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Abstract. Digital signal processing and control (DSPC) tools, such as
LabView and iConnect, allow application developers to assemble systems
by connecting predefined components in signal-flow graphs and by hier-
archically building new components via encapsulating sub—graphs. Run—
time environments then dynamically schedule components for execution
on some embedded processor, typically in a synchronous cycle-based
fashion, and check whether one component jams another by producing
outputs faster than can be consumed. Currently, there do not exist for-
mal models of DSPC schedulers that would enable compositional static
verification of real-time constraints, such as jam—freeness.

This paper develops a process—algebraic coordination model for synchr-
onous component—based design, which directly lends itself to composi-
tionally formalising the monolithic semantics of DSPC tools. By uni-
formly combining the well-known concepts of abstract clocks, maximal
progress and clock-hiding, it is shown how the DSPC principles of dy-
namic synchronous scheduling, isochrony and encapsulation may be cap-
tured faithfully and compositionally in process algebra, and how observa-
tion equivalence may facilitate compositional jam checks. These results
provide a foundation for enhancing existing DSPC tools by allowing be-
havioural validations to be conducted automatically at compile-time.
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1 Introduction

One important domain for embedded—systems designers are digital signal pro-
cessing and control applications (DSPC). These involve dedicated software for
control and monitoring problems in industrial production plants, or software em-
bedded in engineering products. The underlying programming style within this
domain relies on component—based design. Over many years, engineers have built
rich repositories of pre—compiled and well-tested software components (PID-
controllers, FIRfilters, FFT-transforms, etc.) that encapsulate technological
know-how and hide design complexity behind clear interfaces. Applications can
then be programmed efficiently by simply interconnecting components, which
frees the application engineer from most of the error—prone low—level program-
ming tasks. Design efficiency is further aided by the fact that DSPC program-
ming tools, including LabView [15], iConnect [25] and Ptolemy [16], typically
provide a graphical user interface that supports hierarchical abstraction. Hierar-
chical extensions of signal-flow graphs permit the encapsulation of sub—systems
into single components, thus facilitating reuse of system designs.

While the visual signal-flow formalism facilitates mainly the structural de-
sign of DSPC applications, the overall behaviour of a component—based system
manifests itself only once its components are scheduled and executed on an em-
bedded processor. This scheduling is often handled dynamically by run—time
environments, as is the case in LabView and iConnect, in order to achieve more
efficient and adaptive real-time behaviour as well as some form of control flow.
The scheduling typically follows a natural cycle-based synchronous execution
model with the phases collect input (I), compute reaction (R) and deliver out-
put (O). This IRO scheduling model is uniformly applied to composite signal—
flow graphs as well as their individual components, which may themselves be
built hierarchically from smaller entities (cf. Sec. 2). At the top level, the sched-
uler continuously iterates between executing the source components that produce
new inputs, e.g., by reading sensor values, and one executing computation com-
ponents that transform input values into output values, which are then delivered
to the system environment, e.g., via actuators. Each phase obeys the synchrony
principle [11], i.e., in (I) all source components are given a chance to collect in-
put from the environment before any computation component is executed, in (R)
every computation component whose inputs are available will be scheduled for
execution, and in (O) all generated outputs will be delivered before the cur-
rent cycle ends. The constraint in phase (O), which is known as isochrony [12,
18], implies that each output signal will be ‘instantaneously’ received at each
connected input. This synchronous scheme can naturally be applied in a hierar-
chically nested fashion, abstracting a causal sequence of RO—steps produced by
a sub—system into a single RO—step.

Like in synchronous programming, the implicit synchrony hypothesis of IRO
scheduling assumes that the reaction of a (sub—)system is always faster than
its environment issues execution requests. If a component cannot consume its
input signals at the pace at which they arrive, a jam occurs [25]. In practice,
jams usually indicate serious real-time problems (cf. Sec. 2). Unfortunately, in
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existing tools, such as iConnect, there are neither compile-time nor run—time
checks for detecting jams, thereby forcing engineers to rely on extensive simu-
lations for validating their applications. Moreover, there is no formal model of
IRO scheduling for DSPC programming systems that could be used for the com-
positional analysis of jams, and the question of how to distribute the monolithic
IRO scheduler into a uniform coordination model has not been addressed in the
literature. Such a model would be extremely useful given that a good deal of
real-time validation of DSPC applications could be reduced to jam analysis, in
the form of static verification of jam—freeness.

The objective of this paper is to show that a relatively small number of stan-
dard concepts studied in concurrency theory provides the key to naturally and
compositionally formalising the semantics of component—based DSPC designs,
and thus to enable static compositional jam checks. The most important concepts
from the process—algebra tool-box are handshake synchronisation from CCS [19],
and abstract clocks in combination with mazimal progress as investigated in tem-
poral process algebras [2], specifically TPL [13], PMC [1] and CSA [6]. We use
handshake synchronisation for achieving serialisation, and atomicity and max-
imal progress clocks for reflecting synchrony. Finally, given maximal progress,
synchronous encapsulation may be naturally captured in terms of clock—hiding,
similar to hiding in CSP [14]. We will uniformly integrate all three concepts into
a single process language (cf. Sec. 3), to which we refer as Calculus for Synchrony
and Encapsulation (CaSE). This calculus conservatively extends CCS in being
equipped with a behavioural theory based on observation equivalence [19].

As main contribution, we will formally establish that CaSE is expressive
enough for faithfully modelling the principles of IRO scheduling and for reasoning
about jams (cf. Sec. 4). First, using a single clock and maximal progress we
will show how one may derive a decentralised description of the synchronous
scheduler. Second, we prove that isochrony across connections can be modelled
via multiple clocks and maximal progress. Third, the subsystems—as—components
principle is captured by the clock-hiding operator. Moreover, we will argue that
observation equivalence lends itself for statically detecting jams by reducing jam
checking to timelock checking.

In the light of these results, our modelling in CaSE yields a coordination model
for synchronous component—based design, whose virtue is its compositional style
for specifying and reasoning about DSPC systems. In particular, our results
disprove the perception of designers of DSPC tools that the presence of a global
run—time environment and a centralised scheduler precludes the compositional,
static capture of semantic properties of DSPC programs, including jam—freeness.
Thus, CaSE provides a foundation for developing future—generation DSPC tools
that offer the compositional, static analysis techniques desired by engineers.

2 An Example of DSPC Design

Our motivating example is a digital spectrum analyser, which is sketched in the
signal-flow graph of Fig. 1. The task is to analyse an audio signal and continually
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show an array of bar—graphs representing the intensity of the signal in disjoint
sections of the frequency range. Our spectrum analyser is designed with help of
components Soundcard, Const, Element and BarGraph. Each instance c1, c2, ...
of Element, written as ck:Element or simply ck for £ = 1,2, ..., is responsible
for displaying one bar—graph. ck:Element is connected to the single instance s0
of component Soundcard, s0:Soundcard, which generates the audio signal and
provides exactly one audio value each time it is scheduled. It is also connected to
instance sk:Const of component Const, which initialises ck:Element by providing
filter parameters when it is first scheduled. In contrast to components Soundcard
and Const, Element is not a basic but a hierarchical component. Indeed, every ck
encapsulates one instance of Filter, Quantise and BarGraph, respectively, namely
ckl:Filter, ck2:Quantise and ck3:BarGraph as shown in Fig. 2.

ck:Element

s0:Soundcard

cl:Element .-
sl:Const ckl:Filter ck2:Quantise [ [ck3:BarGraph
-
—a 1 = . e
-
c2:Element j J
s2:Const ._
m
n—a
Fig. 1. Example Application Fig. 2. An instance of Element

Scheduling. According to IRO scheduling, our example application will be seri-
alised as follows within each IRO—cycle. First, each source component instance
gets the chance to execute. In the first cycle, this will be sO0:Soundcard and all
sk:Const, which will be interleaved in some arbitrary order. In all subsequent
cycles, only sO:Soundcard will request to be scheduled, since sk:Const can only
produce a value once. Each produced value will be instantaneously propagated
to each ck:Element, for all & > 1, according to the isochronic broadcast. The
scheduler then switches to scheduling computation components. Since all nec-
essary inputs of each ck are available in each IRO—cycle, every ck will request
to be scheduled. The scheduler will serialise these requests, each ck will execute
accordingly, and the current IRO—cycle ends as no outputs generated within ck
are to be propagated to its environment. However, since each ck encapsulates
further component instances, its execution is non—trivial and involves a sub-—
scheduler that will schedule ck1:Filter, ck2:Quantise and ck3:BarGraph in such
a way that an RO—cycle of these instances will appear atomic to ck. This ensures
that the scheduling of the inner ckl, ck2 and ck3 will be not be interleaved with
executing any of the sibling instances cl, for [ # k, of ck.

Isochronic output. Whenever sO:Soundcard is scheduled in our example system,
it generates an audio signal whose value is propagated via a wire that forks to
port ik of each instance ck:Element, for £ > 1. In order for the array of bar—
graphs to display a consistent state synchronous with the environment, all ck
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must have received the new value from s0:Soundcard before any cl:Element may
be scheduled. Thus, s0:Soundcard and all ck:Element, for ¥ > 1, must synchro-
nise to transmit sound values instantaneously. This form of synchronisation is
called isochrony [12] in hardware, where it is the weakest known synchronisation
principle from which non—trivial sequential behaviour can be implemented safely
without internal real-time glitches [18].

Jams. Let us now consider what happens if instances s0:Soundcard and s1:Const
are accidently connected the wrong way around, i.e., sO:Soundcard is connected
to port j1 and s1:Const to port il of cl:Element. Recall that c11:Filter within
cl:Element will only read a value, an initialisation value, from port j1 in the first
IRO—cycle and never again afterwards. Thus, when the value of s0:Soundcard
produced in the third cycle is propagated to port jl, the system jams. This is
because the value that has been produced in the second IRO—cycle and stored
at this port, has not yet been read by cl1:Filter. Observe that a jam is different
from a deadlock; indeed our example system does not deadlock since all instances
of Element other than cl:Element continue to operate properly.

3 CaSE: Calculus for Synchrony and Encapsulation

This section presents our process calculus CaSE, which serves as a framework
for deriving our formal coordination model for DSPC design in Sec. 4. CaSE is
inspired by Hennessy and Regan’s TPL [13], which is an extension of Milner’s
CCS [19] with regard to syntax and operational semantics. In addition to CCS,
TPL includes (i) a single abstract clock o that is interpreted not quantitatively
as some number but qualitatively as a recurrent global synchronisation event;
(ii) a timeout operator | P|o(Q) similar to ATP [20], where the occurrence of o
deactivates process P and activates @Q; (iii) the concept of mazimal progress [27]
that implements the synchrony hypothesis by demanding that a clock can only
tick within a process, if the process cannot engage in any internal activity 7.
CaSE further extends TPL by (i) allowing for multiple clocks o,p,... as in
PMC [1] and CSA [6] while, in contrast to PMC and CSA, maintaining the global
interpretation of maximal progress; (ii) explicit timelock operators A and A,
that prohibit the ticking of all clocks and of clock o, respectively; (iii) clock—
hiding operators P/o that internalise all clock ticks of process P. Clock hiding
is basically hiding as in CSP [14], i.e., hidden actions are made non—observable.
In combination with maximal progress this has the important effect —so far
unexplored in the process—algebra community— that all inner clock ticks become
included within the synchronous cycle of an outer clock. This is the essence
of synchronous encapsulation, as is required by the subsystems—as—components
principle in DSPC design. Finally, in contrast to TPL and similar to CCS and
CSA, we will equip CaSE with a bisimulation—based semantic theory [19].

Syntax and operational semantics. We let A = {a,b,...} be a countable set
of input actions and A = {@,b, ...} be the set of complementing output actions.
As in CCS [19], an action @ communicates with its complement @ to produce
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the internal action 7. The symbol A denotes the set of all actions AU AU {7}.
Moreover, CaSE is parameterised in a set 7 = {o,p, ...} of abstract clocks, or
clocks for brief. The syntax of CaSE is defined by the following BNF:

P:=0|A|A,|z|aP|P+P|P|P|P\L|P/o||P|o(P)|px.P,

where z is a variable taken from some countably infinite set, and L C A\ {7} is
a restriction set. Further, we use the standard definitions for static and dynamic
operators, free and bound variables, open and closed terms, and guarded terms.
We refer to closed and guarded terms as processes, collected in the set P. For
convenience, we write L for the set {@|a € L} and extend the timeout opera-
tor to sequences of clocks by defining |P| =4¢ P and |P|o1(Q1) - -.0n(Qr) =ar
[L[P]o1(Q1) .. 00n-1(Qn-1)]0n(Qr). Finally, if P contains actions ay, as,...,a,

and the free variable z only, we write z (a1, as, ..., ay) 2f b for the process ux.P.
Then, x(by,bs,...,b,) denotes the process pz.P’, where P’ results from P by
simultaneously substituting actions a; by b;, for 1 <1 < n.

Table 1. Operational semantics for CaSE

At —— At — = aitr
a.P — P, a.P = aP
Sumi —L 2L NIl —— tStall —— o #p
P+QS P 050 Ar B A,
Q> qQ PSP Q3Q
Sum?2 . tSum ——————
P+Q—=qQ P+Q3P +@Q
oY 7 g, /
Res P:)P a¢ LUL tRes P:>7P
P\L3 P\L P\LZ P \L
o / g, / g, !
Part — L L par L2 Q2@ piny
PIQ = P'|Q PIQ = P'|Q'
« 12 O, /
parg — 929 _ ¢Hidl L2
P|Q = P|Q’ P/oc — PJo
a, / a / P, /
pag L2 Q20Q i —L o, pa
P|Q — P'|Q’ P/oc > P'/o
Q, ’ o
Ha L tTOl —— P%
P/oc = P'/o |Plo(Q) = Q
«, / P, /
0o =P tro2 — 228,
|[Plo(Q) = P |Plo(Q) = P’
« / g, /
Rec P[/w.P/i] — P tRec P[um.P/az] — P
px.P = P’ px.P — P’

The operational semantics of a CaSE process P is given by a labelled transi-
tion system (P, AU T, —, P), where P is the set of states, AUT the alphabet,
—> the transition relation, and P the start state. We refer to transitions with
labels in A as action transitions and to those with labels in 7 as clock transi-
tions. The transition relation — C P x (AU T) x P is defined in Table 1 using
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operational rules. For the sake of simplicity, we also write ~ for a representative
of AUT, as well as P 5 P’ for (P,v,P'y € — and P X for 3P’ € P.P 5 P'.
Our semantics is set up such that it enjoys a couple of important properties, for
all clocks o € T: (i) mazimal progress, i.e., P % implies P 4; (i) time determi-
nacy, i.e., P 5 P' and P % P" implies P’ = P". It is time determinacy that
distinguishes clock ticks from CSP broadcast communication.

Intuitively, the nil process 0 permits all clocks to tick, while the timelock
operators A and A, prohibit the ticking of any clock and of all clocks except o,
respectively. Process a.P may engage in action a and then behave like P. If
«a # 1, it may also idle for each clock o; otherwise, all clocks are stopped,
thus respecting maximal progress. The summation operator 4+ denotes nonde-
terministic choice, i.e., process P+ @ may behave like P or (). According to time
determinacy, time has to proceed equally on both sides of summation, i.e., P+ Q)
can engage in a clock transition and thus delay the nondeterministic choice if
and only if both P and @ can. Process P|Q stands for the parallel composition
of P and () according to an interleaving semantics with synchronised communi-
cation on complementary actions resulting in the internal action 7. Again, time
has to proceed equally on both sides of the operator, and the side condition
of Rule (tPar) ensures maximal progress. The restriction operator \ L prohibits
the execution of actions in L U L and thus permits the scoping of actions. The
clock-hiding operator /o within a process P/o turns every tick of clock o in P
into the internal action 7. This not only hides clock ¢ but also pre—empts all
other clocks ticking at the same states as o, according to Rule (tHid2). Pro-
cess |P|o(Q) behaves as process P, and it can perform a o—transition to @,
provided P cannot engage in an internal action as is reflected in the side con-
dition of Rule (tTO1). The timeout operator disappears as soon as P engages
in some transition labelled differently from o¢. Finally, ux. P denotes recursion,
i.e., px. P behaves as a distinguished solution of the equation x = P.

Our interpretation of prefixes a.P adopted above, for « # 1, is relazed [13],
i.e., we allow the process to idle on clock ticks. In the remainder, insistent prefizes
a.P [1], which do not allow clocks to tick, will prove convenient as well. These
can be expressed in CaSE by a.P =4f a.P + A. Similarly, one may define a prefix
that only lets clocks not in T tick, for T € T, by ap.P =gra.P + Arp, where
A7 =4t )y Ao Finally, we abbreviate |A]o(P) by g.P.

Temporal observation equivalence and congruence. This section equips
CaSE with a bisimulation—based semantics [19]. For the purposes of this paper
we will concentrate on observation equivalence and congruence. The straightfor-
ward adaptation of strong bisimulation to our calculus immediately leads to a
behavioural congruence, as can easily be verified by inspecting the format of our
operational rules and by applying well-known results for structured operational
semantics with negative premises [26]. Observational equivalence is a notion of
bisimulation in which any sequence of internal 7’s may be skipped. For v € AUT
we define 4 =ge€ if v = 7 and 4 =gy, otherwise. Further, let = =g 5" and
P = P’ if there exist processes P" and P"' such that P = P" 5 p" & P’
Carrying over weak bisimulation [19] to CaSE leads to the following definition.
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Definition 1. A symmetric relation R C PxP is a temporal weak bisimulation

if P P implies 3Q". Q X Q' and (P',Q") € R, for every (P,Q) € R and v €
AUT. We write P = Q if (P,Q) € R for some temporal weak bisimulation R.

Temporal observation equivalence = is compositional for all operators except
summation and timeout. However, for proving compositionality regarding par-
allel composition and hiding, both of which are defined by operational rules
involving negative side conditions, the following proposition is central.

Proposition 1. If P~ Q and P 5 P' then3Q",Q". Q = Q"3 Q', P~ Q",
P ~Q and {yc AUT|P3}Y={yec AUT|Q">}.

The validity of this proposition is due to the maximal-progress property in CaSE.
This is also why we do not need to equip temporal observation equivalence with
complex conditions on initial action sets, as is necessary in calculi incorporating
a weaker notion of maximal progress [6]. As usual, observation equivalence is not
compositional for the choice operators summation and timeout. To identify the
largest equivalence contained in =, the summation fix of CCS is not sufficient.
As in other work in temporal process algebras [27], the deterministic nature of
clocks implies the following definition of temporal observation congruence.

Definition 2. A symmetric relation R C P x P is a temporal observation con-
gruence if for every (P,QY € R, a € Aando € T:

1. P 3 P implies 3Q'.Q = Q' and P' = Q'.
2. P% P implies 3Q".Q > Q' and (P',Q') € R.

We write P = Q if (P,Q) € R for some temporal observational congruence R.
As desired, we obtain the following result, whose proof is standard [6, 19].
Thm 1. The equivalence & is the largest congruence contained in =.

It is not difficult to see that CaSE is a conservative extension of CCS [19]. Indeed,
CCS can be identified in terms of syntax, operational semantics and bisimulation
semantics as the sub—calculus of CaSE which is obtained by defining 7 = 0.
For finite—state systems, temporal observational equivalence can be computed
efficiently, using standard partition-refinement algorithms as implemented in
existing verification tools, such as the CWB-NC [7].

4 A Synchronous Coordination Model with Encapsulation

This section introduces our coordination model for DSCP applications on the
basis of our process calculus CaSE. Particular emphasis is given regarding the
issues of component instantiation, synchronous scheduling, isochronic forks, and
jam analysis. We illustrate our modelling using the digital-spectrum-—analyser
example introduced in Sec. 2.
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We start off with attaching behavioural descriptions to basic components,
which describe their interface behaviour to a scheduler. Informally, we say that
the states of component descriptions must each belong to one of the classes ‘in-
put’, ‘ready’, ‘waiting’, ‘internal’, ‘output’ and ‘finished’. Input states may be
non—deterministic and are source of transitions labelled from a set I C A to
either input states or ready states. Ready states must have one transition la-
belled 7, a request to execute, to a waiting state which must have one transition
labelled g, which is a signal that the request is granted, leading to an internal
state. Internal states again have non—deterministic transitions, but labelled only
in the silent action 7, representing the progress and resulting state of the inter-
nal computation; that this may vary, being dependent on the values of the input
data, is modelled by non—determinism. The destination of internal states must

be output states from which a deterministic sequence o1, . .., 0, of outputs, i.e.,
members of the set O C A, is produced by transitions to output states or a fin-
ished state, at which point all output is delivered. The sequence o = [o7, ..., 0,)

is chosen non—deterministically by the internal 7—computation that leads into
the output region. Finished states have one transition labelled g, signifying that
the thread of control is being handed back, to either an input state or 0, mean-
ing that the component is finished. Observe the scheduling sequence r---g---73,
in which the component requests execution by r, obtains the execution grant
through ¢ and finally signals completion with g.

Soundcard Const Quantise Filter BarGraph
C (1, [lelD c 7.g.7.c.g.0 ¢ a| C(a],[[c]]) |¢ - I([a,b], r.e.g. |&] (2 C([a], [I)
- - "l cda.tenn|™ ™

]
Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7.

For any model, I, O and {r, g} must be disjoint and in the following we use
only a, b and decorations thereof to name input channels, and range over these
with i, and ¢, d and decorations thereof to name outputs, ranged over by o.
Having defined as usual the ‘syntactic sort’ of a process S(P) C A, we define
also the ‘input sort’ and ‘output sort’, Z(P) C I, O(P) C O, in the natural way.
Note that the request and grant ports {r, g}, which connect a component with
its scheduling environment, are also part of the component sort. Moreover, we
may use the following parameterised definitions to define the typical component
behaviour that is consistent with the above interface description, such as those
seen in Figs. 3—7 for our example application.

1Gp) Yicianeii i - Iz, -+ yij 1,41, aal, P) ] >0
’ 7.9.P otherwise

)def{O_l.O([Oz,--- ,O|3|],P) if |61 > 0

- g.P otherwise
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First, I (;, P) defines an input phase in the vector of inputs i which continues,
when scheduled, in the internal state P; O(J, P) defines an output phase with
fixed sequence of outputs & = [or,...,0,], continuing in input state P having
handed back the thread of control; C’(f,g‘) defines a typical cyclic component
in its input state with input ports i and a choice of possible output sequences
represented as a (finite) sequence of sequences & of individual output actions.
Each component d;, for 1 < j < |(:)"|, of & may be an arbitrary (finite) sequence
0j = [0j1,--.,0jn,;] of output actions, 0j; € O. In this way we can model arbitrary
output behaviour. Each execution cycle of C' (5’, 5’) involves all inputs from 7 and
non—deterministic output behaviour defined by the members of 5

Returning to our example, observe that the CaSE process of Filter given in
Fig. 5, I({a, b}, 7.¢.9.C([al, [[c]]) ), features the desired behaviour as described in
Sec. 2. In particular, it reads from both inputs a,b only in the first scheduling
cycle. In all subsequent ones, i.e., after passing once through 7.g.7.¢.g, it behaves
as the cyclic process C([a], [[¢]]) that only ever consumes from input a.

4.1 Component instantiation. A pure component as introduced above uses
the {r,g} interface to negotiate its execution with its environment. From the
point of view of the component, it does not matter whether it communicates
with a centralised or a distributed scheduler. In this section, we develop a con-
cept of wrappers for harnessing components with enough local control so they
participate coherently in a global IRO scheduling scheme, without presence of
a global scheduler. Indeed all wrappers added together represent a distributed
version of an imagined central IRO scheduler. Wrapping a component is an in-
stantiation into a communication and scheduling discipline, as in Ptolemy [16].
Our general model for a ‘wrapper’ is the following:

InstWrapper(SchedIdiom, CommIdiom, o)][- ] def

( (-] SchedIdiom(os,-)) \ O() U{r,g} |
I,co(_yCommldiom(o) ) \ {bo, fo |0 € O(1)},

where Schedldiom and Commldiom are scheduling and communication idiom,
respectively. To implement IRO scheduling we consider two variants of SchedId-
iom, namely ComplInst and Sourcelnst to be discussed below.

Synchronous scheduling. Given a basic component C, we can instantiate it
either as a computation component, using idiom Complnst(os,C), or as a source
component with Sourcelnst(os,C), where o4 represents the phase clock. This
clock organises strict alternation between source and computation phases and,
by way of maximal progress, implements run—to—completion within each phase.
To achieve serialisation on a single thread of control, a token—passing style is
used, where a component may only execute if it possesses the execution token
and surrenders this when the execution is complete.

The token is passed on label t. between computation components, and on
label t. between source components. Furthermore, each output event o is split
systematically into a request-acknowledge pair b, . f,, to prepare for isochronic
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output distribution:

Complnst (o, -) e (Te . te . g . Inst(tc, te, Complnst(os, - ), 05,-) +
te.g.Inst(tc, te, Complnst(os, ), 0s,-)))
Sourcelnst (o, -) e r.t, Inst(te,tc,SourceInst( 1=),0s,-))

°‘| ml

Inst(ty, 2, P, oy, -) & Z o-Inst(t1,t2, Pos,-) +g.[t1. Plog(t2. P)
€o(-

The idiom Complnst(cs, C') will accept the request signal r from component C
and wait for an execution token t. from some other instantiated peer compo-
nent. When there is no execution token present at the same hierarchy level,
Complnst(os,C) instead will issue a request 7. to its environment and then
wait for ¢.. Once t. has arrived, Complnst(os, C) will grant C its original request
with signal g. The wrapper then behaves as Inst(t.,t., Complnst(cs, C), o5, C)
while component C will execute. In this state, whenever C finishes and has data
to distribute, the scheduling idiom passes on each output signal o to the com-
munication idiom as b, (understood as a ‘broadcast o’ signal) and waits for a
signal f, (understood as ‘finished broadcasting o’) in return. Once the compo-
nent cycle is finished, signalled by a return of grant g, an attempt is made to
pass on the token ¢t; = t. to one of the peers. If, however, even in the presence
of this offer, clock oy ticks thereby signalling the end of the phase, then the
other token ts = t, is passed out, which will start the source phase. The source
idiom Sourcelnst(oy, C') is analogous to Complnst(os,C), except that ¢, and ¢.
are interchanged. Also, since sources must execute at most once per cycle, their
idiom Sourcelnst(os, C) starts with an initial phase clock. In this way the clock
has to tick between any two executions of the same source component.

Consider the Filter component of our example system of Fig. 2, whose be-
havioural definition in Fig. 5 we also abbreviate as Filter. According to our
wrapper definition, the first step in instantiating this computation component
is as follows:

Filter’ &' (Filter | SchedIdiom (o, Filter)) \ {¢, 7,9},

with the new ‘external’ interface sort consisting of {t., te, 7., 05} for the schedul-
ing and {a, b, b, f.} for data input and output.

Isochronic Broadcast. There are two parts to form compositional isochronic
forks in our coordination model. The first is a ‘broadcast agent’ IsoBroad(o),
which has been referred to as CommIdiom (o) above:

IsoBroad(o) ey

,, -1soBroad' (o)

IsoBroad'(0) &' |5. IsoBroad' (0) |0 (7, . IsoBroad(o))

For each broadcast request b, of the component wrapped, an arbitrary number
of ‘copies’ of each signal will be communicated on & until the clock o, defining
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the isochronous instant in which the communication occurs ticks and ends that
instant. Because of maximal progress o, can only proceed when there are no
further receivers listening on o. In this way the signal o obtains maximal distri-
bution. Only when all receivers are saturated will £, occur, thereby signalling the
run—to—completion of the broadcast back to the component. Note that isochrony
cannot be modelled faithfully in Hoare’s CSP [14] or Prasad’s CBS [23]. While
the broadcasting primitive in CSP does not distinguish between senders and re-
ceivers and thus ignores the direction in which information is propagated, the
one in CBS does not force receivers to synchronise with senders.

We can now complete our instantiation of the Filter component, extending
Filter’ by bolting on one IsoBroad(c) for the output line c. This gives

Filter” %' (Filter' | IsoBroad(c)) \ {be, f.}

which is the same as InstWrapper(Complnst, IsoBroad, o,)[Filter]. Note that the
scheduling interface of Filter now is {t.,t.,r.,0s, 0.}, which is extended by the
isochrony clock o. and for data signalling {a, b, c}. The output broadcast which
was controlled in Filter' by the pair b., f. is now handled by the single line ¢
together with the clock o.. The fact that control is now via a clock is what will
make the wiring up of Filter” with an arbitrary number of broadcast receivers
compositional.

For the following, we assume that we have obtained computation component
instances Quantise”” and BarGraph' in a similar way. These can then be used to
assemble the sub—systems Element, as well as source components Soundcard”,
Const” required for the example application of Fig.1. All these are InstWrapper
instantiations of the corresponding basic components seen in Figs. 3—-7.

4.2 Isochronic wiring. Now that we have instantiations of our components
we need to wire them up. In our setting wires are specific agents that actively
participate in broadcasts along them. Our ‘wire agents’

. .\ def - . .
IsoWire(o,05,1) = 0.1, Uo}.@.ISOWHe(o, Os,1)

connect a producer on output o with a consumer on input . Whenever this agent
IsoWire(o, 04,%) picks up a signal o it blocks clock o, until it has successfully
delivered with i. Then, o, must tick for the wire to cycle back and be ready
again. In this way, a single transmission along the wire is sandwiched between o
and o,. Since o, is a global event, we can compositionally join together and
synchronise an arbitrary number of parallel wire transmissions. To formalise
this, we introduce closed forks, defined in the CCS sub—calculus of CaSE:
Fork(o, 1) L, . Fork'(o,i,1)
Fork' (0,7, 7) %f {;K_n:ﬁ Ji -FO:k'(Oaia 1,72,y Ji—1, 141, -+~ Jn]) ?f |];| >1
J1 - fo - Fork(o,1) if 7] =1

The following theorem shows that our isochronic forks behave equivalently to
closed forks, for any number of processes attached to the isochronic broadcast.
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Thm 2. (IsoBroad(o) |I_[jg‘g|[soWire(o, 0s,15)) /00| Ag, = Fork(o, f)|A{US7UO}

Note that in our modelling, the synchronous phase clock o is admitted only
in the initial state, i.e., as long as the wire is ’empty’. The wire’s ability to
pass on its previous value and thus to become empty, however, depends on the
input-readiness of the component instances to which i connects forward. If any
such instance is not ready, clock o4 will never again tick, turning this local ‘jam’
condition into a timing flaw, which is a global condition.

Returning to our example, we could build an instantiated sub—system for
Element, which overall behaves like a computation component, as follows:

Subsystem” ef (Filter”(c,d, 01) | Isowire(oy, 0s,i1) | Quantise” (i1, 02) |
Isowire(os, 05, 42) | BarGraph” (is)

) \ {017i17027i2}/{0017002}7

where ¢, d, 01,02, 11, i2 are some arbitrarily chosen names for the input and output
ports of the components. Note that we have restricted away the internal channels
{01,%1, 09,72} and hidden the internal isochrony clocks {o,,, 0., }. For the top—
level system of Fig. 1 a similar composition, say Application”, can be formed
from one source instance Soundcard” and a suitable number of source instances
Const” and component instances Element”. We discuss next how one can obtain
Element” from a composite sub—system such as Subsystem” by encapsulation.

4.3 Encapsulation. To encapsulate a signal-flow graph such as Subsystem” as
a basic component in itself, we finally define another ‘wrapper’, which is in some
sense the inverse of the instantiation wrapper:

EncWrapper(os)[- ] def (- | Enc(os)) \ {tc, te,re}/0s

Enc(os) d:efre .F.g.Ea te.g  .Enc

The EncWrapper translates back the scheduling interface {t.,t.,r.,0s} into
{r, g}, which is the interface of a pure component, while keeping the signal input
and output ports intact. In the parallel composition Subsystem’ | Enc(o,), the
process Enc(oy) picks up any request for token r. from the computation com-
ponents inside Subsystem”, passes it out as a request r, then waits for the grant
signal g, upon which gives the execution token down into Subsystem” via .. At
that point, it waits patiently for signal ¢, from Subsystem”, which indicates that
Subsystem” has finished one phase cycle. Then, Enc(o) finishes off by handing
out the g signal to its environment, whence signalling completion of one com-
putation run. Thus, seen from the outside, Subsystem” | Enc(o) behaves like
a basic component, while Enc(os) emulates a token—passing environment to the
inner Subsystem”.

EncWrapper is obtained from Subsystem” | Enc(o,) by restricting away
all token passing signals {t.,t., 7.} and hiding the internal synchronous phase
clock 0. All ticks of o are turned into 7’s, which from the point of view of the en-
vironment now count as proper internal computation steps. The resulting encap-

B. Norton, G. Luettgen, M. Mendler: A compositional semantic theory for synchronous component-based design.
In R. Amadio, D. Lugiez (eds.), Int'l Conference on Concurrency Theory (CONCUR'03), Springer LNCS 2761, 2003, pp. 461-476.



PRELIMINARY VERSION of a paper under copyright with Springer Verlag

sulated system Element def EncWrapper(o,)[Subsystem”] is a fresh basic compo-

nent. It may be instantiated again as a computation component using InstWrap-

per to give Element” d:efInstWrapper(CompInst,IsoBroad, os)|Element], which

may be assembled into the complete system Application”, as suggested above.

Note that a signal-flow graph to be encapsulated may only sensibly be made
up of instances of computation components and the new component will be a
computation component in any inputs not restricted away. The values commu-
nicated by all wires should also first be restricted, as should the values offered by
broadcast outputs and the clocks that bound them should be hidden. In order
to form an output from the new component, a wire should be connected to sup-
ply the value at a desired port whose name is not then restricted. Bearing this
in mind, we can now formally state the desired encapsulation property, namely
that the encapsulation of a component instance should behave equivalently to
the original component.

Thm 3. Let Comp be an arbitrary component. Then

EncWrapper(os)| (Inst Wrapper( ComplInst, IsoBroad, o) Comp |
| I,co(comp)Is0 Wire(o,05,0))/5]
= Comp | Agryus

where & consists of all isochronic clocks o,, for o € O(Comp).

4.4 Jams analysis. As suggested above, a jam is said to occur when a ‘wire’ is
unable to pass on the value it is holding. In our model this produces a path to a
state where 7. P + Ao, 0.,y 18 a timelocked parallel component in the global
state. Since the isochronic broadcast agent cannot complete until its clock ticks,
it will not signal completion and so the relevant instantiation wrapper will not
release the token and the system is deadlocked. Thus, a jam manifests itself as
a timelock within our compositional coordination model. This is made explicit
in the following theorem.

Thm 4. If System possesses only 7— and os—transitions and no infinite 7—

computations, then the following holds, where Check d:efp:r;.LAJ os(x):
System ~ Check iff Ps € {1,05}*. System > P = .

We conclude this section with two observations on how time-lock and thus jams
may be escaped. Further parallel composition of a jammed system may lead to
the ability to escape the insistent states causing the jams via communication,
which is exactly how an engineer is supposed to resolve the problem. Alterna-
tive, the scheduling clock may be hidden, but this may only be done in our
coordination model via encapsulation. It is undesirable for jams to be hidden by
encapsulation, as they are design faults that should be revealed. Indeed, in our
planned integration of our coordination model within a type system for DSPC
programming environments, which will be expanded upon in the next section,
encapsulating faulty components will be disallowed.
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5 Related Work

To the best of our knowledge, our coordination model is the first formal model
of the synchronous and hierarchical scheduling discipline behind DSPC pro-
gramming systems. Our process—algebraic approach complements existing work
in distributed object—oriented systems [21] and in architectural description lan-
guages [3]. There, the focus is on distributed software rather than embedded
centralised systems, and consequently on asynchronous rather than synchronous
component behaviour. However, in both application domains, object—oriented
systems and software architectures, formalisms have been investigated for de-
scribing and reasoning about the interface behaviour of components, too.

In object—oriented systems, simple automata—based frameworks have been
studied, where finite automata model the life—cycle of objects [21]. Within these
frameworks, one may then reason at compile-time whether each invocation of
an object’s method at run—time is permissable. This semantic analysis is dif-
ferent from jam analysis in DSPC applications, but similar to the compatibility
analysis of interface automata employed in Ptolemy [9], which we will discuss
below. A process—algebraic model of this theory for object—oriented design has
been developed as well and is presented in [24]. In architectural description
languages, the formalism of process algebra has been studied by Bernardo et
al. [3]. Their approach rests on the use of CSP—style broadcast communication
together with asynchronous parallel composition. Like in our application domain
of DSPC design, the intention is to identify communication problems, but these
are diagnosed in terms of deadlock behaviour [4].

As illustrated earlier, deadlock is a more specific property than the jam prop-
erty investigated by us: a jam in one component jams the whole system, but a
deadlock in one component does not necessary result in a system deadlock. To
observe ‘local’ deadlocks in single components, a theory of location equivalence [5]
has been developed in the literature, which refines Milner’s theory of observa-
tion equivalence [19] and observes the location, or system component, from which
an action is performed. Observation equivalence is unnecessarily expressive and
complicated for the purposes of static jam analysis. Indeed, we have shown that
there is no need to refer to locations when analysing jams, for which one may
simply check via temporal observation equivalence.

From a practical point of view, we envision our coordination model based
on the process calculus CaSE to play the role of a reactive-types language [22].
This would enable designers to specify the intended interactions between a given
component and its environment as a type, and permit tool implementations to
reduce type checking to temporal observation-equivalence checking. This idea
is somewhat similar to the one of behavioural types in the Ptolemy commu-
nity [17]. Behavioural types in Ptolemy are based on the formalism of interface
automata [8] and employed for checking the so—called compatibility property be-
tween components [9]. However, interface automata are not expressive enough to
reason about jams, which Ptolemy, for the restricted class of synchronous data—
flow (SDF) models, handles by linear—algebra techniques. In contrast, CaSE’s
semantic theory is more general than SDF and lends itself to compositionally
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checking jams at compile-time. Note in this context that our proposed notion
of reactive type is different from the one studied for the synchronous language
Signal [10]. Behavioural types in Signal are defined in terms of Signal’s clock
calculus, which focuses on data—flow rather than signal-flow.

6 Conclusions and Future Work

This paper presented a novel compositional coordination model for the syn-
chronous component—based design of and reasoning about DSPC applications,
thus complementing work in distributed object—oriented systems and architec-
tural description languages. Our coordination model benefited from several ideas
that have been investigated in the field of concurrency theory. In particular, we
demonstrated that the semantic concepts underlying the IRO principle of DSPC
tools, namely dynamic synchronous scheduling, isochrony and encapsulation, can
be captured by uniformly combining the process—algebraic concepts of abstract
clocks, maximal progress and clock hiding. To do so, we defined the process cal-
culus CaSE and developed its behavioural theory based on temporal observation
equivalence. This equivalence was then used to prove that clocks and maximal
progress are indeed sufficient for compositionally describing DSP schedulers,
including the isochronic propagation of output signals, and that clock hiding
reflects the encapsulation process in hierarchical design. In addition, CaSE fa-
cilitates the static, compositional reasoning about jams in DSPC applications,
via observation—equivalence checks against timelocked processes.

Future work should proceed along two orthogonal directions. First, CaSE
should be integrated in DSPC tools in the form of a reactive-types system.
Second, the semantic theory of CaSE should be completed by providing an ax-
iomatisation of temporal observation congruence for regular processes.
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APPENDIX: PROOF SKETCHES
Given the space constraints, we can only sketch the proofs of our main theorems.
The full proofs will be made available in a technical report.

For the proofs of our main theorems of Sec. 4, it will be convenient to first
formally specify the class of processes, typified by Comp, to which our allowable
components will belong.

Comp & {P|VQ,s € A*- (P % Q) =

AR - Q = R € (Inputs(P) U Ready(P) U Waiting(P) U
Internal(P) U Outputs(P) U Finished(P))
Imputs(P) def {Q|Q € Deriv(P)ANF €1-Q 5 A
Vae AL,REP- Q3 R)=aclA
1S € P-R= S € (Inputs(P) U Ready(P))}
Ready(P) def {Q | Q € Deriv(P)ANQ 5A
Vae,RRREP-(Q3RAQ3IR)=>a=FA
3SeP-R= R =S € Waiting(P)}
Waiting(P) def {Q|Q € Deriv(P)AQ % A
Vae ARREP-(QISRAQIR)=z>a=gA
3SeP-R= R =S € Internal(P)}
Internal(P) def {Q|Q € Deriv(P) AQ 5 A
YVae ALREP Q3R =>a=1A
1S e P-R= S € Outputs(P)}
Outputs(P) ef {Q|Q € Deriv(P)AJoec O-Q 3 A
Va,o' € LR R E€P- QS RAQS R)=a=ad A
3S-R = R' = S € (Outputs(P) U Finished(P)}
Finished(P) def {Q | Q € Deriv(P)AQ 5 A
Voe ARREP-(Q3RAQIR)=>a=7A
3S-R= R =S € (Inputs(P)U0)}

Where we define each of the allowable classes of states using the following rela-
tion, intended to find the first representative for each equivalence class:

Deriv(P) €' {Q|3s € A*-P 5 QA
MucAt,QeP t:u=sAPLQAQ=Q"}

We furthermore observe that, due to the statement that all components be-
haviours are finite state, each of these above sets will be finite for an accept-
able description of component behaviour. We also remind ourselves that the
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behaviours must be expressed as CCS terms, so we may infer loops of all clocks
at every state not a member of Internal(Comp) for a given Comp.

Proof Sketch for Theorem 3 (‘Encapsulation Transparency’)
Proof. We first define:

0¥ O(Comp)

Broads & I, oIsoBroad(0inst)
Wires % T, 0IsoWire(0inst, 05, 0)
P*EP| A qus
& as a vector of clocks such that Yo € O(Comp) - 3j - 0; = 00,
and 5 - o; ¢ O(Comp)

We allow ourselves to drop implicit parameters, e.g.:

InstWrapper]-] def InstWrapper(Complnst, IsoBroad, o )[Comp |
Then one may re—state the theorem as:
EncWrapper|[(InstWrapper[Comp | | Wires) /& & Comp*

To show this we construct first a (weak) bisimulation:

def
R = RInput u RReady u RWaiting U Rinternat U 7—\J'Output U RFinished, Where:

Rinput def {< EncWrapper[(InstWrapper[P] | Wires)/&], P* > |
P € Inputs(Comp)}

RReady f {< EncWrapper[(InstWrapper[P] | Wires)/& ], P* >,
< EncWrapper[((Q | re . tc.g.Inst + ¢ .7 . Inst |
Broads) \ O U {r, g} | Wires)/&], P* >,
< (((Q | tc.g.Inst | Broads) \ O U {r, g} | Wires)/&) |
F.g.ags te .zas .Enc) \ {tc,re}/os, P* > |

P € Ready(Comp), P 5 Q}
Rwaiting = {< (P | tc.g.Inst | Broads) \ O U {r,g} | Wires)/) |

g-te .te.g_ .Enc)\{te,re}/os, P* > | P € Waiting(Comp)}

(=N
LY

e

Rinternat = {< (((P | tc.g-Inst | Broads) \ O U {r, g} | Wires)/&) |
EGS te.g .Enc) \ {tc,re}/os, QF >,
< (((P | g-Inst | Broads) \ O U {r, g} | Wires)/d)
| te .QO_S .Enc) \ {tc,re}/os, QF >,
< (((Q | Inst | Broads) \ O U {r, g} | Wires)/d)
| te.g_ -Enc)\ {te,re}/oe, Q"> |
P € Waiting(Comp), P % Q}
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Routputs def {< (((P | Inst | Broads) \ O U {r, g} | Wires)/d)
| te g,. .Enc) \ {tc,re}/0s, P™ >,
< (((Q | be - fo - Inst | Broads) \ O U {r, g} | Wires)/&)
| te g9,. .Enc) \ {tc,re}/os, P* >,
< (((Q] fe - Inst | IT,e o\ IsoBroad (oinst )
| IsoBroad'(cinst)) \ O U {r, g}
| Wires)/&) [ te.g_ .Enc)\ {tc,re}t/os, P* >,
<(((Q] fe . Inst | Teone IsoBroad(oiSnst)
| IsoBroad'(cinst)) \ O U {r, g}
| ,conc IsOWire(Oinst, 0's,0)
| Clow,oe,  }* Teinst - IsoWire(cinst, 05, €))/T)
| te g9,. .Enc) \ {tc,re}/0s, P" >,
< (((Q] fe - Inst | IT,e o\ IsoBroad (oinst )
| IsoBroad' (cinst)) \ O U {r, g}
| I,co\c IsoWire(Oinst, 0s,0) | 0¢,, - ISOWire(cinst, 0, €)) /)
lte.g  -Enc)\{te,re}/os, Q7 >,
<(((Q] fe.Inst | Tycone IsoBroad(osinst)
| fo.IsoBroad(cinst)) \ O U {r, g} | Wires
| te g9, .Enc) \ {tc,re}/os, QF > |

P € Output(Comp), P 5 Q}

R pinished = {< (((P | Inst | Broads) \ O U {r, g} | Wires
|te.g_ -Enc)\{tc,re}/os, P">,
< (((Q] |*c - Complnst]os (E.S(jompInst)
| Broads) \ O U {r, g} | Wires
|te.g _ -Enc)\{tc,re}/os, P">,
< (((Q | & . Complnst | Broads) \ O U {r, g} | Wires
|te.g _ -Enc)\{tc,re}/os, P">,
< (((Q | Complnst | Broads) \S(’) U{r,g} | Wires
g, -Enc)\ {te,re}/os, P* >,
< (((0 | Complnst | Broads) \ O U {r, g} | Wires
| Enc) \ {tc,re}/os, 07 > |
P € Finished(Comp), P % Q}

From this bisimulation we show congruence since all clocks but those in the
set {05} U & idle on both sides of the equivalence until an input is received at
which point it is only necessary, from the definition of the congruence, to show
observation equivalence.

Proof Sketch for Theorem 2 (‘Isochronic Forks’)

Proof. We first construct a weak bisimulation as follows:

A

{< (IsoBroad(o) | II,, |3 IsoWire(o, 05, in)) /00 | Ao, Fork(o,1) | Afo, 003 >}
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U
{< (IsoBroad’(0) | I, 7 oo - IsoWire(o, 0, jin)

| 1T, E{US,UD} .0, . IsoWire(o, o4, kn)

- -

| IT, _ 7 IsoWire(o, 05, 1)) /00 | Aoy, Fork! (0,4, (i \ §)) | Afo,.apy > |

_]

I+ B+ =i AVR<[il-@m-jm =in)VEm-kp =in)V@m-Ly, =in)}

(Abusing the notation to form i \ j meaning all those members of i not already
included in j, i.e., not having been already communicated.)

U

{< (¥, . IsoBroad(o) | I, . |z IsoWire(o, 0, in)) /00 | Ao, fo . Fork(o,7) | Ato, 00y >}

We then observe that both agents idle on all clocks except o5 and o, until
the a—transition is taken and are therefore congruent.

Proof Sketch for Theorem 4 (‘Jam Check’)

Proof. From the definition of Rule (tTO1), we see that Checkd:ef,um.LAJ os(zx)
defines a state with a self-transition in o only. Under the assumptions of the
theorem, System produces transitions in labels o4 and 7 only. Since all o, tran-
sitions of Check may be matched weakly under observation equivalence, any
system in which o, is live can therefore be shown equivalent. On the other hand,
a system where there exists a path to a state where o, is indefinitely stalled
clearly cannot match successive ticks of o5 and therefore will not be equivalent.
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