||Q must still be active or
pausing in Σn. On the other hand, if 1 6∈ cmpl 〈〈P ||Q,C〉〉 then by definition of ⊕ we
must have both 1 6∈ cmpl 〈〈P,C〉〉 and 1 6∈ cmpl 〈〈Q,C〉〉. By induction then none of the
parallel threads P or Q is pausing in Σn, so neither is P ||Q.

• Now we tackle a conditional test x ? P : Q, active in (Σs, ρs). Our assumption is
that upp [R@s]C(ιx ?P :Q) � S and that all actions in R from ιx ?P :Q after s are either
concurrent or from descendants of x ? P : Q.
At some point t in R with s < t ≤ n the read action on variable x installs one of the
branches P or Q into the process pool. So, either 〈ιP , P,Ks〉 or 〈ιQ, Q,Ks〉 are active
in Σt, depending on the value ρt−1(x). If ρt−1(x) = 1, then 〈ιP , P,Ks〉 ∈ Σt and if
ρt(x) = 0, then 〈ιQ, Q,Ks〉 ∈ Σt.

Let us first consider the situation in which the branching variable is undecided by C, i.e.,
0:1 6v C(x) and 1:1 6v C(x). Between s and t all actions are from processes concurrent
to ιx ?P :Q and thus, depending on which branch is taken, by Def. 10(2), either
(i) ιP = inc(ιx ?P :Q) and

upp [R@t]C(ιP ) = upp([R@t− 1]C(ιx ?P :Q) ∨ ⊥:1)

= upp([R@s]C(ιx ?P :Q) ∨ ⊥:1)

= upp [R@s]C(ιx ?P :Q) ∨ upp(⊥:1)

� S ∨ ⊥:1

(ii) ιQ = inc(ιx ?P :Q) and upp [R@t]C(ιQ) � S ∨ ⊥:1 using the analogous calculation.
Since the respective branch ιP or ιQ must be C-consistent in R by assumption, the
induction hypothesis obtains the in-equations upp [R@n]C(ιx ?P :Q) = upp [R@n]C(ιP ) �

64



〈〈P 〉〉S∨⊥:1
C in case (i) or upp [R@n]C(ιx ?P :Q) = upp [R@n]C(ιQ) � 〈〈Q〉〉S∨⊥:1

C in case
(ii). But this means

upp [R@n]C(ιx ?P :Q) � 〈〈P 〉〉S∨⊥:1
C ∨ 〈〈Q〉〉S∨⊥:1

C

independent of the memory value ρt−1(x). So, if the branching variable x is undecided
under C, i.e., 0:1 6v C(x) and 1:1 6v C(x), then we are done, since

upp [R@n]C(ιx ?P :Q) = upp upp [R@n]C(ιx ?P :Q)

� upp
(
〈〈P 〉〉S∨⊥:1

C ∨ 〈〈Q〉〉S∨⊥:1
C

)
= upp 〈〈P 〉〉S∨⊥:1

C ∨ upp 〈〈Q〉〉S∨⊥:1
C

� S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈Q〉〉S∨⊥:1

C

= 〈〈s ? P : Q〉〉SC
since E � S ∨ E and by Props. 1, 4, 6 and 9, as well as �-monotonicity of upp. This
establishes (ii) of the proposition.
In order to prove statement (i) of Prop. 11, suppose 0 6∈ cmpl 〈〈x ? P : Q,C〉〉 =
upp(cmpl 〈〈P,C〉〉 u cmpl 〈〈Q,C〉〉). From this we can infer that 0 6∈ cmpl 〈〈P,C〉〉 and
also 0 6∈ cmpl 〈〈Q,C〉〉. So, whatever branch is taken by R at micro-step t, the induction
hypothesis guarantees that at least one descendant of x ? P : Q is active or pausing in
Σn. Similarly, 1 6∈ upp(cmpl 〈〈P,C〉〉 u cmpl 〈〈Q,C〉〉) means that 1 6∈ cmpl 〈〈P,C〉〉 and
1 6∈ cmpl 〈〈Q,C〉〉, so that x ? P : Q cannot pause in Σn by induction hypothesis.

Otherwise, if the branching is decided in C, i.e., the run-time value ρt−1(x) is predicted
by a status 1:1 v C(x) or 0:1 v C(x), then the prediction will include the respective
branch and thereby follow the actual run tightly. For instance, suppose 1:1 v C(x).
The assumption that ιx ?P :Q is C-consistent in R means that the memory value of x
is ρt−1(x) = 1. Hence the run R takes the P branch and considering Def. 10(2) we
calculate upp [R@n]C(ιx ?P :Q) = upp [R@n]C(ιP ) � 〈〈P 〉〉SC = 〈〈s ? P : Q〉〉SC based on
the induction hypothesis and the fact that every variable access in R that is concurrent to
ιP is also concurrent to ιP ;Q.
Finally, observe that if 1:1 v C(x) then 0 6∈ cmpl 〈〈x ? P : Q,C〉〉 = cmpl 〈〈P,C〉〉
permits us to invoke the induction hypothesis on P to conclude that P , and thus x ? P : Q,
cannot be terminated instantaneously in Σn. The same is true for the 1 6∈ cmpl 〈〈x ? P :
Q,C〉〉 = cmpl 〈〈P,C〉〉 showing that P and hence P ; Q cannot pause.

Since the argument for 0:1 v C(x) is analogous, just P replaced by Q we have completed
the inductive step of Prop. 11 for conditional expressions.

• Finally, it remains to consider the case of a sequential composition P ; Q active in
(Σs, ρs) such that upp [R@s]C(ιP ;Q) � S. The first action of ιP ;Q in R breaks up the
statement, say at index s < t ≤ n, and adds 〈ιP , P,Q::Ks〉 with ιP = ιP ;Q into the process
pool Σt. As there are no actions from ιP ;Q between s and t we have [R@s]C(ιP ;Q) =
[R@t− 1]C(ιP ;Q) = [R@t]C(ιP ), by Def. 10(1), and so upp [R@t]C(ιP ) � S.
From step index t the execution of ιP ;Q continues with the execution of ιP and by
assumption only consists of actions from the descendants of P ; Q but not of the contin-
uation list Ks . There are two cases depending on whether P terminates instantaneously
or not. If P happens to terminate instantaneously in R, then at this step index, say
t < k ≤ n the process 〈ιQ, Q,Ks〉 ∈ Σk is started. Deriving from the assumption that
ιP ;Q is C-consistent in R we get that both ιP and ιQ are C-consistent in R.
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First, let us assume that P does not terminate instantaneously in R, i.e., either it
pauses at some step t < k ≤ n or some descendant of P is still active and non-
pausing in Σn. In either case, [R@n]C(ιP ;Q) = [R@n]C(ιP ). Then, upp [R@n]C(ιP ;Q) =
upp [R@n]C(ιP ) � 〈〈P 〉〉SC by induction hypothesis on P . Now observe that, independently
of the completion cmpl 〈〈P,C〉〉, we always have 〈〈P 〉〉SC � 〈〈P ; Q〉〉SC , which implies
upp [R@n]C(ιP ;Q) � 〈〈P ; Q〉〉SC overall, as desired.
Note that if 1 6∈ cmpl 〈〈P ; Q,C〉〉 then also 1 6∈ cmpl 〈〈P,C〉〉, regardless if cmpl 〈〈P ;
Q,C〉〉 = cmpl 〈〈P,C〉〉 or cmpl 〈〈P ; Q,C〉〉 = cmpl 〈〈P,C〉〉 ⊕ cmpl 〈〈Q,C〉〉. So, if
1 6∈ cmpl 〈〈P ; Q,C〉〉 we can argue by induction that P cannot pause and therefore, in
this case, P must still be active in Σn. Hence, P ; Q does not pause in Σn, either.
This takes care of (i) of the proposition since if 0 6∈ cmpl 〈〈P ; Q,C〉〉 then P ; Q does
not terminate because by assumption in this case P does not terminate in R.
Second, what if P terminates at some t < k ≤ n instantaneously? Then, 〈ιQ, Q,Ks〉 ∈ Σk

by Def. 10(1,4,5), and upp [R@k]C(ιQ) = upp [R@k]C(ιP ) � 〈〈P 〉〉SC . Moreover, ιQ is
C-consistent and so the induction hypothesis guarantees

upp [R@n]C(ιP ;Q) = upp [R@n]C(ιQ) � 〈〈Q〉〉〈〈P 〉〉
S
C

C , (18)

where the equation follows from the fact that ιP ;Q � ιQ, i.e., all write accesses in R that
are concurrent to ιQ are also concurrent to ιP ;Q. Now, since P terminates instantaneously,
we must have 0 ∈ cmpl 〈〈P,C〉〉 by Prop. 11(i). If cmpl 〈〈P,C〉〉 = {0} we directly get

〈〈P ; Q〉〉SC = 〈〈Q〉〉〈〈P 〉〉
S
C

C

from which (18) gives the desired result. If both 0 ∈ cmpl 〈〈P,C〉〉 and cmpl 〈〈P,C〉〉 6= {0}
we can also use (18) as follows:

upp [R@n]C(ιP ;Q) = upp upp [R@n]C(ιP ;Q)

� upp 〈〈Q〉〉〈〈P 〉〉
S
C

C

� 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉
S
C

C = 〈〈P ; Q〉〉SC .

Let us look at the inductive step for statement (i) of Prop. 11. As 0 ∈ cmpl 〈〈P,C〉〉 the
completion code for the sequential composition is cmpl 〈〈P ; Q,C〉〉 = cmpl 〈〈P,C〉〉 ⊕
cmpl 〈〈Q,C〉〉. In this situation the assumption 0 6∈ cmpl 〈〈P ; Q,C〉〉 implies that 0 6∈
cmpl 〈〈Q,C〉〉. So, we can use the induction hypothesis for Q from micro-step k to infer
that at least one descendant of P ; Q, or more specifically of Q, is still active or pausing
in Σn. Finally, the assumption 1 6∈ cmpl 〈〈P,C〉〉⊕ cmpl 〈〈Q,C〉〉 means 1 6∈ cmpl 〈〈Q,C〉〉.
Hence, Q does not pause and therefore P ; Q does not pause in Σn, considering that P
terminates instantaneously at k ≤ n.

Theorem 1. Every ∆0-constructive fprog is ∆∗-constructive with the same response.

Proof: Let P be a ∆0-constructive program, i.e., C∗ := (µC.〈〈P 〉〉⊥C)(x) ∈ {⊥, 0, 1} for
all x ∈ V . This implies, in particular, that ⊥ 6∈ cmpl 〈〈P,C∗〉〉, exploiting Prop. 7(1) given
that 〈〈P 〉〉⊥C∗ = C∗ is crisp. Let (Σ0, ρ0) be an initial configuration in which program P
appears as the sole active process in the pool, i.e., Σ0 = {Root}, where Root = 〈ιP , P, [ ]〉 and
ιP = Root.id = 0.
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a) ∆∗-Determinacy: We first prove the determinism part, i.e. that every ∆∗-admissible
execution of P (from a fixed initial memory) generates the same final memory. To this end
let us fix a ∆∗-admissible instant R : (Σ0, ρ0) �µs (Σn, ρn), where n = len(R). Observe
that all processes in every pool Σi are descendants of ιP . We are going to cover the micro
sequence R incrementally with the results from the fixed point iteration, showing that R can
only ever execute variable accesses within the corridor predicted by the fixed point responses
Ci, where C0 = [⊥,>]:2 and Ci+1 = 〈〈P 〉〉⊥Ci

. This exploits the soundness of lower and upper
predictions, Props. 10 and 11.

Initially, C0 does not constrain anything, so R may be arbitrary. But as the sequence of Ci
narrows down in the fixed point iteration, less and less uncertainty remains for where R is
headed. Eventually, at the fixed point C∗, all variables receive a crisp value from {⊥, 0, 1}
by which we find the final response of R is pinned down exactly. At this point it is proven
that all variables eventually receive one of the statuses ⊥ (variable pristine, retains initial
memory value), 0 (variable initialized and never updated later) or 1 (variable initialized and
then updated but never reset again later). This ascertains determinism and coincidence between
the fixed point status and the final memory of all ∆∗-admissible executions.

We start with the start index i0 = 0 and initial concurrent environment C0 = [⊥,>]:2 which
does not impose any constraint on R. Trivially, the thread ιP is C0-consistent in R, since no
variable is decided in C0. Let i1 be the C0-stopping index of P in R. It must exists because R is
an instant and thus a maximal micro sequence. The first iteration of the response function yields
C1 = 〈〈P 〉〉⊥C0

. Note that low [R@0]C0(ιP ) = low(⊥) � ⊥. Prop. 10(ii) then says that C1 �
low [R@i1]C0(ιP ) and thus for all i1 ≤ j ≤ n, C1 � low [R@i1]C0(ιP ) � low [R@j]C0(ιP ).
Hence, from micro-step i1 onwards, the global yield of the sequence R must stay above
the lower bound of the prediction C1. On the other hand, upp [R@0]C0(ιP ) = upp(⊥) � ⊥.
So, by Prop. 11(ii) we derive upp [R]C0(ιP ) = upp [R@n]C0(ιP ) � C1. But this means that
for all i1 ≤ j ≤ n we get upp [R@j]C0(ιP ) � upp [R@n]C0(ιP ) � C1. In other words, from
micro-step i1 onwards, the yield of the sequence R must stay below the upper margin given
by the prediction C1. In sum, we find that R is squeezed into the corridor given by C1, i.e.,

C1 v [R@j]C0(ιP ) for all i1 ≤ j ≤ n. (19)

Now observe that all reads of ιP (if any, which are all C0-blocked) must happen strictly later
than i1, since this is how we constructed i1 in the first place. Therefore, ιP is C1-consistent in
R because of (19) and ∆∗-admissibility of R, using Lem. 4(ii). More specifically, consider any
read action on a variable x ∈ V at step index j, where i1 < j ≤ n, such that b:1 v C1(x) for
some b ∈ B. Then, (19) means [R@j − 1]C0(Root.id) = b given that Root.id = ιP . Therefore,
by Lem. 4(ii) and ∆∗-admissibility, we conclude that ρj−1(x) = b.

We now repeat the argument for ιP and C1. Let 0 ≤ i2 ≤ n be the C1-stopping index of P
in R. From C0 v C1, which implies that every action which is C1-blocked it also C0-blocked,
we conclude that i2 ≥ i1. Then, Prop. 10(ii) gives us 〈〈P 〉〉⊥C1

= C2 � low [R@i2]C1(ιP ).
Further, Prop. 11(ii) implies upp [R@n]C1(ιP ) � C2. We conclude that from i2 onwards, the
sequence R must remain in the corridor given by C2. Formally,

C2 v [R@j]C1(ιP ) for all i2 ≤ j ≤ n. (20)

We claim that ιP is C2-consistent. To this end, consider any read action of ιP in R, say for
variable x at step index 0 < k ≤ n. If i2 < k, then the read occurrence falls within the
region (20) and thus is C2-consistent by the same reasoning as above. If the read action
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happens before, i1 < k ≤ i2, then the variable must have been decided in C1 already, since
the C1-stopping point i2 which tests for C1-decidedness has passed this read at index k. But
because this read on x is already C1-consistent it is also C2-consistent.

We can now continue in the same fashion, inductively, until we reach the fixed point
C∗ = µC. 〈〈P 〉〉⊥C ∈ {⊥, 0, 1}, thus proving that all variables are C∗-consistent for ιP in R.
Further, if t∗ is the C∗-stopping index, a final application of Props. 10 and 11 permits us to
conclude that

C∗ v [R@j](ιP ) for all i∗ ≤ j ≤ n

and in particular, C∗ v [R@n](ιP ) for j = n. In view of Lem. 4 this shows that all ∆∗-
admissible instants R of P have the same deterministic final memory value and this memory
value is the one computed by the ∆0 fixed point analysis.

b) ∆∗-Schedulability: Now we are going to tackle the existence part of Thm. 1, viz.
showing that there must exist at least one ∆∗-admissible execution for P . The proof will
demonstrate how the fixed point iteration can be used as a predictive ∆∗ scheduler. We are
going to build iteratively a contiguous sequence of ∆∗-admissible micro-sequences

(Σn0 , ρn0)
R0

�µs (Σn1 , ρn1)
R1

�µs (Σn2 , ρn2)
R2

�µs (Σn3 , ρn3) · · ·
Ri−1

� µs (Σni
, ρni

)

with n0 = 0 and ni−1 ≤ ni, where in each scheduling round Ri−1 we are pushing the
execution as far as possible while staying Ci−1-enabled, where Ci−1 is the sequence of
concurrent environments generated by the fixed point iteration. Since the initial pool is
Σ0 = {〈ιP , P, [ ]〉}, all threads in any of the process pools Σk reached during R0, R1, . . . , Ri−1

are descendants of P . By construction, each descendant thread remaining active in round Ri−1

is Ci−1-stopped in the final configuration Σni
. For the fixed point C∗, which is crisp, this means

that in the corresponding end configuration (Σn∗ , ρn∗) all threads descending from ιP are
either instantaneously terminated or pausing.7 Hence, at the fixed point, we have constructed
a maximal micro sequence and thus reached the end of the macro step (instant). Here are the
key invariants of the construction:
(I1) The yield of each partial schedule is in the range predicted by the fixed point approxi-

mation, i.e., Ci v [R0, R1, . . . , Ri−1]Ci−1
(ιP ).

(I2) Each partial schedule R0, R1, . . . , Ri−1 is ∆∗-admissible.
(I3) For every every free schedule R′ starting from (Σni

, ρni
), the extended schedule

R0, R1, R2, . . . , Ri−1, R
′ is Ci-consistent. Further, if Ci(x) � >:1 then R′ does not

contain a reset ¡x.
The invariants (I1)–(I3) tell us that the full sequence R = R0, R1, . . . , R∗ up to the fixed

point, obtained as the result of our scheduling strategy, is C∗-consistent and that every
conditional test performed in the full schedule R reads exactly the memory value predicted
by the crisp fixed point environment.

Base Case. Observe that every free schedule R′ starting in the configuration (Σn0 , ρn0) is
trivially C0-consistent since no variable is crisp in C0 = 1:[⊥,>]:1. Since C0 6� >:1 R′ is not
constrained regarding resets. Moreover, the empty schedule is trivially ∆∗-admissible and its
sequential yield [ε](ιP ) = ⊥ lies in the environment C0, i.e., C0 v ⊥.

7In the final configuration (Σn∗ , ρn∗) no set !x can be C∗-blocked since C∗ is crisp. The fact that no read x ? P ′ : Q′

is blocked by C∗(x) = ⊥ follows from invariant (I3).
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This is the base case of our construction. However, for better understanding of the procedure
let us go on into the first round: To create R0 we simply execute every active process in any
order provided the action is C0-enabled. In C0 all conditional and set actions are C0-blocked.
The only C0-enabled actions are resets ¡x and actions such as ε, sequencing P ′ ; Q′ and the
forking and joining of a parallel P ′ ||Q′. These actions can be executed in any order without
violating ∆∗-admissibility. We continue until we reach a configuration (Σn1 , ρn1) in which
all descendants of ιP have either completed (pausing or terminated) or are C0-blocked. The
proof that R0 satisfies (I1)–(I3) is covered by the step case which is handled next.

Step Case. By way of induction hypothesis (I1)–(I3), suppose we have constructed a ∆∗-
admissible schedule R0, R1, . . . , Ri−1 (I2) such that the yield of R0, R1, . . . , Ri−1 with respect
to Ci−1 lies in the range predicted by Ci (I1) and for every j ≤ i and free schedule R′ from
(Σnj

, ρnj
) the extension R0, R1, . . . , Rj−1, R

′ is Cj-consistent. Moreover, we may assume that
if Cj(x) � >:1 then R′ is reset-free for x.

From (Σni
, ρni

) we now continue to schedule all and only those actions that are active and
Ci-enabled. We do this until ιP stops under Ci, i.e., until it completes or all remaining active
threads are Ci-blocked. This procedure builds a round schedule Ri and leads to a configuration
(Σni+1

, ρni+1
). If it happens that there is no active process in Σni

which is Ci-enabled, then
Σni+1

= Σni
and ρni+1

= ρni
. In this case, we just move on to the next iteration round of the

fixed point without progressing the schedule.

In the sequel we will argue that the schedule R0, R1, . . . , Ri−1, Ri is ∆∗-admissible (I2),
that its yield is constrained by Ci+1 (I1) and that every freely extended schedule R0, R1, . . .,
Ri−1, Ri, R′ is Ci+1-consistent so that if Ci+1(x) � >:1 then R′ is reset-free on x (I3).

(I1) By induction hypothesis (I3) the schedule R0, R1, . . . , Ri−1, Ri is Ci-consistent. Consider
that Ci+1 = 〈〈P 〉〉⊥Ci

. Then, we apply Prop. 10(ii) to obtain the lower constraint Ci+1 �
low [R0, R1, . . . , Ri−1, Ri]Ci

(ιP ) and the upper bound upp [R0, R1, . . . , Ri−1, Ri]Ci
(ιP ) � Ci+1

is provided by Prop. 11(ii). Both together yields Ci+1 v [R0, R1, . . . , Ri−1, Ri]Ci
(ιP ).

(I2) In order to show that Ri preserves ∆∗-admissibility we argue by contraposition. Refer to
Def. 5 for the notion of ∆∗-admissibility. Suppose that after a partial ∆∗-admissible schedule

(Σn0 , ρn0)
R0,R1,...,Ri−1

� µs (Σni
, ρni

)
R′i
�µs (Σn, ρn)

T→µs (Σn+1, ρn+1) (21)

of Ci-enabled actions R′i, which are a prefix of Ri, we reach a process pool Σn with n < ni+1,
which contains an active and Ci-enabled action T ∈ Σn which, when executed to continue
the partial round R′i, violates ∆∗-admissibility. There are three ways for how a violation of
∆∗-admissibility by T could happen:
• T is a reset ¡x and some set !x is executed before in round j ≤ i, i.e., in R′i or as part

of R0, R1, . . . , Ri−1. Now, since every Cj-enabled action is also Ci-enabled, the fact that
!x has been scheduled already, by construction, implies [⊥,>]:1 v Ci(x) which is the
same as Ci(x) � >:1. This contradicts the induction hypothesis (I3).

• T is a reset ¡x (i.e. a write access) and some Cj-enabled conditional x ? P ′ : Q′, j ≤ i,
has been executed before in R0, R1, . . . , Ri−1, R

′
i. Considering Cj v Ci this means that

b:1 v Ci(x) for some b ∈ B. But then Ci(x) � >:1, again contradicting the induction
hypothesis (I3).

• T is a write access !x and some read access x ? P ′ : Q′ has been Cj-enabled in some
round j ≤ i and executed in R0, R1, . . . , Ri−1, R

′
i. Moreover, for a violation both the set
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!x and the conditional x ? P ′ : Q′ must be concurrent and non-confluent, see Def. 4.
From Cj-enabledness we obtain 1:1 v Cj(x) or 0:1 v Cj(x).

– Let us take a look at the case that 1:1 v Cj(x) which implies Cj(x) � >:1. First
we observe that j > 0 because of the choice of the initial environment C0. If the
read occurs at a step nj < k ≤ nj+1 in round 0 < j ≤ i, then by Cj-consistency
of R0, R1, . . . , Ri−1, R

′
i the memory value must be ρk−1(x) = 1 at the point of the

read. Now, if the set !x performed by T is not confluent with the read, by Def. 3,
there would have to exist a free schedule forward from Σk so that both the read and
the set are jointly active and in conflict. But a conflict can only occur if during this
free schedule the memory value of x is changed to 0 by a reset action ¡x. However,
since any such free schedule extends from (Σnj

, ρnj
) this contradicts the induction

hypothesis (I3) and Cj(x) � 1:1.
– Finally, assume that 0:1 v Cj(x), i.e., Cj(x) � 0:1. Again, 0 < j must hold

due to the special nature of C0. Since the schedule R0, R1, . . . , Ri−1, R
′
i, T is

Cj−1-consistent by induction hypothesis (I3), an application of Prop. 11(ii) im-
plies that upp [R0, R1, . . . , Ri−1, R

′
i, T ]Cj−1

(ιP )(x) � 〈〈P 〉〉⊥Cj−1
(x) = Cj(x) � 0:1.

But this is not possible if the last action T is a set !x which enforces 1 �
[R0, R1, . . . , Ri−1, R

′
i, T ]Cj−1

(ιP )(x) by Def. 10(4).

(I3) We claim that for every free schedule R′, the extended schedule R0, R1, . . . , Ri−1, Ri, R
′

is Ci+1-consistent. Further, if Ci+1(x) � >:1 then R′ contains no reset ¡x. Let us assume a
read action T.prog = x ? P : Q is performed for which the environment Ci+1 is decided, say
b:2 v Ci+1(x) for some b ∈ B. We must show that the memory value of x at the point of the
read is identical to the prediction b.
• Clearly, the read cannot be in round R0 since all reads are C0-blocked and thus not

executable in R0.
• Next, suppose the read on x in question occurs in round Rj for 1 ≤ j ≤ i, say at

index nj−1 < k ≤ nj . As the read has been performed in round Rj , it is Cj-enabled, and so
bj:1 v Cj(x) for some bj ∈ B. But then Cj v Ci+1 implies bj = b. On the other hand, by
induction hypothesis, R0, R1, . . . , Ri−1, Ri, R

′ is Cj-consistent and so in fact ρk−1(x) = b as
desired.
• Finally, the remaining possibility is that the read T occurs in R′. Without loss of

generality we can assume that the read is the last action of R′. Using invariant (I1) for
the sequence R0, R1, . . . , Ri which was proven above, we conclude b:2 v Ci+1(x) v
[R0, R1, . . . , Ri]Ci

(ιP )(x). Further, by invariant (I2) proven above, the schedule R0, R1, . . . , Ri

is ∆∗-admissible. But then Lem. 4 says that the value of x in memory ρni+1
is fixed by Ci+1.

More specifically, ρni+1
(x) = b. By way of contradiction, suppose the memory read by T at

the end of R′ is different from b:
One possibility is that b = 1 and the memory read by x is 0. As seen above, the value

of x in memory ρni+1
is 1. Hence, the schedule R′ must activate a reset ¡x to bring x’s

value to 0. Also, the fact that 1:2 v [R0, R1, . . . , Ri]Ci
(ιP )(x) means there must have been a

set !x executed in some round Rj for j ≤ i. The set action !x must have been Cj-enabled
(otherwise it would have blocked and not been executed), i.e., [⊥,>]:1 v Cj(x) v Ci(x) or
〈〈P 〉〉⊥Ci−1

(x) = Ci(x) � >:1. But then the reset in the schedule R′ contradicts the induction
hypothesis (I3).

The other possibility for a violation of Ci+1-consistency is when b = 0 and the read at the
end of R′ finds the memory value of x is 1. As argued above, we must have ρni+1

(x) = 0.
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Therefore, the schedule R′ from (Σni+1
, ρni+1

) must execute a set !x to change the memory
value of x to 1. This, in turn, implies 1 � [R0, R1, . . . , Ri, R

′]Ci
(ιP )(x) by Def. 10(4). However,

the schedule R0, R1, . . . , Ri, R
′ is Ci-consistent by inductive invariant (I3), so we can use

Prop. 11(ii) to conclude that the sequential yield of R0, R1, . . . , Ri, R
′ cannot go above level

0. More precisely, since upp [(R0, R1, . . . , Ri, R
′)@0]Ci

(ιP )(x) = upp(⊥) � ⊥, Prop. 11(ii)
guarantees that

upp [R0, R1, . . . , Ri, R
′]Ci

(ιP )(x) � 〈〈P 〉〉⊥Ci
= Ci+1(x) � b:2 = 0:2.

This is a contradiction to 1 � [R0, R1, . . . , Ri, R
′]Ci

(ιP )(x) which would require

upp [R0, R1, . . . , Ri, R
′]Ci

(ιP )(x) � upp(1) = [⊥, 1].

Yet, no value γ satisfies both γ � 0:2 and γ � [⊥, 1].
Finally, by way of contradiction, suppose R′ contains a reset ¡x and Ci+1(x) � >:1. Let T

be the reset action in R′ and R′′, T the prefix of R′ up to and including the reset. Then by
Ci-consistency of the schedule R0, R1, . . . , Ri, R

′′, T , from the induction hypothesis (I3), and
Prop. 11(ii) we infer

upp [R0, R1, . . . , Ri, R
′′, T ]Ci

(ιP )(x) � 〈〈P 〉〉⊥Ci
(x) = Ci+1(x) � >:1.

Hence, the init status of x is not raised to 2 by the reset T . Now by Def. 10(5) this can only
be if

upp [R0, R1, . . . , Ri, R
′′]Ci

(ιP )(x) � >:0.

But this is a contradiction: By construction Σni+1
is the Ci-stop of P , so already the first

action taken by R′′ is Ci-blocked. As a consequence, this action (either a conditional or a set)
must raise the speculation status to 1 for all variables, so that in fact

⊥:1 � upp [R0, R1, . . . , Ri, R
′′]Ci

(ιP )(x).

This completes the proof for (I3). It is important to observe that the inductive step for (I3)
depends on the inductive steps (I1) and (I2). However, the proof of (I1) does not need (I3)
at all and the step for (I2) only requires the induction hypothesis on (I3). Thus, there is no
logical cycle and the induction is well-grounded.

VI. IMPLICIT INITIALIZATION AND BERRY CONSTRUCTIVENESS ∆1

By Thm. 1 every ∆0-constructive fprog is also ∆∗-constructive. On the other hand, as seen,
e.g., in Ex. 27, there are ∆∗-constructive fprogs which are not ∆0-constructive. There are two
reasons for this:
(i) ∆0 requires constructive initialization of every signal variable, where ∆∗ permits implicit

initialization through memory and
(ii) ∆0 requires a monotonic status change, where ∆∗ permits re-initialization.
The benefit of these restrictions is that ∆0 provides stronger constructiveness guarantees and
is more robust under scheduling non-determinism. It does not depend on initial memory and
proper isolation and sequencing of successive “init;update;read” phases.

In fact, the restriction (ii) of ∆0 to monotonic status changes (⊥ → 0→ 1 but not 1→ 0)
is the definitive feature of signals in traditional SMoC as exemplified by the constructive
semantics [9] of the Esterel language [10] or of Quartz [39]. On the other hand, the constraint
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(i) does not exist in these languages because initialization is not done by the program but the
run-time system, as in ∆∗. Specifically, Esterel’s semantics resets all signals to 0 by default,
at the beginning of every instant. Thus the importance of ∆0, as we shall show next, is that it
recovers the essence of SMoC within the sequentially constructive setting.

To make the connection with Berrry’s “must-cannot” analysis for Esterel we need to look
at ternary behaviors, i.e., those which remain inside environments with E(x) ∈ {0, 1, [0, 1]:1}
for all x ∈ V . Obviously, in order to keep the status of variables in the ternary domain, we
need to initialize with the ¡s construct and avoid sequentially forced resets from happening
after sets !s which would generate a > status. Esterel does not have explicit resets (un-emits)
and thus does not need to worry about crashes. Our ∆0 semantics based on 〈〈 〉〉 is more
general, in the sense that it verifies proper initialization as part of the constructiveness analysis.
It holds the programmer responsible for proper initialization, not the compiler or the run-time
system. Nevertheless, in the 〈〈 〉〉 semantics, one can emulate initialization directly by running
the fixed point in the sequential environment S = 0 instead of S = ⊥.

Definition 13 (∆1-Constructiveness). A fprog P is ∆1-constructive or Berry constructive iff
for all variables x ∈ V , we have (µC. 〈〈P 〉〉0C)(x) ∈ {0, 1}.

Example 28. The fprog x ? ε : !x, which emits signal x if x is absent and does not emit
it if x is present, is not ∆1-constructive: µC. 〈〈x ? ε : !x〉〉0C = {〈x[0,1]〉} ∨ 0:1. The fprog is
not constructive in Esterel either. Its hardware translation would be an inverter loop, or
combinational assignment x := x + 0, which may exhibit oscillations. The fprog is neither
∆0-constructive, since µC. 〈〈x ? ε : !x〉〉⊥C = {〈x[⊥,1]〉} ∨ ⊥:1. The fprog x ? ε : !y, on the
other hand, is ∆1-constructive: µC. 〈〈x ? ε : !y〉〉0C = {〈x0, y1〉} ∨ 0. In Esterel’s hardware
translation [9], the corresponding boolean assignments are x := 0 and y := x + 0 which
stabilize to x = 0 and y = 1. This depends on the initialization of x to 0, however. Without it,
the response is µC.〈〈x ? ε : !y〉〉⊥C = {〈y[⊥,1]〉} ∨ ⊥:1, which is not ∆0-constructive. ♦

The difference between the two forms of Berry-constructiveness ∆0 and ∆1 is whether
or not we run the simulation with the sequential stimulus ⊥ or 0, respectively. As Ex. 28
indicates, because of its default initialization, ∆1 is less restrictive and therefore contains
more programs than ∆0. To relate both classes, it will be important to study the influence of
the reset status 0 in both the sequential and the concurrent input of the functional 〈〈P 〉〉SC . The
following Lem. 5 is instrumental to prove Thm. 2 below:

Lemma 5. For all programs P and environments S, C we have
1) 〈〈P 〉〉SC ∨ 0 = 〈〈P 〉〉S∨0

C

2) 〈〈P 〉〉SC v 〈〈P 〉〉SC∨0

3) 0 ∨ µC. 〈〈P 〉〉⊥C v µC. 〈〈P 〉〉0C .

Proof: The proof for (1) and (2) is by simple induction on P . The only interesting cases
for the first part (1) are resets and sequential composition. For resets ¡s the crucial observation
is that r ∨ 0 = r and
• γ � α iff γ � α ∨ 0 for all γ ∈ {1, 1:1,⊥:1, [⊥, 1]:1}
• α � γ iff α ∨ 0 � γ for all γ ∈ {0,>, 0:2, [0,>]:2}.

As a result, it does not matter if we test any of the five conditions for determining 〈〈¡s〉〉SC on
S or on S ∨ 0. For sequential composition notice that

〈〈P 〉〉SC ∨ 0 = 〈〈P 〉〉S∨0
C and 〈〈Q〉〉〈〈P 〉〉

S
C

C ∨ 0 = 〈〈Q〉〉〈〈P 〉〉
S
C∨0

C = 〈〈Q〉〉〈〈P 〉〉
S∨0
C

C
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by induction hypothesis, and consequently

〈〈P 〉〉SC ∨ upp(〈〈Q〉〉〈〈P 〉〉
S
C

C ) ∨ 0 = 〈〈P 〉〉SC ∨ 0 ∨ upp(〈〈Q〉〉〈〈P 〉〉
S
C

C ∨ 0)

= 〈〈P 〉〉S∨0
C ∨ upp(〈〈Q〉〉〈〈P 〉〉

S∨0
C

C )

so that 〈〈P ; Q〉〉SC ∨ 0 = 〈〈P ; Q〉〉S∨0
C in all three cases. To deal with conditionals we argue in

a similar fashion, noting that upp(E) ∨ 0 = upp(E ∨ 0) ∨ 0.

The induction argument for the second part (2) 〈〈P 〉〉SC v 〈〈P 〉〉SC∨0 is using the fact that by
changing the concurrent environment from C to C ∨ 0 can make some of the conditionals
in P change from S ′ ∨ upp 〈〈P ′〉〉S′∨⊥:1

C ∨ upp 〈〈Q′〉〉S′∨⊥:1
C to 〈〈Q′〉〉S′C∨0 which is an increase

in the v-ordering. Since all operators are v-monotonic, the claim follows. Notice that if
b:1 v C(s) for b ∈ {0, 1}, then also b:1 v (C ∨ 0)(s). But if both 1:1 6v C(s) and 0:1 6v C(s)
then certainly also 1:1 6v (C ∨ 0)(s) but it may be that 0:1 v (C ∨ 0)(s).

Regarding the semantics of !s expressions we observe that 〈〈!s〉〉SC = 〈〈!s〉〉SC∨0, because
[⊥,>]:1 v C(s) iff [⊥,>]:1 v (C ∨ 0)(s).

Finally, it remains to show the third part (3), viz.,

0 ∨ µC. 〈〈P 〉〉⊥C v µC. 〈〈P 〉〉0C . (22)

Consider the explicit presentation of the fixed point on the left side of (22) as a limit
µC. 〈〈P 〉〉⊥C =

⊔
i≥0Ci of an iteration where C0 := [⊥,>]:2 and Ci+1 := 〈〈P 〉〉⊥Ci

. We argue by
induction on i ≥ 0 that 0 ∨ Ci v µC. 〈〈P 〉〉0C . For i = 0 this holds because

0 ∨ [⊥,>]:2 v 0 ∨ 〈〈P 〉〉0µC. 〈〈P 〉〉0C = 〈〈P 〉〉0∨0
µC. 〈〈P 〉〉0C

= 〈〈P 〉〉0µC. 〈〈P 〉〉0C = µC. 〈〈P 〉〉0C

by Lem. 5(1), monotonicity of ∨ for v and the fact that C0 = [⊥,>]:2 is the least element in
the v ordering. For the induction step we use Lem. 5(1,2) to compute

0 ∨ Ci+1 = 0 ∨ 〈〈P 〉〉⊥Ci
= 〈〈P 〉〉0∨⊥Ci

= 〈〈P 〉〉0Ci

v 〈〈P 〉〉00∨Ci

v 〈〈P 〉〉0µC. 〈〈P 〉〉0C
= µC. 〈〈P 〉〉0C ,

where the second inequation follows from the induction hypothesis and monotonicity of 〈〈 〉〉
in the concurrent stimulus. This proves our claim

∀i ≥ 0. 0 ∨ Ci v µC. 〈〈P 〉〉0C . (23)

Then, by the universal properties of ∨ and distribution of ∨ over t, (23) permits us to derive

0 ∨ µC. 〈〈P 〉〉⊥C = 0 ∨
⊔
i≥0

Ci =
⊔
i≥0

(0 ∨ Ci) v µC. 〈〈P 〉〉0C

which is (22) as desired.

The inequation 0 ∨ µC. 〈〈P 〉〉⊥C v µC. 〈〈P 〉〉0C of Lem. 5(3) tells us that starting the fixed
point iteration from a sequential environment initialized to 0 yields a tighter result, i.e., more
variables will be crisp, and on those variables which are already crisp for the uninitialized
sequential environment ⊥, the response in µC. 〈〈P 〉〉0C is just the same as in µC. 〈〈P 〉〉⊥C∨0. Thus,
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the class of ∆0-constructive (strongly Berry-constructive) programs conservatively extends the
class of ∆1-constructive (Berry-constructive) programs.

Theorem 2. Every ∆0-constructive fprog is ∆1-constructive and both fixed point analyses
obtain the same boolean response, i.e., for all variables x ∈ V , if (µC.〈〈P 〉〉⊥C)(x) ∈ {0, 1} then
(µC.〈〈P 〉〉0C)(x) = (µC.〈〈P 〉〉⊥C)(x). Otherwise, if (µC.〈〈P 〉〉⊥C)(x) = ⊥ then (µC.〈〈P 〉〉0C)(x) =
0.

Proof: Suppose (µC.〈〈P 〉〉⊥C)(x) ∈ {⊥, 0, 1} for every x ∈ V . Informally, we have
(µC.〈〈P 〉〉⊥C)(x) = ⊥ for a variable x exactly if program P does not contain any write access
to x. So, if we initialize x to 0 the final response for x remains 0, too. Thus, (µC.〈〈P 〉〉0C)(x) = 0.
Moreover, for all other variables whose final status is above 0 already in (µC.〈〈P 〉〉⊥C)(x),
starting from a sequential environment S = 0 does not change the final response. Thus,
(µC.〈〈P 〉〉0C)(x) = (µC.〈〈P 〉〉⊥C)(x) ∈ {0, 1}.

Formally, first note that the assumption (µC.〈〈P 〉〉⊥C)(x) ∈ {⊥, 0, 1} implies that (0 ∨
µC. 〈〈P 〉〉⊥C)(x) = 0 ∨ (µC. 〈〈P 〉〉⊥C)(x) ∈ {0, 1}. Then, Lem. 5(3), i.e., the inequation 0 ∨
µC. 〈〈P 〉〉⊥C v µC. 〈〈P 〉〉0C , implies the statement of the theorem. This follows from 0 ∨ ⊥ = 0,
0 ∨ 0 = 0, 0 ∨ 1 = 1 and the observation that a v b for a ∈ D implies a = b.

Now that we have established the strict inclusion relationship between the ∆0 and ∆1

classes of constructiveness it is time to explain what these have to do with Berry’s constructive
semantics for Pure Esterel. The key gap to bridge is the fact that in Esterel there is no reset
operator while our programs may have resets. Under both ∆0 and ∆1 constructiveness any
such resets are guaranteed not to generate crashes. We will show that for programs which do
not crash both semantics ∆0 and ∆1 are essentially equivalent to Berry’s semantics for Pure
Esterel and, moreover, that for ∆1 all reset operators ¡s can be replaced by ε, and thus be
eliminated. In ∆0 the reset operators cannot be eliminated but bundled into a single sequential
or concurrent initialization program which simulates the default initialization of ∆1.

The following Prop. 12 is the key to showing that ∆1-constructiveness precisely coincides
with Berry’s notion of constructiveness for Pure Esterel. It shows that for reset-free fprogs
and init-complete concurrent environments (see Def. 8) the sequential stimulus becomes
redundant and the response semantics 〈〈 〉〉SC refactors through a simpler response function
〈 〉C , which coincides with the constructive behavioral semantics introduced by Berry [9] on
ternary environments (see Prop. 13 below).

Proposition 12 (Esterel Semantics). If P is reset-free and C init-complete then 〈〈P 〉〉S∨0
C ∧> =

(S ∧ >) ∨ 〈P 〉C∧>, where the semantic function 〈 〉 is defined thus:

〈ε〉C = 〈π〉C = 0

〈!s〉C = 0 ∨ {〈s1〉}
〈P ||Q〉C = 〈P 〉C ∨ 〈Q〉C

〈P ; Q〉C =


〈P 〉C if 0 6∈ cmpl 〈〈P,C〉〉
〈P 〉C ∨ 〈Q〉C if cmpl 〈〈P,C〉〉 = {0}
〈P 〉C ∨ upp 〈Q〉C otherwise

〈s ? P : Q〉C =


〈P 〉C if 1 v C(s)

〈Q〉C if 0 v C(s)

0 ∨ upp 〈P 〉C ∨ upp 〈Q〉C otherwise.
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Proof: We prove the statement by induction on P . Observe that since C is init-complete,
both [⊥,>]:1 v C(s) and [⊥,>]:1 v (C∧>)(s) are always true. Also, we find that b:1 v C(s)
iff b v (C ∧ >)(s) for all b ∈ {0, 1} Hence, cmpl 〈〈P,C〉〉 = cmpl 〈〈P,C ∧ >〉〉 as one shows
without difficulty. For economy of notation we will abbreviate C ′ := C ∧ > and S ′ := S ∨ 0
in the sequel.

• If P = ε or P = π, then 〈〈P 〉〉S′C ∧ > = S ′ ∧ > = (S ∧ >) ∨ (0 ∧ >) = (S ∧ >) ∨ 0 =
(S ∧ >) ∨ 〈P 〉C′ .
• Since C is init-complete, C � >:1, which implies [⊥,>]:1 v C(s). Therefore, the

evaluation of a set P = !s yields 〈〈!s〉〉S′C ∧> = (S ′∨{〈x1〉})∧> = (S∧>)∨(0∧>)∨({〈x1〉}∧>) =
(S ∧ >) ∨ 0 ∨ {〈x1〉} = (S ∧ >) ∨ 〈!s〉C′ .
• For parallel composition we refer to the induction hypothesis:

〈〈P ||Q〉〉S′C ∧ > = (〈〈P 〉〉S′C ∨ 〈〈Q〉〉S
′

C ) ∧ > = (〈〈P 〉〉S′C ∧ >) ∨ (〈〈Q〉〉S′C ∧ >)

= (S ∧ >) ∨ 〈P 〉C′ ∨ (S ∧ >) ∨ 〈Q〉C′
= (S ∧ >) ∨ 〈P 〉C′ ∨ 〈Q〉C′ = 〈P ||Q〉C′ ,

using the algebraic properties of ∨.

• Concerning sequential composition, assume cmpl 〈〈P,C〉〉 = {0} = cmpl 〈〈P,C ′〉〉, so that

〈〈P ; Q〉〉S′C = 〈〈Q〉〉〈〈P 〉〉
S′
C′

C′ = 〈〈Q〉〉〈〈P 〉〉
S′∨0
C′

C′

considering that S ′ = S ∨ 0 = S ∨ 0 ∨ 0 = S ′ ∨ 0. By induction hypothesis on P , Q and
Lem. 5(1),

〈〈P ; Q〉〉S′C ∧ > = 〈〈Q〉〉〈〈P 〉〉
S′∨0
C

C ∧ > = 〈〈Q〉〉(〈〈P 〉〉
S′
C )∨0

C ∧ >
= (〈〈P 〉〉S′C ∧ >) ∨ 〈Q〉C′
= (S ∧ >) ∨ 〈P 〉C′ ∨ 〈Q〉C′
= (S ∧ >) ∨ 〈P ; Q〉C′ .

Similarly, if 0 6∈ cmpl 〈〈P,C〉〉 = cmpl 〈〈P,C ′〉〉 the induction hypothesis obtains 〈〈P ; Q〉〉S′C ∧
> = 〈〈P 〉〉S′C ∧ > = (S ∧ >) ∨ 〈P 〉C′ = (S ∧ >) ∨ 〈P ; Q〉C′ . Now if both cmpl 〈〈P,C ′〉〉 =
cmpl 〈〈P,C〉〉 6= {0} and 0 ∈ cmpl 〈〈P,C〉〉 = cmpl 〈〈P,C ′〉〉 we apply the induction hypothesis
to both P and Q and compute

〈〈P ; Q〉〉S′C ∧ > = (〈〈P 〉〉S′C ∨ upp 〈〈Q〉〉〈〈P 〉〉
S′
C

C ) ∧ >

= (〈〈P 〉〉S′C ∧ >) ∨ upp(〈〈Q〉〉〈〈P 〉〉
S′
C

C ∧ >)

= (S ∧ >) ∨ 〈P 〉C′ ∨ upp((S ∧ >) ∨ 〈P 〉C′ ∨ 〈Q〉C′)
= (S ∧ >) ∨ 〈P 〉C′ ∨ upp 〈Q〉C′
= (S ∧ >) ∨ 〈P ; Q〉C′

reusing the above calculations and the universally valid equations E1 ∨ upp(E1 ∨ E2) =
E1 ∨ upp(E2) and upp(E) ∧ > = upp(E ∧ >).

• Finally, we take a look at conditionals. First, if 0:1 v C(s) then in fact 0 v (C ∧>)(s) =
C ′(s) and then we get 〈〈s ? P : Q〉〉S′C ∧> = 〈〈P 〉〉S′C ∧> = (S ∧>)∨〈P 〉C′ = (S ∧>)∨〈s ?
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P : Q〉C′ . The other case 1:1 v C(s) is the same, only P replaced by Q. Finally, if 0:1 6v C(s)
and 1:1 6v C(s), then certainly also 0 6v C ′(s) and 1 6v C ′(s) —based on C being init-complete
and our observation at the beginning of the proof— and therefore

〈〈s ? P : Q〉〉S′C ∧ >
= (S ′ ∨ upp 〈〈P 〉〉S′∨⊥:1

C ∨ upp 〈〈Q〉〉S′∨⊥:1
C ) ∧ >

= (S ∧ >) ∨ (0 ∧ >) ∨ upp(〈〈P 〉〉S∨⊥:1∨0
C ∧ >) ∨ upp(〈〈Q〉〉S∨⊥:1∨0

C ) ∧ >)

= (S ∧ >) ∨ 0 ∨ upp(((S ∨ ⊥:1) ∧ >) ∨ 〈P 〉C′) ∨ upp(((S ∨ ⊥:1) ∧ >) ∨ 〈Q〉C′)
= (S ∧ >) ∨ 0 ∨ upp((S ∧ >) ∨ ⊥ ∨ 〈P 〉C′) ∨ upp((S ∧ >) ∨ ⊥ ∨ 〈Q〉C′)
= (S ∧ >) ∨ 0 ∨ upp 〈P 〉C′ ∨ upp 〈Q〉C′
= (S ∧ >) ∨ 〈s ? P : Q〉C′

using ⊥:1 ∧ > = ⊥, E ∨ ⊥ = E and the law E1 ∨ upp(E1 ∨ E2) = E1 ∨ upp(E2).

It can be shown that the semantic function in Prop. 12 which always returns a ternary
environment, i.e., 0 � 〈P 〉C � 1, coincides with Berry’s must-cannot semantics of Esterel
in the reset-free fragment, i.e. the fragment of operators {ε, π, !s, x ? P : Q,P ‖ Q,P ; Q}.
More specifically, the semantics in [9] is given in terms of a set must (P,C) ⊆ V of signals
that must be emitted by P under C and a set cannot (P,C) ⊆ V which cannot8 be emitted
by P in environment C. The sets must (P,C) and cannot (P,C) are disjoint for every fprog
P and ternary environment C. It turns out9 that for ternary environments C,

s ∈ must (P,C) iff 1 v 〈P 〉C(s) (24)
s ∈ cannot (P,C) iff 0 v 〈P 〉C(s). (25)

Hence, using Prop. 12, we get the following characterization of Esterel’s semantics:

Proposition 13 (Equivalence with Pure Esterel). For reset-free fprog P and ternary environment
C, s ∈ must(P,C) iff 1:1 v 〈〈P 〉〉0C(s) and s ∈ cannot(P,C) iff 0:1 v 〈〈P 〉〉0C(s). It follows
that a reset-free fprog P is constructive in Berry’s sense iff it is ∆1-constructive and the
response coincides in both semantics.

Proof: For reset-free P one easily shows that 〈〈P 〉〉0C � >:1. It follows that b:1 v 〈〈P 〉〉0C(s)
iff b v 〈〈P 〉〉0C(s)∧> = (〈〈P 〉〉0C∧>)(s) for all b ∈ {0, 1}. Further, C being ternary implies init-
completeness C � >:1 and C = C ∧>, in particular. Thus, the statement of Prop. 13 follows
directly from (25) and (24) and Prop. 12 which tells us that 〈〈P 〉〉0C ∧ > = 〈〈P 〉〉⊥∨0

C ∧ > =
(⊥ ∧>) ∨ 〈P 〉C∧> = ⊥ ∨ 〈P 〉C = 〈P 〉C .

We can now substantiate the conjecture made in [46] that sequentially constructive fprogs
are a conservative extension of Esterel. In view of Prop. 13 this amounts to showing that
∆1-constructive fprogs are ∆∗-constructive and produce the same response. There is a twist
to this statement, though: When such a fprog is executed in the operational semantics we get
the same response if the memory is initialized to 0. Hence, for a faithful embedding we must
add the initialization just like any compiler has to do it when it generates the low-level code
for an Esterel program. The precise formulation is given in the following theorem:

8Strictly, this set is defined in [9] parameterised as cannotm(P,C) with m ∈ {+,⊥} indicating if P must be executed
(m = +) or P may possibly be executed (m = ⊥), respectively. However, one shows that in the fragment considered here
the set does not depend on this parameter, so that cannot+(P,C) = cannot⊥(P,C).

9We omit the proof. The definition of the sets must (P,C) and cannot (P,C) can be found in [9][Chap. 7, pp. 73–83].
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Theorem 3. Let P be a ∆1-constructive program. Then, both Init ; P and Init ‖ P are
∆0-constructive (and thus ∆∗-constructive) where Init is the canonical fprog which resets
every variable. Moreover, µC. 〈〈P 〉〉0C = µC. 〈〈Init ; P 〉〉⊥C = µC. 〈〈Init ‖ P 〉〉⊥C , i.e, the ∆1

fixed point of P is identical to the ∆0 fixed point of Init ; P and Init ‖ P .

Proof: Let P be ∆1-constructive, i.e., µC. 〈〈P 〉〉0C ∈ {0, 1}. By construction, 〈〈Init〉〉⊥C = 0
and 0 ∈ cmpl 〈〈Init , C〉〉 for all environments C. Thus, 〈〈Init ; P 〉〉⊥C = 〈〈P 〉〉0C for all C, and
therefore µC. 〈〈Init ; P 〉〉⊥C = µC. 〈〈P 〉〉0C . This implies that Init ; P is ∆0-constructive. Also,
we find that 〈〈Init ‖ P 〉〉⊥C = 0 ∨ 〈〈P 〉〉⊥C = 〈〈P 〉〉0C by Lem. 5(1). Hence, µC. 〈〈Init ‖ P 〉〉⊥C =
µC. 〈〈P 〉〉0C from which we conclude that Init ‖ P is ∆0-constructive.

Next, we show that because of the sequential initialization Init in the instrumented program
Init ; P , all the reset operators in the “payload” P can be removed if Init ; P is ∆0-
constructive, i.e., µC. 〈〈Init ; P 〉〉⊥C = µC. 〈〈Init ; P ∗〉〉⊥C , where P ∗ is P with all occurrences
of a reset ¡x substituted by ε. This is the content of Prop. 14 below. Equally, instead of the
sequential initialization Init ; P we get the same result with a concurrent initialization. More
precisely, one can show that µC. 〈〈Init ; P ∗〉〉⊥C = µC. 〈〈Init ‖ P ∗〉〉⊥C . To fill in this claim we
need the auxiliary results of Lem. 6 and Lem. 7 stated next.

Lemma 6. For any program P let P ∗ arise from P by replacing each occurrence of a reset
¡s by ε. If 0 � S and 〈〈P 〉〉SC crash-free as well as init-complete, then 〈〈P 〉〉SC = 〈〈P ∗〉〉SC .

Proof: Assume 0 � S and that 〈〈P 〉〉SC is crash-free and init-complete. We prove the
statement by induction on P where we recall that 〈〈P 〉〉SC is crash-free and init-complete iff
〈〈P 〉〉SC � 1:1. For the inductive argument it is crucial to observe that if 〈〈P 〉〉SC � 1:1 then any
recursive call 〈〈P ′〉〉S′C of the reaction functional for a sub-fprog P ′ of P in its local sequential
environment S ′ must satisfy 〈〈P ′〉〉S′C � 1:1, too. Moreover, it is obvious that the replacement of
resets ¡s in P by ε does not change the completion codes, i.e., cmpl 〈〈P,C〉〉 = cmpl 〈〈P ∗, C〉〉
for any environment C.

• If P is one of the operations ε, !s or π, then P ∗ = P and the statement of the proposition
is trivially true.

• Suppose P = ¡s. The assumption that 〈〈P 〉〉SC � 1:1 implies that 〈〈P 〉〉SC = S ∨ {〈s0〉}.
Other cases are excluded. Thus 〈〈P 〉〉SC = S ∨ {〈s0〉} = S = 〈〈ε〉〉SC = 〈〈P ∗〉〉SC , considering that
{〈s0〉} � 0 � S.

• For parallel composition we have 〈〈P ||Q〉〉SC = 〈〈P 〉〉SC ∨ 〈〈Q〉〉SC . Both 〈〈P 〉〉SC and 〈〈Q〉〉SC
must be crash-free and init-complete whenever 〈〈P ||Q〉〉SC is. This is because E1∨E2 � 1:1 iff
E1 � 1:1 and E2 � 1:1 due to the universal properties of ∨. Thus, we can use the induction
hypothesis and get 〈〈P ||Q〉〉SC = 〈〈P 〉〉SC ∨ 〈〈Q〉〉SC = 〈〈P ∗〉〉SC ∨ 〈〈Q∗〉〉SC = 〈〈P ∗ ||Q∗〉〉SC using the
algebraic properties of ∨.

• Concerning sequential composition, assume cmpl 〈〈P,C〉〉 = {0} = cmpl 〈〈P ∗, C〉〉, so that

0 � S � 〈〈P 〉〉SC � 〈〈Q〉〉
〈〈P 〉〉SC
C = 〈〈P ; Q〉〉SC � 1:1.

By induction hypothesis on P , Q,

〈〈P ; Q〉〉SC = 〈〈Q〉〉〈〈P 〉〉
S
C

C = 〈〈Q∗〉〉〈〈P 〉〉
S
C

C = 〈〈Q∗〉〉〈〈P
∗〉〉SC

C = 〈〈P ∗ ; Q∗〉〉SC .

Similarly, if 0 6∈ cmpl 〈〈P,C〉〉 = cmpl 〈〈P ∗, C〉〉 the induction hypothesis obtains 〈〈P ; Q〉〉SC =
〈〈P 〉〉SC = 〈〈P ∗〉〉SC = 〈〈P ∗ ; Q∗〉〉SC . Now if both cmpl 〈〈P ∗, C〉〉 = cmpl 〈〈P,C〉〉 6= {0} and
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0 ∈ cmpl 〈〈P,C〉〉 = cmpl 〈〈P ∗, C〉〉 the reaction for the sequential composition is 〈〈P ; Q〉〉SC =

〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉
S
C

C . Again the assumption gives us both

0 � S � 〈〈P 〉〉SC � 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉
S
C

C = 〈〈P ; Q〉〉SC � 1:1

and upp 〈〈Q〉〉〈〈P 〉〉
S
C

C � 1:1 which in turn implies 〈〈Q〉〉〈〈P 〉〉
S
C

C � 1:1 as one shows without difficulty.
Hence, we can apply the induction hypothesis to both P and Q and compute

〈〈P ; Q〉〉SC = 〈〈P 〉〉SC ∨ upp 〈〈Q〉〉〈〈P 〉〉
S
C

C = 〈〈P ∗〉〉SC ∨ upp 〈〈Q∗〉〉〈〈P 〉〉
S
C

C

= 〈〈P ∗〉〉SC ∨ upp 〈〈Q∗〉〉〈〈P
∗〉〉SC

C = 〈〈P ∗ ; Q∗〉〉SC .

• Finally, we take a look at conditionals. First, if 0:1 v C(s) then we get 〈〈s ? P :
Q〉〉SC = 〈〈P 〉〉SC = 〈〈P ∗〉〉SC = 〈〈s ? P ∗ : Q∗〉〉SC by induction hypothesis. The other decided case
1:1 v C(s) is the same, only P replaced by Q. Finally, suppose 0:1 6v C(s) and 1:1 6v C(s).
Then, 0 � S � S ∨ ⊥:1 and for both E = P and E = Q we get

upp 〈〈E〉〉S∨⊥:1
C � S ∨ upp 〈〈P 〉〉S∨⊥:1

C ∨ upp 〈〈Q〉〉S∨⊥:1
C

= 〈〈s ? P : Q〉〉SC � 1:1,

which implies 〈〈E〉〉S∨⊥:1
C � 1:1 for both E = P and E = Q. This permits us to invoke the

induction hypothesis as follows

〈〈s ? P : Q〉〉SC = S ∨ upp 〈〈P 〉〉S∨⊥:1
C ∨ upp 〈〈Q〉〉S∨⊥:1

C

= S ∨ upp 〈〈P ∗〉〉S∨⊥:1
C ∨ upp 〈〈Q∗〉〉S∨⊥:1

C

= 〈〈s ? P ∗ : Q∗〉〉SC .

Lem. 6 implies that if we initialize the sequential context with 0, then all the reset statements
of a crash-free and init-complete program are redundant. Now we combine Lem. 5 and Lem. 6
to generalist this showing that for ternary fixed point reactions we can eliminate the reset
construct, under the 〈〈 〉〉 semantics in favour of sequential initialization.

Lemma 7. Let P be a program with a ternary response, i.e., 0 � µC. 〈〈P 〉〉⊥C � 1. Then
µC. 〈〈P 〉〉⊥C = µC. 〈〈P ∗〉〉0C , where P ∗ is obtained from P by replacing each occurrence of a
reset ¡s by ε.

Proof: We prove the result in two parts,

µC. 〈〈P 〉〉⊥C = µC. 〈〈P 〉〉0C (26)
µC. 〈〈P 〉〉0C = µC. 〈〈P ∗〉〉0C . (27)

Suppose that the fixed point µC. 〈〈P 〉〉⊥C is ternary, i.e., 0 � µC. 〈〈P 〉〉⊥C � 1. Since, by Lem. 5(1),
we have

µC. 〈〈P 〉〉⊥C = 0 ∨ µC. 〈〈P 〉〉⊥C = 0 ∨ 〈〈P 〉〉⊥µC. 〈〈P 〉〉⊥C = 〈〈P 〉〉0µC. 〈〈P 〉〉⊥C ,

the environment µC. 〈〈P 〉〉⊥C is a fixed point of 〈〈P 〉〉0. This implies µC. 〈〈P 〉〉0C v µC. 〈〈P 〉〉⊥C ,
since µC. 〈〈P 〉〉0C is the least fixed point of 〈〈P 〉〉0. The converse follows from Lem. 5(3):

µC. 〈〈P 〉〉⊥C = 0 ∨ µC. 〈〈P 〉〉⊥C v µC. 〈〈P 〉〉0C
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thus establishing (26). The second equation (27), too, is obtained from the properties of least
fixed points. Firstly,

〈〈P 〉〉0µC. 〈〈P 〉〉0C = µC. 〈〈P 〉〉0C = µC. 〈〈P 〉〉⊥C � 1 � 1:1,

so by Lem. 6, µC. 〈〈P 〉〉0C = 〈〈P 〉〉0
µC. 〈〈P 〉〉0C

= 〈〈P ∗〉〉0
µC. 〈〈P 〉〉0C

. Hence, µC. 〈〈P 〉〉0C is a fixed point
of 〈〈P ∗〉〉0, which implies direction w of (27). For the converse direction v we show that
µC. 〈〈P ∗〉〉0C is a fixed point of 〈〈P 〉〉0. This is computed as follows:

〈〈P 〉〉0µC. 〈〈P ∗〉〉0C = 〈〈P ∗〉〉0µC. 〈〈P ∗〉〉0C = µC. 〈〈P ∗〉〉0C ,

again exploiting Lem. 6 which is applicable since

〈〈P 〉〉0µC. 〈〈P ∗〉〉0C v 〈〈P 〉〉
0
µC. 〈〈P 〉〉0C

� 1:1

by v-monotonicity in the concurrent environment and the w-direction of (27). This implies
that 〈〈P 〉〉0

µC. 〈〈P ∗〉〉0C
is crash-free and init-complete, as required by Lem. 6.

Proposition 14. For every ∆1-constructive program P , µC. 〈〈Init ; P 〉〉⊥C = µC. 〈〈Init ;
P ∗〉〉⊥C = µC. 〈〈P ∗〉〉0C , where P ∗ is obtained from P by replacing each occurrence of a reset
¡s by ε.

Proof: By Thm. 3 and Lem. 7, µC. 〈〈Init ; P 〉〉⊥C = µC. 〈〈P 〉〉0C = µC. 〈〈P ∗〉〉0C =
µC. 〈〈Init ; P ∗〉〉⊥C and µC. 〈〈Init ‖ P 〉〉⊥C = µC. 〈〈P 〉〉0C = µC. 〈〈P ∗〉〉0C = µC. 〈〈Init ‖ P ∗〉〉⊥C .

Thus, we have not only verified the conservativity conjecture from [46]. Prop. 14, in
conjunction with Thm. 2 and Prop. 13, provides a method of extracting from every ∆0-
constructive fprog P a constructive Esterel fprog P ∗ with the same response.

To close this section, let make a final technical observation regarding our response model
which distinguishes between sequential and concurrent stimuli. In view of Prop. 13, readers
familiar with Esterel’s constructive semantics may wonder why the sequential context is needed
at all. If we are only ever interested in the response for the “canonical” sequential stimulus 0,
why can we not build it into the semantics directly and only work with a response function
〈〈 〉〉0C with a single concurrent stimulus C, as it is done for Esterel? The reason is that the
response 〈〈P 〉〉0C of a program P obtained for the “canonical” sequential stimulus cannot be
used to determine the response when P is used as a sequential successor of another program
Q, as in 〈〈Q ; P 〉〉0C .

Example 29. For instance, the fprogs P1 = ε and P2 = ¡s have the same response 〈〈P1〉〉0C =
0 = 〈〈P2〉〉0C in all concurrent environments. However, when they run sequentially after the
program Q = !s then they show different behavior. We have 〈〈Q ; P2〉〉0[⊥,>]:2 = 0 ∨ {〈s[0,>]:2〉}
whereas 〈〈Q ; P1〉〉0[⊥,>]:2 = 0 ∨ {〈s[0,1]:1〉}. ♦

Ex. 29 shows that it is not possible to refactor the function 〈〈P 〉〉SC into a function on S
and 〈〈P 〉〉0C for fixed C, as suggested in Prop. 12. This is a consequence of the status value >
which arises from sequential composition and explicit initialization. For crash-free programs
the sequential context is redundant. However, this can only be decided, in general, after some
number of iterations in the fixed point analysis. Hence, we cannot replace 〈〈P 〉〉0C by 0∨ 〈P 〉C
in general, but, as seen above, only in the fixed point µC.〈〈P 〉〉0C if it is crash free. Moreover,
we have seen that in a crash free fixed point all the reset operators can be removed.
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Note that the need to consider explicit initialization, and thus the separation in the semantic
function of the sequential environment S from the concurrent environment C, is forced upon us
by compositionality considerations. Esterel’s built-in default initialization is not compositional
for the sequentialization operator: The initialization of a sequential composition P ; Q of is
not the same as the sequential composition of the initialisations of P and Q.

VII. CONCLUSION AND RELATED WORK

On the theoretical side, we have identified an abstract value domain I(D) with two important
topological features. First, it has an interval structure in which lower and upper bounds are
indispensable when dealing with no monotonic problems (cf. [1]), such as causality analysis.
Second, this domain is a product of two complementary dimensions � and v. , related,
respectively, to the sequential and concurrent interface of a synchronous object. This duality
allows unifying orthogonal environments/computations with respect to a given frame of
reference, e.g., time, memory. The generality of this domain has made it possible to handle
co-/contra-variant fixed point computations by means of approximations in the intervals much
in the style of Berry’s must and cannot constructiveness analysis. Moreover, it is sensitive not
only to the concurrent but also the sequential interaction of a synchronous object. Further, it
has been possible to consider concurrent and sequential environments by projecting them into
each one of the I(D) dimension. This is in contrast to Esterel, Quartz or ternary simulation
where all micro-steps are considered concurrent. Instead, based on I(D), we have been able to
define a model for synchronous computations that has a non redundant sequential environment.
With this at hand, we have given a new interpretation 〈〈 〉〉 to Berry’s behavioral semantics
of Esterel and proven that SC (∆∗) is indeed a conservative extension of Esterel. In view of
Prop. 13 we propose to consider 〈〈 〉〉 as the analogue of Berry’s ternary constructive semantics
in the SC setting. It matches Berry’s semantics on initialized programs (∆1), and verifies
constructive initialization on general programs (∆0).

It should not be difficult to generalize the linear data structure D to capture signal protocols
that span more than only one “init;update;read” cycle in order to define similar analyses
for ∆2, ∆3 and so on. Here we introduce the essential ideas for ∆0/∆1 only, anticipating
generalizations to richer sequential data types in follow-up work.

On the practical side, we have shown how to emulate signals with variables, even in a
concurrent setting. Furthermore, we can do so with constant code size increase per signal, i.e.,
with overall code size increase that is at worst linear in the size of the program. Like in the
sequential case, the transformation still properly handles schizophrenia. Thus, for schizophrenic
signals, this is a clear improvement over existing techniques for eliminating schizophrenia at
the Esterel level. Note that here we focus on signals, and handling schizophrenia for signals.
This does not address reincarnation in general, i.e., the repeated execution of statements within
a tick; this still must be addressed separately by one the existing techniques. Solving the
well-studied signal reincarnation problem was not our primary goal, but a side-effect that
nicely illustrates the power of our theory (and we suggest quadratic vs. linear complexity is
noteworthy). Concerning practice, the increase of our approach is linear in reincarnated signal
count, as we just duplicate signal initialization, whereas [42] must duplicate whole signal
scopes, which is linear in reincarnated signal scope statement count, and worse for loop nests.

More fundamentally, emulating signals by plain, standard variables closes a conceptual gap
between programming and implementation. The statements of the variable-based program can
be mapped directly to the run-time behavior of a software implementation, or alternatively to
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the gate-and-wire structure of a hardware implementation. There are no implicit mechanisms,
such as default absence, that a programmer has no control over and that must be delegated to
a synthesis tool. We believe that every synchronous language ultimately depends on sequential
variable accesses somewhere downstream in the compilation path. For uniformity, therefore, it
is expedient to build on notions of constructiveness which are sensitive to micro-step sequential
behavior such as ∆0, ∆1, ..., ∆∗, at the outset.

The schizophrenia issue is just one illustration of the practical advantages of closing this
conceptual gap. Schizophrenia becomes simply a particular case of statement reincarnation.
When synthesizing hardware, this can be handled by one of the standard techniques when
synthesizing hardware from C-like languages [17], such as loop unrolling, as done in schizo-
conc-cured-scl.

Summarizing, the scheduling regime for SCL uses a wider “playing field” for coordinating
variable accesses than Esterel uses for coordinating signal accesses (“first emit, then test
presence”), mainly because SCL has explicit initializations to “absent”, and also because SCL
permits arbitrary sequential accesses.

A. Related Work
In terms of programming languages, the work presented here is at the interface between

synchronous concurrent languages and C-like sequential languages, and is strongly influenced
by both worlds. Edwards [16] and Potop-Butucaru et al. [34] provide good overviews of
compilation challenges and approaches for concurrent languages, including synchronous
languages. They discuss efficient mappings from Esterel to C, thus their work is related to ours
in the sense that we present a means to express Esterel-style signal behavior and deterministic
concurrency directly with variables in a C-like language. However, a key difference is that we
do not “compile away” the concurrency as part of our signal-to-variable mapping, but fully
preserve the original, concurrent semantics with shared variables.

Coming from the other, C-like side, there have been several proposals that extend C or Java
with synchronous concurrency constructs. Reactive C [11] is an extension of C that employs
the concepts of ticks and preemptions, but does not provide true concurrency. FairThreads [12]
are an extension introducing concurrency via native threads. Precision Timed C (PRET-C) [3]
and Synchronous C (SC) [45] provide macros for defining synchronous concurrent threads. SC
also permits dynamic thread scheduling, and thus would be a suitable implementation target
for the SCL language discussed here. SHIM [43], another C-like language, provides concurrent
Kahn process networks with CCS-like rendezvous communication [24] and exception handling.
SHIM has also been inspired by synchronous languages, but it does not use the synchronous
programming model, instead relying on communication channels for synchronization. None of
these language proposals claims and proves to embed and conservatively extend the concept
of Esterel-style constructiveness into shared variables as we do here. As far as these language
proposals include signals, they come as “closed packages” that do not, for example, allow to
separate initializations from updates.

As traditional sequential, single-core, execution platforms are being replaced by GPUs,
multi-core or multi-processing architectures, determinism is no longer a trade secret of
synchronous programming but has become an important issue in the field of shared memory
concurrent programming. Powerful techniques have recently been developed to verify program
determinism statically. For Java programs with structured parallelism the tool DICE by Vechev
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et al. [44] performs static analysis to check that concurrent tasks do not interfere on shared
array accesses. Leung et al. [29] present a technique called test amplification based on a
combination of instrumented test execution and static data-flow analysis to verify that the
memory accesses of cyclic, barrier-synchronized, CUDA C++ threads do not overlap during a
clock cycle (barrier interval). For polyhedral X10 programs with finish/async parallelism and
affine loops over array-based data structures, Yuki et al. [49] describe an exact algorithm for
static race detection that ensures deterministic execution.

These recently published analyses [44], [29], [49] are targeted at data-intensive, array/point-
er/based code building on powerful arithmetical models and decision procedures for memory
separation. Yet, they address determinism in models of communication more limited than that
of synchronous programming. SMoC constructiveness concerns the determinism and reactivity
of control-dominated synchronous programs (“control parallelism” not “data parallelism”).
It permits instantaneous communication between threads during a single tick (Mealy rather
than Moore machines). The challenge is to deal with feedbacks and reaction to absence, as in
circuit design, which is difficult. The causality of SMoC memory accesses cannot necessarily
be captured in terms of regular affine arithmetics as done in the polyhedral model of [44],
[49] or be reduced to a “small core of configuration inputs” as in [29]. Further, analyses
such as [44], [29], [49] verify race-freedom for maximally strong data conflicts: Within the
barrier no write must ever compete with a concurrent read or another conflicting write. Under
such full isolation, proving soundness of the analysis is straightforward. Full thread isolation
is fine for Moore-style communication but does not hold in SMoCs whose hallmark is the
Mealy model. Threads do in fact share variables during a clock phase and multi-emissions
are permitted. Analyzing SMoC determinism, therefore, is tricky and arguing soundness of
the constructivity analysis in SMoCs (e.g., our Thm. 1) is non-trivial. This is particularly true
if reaction to absence is permitted, as in our work, which introduces non-monotonic system
behavior on which the standard (naive) fixed-point techniques fail.

Also for functional programming languages, which traditionally abstract from the impurity
of low-level scheduling, determinism on concurrent platforms meanwhile has become an issue.
For instance, Kuper et al. [26] extend the IVar/LVar approach in Haskell to provide deterministic
shared data-structures permitting multiple concurrent reads and writes. This extension, dubbed
LVish, adds asynchronous event handlers and explicit value freezing to implement a form
of reaction to absence, or negative data queries. Since the negative information is transient,
due to the race between freezing and writing, run-time exceptions are possible. However, all
error-free executions produce the same result. This is called quasi-determinism [26]. Because
of the possibility of instantaneous communication and the negative information carried by the
value status of shared data, the quasi-deterministic model of [26] is similar in spirit to our
approach. However, there are at least two differences: First, our programming model deals with
first-order imperative programs on boolean data, while [26] considers higher-order λ-functions
on more general “atomistic” data structures. On the other hand, our SMoC constructivity
(∆0,1,∗) includes reactivity, which is a liveness property, whereas the model of [26] only
addresses the safety property of non-interference. Our two-dimensional lattice I(D) (on
booleans) seems richer than the lifted domain Freeze(D) of [26] which only distinguishes
between the “unfrozen” statuses [⊥,>], [0,>], [1,>], [>,>] (lower information) and the
“frozen” statuses [⊥,⊥], [0, 0], [1, 1] (crisp information). There does not seem to be genuine
upper bound approximations expressible in Freeze(D). It will be interesting to study the exact
relationship between the two models on a common language fragment.
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Coming back to SMoCs, there is already a large body of related work investigating different
notions of constructiveness, in the literature also referred to as causality. Causal Esterel
programs on pure signals satisfy a strong scheduling invariant: they can be translated into
constructive circuits which are delay-insensitive [13] under the non-inertial delay model, which
can be fully decided using ternary Kleene algebra [32]. This makes Malik’s work on causality
analysis of cyclic circuits [30] applicable to constructiveness analysis of (instantaneous) Esterel
program. This has been extended by Shiple et al. [41] to state-based systems, as induced by
Esterel’s pause operator, thus handling non-instantaneous programs as well. The algebraic
transformations proposed by Schneider et al. [40] increase the class of programs considered
constructive by permitting different levels of partial evaluation. However, none of these
approaches separates initializations and updates or permits sequential writes within a tick as
we do here.

Recently, Mandel et.al.’s clock domains [31] and Gemünde’s clock refinement [21] provide
sequences of micro-level computations within an outer clock tick. This also increases sequential
expressiveness albeit in an upside-down fashion compared to our approach. Our work on
SC aims to reconstruct the scope of a synchronous instant on top of the primitive notion
of sequential composition. Different classes of constructiveness are distinguished by how
generous they are in bundling sequences of variable accesses from concurrent threads within a
single clock tick. In the clock refinement approach clocks are the only sequencing mechanism,
so micro-level sequencing is implemented in terms of lower-level clocks.

An acknowledged strength of synchronous languages is their formal foundation [6], which
facilitates formal verification, timing analyses, and inclusion results of the type presented
in this work. This formal foundation has been developed in several ways in the past; e.g.,
Berry [9] presents several Plotkin-style structural operational semantics [33], as well as a
definition in terms of circuits for Esterel. Our functional/algebraic approach based on I(D)
generalizes the “must-cannot” analysis for constructiveness [9] and the ternary analysis for
synchronous control flow [36] and circuits [30], [41]. The extension lies in the ability to
deal with non-initialization (⊥) and re-initialization (>) in sequential control flow, which
the analyses [9], [36], [30], [41] cannot handle. Due to the two-sided nature of intervals our
semantics permits the modeling of instantaneous reaction to absence, a definitive feature of
Esterel-style synchrony for control-flow languages. In contrast, the balance equations (see,
e.g., [28]) or the clock calculus (see, e.g., [14]) of synchronous reactive data flow do not
handle reaction to absence. These analyses are concerned with inter-tick causality (i.e., in
which ticks a signal is present) rather than intra-tick causality (i.e., presence or absence in a
given tick) which we focus on here. Reflected into I(D), Lustre clocks collapse the signal
status (within a tick) to either ⊥ (value not initialized or computed) or [0,>] (value computed).
However, since each program abstracts to a continuous function on I(D)-valued environments
our model fits naturally into the Kahn-style fixed-points semantics and scheduling analysis for
synchronous block diagrams [18], [35].
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