
First�order Lax Logic

as a framework for Constraint Logic Programming

Matt Fairtlough� Michael Mendlery Matt Walton�

November ��� ����

Abstract

In this report we introduce a new proof�theoretic approach to the semantics of Constraint
Logic Programming� based on an intuitionistic �rst�order modal logic� called QLL� The dis�
tinguishing feature of this new approach is that the logic calculus of QLL is used not only to
capture the usual extensional aspects of Logic Programming� i�e� �which queries are success�
ful�� but also some of the intensional aspects� i�e� �what is the answer constraint and how is
it constructed�� It provides for a direct link between the model�theoretic and the operational
semantics following a formulas�as�programs and proofs�as�constraints principle�

This approach makes use of logic in a di�erent way than other approaches based on logic
calculi� On the one side it is to be distinguished from the well�known provability semantics
which is concerned merely with what is derivable as opposed to how it is derivable� paying
attention to the fact that it is the how that determines the answer constraint� On the other side
our approach is distinguished from so�called external logic characterizations of the operational
semantics of logic programming� There� operational semantics are axiomatized in a classical
meta�logic specifying the program behaviour in terms of successful and failing queries� Here� in
contrast� QLL is used as an internal logic in which operational semantics are not di�erentiated
by di�erent axiom systems but by di�erent rule systems� Or� to put it at another level	
Formulas in QLL do not specify properties of programs but the programs themselves�

Technically� we �rst extend existing work on Propositional Lax Logic
PLL� to a �rst�
order language
QLL�� presenting a soundness and completeness theorem for a Gentzen�style
system via a syntactic translation into a classical �rst�order bimodal theory� Previous work
on applying Lax Logic to deal with behavioural constraints in formal hardware veri�cation
has demonstrated the complementary nature of abstraction and constraints� we proceed to
show how the Lax Logic Programming
LLP� fragment of QLL can reveal abstractions behind
Constraint Logic Programming
CLP�� Our main tool is an intensional �rst�order extension
of the Curry�Howard isomorphism between natural deduction proofs in PLL and terms of the
computational lambda calculus� Instantiating the monadic operator of QLL by a generic notion
of constraint computation� we factor a concrete CLP program into two parts	 an abstract LLP
program and an associated constraint table� These tables allow us to recover concrete answer
constraints for CLP programs from abstract LLP derivations� and thus to establish precise
proof� and model�theoretic connections between our Lax logical account of CLP and existing
work� Choosing di�erent notions of constraint allows us to generalize the standard notion of
constraint
as in CLP� and to apply the LLP paradigm to the complementary problems of
program abstraction and program re�nement�

�Department of Computer Science� The University of She�eld� Regent Court� ��� Portobello St�� She�eld S�
�DP� Emails� m�fairtlough�dcs�shef�ac�uk� m�walton�dcs�shef�ac�uk

yDepartment of Mathematics and Computer Science� University of Passau� Innstra	e

� D���

� Passau� Email�
mendler�fmi�uni�passau�de The author is supported by the Deutsche Forschungsgemeinschaft�

Technical Report� University of Passau � MIP������ July ����

Contents

� Introduction �

� Constraint Logic Programming CLP �

� Quanti�ed Lax Logic QLL �

� Computational Lambda�Calculus ���c and Constraints �
��� C�Calculi� A Special Class of ���c Models ��
��� Constraint Relations� A General Class of ���c Models � � � � � � � � � � � � � � � � ��

	 Lax Logic Programming LLP �

� Abstraction and Re�nement ��
��� Abstraction ��
��� Re	nement �
�

� Embedding CLP proofs into LLP ��

 Kripke Models for QLL ��
��� Canonical Constraint Models for LLP �

� Points of Discussion �	
��� Related Work ��
��� Critical Remarks and Future Work ��

Technical Report� University of Passau � MIP������ July ����

� Introduction

This report investigates Quanti	ed Lax Logic
QLL�� a 	rst�order extension of Propositional Lax
Logic �FM��� FM���� and its application to the analysis of constraints� Our working de	nition is
that a constraint is a property of a system�s context which validates a speci	ed abstract model
of its behaviour� for us� abstraction and constraints are thus two sides of the same coin� Indeed�
previous work on applying Lax Logic �Men��� Men�
� MF��� Men��� to deal with behavioural
constraints in formal hardware veri	cation suggests a basic principle�

�Every design abstraction has a corresponding calculus of constraints� and every use of
constraints corresponds to some design abstraction��

This is a rather dedicated view of the notion of a constraint that contrasts with the traditional

constraints�as�built�in�predicates

paradigm of Constraint Logic Programming
CLP�� By exploring the Lax Logic Programming

LLP� fragment of QLL in this work we try to convince the reader of the bene	ts of linking
constraints with abstractions� while taking both as equally important� There is a remarkable
body of previous work on abstractions in theorem proving� see e�g� �Pla��� GW���� which does not
mention the concept of constraints� while the work on constraint logic programming does not seem
to mention abstractions� see e�g� �JM����

Before we tackle the technicalities some general remarks may be in order to set this work in a
wider context� The problem of context
or environment� arises in most if not all of our attempts
to understand our surroundings� For example� see �Sch��� for a highly entertaining account of the
problem in philosophy and anthropology�
In science� the problem becomes sharper� for virtually all scienti	c investigations introduce some
form of abstraction to deal with the enormous complexity presented to us by the world� The
constraints under which the abstraction is valid are not always explicitly acknowledged or even
understood� although they must always be present in some form� An obvious example is Newtonian
mechanics� where the abstract model of behaviour is accurate provided the speeds and gravitational
	elds involved are su�ciently small� The model may be re	ned to a more accurate relativistic
form� which would itself embody a re	ned notion of constraint � � � Similar hierarchical chains of
abstractions� concerning data� timing� and structural aspects� frequently arise in hard� or software
veri	cation� Each abstraction has an associated notion of constraint to be imposed on the context�
introducing a distinct compositionality problem� It is evident that the problem has no de	nitive
solution� for in the limit the context of a system is the rest of the universe including its past and
future evolution� and we have no hope of understanding that�
Having said that� in situations where the relevant constraints have been identi	ed and aspects
of system behaviour can be adequately formalised in logic� it seems worthwhile to try to provide
a general theory and a formal mechanism for handling the awkward passage across abstraction
boundaries�indeed it may well be that most errors in system veri	cation creep in at these bound�
aries� Lax Logic is such a general theory� It is an intuitionistic approach that relaxes the classical
notion of absolute correctness to rely instead on relative correctness up�to constraints� which is
formalised� in a strictly deductive sense� as a logical modality �� Such a modality must be intrinsi�
cally intuitionistic� for if �M is to mean that �M is true up to constraints� this must hold on the
basis of only partial information about the context� Truth must be sustainable under specialisation
of the context� and the information we can positively rely on is what can be deduced from the
structure of the formula M itself� Precisely this is a characteristic feature of intuitionistic logic�

�or constructive for that matter� but we take intuitionistic logic as the best available� in the sense of being
su�ciently incontrovertible� approximation to the constructive principle�

Technical Report� University of Passau
 MIP������ July ����

In contrast� classical logic has a closed world assumption to justify indirect arguments deducing
the presence of some features from the absence of others� Classical correctness� if taken strictly�
assumes complete knowledge of the context of a system and the interaction of all of its components
into all levels of detail�

In this report we explore the connection between abstraction and constraints as it applies to CLP
and show how CLP naturally corresponds to the Lax Logic Programming
LLP� fragment of QLL�
The calculus of QLL formalises the generic properties of �� while any concrete notion of constraint
arises from a concrete semantic interpretation of QLL� Technically� our claim

notion of constraint � semantic interpretation of QLL

has a proof�theoretic and a model�theoretic side� Proof�theoretically we specialise this to the iden�
ti	cation of a notion of constraint with a model of the computational lambda calculus �Mog���
exploiting the Curry�Howard isomorphism for QLL� Model�theoretically our claim specialises to
the identi	cation of a notion of constraint with a
class of� Kripke constraint models� To 	t the
structure of QLL we extend the computational lambda calculus by dependent types and the Kripke
constraint models �FM��� FM��� by universes� For Kripke constraint models we give soundness
and completeness results� We further present a speci	c family of computational lambda calculi
and Kripke constraint models� so that LLP for these semantics captures the essence of CLP� The
parameter of these families corresponds to the di�erent choices of the constraint domain in the
CLP
X � �JM��� scheme� The LLP paradigm provides a uniform framework for CLP in which
the intensional separation between programs and constraints is captured in a rather natural way�
Programs are formulas and constraints are
abstract interpretations of� proofs� By choosing dif�
ferent constraint semantics for proofs we can generalise the standard notion of constraint and thus
accommodate the complementary concepts of program abstraction and program re	nement�

The main tool of this work is the computational lambda calculus
�c�� It was introduced originally
by Moggi �Mog��� as a coherent algebraic model for partial functions� In subsequent work Moggi
observed that this algebraic structure could be seen as an extension of simply typed ��calculus
by a strong monad �� and that this description not only encompasses partial functions but a
variety of other notions of computation� such as nondeterminism� side�e�ects� continuations� etc�
�Mog��� Mog���� Since then the notion of a
strong� monad has been used very successfully in func�
tional programming� e�g� by Wadler �Wad��� Wad���� and even incorporated into the programming
language Haskell �Tho���� While monads are now well established in functional programming as a
structuring principle and mechanism for semantic extensions� the relevance of �c as a calculus of
proofs� qu�a the Curry�Howard isomorphism� is still largely unexplored� Some theoretical work has
been done e�g� by Benton et al� �BBdP���� where the logic of � is called �computational logic�� The
practical potential of �c for formal system veri	cation� on the other hand� is indicated in a series
of publications �Men��� MF��� Men��� where the monad � shows up as a notion of constraint� It
is this interpretation that we wish to advance further by the results in this report� o�ering it as a
fruitful� so we believe� logic pendant to Moggi�s original idea�

� Constraint Logic Programming CLP

Constraint Logic Programming
CLP� is the result of a merger between two declarative paradigms
� constraint solving and logic programming
�FHK����� �Kri���� �Las���� �Pou��� are suitable in�
troductions�� In �JL��� Ja�ar and Lassez propose a general scheme� CLP
X �� a logic programming
framework which replaces uni	cation with constraint solving in the domain of choice� X � In fact�
uni	cation can be seen as a special instance of constraint solving� speci	cally over the Herbrand
Universe�

Technical Report� University of Passau � MIP������ July ����

The result is a scheme for CLP languages which possess greatly increased expressive power� Sev�
eral languages based on CLP
X � have already been implemented� each over speci	c constraint
domains� For example� CLP
R�
�JMSY���� computes linear arithmetic constraints over the real
numbers and Prolog III
�Col��� Col���� computes over two�valued Boolean logic� lists and linear
arithmetic over rational numbers� ECLiPSe
�MJS�
�� a successor to the CHIP system �DvHSA����
computes constraints over an extended Boolean algebra with symbolic constraints and performs
linear arithmetic over both rational numbers and bounded subsets of integers
known as �	nite
domains��� For further accounts of these and many other such languages see �Coh��� and �JM����

Theoretically� CLP preserves and extends the semantic properties of pure logic programs� such as
operational� logical and 	x�point semantics which coincide in a natural way
compare� for example�
�Llo��� with �JMMS����� Indeed� it is the operational semantics with which we are interested in
this report and these will be studied in greater detail later� The following CLP example� which is
taken from �Kri���� illustrates how constraints can be combined into the context of logic programs
to provide a succinct and expressive declarative language�

Example �
� In this CLP
R� program� mortgage is de	ned in terms of the principal P� duration
D� interest rate I� monthly payments MP and balance B�

mortgage�P� I� MP� B� D� ��

D �� 	�

B
MP � P��I
	��

mortgage�P� I� MP� B� D� ��

	 � D�

mortgage�P��I
	��MP� I� MP� B� D�	��

The system can be used to fully evaluate a goal for a particular variable� e�g�

� D � 	��� I � ���	� B � �� MP � 	��	���� mortgage�P� I� MP� B� D��

yields the result P � 	������ However� given a goal which speci	es values for just D� I and B� the
system performs partial evaluation for P and MP� e�g�

� D � �� I � ���	� B � �� mortgage�P� I� MP� B� D��

yields the result MP � ������������P�

The expressive power stems from the fact that by using built�in constraint predicates� such as in
the predicate call B
MP�P��I
	� of the example above the user program can invoke specialised
and pre�compiled decision procedures� This way the programmer bypasses the limitations de	ned
by the abstractness of the logic programming language and reaches through to more concrete
semantic levels� These semantic levels are outside of the logic programming model and their
operational details are typically abstracted away by referring to a model�theoretic account of
constraint relations� Indeed� according to the standard semantic view �JM��� CLP
X � is explained
as a parametrisation of the semantics of LP
be it operational� declarative� or 	xed�point� in a
model�theoretic semantics of the domain of computation and constraints X �

It has been noted� however� that this straightforward approach makes for a rather weak link between
constraints and ordinary logic programming� which does not adequately capture a number of
operational aspects of this relationship� For one� the 	xed�point semantics no longer corresponds to
computations� Since it refers to the model�theory of X it relies on omnipotent semantic reasoning�
rather than formal and e�ective deduction of constraints� As pointed out by Argenius and Voronkov
�AV��� it is possible to hide an arbitrary amount of computations in the constraint level� which is

Technical Report� University of Passau � MIP������ July ����

then available within the very 	rst iteration of the 	xed�point model� Secondly� it does not capture
the essential di�erence between constraints and propositions� the semantically relevant information
in user predicates merely is whether or not they are consequences of a program
yes�no�� answer
constraints� in contrast� are relevant not because they are derivable from some syntactic or semantic
theory� but because they are symbolic representations of a solution set
MP � ������������P��
Thus� constraints have an intensional �avour that needs to be represented by an adequate semantics
for CLP� For LP a more intensional semantics of answer constraints� called s�semantics has been
proposed �FLMP��� to capture this aspect� for the special class of uni	cation constraints�

In this work we present a new proof�theoretic approach to CLP which is even more intensional
than the s�semantics� It provides for a strong link between the operational semantics of LP and
constraint generation� and it does not depend on a model�theoretic semantics for constraints�
We propose QLL as a logic framework in which CLP programs are a fragment of formulas and
operational semantics for CLP correspond to derived logic calculi for this fragment� The general
philosophy behind this proof�theoretic approach is this�

Given that a logic calculus� especially a constructive one� is a good way to formalise
intensional aspects of a logic theory� and if logic programs truly can be seen as logic
theories� then it should also be possible to capture the intensional aspects related to
the execution of logic programs in terms of logic calculi�

The goal of treating operational semantics of logic programs as logic proof rules may appear
mistaken� Given the intrinsic mismatch between constraint veri	cation and constraint generation
one may be lead to conclude that �logic programming systems are not in general theorem�provers�
�HSH���� In this report we show they are� provided we take the right abstract point if view�

Proof�theoretically� the execution of a query
open formula� mortgage�P� ���	� MP� ��

�� with respect to a program mortgage is equivalent to proving the existential closure
�P� MP � U� mortgage
P� ���	� MP� �� ��� where U stands for the universe� in the logic calculus re�
lated to mortgage� Provided the calculus is constructive this corresponds to exhibiting a satisfying
substitution for mortgage�P� ���	� MP� �� ��� This seems easy enough but there still is some
way to go from knowing that an answer constraint exists to actually computing it� and moreover
computing it in as general a form as possible� In fact� if all we have is the standard existential
property of constructive logic we are only entitled to infer the existence� of a ground substitution
for mortgage�P� ���	� MP� �� �� which is hardly adequate for logic programming� It seems
we need stronger constructive principles to explain the generation of answer constraints� In this
report� we solve this proof�theoretic problem in the following form� We take the execution of the
query mortgage�P� ���	� MP� �� �� to be essentially equivalent to proving a �� formula

�P� MP��c� c � mortgage
P� ���	� MP� �� ��

where the existentially quanti	ed c ranges over a class C of constraints� and � is logic implication�
Now� if the logic is constructive this implies the existence of a closed function term C �
U�U�� C
such that

�P� MP�C
P� MP� � mortgage
P� ���	� MP� �� ���

The term C is the answer constraint� and if things are set up symbolically enough� then we may
have C
P� MP� �
MP � ����������� � P� as desired� To re	ne the picture further� we note that we
can do without the second�order existential quanti	er over constraints� Since we only ever need the

�As pointed out in �HSH�
�� the existence of a ground answer substitution is guaranteed already by the soundness
of logic programming for Herbrand models� So� the constructive nature of the calculus does not add any extra
information�

Technical Report� University of Passau � MIP������ July ����

quanti	er in the special form �c � C� c � S where S is a
query� formula we may as well hard�wire
it in and replace it by a new modal operator �S� Then the query becomes

�P� MP�� mortgage
P� ���	� MP� �� ���

This� in a nutshell� motivates our interest in a 	rst�order intuitionistic modal logic� Also observe
how the operational semantics of CLP is captured by this constructive proof�theoretic way of
arranging a�airs� Since the extracted answer constraint depends on the proof� di�erent proofs
will give rise to di�erent constraints� This suggests that particular operational semantics for
CLP� considered as methods of constructing constraints� may be characterised by particular logic
calculi and proof search strategies for QLL� Also� this implies that in order to get complete con�
straint information for a given query mortgage
P� ���	� MP� �� �� we must consider the set of all
proofs of �P� MP�� mortgage
P� ���	� MP� �� ��� This matches the well�known result that operational
completeness for CLP� in general� requires to collect the answer constraints of several successful
executions
see e�g� �JM����� In order not to claim too much it should be added that in this report
we do not analyse such a collection process�

� Quanti�ed Lax Logic QLL

Here we introduce the 	rst�order extension to Propositional Lax Logic
PLL� �FM��� FM����
dubbed QLL� Its semantics is given in terms of Kripke�style models and there are complete proof
systems in the form of both Gentzen and natural deduction sequents� and Hilbert deduction� In this
section we only brie�y touch upon the Gentzen system� the natural deduction calculus introduced
in Sec� � being our main concern� The Hilbert axiomatisation is obtained simply as a 	rst�order
intuitionistic axiomatic extension of the Hilbert system for PLL�

We have a language L of predicate symbols P and 	rst�order terms t� The terms are constructed
in the usual manner from variables x� constants c and function symbols f �

De�nition �
� Formulas M of QLL are generated by the following grammar

M �� � P j false j M � M j M 	 M j M � M j �M j �x�M
x� j �x�M
x�

where P is a meta�variable for atomic formulas Pn
t�� � � � � tn�� Negated formulas may be de	ned
by M � false�

The model theory for QLL based on a variant of Kripke models� called constraint models� is given
in Section �� Here we are more interested in the proof�theory of QLL� which is not only adequate
for the constraint models but in addition captures some of the intensional semantics of constraint
handling�

A multi�succedent Gentzen�style calculus for QLL is obtained from a 	rst�order intuitionistic
Gentzen sequent calculus
see �van���� augmented by two Lax Logic�speci	c rules� ��L and ��
R� This calculus is seen in Fig� �� Sequents are of form �
 � where � and � are 	nite lists of
formulas� We write
QLL M to denote that the sequent
M is derivable in QLL�

Theorem �
� �Cut�Elimination� The cut rule Cut is admissible in QLL� i�e� if �
QLL M � then
this sequent is derivable without the Cut rule�

A detailed proof of Cut�elimination can be found in �FW���� It will sometimes be useful to extend
QLL by particular theories� for instance to axiomatise constraints� We write QLL
T � for the
extension of QLL by theory T � which need not be purely axiomatic� but include extra rules as
well� Speci	cally� QLL
�� is QLL extended by the usual equational reasoning�

Technical Report� University of Passau � MIP������ July ����

Structural Rules

Axiom
M �M

 �M��
�M � �
Cut

 � �

�M�N�
� � �
ExchangeL

� N�M�
� � �

 � ��M�N���

ExchangeR

 � �� N�M���

 � �
WeakL

�M � �

 � �
WeakR

 �M��

�M�M � �
ContractionL

�M � �

 �M�M��
ContractionR

 �M��

Logical Rules

FalseIntro
false � N

�M�N � �
��L

�M �N � �

 �M��
 � N��
��R

 �M �N��

�M � �
� N � �
��L

�M �N � �

 �M�N��
��R

 �M �N��

 �M��
� N � �
��L

�M � N � �

�M � N
��R

 �M � N

�M � �N
��L

��M � �N

 �M��
��R

 � �M��

�M
a� � �
��L

� �x�M
x� � �

 �M
t���
��R

 � �x�M
x���

�M
t� � �
��L

� �x�M
x� � �

 �M
a�
��R

 � �x�M
x�

Restriction for rules ��R and ��L	
a must not occur in
� � or M
x��

Figure �� Gentzen Sequent Calculus Rules for QLL

Technical Report� University of Passau � MIP������ July ����

� Computational Lambda�Calculus � !c and Constraints

We begin our investigation into the connection between QLL and CLP by looking at a Natural
Deduction presentation of QLL with its corresponding lambda�calculus ���c of proof terms� The
rules of ���c � which we refer to as QLL�ND� are given in Fig� �� It is convenient to count true as an
atomic formula and � as a basic value� although they could both be de	ned using false� Let U be
the set of well�formed object level terms� possibly containing free variables� In all rules mentioning
object level terms t we suppose the terms are well�formed� i�e� t � U � If � �M�� � � � �Mn we write
�
ND�QLL N or simply �
 N to indicate that there is a proof ofN from assumptions � in QLL�ND�
i�e� that there is a proof term p and proof variables wi such that w� �M�� � � � � wn �Mn
 p � N �

Theorem �
� �Extensional equivalence� QLL�ND is extensionally equivalent to the Gentzen
system� in the sense that �
QLL N �� �
ND�QLL N for all formulas N �

I
�� z �M���
 z �M

trueI�
 � � true
�
 p � false

falseE�
 efq
p� �M

�
 p �M �
 q � N
�I�

p� q� �M �N

�
 r �M �N
�E�
 ��
r� �M

�
 r �M �N
�E�
 ��
r� � N

�
 r �M 	N �� y �M
 p � K �� z � N
 q � K
	E�
 case r of ���
y�
 p� ��
z�
 q� � K

�
 p �M
	I�
 ��
p� �M 	N

�
 p � N
	I�
 ��
p� �M 	N

�� z �M
 p � N
�I�
 �z � p �M � N

�
 p �M � N �
 q �M
�E�
 p q � N

�
 p �M
�I�
 val
p� � �M

�
 p � �M �� z �M
 q � �N
�E�
 let z � p in q � �N

�
 p �M
�I
x not free in ��

�
 hp j xi � �x�M
�
 p � �x�M

�E�
 �t p �M �t�x�

�
 p �M �t�x�
�I�
 �t
p� � �x�M

�
 r � �x�M �� z �M
 p � K
�E
x not free in K or ��

�
 case r of ��x
z�
 p� � K

Figure �� Natural Deduction Rules for QLL�

Under the Curry�Howard isomorphism� or propositions�as�types principle� the rules of QLL�ND
can be looked at from two directions� They can be viewed as typing rules for a formal extension of
Moggi�s Computational Lambda�calculus �c �Mog��� by 	rst�order dependent sums and products
!� corresponding to 	rst�order existential and universal quanti	cation respectively� They can also
be viewed as proof assignment rules for QLL associating explicit proof terms to theorems of QLL� It
is this second interpretation that we are interested in here� For us proofs represent extra intensional
information about why a formula is true rather than simply the extensional fact that it is true�

Technical Report� University of Passau � MIP������ July ����

As it turns out this extra intensional nature of proofs is su�ciently rich to accommodate what is
referred to as a constraint both in hardware or software speci	cation and in CLP programming�
Our idea is that notions of constraint correspond to speci	c computational semantics for ���c proof
terms such that we can interpret a proof p of a formula �M as the computation of a constraint c
such that �M holds under c�� More generally� each proof p of an arbitrary formula M computes
some constraint information c� the exact nature of which depends on the structure ofM � such that
the derivation of p �M corresponds to the statement �M �re	ned�by�c is true��

Let us postpone the relation between proofs and formulas for a short while and instead� for the
remainder of this section� concentrate on the proof terms themselves and their computational
interpretation� The proof terms generated by the QLL�ND rules are built according to the abstract
grammar seen in Fig�
� A proof term is well�typed if it can be typed by the QLL�ND rules of
Fig� ��

p ��� z j � j efq
p� j
p� p� j ��
p� j ��
p� j

case p of ���
z��
 p� ��
z��
 p� j ��
p� j ��
p� j

�z � p j p p j val
p� j let z � p in p j

hp j xi j �t p j �t
p� j case p of ��x
z�
 p�

x ranges over object variables� z� z�� z� over proof variables� t over
well�formed object�level terms�

Figure
� Abstract Syntax of ���c Proofs�

As a very general computational interpretation of ���c � obtaining a generic calculus of constraints�
we take the equational theory induced by extending �c canonically by 	rst�order dependent sums
and products� This equational theory can be derived from the categorical models for Lax Logic�
presented in �Men�
�� which are essentially hyper�doctrines with a strong monad� The � and �
equations are given in Fig� ��
We assume that the terms on both sides of every equation in Fig� � are well�typed� This implies�
for instance� that in equation ��ass variable y does not occur free in r� Apart from � and �
equations we also adopt the usual re�exivity� symmetry� transitivity� and substitution rules for
�� Furthermore� we include all the 	 rules to make � a congruence also with respect to the
variable binding operators case r of ���
y�
 p� ��
z�
 q�� �z � p� let z � p in q� hp j xi�
case r of ��x
z�
 p�� where the bound variables in each case are underlined� Finally� as usual� we
identify terms up to
�conversion and assume that substitution pft�xg renames bound variables
to avoid name capture�

Valuable as it would be to do so� we do not propose to investigate the equational theory or the
general category�theoretic framework for ���c here� nor does space permit detailed discussion of
reduction properties of ���c � A purely propositional extension of Moggi�s �c including sums has
been analysed in �BBdP��� and proved to be strongly normalising under
�c reduction�� Their
paper is unusual in that �c� as here �

��
c � is studied from a proof�theoretic point of view� This report

takes �BBdP��� further both in extending �c to ���c and in specialising ���c from a calculus of
proofs to a method for calculating constraints� In the next section we turn ���c into a more speci	c
calculus of constraints� �c
C�� generated from a class C of QLL�formulas� This is a fairly speci	c

���c consists of a standard ��reduction relation for �c augmented by the reduction let z � let y � p in q in r �c

let y � p in let z � q in r�

Technical Report� University of Passau �� MIP������ July ����

true�� z � �
z � true�
false�� efq
y� � efq
z�
y� z � false�
����� ��
y� z� � y
����� ��
y� z� � z
���
��z� ��z� � z
z �M �N�
	���� case ��
y� of ���
z��
 q� ��
z��
 r� � qfy�z�g
	���� case ��
y� of ���
z��
 q� ��
z��
 r� � rfy�z�g
	�� case y of ���
z��
 pf��
z���yg� ��
z��
 pf��
z���yg� � p
���
�z � p� y � pfy�zg
��� �z �
y z� � y
��ass let z � let y � p in q in r � let y � p in let z � q in r
��� let z � val
y� in p � pfy�zg
��� let z � y in val
z� � y
��� �t
hp j xi� � pft�xg
��� h
�x z� j xi � z
��� case �t
p� of ��x
z�
 q� � qfp�zgft�xg
��� case y of ��x
z�
 pf�x
z��yg� � p

Figure �� Equations for ���c �

semantics but adequate to capture the standard CLP paradigm� A larger variety of standard and
nonstandard constraint semantics may be covered within the general
categorical� framework for
���c axiomatised by the equations in Fig� �� A class of such more general models� generalising
�c
C�� will be introduced in Section ����

��� C�Calculi� A Special Class of ���c Models

The class of �c
C� calculi is generated from a notion of constraint C� They correspond to the
�constraints�as�built�in�predicates� paradigm and thus provide for a direct application of the gen�
eral theory to constraint logic programming CLP� We use the following de	nition�

De�nition �
� A notion of constraint for QLL is a pair C �
"��� where " is some class of
QLL formulas and � an equivalence relation on "� These have to satisfy the following conditions

�i� " contains equality x � y and is closed under conjunction �� existential quanti	cation ��
and substitution ft�xg
 �ii� � contains all standard logical equivalences involving �� �� �� and in
particular is a congruence w�r�t� �� �
 �iii � � is decidable�

This de	nition complies with the standard view adopted in CLP systems �JM��� according to which
constraints are a collection of privileged 	rst�order predicates� which are closed under some useful
operations� and� most importantly� whose semantics is built in
see e�g� �SA��� DGW��� JM����
so that their computation is precompiled� This precompiled and built�in constraint semantics is
captured� in our de	nition� by the equivalence relation�� Based on this equivalence we have control
over the extensional aspects of constraints� For instance� to check the solvability of a constraint c
over a single variable x we test whether
�x� x � x� �
�x� c� holds or not� This is always possible
as � is required to be decidable� But this is our only concession to implementation issues� here� We
disregard the intensional aspect of how� is decided� practically� This� of course� depends very much
on the particular class of constraints with di�erent classes admitting di�erent algorithms� In some
cases� �may coincide with provable equivalence in QLL� possibly even provable equivalence in some

Technical Report� University of Passau �� MIP������ July ����

conveniently implementable fragment of QLL� In other cases � may be implemented by dedicated
external algorithms� like graph�theoretic analyses to solve� say� systems of one�sided inequations
over integers of the form s � t # ���� In general� when " is an undecidable class of predicates�
such as nonlinear constraints on real numbers� � will only capture some decidable abstraction of
the properties expressible by the constraints in "� We are free to adjust the parameter � and� just
as is done in standard CLP systems� compute in this way the semantics of constraints only so far
as can be implemented e�ciently�

De�nition �
� Let C �
"��� be a notion of constraint for QLL� The calculus �c
C�� called
C�calculus� is the simply�typed lambda calculus

� with 	nite products
�� ��� 	nite sums
#� ��� exponentiation
��� and two distinguished
types U� C�

� generated from the well�formed terms of QLL as terms of type U� the constraints c � C as
terms of type C� and families of operations val
��� let z �
�� in
�� of type � � C�

� subject to the typing rules of Fig� � and the equations of Fig� ��

� ��� � j � j U j C j � # � j � � � j � � �

p ��� x j t j c j �x� p j p � p j � j efq
p� j
p� p� j ��
p� j ��
p� j

case p of ���
z��
 p� ��
z��
 p� j ��
p� j ��
p� j �z � p j p p

val
p� j let z � p in q

x ranges over variables� t � U � c � C

Figure �� Syntax of �c
C��

�c
C� can be seen as a concrete model of Moggi�s computational lambda calculus �c with strong
monad T
�� � � � C for a type C of constraint propositions� The types � and terms p of �c
C�
are generated by the abstract syntax shown in Fig� �� The typing rules and equations for the
simply�typed lambda calculus are standard� and the typing and equations for the operations val
���
let z �
�� in
�� are obtained from those of �c �Mog���� Thus� only the remaining typing rules
in Fig� � and equations in Fig� � which are the constraint�speci	c part of �c
C�� deserve some
comments� By assumption every object�level term of QLL is included in �c
C� as a term of type
U� and every object�level variable of QLL is a �c
C��variable of type U� Consequently� every
object�level term t with a free variable x is an open �c
C��term of type U with free variable x of
type U� The variable can be substituted for by any �c
C��term s of type U� which is achieved by
the typing rule

�
 s � U
t � U � FV
t� � �� x

�
 tfs�xg � U

in Fig� �� where here and in the following FV
t� is the set of free variables of t� One may wonder�
why in a natural deduction style typing system substitution must be accounted for explicitly� The
answer is that the more �natural�� and simpler rule

t � U � FV
t� � �� x
�
 t � U

Technical Report� University of Passau �� MIP������ July ����

does not su�ce� For then we would not be able to form useful terms of type U� such as f

�x�s�t�
or f
��
s� t�� where f is a function symbol of QLL� and s� t object�level terms� which we would
like to have available as abstract deconstructions of the concrete object�level terms f
sft�xg� or
f
s�� respectively� A similar argument suggests the typing rule

�
 s � U
c � "C �FV
c� � �� x

�
 cfs�xg � C

for constraints�

Simply�typed Lambda Calculus

�� x � ����
 x � � �
 � � �
�
 p � �

�
 efq
p� � �

�
 p � � �
 q � �
�

p� q� � � � �

�
 r � � � �
�
 ��
r� � �

�
 r � � � �
�
 ��
r� � �

�
 r � � # � �� y � �
 p �
 �� z � �
 q �

�
 case r of ���
y�
 p� ��
z�
 q� �

�
 p � �
�
 ��
p� � � # �

�
 p � �
�
 ��
p� � � # �

�� z � �
 p � �
�
 �z � p � � � �

�
 p � � � � �
 q � �
�
 p q � �

Constraints

�
 p � � � C �� z � �
 q � � � C
�
 let z � p in q � � � C

�
 p � �
�
 val
p� � � � C

�
 s � U
t � U � FV
t� � �� x

�
 tfs�xg � U
�
 s � U

c � "C �FV
c� � �� x
�
 cfs�xg � C

�
 p � C �
 q � C
�
 p � q � C

�� x � U
 p � C
�
 �x� p � C

Figure �� Typing rules of �c
C��

Let us turn now to the equations of �c
C�� The equations C�val� C�let� and C�� are the interface
between the computational lambda calculus �c and the constraints of C� Equation C�� turns
semantic equivalence of constraints into equality on constraint terms� Given the equational theory
thus induced on C terms is to be conservative� then for it to be �computational�� i�e�
e�ciently�
decidable the equivalence � had better be
e�ciently� decidable in the 	rst place� This is why
we require decidability of �� The other two equations C�val and C�let
see Fig� �� allow us to
translate the val and let constructs into logic operations on constraints� This is possible in
case that the types involved are essentially 	rst�order� which is expressed by the side conditions
x� y� z � Uk � where Uk abbreviates the k�fold product U � � � � � U� It is possible to relax this
restriction to arbitrary 	rst�order types� i�e� those obtained from U� �� �� by means of � and #�
though the equations would be more complicated then� For our purposes the types Uk su�ce� If�
instead of QLL� constraints were taken from a higher�order logic we could have equations C�val�

Technical Report� University of Passau �
 MIP������ July ����

C�let for arbitrary types� Speci	cally� C�val would become val
x� y �
x � y� and C�let would be

let z � p in q�x � �z� p z � q x
see also Example ���� in the next section��

We note� as before with ���c � that implicit
�conversion and appropriate congruence rules for
equality are assumed� This time� the congruence property also must apply to constraint conjunction
� and the variable binding operator �
	�rule�� Also� we adopt the usual notions of free variables�
open and closed terms� We de	ne a term p to be quasi�closed if all its free variables are of type U�

Simply�typed Lambda Calculus

��� z � �
z � ��
��� efq
y� � efq
z�
y� z � ��
����� ��
y� z� � y
����� ��
y� z� � z
���
��z� ��z� � z
z � � � ��
#���� case ��
y� of ���
z��
 q� ��
z��
 r� � qfy�z�g
#���� case ��
y� of ���
z��
 q� ��
z��
 r� � rfy�z�g
#�� case y of ���
z��
 pf��
z���yg� ��
z��
 pf��
z���yg� � p
���
�z � p� y � pfy�zg
��� �z �
y z� � y

Constraints

��ass let z � let y � p in q in r � let y � p in let z � q in r
��� let z � val
y� in p � pfy�zg
��� let z � y in val
z� � y
C�val val
x� y � ��x � ��y � � � � � �kx � �ky
x� y � Uk�
C�let
let z � p in q�x � �z�� � � � � zk� p
z�� � � � � zk� � q xf
z�� � � � � zk��zg
z � Uk�
C�� c � d
c� d � "� c � d�

Figure �� Equations for �c
C��

We now obtain a speci	c computational interpretation of ���c by translation into a given C�calculus
in the following way�

De�nition �
� Let C be a notion of constraint for QLL� For every assignment of �c
C� types jAj
to atomic formulas A of QLL we de	ne the following translation of ���c into �c
C�

�� Formulas M of QLL are translated into types jM j of �c
C�

jtruej �� �

jfalsej �� �

j�M j �� jM j � C

jM� �M�j �� jM�j � jM�j

jM� 	M�j �� jM�j# jM�j

jM� �M�j �� jM�j � jM�j

j�x�M j �� U� jM j

j�x�M j �� U� jM j

Technical Report� University of Passau �� MIP������ July ����

�� QLL�ND proofs p of a formula M are translated into terms jpj of �c
C�

�a� jhp j xij �� �x�jpj

�b� j�t pj �� p t

�c� jcase r of ��x
z�
 p�j �� jpjf��jrj�xgf��jrj�zg

�d� j�t
p�j ��
t� jpj�

�e� All other constructs of ���c are translated to themselves

Lemma �
	

�i� For every proof p �M of ���c � the translation jpj is a well�formed term of �c
C� of type jM j�

�ii� The translation respects substitution� i�e� jpfq�zgj � jpjfjqj�zg and jpft�xgj � jpjft�xg�

Theorem �
� Every assignment of �c
C��types jAj to atomic formulas induces a model of ���c �
i�e� a semantics�preserving translation of ���c into �c
C��

The computational semantics of ���c induced by the pair
j � j� �c
C�� is parametric in the choice of
constraint propositions "C � the equivalence �C � and an assignment of types jAj of �c
C� to atomic
QLL propositions A� We will consider the case jR
t�� � � � � tm�j � Uk � where k � �
R� � N is a
function of the relation symbol R�

Although we generally will be interested in the semantics obtained by translating ���c into �c
C�
via j � j� it is useful to distinguish between these two levels of ��calculus systems� The ���c system
is used as a method of recording proofs� independent of any particular notion of constraint� whilst
the �c
C� system will be used to capture concrete constraints from CLP program clauses� By
reducing the ���c proof term� we calculate the constraint�independent semantics
by the equations
of Fig� ��� by reducing its j � j�translation in �c
C�
by the equations of Fig� �� we evaluate concrete
constraints in C� It is usually more advantageous to stay at the more abstract ���c level than to
pass to the concrete �c
C� level too early� We will give an example of this later
Example ������ The
reductions that will be applied are the
�c��reductions shown in Fig� �� As usual� a �c
C��term
that cannot be reduced further by
�c� is called a normal form�

�x�p�q
� pfq�xg

let z � let y � p in q in r
c let y � p in let z � q in r

let z � val
y� in p
c pfy�zg

val
p� q
� ��p � ��q � � � � � �kp � �kq
p� q � Uk�

let z � p in q� r
� �z�� � � � � zk� p
z�� � � � � zk� � q r f
z�� � � � � zk��zg
z � Uk�

Figure ��
�c��reductions for �c
C��

Proposition �
� The type C of �c
C� is a conservative extension of C �
"���� i�e� �i� for every
quasi�closed term t of type C there exists some c � " such that t
�c� c� and �ii� if s� t � " and
s � t holds in �c
C�� then s � t�

Technical Report� University of Passau �� MIP������ July ����

The intensional aspect of actual constraint solving is not accounted for by the reductions of Fig� ��
Constraint solving can be viewed as a method of computing normal form representatives of elements
c � "
the
�c��normal forms of type C� for the equivalence classes modulo �� see e�g� �SA����
This can be done by reducing constraints into so�called solved form or canonical form� In our
framework this additional �"�reduction� would correspond to� for terms c � "� what ��reduction
is for the
ambient� lambda calculus� However� there is an important di�erence in the operational
model as compared to lambda calculus in that "�reduction may be nondeterministic� i�e� not
con�uent� When computing a solved form to test for solvability e�ciently we may want to give up
constraint information and merely work with su�cient conditions suggested by heuristic decisions�
In such a case the reduction would leave the equivalence class of a constraint� To cover these
situations as well� one would replace the equivalence � by a partial ordering v on constraints
which captures relative strength� We will not explore this here� though�

��� Constraint Relations� A General Class of ���c Models

Here we introduce a new calculus $c of constraint relations the models of which provide for a
very general class of interpretations of ���c � The concrete constraint calculus �c
C� de	ned in the
previous section is but a special case of such a model� The reader may skip this section on 	rst
reading since the results presented in the later sections do not depend on it�

De�nition �

 A calculus of constraint relations for QLL is a simply�typed lambda calculus $
with 	nite products
�� ��� 	nite sums
#� ��� exponentiation
��� and containing the terms of
QLL as a sub�language of type U
 moreover� there is a distinguished type C together with two
families of constants

�� � � � � � C

������ �

� � � C��
� � � � C���

� � � C�

with
� �� � ranging over all types of $� which satisfy the following equations

p ������ �� � p
��

�� ������ p � p
��

p ������
q ������ r� �
p ������ q� ������ r

�

p ������ q �
id��C ���C���� q� � p�
��

where p� q� r have types
 � � � C� � � � � C� � � � � C� respectively� For convenience�
the operator � is applied in in	x notation
 � is the function composition combinator� i�e� f � g �
�x�f
g x�
 id is the identity function� id � �x�x� Let the free calculus of constraint relations for
QLL be denoted by $c�

Remark� By assumption every object level term t of QLL is included in $ as a term of type U�
and every object level variable of QLL is a $�variable of type U� Thus� every object�level term
t
x�� � � � � xn� with free variables xi is an open $�term of type U with free variables xi of type U�

Every calculus of constraint relations� or a model of $c� de	nes the computational part of a
relational notion of constraint � Our idea is that the objects of type � � C represent a constraint
on objects of type � � We may call the type C the constraint classi	er of $� Given t � � and a
constraint c � � � C� then� intuitively� c t � C represents all information concerning the solvability
of constraint c for object t that is considered relevant in the given $ model� A term of type
� � � � C� i�e� a constraint on � that depends on �� may be thought of as a constraint on

Technical Report� University of Passau �� MIP������ July ����

� � � � We can call this a constraint relation� In general� a term of type �� � � � � � �n � C
is an n�ary constraint relation� A black box with n ports of types ��� � � � � �n which imposes some
constraint on a hypothetical environment that connects with these ports� The two families � and
� that come along with every $ correspond to two kinds of operations on such constraint relations�
�� � � � � � C is the identity relation and ������ is the composition of constraint relations� The
	rst three equations given in Def� ��� essentially postulate a monoid of constraint relations with
� as neutral element and � as composition� Using these operations� as well as ��abstraction and
variables of $ to rearrange ports� we can build up from primitive constraint relations complex
constraint networks � In fact� the free $c may be seen as a calculus for higher�order constraint
networks� such as those of �TU�
��

Remark� The type C represents an internal category in $c� The objects of this internal category
are the types of $c� the arrows a � �
C � are the terms a of type � � � � C� � is the identity
arrow� and p ������ q �

C � the composition of arrows p �

C � and q � �
C
� The equations

���
���

� in Def� ��� are precisely the monoid laws for this internal category� The remaining
equation
�� ensures that the two composition operations � in $c and � in C are coherent� that
�whenever possible� they can be expressed in terms of each other� Thus� in category�theoretic
terms a constraint calculus is a bicartesian� closed category C with a type U of QLL terms and
an internal category object C�

Remark� There is an equivalent category�theoretic characterisation in terms of monads� which
is perhaps more in the spirit of Moggi�s original conception of computational lambda calculi� A
constraint calculus is a bicartesian closed category with an object C such that the map � �
 � � C
is a strong monad� One can show� using the equations
��%
��� that the mapping F translating a
function f � � � � of into the arrow F f � �� � f � �
C � is a functor from $c to the internal
category C� Also� the mapping G which takes an object � of C to the type � � C of $c� and an
arrow g � �
C � of C to the function Gg � id � g �
� � C� �
� � C� is a functor from the
internal category to $c� It turns out that G the right adjoint to F � with � as unit and id as counit�
Moreover� this adjunction is so that the functor GF from $c to $c is a strong monad�

Example �
� The standard set�theoretic model of the pure simply�typed lambda calculus can be
extended to a model of $c by taking C to denote some 	xed complete lattice� The identity � on
� is de	ned so that for elements x� y � � � �
x� y� is the top element � of the lattice if x and y
are identical and the bottom element � otherwise� Composition q � p is de	ned as
q � p�
r� t� �W
f p
r� s� � q
s� t� j s � � g� where � is the meet and

W
the supremum in C�

A distinguished such �lattice� model is where C is the set B � f�� �g of Booleans with � � �� The
information recorded by elements of C � B is whether or not the respective constraint holds� A
constraint c � � � B on � is simply a subset of � � a constraint relation p �
� � � B a set�theoretic
relation� � is the identity relation and � is relation composition�

Example �
�� The trivial two�element model of $c consists of a distinguished singleton set � �
f�g and the empty set � � �� The types U and C are identi	ed with �� This model corresponds to
the proof collaps model in which no constraint information is recorded and we are interested only
in the extensional fact that a formula of QLL is true�

The next examples link up the notion of constraint relation with the calculus �c
C�� essentially
showing that �c
C� is a special version of a calculus of constraint relations�

�a category that is �nitely complete� �nitely cocomplete� and has exponentials�

Technical Report� University of Passau �� MIP������ July ����

Example �
�� Let C be a distinguished subclass of formulas of some many�sorted higher�order
logic with term language U and equality �� We construct a special theory $c
C�� and hence a
model� of $c as follows
 We consider every formula M � C as a new term of type C� and
identify the elements of C up to provable logic equivalence� Then� if M has free �object� vari�
ables x�� � � � � xn we have a $c
C� term �x�� � � ��xn�M of type U � � � � � U � C� Then�
we interpret the identity constraint �U � U � U � C over the universe type U with equality
�x��y�x � y� and the composition �U�U�U by a combination of conjunction and existential quan�
ti	cation �z��x��y� �v�
��z�x v �
��z� v y� Note that by identifying constraint formulas only up
to provable equivalence rather than semantic equivalence and the fact that higher�order logic is
incomplete� C essentially becomes a type of non�classical truth�values� This model� which we refer
to as $c
C�� thus is more intensional than the set�theoretic one with C being the lattice of Boolean
truth values �see Example �����

Example �
�� Every topos is a model of $c� The constraint type is the subobject classi	er &�
The operators � and � are de	ned as in the previous example�

We now obtain a speci	c computational interpretation of ���c by translation into a given calculus
of constraint relations in the following way�

De�nition �
�� Let $ be a calculus of constraint relations� For every assignment of $ types jAj
to atomic formulas A of QLL we de	ne the following translation of ���c to $

�� Formulas M of QLL are translated into types jM j of $ as in De	nition ����

�� QLL�ND proofs p of a formula M are translated into terms jpj of $ of type jM j

�a� jval
p�j �� �jMj jpj

�b� jlet x� p in qj ��
idjMj�C �
�x� jqj�� jpj

�c� The remaining constructs are translated as in De	nition ����

Lemma �
��

�i� For every proof p �M of ���c � the translation jpj is a well�formed term of $ of type jM j�

�ii� The translation respects substitution� i�e� jpfq�zgj � jpjfjqj�zg and jpft�xgj � jpjft�xg�

Theorem �
�	 Every calculus $ of constraint relations is a model of ���c � the interpretation given
by the translation j � j�

� Lax Logic Programming LLP

In this section we introduce the LLP�fragment of QLL for Lax Logic programming� LLP acts as
a language for both actual� concrete CLP programs and their abstract forms� as introduced in
the next section� LLP has a similar relationship to QLL as the fragment of Prolog has to full
intuitionistic predicate logic� We also introduce two sub�structural calculi of QLL�
r and
l�
which are two di�erent formalisations of constrained SLD resolution� the standard goal�directed
backward operational semantics �JM��� of logic programming�

Technical Report� University of Passau �� MIP������ July ����

De�nition 	
� A �formula is a formula generated by the following grammar

S ��� true j A j S � S j S 	 S j �x� S�

where A is an atomic �program or constraint� formula of the language L� A LLP�clause is a
formula � of the form

� � �x�� � � � � xm� S � H�

where H is an atom P
x�� � � � � xn� or a modalised atom �P
x�� � � � � xn�� such that all free variables
of S are in the set fx�� � � � � xmg and m � n� H is called the head of the clause �� �formulas
and LLP�clauses are called LLP�formulas� A LLP�program is a 	nite list ! � ��� � � � � �n of LLP�
clauses�

 �formulas are useful to express complex queries and to form the Clark completion �Cla��� of a

program� predicate� i�e� to package up all program clauses for a given predicate into one self�
contained clause� In using the term �formula for this class of formulas we follow �AV���� In the
literature �formulas are also called goal formulas or queries� e�g� in �And���� Here� queries H may
also be modalised �formulas �S�

Two particular types of LLP�clauses will concern us� The 	rst are constraint�free clauses with
modalised heads� called abstract clauses� The other type of clause may contain constraints� but
the head is not modalised and not a constraint� These are called CLP�clauses� A LLP�program
in which all clauses are CLP�clauses is a CLP�program and one in which all clauses are abstract
clauses is called an abstract program�

The basic idea behind using a logic calculus as an operational semantics for constraint logic pro�
gramming is this� If ! is a program and H a query� then we use the rules of the calculus to search
for a proof �w � !
 p � H � From the proof p� then� given some suitable semantic interpretation
we obtain an answer constraint� For LLP�programs one such calculus is QLL�ND and a proof
semantics is j � j� Although much more structure�directed than a Hilbert calculus� the natural
deduction calculus of QLL� in a sense� still gives far too loose an operational semantics in that it
still leaves a lot of room for proof search strategies� For practical purposes one would like to use
more speci	c calculi� in which proof search is more focused and less blind� Such calculi exists for
standard logic programming and they exist for LLP�programs� The 	rst sub�calculus of QLL which
we will consider for LLP is the natural deduction system obtained by the derived introduction and
elimination rules given in Fig� �� together with all introduction rules trueI � �I � 	I � and �I found
in Fig� ��
The reader can check that the following may serve as de	nitions of the derived ��terms�

true� �� val
��

��
p� q� �� let y � p in let z � q in val
y� z�

	�
p� i� �� let z � p in val
�i
z��
i � �� ��

��
p� w��t� �� let z � p in w �t z

��
p� t� �� let z � p in val
�t
z��

�N
p� w��t� �� w �t p�

The
r calculus of Fig� � is a calculus of simple uniform proofs� for formulas of the LLP�fragment�
characterised by the requirement that introduction rules have precedence over elimination rules

uniformity�� and that the only elimination rule is the backchaining rule �N
simple�ness�� Such

Technical Report� University of Passau �� MIP������ July ����

true�!
r true� � �true
!
r p � �Sft�xg ��!
r ��
p� t� � ��x� S

!
r p � �S !
r q � �T ��!
r ��
p� q� � �
S � T �

!
r p � �S 	�!
r 	�
p� �� � �
S 	 T �
!
r q � �T 	�!
r 	�
q� �� � �
S 	 T �

!
r p � �Sf�t��xg ��
where w � ��x� S � �A is a clause of !�
!
r ��
p� w��t� � �Af�t��xg

��� introduction rules trueI � �I � 	I � and �I
Fig� �� ���

!
r p � Sf�t��xg �N
where w � ��x� S � A is a clause of !�
!
r �N
p� w��t� � Af�t��xg

Figure �� LLP backward rules for SLD resolution�

systems are tailored towards a goal�directed backward proof search� and enjoy a close correspon�
dence to the SLD resolution scheme of logic programming �DG���� When used as an operational
semantics� the rules of
r are applied in a backward fashion� so as to build up a proof tree that
grows from the root� In order to execute a program ! with query H one starts with the sequent
�w � !
r z � H as the root and only leaf of a single�node proof tree� The proof variable z is
a uni	cation variable which is gradually instantiated in the construction� while variables �w are
not supposed to be uni	ed� Following standard terminology z may be called �exible and �w rigid
variables� The tree grows by expanding leaves� A leaf is expanded� 	rst by picking a rule whose
conclusion sequent uni	es with the leaf sequent� and then by adding the instantiated premiss se�
quent
s� of the rule to the tree� as the leaf�s new successor nodes� If the rule was an axiom�
i�e� without premisses� then the leaf is closed o� and marked as successful� All other leaves are
marked as dangling� If a proof tree has been built with root �w � !
r p � H in which all leaves are
successful� the execution terminates with the proof term p as the answer�

!� z � S
l val
z� � �S !� z � S
 z � S
!� z � true
l p � H
!
l pf��zg � H

!� z � S� � S�
l p � H
!� v� � S�� v� � S�
l pf
v�� v���zg � H

!� z � �x� S
l p � H
!� v � Sft�xg
l pf�tv�zg � H

!� z � S� 	 S�
l p � H
!� v � S�
l pf��v�zg � H

!� z � S� 	 S�
l p � H
!� v � S�
l pf��v�zg � H

!� z � Af�t��xg
l p � H w � ��x� S � �A in !
!� v � Sf�t��xg
l let z � w�t v in p � H

!� z � Af�t��xg
l p � H w � ��x� S � A in !
!� v � Sf�t��xg
l pfw�t v�zg � H

Figure ��� LLP forward rules for SLD resolution�

Technical Report� University of Passau �� MIP������ July ����

If we restrict the calculus
r to CLP�programs and drop all modality rules we get the sequent
calculus proposed by �DG���	 as a formalisation of constrained SLD resolution� A di�erent system
for SLD resolution is the sequent calculus
l given in Fig� ��� It� too� is a sub�structural calculus of
QLL� i�e� all its rules can be derived from those of QLL� However� in contrast to
r� it is designed
to be applied in a forward way� As may be worked out from the rules in Fig� �� the deconstruction
of the goal takes place on the left hand side of the sequent turnstile
l� Given a program ! and
a query �S� we start from an initial sequent �w � !� z � S
l val
z� � �S and derive a sequence of
sequents

� �w � !� z � S
l val
z� � �S � � � � � � �w � !� v� � S�� � � � � vn � Sn
l q � �S�

where each� is an application of a rule of Fig� ��� Each sequent in this forward derivation can be

viewed as a proof state� with �w � !� z � S
l val
z� � �S being the initial state� The derivation may
carry on until it reaches a state �w � !
l p � �S� The proof term p� then� represents the answer
constraint for the query S�

Remark� A technical note on variables is in order here� In the forward application of the
l�rules
new variables v� v�� v� and �u must be generated� The choice of these variables is unconstrained
except that they must be fresh� i�e� not appear already in the sequents�

There are reasons to consider the sequent calculus
l
under forward reasoning� as a more adequate
formalisation of constrained SLD resolution than
r
under backward reasoning�� First of all� proof
search in
l does not need uni	cation and �exible variables� This means that more work is done
within the calculus rather than outside at the meta�level�
Secondly� we note that if we cannot reach the 	nal sequent �w � !
l p � �S or if we stop before�
the sequent we end up with is a valid sequent� nevertheless� In other words� proof states in
l
are sequents� whereas in
r proof states are deduction trees� This is because the information we
have obtained in an intermediate
r�proof state resides in the validity of the intermediate tree as
a derived rule� We only have a valid sequent if all the leaves are successful� This implies that if
proof states are to represent formally the execution states of constrained SLD resolution� these
execution states are sequents in
l while they are trees of sequents in
r� Thus� the formalisation
of
l is more elementary� Concretely� a sequent �w � !� v� � S�� � � � � vn � Sn
l p � �S corresponds to
an execution state of constrained SLD resolution with the list S�� � � � � Sn being the current list of
goals and p containing the current contents of the constraint store�
A third justi	cation of
l is a technical one� The �c
C� proof terms generated by
l are in normal
form�� which they are not in
r� This has the e�ect that for
l constraint extraction is more direct�

The relationship between the systems is clari	ed by the following theorem� It says that as far as
provability is concerned both systems
r and
l essentially are equivalent�

Theorem 	
� Let ! be a LLP�program� S� S�� � � � � Sn a list of �formulas� and H � S or H �
�S� Then� !� S�� � � � � Sn
l H i� there exists a partial proof �� proof tree� !
r H with dangling
leaves !
r �Si� i � �� � � � � n� if H is modalised� and !
r Si otherwise�

It will be convenient to write �w � !� z� � S�� � � � � zn � Sn
r p � �S for an incomplete proof
�w � !
r p � �S with dangling leaves �w � !
r zi � �Si� i � �� � � � � n� This notational abbreviation
is justi	ed by Theorem ���� Henceforth� we use the term LLP�calculus� or simply LLP� and write

LLP to refer to one of the two sub�structural calculi
r�
l of QLL�

�The calculus of �DG��� also includes atomic constraint reasoning which in our case is contained in the semantics
of proofs�

�If we wish to prove a nonmodal query S we start from the sequent �w � �� z � S 	l z � S�
�This is a bit simpli�ed for the sake of the argument� A single application of ��� contraction must be done�

Technical Report� University of Passau �� MIP������ July ����

Of course� there are other sub�structural calculi for LLP conceivable� which are derived or admis�
sible for QLL� formalising di�erent operational semantics for LLP� As long as the translation into
QLL is constructive the method of constraint extraction presented in this work will apply� Such
calculi may even be of higher�order nature� involve QLL formulas outside of the LLP�fragment�
and cut rules� Both systems
l and
r presented above are special in that they do not have a cut
rule and always stay within the class of LLP�formulas� They can be seen as a compositional� or
	ne�grained� versions of an operational semantics in which every program construct �� ����	����

gets a separate logical meaning� If we take the modality to refer to the standard case of equality
constraints on Herbrand terms� then the calculus
r is related to the �one�formula� operational
semantics Csa� and
l to the �one�stack� operational semantics OS of �And���� and the calculus
LC
!� of �HSH���� It is important to stress that while
l is a genuine logic calculus� with indepen�
dent model�theoretic semantics� the systems OS of �And���� and the calculus LC
P� of �HSH���
do not have a logical status� They are merely operational semantics for programs that happen
to be logic formulas� We conjecture that also the other operational semantics of �And��� can be
captured� by di�erent sub�structural calculi of QLL� Also� LLP�calculi for the standard forward
generative model
see e�g� �JM���� are likely to exist�

Thus� QLL has the same r'ole of reference for a given LLP�calculus as the calculus
hc of �DG��� has
for the sub�calculus of simple uniform proofs� Having said that� it is interesting to note that QLL�
even without any constraint reasoning� is more powerful than
hc with constraint reasoning� This
is because in
hc constraints are required to be atomic formulas� so that the constraint�forming
operations ��� cannot be decomposed within
hc� This means� for instance� that we may be able
to prove (� s � �� s � �� t � s#
�
hc B
t� but not (� �s� s � � � s � � � t � s#
�
hc B
t� for
some CLP�program (� which however is possible in QLL� Such a composite constraint is extracted
from LLP�proofs� as will be seen in Example ����� This de	ciency of
hc has the e�ect that the
completeness theorems of �DG��� are not as strong as they could be�

In proposing QLL as a framework to formalise CLP semantics we deviate from other proof�theoretic
approaches� such as the sequent calculus of �DG���� in one important respect� LLP is not meant to
contain explicit constraint reasoning� From the point of view of LLP constraints are not 	rst�class
propositions but intensional re	nement information for propositions� whence they must live and
be dealt with at another level� viz� at the level of proofs� This separation of concerns is in the
same spirit as the strati	ed calculus of �DG��� but formalised in LLP into a di�erent dimension�
In LLP we envisage the following two�dimensional picture�

M N

d

c

c� d constraints

M�N formulas constraint analysis
� proof semantics

� constraint generation
abstract proof

LLP is intended to formalise an abstract view of CLP�programs that is concerned with constraint
generation� while constraint reasoning is a side�e�ect delegated to the semantics of proofs� We feel
that this is a very natural and technically expedient way of organising matters� and a central idea
of our framework� The suggested separation can be undone in a su�ciently rich all�encompassing
logic if one wishes to do so� We will see that for LLP the constraint
 formula split can be
interpreted in a suitable theory of QLL� speci	cally in QLL
���

As indicated� our idea is to use the LLP calculus to simulate the execution of CLP�programs so
that the proofs returned represent the answer constraint� To do this the CLP�program typically is

�For the �one�stack� sequential�or semantics OS�so of �And��� intuitionistic negation is needed to express �nite
failure�

Technical Report� University of Passau �� MIP������ July ����

	rst abstracted into an abstract LLP�program so that constraints are out of the way and pushed
into the proofs� Without thus abstracting� in general� a query H cannot be proven in LLP from
a CLP program ! directly� since every proof attempt runs across explicit constraints for which
LLP has no rules� Depending on the particular LLP�calculus di�erent things can happen� In the

l system we will end up with a sequent !� B�� � � � � Bn
l H where the Bi are constraints� In
r
we get a proof tree with dangling leaves all of which of the form !
 B or !
 �B where B is a
constraint� Both cases are called a partial proof� written !� B�� � � � � Bn
LLP H � Partial proofs can
be seen as proofs of !
LLP H with constraint holes�

	 Abstraction and Re�nement

One motivation for this work is the observation that CLP constraints are not just propositions
to be handled at the same level as user�programs� with the only exception that they have a
prede	ned model�theoretic semantics� If constraints are propositions� so we argue� then they are of
rather special nature and� from a proof�theoretic point of view� deserve a more dedicated technical
treatment� In particular� we wish to advance the idea that constraints are closely connected to
abstractions� according to the paradigmatic de	nition

A constraint is a condition on the environment of a system under which a particular
abstraction of its behaviour is valid

as it applies to constraints in software and hardware design� In this section we try to show that this
de	nition applies to constraints in CLP programming� too� We show that an answer constraint
can be thought of as generated by the execution of an abstraction of a CLP program� so that the
answer constraint makes the query a valid consequence of the original concrete CLP program� In
fact� if we strip o� all constraints from a CLP program retaining only the user�de	ned predicates�
then� disregarding satis	ability checks� the execution of the program completely is controlled by the
abstracted� i�e� stripped� program� This operational view� which contains the essence of constraint
programming� has been formalised in the operational model proposed in �DGW��� which aims at a
clean separation between constraint generation and constraint analysis� Thus� from an operational
viewpoint it is the abstracted user�program that takes the primary control while constraints arise
as a by�product of executing the program� which is quite in line with the above paradigmatic
de	nition�

Now� of course� we must not ignore the issue of constraint satis	ability� In practice� the constraint
level does in�uence the proof search of the abstract level through the check for constraint satis�
	ability� which would appear to jeopardise the abstraction idea� This is true to a certain extent�
However� the in�uence of constraint predicates on the execution is of a fundamentally di�erent�
and weaker� nature than that of the user�predicates� In executing a CLP�program our goal it to
prove all user�predicates we run across� while we are content with merely checking the consistency
of the constraints� which is an intrinsically simpler problem than proving a formula� So there is
an abstraction here as well� The weaker operational r'ole is not just convenience but lies in the
nature of constraints� In fact� it hardly makes sense nor is it possible to prove the validity of
a constraint� An answer constraint c resulting from running a CLP program (with a query Q
veri	es (
 ��x� c � Q� Here� c formally is a condition on the environment� viz� the instantiations
of the variables �x� for which the query Q is valid� We are interested in the constraint c as a
description of the class of satisfying environments not in proving it valid� for this would require
we close o� the modelled system by 	xing a particular environment� The only sensible thing we
can do� facing incomplete knowledge about the environment� is to make sure that the constraint
is satis	able� i�e� that there exist some validating environment at all� However� this check may
not be feasible until further instantiations have taken place� In practice it is useful to be able to

Technical Report� University of Passau �
 MIP������ July ����

delay the satis	ability test and to explore the abstract search space �Pla���� before one turns to
checking the satis	ability of the accumulated constraints� An example is the timing analysis of
combinational circuits� There� one typically 	rst computes a rough estimate of the propagation
delay by searching through the abstract topological structure of the circuit completely� and then�
once this is done� takes into account the data dependencies to eliminate the so�called �false paths�
that have generated unsatis	able functional constraints �MB���� The topological delay computed
in the abstract domain is used to prune the search at the concrete level�

Here we propose a quite general method of decoupling the generation of constraints and their
analysis� which exploits the close relationship between the pragmatically motivated dichotomy
constraint
 query of CLP and the logic dichotomy proof
 formula of QLL� In this setting�
constraint generation is controlled by searching for a proof for an abstraction of the program�
and constraint analysis corresponds to a re	nement of the abstract query� whose purpose is to 	ll
in the gaps and to map back and justify the abstract proof w�r�t� the concrete level� The answer
constraint� then� is nothing but a measure of the extent to which the abstract proof can be justi	ed�
This �justi	cation� procedure is implicit in publications applying abstractions to theorem proving�
e�g� in �GW��� Pla���� even if the connection with constraints in not verbalised� The power of the
constraints�as�proofs paradigm lies in the fact that it provides for a uniform and rigorous way of
abstracting out all constraints from their local contexts� and of collecting them up into a single
and global constraint of the abstracted formula� Consider the formula �x� c � Q� If constraints
are restricted to be just propositions then it is hard to imagine any reasonable way of abstracting
out the constraint c and to make it a constraint of the whole formula� other than in the form

�x� c� �
�x�Q�� But this does not help a lot since the new constraint
�x� c� is too strong�
possibly even inconsistent� in general to be useful� In our framework where constraints are part
of the proofs we can abstract out the constraint as �x�c � �x��Q� This pair� in a mathematically
precise sense� is a formal assertion�guarantee implication �assume �x�Q in all contexts in which
the proof �x�c reduces to a valid constraint�� In this way we do not loose any information and yet
the constraint is separated from the abstract formula�

Technically� the QLL scenario for abstraction and re	nement is as follows� given a CLP program
(and a query Q� we 	rst abstract out all constraints from (to give a pair) � ! where) is a
constraint table and ! the abstract version of (� Then� the query �Q is veri	ed in QLL� obtaining
a proof) � !
 p � �Q� By re	ning the abstract pair p � �Q back into a concrete formula we
obtain c such that c � Q is a logic consequence of (� The constraint c is determined by the
computational semantics of p� and is composed� in general� from the constraints of the program
clauses by the operations �� �� and substitution� By changing the computational semantics of ���c
proofs� we can capture di�erent notions of constraint�

To start o� our presentation of the technical details we need to make some preparations� From
now on we will assume that C �
"C ��C� is some
notion of� constraint for QLL and that we have
assigned to every primitive relation symbol R a number �
R� � N� For every relation R� then�
this k � �
R� indicates the number of implicit constraint parameters of R� To be more speci	c�
if R
t�� � � � � tn� is a sub�formula of a program then we consider the 	rst k arguments of R as
constraint parameters that we wish to distill out from the formula� viz� by replacing R
t�� � � � � tn�
formally by val
t�� � � � � tk� � �R
tk��� � � � � tn�� To do this we must de	ne our translation j � j so
that jR
t�� � � � � tn�j � Uk� Since constraints will be abstracted not piecewise but wholesale the
parameter �
R� has no importance when R
t�� � � � � tn� � "C � we put �
R� � � in this case� with
the e�ect that the associated proof information has the trivial type U
 � �� In our examples we
will make further assumptions� in particular about C and �
R�� as appropriate�

The details of this section are complemented by a running example started here� A concrete
CLP program is introduced which 	rst undergoes what amounts to horizontal decomposition or

Technical Report� University of Passau �� MIP������ July ����

a separation of concerns� That is to say� we separate the CLP program into an abstraction and
an associated set of constraints� It is then shown how we can recombine these two entities by a
process of re	nement� to retrieve an equivalent concrete CLP program� Finally� the abstract form
of the program is used in an abstract analysis of its functional behaviour�

Example �
� Consider the simple CLP program (� ��� ��� �� which is

�s� x�
s � � � x � a� � A�
s� x��

�s� x�
s � � � �y� x � f
y�� � A�
s� x��

�t� x�
�y�� y��
�s� A�
s� y�� � A�
s� y�� � t � s#
�� � x � g
y�� y��� � B
t� x��

We imagine (as the composition of three components where ��� �� each has one output� A�� A�

respectively� and no input� while �� has two inputs A�� A� and one output B� The object level
parameters s� t represent time and the inequations s � �� s � �� t � s#
� are timing constraints
specifying the propagation delays through the components� We read A�
s� x� as the statement �value
x is available at time s on wire A��� Hence� � is a component that produces on A� the constant
value a with an initialization delay of � time units� Similarly� �� is a nondeterministic component
that outputs on A� all values of the form f
y� for arbitrary y� Finally� �� is an input�output device
that computes the value g
y�� y�� from its two inputs on A� and A� with a propagation delay of
�
time units�

Example ��� is a very simple program (in which two conceptually di�erent aspects of system
behaviour are intertwined� in this case function and timing� The timing is captured by inequations
and time parameters� while the functionality is represented by abstract predicates A�� A�� B� In
CLP the di�erence between these two syntactic elements of (can be exploited by declaring the
inequation symbol � to be a constraint and A�� A�� B to be user�de	ned predicates� In this way
the handling of timing inequations is delegated to some built�in constraint solving package� while
the generation of these constraints is controlled by executing the abstract user�de	ned predicates�

��� Abstraction

In this section we explain how to form an abstraction (� of a concrete CLP program (containing
constraint formulas B and constraint parameters� The basic idea is simple� almost trivial� Drop
all constraint�related parameters� replace every occurrence of an atomic constraint formula B by
true� and insert � at the head of every clause of (to indicate that it represents an implication
under some constraint�

De�nition �
� Let � � �x�� � � � � xm� S � P
x�� � � � � xn� be a program clause� A quanti	er in �
is called unobservable if the variable that is quanti	ed over only occurs in constraint parameters
or constraint formulas� Otherwise the quanti	er is observable� We de	ne �	� as the result of
�i� dropping all constraint parameters
 �ii� dropping all unobservable quanti	ers �x� �x
 �iii � re�
placing all maximal constraint sub�formulas by true� and �iv� replacing the head P
x�� � � � � xn� by
�P
x��P ���� � � � � xn�� Finally� if S is a �formula then S	� is obtained from S by transformations
�i���iii ��

Example �
� Consider the clause �� of example ���� We let t � s #
� � "C be an atomic
constraint predicate and put �
A�� � �
A�� � �
B� � �� �
�� � �� We get

�	�� � �x�
�y�� y�� A�
y�� � A�
y�� � true � x � g
y�� y��� � �B
x��

Thus we have eliminated all traces of time and timing constraints� Note that the parameters s� t in
A�
s� y��� A�
s� y��� and B
t� z� disappears from the formula since they are constraint parameter

Technical Report� University of Passau �� MIP������ July ����

of the respective relation symbol in each occurrence� Since there are no other occurrences of s or t
the quanti	ers �t� �s are unobservable� whence they do not survive the abstraction either�
Using di�erent "C and �
�� we can obtain various other abstractions of ��� For instance� if we
take �
A�� � �
A�� � �
�� � � and �
B� � � with the same "C we would abstract the timing
parameters merely of B� but not of A�� A�

�	�� � �x�
�y�� y��
�s� A�
s� y�� � A�
s� y�� � true� � x � g
y�� y��� � �B
x��

This time� the quantor �s is observable
 s occurring in A�
s� y�� is no longer a constraint parameter
of A� and so the dependency of A� on s remains� As another� somewhat extreme� example let us
consider both the timing inequation t � s#
� and �in the Herbrand model� the uni	cation constraint
x � g
y�� y�� as a constraint in "C� and stipulate �
A�� � �
A�� � �
B� � �� Then� all parameters
are constraint parameters� all quanti	ers unobservable� and

�	�� �
A� � A� � true � true� � �B�

In this way we abstract from all 	rst�order terms and obtain a purely propositional program� This
corresponds to the so�called propositional abstraction �GW��� Pla���� The reader may invent other

variants of �	�� by modifying "C and �
��� for instance with �
�� � � or �
�� � ��

Abstracting � to �	� leaves behind� in general� a number of �dangling� true subformulas� With
some care the process of abstraction can be re	ned so as to eliminate� these redundancies as well�
However� as this would clutter up the presentation of the basic ideas we will not bother to do this
here�

Example �
� Let us take the mortgage program from example ���� The program can be presented�
modulo a little and innocuous confusion of fonts� as a single clause

M �� �P� I� MP� B� D�

D � 	 � B# MP � P �
I# 	�� 	

D � 	 � mortgage
P �
I# 	�� MP� I� MP� B� D� 	��� � mortgage
P� I� MP� B� D��

It will be natural to consider the equation B# MP � P �
I# 	� as a constraint� and the inequations
D � 	 and D � 	 as �atomic� program formulas� We put �
�� � �
�� � � and �
mortgage� � ��
so that all four leading parameters P� I� MP� B become hidden parameters� Under these circumstances
the abstraction of M is

M	� � �D�

D � 	 � true� 	
D � 	 � mortgage
D� 	��� � � mortgage
D��

The constraint sub�formula B# MP � P �
I# 	� gets abstracted out� as well as the 	rst four pa�
rameters of mortgage� Note in particular that the quanti	ers �P� I� MP� B are unobservable� The
reader may see what we are getting at
 the abstract view M	� concentrates on the central aspect of
computing mortgage� which is the recursive iteration through the duration D� All handling of the
arithmetic parameters of principal P� interest rate I� monthly payments MP� balance B and main�
taining of their consistent relationship� thus� is delegated to the constraint system� At least this is
the idea� Just how this works in the LLP framework still needs to be seen� of course�

Now� if the abstraction (� is all we do to a program (then� clearly� we must lose important
information about the semantics of the original program� So we follow our principle of linking
constraints with abstractions and record the associated constraints as a sequence of ��terms (�

called a constraint table for (� � Later we show how this extra information can be used to recover
the constraints from the constraint semantics of �c
C��proofs obtained from executing the abstract
program (� �

	This requires that constraints be closed under disjunctions�

Technical Report� University of Passau �� MIP������ July ����

De�nition �
	 Let � � ��x� S � P
�y� with �y � �x be a program clause� The variables �x may be
partitioned into three disjoint lists
 �xo denotes the list of variables with observable � quanti	ers

the remaining �x variables with unobservable � quanti	ers we split into two parts� the list �yno of
�y�variables� and the list �xno of variables di�erent from any �y� Further� let �y � y�� � � � � yn and
k �� �
P � � n� Then� following Def� ���� the abstraction of � is of the shape

�	� � ��xo� S
	� � �P
yk��� � � � � yn��

which by De	nition ��� has the type j�	� j � U� � � � � U� jS	� j � Uk � C� Now we de	ne the
constraint table for � to be the �c
C��term�

�	� �� ��xo � �U� �z � jS	� j� �v � Uk � ��xno� hSf�iv�yi j i � �� � � � � k * yi � �ynogiz�
��

of type j�	� j� where the constraint term hT iz � C for every �formula T and z � jT 	� j is obtained by
induction on T as follows

hBiz �� B
hR
t�� � � � � tr�iz �� ��z � t� � � � � � �kz � tk k � �
R� � �
hR
t�� � � � � tr�iz �� true �
R� � �
hT� � T�iz �� hT�i
�z � hT�i
�z
hT� 	 T�iz �� case z of ���
z��
 hT�iz� � ��
z��
 hT�iz� �

h�y� T iz ��

�
�y� hT iz if �y unobservable
hTf��z�ygi
�z otherwise

Here B is a constraint and R
t�� � � � � tr� is an atomic program formula� It is understood that the
last three constructions for hT i above only apply if T is not a constraint� In ��� we may have that
the set fyi j i � �� � � � � k * yi � �ynog is empty or a single variable�

We put �	 � �	� � �	� � and if (� ��� � � � � �n then (is �	�� � � � � �
	
n�

The mapping � �

�	� � �	�� amounts to a separation of two concerns� viz� the abstract function
�	� and the concrete constraints �	� � Taken together both aspects make up the original clause
�� but keeping them separate makes them available for separate treatment so as to formalise
the conceptional di�erence between constraints and formulas� In fact� in our logic framework�
constraints �	� behave like proofs whereas the abstract clause �	� behaves like a formula� This
suggests the proof
 formula notation �	� � �	� � In the following every �c
C��term p of type � is
called a constraint table for ��

Example �
� Consider the clause �� of Example ��� with s � � � "C� �
A�� � � and �
�� � ��
We compute the constraint table for �� according to Def� ��� as follows

�	�� �
�s� x�
s � � � x � a� � A�
s� x��
	�

� �x� �z� �v� h
v � � � x � a�iz

� �x� �z� �v� hv � �i
�z � hx � ai
�z

� �x� �z� �v� v � � � true�

It is not di�cult to verify that this �c
C��term indeed has type j�	�� j � j�x�
true � x � a� �
�A�
x�j � U�
�� ��� U� C� Now� if we write down both �	�� and �	�� side�by�side

�	� � �	�� � �	�� � �x� �z� �v� v � � � true � �x�
true � x � a� � �A�
x��

�
The notation ��xo � �U� which stands for a sequence of ��abstractions� is slightly inaccurate but clear enough�

Technical Report� University of Passau �� MIP������ July ����

and compare this with �� we can see how by this process the original concrete clause �� has been
reorganised into two parts� a constraint table to the left of the colon and a remaining abstracted
clause to the right� Both sides considered together contain exactly the same information as the
original concrete clause� How �� can be reconstructed from this pair� up to logic equivalence� by a
systematic re	nement will be discussed in the next section�

Example �
� For the following discussions it will be convenient to simplify our running example
��� in that we drop the �functional� aspects and consider only the �timing� behaviour� More
precisely� we consider the abridged program (� ��� ��� �� which is

�s� s � � � A�
s��

�s� s � � � A�
s��

�t�
�s� A�
s� � A�
s� � t � s#
�� � B
t��

This simpli	cation itself can� in fact� be considered as a formal abstraction in the sense of our
Def� ��� except that it is performed at the meta�level �manually� and thus we do not need to bother
with the modality� In e�ect� we forget the functionality completely rather than recording it in a
constraint table��� We now wish to form (from the concrete program (with e� � e� � "C and
�
A�� � �
A�� � �
B� � �� For this� both (� � �	�� � �

	�
� � �

	�
� and (� � �	�� � �

	�
� � �

	�
� are required�

Let us consider (� 	rst� De	nition ��� gives us

�	�� �� true � �A�

�	�� �� true � �A�

�	�� ��
A� �A� � true� � �B

Also� for each clause of the concrete program (� we must determine the corresponding �c
C��term�
Using De	nition ��� gives us

�	�� �
�s� s � � � A�
s��
	� � �z� �v� v � �

�	�� �
�s� s � � � A�
s��
	� � �z� �v� v � �

�	�� �
�t�
�s� A�
s� � A�
s� � t � s#
�� � B
t��	�

� �z� �v� �s� ��z � s � ��z � s � v � s#
��

Thus we have de	ned �	�i � �
	�
i for each i � f�� ��
g� and therefore (� Notice� the constraint table

for �� with the extracted constraint �s� ��z � s���z � s�v � s#
�
 There is not just mention of
the timing inequation� Also there is the conjunction ��z � s���z � s which� on the face of it� does
not seem to correspond to any syntactic part of ��� Yet� it corresponds to an important constraint�
viz� the implicit constraint that arises from the fact that the two conjuncts A�
s� � A�
s� in the
body of clause �� share the same variable s� These �sharing� constraints are automatically taken
care of by our abstraction method�

Example �

 What is the constraint table for the abstracted clause

M	� � �D�

D � 	 � true� 	
D � 	 � mortgage
D� 	��� � � mortgage
D�

of program mortgage� The constraint table will have the type jM	� j which is U �

� �
�� #
� � U��� � U� � C� Following De	nition ��� the constraint table M	� is

��We conjecture that by a natural generalisation of our method abstractions can be cascaded�

Technical Report� University of Passau �� MIP������ July ����

�D� z� v� hMbodyf��v� ��v� ��v� ��v�P� I� MP� Bgiz where Mbody is the body of clause M� We 	nd

hMbodyf��v� ��v� ��v� ��v�P� I� MP� Bgiz

� h

D � 	 � ��v# ��v � ��v �
��v# 	�� 	

D � 	 � mortgage
��v �
��v# 	�� ��v� ��v� ��v� ��v� D� 	��� iz

� case z of ���
z��
 h D � 	 � ��v# ��v � ��v �
��v# 	� iz� �

��
z��
 h D � 	 � mortgage
��v �
��v# 	�� ��v� ��v� ��v� ��v� D� 	� iz� �

� case z of ���
z��
 hD � 	i
�z�
� h��v# ��v � ��v �
��v# 	�i
�z�

�

��
z��
 hD � 	i
�z�
� hmortgage
��v �
��v# 	�� ��v� ��v� ��v� ��v� D� 	�i
�z�

�

� case z of ���
z��
 true � ��v# ��v � ��v �
��v# 	��

��
z��
 true � ����z� � ��v �
��v# 	�� ��v �

����z� � ��v � ����z� � ��v � ����z� � ��v��

Hence� in total�

M	� � �D� z� v� case z of ���
z��
 true � ��v# ��v � ��v �
��v# 	��

��
z��
 true � ����z� � ��v �
��v# 	�� ��v �

����z� � ��v � ����z� � ��v � ����z� � ��v��

Here the equation ��v# ��v � ��v �
��v# 	� internalises the constraint B# MP � P �
I# 	� of
mortgage� the equation ����z� � ��v �
��v# 	�� ��v captures the pattern P �
I# 	�� MP� and
����z� � ��v � ����z� � ��v � ����z� � ��v the other hidden parameters in the recursive call
mortgage
P �
I# 	�� MP� I� MP� B� D� 	� of the original program from Example ���� Since this
example is about to turn a bit bulky notationally let us agree to use some abbreviations� We write
m rather than morgage and short�name the relevant constraints as follows

c�
v� �� true � ��v# ��v � ��v �
��v# 	�

c�
v� z� �� ����z � ��v �
��v# 	�� ��v � ����z � ��v � ����z � ��v � ����z � ��v�

Using these abbreviations the abstracted program and its associated constraint table can be written
more succinctly as

M	� � �D�

D � 	 � true� 	
D � 	 � m
D� 	��� � � m
D�

M	� � �D� z� v� case z of ���
z��
 c�
v�� ��
z��
 c�
v� z����

The following theorem shows that the process of constraint abstraction may be mirrored at the
level of proofs� We can use abstraction to clean up with constraints and turn a partial proof into
a complete proof�

Theorem �
� �Soundness of Abstraction� Let (be a CLP�program and S a �formula� For
every partial proof (
r S there is a complete proof (�
r �S	� � and for every (� B�� � � � � Bn
l S�
with Bi �i � �� � � � � n� constraints� there is a proof (�
l �S

	� �

To be a bit more concrete� suppose (� ��� � � � � �n is a CLP�program� P
�x� a query� and B�� � � � � Bn

constraint formulas such that (� B�� � � � � Bn
l P
�x� is derivable� We can interpret B��� � ��Bn as
the answer constraint for query P on program (� Theorem ��� now means that we can drop all con�
straints and constraint parameters� and derive the constraint�free sequent (�
l �P
tk��� � � � � tm�
where k � �
P �� We will see that the constraint B can be viewed as being generated from the
abstract proof by systematic re	nement�

Technical Report� University of Passau �� MIP������ July ����

Example �
�� Let us take a look at the simpli	ed CLP program (� ��� ��� �� as in Example ����
We can attempt to prove the query B
t� from (� which of course� we cannot without accumulating
some proof obligations concerning timing constraints� We use LLP as an operational semantics
for (� construct a partial proof and leave these timing constraints as open leaves� Such a proof tree
may look like

(
r s � � �N(
r A�
s�
(
r s � � �N(
r A�
s� �I(
r A�
s� � A�
s� (
r t � s#
�

�I(
r A�
s� � A�
s� � t � s#
�
�I(
r �s� A�
s� � A�
s� � t � s#
�
�N(
r B
t�

Note that the proof tree indeed is a partial proof since all leaves are sequents of form (
r B with
B a constraint� These leaves represent a very special kind of dangling proof obligations in the
sense that they must not be taken too literally as place holders for yet�to�be�instantiated proofs�
For� in fact� the proof tree cannot be completed as this would involve proving unreasonable facts
about constraints� even if we had available a complete theory of timing constraints� The open proof
leaf (
r t � s #
�� for instance� is logically the same as (
 �s� t� t � s #
�� which is plainly
inconsistent with the theory of natural numbers� But then� so we must ask� what is this partial
proof good for if it cannot be completed� The answer is that it is a complete proof at the abstract
level� The abstraction applies
��	� to all formulas� in the hypothesis and conclusion of the sequents�
and eliminates unobservable proof rules� For the proof tree of this example we obtain the following
abstracted tree

true�(�
r �true
��(�
r �A�

true�(�
r �true
��(�
r �A� ��(�
r �
A� � A��

true�(�
r �true
��(�
r �
A� � A� � true�

��(�
r �B

This is a proper LLP�proof without any open proof obligations� According to
��	� the dangling
constraint sequents (
r C are replaced by (�
r �true� which can be discharged by rule true��
Further the proof rules �I ��N of the previous CLP derivation become the derived rules ������
The rule �I disappears since the quanti	er �s is unobservable� Sure enough� this abstraction process
has not solved any constraint but it has not lost any information either� The constraints are still
there though not in the propositions but in the proofs�

Example �
�� We can also abstract
l derivations� A concrete CLP�derivation for the previous
Example ���� runs as follows

� (� B
t�
l B
t� � (� �s� A�
s� � A�
s� � t � s#
�
l B
t�

� (� A�
s� � A�
s� � t � s#
�
l B
t� � (� A�
s� � A�
s�� t � s#
�
l B
t�

� (� A�
s�� A�
s�� t � s#
�
l B
t� � (� s � �� A�
s�� t � s#
�
l B
t�

� (� s � �� s � �� t � s#
�
l B
t�

Technical Report� University of Passau
� MIP������ July ����

where each � indicates a single application of a
l rule� The abstraction� which ignores constraints

and constraint parameters� is

� (� B
l �B � (� A� � A� � true
l �B � (� A� �A�� true
l �B

� (� A�� A�� true
l �B � (� true� A�� true
l �B � (� true� true� true
l �B

� (� true� true
l �B � (� true
l �B � (
l �B�

We now show what the abstraction looks like at the level of proofs� for
r derivations�

De�nition �
�� Let (be a CLP program� S a �formula� and �w � (
r p � S be a partial proof�
We obtain the abstracted proof �w � (�
r p	� � �S	� by induction on p as follows

�	� �� true�
+	� �� true�

p� q�	� �� ��
p	� � q	��

�ip�

	� �� 	�
p	� � i� i � �� �

�N
p� w� t�� � � � � tn��	� �� ��
p	� � w� to� � � � � � tol�

where w � ��x� S � P
�y� � (� and �xo� � � � � � xol is the list of observable quanti	ers of ��x

�tp�

	� �� ��
p	� � t� if �x is observable

�tp�

	� �� p	� if �x unobservable�

where + is a dangling leaf !
r + � B of the partial proof �w � !
r p � S�

Example �
�� Suppose that in the proof of Example ���� the program clauses are referred to by
the proof variables �w � (� w� � ��� w� � ��� w� � ��� Then� the CLP proof term associated with the
	rst proof tree of ���� is p � w�t
�s
w�s+� w�s+� +�� � B
t�� The abstraction is

p	� � ��
��
��
��
true�� w�����
true�� w���� true��� w��

which is nothing but the proof term obtained from the second� abstracted� proof tree of Example
�����

��� Re�nement

The question we wish to address in this section is what is the meaning of a pair) � ! where
) is a constraint table and ! an abstract program� This meaning will be given by a syntactic
translation that turns the proof
 formula pair into a proper CLP�program� This translation will
justify our claim that) � ! is a �re	nement� of program ! by the extra intensional information)�
In essence� this re	nement
) � !�� will be set up such that it reverses the constraint abstraction
and recombines an abstract program ! with a concrete constraint table)�

For every �formula S the elements of jSj are formal indices for accessing the constraints in a
constraint table for an abstract program clause � � ��x� S � �P
�y�� that has S as its body� To
be more precise suppose p is a constraint table for �� Then� for every formal index g � jSj� the
corresponding entry of the constraint table p at g is represented by the term p �x g � Uk � C� where
k � �
P �� which is a constraint on the hidden variables of P � In our prospective re	nement
p � ���

we wish to reintroduce this constraint into the right place of the clause�s body S� The right place
is obtained by computing a re	nement
g � S�� which picks out the part of S that corresponds to
index g� Assuming this is done� we obtain
p � ��� then formally as

��z���x�
�g � jSj�
g � S�� � p �x g
z�� � � � � zk�� � P
�z� �y�
��

Technical Report� University of Passau
� MIP������ July ����

where �z � z�� � � � � zk is a list of fresh variables for the hidden parameters of P � The body of this
re	ned clause� roughly speaking� can be read as follows� First� the abstract body S is projected
to its indices g� by
g � S��� Then the constraint relevant for this index is imposed� which gives

g � S���p �x g
z�� � � � � zk�� Finally� the total body is reconstructed by existentially quantifying over
all indices� This yields the new body �g � jSj�
g � S�� � p �x g
z�� � � � � zk� in the re	ned clause
���
Note that the constraint p �x g
z�� � � � � zk� at every index g may depend both on the free variables �x
of the abstract clause
the �observable� variables� and the hidden variables �z
the �unobservable�
variables� of P � Of course� not only the hidden variables of P must be made explicit by the
re	nement but also all other hidden variables pertaining to the atomic formulas in S� How this is
done will be seen shortly�

In fact� we must be a little bit more careful� For even if we have a suitable de	nition of
g � S���
the expression
��� though it looks very much like a
re	ned� program clause� is not
yet� a proper
formula of our logic� Problem number one is that the subexpression p �x g
z�� � � � � zk� really is a
�c
C��term of type C as opposed to a proper constraint formula� However� assuming that g is a
pseudo�closed �c
C��term� this problem can be solved simply by reduction
see Prop� ����� Problem
number two is the fact that we do not have in our 	rst�order logic an object level type jSj so that
the quanti	cation �g � jSj in
�� does not make sense as it stands� Since jSj has an in	nite number
of elements� e�g� quasi�closed normal form terms� we cannot in general trivially eliminate �g � jSj
completely by a 	nite disjunction� Fortunately� it turns out that the quanti	er can be eliminated in
terms of a 	nite number of existential quanti	cations over 	rst�order variables and a 	nite number
of explicit disjunctions� This is good enough�

Hence a bit of extra work must be done to turn
�� into a proper QLL formula which thus can be fed
back into our logic� All in all� a re	nement
p � ��� of an abstract program clause � by a constraint
table p will involve three processes� quanti	er elimination� index projection� and reduction� Since
we already know how to reduce �c
C��terms we only need to de	ne the quanti	er elimination and
index projection in the following�

De�nition �
�� �Index Projection� Let S be a �formula and g � jSj a quasi�closed normal
form �c
C��term� We de	ne the re	nement
g � S�� by induction on S as follows

s�� � � � � sk� � R
t�� � � � � tn��
� �� R
s�� � � � � sk� t�� � � � � tn�

� � R
t�� � � � � tn��
� �� R
t�� � � � � tn�

� � true�� �� true

g�� g�� � S� � S��
� ��
g� � S��

� �
g� � S��
�

�ig � S� 	 S��
� ��
g � Si�

� i � f�� �g

t� g� � �y� S�� ��
g � Sft�yg���

where in the 	rst line k � �
R� � � and in the second k � �
R� � ��

Example �
�	 Let S �
A� 	 A�� � A� and assume �
Ai� � �� Then� jSj �
�# �� � �� There
are exactly two quasi�closed normal form terms of this type� viz� g� �
���� �� and g� �
���� ���
which gives two formal indices for S� Applying index projection obtains
g� � S�

� �

���� �� �

A� 	 A�� � A��

� �
��� � A� 	 A��
� �
� � A��

� �
� � A��
� �
� � A��

� � A� � A�� Similarly�
the other projection is
g� � S�

� � A� � A�� We notice that up to logic equivalence S can be
reconstructed from its two projections� viz� S �
g� � S�� 	
g� � S�� �
A� �A��	
A� �A��� This
is a general fact
 Suppose S does not contain quanti	ers and �
R� � � for all relation symbols R
occurring in S� Then there exist only a 	nite number of quasi�closed normal form terms of type
jSj �� �# � � �#� �� n ��� If ind
S� denotes this 	nite set of formal indices� then S can be decomposed
as S �

W
g�ind�S�
g � S�

�� This decomposition is nothing but the disjunctive normal form of S�

Technical Report� University of Passau
� MIP������ July ����

Example �
�� When S contains quanti	ers the decomposition by indices needs more thought� Let
S �

�y�� A�
y��� 	 �y�� A�
y��� � A�� and again �
Ai� � �� Now jSj �

U � �� #
U� ���� �
which has an in	nite number of elements� The quasi�closed normal form terms of type jSj are of
the form gi
t� �
�i
t� ��� �� where i � f�� �g and t is an arbitrary object�level term� We obtain

gi
t� � S�

� � Ai
t� � A�� Obviously� this time the disjunctive decomposition S �
W
i�tAi
t� � A�

is unreasonable since� for one� formulas must be 	nite and� for another� the in	nite disjunction
would only take care of the original quanti	cations �yi� Ai
yi� for elements of the universe that
can actually be expressed by terms t in the language� The right disjunctive decomposition of the
form S � �g � jSj�
g � S�� is S �
�y�� A�
y�� � A�� 	
�y�� A�
y�� � A��� We will construct this
systematically by a method of quanti	er elimination �see Def� ������

De�nition �
�� �Quanti�er Elimination� Let S be a �formula and M �g� a family of arbitrary
formulas indexed in g� where g ranges over all quasi�closed normal form �c
C��terms of type jSj�
We de	ne the formula

�z � jSj�M �z�

as an abbreviation in the following way by induction on the structure of S

�z � jtruej�M �z� �� M ���

�z � jR
t�� � � � � tn�j�M �z� �� �x�� � � � � xk�M �
x�� � � � � xk�� if k � �
R� � �

�z � jR
t�� � � � � tn�j�M �z� �� M ��� if k � �
R� � �

�z � jS� � S�j�M �z� �� �z� � jS�j� �z� � jS�j�M �
z�� z���

�z � jS� 	 S�j�M �z� ��
�z� � jS�j�M ���z��� 	
�z� � jS�j�M ���z���

�z � j�y� Sj�M �z� �� �y��z � jSj�M �
y� z���

Example �
�
 Take S �

�y�� A�
y��� 	 �y�� A�
y��� � A� as in Example ����� We compute
�z � jSj�
z � S�� by quanti	er elimination �De	nition �����

�z � jSj�
z � S�� � �z � j

�y�� A�
y��� 	 �y�� A�
y��� �A�j�
z � S�
�

� �z� � j
�y�� A�
y��� 	 �y�� A�
y��j� �z� � jA�j�

z�� z�� � S�
�

� �z� � j
�y�� A�
y��� 	 �y�� A�
y��j�

z�� �� � S�
�

�
W�
i���zi � j�yi� Ai
yi�j�

�izi� �� � S�

�

�
W�
i���yi��zi � jAi
yi�j�

�i
yi� zi�� �� � S��

�
W�
i���yi�

�i
yi� ��� �� � S�

�

� � � �

and from there further with index projection �De	nition �����

� � � �
W�
i���yi�

�i
yi� ��� �� �

�y�� A�
y��� 	 �y�� A�
y��� � A��

�

�
W�
i���yi�
�i
yi� �� �
�y�� A�
y��� 	 �y�� A�
y���

� �
� � A��
�

�
W�
i���yi�

yi� �� � �yi� Ai
yi��

� � A�

�
W�
i���yi�
� � Ai
yi��

� � A�

�
W�
i���yi� Ai
yi� � A��

Thus� �z � jSj�
z � S�� �
�y�� A�
y�� � A�� 	
�y�� A�
y�� � A��� which is equivalent to S�
It may be remarked that in order for our derivation to be strictly in line with the de	nitions we
should 	rst apply index projection to
g � S�� for all formal indices g to 	nd out about the family
S��g� �
g � S��� and then apply quanti	er elimination to compute �z � jSj� S��z� from this family�

Technical Report� University of Passau

 MIP������ July ����

Yet� as often in constraint programming� here too it is more convenient to start from the end and
do the necessary constructions on demand�

Example �
��

The examples indicate what we have proposed before� viz� that any �formula can be decomposed
into a disjunctive normal form using its formal indices�

Proposition �
�� Suppose that �
R� � � for all relation symbols R� Then� for every �formula
S we have the equivalence S � �z � jSj� S��z�� obtained from the family S��g� �
g � S�� where
g ranges over all quasi�closed normal form terms g � jSj� We may write this equivalence more
compactly as S � �z � jSj�
g � S��� In general� we have S� � �z � jSj�
g � S��� where S� is obtained
from S by replacing every occurrence P
�t� of an atomic program formula by �x�� � � � � xk � P
�x��t�
where k � �
P �� All equivalences are provable in QLL�

We can now 	nalise our notion of program re	nement�

De�nition �
�� �Program Re�nement� Let � � ��x� S � �P
�y�� �y � �x� be an abstract pro�
gram clause and p a constraint table for �� Let k �� �
P �� We de	ne the re	nement of � by p as
the modal�free formula

p � ��� �� ��z���x�
�z � jSj� S��z�� � P
�z� �y��

where the body �z � jSj� S��z� is constructed by quanti	er elimination �De	nition ����� from the
family of formulas

S��g� ��
g � S�� � p �x g
z�� � � � � zk�

indexed in the quasi�closed normal form terms g � jSj� in which the subformula
g � S�� is obtained by
index projection �De	nition ����� and the constraint formula p �x g
z�� � � � � zk� by
�c� reduction�
Our de	nition includes
q � �P
�y��� as a special case
 for quasi�closed q � j�P
�y�j � Uk � C we
put

q � �P
�y��� �� ��z� q
z�� � � � � zk� � P
�z� �y��

where the formula q
z�� � � � � zk� is determined by
�c� reduction�

The re	nement of an abstract program ! � ��� � � � � �n by a constraint table) is de	ned clause�wise

) � !�� �
p� � ���

�� � � � �
pn � �n�
��

Proposition �
�� The re	ned formula
p � ��� determined by De	nition ���� is a CLP clause�
Hence� if ! is an abstract program and) a constraint table for !� then
) � !�� is a CLP�program�

Remark� We can generalise the re	nement by stipulating
p � �S�� �� �z � jSj� p z �
z � S���

p � �x�M�� �� �x�
p x � M��� and
p � S � N�� �� �z � jSj�
z � S�� �
p z � N��� where the
universal quanti	er �z � jSj is
de	ned and� eliminated in an analogous fashion as here �z � jSj�
In this way we may generalise the re	nement to clauses of the form ��x� S � �T where S� T are
 �formulas�

The next result says that the separation � �
 �	� � �	� of a CLP�clause into an abstract clause �	�

and an associated constraint table �	� � and the re	nement p � � �

p � ��� are mutually inverse
operations� up to logic equivalence� This shows that by separating out the constraints from a
CLP�program and making them part of its proof we have not lost any information�

Technical Report� University of Passau
� MIP������ July ����

Proposition �
�� For any CLP�clause � � ��x� S � A�
�	�� is logically equivalent to � under the
usual equality rules of predicate logic� e�g� in QLL
���

Remark� Note that here we do not include equality reasoning in LLP� The equivalence between
� and
�	�� stated in Proposition ���
 is not provable in the calculi
r or
l� This does not however
impinge on the fact that � and
�	�� have the same behaviour� i�e� all answer constraints are
identical
up to ��� Thus� � and
�	�� are interchangeable also w�r�t�
r and
l�

Example �
�� Consider the constraint table (� � �	�� � �
	�
� � �

	�
� and abstracted program (� �

�	�� � �
	�
� � �

	�
� of Example ���� Recombining constraint table and abstraction for the 	rst clause yields

�	�� � �	�� �
� � �s�
�z � jtruej�
z � true�� � �	�� z s� � A�
s��

Eliminating the quanti	er �z � jtruej this reduces to

�	�� � �	�� �
� � �s�
� � true�� � �	�� � s� � A�
s��

From here we use index projection to replace
� � true�� by true and
�c� reduce �	�� � s �

�z� �v� v � �� � s to s � �� Thus� we get

�	�� � �	�� �
� � �s�
true � s � �� � A�
s��

which indeed is equivalent to ��� Similarly we 	nd that
�	�� � �	�� �
� � �s�
true � s � �� � A�
s��

For the third clause we proceed as follows� The re	nement is

�	�� � �	�� �
� � �t�
�z � jA� � A� � truej�
z � A� � A� � true�� � �	�� z t� � B
t�

by De	nition ����� Again� by quanti	er elimination this is the same as

�t�
�z�� z��

z�� z�� �� � A� � A� � true�� � �	��
z�� z�� �� t� � B
t��

The index projection

z�� z�� �� � A� � A� � true�� gives the formula A�
z�� � A�
z�� � true� As

�	�� is �z� �v� �s� ��z � s � ��z � s � v � s #
�� the constraint term �	��
z�� z�� �� t reduces to
�s� z� � s � z� � s � t � s#
�� Hence�

�	�� � �	�� �
� � �t�
�z�� z�� A�
z�� � A�
z�� � true �
�s� z� � s � z� � s � t � s#
��� � B
t�

which is equivalent to ��� up to equality reasoning�

Roughly speaking� the di�erence between � and �� �
�	� � �	��� is that
i� the body of �� is
transformed into a disjunctive normal form� e�g�
A�	A���A� in � becomes
A��A��	
A��A�� in
��� and
ii � the constraint parameters of atomic program formulas are broken out� e�g� R
t�� � � � � tn�
with �
R� � k in � is replaced by ��z�R
z�� � � � � zk� tk��� � � � � tn� � z� � t� � � � � � zk � tk ��� In a
sense the mapping � �
 �� can be viewed as a normalisation process�

Example �
�	 Take the constraint table and abstracted program for mortgage from Example ���

M	� � �D�
D � 	 � true� 	
D � 	 � m
D� 	�� � � m
D�

M	� � �D� z� v� case z of ���
z��
 c�
v�� ��
z��
 c�
v� z����

Going through the de	nition of re	nement� with quanti	er elimination� index projection and
�c�

reduction yields

M	� � M	��� �

�P� I� MP� B� D�

D � 	 � true � true � B# MP � P �
I# 	�� 	

�z�� z�� z�� z�� D � 	 � m
z�� z�� z�� z�� D� 	� � z� � P �
I# 	�� MP �

z� � I � z� � MP � z� � B�� � m
P� I� MP� B� D��

which is equivalent to clause M of Example ���� up to equality reasoning�

Technical Report� University of Passau
� MIP������ July ����

The re	nement on programs� too� is mirrored by a re	nement of proofs�

Theorem �
�� �Soundness of Re�nement� Let ! � ��� � � � � �n be an abstract LLP�program�
) � p�� � � � � pn a constraint table for !� and A an atomic query� such that

z� � ��� � � � � zn � �n
LLP q � �A

for some proof term q� Then�

p� � ���
�� � � � �
pn � �n�

�
QLL
jqfp�� � � � � pn�z�� � � � � zngj � �A�
�

Theorem ���� is our main theorem� It basically means that we can use the calculus of LLP

r or
l� as a two�phase CLP system with clean separation between constraint generation and
constraint analysis� Given a CLP�program (� ��� � � � � �n and a query

�� P
y�� � � � � ym� we 	rst run

the abstracted program (� � �	�� � � � � � �
	�
n on the abstracted query �P
yk��� � � � � ym�� assuming

k � �
P �� which� say� yields a proof q such that

z� � �
	�
� � � � � � zn � �

	�
n
LLP q � �P
yk��� � � � � ym��
��

This proof or execution is controlled by the abstract structure of the program� and establishes a
particular solution q for the query� From the proof term q we can now extract the answer constraint
jqj
a �c
C��term of type j�P
yk��� � � � � ym�j � Uk � C� for the chosen abstract execution� We

simply substitute the constraint tables �	�i for the proof variables zi of jqj obtaining a quasi�closed

�c
C��term q� � jqf�	�i �zi j i � �� � � � � ngj of type U
k � C� From the Soundness Theorem ���� for

re	nement� then� we conclude that

��� � � � � � �
�
n
QLL �y�� � � � � yk� q

�
y�� � � � � yk� � P
y�� � � � � ym��
��

where ��i � �	i
�
� So� what have we achieved+ We started o� with an abstract query P
yk��� � � � � ym�

and an abstract proof
�� of this query from the abstracted program (� � and ended up with an
answer constraint q�
y�� � � � � yk�� The concrete�level proof
�� veri	es that the answer constraint
is sound� That this two�phase CLP�system is complete w�r�t� to conventional CLP will be shown
in Section ��

It should be stressed that� operationally speaking� the answer constraint indeed has been computed
in the true sense of the word� i�e� it has been synthesised� More speci	cally� the computation is
performed in two phases� in phase one we construct an abstract proof q� using the rules of the LLP�
calculus as an operational semantics� and in phase two we reduce the term q�
y�� � � � � yk� using
the computational semantics of the �c
C��calculus� This contrasts with the traditional methods
of giving a logical account of CLP which merely provide a �veri	cation� type� i�e� provability�
semantics for CLP� The logic rules of ordinary sequent calculi cannot be used to construct�� the
answer constraint� They can only be used post hoc� i�e� for proving that a given constraint formula
really is a valid constraint for a particular query w�r�t� a particular program
see e�g� �HSH�����
The main feature of LLP� not present in standard logics� that makes this operational interpretation
possible is the constraint modality �� Another important aspect that becomes visible at this point

��We can also include constraints into the query using a �double implication trick�� For instance� to run the
query I � ����� B � �� mortgage	P�I�MP�B�
� we extend the CLP�program mortgage by an additional clause
�P� MP� ��I� B� I � ���� � B � � � mortgage�P� I� MP� B�
�� � result�P� MP� with a new predicate symbol result� and
then run the new query result	P�MP� on the extended program�
��This requires extra�logical features such as meta�variables and higher�order sequents as e�g� in the LAMBDA or

ISABELLE theorem provers�

Technical Report� University of Passau
� MIP������ July ����

is that our constraint generation method is more general than that of standard CLP systems since
the resulting constraint q�
y�� � � � � yk� may introduce implicit variables for the query� In traditional
CLP systems the constraint obtained from running a query P
yk��� � � � � ym� is a condition on the
explicit variables yk��� � � � � ym only� As we will see from our running example to be discussed
below� this extra generality is very useful� It means that the answer constraint in general may also
produce a specialisation of the original query and provide additional intensional information that
has not been anticipated at the abstract level already� Such unobservable parameters might� for
instance� relate to debugging or pro	ling information� or user input�

Example �
�� To 	nish o� this section let us take up our running Example ��� again� Suppose
we are interested primarily in the functional �here
 synchronisation� behaviour of (� and thus
temporarily move the timing details out of the way� Thus� we apply constraint abstraction to
produce the purely functional behaviour (� � �	�� � �

	�
� � �

	�
� of the program and a separate constraint

table (� � �	�� � �
	�
� � �

	�
� that contains all information about the timing� These two parts have been

determined already in Example ��� to be

�	�� � true � �A� �	�� � true � �A� �	�� �
A� �A� � true� � �B

and

�	�� � �z� �v� v � � �	�� � �z� �v� v � � �	�� � �z� �v� �s� ��z � s � ��z � s � v � s#
��

It is now possible to verify the abstract program with respect to a query� say �B� i�e� prove the
sequent (�
LLP �B� The modality � indicates that we expect the query B to verify up to some
timing constraint� Fig� �� shows such a LLP proof using
r as in Example ����� where ! � x� �
�	�� � x� � �

	�
� � x� � �

	�
� � The generic meta�variable q� denotes the proof term of the assertion in the

sequent directly above
 q�L� q�R abbreviate the proof terms of the left and right sequents� assertions�
respectively� For the sake of clarity� the subscript is omitted from the entailment symbols� The

true�
� � true� 	 �true

��
� � ��
q�� x�� 	 �A�

true�
� � true� 	 �true

��
� � ��
q�� x�� 	 �A�

��
� � ��
q�L� q

�
R� 	 �
A� � A��

true�
� � true� 	 �true

��
� � ��
q�L� q

�
R� 	 �
A� �A� � true�

��
� � ��
q�� x�� 	 �B

Figure ��� A Simple Abstract Proof

abstract proof builds up a proof term q � ��
q�� x�� such that !
r q � �B� which expands to

q � ��
��
��
��
true�� x�����
true�� x���� true��� x��

thus verifying that the abstract system (� produces a functional output B� Term q contains the
constraint information� i�e� at what time this output appears� We 	rst unroll the derived rules as
proof terms in the ���c calculus and get

q � let z� � let y� � let y� � let z� � val
��
in x� z�

in let z� � let z	 � val
��
in x� z	

in val
y�� z��
in let z� � val
��

in val
y�� z��
in x� z�

Technical Report� University of Passau
� MIP������ July ����

which� in a purely structural sense� represents the bare bones of the proof tree in Fig� ��� Yet�
the ���c �term q is not just structure but comes equipped with a semantics� too� Indeed� the ���
equation of the ���c calculus �see Fig� ��� which we require to hold for every notion of constraint�
allows us to eliminate the three occurrences of val
�� immediately and simplify the term as follows

q � let z� � let y� � let y� � x� �
in let z� � x� �

in val
y�� z��
in val
y�� ��

in x�z��

The remaining val
y�� z��� val
y�� �� admit further ����reductions� however we must 	rst rearrange
the let�in structure suitably by several applications of ��ass�reduction

q � let y� � x� �
in let z� � x� �

in let y� � val
y�� z��
in let z� � val
y�� ��

in x� z��

Now we can apply ����reduction again and obtain

q � let y� � x� � in let z� � x� � in x�

y�� z��� ���

At this point we do not get any further with ���c and the generic notion of constraint� The proof
term q� now� is in
�c normal form� If we had used the system
l we would have got the proof
term q� � let z � q in val
z� right away� which is only one ��� equation away from the normal
form q� We have used the
r system here to demonstrate that in general sub�structural QLL calculi
for LLP require
�c reductions to compute constraints� To carry on with constraint evaluation� we
now use the interpretation mapping j � j to translate into the �c
C��calculus� where we can substitute

the concrete constraint tables �	�� � �	�� � �	�� for proof variables x�� x�� x�� respectively

q� �� jqjf�	�� � �
	�
� � �

	�
� �x�� x�� x�g

� let y� � �	�� � in let z� � �	�� � in �	��

y�� z��� ���

This term has type j�Bj � U � C� The timing constraint we are after is q� t which we compute
by applying the equations � ��� C�let of �c
C�

q� t �
let y� � �	�� � in let z� � �	�� � in �	��

y�� z��� ��� t

� �y�� �
	�
� � y� �
let z� � �	�� � in �	��

y�� z��� ��� t

� �y�� y� � � � �z�� �
	�
� � z� � �	��

y�� z��� �� t

� �y�� y� � � �
�z�� z� � � �
�s� y� � s � z� � s � t � s#
����

Note that we are entitled to apply the equation C�let since the expressions are of the right elementary
types� i�e� in particular that y�� z� are of type U� Having got this far� a simple constraint solver
for one�sided inequations would reduce this expression for q� t to the equivalent constraint t � ���
Theorem ���� and Proposition ���� now imply that in fact (
QLL t � �� � B
t� in a QLL
theory QLL
C� that includes equality reasoning and constraint equivalence� so that QLL
C�
 c � d
whenever c � d�

The example demonstrates how the essence of constraint logic programming is nicely captured in
our logic framework� Instead of manipulating a �at unstructured clause like �s� s � � � A�
s� it

Technical Report� University of Passau
� MIP������ July ����

separates the built�in constraint predicates and the user programs to give pairs� like �z� �v� v �
� � true � �A�� and works at the level of such pairs� This separation of concerns is at the heart
of CLP but rarely made explicit in CLP semantics based on logic
see� e�g� �DGW����� Instead
of running (at the concrete level with function and timing intertwined we have abstracted from
timing� veri	ed a purely functional query� and as a side�product obtained a timing constraint t � ��
by proof extraction� The reader should observe that all the constructions involved in extracting
the timing constraint were done by
�c� reduction only� whence they can be automated� The
computational bit missing here is the constraint solver� which we consider part of �c
C��reduction

extending
�c� reduction� in a practical implementation of the method as a CLP system� A very
similar� albeit more specialised� version of timing abstraction is proposed in �Men��� MF��� as a
framework for extracting timing information for combinational circuits�
The example can well be run with the proper functionality of 	rst�order terms included as in the
original formulation of Example ���� The reader may 	nd it instructive to 	ll in the 	rst�order
terms from Example ���� Then� the fundamental di�erence between constraint synthesis� which
proceeds at the level of proofs� and functional veri	cation� which is done at the level of formulas�
should become apparent�

The next� and 	nal� example of this section shows that sometimes it can be more advantageous
to compute constraints at the abstract level of ���c proof terms than at the concrete level of
constraint propositions� This supports our proposal that constraints should be distinguished from
propositions� It also shows that our method computationally is more powerful than the solutions
plans of �DGW���� for computations in ���c can perform actual substitutions� i�e� have a functional
�avour� while the semantics of solutions plans only produces equations� i�e� is of relational nature

see our discussions on related work in Section �����

Example �
�
 Suppose R is a relation symbol with �
R� � �� Then j�R
t�j � U � C� A
constraint table for �R
t� is val
s� � U � C for a arbitrary object�level term s� If we re	ne
p� � �� �� val
s� � �R
t� to the concrete level immediately� we get
val
s� � �R
t��� � �x� val
s�x �
R
x� t� which after �c
C��reduction gives �� �� �x� s � x � R
x� t�� This is logically equivalent to
��� �� R
s� t� but only by reference to additional equational reasoning� The abstract pair val
s� �
�R
t� however does behave like R
s� t� by virtue of the computational semantics of ���c � To see
this� consider another�� abstract clause p� � �� �� �y� x�val
r� � �y�R
y� � �P
y�� where �
P � � ��
This clause re	nes to
p� � ���

� � �z� y�
�x� R
x� y� �
�y� x�val
r�� y x z� � P
z� y� which in �c
C�
reduces to

�� �� �z� y�
�x� R
x� y� � r � z� � P
z� y��

Again this can be simpli	ed to ��� �� �y� x�R
x� y� � P
r� y� but this involves equational reasoning�
If we �execute� the abstract clauses p� � �� and p� � �� we can construct a proof

let v � val
s� in
�y� x�val
r�� t v � �P
t��

which re	nes to

�z�
let v � val
s� in
�y� x�val
r�� t� z � P
z� t��

and 	nally in �c
C� reduces to �z� rft�ygfs�xg � z � P
z� t�� Thus� we have performed a real
substitution of s for x� which is what we wanted and what we should expect from composing the
intended clauses ��� � �

�
�� If� however� we had composed the concrete level re	nements �� and ��

as CLP programs then we would end up with �x� z� s � x � t � rft�yg � P
z� t� in which the
substitution is only implicit in the equation s � x� This shows that the computational semantics
of ���c does perform some amount of constraint computation without resorting to an equational
constraint solver�
��Strictly speaking� �R�t� is not exactly a clause according to our de�nition� but this does not make a di�erence�

since the argument works also with the proper clause �z� z � t � �R�z��

Technical Report� University of Passau
� MIP������ July ����

 Embedding CLP proofs into LLP

Various operational semantics for general CLP schemes have been proposed which use a notion of
resolution� or derivation rules
see for example �AV��� GDL��� And��� or the survey �JM����� This
section illustrates one such
top�down� procedural semantics� as proposed in �DG��� or �AV����	�
closely related to our
l� and proves that the answer constraints generated by them are equivalent
to the constraints extracted from an abstract proof of the same program in LLP� More speci	cally�
the abstraction is the special case without hidden parameters� i�e� �
R� � � for all relation symbols
R�
The state of a CLP system is represented by goals and the resolution process is a sequence of steps
which lead from one goal to another� We assume a 	xed notion of constraint C �
"��� with
trivially solvable constraint true � "� A constraint c � " is solvable if the existential closure ��x� c
of c satis	es ��x� c � true�

De�nition �
� �Goal� A goal G has the form c � S�� � � � � Sn� where c � " is a constraint and
Si
i � f�� � � � � ng� are �formulas�

De�nition �
� �Derivation Step� A derivation step for a goal of the form G � c � S�� � � � � Sn
in the program ! results in a goal of the form G� � c� � S�� � � � � Si����� Si��� � � � � Sn� written

c � S�� � � � � Sn
�
�
�
c� � S�� � � � ��� � � � � Sn

where � is a list of �formulas� constraint c� is solvable� and Si� � and c� are determined by Table ��
The number � beneath the � symbol identi	es a single derivation step�

Rule Si � c�

� true c
� B c � B
�a T� 	 T� T� c
�b T� 	 T� T� c

 T� � T� T�� T� c
� �x� T Tfu�xg c

� P
�t� Tf�t��ygf�u��xg c

Note� in rule �� B is a constraint� in rule �� the variable u does not
occur in G� and for rule �� w � ��x� T � P
�y�� with �x � x�� � � � xm�
�y � x�� � � � � xn� n � m� is a clause in !� and moreover variables
�u � un��� � � � � um do not occur in G�

Table �� Goal reduction for derivation steps

De�nition �
� �Derivation� A derivation of a goal G in a program ! is a 	nite or in	nite
sequence of goals such that every goal� apart from G� is obtained from the previous one by means of
a derivation step in !� A successful derivation of a goal G is a 	nite sequence whose last element
is a goal of the form c� � �
i�e� no more program clauses left to consider�� In this case� c� is called
the answer constraint�

��The paper indicated also discusses an extension to CLP in the form of bounded quanti�ers� For the sake of
brevity� such extensions are not considered here�

Technical Report� University of Passau �� MIP������ July ����

It may be pointed out that this operational semantics slightly deviates from �AV��� in that our
derivations do not introduce any existential quanti	cation in the generation of constraints� On
the face of it this may seem a severe restriction since existential quanti	ers are an essential tool
to localise variables� However� this is justi	ed since� despite their appearance� they do not play a
very important r'ole in �AV���� In fact� constraints in �AV��� are assumed to be in prenex normal
form �z� c where c is a conjunction of atomic constraints� and this normal form is maintained in
derivations� like

��z� c � �S
�
�
�
��z� ��u� c � c� � �S��

where ��u binds a number of additional variables introduced in the course of the derivation� Since
these extra variables can always be determined and quanti	ed after the derivation has been done�
there is no need to carry around the quanti	ers during the derivation� Thus� we may as well
drop them completely� as we do here� or as done in the operational semantics for constrained
SLD resolution given by �DG���� This contrasts with the proposed LLP approach of constraint
generation by proof extraction� which does return truly localised constraint variables as we have
seen� e�g� in Example ����� In our LLP framework the standard notion of derivation as formalised
in Table � is a special case in which no constraint parameters are hidden� This is made precise by
the following two theorems�

Theorem �
� �Completeness� Let (� ��� � � � � �k be a CLP program and

true � A
�
�
�

true � c � �

be a derivation with atomic query A� Then� there exists an abstract proof

x� � �
	�
� � � � � � xk � �

	�
k
LLP q � �A

such that jqfx�� � � � � xk��
	�
� � � � � � �

	�
k gj� is identical to c up to �c
C��reductions and reordering of

conjunctions� assuming that no constraint parameters are hidden� i�e� �
R� � � for all relation
symbols R� Note� this implies A	� � A�

Theorem �
	 �Soundness� Let (� ��� � � � � �k be a CLP program and �w � (�
LLP p � �A a
proof of a modalised atomic query �A from the abstracted program (� � where �
R� � � for all

relation symbols R� Let p� �� jpf�(���xgj� be the constraint extracted from p �reduced to normal
form� for the constraint table (� � Then� if p� is solvable� then there exists a derivation

true � A
�
�
�

true � c � �

such that c � p��

Both Theorems ��� and ��� amount to the statement that abstract veri	cation in LLP� without hid�
den parameters� in combination with constraint extraction is sound and complete for the standard
CLP procedural semantics� In other words� the sequent calculi LLP not only capture the usual
notions of provability and truth for CLP but also the operational aspect of constraint generation�

� Kripke Models for QLL

While the previous sections were focusing heavily on the intensional semantics� this 	nal section
explores an extensional model theory for QLL� This rounds o� the picture and justi	es our calling
QLL a modal logic and � a modal operator� according to more standard traditions� Also it shows

Technical Report� University of Passau �� MIP������ July ����

that QLL in a single logic framework combines both model�theoretic and operational aspects of
CLP�

The models for QLL� introduced here are a variant of Kripke structures with a single set of
worlds� two accessibility relations and fallible worlds� They are called constraint models and for
propositional logic have been introduced in �FM���� They are extended here to 	rst�order models
in a standard way�

De�nition

� A Kripke Constraint Model of QLL is a quintuple

M � hW� Ri� Rm� I� F i

where W is a non�empty set of possible worlds�� Rm and Ri are pre�orders over W such that
Rm � Ri� I is a family of 	rst�order interpretations I � fI� j
 �Wg subject to certain conditions
speci	ed below� F � W is a set of fallible worlds such that
 Ri � and
 � F implies � � F �
With dom

� denoting the �nonempty� universe on which I� is built the following monotonicity
conditions are imposed on I
 for all
� � such that
 Ri �� �i�
 Ri �
 dom

� � dom
��� �ii�
I�
c� � I�
c� for constants c� �iii� I�
f� � I�
f� for function symbols f � �iv� I�
P � � I�
P � for
relation symbols P �

As usual� we have the notion of an assignment

 �Var

�
��W

dom

�

which maps variables onto the union of elements from all worlds in W � but consider only
point
world��wise mappings� the terminology
� is employed to denote the function

� �Var
 dom

��

Thus we have an assignment on a model that de	nes for every variable x and world
 an element

�
x� � j
j� We lift assignments
 to valuations
� of terms in the standard way�

De�nition

� Let M � hW� Ri� Rm� I� F i be a Kripke constraint model for QLL� A formula�
M is said to be valid at a world
 in M and under an assignment
�� written M�
 j��� M �
according to following conditions

� M�
 j��� Pn
t�� � � � � tn� �

��
t��� � � � �

�
�
tn�� � I�
Pn�

� M�
 j��� false �
 � F

� M�
 j��� �M � for all � such that
 Ri �� M� � �j��� M

� M�
 j��� M � N � M�
 j��� M and M�
 j��� N

� M�
 j��� M 	 N � M�
 j��� M or M�
 j��� N

� M�
 j��� M � N � for all � such that
 Ri �� M� � j��� M implies M� � j��� N

� M�
 j��� �M � for all � s�t�
 Ri � there exists � s�t� � Rm �� M� � j��� M

� M�
 j��� �xM � M�
 j��c
x��� M� for some c � j
j

� M�
 j��� �xM � for all � such that
 Ri �� M� � j��c
x��� M� for all c � j
j

Technical Report� University of Passau �� MIP������ July ����

A formula M is valid inM under assignment
� written M j�� M if� for all
 � W � M is valid
at
 in M under
�� A formula M is valid� written j�QLL M � if M is valid in any M for any
�

It is well known that intuitionistic logic can be embedded in the classical modal logic S�� using
G,odel�s translation �G,od���� By an extension of this translation� we may embed QLL in a classical
bi�modal logic which we call �S�� S��� This logic has the usual classical logical connectives together
with two primitive modalities� �i and �m� each of which possesses S� properties� The purpose
of multiple modalities is to relate the fundamental intuitionistic nature of QLL to �i and the
modality of QLL to �m� By 	rst�order extensions of results in �Pop���� �S�� S�� can be shown to
be sound and
Kripke� complete for the class of �S�� S���models�
The following function � translates formulas in the language of QLL into formulas in the language
of �S�� S��� Here� f is a distinguished propositional constant� which is not the same as �false�

false� � �if
M � N�� � �i
M
� � N��

P � � �iP 	�if
�x�M�� � �x�M�

M 	N�� �M� 	N�
�x�M�� � �i�x�M
�

M �N�� �M� �N�
�M�� � �i��m�M
�

This translation can be used to prove syntactic and semantic embedding-re�ection results between
QLL and �S�� S��� In the following�
�S��S�� � denotes that the sequent
 � is a theorem of �S�� S���
and j��S��S�� � denotes that the formula � is valid in all �S�� S�� models�

Lemma

� �Syntactic Embedding�Re�ection� A formula M is derivable in QLL i� the
translated formula M� is a theorem of �S�� S��� i�e�

QLL M ��
�S��S�� M
�

We also have embedding and re�ection results for the model theories�

Lemma

� �Semantic Embedding�Re�ection� For all formulas M of QLL�

j�QLL M �� j��S��S�� M
�

Therefore� by the soundness and completeness of �S�� S��� we may conclude soundness and com�
pleteness for QLL�

Theorem

	 �Soundness and Completeness� For all formulas M of QLL�

QLL M �� j�QLL M

Detailed proofs of the above results can be found in �FW����

	�� Canonical Constraint Models for LLP

LLP is a similarly simple fragment of QLL as logic programming
LP� is of intuitionistic predicate
calculus� It is known that LP is semantically decided by a simple one�world
i�e� classical� canonical
Herbrand model� In this section we show that for LLP� too� a simple but non�classical model can
be built on the canonical constraint frame

�

�

F �

�

 fallible

Technical Report� University of Passau �
 MIP������ July ����

where all arrows are Rm accessibilities and world
 is fallible� Each of the three non�trivial worlds
i � �� �� � in the canonical model represents a di�erent aspect of truth� and in each case this truth
has a model�theoretic and an equivalent proof�theoretic side� Accordingly� we distinguish between
i�derivability and i�validity and the canonical model of a LLP program has the property that a
formula is i�valid i� it is i�derivable� No need to stress� the di�erence between the worlds �� �� �
takes account of the modal constraint operator and solvability� Speci	cally� the semantics is set up
such that a ground atomic proposition A is forced in the model according to the following intuition�

� j� A i� A is true
in the least Herbrand model�
� j� A i� �A is true
� j� A i� �A is true and solvable

 j� A always
fallible world��

The semantic di�erence between A and �A being true implies the existence of at least two worlds�
hence the nonclassical nature� For if �A is true at � but A false� then there must be a modally
accessible world at which A is true� and this world must be di�erent from �� The di�erence between
� and � is to account for the fact that not all A with �A being true have proofs with solvable
constraints� i�e� are solvable� The purpose of the 	nal fallible
 is to mark its predecessor � as the
world with solvable constraints� For if A is valid at � but not at �� i�e� �A true at � but unsolvable�
then �A is valid at � only because of the existence of
� hence it is true in a fallible sense� In
other words� by adding or deleting the fallible world
 from the model� we can tell the di�erence
between solvable and unsolvable constraints� Thus� the fallible world is an essential ingredient in
our canonical model�

The following model construction is relative to a given language L and a notion of constraint
C �
"���� which are are assumed to be 	xed throughout the remainder of this section� As usual�
the Herbrand universe is the set H of all ground terms of the language L� We assume that "
is generated from a set of constraint relation symbols B� and that if B has arity n the model�
theoretic semantics of B is de	ned as an n�ary relation RB on H� Every constraint c � " with m
free variables then de	nes a m�ary relation Rc on H� c is solvable if Rc is nonempty� To capture
this model�theoretic semantics on the proof�theoretic side� we assume that � is sound and complete
for constraints� i�e� c � d i� Rc � Rd�

In the following let ! � ��� � � � � �n be a LLP�program without constraints
but which may contain
modalised and non�modalised heads� and) � p�� � � � � pn a constraint table for !� i�e� a list of
closed �c
C��terms such that pi is of type j�ij� where� for simplicity� we assume �
P � � � for every
relation symbol� i�e� jAj � � for atomic A�

The three non�trivial worlds �� �� �� of our canonical model based on frame F � are constructed as
the least Herbrand models of three di�erent re	nements !
� !�� !� of !� To begin with� !
 is the
program! in which all subformulas�A
i�e� all modalised clause heads� have been replaced by true�
This corresponds to the most pessimistic constraint interpretation �M �� false �M � true� This
transformation switches o� all modalised clauses� essentially assuming that whatever constraints
are waiting behind � they will not be solvable anyway� This is the most pessimistic view one can
take� Next� !� is the program obtained from ! by replacing all subformulas �A by A� This is
the most optimistic interpretation in which all constraints are assumed to be solvable� In general
we would read �M as true �M � which is the same as M � Finally� !� is the re	nement
) � !���
essentially replacing each
implicit� occurrence of �M by c �M where c is the actual constraint
for M as given by)�

De�nition

� A Kripke constraint model
W�Ri� Rm� I� F � is a Herbrand constraint model for
) � ! if it satis	es the following properties

��
W�Ri� Rm� F � is the canonical frame F

Technical Report� University of Passau �� MIP������ July ����

�� j
j for all
 � W is the constant domain H� I� is the standard Herbrand interpretation on
function� constant� and relation symbols� and I�
B� � RB for the constraint relations

�� For i �W � f�� �� �g� i j� !i

Lemma

� Every Herbrand constraint model M of) � ! is a model of the abstract program !�
i�e� � j� ! in M�

Since the program !i� for i � �� �� �� is an ordinary
i�e� modal�free� Prolog program it has a least
Herbrand model Mi in which the built�in constraint predicates B are assigned their prede	ned
semantics RB � This follows from standard results� We can now obtain the canonical Herbrand
constraint model M
) � !� �
F � I���� on the canonical frame F by putting I i��� � Mi for all
i � f�� �� �g� One can show that this interpretation I���
i� satis	es the monotonicity conditions of
De	nition ����

Lemma

 M
) � !� is a Herbrand constraint model for) � !�

We wish to link the canonical worlds with canonical proof�theoretic properties of the program�

De�nition

� A ground atom A is called a

� ��consequence �of) � !� if there exists a derivation !
LLP A

� ��consequence if there exists a derivation !
LLP �A

� ��consequence if it is a ��consequence with proof �w � !
LLP q � �A so that q� �� jqj f)��wg �
is solvable�

Theorem

�� �Soundness�Completeness� For every ground atom A and i � �� �� � we have

A is an i�consequence of) � ! i� i j� A in M
) � !��

Finally we remark that it should be possible to enrich the canonical models so that from the
structure of the worlds and the forcing of atomic formulas also the solutions can be identi	ed�
For instance� we conjecture that the so�called s�semantics for logic programming �FLMP��� can
be cast as a canonical Kripke constraint model in which worlds represent substitution constraints
with free variables�

� Points of Discussion

This work introduced Quanti	ed Lax Logic
QLL� as a formal framework for constraint logic
programming in which the extensional aspect
what does it mean�� and the intensional aspect

how is it computed�� are naturally combined� In QLL we adopt the identi	cations

abstract programs � formulas
constraints � proofs�

which accommodates the contextual nature of constraints� as opposed to programs� naturally
by an inversion of direction� proofs accumulate bottom�up while formulas are re	ned top�down�
Using this simple idea we obtain a compositional theory of constraints and logic programs in
which every program construct is justi	ed as a logic operator� both in an extensional and an
intensional sense� The extensional semantics of formulas is captured by Kripke constraint models
for QLL� and the extensional semantics of proofs by models of the computational lambda calculus
���c � which correspond to the denotational or declarative semantics of CLP� The operational or
procedural semantics of CLP� on the other hand� corresponds to a logic calculus and proof�search
strategy for QLL� This captures the intensional aspects of executing programs and generating
answer constraints� Generally� we propose the correspondences

Technical Report� University of Passau �� MIP������ July ����

denotational semantics � model theory
operational semantics � proof theory�

The proof�theoretic semantics ���c of QLL� presented in this report� extends Moggi�s computa�
tional lambda calculus �c by dependent types� and the model�theoretic semantics extends the
intuitionistic Kripke constraint models� previously introduced by the 	rst two authors� by 	rst�
order universes� For the Kripke constraint models we give a soundness and completeness result
by embedding QLL into classical bi�modal �S�� S�� logic� This extends the well�known G,odel em�
bedding for intuitionistic logic into S�� Our framework captures concrete notions of constraint
as di�erent semantics of the computational lambda calculus ���c and di�erent classes of Kripke
constraint models� In this way� we obtain parametrisation in the domain of computation and
constraint C and establish a new interpretation of the CLP
C� scheme�

We have de	ned a special class of ���c �models� the calculi of constraint relations $ and an even
more speci	c family of computational lambda calculi �c
C� corresponding to the standard CLP
model� To be more precise� CLP
C� actually corresponds to the Lax Logic Programming fragment
LLP of QLL� For LLP we presented a class of ��world constraint Kripke models� and the logic
calculi
r�
l as two di�erent formalisations of constrained SLD resolution� In specialising to
LLP we obtain a natural operational and denotational semantics for constraint logic programming
with an accompanying notion of constraint abstraction and constraint re	nement� Abstraction
amounts to splitting a concrete CLP program into a proof
 formula pair� This separates concerns
in a logically very precise sense and reinterprets the characteristic feature of CLP� which is to
consider constraints as built�in predicates� in a new way� Re	nement� then� is the recombination of
constraints and abstract program� We have given concrete abstraction and re	nement mappings
for LLP programs adequate for CLP�

�� Related Work

The work presented here is not the 	rst proof�theoretic approach to the semantics of LP or CLP�
Other approaches in the proof�theoretic tradition were made by Hagiya and Sakurai �HS���� Halln,as
and Schroeder�Heister �HSH���� Andrews �And���� Darlington and Guo �DG���� These semantics
essentially are provability semantics in which one replaces the model�theoretic de	nition of program
behaviour as the class of queries true in all Herbrand models by a formal�deductive de	nition�
viz� as the class of queries provable in some calculus� Although these semantics refer to the notion
of proof they are still extensional since what is considered relevant is that a query is derivable and
not how it is derivable� In other words� it does not matter which calculus one uses as long as it
derives the same theorems� This is quite di�erent with the intensional framework presented here
in which a particular choice of a
sub�structural� calculus for QLL determines a particular method
of generating a particular class of answer constraints�

The extensional point of view is applied� in particular� in the work of Andrews �And��� which
presents a proof�theoretic analysis of di�erent operational semantics of LP� He shows that the
classes of successful and failing queries for several versions of parallel-sequential and-or style
operational semantics can be characterised by provability in di�erent logic calculi� These calculi
generate classical theories with logic modalities S
A� and F
A� to specify the success and failure
of queries A� respectively� They constitute axiomatic semantics for several operational models�
very much like the Floyd�Hoare axiomatics for imperative programs� This is an external semantic
characterisation which keeps a clear distinction between Prolog queries as the object level and
the success-failure formulas specifying the semantics of these objects� For this external approach
it is accidental� so to speak� that Prolog programs themselves can be seen as logic formulas� In
contrast� here we are interested in the proof theory of logic programs themselves� i�e� their internal
logic and internal proof theory� This� so we believe� takes better account of the logical nature

Technical Report� University of Passau �� MIP������ July ����

of logic programming� and is more appropriate to capture operational aspects of constraint logic
programming� in a proof�theoretic way�

The problem of combining theorem�proving with constraint generation has been addressed also
in the work of Halln,as and Schroeder�Heister �HSH��� in which it was proposed to replace the
standard sequent calculus by a new higher�level calculus LC
P� to formalise the generation of non�
ground answer substitutions� However� this does not solve the problem� since LC
P� is not a logic
calculus with an independent model�theoretic semantics� but rather a formal presentation of an
operational semantics for a programming language that happens to be a logic� In this sense� this
work is similar in �avour to the approach of Andrews�

The work of Darlington and Guo �DG��� is related to ours in that they� too� link up the operational
mode of constrained SLD resolution for CLP with provability in a constructive sequent calculus�
Their calculus of simple uniform proofs is comparable to our
r system� However� again� the
correspondence veri	ed by Darlington and Guo is of the extensional kind� which does not address
the operational issue of actually constructing constraints� which ours does� From this point of view
constrained SLD resolution is not fully formalised by the system of Darlington and Guo� strictly
speaking�

The operational issue of constraint generation� though not by proof�theoretic means� is addressed
by Darlington� Guo� and Wu in �DGW���� This work� just like ours� gives a separation of the
constraint generation from the deduction procedure� by implicit abstraction� They use context�
free grammars as an abstract representation of CLP programs that are stripped of constraints�
The deduction mechanism of CLP� thus� is translated into executing the production rules of a
context�free grammar� and from the generated words� in �DGW��� called solving plans� constraints
are extracted� The context�free grammar obtained from a program corresponds to our notion of
an abstracted program� where we abstract completely from all constraints and 	rst�order terms�
Hence� it corresponds to complete propositional abstraction� In our framework abstraction need
not be as drastic as that� we can leave some of the program structure untouched� If only partial
abstraction is to be used� e�g� if only constraint formulas are to be abstracted and all 	rst�order
structure is kept� then simple grammar production like in �DGW��� does not su�ce to model
the execution of the abstract program� We also need 	rst�order uni	cation� Thus� our notion of
constraint and constraint generation is more �exible� It is de	ned by a more �exible notion of
abstraction� i�e� a more 	ned�grained notion of observation� It allows us to adjust more carefully
which parts of the program we wish to observe and which not� That is� how much work is to be
taken away from the inference engine and delegated to the constraint engine� Blunt propositional
abstraction is but one extreme case�
What the solving plans of �DGW��� are the ���c �proof terms in our framework� Being gener�
ated by the execution of an abstract program they determine constraints by semantic translation�
Comparing the two formalisms one observes that both maintain a di�erent amount of structural
information about constraints� Solving plans are linear sequences of terminal symbols� each termi�
nal represents
the invocation of� a primitive constraint and the whole sequence is a conjunction
of
invocations of� such primitive constraints� More structure� in contrast� is present in our proof
terms� The ���c terms have a tree�like structure of nested let�in variable bindings and function
applications which retains the hierarchy and potential parallelism inherent in the execution of con�
junctive subgoals� In the solving plans of �DGW��� this hierarchical structure is �attened and the
parallelism is sequentialised� We imagine that this extra structure of ���c � in certain cases� can
be exploited to compute constraints more directly� This is not explored here� but an example of
this idea is given �Men��� which applies Propositional Lax Logic to extract timing information for
combinational circuits� There it is shown that propagation delays can be obtained immediately
by reading proofs as expressions in the max�plus algebra� rather than as conjunctions of timing
inequations� which must be solved 	rst to get hold of the propagation delay� Another advantage

Technical Report� University of Passau �� MIP������ July ����

of the ���c calculus is its built�in invocation handling� The lambda calculus with its variable ab�
straction and function application mechanism serves to organise the instantiating of constraints
and renaming of variables in a systematic and consistent way� In �DGW��� this problem is not
addressed� Finally� we note that the translation of ���c terms into concrete constraints
via �c
C��
in general introduces existential quanti	cation which keeps some of the variables local� When full
propositional abstraction is used� like in �DGW���� then all variables are existentially quanti	ed�
This localisation is important for e�cient constraint solving�

�� Critical Remarks and Future Work

If we were to sum up this work in one sentence it would essentially propose the following programme�
Use a constructive logic as a generic constraint logic programming system� capturing� in a single
language� both denotational and operational semantics� Although this report does not get very
far with this programme it does attempt to pin down what might be considered the beginnings
of such a general theory� Nevertheless� the authors are well aware that the technical apparatus
introduced here may seem excessively involved merely to capture the relatively simple deductive
mechanism of ordinary CLP semantics� An obvious disadvantage� from an implementation point
of view� is the fact that in order to realise the decoupling of abstract programs and constraints
we need to generate and carry around
partial� proof objects� This is computationally expensive
and will be worthwhile only in applications where constraints actually need to be delayed in the
course of a program execution� say to free the main thread of computation from the need to check
constraint solvability immediately� and to operate ahead in exploring the search space at a more
abstract level� This technique is well established in theorem proving but less so in constraint logic
programming�

The material presented in this report does not attempt to contribute towards the algorithmic
side of CLP� Its contribution lies in presenting a new mathematical framework in which to study
and compare CLP semantics from a logical point of view� We believe that this approach will
prove useful as a rigorous basis for more ambitious notions of constraint and CLP paradigms that
narrow the gap to full��edged intuitionistic theorem�proving� It should be possible also to treat
CLP schemes with negation� inductive reasoning� or higher�order clauses in much the same way�
based on
extensions of� QLL and ���c �

More work is needed to investigate the correspondence between proof search and proof analysis in
QLL and di�erent operational semantics for CLP� The reader will have noticed that in the work
presented here we evaded discussing the issue of checking satis	ability of constraints� which is an
important part of standard CLP systems� This is justi	ed since� in our opinion� it is more of a
challenge to 	nd satisfactory ways for separating user program and constraints without jeopardising
correctness� than to mix them up in a single powerful calculus� This latter problem is easy and
has been solved already� the former however has not been addressed su�ciently� Granted that� the
question still remains� How can we incorporate the satis	ability check+ Well� in our framework the
satis	ability check is a form of proof analysis� Technically� it corresponds to proof normalisation�
which can be performed� in principle� at any time in the course of a logic derivation� The idea is
that
�c� reduction� which now also includes reduction of constraints to solved form� if it succeeds�
establishes the solvability of the constraint represented by the proof term� This is an intriguing
and mathematically convincing way to include constraint solvability into our framework� which
deserves to be explored in future work� In this context the �termination� predicate of evaluation
logic �Pit��� Mog��� suggests itself as a formal way to introduce solvability alias normalisability
into the language of propositions� and to axiomatise constraint solvability within QLL�

Future work also will explore several avenues of extending the CLP
C� scheme suggested by our
framework� We propose to investigate more powerful abstraction mechanisms to generate models

Technical Report� University of Passau �� MIP������ July ����

of QLL and apply recent work into combining and cascading monads to obtain a logic theory
of combined and iterated levels of abstractions and constraints� A potential application is the
abstract analysis and debugging of logic programs� We envisage that user interactions can also be
captured as a notion of constraint along the lines sketched in this work� just as input-output is
formalised semantically by monads in functional programming languages such as Haskell �Tho����

References

�And��� J� H� Andrews� Logic Programming� Operational Semantics and PRoof Theory� Distinguished
Dissertations in Computer Science� Cambridge University Press� �����

�AV��� M� Argenius and A� Voronkov� Semantics of constraint logic programs with bounded quan�
ti�ers� In R� Dyckho�� H� Herre� and P� Schr�oder�Heister� editors� Extensions of Logic Pro�
gramming� volume ���� of Lecture Notes in Arti�cial Intelligence� pages ����� Springer�Verlag�
�����

�BBdP��� N� Benton� G� Bierman� and V� de Paiva� Computational types from a logical perspective I�
Technical Report ���� University of Cambridge Computer Laboratory� May �����

�Cla��� K� L� Clark� Negation as failure� In Logic and Data Bases� pages �������� New York� �����
Plenum Press�

�Coh��� J� Cohen� Constraint logic programming languages� Communications of the ACM� ��
��	������
July �����

�Col��� A� Colmerauer� Opening the Prolog III universe� BYTE magazine� pages �������� August
�����

�Col��� A� Colmerauer� An introduction to Prolog III� Communications of the ACM� ��
��	������
July �����

�DG��� J� Darlington and Y� Guo� Constraint logic programming in the sequent calculus� In F� Pfen�
ning� editor� Logic Programming and Automated Reasoning� pages �������� Springer LNAI
���� �����

�DGW��� J� Darlington� Y� Guo� and Q� Wu� A general computational scheme for constraint logic
programming� In Proc� �rd U�K� Annual Conference on Logic Programming� pages ������
Springer� �����

�DvHSA��� M� Dincbas� P� van Hentenryck� H� Simonis� and A� Aggoun� The constraint logic programming
language CHIP� In Proc� Second International Conference on Fifth Generation Computer
Systems� pages �������� �����

�FHK���� T� Fr�uhwirth� A� Herold� V� K�ucheno�� T� Le Provost� E� Monfray� and M� Wallace� Constraint
logic programming � an informal introduction� In G� Comyn� N� E� Fuchs� and M� J� Ratcli�e�
editors� Proc� Logic Programming in Action� Second International Logic Programming Summer
School �LPSS	� volume ��� of Lecture Notes in Computer Science� pages ����� Springer�Verlag�
�����

�FLMP��� M� Falaschi� G� Levi� M� Martelli� and C� Palamidessi� Declarative modelling of the operational
behaviour of logic languages� Theoretical Computer Science� ��	�������� �����

�FM��� M� Fairtlough and M� V� Mendler� An intuitionistic modal logic with applications to the
formal veri�cation of hardware� In Proceedings of the
��� Annual Conference of the European
Association for Computer Science Logic� volume ��� of Lecture Notes in Computer Science�
pages �������� Springer�Verlag� �����

�FM��� M� Fairtlough and M� V� Mendler� Propositional Lax Logic� Information and Computation�
���
��	����� August �����

�FW��� M� Fairtlough and M� Walton� Quanti�ed Lax Logic� Technical Report CS������� Department
of Computer Science� University of She�eld� �����

Technical Report� University of Passau �� MIP������ July ����

�GDL��� M� Gabrielli� G� M� Dore� and G� Levi� Observable semantics for constraint logic programs�
Journal of Logic and Computation� �
��	�������� �����

�G�od��� K� G�odel� An interpretation of the intuitionistic sentential logic� In J� Hintikka� editor� The
Philosophy of Mathematics� Oxford University Press� �����

�GW��� F� Giunchilglia and T� Walsh� A theory of abstraction� Arti�cial Intelligence� ��	��������
�����

�HS��� M� Hagiya and T� Sakurai� Foundation of logic programming based on inductive de�nition�
New Generation Computing� �
��	������ �����

�HSH��� L� Halln�as and P� Schroeder�Heister� A proof�theoretic approach to logic programming� I�
clauses as rules� Journal of Logic and Computation� �
��	�������� �����

�JL��� J� Ja�ar and J�L� Lassez� Constraint logic programming� In Fourteenth Annual ACM Sympo�
sium on Principles of Programming Languages �POPL
��	� pages �������� ACM� �����

�JM��� J� Ja�ar and M� J� Maher� Constraint logic programming	 A survey� The Journal of Logic
Programming� ��
���	�������� �����

�JMMS��� J� Ja�ar� M� Maher� K� Marriott� and P� Stuckey� The semantics of constraint logic programs�
Technical Report ������ University of Melbourne� November �����

�JMSY��� J� Ja�ar� S� Michaylov� P� Stuckey� and R� Yap� The CLP
R� language and system� ACM
Transactions on Programming Languages and Systems� ��
��	�������� �����

�Kri��� F� Kriwaczek� An introduction to constraint logic programming� In V� Ma r!"k� O� St ep!ankov!a�
and R� Trappl� editors� Proc� Advanced Topics in Arti�cial Intelligence� International Summer
School� volume ��� of Lecture Notes in Arti�cial Intelligence� pages ������ Springer�Verlag�
�����

�Las��� C� Lassez� Constraint logic programming� BYTE Magazine� ��� August �����

�Llo��� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� second edition� �����
Extended�

�MB��� P� C� McGeer and R� K� Brayton� Integrating Functional and Temporal Domains in Logic
Design� Kluwer� �����

�Men��� M� Mendler� Constrained proofs	 A logic for dealing with behavioural constraints in formal
hardware veri�cation� In G� Jones and M� Sheeran� editors� Designing Correct Circuits �DCC

��	� pages ����� Springer� �����

�Men��� M� Mendler� A Modal Logic for Handling Behavioural Constraints in Formal Hardware Veri�
�cation� PhD thesis� Edinburgh University� Department of Computer Science� ECS�LFCS����
���� �����

�Men��� M� Mendler� Timing re�nement of intuitionistic proofs and its application to the timing
analysis of combinational circuits� In P� Miglioli� U� Moscato� D� Mundici� and M� Ornaghi�
editors� Proceedings of the �th International Workshop on Theorem Proving with Analytic
Tableaux and Related Methods� volume ���� of Lecture Notes in Arti�cial Intelligence� pages
�������� Springer�Verlag� �����

�MF��� M� Mendler and M� Fairtlough� Ternary simulation	 A re�nement of binary functions or an
abstraction of real�time behaviour# In M� Sheeran and S� Singh� editors� Proceedings of the
�rd Workshop on Designing Correct Circuits �DCC
��	� B�astad� Sweden� Springer Electronic
Workshops in Computing� September �����

�MJS��� M� Meier and et al J� Schimpf� ECLiPSe	 ECRC common logic programming system� user
manual� Technical Report TTI������ ECRC� �����

�Mog��� E� Moggi� The partial lambda calculus� PhD thesis� Edinburgh University� Department of
Computer Science� August �����

�Mog��� E� Moggi� An abstract view of programming languages� Technical Report ECS�LFCS��������
Edinburgh University� Department of Computer Science� �����

Technical Report� University of Passau �� MIP������ July ����

�Mog��� E� Moggi� Notions of computation and monads� Information and Computation� ��	������
�����

�Mog��� E� Moggi� A semantics for evaluation logic� Fundamenta Informaticae� ��	�������� �����

�Pit��� A� Pitts� Evaluation logic� In G� Birtwistle� editor� IVth Higher�Order Workshop� Ban�
����
Springer� �����

�Pla��� D� A� Plaisted� Theorem proving with abstraction� Arti�cial Intelligence� ��	������� �����

�Pop��� S� Popkorn� First Steps in Modal Logic� Cambridge University Press� �����

�Pou��� D� Pountain� Constraint logic programming� BYTE Magazine� February �����

�SA��� K� Sakai and A� Aiba� CAL	 A theoretical background of constraint logic programming and
its application� J� Symbolic Computation� �	�������� �����

�Sch��� B��A� Scharfstein� The Dilemma of Context� New York University Press� �����

�Tho��� S� Thompson� Haskell � The Craft of Functional Programming� Addison�Wesley� �����

�TU��� E� Tyugu and T� Uustalu� Higher�order functional constraint networks� Technical report� The
Royal Institute of Technology� Department of Teleinformatics� November �����

�van��� D� van Dalen� Logic and Structure� Springer�Verlag� �����

�Wad��� P� Wadler� Comprehending monads� In Conference on Lisp and Functional Programming�
pages ������ ACM Press� June �����

�Wad��� P� Wadler� Monads for functional programming� In Lecture Notes for the Marktoberdorf
Summer School on Program Design Calculi� Springer�Verlag� August �����

Technical Report� University of Passau �� MIP������ July ����

