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Abstract

The paper presents a new logical speci�cation language� called Propositional Stabilisation Theory
�PST�� to capture the stabilisation behaviour of combinational input�output systems� PST is an
intuitionistic propositional modal logic interpreted over sets of waveforms� The language is more
economic than conventional speci�cation formalisms such as timed Boolean functions� temporal logic�
or predicate logic in that it separates function from time and only introduces as much syntax as is
necessary to deal with stabilisation behaviour� It is a purely propositional system but has second�
order expressiveness� One and the same Boolean function can be represented in various ways as a
PST formula� giving rise to di�erent timing models which associate di�erent stabilisation delays with
di�erent parts of the functionality and adjust the granularity of the data�dependency of delays within
wide margins� We show how several standard timing analyses can be characterised as algorithms
computing correct and exact stabilisation bounds for particular PST timing models� Speci�cally� the
existence of a PST speci�cation style for static sensitization solves the open exactness problem for
this type of analysis� By choosing other timing models we can characterise timing analyses for which
no algorithms so far exist� Translations between di�erent timing models are the semantic basis for
combining timing analyses�

This work puts forward an application of intuitionistic modal logic that exploits the model�theoretic
strength of the constructive approach� It contrasts with the traditional point of view that focuses
on the proof�theoretic aspects of intuitionistic logic�

Keywords	 intuitionistic logic� modal logic� timing analysis� stabilization� combinational systems

� Introduction

The search for new hardware timing analysis techniques is driven by two competing
goals� e�ciency and precision� Increasing the e�ciency of an analysis algorithmmeans
reducing the cost of designing a circuit� while increasing its precision improves the
performance of the circuit itself� It is evident that there is a trade�o� between both
goals� Thus� it is not surprising that existing work on timing analysis� speci�cally
of combinational circuits which will concern us here� encompasses a large variety
of specialised algorithms designed for di�erent timing models at di�erent levels of
abstraction�

The simplest and oldest known method is the topological analysis� which computes
the length of the longest path through the circuit� It can be computed e�ciently in
linear time by a standard graph�theoretic algorithm� The precision of the topological
delay model� however� for state�of�the�art hardware often is not acceptable since it
yields a gross overestimation of the actual delay� As was pointed out in 	
� optimising
a circuit for speed in terms of the topological delay may actually deteriorate its
performance� The obvious defect of the topological analysis is that it completely
ignores functionality� i�e� the data�dependency of delays� For a timing analysis to be

�L� J� of the IGPL� Vol� � No� �� pp� ���� ���� c� Oxford University Press

PRELIMINARY VERSION of a paper under copyright with Oxford University Press

M. Mendler: Characterising Timing Analyses in Intuitionistic Modal Logic. 
Logic Journal of the IGPL, Vol 8, No. 6, pp. 821-853, Oxford University Press, 2000




 Characterising Combinational Timing Analyses in Intuitionistic Modal Logic

adequate for state�of�the�art circuit designs a data�dependent timing model must be
used 	�
�� An extreme case is wave pipelining 	���� a digital design style in which the
timing model must get close to the analog electrical behaviour in order to be useful�

Exact timing analysis for combinational circuits is NP�complete 	
��� Practical ana�
lyses� therefore� often are based on heuristics which maintain only approximate timing
information� The timing models found in the literature are quite di�erent in the de�
gree of data�dependency and operational modes that they consider� The main types
of timing models are transition delay 	�� ��� delay by sequences of vectors 	�
�� �oating
mode 	�� 
�� viability mode 	
��� static sensitization 	
�� and several forms of dynamic

sensitization 	�� ��� 

� �
�� These various forms of timing analyses are designed with
a view on algorithms and data structures with the consequence that the existing clas�
si�cation is based primarily on the method by which the delay is computed� This
neglects the importance of characterising timing analyses also in semantic terms�
i�e� determining what is computed rather than how this is done� Speci�cally� the
following semantic questions deserve to be addressed�

�� Given the timing analysis X performed on circuit C produces the delay number
�� then what information does � give us about the behaviour of C�


� How do two di�erent timing analyses X and Y relate to each other� how can we
compare their relative precision�

The �rst question is essentially the issue of correctness and completeness of a given
timing analysis� Though the existence of correctness and completeness results usually
is an important lynch�pin for program analysis methods it is rarely put up in the
area of hardware timing analysis� This may sometimes be the case just because the
algorithm is considered to be simple enough and well understood� and sometimes
because the algorithm�s semantic implications are too nontrivial to be made explicit
easily� An example of the latter is static sensitization analysis� It is still unclear for
which classes of circuits and under which operating conditions static delay analysis�
which has received quite some attention 	
� ��� ��� ���� is correct and complete� The
second question is the issue of semantic abstraction and re�nement� It is known that
di�erent timing analyses have di�erent relative exactness� due to varying delay models
and assumptions on operating conditions� Lacking a common semantic basis di�erent
analyses are hard to compare in terms of their relative precision� which sometimes
leads to paradoxical results 	���� There are purported �exact� methods which are not
exact� and purported new analyses that coincide with already existing ones� Attempts
to classify timing analyses exist� such as 	�
� �� ��� based on path sensitization criteria�
but these are not systematic and essentially of an algorithmic rather than a semantic
nature� Yet� a semantic approach is a prerequisite to answering the second question
since the relative precision of two timing analyses X and Y may depend in particular
on the functionality of the circuit� So� for some class of circuits analysis X may be
more exact than Y � while for another analysis Y produces tighter results�

This paper proposes to use a logic framework to answer such semantic questions�
The idea is to use logic formulas to characterise the amount of semantic information
about the combined temporal and functional behaviour that a given timing analysis
is capable of handling in a correct and exact way� By viewing the algorithm as a
formal calculus the correctness and exactness of the algorithm relative to a speci�c
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timing model can be phrased simply and rigorously as soundness and completeness
of the calculus for a speci�c logic theory�

What logic should we be using� Clearly� it must be su�ciently expressive to capture
the desired degree of functional and temporal information� If it is too weak it does not
allow us to make enough distinctions� On the other hand� if the logic is too expressive�
then the formalism does not contain enough structure and the classi�cation based on
it becomes uninteresting� There is a certain trade�o� to �x� So when it comes to it�
what is the basic semantic property that we need to express� The information we
obtain from the successful execution of a timing analysis algorithm concerns bounded
stabilisation� i�e� statements like �there exists a time bound � such that in all execu�

tions of the system the distance between stabilisation of signals a and b is at most

��� Since bounded stabilisation is a property of sets of in�nite waveforms �or traces�
and requires quanti�cation over waveforms we need second�order expressiveness in
our logic� This rules out well�known classical logics such as propositional temporal
and modal logics� or �rst�order predicate logic� On the other hand� second�order
predicate logic in which this can be expressed seems to be too general and therefore
logic overkill for the simple purpose of expressing stabilisation behaviour of purely
combinational systems� Fortunately� we can do better by taking a more dedicated
route� We exploit the observation that by using an intuitionistic rather than classical
approach bounded stabilisation can be expressed by purely propositional means� We
introduce an intuitionistic modal theory called Propositional Stabilisation Theory� or
PST for short� which combines the semantic expressiveness of second�order predicate
logic with the syntactic economy of propositional logic� We show that several stand�
ard timing analyses for combinational circuits can be classi�ed naturally in terms of
correctness and completeness for characteristic PST speci�cation styles� In particu�
lar� a PST timing model for static sensitization is presented� This solves the open
exactness problem for static sensitization analysis� and provides a rigorous uniform
framework in which di�erent timing analyses may be combined� Moreover� we show
that PST has considerable expressiveness� which suggests that the framework cap�
tures many interesting� but yet unknown� timing analyses with di�erent granularity
of timing information�

Before we start with the technical details let us stress that although this paper is
biased towards digital circuits the application of PST reported herein is not limited
to hardware� It covers equally well the analysis of stabilisation behaviour for software�
more speci�cally of �nite combinational input�output systems� where combinational

refers to the property that all internal states are transient� Such systems arise fre�
quently� notably in data��ow programming 	����

� The Intuitionistic Modal Theory PST

We obtain PST as a particular semantic interpretation of intuitionistic propositional
logic extended by a modal operator � with the axioms

�I � � � ��
�M � ��� � ��
�S � ��� ���� � ��� � ��
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and the rule � � � � �� � ��� This system is known as Propositional Lax
Logic �PLL� 	�
� or Computational Logic 	��� The modal operator � which has been
introduced originally by Curry 	�� arises under many di�erent names in Mathematics
and Computer Science� In the latter community its most well�known appearance is as
a strong monad in the work of Moggi 	
�� where � is used as a type�theoretic operator
for notions of computation� This paper� like 	�
�� takes a logical and model�theoretic
perspective on the intuitionistic modality� From a modal logic point of view� is rather
unusual� For instance� �I is part of a S��type possibility while �S is typical for a
standard necessity� On the other hand� �S is never adopted for possibility and �I
never for necessity� Then again� both the axiom �M and the rule � � � � �� � ��
express properties of both S��type possibility and necessity� It turns out that � does
not have a classical Kripke semantics� neither for the possibility nor the necessity
interpretation� However� perhaps surprisingly� it does have a natural intuitionistic
semantics� An adequate intuitionistic Kripke style model theory for PLL is developed
in 	�
�� based on so�called Kripke constraint models� Other types of Kripke style
models for PLL are the J �frames and J �spaces of 	���� A more general algebraic
semantics for PLL can be provided by Heyting algebras with a modal operator 	����

What is the semantic intuition behind the modal operator �� According to the
interpretation that we wish to put forward and support with this work the modal
operator � formalises a relaxed notion of correctness according to which �� means
�� holds up to a constraint�� Such relativised statements occur frequently in the
formal speci�cation and veri�cation of behavioural abstractions� both for software
and for hardware� Under this reading the three axioms �I��M��S re�ect the three
characteristic operations on constraints� speci�cally �I the trivial constraint� �M
sequential composition� and �S the parallel composition of constraints� The special
theory PST that we will be interested in here� arises as a more speci�c semantic inter�
pretation for which a modalised formula �� comes down to the statement �� holds

up to bounded stabilisation�� As we will see� in PST the three axioms correspond to
the three operations of the max�plus algebra �N� ����max� 	��� which is the algebraic
basis of �upper bound� timing analysis� The axiom �I corresponds to the zero delay
�� �M to addition �� and �S to the maximum operation max on natural numbers�
In the timing semantics of PST the modality � is somewhat more natural in that it
specialises to a form of intuitionistic possibility�

The theory PST will be presented as a realisability style interpretation of PLL as
opposed to a class of modal Heyting algebras or a class of Kripke constraint models�
This provides for an intensional semantics in which quantitative timing information
can be represented directly� viz� by realisers� It can be shown� however� that if we
abstract from the realisers the resulting extensional semantics can be captured equi�
valently in terms of a class of Kripke constraint models� An indication of this will be
given in Section ��
� A more detailed presentation of this extensional semantics can
be found in 	
��� albeit for a slightly more restrictive setting�

��� Syntax

The formulas of PST are generated by the language

� ��� true j false j a � � j a � � j � � � j � � � j � � � j ���
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where a ranges over a countably in�nite set S� fa� b� c� � � �g of signal names� Formu�
las a � � and a � � are propositional atoms representing the primitive statements
�signal a is stable �� and �signal a is stable ��� respectively� From these primitive as�
sertions complex statements of stabilisation behaviour may be built up using the logic
connectives of PST� We will later introduce further atomic propositions like a � �

� or
a � E� where E is a Boolean expression over signals� but these will not increase the
expressiveness� It would also be possible to extend the formalism to arbitrary �nite
value domains D using atomic sentences a � v� v � D with the obvious interpreta�
tion� For simplicity� however� we restrict ourselves to Boolean�valued signals� Also
note that although the constants true� false are redundant� it will be convenient to
consider them as primitives� The constant false can be represented as a � � � a � ��
and true by a � � � a � �� both for arbitrary a � S� We introduce negation �� as
an abbreviation for � � false� and � � � denotes bi�implication �� � �� � �� � ���

��� Semantics

The basic elements of our semantics are signals� waveforms� stabilisation bounds� and
behaviours� A signal is a function from time to values� s � N � B � time being
represented by the natural numbers and values by Booleans B � f�� �g� In a more
general setup a signal might be a function N � D where D is some ��nite� value
domain� Signals will be the semantic denotation of signal names� A waveform is a
function that maps every signal name to a signal� i�e� a function V � S� N � B �
These will play the r�ole of semantic valuations of formulas�

When it comes to timing analysis we are concerned with not merely whether a set of
waveforms satis�es a PST formula � but also how it achieves this� The intensional
degree of validity is the timing and it is measured in terms of stabilisation bounds�
It depends on the formula how much quantitative timing information is implied with
it� To make this explicit we associate with every formula � a set j�j of stabilisation
bounds as follows�

jfalsej � � � jtruej

ja � �j � � � ja � �j

j� � �j � j�j 	 j�j

j� � �j � j�j� j�j

j� � �j � j�j � j�j

j��j � N 	 j�j�

where � � f�g is a distinguished singleton set� More generally� we will use the notation
n for n � N to denote the set f�� �� � � � � n
 �g� discretely ordered� We identify B and

� As usual the elements of the disjoint sum j�j � j�j are pairs ��� c� where c � �
or ��� d� where d � �� An element c � j�j is called a stabilisation bound or simply a
bound for �� Note that j�j always is non�empty� so that every formula has at least
one bound� We say that a waveform V � S � N � B validates a formula � with
bound c � j�j� written V j� c � �� according to the semantic clauses
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V j� � � true
V j� � � a � � i� V �a� �� �
V j� � � a � � i� V �a� �� �
V j� �c� d� � � � � i� V j� c � � and V j� d � �
V j� ��� c� � � � � i� V j� c � �
V j� ��� d� � � � � i� V j� d � �
V j� f � � � � i� for all � � N and c � j�j�

if V � j� c � � then V � j� f c � ��
V j� ��� c� � �� i� V � j� c � ��

where V �a� �t v means that signal a in waveform V stabilises to value v at time t�
i�e� �s 
 t� V �a��s� � v� and V � is the time�shift V ��a��t� � V �a��t � �� of V � This
operation is lifted to sets of waveforms in the standard way�

Our semantics associates with every pair c � � consisting of a formula � and a bound
c � j�j a waveform set 		c � ��� � fV j V j� c � � g� It is useful to view c � � as
a new kind of formula which represents the re�nement of � by intensional stabiliza�
tion information c� The colon then becomes a binary connective that separates the
intensional from the extensional aspect� We will give more details later about what
kind of waveform sets can be speci�ed in this way� At this point it su�ces to men�
tion that all sets 		c � ��� have the following time invariance property� If V � 		c � ���
then V � � 		c � ���� too� for all � � N� Time invariance is a feature of stabilization
properties� If V � 		c � ��� but V � �� 		c � ��� for some � � �� then the information
expressed by c � � would only be a transient feature of V and thus does not count
as a stabilization property� In the following we will refer to time invariant subsets of
waveforms as �stabilisation� behaviours�

In a concrete timing analysis problem we are given some behaviour C �of an imple�
mentation� and a formula � �as its speci�cation� and ask for a stabilisation bound c
such that C � 		c � ���� If such a bound exists we say that C is well timed for � with
bound c� and write C j� c � �� In general there will be in�nitely many c for which
this is the case� We will be interested in optimal bounds� To make this formal we
introduce a partial ordering v on bounds� so that c v d means c is tighter than d� In
this way� the partial ordering j�j measures the intensional stabilization information
that is associated with �� The ordering on j�j is generated by induction on � from
the natural ordering � on N� taking point�wise ordering on products j�j 	 j�j and
function spaces j�j � j�j� For disjoint unions j�j� j�j we take the discrete ordering�
so that �i� c� v �j� d� i� i � j and c v d� Then� a stabilisation bound c � j�j is
exact or worst�case for C and �� if for all d � j�j such that d v c we have c � d i�

C j� d � �� The following monotonicity property highlights the intuitionistic nature
of our semantics�

Proposition ���

Let C�D be behaviours and c� d � j�j such that D � C and c v d� Then� C j� c � �
implies D j� d � ��

There are two useful classes of formulas for which the relation v has special properties
relating it to the realisability semantics� The �rst is a particularly simple one� the
class of formulas for which j�j is �order� isomorphic to �� Such � are called non�

informative since they only carry trivial stabilization information� The symbol � will
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be used to range over non�informative formulas� The other class of formulas are the
elementary formulas� ranged over by 	� Elementary formulas are generated by the
grammar

	 ��� true j false j a � � j a � � j � j 	 � 	 j �� j � � 	�

where � is non�informative and � arbitrary� Note that every non�informative formula
is elementary� The following Proposition 
�
 provides the basis for the timing analysis
discussed in Section �� It implies the existence of unique worst�case stabilization
bounds for elementary formulas�

Proposition ���

Let 	 be an elementary formula and C a behaviour such that C is well�timed for 	�
Then� the set f c j C j� c � 	 g ordered by v is �nonempty and� a complete lower
semilattice�

Note that Proposition 
�
 does not hold for arbitrary formulas� Consider � � ���a �
�� and a waveform V that switches a to � exactly at time point ��� and leaves it �
until then� i�e� V �a��t� � � i� t 
 ��� Now� working out the semantics we �nd
that V j� �r� �s� ��� � � i� r � s 
 ��� For instance� V j� ��� ���� ��� � � and V j�
���� ��� ��� � �� However� the only stabilization bound that is both below ���� ��� ���
and ��� ���� ��� in the v ordering is ��� ��� ���� but V �j� ��� ��� ��� � �� Hence� the set
f c j C j� c � � g �ordered by v� where C � fV � j � � N g is not a lower semilattice�
Note that� e�g� the orderings �j�j� j�j�v� of stabilization bounds for disjunctions do
not form semilattices either�

If we abstract from speci�c stabilization bounds and only concern ourselves with
whether or not a behaviour is well timed for a formula we obtain a notion of extensional
validity that links behaviours and formulas� We write C j� � if there exists c � j�j
with C j� c � �� PST� then� is the set of all formulas � such that C j� � for all
behaviours C� i�e� the formulas well timed for all behaviours� Because of monotonicity

�� this is the same as saying that � is well timed for the set S � N � B of all
waveforms� Thus�

� � PST i� �c � j�j��V � S� N � B � V j� c � ��

This is essentially a set�theoretic Medvedev style realisability interpretation for PLL
with stabilisation bounds as realisers� Besides the extra modality operator there are
twomain variations here to Medvedev�s realisability interpretation 	
�� of intuitionistic
logic� On the one hand our semantics is more speci�c in that it uses a �xed choice
of singleton sets ja � �j � ja � �j � � for the propositional atoms� Medvedev�s
interpretation quanti�es over all interpretations that associate arbitrary �nite sets
of �problems� with propositional atoms� In another direction our semantics is more
general� Medvedev applies a classical reading of implication whereby � � � is realised
by a function f � j�j � j�j for valuation V if �c � j�j� V j� c � � � V j� fc � ��
In our semantics� we require this to hold not only of V but also of all its time shifts
V � � This amounts to an intuitionistic reading of realisability on waveforms V as
linear Kripke models� For constant waveforms� i�e� in which no signal changes� we get
back Medvedev�s classical realisability� To sum up� our semantic de�nition of PST
�ignoring the modality� may be thought of as an intuitionistic version of a Medvedev
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style semantics of singleton problems on linear Kripke models� This relationship will
be invesigated more closely in Section ���� For a systematic study of Medvedev�s logic
of singleton problems the reader is referred to the paper 	

�� A survey on notions of
realisability can be found in 	�
�� For our purposes the realisability approach suggests
itself as being expedient to separate the two concerns of function� represented by
formulas �� and timing� represented by stabilisation bounds c as realisers�

PST is a purely propositional theory and even though it does not have quanti�cation
and time variables it can deal with timing and bounded stabilisation� The complexity�
of course� resides in its intuitionistic semantics� This semantics obtains a translation
of PST into a fragment of classical higher�order predicate logic� Let us make this
more precise and then take a look at some examples� Consider the following �stand�
ardization� translation of a pair x � � into a typed predicate logic formula 	x � ��t
relative to time t�

	x � a � ��t � �s 
 t� a�s� � �

	x � a � ��t � �s 
 t� a�s� � �

	x � false�t � false

	x � true�t � true

	x � � � ��t � 	
�x � ��t � 	
�x � ��t

	x � � � ��t � �y � j�j� x � ��� y�� 	y � ��t � �y � j�j� x � ��� y�� 	y � ��t

	x � � � ��t � �s 
 t��y � j�j� 	y � ��s � 	x y � ��s

	x � ���t � 	
�x � ��t���x�

Observing that 	x � ��t is only little more than the predicate logic formalisation of the
semantic conditions of j� it is not di�cult to show the following proposition�

Proposition ���

V j� c � � i� 	c � ��� is classically valid� where all signal names a are interpreted by
their associated signal functions V �a��

The following examples illustrate how in PST a speci�cation c � � conveniently sep�
arates the timing and the functional aspects� which in a conventional timing diagram
or an equivalent predicate logic formalisation are intertwined�

Example ���

Consider the formula � �df �a � � � a � �� � ��b � ��� What does it mean
for a behaviour C to be well�timed for �� We �nd that j�j � �� � �� � N 	 ��
which is �order� isomorphic to B � N� Thus� a stabilisation bound for �� up to
isomorphism� is a pair of natural numbers� It can be shown that C j� � i� there
exists a stabilisation bound f � B � N so that whenever a stabilises to value v at
some time t then b will stabilise to � with maximal delay f�v�� Formally� �f � B �
N��V � C��t � N��v � B � V �a� �t v � V �b� �t�f�v� �� This is a second�order timing
condition on C� Note that the delay f�v� is data�dependent� We call formulas of the
form �

W
i

V
j sij � vij� � ��s � v� transitions�

Example ���

All theorems of PLL are theorems of PST� Take the PLL axiom �S �df ���a �
�� � ��b � ��� � ��a � � � b � ��� for instance� Its set of stabilisation bounds is
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j�Sj � ��N 	 ��	 �N 	 ���� �N 	 ��	 ��� which is isomorphic to �N 	 N� � N� To
say �S is a theorem means that there exists a function f � �N 	 N� � N such that
for all waveforms V j� f � �S� It is not di�cult to show that the tightest� i�e� least in
the v ordering� such f is the maximum operation max on N� Similarly one shows that
the tightest stabilisation bound for �I �df a � � � ��a � ��� up to isomorphism�
is the constant zero �� and for �M �df ���a � �� � ��a � �� addition � on N�
In this way the three arithmetic operations of the max�plus algebra �N� ��max���
are characterised as stabilisation bounds of PST� Again� validity of �S��I��M is a
higher�order condition that cannot be expressed by standard �classical� propositional
temporal or modal logics�

Before we discuss timing analyses in the next Section � it will be useful to introduce
some derived constructions of PST� which give us the stationary state� ternary signal
algebra� and dynamic choice� Further meta�theoretic results about PST of more
general interest will be given in Section � later�

��� Double Negation and the Stationary State

Double negation in PST speci�es the stationary state� First note that doubly negated
formulas ��� are non�informative� The associated set of stabilization bounds j���j �
�j�j � ��� � is isomorphic to �� so that j���j consists of a single canonical element
�� It turns out that we can obtain the semantics of � � ��� by interpreting � as a
classical statement about the stationary state in which an atomic proposition a � v
is read as �signal a stabilises to v eventually� and the modal operator � is dropped�

To be more precise� let K � f�� �� � �g be the three�element Kleene set� The stationary

state assumed by a waveform V � S� N � B is the three�valued valuation V� �
S� K given by V��a� � v � B if �t� V �a� �t v� and V��a� � �

� otherwise� Let us
write V� j�c � if � is a classically true propositional statement� where all atomic
a � �� a � � are replaced by V��a� � �� V��a� � �� respectively� and all sub�
formulas �� by ��

Proposition ���

V j� � � ��� i� V� j�c ��

We will refer to the set of ternary valuations fV� � S� K j V� j�c � g as the
stationary behaviour speci�ed by ����

Example ��	

The formula ��� � ����a � ��b � ����a � ��b � ��� speci�es the stationary state
of an ideal inverter� both a and b stabilise eventually to opposite values� Formally�
the stationary behaviour speci�ed by ��� is speci�ed by the condition V��a� �
B � V��a� � V��b�� The formula osc�a� �df ��a � � � a � �� says that a
oscillates� i�e� the stationary value of a is �

� � and stab�a� �df ���a � � � a � ��
means that eventually a stabilises to � or to ��
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��� Encoding Ternary Signal Algebra

Let the language of PST be extended by new atomic propositions of the form a �
E	b�� � � � � bn� where a � S and E a Boolean expression� in the signals b�� � � � � bn � S�
We use the notation E	b�� � � � � bn� to indicate that b�� � � � � bn are all the signals that
occur in E� The intended meaning of a � E is �a is constant v� where v is the value

of expression E in the stationary state�� We add such new atoms as abbreviations in
the following way�

a � E	b�� � � � � bn� �df

�

�v�Kn

����b� � v� � � � � � bn � vn�� � a � E	v�� � � � � vn��

where E	v�� � � � � vn� � K denotes the ternary evaluation of the Boolean expression E�
and s � �

� abbreviates true� The new atoms a � E are non�informative� i�e� ja � Ej
is isomorphic to �� They indeed have the right semantics�

Proposition ��


V j� � � a � E	b�� � � � � bn� i� V j� � � a � E	V��b��� � � � � V
��bn���

Observe that the de�nition of a � E includes the original primitives a � � and a � �
as special cases� if we consider the constants �� � as Boolean expressions over an empty
list of signals�

Example ���

We �nd that c �  a� which is equivalent to ���a � � � c � �� � ���a � � � c � ���
states that if a becomes stationary with value v � B then signal c is constant at  v�
The special case a � a �df ���a � � � a � �� � ���a � � � a � �� means that a
is stationary� i�e� it is either constant or it oscillates forever� If we exclude oscillation
with stab�a� �df ���a � � � a � ��� the formula const�a� �df a � a � stab�a�
expresses that a is constant�

It is crucial to interpret E in a � E as a three�valued expression as opposed to a two�
valued one� for otherwise the semantics would be unsound� For example� although in
Boolean algebra b �  b is identical to �� the atomic propositions a � b �  b and a � � are
di�erent� The former means �a is constant � if b stabilises� whereas the latter says �a
is constant �� which is stronger� The di�erence is important as there is no guarantee
that b ever stabilises� in general� Formally� this is taken care of in three�valued Kleene
algebra� where �

� �
�
� � �

� � which is di�erent from ��

With the derived �equation�like� atomic propositions s � E we can embed the three�
valued Kleene algebra into PST� These expressions behave like ternary expressions
in the Kleene algebra K � In particular they enjoy the extensionality property� i�e� if
E�	b�� � � � � bn� and E�	b�� � � � � bn� denote the same three�valued function �of the bi��
then a � E� is semantically equivalent to a � E�� Moreover they are substitutive�
i�e� the formula scheme �a � E � b � F � � �b � FfE�ag � a � EfF�bg� is a PST
theorem� Boolean algebra is obtained as a special case by adding the axioms stab�s��
for all s � S�

�Actually an expression in the ternary algebra K� which is the same as a Boolean expression with ternary

semantics�
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��� Static Versus Dynamic Choice

An important feature of our semantics �and of every other realizability semantics
of intuitionistic logic� is the ordering in the quanti�cation over stabilization bounds
�realisers� and waveforms �valuations�� We have C j� � i� �c � j�j��V � C� V j�
c � �� i�e� the stabilization bound c must be uniform for all waveforms V � C�
From the timing viewpoint we might say that the bound c is chosen statically for C�
This contrasts with a dynamic choice that would result from interchanging the two
quanti�ers� i�e� from taking �V � C� �c � j�j� V j� c � � as the notion of validity�
Now the choice for c may depend on the individual waveform V � C� Let this
notion of validity be denoted by C j�d �� It is evident that j�d is a less restrictive
semantics� i�e� C j� � implies C j�d �� The simple examples below will show that it
is properly weaker� It turns out that this weaker dynamic reading can be obtained by
systematically replacing all modal operators by double negation and all disjunctions
� by the derived binary operator �� de�ned as

�� � �df ��� � �� � �� � ��� � �� � ���

Proposition ����

We have C j�d � i� C j� �d where �d is obtained by replacing all occurrences of
sub�formulas �� in � by ��� and all occurrences of �� � �� by �� � ���

In the sense made clear by Proposition 
��� we may view � as the dynamic version
of disjunction � and �� as the dynamic version of �� Note that the transformed �d

is non�informative� i�e� its set of stabilization bounds is isomorphic to �� This means
that the semantics basically collapses all stabilization bounds in this case�

Example ����

If a behaviourC is to be well timed for a � ��a � � there must be c � ja � � � a � �j �
� � � such that C j� c � a � � � a � �� Depending on whether c � ��� �� or c � ��� ��
this implies C j� � � a � � or C j� � � a � �� Thus� C j� a � � � a � � i� all wave�
forms V � C have signal a constant � or all V � C have a constant �� To achieve this
C is forced to make a static decision between a � � and a � � and stick to it for all its
constituent waveforms� In contrast with this consider the proposition a � �� a � �
which by de�nition is ��a � � � a � �� � a � �� � ��a � � � a � �� � a � ���
We may use Proposition 
��� to conclude that C j� a � �� a � � i� for all V � C
there exists c � ja � � � a � �j � � � � such that V j� c � a � � � a � �� This
means that for every V � C� V j� � � a � � or V j� � � a � �� In other words�
C j� a � � � a � � i� in every waveform V � C signal a is constant � or ��
so the choice is dynamic� Note that a � � � a � � is semantically equivalent to
const�a� � ���a � �� a � ��� ���a � � � a � ��� ���a � � � a � �� as de�ned in
Example 
���

Example ����

A similar situation occurs with the di�erence between C j� ��a � �� and C j� ��a �
�� The former means there exists a uniform stabilization bound for when signal a in
all V � C stabilises to �� while the latter only says that in every V � C signal a
eventually stabilises to � �cf� Example 
�
�� Again� this is the di�erence between a
static or a dynamic choice� or the di�erence between ����V � C� V � j� � � a � � and
�V� ��� V � j� � � a � ��
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�
 Characterising Combinational Timing Analyses in Intuitionistic Modal Logic

� Application to Timing Analysis

We now rush on to discuss the main topic of this paper which is the application of PST
to the problem of characterising the correctness and exactness of combinational timing
analyses� Readers more interested in pure logic and the meta�theoretic properties of
PST may wish to move on to Section � and perhaps come back to this section later�

Our application rests on the observation that one and the same Boolean function f
may be speci�ed in many di�erent ways as a PST formula �f � With each such choice
the static functional behaviour f is enriched in a characteristic way by stabilisation
information� We can view �f as a timing model of f � and the timing analysis of a
given circuit behaviour C� in a nutshell� as the problem of verifying that C is well
timed for �f � and �nding a tightest��tting stabilisation bound c � j�f j such that
C � 		c � �f ��� The point is that with di�erent choices of f �� �f it is possible to
adjust the granularity and amount of extra timing information� and in this fashion
characterise di�erent types of timing analyses�

It is important to observe that our characterisation game is nontrivial because of
the semantic gap between � and ���� While two timing models �f and �f may
express the same stationary behaviour f � i�e� ���f � ���f � the included transient
properties may di�er� i�e� �f �� �f � Here we exploit the intuitionistic nature of the
stabilisation semantics of PST� In a classical setting both � and ��� would coincide
and our programme collapse� The rich semantic range of behaviours between � and
��� will be illustrated in Section ��� below�

To link up with the standard way of representing behaviours we need a few additional
notions� A function unit �fu� is given by a triple F � �I� O� f�� with inputs I �
fa�� � � � � alg � S� outputs O � fb�� � � � � bmg � S� and Boolean function f � B l � Bm �
F may represent a simple gate like and� or� inv� a complex gate such as a multiplexor�
or a whole combinational circuit� More generally� a function unit may represent any
�nite combinational input�output system� either by bit�vector coding or by replacing
B by some �nite value domain D � Also� we could let f be a partial Boolean function�
or a ternary relation on the signals I � O� so as to capture circuits with internal
feedback and potential oscillatory behaviour� The term �function unit� is chosen to
stress the connections with data��ow programming�

Definition ��� �Timing Model�
Let F � �I� O� f� be a fu� We call a formula �F a �elementary� timing model of
F if the stationary behaviour speci�ed by ���F �cf� Sec� 
��� on the signals I � O
coincides with the �graph of the� ternary extension of f � and if �F is elementary�

If �F is a timing model of F then the stationary behaviour captured by ���F corres�
ponds to the functionality of F � i�e� the function f can be recovered completely from
the stationary semantics of �F � The restriction that �F is elementary ensures that
worst�case stabilization bounds for �F �measured by the partial ordering v� exist�

We can now elaborate a bit further on the view that timing analysis is about estab�
lishing well timedness w�r�t� a given timing model� In practice� the waveforms that
make up the behaviour C to be well timed are not given directly� but are speci�ed
themselves within PST� Typically� C is the behaviour of a composite system� i�e� a
list �F � F�� � � � � Fn of fus� each of which is speci�ed by a timing model �Fi and a
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stabilisation bound ci � j�Fi j� i � �� � � � � n� The behaviour C� then� is

C �
�

��i�n

		ci � �Fi �� � 		�c�� � � � � cn� � �F� � � � � � �Fn ���

By changing the mapping � � Fi �� �Fi it is possible to associate di�erent choices of
timing models with the components of the system and thus� depending on the purpose�
adjust for a suitable precision in the timing description� Similarly� the speci�cation �
for which we want C to be well timed is not arbitrary but generated from the fus as
well� i�e� � � ��F

� Again� we may build the mapping � � �F �� ��F
in accordance with

the required precision of the analysis� Typically� ��F
would be a timing model for the

composite Boolean function realised by the system�s components �F � Note that the
mapping � must translate lists �F of arbitrary length to accommodate systems with
arbitrary number of components� If we consider the fus Fi as the input to the timing
analysis� then a particular timing analysis is characterised by the choice of the timing
models �Fi for the components and ��F

for the composite system� Thus� a timing
analysis is characterised by two mappings � and � from fus to timing models�

Definition ��� �Timing Analysis�
Let � � X �� �X be a mapping which translates a fu X to a timing model for X

and � � �Y �� ��Y
a mapping that determines for every list of component fus a timing

model ��Y
for the composite system� Then� a 	�� ���style timing analysis is a partial

function T � T 	�� ��� that computes a stabilisation bound T 	�� ����F ��c� � j��F
j for

every list of fus �F and stabilisation bounds �c � c�� � � � � cn such that ci � j�Fi j�

A timing analysis T 	�� �� as described above is nothing more than a function that
turns stabilisation bounds into stabilisation bounds� This cannot be all� since the
value T 	�� ����F ��c� � j��F

j returned is not very relevant as long as it does not imply
any semantic information about the real�time behaviour of the system that is ana�
lysed� To rule out trivial solutions to the timing analysis problem we must impose
semantic soundness and completeness conditions� To do this in a convenient way let
us abbreviate the conjunction �F� � � � � � �Fn by ��F

and identify a vector �c with the
tuple �c�� � � � � cn�� Then� a composite system built from the speci�cations ci � �Fi can
be given by a single pair �c � ��F

� To say that a 	�� ���style timing analysis T is correct

and exact is nothing but the statement that T 	�� ����F ��c� is the tightest��tting sta�
bilization bound for which the composite behaviour 		�c � ��F

�� is well�timed w�r�t� the
speci�cation ��F

�

Definition ��� �Correctness and Exactness�
Let T be a 	�� ���style timing analysis� T is correct and exact if for all lists of fus
�F � stabilisation bounds �c � c�� � � � � cn with ci � j�Fi j� and d � j��F

j the following
equivalence holds�

d w T 	�� ����F ��c� � 		�c � ��F
�� � 		d � ��F

��

where the inequation d w T 	�� ����F ��c� on the left implicitly includes the statement

that T 	�� ����F ��c� is de�ned�

If we view a timing analysis T as a formal derivability relation between combined
temporal and functional speci�cations� then correctness and exactness of T can be
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rephrased as soundness and completeness conditions of logic� Formally� let us de�ne
c� � �F� � � � � � cn � �Fn �T d � ��F

as an abbreviation for the statement that T 	�� ����F ��c�

is de�ned and T 	�� ����F ��c� v d� The semantical aspect can by formalised by a
model�theoretic entailment relation c� � �F� � � � � � cn � �Fn j� d � ��F

with the
natural de�nition� �C� ��i� C j� ci � �Fi� � C j� d � ��F

� which is the same as
		�c � ��F

�� � 		d � ��F
��� Then� correctness and exactness come down to the bi�implication

c� � �F� � � � � � cn � �Fn �T d � ��F
� c� � �F� � � � � � cn � �Fn j� d � ��F

where � is the soundness and � the completeness direction relating syntactic and
semantic notions of logical entailment� In general� of course� �T may be quite di�erent
from syntactic derivability in a logic calculus� yet in some cases it may be just that
�see e�g� 	
����

A correct 	�� ���style timing analysis T � in general� will be a partial function since for

some choices of �F and �c it may happen that 		�c � ��F
�� cannot be well timed for ��F

�
Such a situation� for instance� occurs in static delay analysis �see Sec� ������� Since
we also want T to be computable this implies that T must e�ectively recognise if the
composite behaviour cannot be well�timed for ��F

� Alternatively� we may insist on
T 	�� �� being total by making the speci�cation mapping � clever enough to adjust

��F
� depending on �F � in such a way that 		�c � ��F

�� is always well timed for ��F
� for

all �c� In fact� the construction of ��F
may well be part of the algorithm T � In this

context it is important to note that a timing analysis� in general� not only computes
the timing but also computes or veri�es the function� How much of the function
it veri�es depends on the choice of �� In particular� all algorithms published in
the literature that perform a data�dependent analysis must necessarily verify some
amount of functional behaviour as well� Our notion of correctness �alias soundness�
and exactness �alias completeness� just makes this explicit�

Soundness and completeness de�ne a relationship between timing analysis algorithms
and speci�cation styles 	�� ��� The game can be played in two directions� Given an
existing timing analysis algorithm X determine a pair 	�� �� such that X is a correct
and exact 	�� ���style timing analysis� Then we may say that X is characterised by
	�� ��� The other direction is to start from a speci�cation style 	�� �� and try to �nd
an algorithm T that is a correct and exact 	�� ���style timing analysis� Then� T may
be viewed as a realisation of a 	�� ���style analysis� The following theorem is a direct
consequence of Proposition 
�
�

Theorem ��� �Existence of Correct and Exact Timing Analyses�
For all choices � � X �� �X � � �Y �� ��Y

of mappings� translating fus into timing
models �as speci�ed in De�nition ��
� there exists a correct and exact 	�� ���style
timing analysis� This analysis T 	�� �� is uniquely determined by � and ��

Note that Theorem ��� only states the existence of correct and exact timing analyses
characterised by timing models� It does not give any indication of how to construct
one�

To relate di�erent 	�� ���style analyses we must study the relationship between timing
models� There are several ways in which a timing model �� can be related to a
timing model ��� In this paper we adopt the simple extensional viewpoint which is to
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compare �� and �� in terms of the class of behaviours that can be well timed for them�
Suppose we know that all C that can be well timed for �� can also be well timed for
��� In other words� for all C� C j� c � �� entails C j� c � ��� This implies �by axiom of
choice� there exists a function f � j��j � j��j such that for all c � j��j� if C j� c � ��

then C j� f�c� � ��� or equivalently C j� f � �� � ��� Such a function f � uniformly
in C� translates stabilisation bounds for �� into those for ��� To claim that such a
function exists is equivalent to stipulating that the set of all waveforms S� N � B
can be well timed for the implication �� � ��� which in turn is the same as saying
that �� � �� is a theorem of PST� In the same way� �� and �� share the same well
timed behaviours i� the equivalence �� � �� is a theorem of PST� In practice� for
plugging together di�erent timing analyses and to relate timing models� we will be
interested not in arbitrary comparison functions but in exact ones� i�e� those that turn
optimal bounds into optimal bounds and thus preserve the exactness of the analysis�

��� On the Variety of Timing Models

Now� we �nally come to play the game� We characterise a range of 	�� ���style timing
analyses by varying � and �� We will discuss � timing models� called tft �ternary
function table�� prm �prime cover�� smp �simple worst case�� tpl �topological�� cls

�classic�� stt �static�� which represent � di�erent ways of systematically transforming
a Boolean function into a PST speci�cation� These models are only a few of the
many possibilities� but indicate the di�erent dimensions in which the granularity
of the data�dependency of delays may be adjusted� When arranged according to
their extensional semantics we get the following picture in which the abstractness

tft prm smp tpl cls
� ��

�

�

stt

of the models increases from left to right� The most discriminative is tft� which
associates a stabilisation bound with every partial input state� the most abstract is
cls which only speci�es stationary behaviour� While the �extensional� equivalences �
between tft� prm� smp� involve a loss of precision in the timing but not in function� the
proper inclusions � between smp� tpl� cls� stt also involve a loss of function� i�e� some
transitions that are bounded in the model to the left of � cannot be timed by the
model on the right of �� Note that the static model stt is incomparable with all the
models considered here except cls�

Using these timing models we obtain the following table characterising some of the
published timing analyses for combinational circuits�
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Analysis Style Source
Topological Delay 	tpl� tpl�
Floating Mode Sensitization 	smp� tpl� Chen!Du 	���

Devadas et al� 	
�
Viability Mode Sensitization 	smp� tpl� McGeer!Brayton 	
��
�A New Approach� 	prm� prm� Huang!Parng!Shyu 	
��
Static Sensitization 	stt� tpl� Benkoski et al� 	
�
Proof Extraction 	ftpl� prmg� ftpl� prmg� Fairtlough!Mendler 	
��

Note that �oating and viability mode analysis are characterised by the same models�
so they compute the same delay� This was proven already in 	
��� As is seen most
timing analyses are T 	�� tpl�� so that the discriminative parameter for classi�cation is
the speci�cation mapping � pertaining to the components� It is typical for standard
algorithms that for the components a data�dependent timing model is employed but
for the circuit itself all information is collapsed into only a single worst�case topological
delay� A more re�ned hierarchical method based on static sensitization has been
proposed in 	���� which we conjecture to be characterised as a 	stt� stt��style analysis�

In the following sub�sections we will discuss di�erent timing models using the example
of a complex gate� seen in Fig� �� with Boolean function d � �a � b� �  c�

�
d

a

b

c 
 �

G

Fig� �� A simple complex gate G

As a point of reference for our semantic discussions the three�valued function table of
G seen in Fig� 
 will be useful�
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Fig� 
� Three�valued function table of gate G

The function table in Fig� 
 is the three�valued extension 	��� ��� of the Boolean
equation d � �a � b� �  c� specifying the stationary behaviour of the gate� In the
following subsections we are going to specify this three�valued functional behaviour
in various ways by PST formulas� which di�er� essentially� in how much information
we are representing in the truth values and how much in the signal values� The basic
principle is� the richer the structure of the formula the richer the timing information
that is captured� As indicated already� we do not intend to explore the range of
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possibilities in a systematic way� but focus on a few examples that link up with
standard timing analyses�

����� Classical Delay�free Speci�cation

We begin with the extreme case of purely functional behaviour� Recall from Sec�
tion 
�� that double negation ��� translates every PST formula � into a classical
statement about the stationary state of the signals mentioned in �� Double negation
eliminates all timing information that may be contained in �� Within the scope of a
double negation ��� the logical connectives ����� take their classical meaning� and
the atomic proposition s � v reads �s eventually stabilises to v�� Thus� the delay�free
functional behaviour can be expressed by a doubly negated formula� The following
speci�cation clsG captures the ternary function table of the complex gate G �Fig� 
�
as a relation between the stationary states of input signals a� b� c and output signal d�

clsG �df ������a � � � �b � �� � �c � � � d � ��

� ���c � � � �a � �� � ��c � � � �b � �� � d � ����

Equivalently we may use the speci�cation clsG � ���d � a � b �  c� with the abbre�
viations introduced in Section 
��� We �nd jclsGj �� �� so clsG does not contain any
timing information� A circuit behaviour C is well timed for clsG i� the stationary
states V� � S� K assumed by the waveforms V � C are consistent with the ternary
function table of G�

����� Complete Three�Valued Function Table

On the other end of the scale lies the speci�cation of three�valued functional behaviour
in which every possible ternary input pattern is represented by a separate transition
input�state � � output�state with its own characteristic delay� For the complex gate
G with its three input signals a� b� c we get 

 di�erent three�valued input pattern�
and thus a conjunction of 

 implications

tftG �df �a � � � b � � � c � � � ��d � ��� �

�a �
�



� b � � � c � � � ��d � ��� �

�a � � � b � � � c � � � ��d � ��� �

� � �

�a � � � b � � � c � � � ��d � ��� �

�a �
�



� b � � � c � � � ��d �

�



�� �

�a � � � b � � � c � � � ��d � ����

in which the n�th conjunct corresponds to the n�th column in the function table of
Fig� 
� Using the equivalence �s � �

� � � true the formula tftG� which is elementary�
may be simpli�ed in the obvious way� without loosing intensional timing information�
One veri�es that ��tftG � clsG is a theorem� and that jtftGj �� N�� � Hence� tftG
is a timing model of G with stabilisation bounds �up to order isomorphism� being


�tuples of delays�
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The degree of data�dependency of delays in tftG goes beyond what is handled by
standard timing analysis algorithms� There� in many cases a single worst�case delay
value is assumed for each primitive component and from this a single worst�case delay
is derived for the composite circuit�

It has been observed that for simple CMOS gates� for instance� the propagation delay
shows rather big variations depending on the input context and that the knowledge
of these di�erences can be exploited for the construction of wave�pipelining circuits
	���� While for primitive gates we may refer to physics� the input data dependency
is more obvious for composite circuits� on logic grounds� just as it is evident for
software programs whose computation time depends on the input data� In practice�
it will depend on the concrete implementation technology and the intended precision
of the modelling in how far these distinctions regarding the delays of components or
a composite system are necessary� The speci�cation tftG marks an extreme case that
can be relaxed in various ways�

����� Delay by Coverings

In the range between the two extreme cases� clsG with � and tftG with 

 implicit
timing parameters� intermediate variants can be found� Given an arbitrary covering
of the ternary input space by subsets we can design a speci�cation that associates
with every subset of the cover a single delay� which is independent of the output values
generated by the input pattern contained in the subset�

Rather than presenting the general method� we discuss a distinguished case for our
example gate� We consider the canonical representation obtained by covering� for each
output state separately �these are d � � and d � ��� the associated input conditions
by all prime implicants� The resulting formula is

prmG �df ��a � � � c � �� � �b � � � c � ��� � ��d � �� �

��c � �� � �a � � � b � ��� � ��d � ���

where a � � � c � � and b � � � c � � are the two prime input cubes to cover all
input conditions that produce output d � �� and the two prime input cubes c � �
and a � � � b � � produce output d � �� We �nd that jprmGj

�� N� � which means
that prmG implicitly distinguishes � delay values� We also have ��prmG � clsG� so
that prmG speci�es the same stationary behaviour as clsG� Since prmG is elementary
it is timing model of G�

It can be shown that� extensionally� prmG contains the same information as tftG�
i�e� prmG � tftG� but that they are not intensionally equivalent� Intensionally� tftG
is more informative� since it contains a delay not only for all prime input cubes� as
prmG does� but for all input cubes that produce a de�nite output response� For
instance� while prmG only has one delay for the input pattern a � � � c � � which
works regardless of the behaviour of input b� tftG also has delays for the more speci�c
situations a � � � c � � � b � � and a � � � c � � � b � � in which input b is
known to be stable as well� Therefore� intensionally� prmG is a timing abstraction of
tftG in which some information is given up� Technically this can be formalised by
a Galois connection g a f � tftG � prmG on the worst�case stabilisation bounds of
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tftG and prmG� This means there exists a pair of functions g � jtftGj � jprmGj and
f � jprmGj � jtftGj with the following property� For all C � S� N � B � x � jtftGj�
y � jprmGj such that x is worst�case for C and tftG and y is worst�case for C and
prmG� we have x v f�y� i� g�x� v y�

Taking speci�cation by implicants prmG both for components and composite circuit
characterises the �New Approach� timing analysis presented in 	
���

����� Simple Data Dependency

Many standard timing analyses employ a simple form of data dependency with a
single worst�case delay value that applies for all ternary input pattern� but the circuit
or component need not wait for all inputs to arrive before it produces an output� This
is a special form of data�dependency in which it is not the value of the delay that
depends on the input but its activation� In our example this simple data dependency
of timing is speci�ed by

smpG �df activate�a� b� c� � ��d � �a � b� �  c�

activate�a� b� c� �df �a � � � c � ��� �b � � � c � ��� �c � ��� �a � � � b � ���

With smpG we model a single transition of the form activation � � output equation

the stabilisation bounds of which record a single delay� In fact� jsmpGj
�� N� The

antecedent activate of the implication collects all input situations �waveforms� that
activate the gate� We have ��smpG � clsG again� whence the elementrary smpG is a
timing model of G�

Notice that smpG is quite similar to prmG� However� instead of static choice � for the
input activation of prmG we use dynamic choice � �cf� Sec� 
��� in smpG" Also� the
gate�s functionality� which resides in the structure of the formula prmG� now in smpG
has been pushed into the signal values� i�e� the output equation d � �a � b� �  c�

Let us expand a bit more on the relationship between prmG and smpG� It is not
di�cult to convince oneself that both speci�cations are extensionally equivalent�
i�e� that prmG � smpG is theorem of PST� This implies that there are functions
f � jprmGj � jsmpGj and g � jsmpGj � jprmGj which translate stabilisation bounds of
prmG into those of smpG� and vice versa� It can be shown that among the possible
pairs f� g there is no isomorphism� i�e� prmG and smpG are not intensionally equivalent
for timing analysis� It turns out that the best solution for such comparison functions
again is a Galois connection f a g � prmG � smpG� To be more precise� modulo the
canonical order isomorphisms jprmGj

�� N� and jsmpdj
�� N this Galois connection is

given by the duplication function g � 
n� �n� n� n� n� � N � N� and the maximum
f � 
�n�� n�� n	� n���max�n�� n�� n	� n�� � N

� � N� But this is what we would expect�
In order to compactify a description prmG with four delays into a description smpG
with only one delay� we take the worst�case over all input situations that are still
distinguished in prmG� The other way round� nothing needs to be done� Since the
delay contained in smpG covers all input pattern it merely needs to be duplicated to
give an upper bound for each of the four input pattern of prmG�
It is clear that once we have abstracted from the four delays of prmG to only one
of smpG� by taking maximum� we have lost timing information� From the single
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worst�case delay we cannot recover the original distinctions� The Galois connection
f a g � prmG � smpG formalises this timing abstraction�

����	 Topological Delay

As mentioned before it depends on the intention of the user how much of the inten�
sional precision of PST is relevant� In the extreme case we may be content with a
single worst�case delay under the worst�case assumption that the component requires
all its inputs to be stable before it starts to compute the output� In case of our
example this would be achieved by the following PST formula

tplG �df const�a� � const�b� � const�c� � ��d � �a � b� �  c��

This is quite similar to the formula smpG for simple data dependency� in that it fea�
tures a single input�output transition� However� now� the gate is considered activated
only if all three inputs have become stable� We have ��tplG � clsG and jtplGj

�� N�

Since const�a��const�b��const�c� implies activate�a� b� c�� the implication smpG � tplG
is a PST theorem� The other direction does not hold� as one can verify� so that tplG
is a proper weakening of smpG� i�e� encompasses a strictly larger set of waveforms�
In every circuit in which G occurs a component we can replace the speci�cation tplG
of our example gate by the stronger smpG� and still verify the same consequences for
the waveforms of the composite circuit� However� since we have reduced the possible
waveforms the resulting total worst�case delay� in general� will have become smaller�
This is a model�theoretic way of saying that replacing the topological delay model by
a less conservative� i�e� more exact� delay model� results in better approximations�

If we specify both the primitive gates of a circuit and the composite system according
to this principle of topological delay� then the worst�case stabilisation bounds coincide
with the topological delay� i�e� the length of the longest path through the circuit� If
only the composite circuit is described by a worst�case formula tplG but the com�
ponents speci�ed with simple data dependency smpG we characterise viability 	
�� or
�oating�mode analysis 	�� 
��

����
 Static Path Delay

One of the earliest data�dependent timing analyses is the so�called static path ana�

lysis� which is based on static path sensitization 	
�� Here the propagation delay is
determined by the longest path through a circuit that can be activated by a controlling

signal transition on a single input� assuming that the signals on all side�inputs to the
path have reached non�controlling stable values� Take a two�input and gate� for in�
stance� The non�controlling value for an input of the and is � since then the output
is uniquely determined by the value of the other input� This can be generalised ac�
cordingly to multiple�input gates� The following PST formula is the timing model for
our example gate that captures this static sensitization mode of operation�

sttG
def
� ��const�a� � ���c � � � b � ��� � ��d � a�� �

��const�b� � ���c � � � a � ��� � ��d � b�� �

��const�c� � ���a � � � b � ��� � ��d �  c�� �
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����c � � � �a � � � b � ��� � d � ���

The �rst three conjuncts contain � and hence timing information� They state that
there are three input conditions const�a�����c � ��b � ��� const�b�����c � ��a �
��� and const�c� � ���a � � � b � �� for which the output d produces a response in
bounded time� In each of them exactly one input signal controls the output� while
for the remaining side�inputs the non�controlling stationary values are assumed� For
instance� in const�a� � ���c � � � b � �� the controlling input is a while b� c are the
side�inputs� The controlling input a is required to be stable const�a� while the double
negation ���c � �� b � �� only refers to the �nal stationary state of the side�inputs�
The stationary state c � � � b � � is such that the output of the gate is uniquely
determined by the controlling input a� i�e� we have the response d � a�

It is not di�cult to see that the �rst three conjuncts of sttG do not force any de�nite
stationary behaviour for the input combination a � �� b � � when nothing is known
about c� and for c � � when nothing is known about a� b� In all of these cases the
output is d � �� These � columns of the ternary function table �Fig� 
� are missing in
the transitions and thus have not assigned any delay� In order to ensure again that
the stationary behaviour ��sttG implied by sttG is equivalent to clsG� these � entries
must be covered by a separate fourth conjunct ����c � �� �a � �� b � ��� � d � ��
of sttG�

With the fourth conjunct the static timing model sttG is complete for the stationary
behaviour� As regards transition behaviour� however� it is still incomplete� This is
a well�known feature of the static model� In our example it is not possible to verify
the valid transition c � � � ��d � �� from sttG� It is not a semantic consequence of
sttG although it does occur in the intended concrete level behaviour of G� This means
that if we use sttG to specify our gate as a component of a larger circuit� then we
may not be able to verify� and thus derive stabilisation delays for those transitions of
the composite system that pass through the c � � input of the gate G� But if then�
as usual� we take as the delay of the composite circuit the maximal delay over all
veri�able transitions we may underestimate the true delay of the composite system�
This is a new and simple way to explain why static path sensitization is not an
exact criterion 	���� Since standard algorithms �in particular for static sensitization�
make no attempt to specify the semantics of an analysis� missing transitions are not
detected� Here is where PST as a speci�cation language for combined functional and
timing analysis pays o�� The logic formula sttG separates in a very precise way the
part of the functional behaviour that is included in the delay information ��rst three
conjuncts� and the part that is not �last conjunct�� Wherever we use sttG to analyse
a composite system we will be told by the semantics �or by a sound and complete
theorem prover� or a correct and exact timing analysis� that certain transitions cannot
be veri�ed for the composite system� and hence no delay can be computed� This may
be unproblematic if the environment in which the circuit is to be used does not need
to rely on this functionality� e�g� if it has a �don�t care� behaviour� Without a rigorous
speci�cation formalism such as PST these �don�t care� situations cannot be exploited�
nor can the compositionality principle by which a complete analysis may be obtained
from combining several incomplete analyses� This is the main methodological bene�t
of using a logic framework such as PST� In particular� the fact that we keep track
of the coverage of the analysis can be used to patch the exactness problem for static
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sensitization analysis�

Note that jsttGj �� N	 � whence the timing model sttG contains three delays� It is
not di�cult to �nd a formulation with only one delay� by using the dynamic choice
operator � � �� Also� it should be clear that besides sttG which corresponds to
static path analysis as considered in the literature� there are other variants of PST
speci�cation styles which are incomplete w�r�t� delay information� These may be more
or less complete� and more or less interesting� but surely there are many possibilities
to vary the theme� here�

� Some Meta�Theoretic Results about PST

This section sums up a few general results concerning the internal structure of PST
and expressiveness issues� Though our analysis will be rather brief we hope to include
enough material to justify our interest in PST� Our aim is to show that PST deserves
to be studied in its own right as an intuitionistic modal theory� independently of the
application to timing analysis that we put forward in this paper�

��� The Intuitionistic Nature of PST

Let us start o� with a few basic observations� Using the properties of the realisability
interpretation it is easy to see that PST is closed under modus ponens� i�e� if � � PST
and � � � � PST then � � PST� It can be shown that PST properly extends
PLL� The inclusion PLL � PST follows from the fact that PST satis�es all axioms
of intuitionistic logic� the three modal axioms �I��M��S of PLL� and the rule
� � � � PST� �� � �� � PST� The inclusion is proper since� e�g� ��false � PST
but ��false �� PLL �see 	�
��� Further� from the realisability semantics one obtains
immediately that PST has the disjunction property and� like PLL� satis�es the inverse
rule of necessitation�

Proposition ���

�i� � � � � PST implies � � PST or � � PST

�ii � �� � PST implies � � PST�

The disjunction property �i� implies that PST is a constructive theory� The rule
�ii� essentially means that the modality � is redundant as a top�level operator� To
see this note that since � � �� � PST �the axiom �I of PLL� �ii � implies that
� � PST i� �� � PST� The semantics of � resides in the interplay with the other
operators� notably implication� In fact� � turns out to be essentially intuitionistic in
character� It is incompatible with classical principles� If such a principle is added then
� trivialises in the sense that �� � � becomes derivable� Semantically it is clear why
this must be the case� A behaviour C satis�es the classical axiom ��a � � � a � � i�

for every waveform V � C it is the case that if signal a stabilises to � eventually� then
it must be stable already at time �� Thus� by adding to PST the classical principles
��a � � � a � � and ��a � � � a � � for all a � S we are essentially saying that
all signal are stationary in all V � C� i�e� the stabilization behaviour does not change
in time� This means that the truth of a formula does not change with time either�
whence there is no di�erence between eventual truth expressed by ��� and bounded
truth modelled by ���
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Proposition ���

PST� ��� � � � �� � �

Proposition ��
 is proven by using the fact that �� � ��� � PST� This implies that
�� � � by composition with the classical principle ��� � �� Since also � � �� �
PST we �nally derive �� � ��

��� On the Algebraic Structure of PST

Let 	�� be the equivalence class of � relative to PST� i�e� the set of formulas � such
that � � � � PST� These equivalence classes together with the partial ordering
	�� � 	�� i� � � � � PST form a relatively pseudocomplemented distributive lattice�
i�e� a Heyting algebra �PST���� The properties of the modality � make it a modal
operator on this Heyting algebra� A modal operator 	��� on a ��semi lattice �H���
is a mapping j � H � H that is in�ationary x � j�x�� idempotent jj�x� � j�x�� and
��preserving j�x� y� � j�x�� j�y�� We can give a simple description of the structure
of the sub�algebra PST�a� of PST generated by a single �xed signal name a � S�

First we introduce the notion of a constraint frame� Constraint frames induce modal
Heyting algebras just as Kripke frames induce Heyting algebras� They provide an
adequate Kripke style semantics for PLL 	�
�� Below we will show that PST�a� is the
intuitionistic theory of a very speci�c constraint frame�

Definition ���

A constraint frame is a structure �W�Ri� Rm� F � where W is a set� Ri� Rm are two
partial orderings on W such that Rm is a sub�relation of Ri� and F is a subset of W
that is upper closed with respect to Ri �and thus also for Rm��

In a constraint frame W is a set of Kripke worlds� and Ri and Rm are two access�
ibility relations used to interpret the intuitionistic implication � and the modality
�� respectively� The last component F represents a set of fallible worlds which are
the denotation of false� The reader is referred to 	�
� for more information on using
constraint frames for Kripke models of PLL� The class of constraint frames relevant
here for our deconstructing of PST�a� are the initial intervals n � f�� �� 
� � � � � n
 �g
of natural numbers with Ri being the natural ordering �� Rm � f �k� k��� j k�� �
n � k odd g � f �k� k� j k � n g� and F � fn 
 �g� By the cartesian product
W�	W� of two constraint frames �W�� Ri�� Rm�� F�� and �W�� Ri�� Rm�� F�� we mean
the constraint frame �W� 	W�� Ri� Rm� F� 	 F�� in which all operations are taken
component�wise� Thus� �w�� w�� � �v�� v�� i� w� �� v� � w� �� v� with � being Ri

or Rm� respectively�

Proposition ���

Every constraint frame �W�Ri� Rm� F � induces a modal Heyting algebra �#Ri�F�W ��
� jRm� where

� #Ri�F�W is the set of upper closed subsets of the partial ordering �W n F�Ri��

� �#Ri�F�W ��� is the Heyting algebra structure induced on #Ri�F�W in the standard
way by set inclusion" speci�cally� implication X � Y is the set

S
fZ � #Ri�F�W j

Z �X � Y g�

� jRm � #Ri�F�W � #Ri�F�W is the modal operator de�ned by jRm�X� �� fw �
W n F j �v� wRiv � �u� vRmu � u � F �X g�
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It is not di�cult to see that jRm�X� is an upper closed subset of W n F � Also� one
veri�es that jRm satis�es the equation X � jRm�Y � � jRm�X� � jRm�Y �� which by
Theorem ��� of 	��� su�ces to make jRm a modal operator�

Theorem ���

The modal Heyting algebra �PST�a�������� false� true��� generated by a single �xed
a � S is isomorphic to the modal Heyting algebra induced by the constraint frame
�	 �	 ��

Theorem ��� implies that PST�a� is a �nite algebra� Contrast this with intuitionistic
logic for which the Lindenbaum algebra in one atomic proposition� known as the
Rieger�Nishimura lattice� is in�nite �see e�g� 	�����

��� Relationship with Intermediate Logics of Kreisel�Putnam�

Dummett� and Medvedev

Let us take a closer look at the intuitionistic base� i�e� the ��free fragment of PST� We
call this modal�free fragment PST�I� We show that PST�I is related to two well�known
intuitionistic intermediate logics� viz� the logic KP of Kreisel�Putnam 	���� Dummett�s
linear logic LC 	��� and Medvedev�s intermediate logic MV of �nite problems 	
���
Building on the results of 	

� a new characterization of MV is derived�

In comparing with intermediate logics we must be careful to bear in mind that the
atomic propositions a � �� a � � in PST are propositional constants rather than vari�
ables� This means that the formulas of PST�I are not schematic� whereas formulas in
intermediate logics are schematic in propositional variables� To stress this distinction
we will refer to PST�I as a theory and to its elements as propositions and to KP�
LC� and MV as logics and call their elements formulas� To be more precise� let us
de�ne a theory to be a collection of propositions of intuitionistic logic in propositional
constants a � �� a � � �a � S� that is closed under Modus Ponens� A logic is a collec�
tion of formulas in propositional variables� say �� �� � � �� that is closed under Modus
Ponens and Substitution� Every theory T induces a logic� written S�T � and called
the standard part or the standardization of T � S�T � is the largest set of formulas �
such that all propositional instantiations of � are contained in T � In other words�
S�T � is the collection of axiom schemes that are valid in T �

With these preliminaries we can return to our program of relating PST�I to other
constructive logics� First of all� one can show that the standard part S�PST�I� strictly
extends intuitionistic propositional logic IPC but is properly included in classical
propositional logic CPC� As to strictness we note that S�PST�I� contains the Kreisel�
Putnam axiom scheme �see e�g� 	���� ��� � ��� � ���� � ���� � ��� � ��� � ����
which is not a theorem of IPC� At the other end S�PST�I� refutes the CPC axiom of
the Excluded Middle ����� Thus� IPC � KP � S�PST�I� � CPC� where KP is the
logic obtained from extending IPC with the Kreisel�Putnam scheme� This means that
S�PST�I� is an intermediate �also called superintuitionistic� logic� Its position in the
lattice of intermediate logics will be highlighted in the following� We show that the
intermediate logics of Medvedev and of Dummett coincide with the standard part of
two special theories of PST�I� and furthermore that MV coincides with the standard
part of PST�I itself�
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Consider the intermediate logic LC of Dummett 	���� It can be de�ned as the intu�
itionistic theory of the ��chain� i�e� the frame �N��� of natural numbers under the
natural ordering� It is not di�cult to see that every intuitionistic model built on
this frame can be simulated by a behaviour C � fV � j � � N g generated from a
single waveform V � S� N � B � We may call these the linear behaviours� Now� let
PST�IL � PST�I be the intuitionistic theory of linear behaviours� i�e�

PST�IL �� f� j � is ��free and C j� � for all linear C g�

It turns out that the subclass of linear behaviours can be characterised by the linearity
axiom �� � ��� �� � ��� which also completely axiomatises LC 	���� In fact� PST�IL
can be characterised formally as the class of propositions that are derivable from
PST�I by adding the axiom scheme 	�� � �� � �� � ��� �i�e� all ��free propositional
instances� and closing under Modus Ponens� This is the content of the following

Proposition ���

PST�IL � PST�I � 	�� � �� � �� � ����

We now have the following relationship between LC and PST�IL�

Proposition ��	

S�PST�IL� � LC�

Next� we come to Medvedev�s intermediate logic MV of �nite problems 	
��� which�
too� is closely related to PST�I� We �rst show that S�PST�I� � MV� To this end
we consider the theory of another special subclass of behaviours� viz� the constant
behaviours� A behaviour C � S� N � B is constant if for all V � C and all a � S�
�t� V �a��t� � � or �t� V �a��t� � �� i�e� if all signals in every waveform are constant �
or �� Consider the �proper� extension

PST�IC �� f� j � is ��free and C j� � for all constant C g

of PST�I� Again� there is an equivalent axiomatic de�nition� in terms of the axioms

const�a� � ���a � � � a � �� � ���a � � � a � �� � ���a � � � a � ��

expressing that signal a is constant �cf� Example 
����

Proposition ��


PST�IC � PST�I � 	const�a���

The important feature of constant behaviours C is that the time dimension of the
model is removed� Every waveform V � C can be identi�ed with a Boolean valuation
V � S � B such that V �a� � � if signal a is constant � and V �a� � � if a is
constant �� The realisability semantics for atoms then simpli�es to V j� � � a � v
i� V �a� � v� Moreover� for all � � N we have V � � V � This implies that the
realisability clause for implication V j� f � � � � simpli�es to �x � j�j� V j� x � ��
V j� fx � �� This is precisely the classical set�theoretic realisability interpretation
of Medvedev 	
��� Taking account of our special convention ja � �j � ja � �j � �
which associates a singleton set of realisers with every atom we conclude that PST�IC
coincides with Medvedev�s theory of singleton problems� This theory is termed Fcl in
	

�� i�e� PST�IC � Fcl� By Theorem �� of 	

�� MV � S�Fcl�� whence we get
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Proposition ���

S�PST�IC� � MV�

From the inclusion PST�I � PST�IC� the monotonicity of the standardisation oper�
ator� and from Proposition ��� we �nally obtain S�PST�I� � MV as claimed� Now�
the other direction can be shown to hold� too� so that we have�

Theorem ����

S�PST�I� � MV�

The proof is roughly this� In Theorem �� of 	

� is shown that MV � S�Fint�� where
Fint is the theory of �intuitionistic singleton problems�� This theory is de�ned like
PST�I except that it is based on arbitrary Kripke models rather than waveforms as
is PST�I� Since waveforms are just linear Kripke models we get S�Fint� � S�PST�I��
This� then� implies MV � S�PST�I�� as desired�

Theorem ���� means that S�PST�I� cannot be �nitely axiomatized by purely struc�
tural schemes since MV cannot 	
��� However� this does not exclude that PST�I itself
is �nitely axiomatizable by non�structural axioms� Indeed� we conjecture that PST�I
can be axiomatized by the axiom schemes

�� � �� � ��� � ��� � �� � �� � ���

���� � �� � �� � ��� � �� � ��� � �

��a � � � a � ���

where � ranges over f���g�free formulas� The �rst of the three axiom schemes is a
variant of KP� it re�ects the set structure of behaviours� The second is a specialisation
of the linearity axiom of LC� Indeed� if we would allow arbitrary instantiations for ��
then the second axiom is interderivable with �� � �� � �� � ��� This second axiom
re�ects the linear nature of waveforms� The third scheme ��a � � � a � �� is due to
the special interpretation of our atoms�

��� On Expressiveness

Since� after all� PST is a propositional theory one may wonder just how much tim�
ing behaviour can be expressed and how this compares with more conventional logic
speci�cation formalisms� Not much to be expected� on the face of it� Nevertheless�
the answer to this question turns out to be nontrivial� Some results on expressive�
ness are presented here� the exact characterisation still remains open� In as much
as PST expresses the di�erence between bounded and unbounded stabilisation it is
stronger than more conventional but less specialised languages such as classical pro�
positional temporal and modal logics� �rst�order predicate logic� or B$uchi�s monadic
second�order logic over one successor� Recall that the PST formula a � � � ��b � ��
says that �whenever a stabilises to � then after a bounded response time b goes � as

well�� Such �xed but unknown stabilisation delay� which is tantamount to generic
timing analysis� cannot be expressed in these other formalisms by closed formulas� in
particular not without introducing free time parameters� On the other hand� as far as
transient behaviour is concerned PST is considerably weaker than the mentioned clas�
sical formalisms� Our semantics of propositions must satisfy some rigid intuitionistic
closure properties which restrict expressibility in PST rather drastically�
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Proposition ����

PST is �i� time invariant� i�e� C j� �� C� j� �� and �ii � closed under sub�behaviours�
i�e� C j� � � D � C � D j� ��

In view of Proposition ���� the reader is reminded� however� that PST is not proposed
to substitute general purpose logics� Its virtues stem from being a special purpose
theory to capture stabilisation behaviour for �nite combinational systems� For such
applications we are interested only in whether or not a signal a has stabilised at a
given time rather than the precise changing of a over time� This is re�ected by the
fact that with atomic proposition a � �� a � � we cannot access the value of a at any
particular time like we can with atomic propositions of temporal or predicate logics�
So� for instance� we cannot capture transient behaviours� such as �signal a switches

exactly � times before it stabilises�� or �the distance between two changes of a is at

most ��� time units��

So� what can be expressed� then� Let us analyse the di�erent kinds of stabilisation
behaviours that can be distinguished for a �xed given signal a � S� To begin with
there are the three basic options which relate to constant a � �� a � �� bounded
��a � �����a � ��� and stationary ��a � ����a � � stabilisation modes� We
know from Theorem ��� that the fragment PST�a� corresponds to the modal Heyting
algebra generated by the upper closed subsets of the constraint frame �	�	�� This
is a �nite but certainly rich lattice of stabilisation properties� As far as expressiveness
is concerned this internal algebraic characterization� still� is not very useful� A much
better idea of PST�a� as a speci�cation formalism for classes of behaviours is obtained
from the following characterization in terms of second�order classical predicate logic�

Theorem ����

PST�a� captures precisely all properties of waveform sets C � S� N � B expressible
in classical second�order predicate logic by closed formulas � in the language of the
primitive stabilisation predicate V �a� �t b with waveform variable V � value variable
b� time variable t� subject to the following restriction� In the prenex normal form of �

� all occurrences of waveform variables are universally quanti�ed

� every negative occurrence of a time variable is universally quanti�ed

� no universally quanti�ed time variable occurs both positively and negatively�

In Theorem ���
 a positive �negative� occurrence of a variable in � means an oc�
currence that is in the scope of an even �odd� number of negations� The semantics
C j�c � of a closed formula � is given as in classical predicate logic with the under�
standing that every universal quanti�cation �V implicitly quanti�es over the set C�
i�e� is read as �V � C� Let us call the closed formulas of second�order predicate
logic with the syntactic restrictions given in the Theorem stabilization sentences� The
theorem can be proven by a systematic analysis and suitable normalisation of stabil�
ization sentences in second�order predicate logic on the one side and the propositions
� in PST�a� on the other� For every stabilization sentence � in normal form one
constructs a PST�a� proposition �� such that C j�c � i� C j� �� � Vice versa� for
every PST�a� proposition � in normal form one constructs a stabilization sentence ��
such that C j� � i� C j�c ���
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Example ����

For an indication of how the two formalisms relate pick the following simple class of
stabilization sentences� Consider the formulas in prenex normal form over the atomic
matrix V �a� �t b� i�e� formulas Q�� Q�� Q	� V �a� �t b in which Q�� Q	� Q	 quantify the
three variables V� b� t such that the restrictions of Theorem ���
 are ful�lled� Table �
lists all possible quanti�cations and the corresponding PST�a� proposition expressing
the same stabilization behaviour� Notice how the di�erent choices and orderings
of quanti�ers of predicate logic are captured merely by propositional means using
the intuitionistic semantics in PST�a�� Note also that all propositional connectives
���������� which are all independent in PST� are involved in expressing the di�erent
quanti�cation schemes�

Predicate Logic PST�a�
�V��t��b� V �a� �t b false

�V� �t� �b� V �a� �t b ���a � � � a � ��
�b��V� �t� V �a� �t b ��a � � � ��a � �
�t��V� �b� V �a� �t b ���a � � � a � �� �����a � � � a � � � ��a � � � a � ��
�t� �b��V� V �a� �t b ��a � � � a � ��
�V��t� �b� V �a� �t b ���a � � � a � �� � ��a � � � a � � � ��a � � � a � �
�b��V��t� V �a� �t b a � � � a � �

Table �� Predicate Logic and PST�a�

Theorem ���
 provides a rather satisfactory characterisation of expressiveness of single
signal propositions� A complete characterisation of the expressive power of full PST
is still open� It can be shown that in the f���g�free fragment of PST arbitrary
orderings for the stabilization of signals can be speci�ed� In order to make this more
precise� suppose� from now on� we are interested only in the stabilization of a �nite
set of signals S � S� Let A � f a � �� a � � j a � S g be the set of atoms over
these signals� By a state we mean a subset � � A of atoms such that for no a � S
both a � �� a � � � �� The state assumed by a waveform V � S � N � B at
time t is the set �tV �� f a � v � A j V �a� �t v g� The set �V � f�tV j t � N g
is linearly ordered under subset inclusion and called the stabilization sequence� or
simply s�sequence� of V � It captures the sequence and relative ordering in which all
signals from S stabilise �or not� in V � but abstracts from the absolute occurrence time
and absolute distances of stabilization events� Every linearly ordered subset of states
may occur as the s�sequence of some waveform� The following theorem says that the
s�sequences of all waveforms in a behaviour can be speci�ed uniquely by f���g�free
propositions�

Theorem ����

For every subset % of s�sequences �over signals S� there exists a f���g�free proposition
�
 such that C j� �
 i� for all V � C� �V � %�

Example ����

To give an example� the formula �a � � � b � �� � �c � � � a � �� � ���a �
� � b � � � c � �� says �a and b eventually stabilise to � simultaneously� whereupon�

but not earlier� c stabilises at ��� This corresponds to the two possible s�sequences
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% � f��� ��g where �� � ffa � �� b � �g� fa � �� b � �� c � �gg and �� � ffa �
�� b � �� c � �gg�

� Conclusion

The paper presented a new speci�cation language PST to capture the stabilisation
behaviour of �nite combinational systems� Its semantics being sets of Boolean wave�
forms PST combines both the temporal with the functional aspects� Yet� in contrast
to conventional logic formalisms it does not intermingle the two at the syntactic level�
The syntax is purely propositional with an additional modal operator � that acts as
a generic place�holder for stabilisation bounds� The bounds themselves are treated as
realisers of propositions and a de�ning ingredient of the intuitionistic semantics�

The relevance of PST as a unifying framework lies in the fact that it allows us to
specify and compare di�erent timing analyses in terms of their underlying timing
models� One and the same Boolean function can be represented in many ways as
PST formula� giving rise to various di�erent timing models that associate di�erent
stabilisation delays with di�erent parts of the functionality� We have characterised
some published algorithms as correct and complete PST�style analyses� In setting
up a timing model we can play with two parameters� One is the granularity of the
data�dependency of the delay� It can be varied in large limits� distinguishing di�erent
sets of input conditions with di�erent delays� These input conditions may determine
the activation of a computation and the value of the delay separately� The value
may also depend on how �strongly� the circuit is activated by the input� The second
parameter we can play with is the amount of functionality that is included in the delay
analysis� In general� a PST timing model speci�es delays only for a relevant part of
the input space and output behaviour� explicitly including �don�t care� or �don�t
know� situations� This is important to make rigorous sense of incomplete timing
analyses such as static sensitization� All these di�erent timing models can be related
in PST extensionally by logic implication � and equivalence �� measuring the classes
of circuit behaviours that can be well timed for them� and intensionally by giving
explicit comparison functions translating stabilisation bounds between the models�
Galois connections specify intensional timing abstraction and timing approximations
induced by passing from one model to another�

Being able to handle di�erent timing models with varying degree of data�dependency
within one framework suggests PST as a distinguished formalism for hierarchical
timing analysis� It is evident that if we are to construct the timing of a large circuit
in a compositional way� then for e�ciency reasons we cannot maintain the same �high�
degree of timing granularity all the way up through the hierarchy� To handle a complex
sub�circuit we must lump together many input states into a single activation pattern�
for which only one worst�case delay is recorded� and only keep distinctions where this
involves signi�cant di�erences in the associated delays� Also� the information about
data must be compressed to give input�output relations� or nondeterministic functions�
All this can be done in PST� Speci�cally� nondeterministic pattern s�� � � � � sn �
E	s�� � � � � sn� can be encoded� which state that the stable value of the signal vector
�s�� � � � � sn� is in the set described by the �ternary� expression E� Then�

a�� � � � � an � E	a�� � � � � an� � ��b�� � � � � bm � F 	b�� � � � � bm��
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may specify an input�output transition of some component up to data abstraction�
�if the input �a stabilises in the set E� then with bounded response time the output �b
stabilises in the set F �� In this way quite abstract descriptions can be produced�

We believe that the inherent compositionality of PST is a major advantage over al�
gebraic formalisms� in particular Timed Boolean Functions �TBFs� 	�
� which have
recently been proposed as a unifying model to specify and implement timing analyses
both for combinational as well as synchronous circuits� However� since TBFs are de�
scriptions of arbitrary waveforms �though only with a �nite number of signal changes�
they can capture transient behaviour� and thus are more expressive than PST� To
compare the amount of information handled by the two formalisms� roughly� we get
the following picture� TBFs describe the Boolean relationship between the stable
values of signals in a number of contiguous intervals

�
�� t��� �t�� t��� � � � � �tn��� tn�� �tn�����

whereas in PST we relate only the stable values of signals in their �nal stabilisation
intervals �tn����� Thus� TBFs are able to specify timing analyses for dynamic
sensitization� or two�vector delay models 	�
� ��� which is not possible in PST�

It is not surprising that timing analyses based on the more �accurate� dynamic mod�
elling of TBFs result in smaller delay times� However� like in the two�vector model�
these are computed for quite speci�c input conditions� which may not necessarily be
guaranteed by the environment in which the circuit is used� In particular� feedback
loops cannot be handled in a satisfactory way� In PST no such structural or behavi�
oural assumptions are imposed on the environment� and thus it can be used as well
to analyse asynchronous combinational systems such as the ones considered in 	
���
Also� the TBF model does not support abstraction and re�nement of timing mod�
els� which requires a certain degree of nondeterminism� or looseness� in speci�cations�
TBFs are deterministic functions from input waveforms to output waveforms with
�xed input timing� PST speci�cations� in contrast� are relational and do not �x the
timing parameters� In PST we can compose the timing models of components into
a more abstract timing model of the composite circuit� and thus reduce information
without loosing correctness� Dynamic analysis based on TBFs also su�ers from the
so�called monotone speedup failure 	
��� Reducing the delays of circuit components
may increase the worst�case delay computed for a composite circuit on the basis of a
TBF model�

On the theoretical side it would be interesting to characterise fully the expressive�
ness of PST and to explore systematically the lattice of possible timing models for a
given Boolean function� On the practical side� it seems an intriguing idea to devise
a generic timing analysis algorithm based on theorem proving for PST� We envis�
age an algorithm T � which� given any list c� � ��� � � � � cn � �n of �calibrated� timing
models �i and a circuit speci�cation �� computes a worst�case stabilisation bound
c � j�j such that c� � ��� � � � � cn � �n �T c � �� Such an algorithm would encompass
all 	�� ���style analyses together� It might be obtained from an intensionally sound
and complete proof system for PST� or at least the fragment of elementary proposi�
tions� We conjecture that such a proof system exists� Note that although decidability
of intuitionistic propositional logic is P�SPACE complete� theorem proving for the
specialised PST theory of elementary propositions of PST need not be less e�cient

PRELIMINARY VERSION of a paper under copyright with Oxford University Press

M. Mendler: Characterising Timing Analyses in Intuitionistic Modal Logic. 
Logic Journal of the IGPL, Vol 8, No. 6, pp. 821-853, Oxford University Press, 2000



Characterising Combinational Timing Analyses in Intuitionistic Modal Logic ��

than standard timing analysis algorithms� The complexity of the decision problem
for PST proper and the existence of a complete axiomatization for it is another issue
that needs to be addressed in future work�
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