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Abstract

We enrich intuitionistic logic with a lax modal operator O and define a corresponding
intensional enrichment of Kripke models M = (W, C, V) by a function T' giving an effort
measure T'(w,u) € NU{oo} for each C-related pair (w,u). We show that O embodies the
abstraction involved in passing from “p true up to bounded effort” to “p true outright”.
We then introduce a refined notion of intensional validity M = p : ¢ and present a
corresponding intensional calculus iLC-h which gives a natural extension by lax modality
of the well-known Godel/Dummett logic LC of (finite) linear Kripke models. Our main
results are that for finite linear intensional models L the intensional theory iTh(L) =
{p:¢ | LEp: ¢} characterises L and that iLC-h generates complete information about
iTh(L).

Our paper thus shows that the quantitative intensional information contained in the
effort measure T' can be abstracted away by the use of O and completely recovered by a
suitable semantic interpretation of proofs.
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1 Motivation

The goal of this paper is to develop some of what we tentatively call “intensional model
theory” for intuitionistic logic (IL), i.e. a model theory which does not only consider the valid
or provable formulas of a logic but also the way in which these have been established.

Kripke semantics are probably the most elementary and convenient among the many ways
of characterising pure validity in IL. Kripke models in themselves can be seen as an intensional
refinement of the idea of a classical model of logic in which truth is relativised to “possible
worlds” thought of as representing “construction stages” along which truth is established in
a monotone and incremental fashion. Typically, in canonical models of IL. worlds are built
from intuitionistic theories (deductively closed subsets of formulas) embodying the knowledge
available at a given stage of construction.

However, there is a distinct mismatch between the standard Kripke notion of validity at
a world and the intensional idea of constructively established knowledge in the associated
theory. If 7 is a theory in IL acting as a world in some (e.g. canonical) Kripke model then
validity T = ¢V forces the disjunction to be decided “on the spot”, i.e. we must have T |= ¢
or T = 1. On the other hand, deductive inference -, which is our sole means of establishing
constructive knowledge, does not generally satisfy the equivalence T F o Vo iff T+ ¢ or
T F 4. This so-called disjunction property is a definitive feature of constructive theories
T only. As a consequence the idea of defining validity in terms of constructive deducibility
breaks down at this point. To bridge this gap the classical constructions of counter models
must artifically close off theories under the disjunction property. This is done, typically, by
a process of saturation in which all disjunctions such that 7 F ¢ V ¢ are systematically
enumerated and the theory T extended by ¢ or v, depending on consistency. This decision,
namely whether 7 U {¢} or T U{%} is consistent, is non-constructive in general and requires
a classical meta-theory (act of speculation). A similar remark, of course, applies to existential
quantification.

A well-known solution to this problem is to replace the standard interpretation of Kripke
by Beth’s relaxed notion of validity in which 7 = ¢ V 1 iff there exists a bar § of theories
extending 7 such that forall 7" € 8, T = @ or T' = ¢, see e.g. [vD86]. Thus, T = ¢ V1) does
not force the decision for ¢ or 7 to be made “on the spot” within 7T itself, but merely requires it
to be unavoidable along all construction sequences (paths through the model frame) that may
be taken from 7. In this way one then obtains a direct identification of intuitionistic theories
with worlds in a canonical model such that 7 = ¢ iff T F ¢ without need for speculative
saturation. In this sense, Beth models are more constructive than Kripke models and also
more intensional. In Beth’s interpretation the individual construction steps represented in
the model correspond to merely mechanical calculations that can be abstracted from when we
determine the validity of formulas in the model. So, the validity of ¢ V % is relaxed to mean
“up to mechanical calculations, ¢ or 1 is established”. In contrast, in Kripke’s interpretation
each construction step (transition between worlds), in general, must be viewed as a genuine
mental act that may be reflected in the validity of formulas. It is this additional level of
intensionality of the Beth semantics that we are interested in here. In this vein, we use the
term “intensional” semantics generically for variations of Beth semantics as refinements of
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the standard Kripke interpretation.

Beth models have been introduced originally to obtain constructive completeness proofs
for intuitionistic logic [LEVT74, Fri75, dS76, Vel76, Dum77, TvD88] and later shown to pro-
vide also an adequate Kripke-style model-theory (truth-value semantics) for realisability in-
terpretations [TvD88, Lip91, MM87|, which further underlines their intrinsic constructive
nature. More work in this direction is cited in [Lip91]. Several generalisations of Beth’s
interpretation have emerged independently in a topological setting, specifically topos the-
ory and the categorical analysis of logic. As discussed, e.g. in [Gol86], these reinterpret
Grothendieck topologies as formalising a notion of “local truth” (Lavwere) which generalises
Beth’s relaxed interpretation of disjunction and existential quantification. The most well-
known version is based on the notion of covering systems [Gol86]. A slightly more general
formulation which does not require lattice properties is the following: A covering system on
a frame (W,LC) is an assignment of subsets Cov(w) C 2" of worlds to every w € W satis-
fying the following three coherence axioms: (i) {w} € Cov(w); (i) if U € Cov(w) and for
every z € U, Vi € Cov(z), then [,y Vi € Cov(w); (i) if U € Cov(w) and w E v, then
{z | uelUulz & vCx} € Cov(v). A covering system defines a modal operator

wEOp iff U € Cov(w). Vu e U. u = ¢.

Note that as a special case we may have () € Cov(w) which means that w is a fallible world
satisfying Ofalse. If = ¢ is validity in the standard Kripke sense, then = Og expresses
validity of ¢ in a generalised Beth sense. For if we let Cov(w) be the set of bars for w, we
obtain a covering system and O¢ yields validity according to the Beth interpretation. The
modal operator is characterised by the axioms

OI : DOy
OM : OOp D Op
OS : (Op & Oy) D O(p &)

and the rule OF: F ¢ D 9 = Op D O1). The associated logic we call (propositional) laz
logic [FM97]. Modal operators O for local truth can be generated in various ways.  For
instance, in [Dra88] a suitable generalisation of path systems, the dual to covering systems, is
used. Neighbourhood systems and topological congruences have been introduced in [Gol81]
as a semantics for O. In all of these cases O can be understood as a formal operator to
abstract from some intensional model structure of a standard Kripke model. To obtain the
generalised Beth interpretation, then, one simply decorates all atomic sentences, disjunctions,
and existentials with the lax modality.

The “blurred” interpretation of formulas and the redundant intensional structure ab-
stracted from by O is best exemplified by the (well-known) canonical (generalised) Beth
model whose worlds are single closed formulas and accessibility ¢ C 1 defined as provable
implication - 1 D ¢. One defines as covers U € Cov(p) those sets of formulas U that satisfy
VO eU. o CHand VE. (VO € U. £ C 0) = £ C . If one then takes forcing of atomic sentences
¢ = «a to be provable equivalence - ¢ O « and relaxes the interpretation of disjunction in
the style of Beth

@ = O(thy Vapp) iff U € Cov(p). VO € U. 0 |= 11 or 0 = o
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then one proves for all propositions in which V is guarded by O that ¢ EF ¥ < F ¢ D 9.
The beauty of this technique is that it establishes an extremely tight connection between
validity and provability, and, as demonstrated in the works cited above, can be used to obtain
surprisingly direct and constructive completeness proofs.

However, and this is the point of departure for this paper, the resulting canonical models
are typically rather intensional (or even syntactic). The example discussed in the previous
paragraph, which is a simplified version of that presented in [Lip91] to capture realisability,
consists of lots of worlds with the same extension, i.e. worlds validating the same theory,
but which are distinguished in the model simply because they are presented as syntactically
different formulas. The modal operator O, in the literature mostly left implicit in the semantic
clauses for V, achieves the necessary abstraction from this intensional model structure. As this
“redundant” intensional structure is generated by a formal proof system it appears natural
to expect that in a truly constructive model this intensional structure could be linked with
explicit proofs in the calculus. To be somewhat more precise let us assume, as in our example,
that

e EOy iff U € Cov(p).VOeU. 0 =1

defines extensional validity local to . Suppose further, as in the example, that ¢ |= 9
is constructively equivalent to the existence of a constructive proof of ¢ D . Then, in a
calculus in which O is a first-class operator, one should have a way of relating actual proofs
Fp : true D Ot to the description of a cover U* such that (provably) VO € U*. 8 D 4. In this
way, proofs would contain explicit information about the intensional meaning of 1, i.e. the
offset (“Beth-slack”) between the worlds in which = Ot and those in which |= 4 proper.
Such a development, if it exists, would establish a stronger and more intensional connection
between Kripke-Beth-style and realisability semantics compared to existing literature, where
in the translation from realisability to Kripke-Beth models proof information is lost.

Our previous work on Lax Logic [Men93, FMW97, FMCO01] provides some evidence that
such a programme may be feasible, at least for special cases. What it shows, roughly speaking,
is that O can be viewed as stating “p up to constraints” and that a proof of O yields a
description of a constraint v such that v D ¢ is provable. This previous work was motivated
by applications, while the aim of this paper is to investigate this programme from a general
logical perspective.

2 Contribution of our paper

Our exposition of Propositional Lax Logic PLL [FM97] and its model theory provides the
background to this paper. From a model theoretic perspective, PLL arises from the elaboration
of a standard Kripke model M = (W, C, V) into a Kripke constraint model C = (W,C,C,,, V)
by providing a binary classification of effort on the accessibility relation C. This is just a
subrelation C,, of C. If w C,, v we may think of this as saying that u can be reached from
w within bounded effort, while w C u merely expresses that u is reachable from w. We use
the lax modal operator O to express properties of C,,, with Oy expressing the fact that ¢
can always be satisfied after an C,, step, i.e. within bounded effort. C,, induces a covering
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system on (W, C) such that U € Cov(w) if and only if for all v J w, there exist v € U and
u' 3w such that v C,,, u/. This construction gives us an elementary class of generalised Beth
models which are especially convenient as carrier structures for intensional information. Our
plan is to provide a refined interpretation of Op as meaning “p can be satisfied up to bounded
effort”, where proof objects p : Oy give a concrete measure of the amount of effort involved.
The effort measure is a decoration of the pairs related by C,, that leads to a definition of
intensional model in section 3. Rather than attempting to give a general theory for this
idea, we concentrate on a particular case study, namely an intensional refinement iLC of the
much-studied Gédel/Dummett logic LC [Dum59]. In this special case, we are able to give an
intensional strengthening of existing soundness and completeness results by demonstrating an
exact correspondence between proofs - F p : ¢ and fine structure - |= p : ¢. This is achieved
through a natural extension of Dummett’s axiomatisation of LC. Our intensional semantics is
a variant of Medvedev’s logic of finite problems [Med66], a logic studied in depth by P. Miglioli
and others in [MMO™89].

Main results of the paper In the first part of this paper we define the notion of intensional
Kripke model as a structure M = (W,C,V,T) where T'(w,u) is a function giving an effort
measure in NU{oo} for each C-related pair (w,u). We show that O embodies the abstraction
involved in passing from “g true up to bounded effort” to “p true outright” and in Theorem
3.4 we capture this abstraction process in terms of both models and theories.

In the second part we extend our presentation of plain validity M |= ¢ by a refined
notion of intensional validity M = p : ¢ and introduce a Hilbert-style calculus iLC-h for
intensional validity on finite linear models L. In Theorem 5.1 we show that the intensional
theory iTh(L) = {p:¢ | L =p: ¢} characterises L and in Theorem 7.4 that iLC-h generates
complete information about iTh(L).

3 Intensional Kripke Models and plain semantics

As usual, an (intuitionistic) Kripke model is a triple (W, C, V') where C is a partial order on
W and V is a hereditary valuation, i.e. a monotone map from W to sets of propositional
constants.

Definition 3.1 An intensional Kripke model is an (intuitionistic) Kripke model M =
(W,C,V) together with a directed effort measure T : C — Ny, = N U {oo} satisfying
the following effort laws whenever u C v C w:

1. T(w,w) =0
2. T(u,w) < T(u,v) 4+ T(v,w)
3. maz (T (u,v), T (v,w)) < T(u,w)
We say M is finite if W is finite and for each w € W, V(w) is a finite set of atoms.

T (u, w) measures “worst case effort” between u and w. As an example, this could correspond
to a maximal separation time between u and w. Clearly this effort should be zero if v and
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w are the same state; condition 2 is the Triangle Law familiar from metric spaces and we
call condition 3 the Entropy Law because it captures the irreversible nature of the effort
expended in the step from u to v under E. The effort is irreversible in the sense that if it
costs us e units of effort to go from u to v then we cannot go from u to any point beyond v
without expending at least e units of effort. If we wish to think of 4 and w as stages in the
construction of a mathematical universe, then T'(u,w) < 0o corresponds to “bounded effort”
which we may picture as a mechanical construction step and T'(u,w) = oo corresponds to
“unbounded effort” which we may picture as a creative step.

An example of an intensional Kripke model L based on a linear order C is given in Fig. 1.
Solid arrows such as that between wy and w3 correspond to bounded effort and dotted arrows
such as that between w3 and w4 correspond to unbounded effort. Regions of bounded effort
are shaded in grey and T is indicated by labels on solid arrows within the region containing
(G

regions of bounded effort
wy
w2 26 ¥
Wy s ae N Oonoow% L
Twr D 2\ {w9 .

¢ — >

We 34 ws

Figure 1: A linear intensional Kripke model L

Definition 3.2 M is extensional if T(w,v) < 0o = w = v (coarsest possible view of effort).

Extensional models arise as abstractions of intensional models. According to the exten-
sional viewpoint, everything that can be known with bounded effort might just as well be
known outright. To formalise this abstraction we introduce a modal operator Op which
means “@p within bounded effort”. Consider the intuitionistic language defined by

o u= a | true | false | o1 Vs [ o1&z | 91 D2 | Op

where « is any propositional atom. As usual we define - to be ¢ D false.

Definition 3.3 (Plain semantics) ¢ is validated at world w € W of the intensional
model M = (W,C,V,T) written M,w = ¢, according to the standard Kripke semantics
[KTi63] for atoms, conjunction, disjunction and implication, e.g. M,w = @1 D w2 iff Vu 3
w. M,u = o1 = M,u |= py. We extend this semantics to account for the modality O by

M,wEOp iff YwvwCov=3JuvCu& T(v,u) <oco & ulf .

Then M validates ¢, M |= ¢, iff Yw € W.M,w = ¢ and ¢ is valid, = o, iff VM. M = ¢.
We abuse this notation slightly by writing M,U = ¢ if M,u = ¢ for every u € U CW.

Note that the clause for O ensures that truth remains hereditary when we add O, i.e. M, w = ¢
and w C v implies M, v = ¢. We call this the plain semantics because it only assigns meanings
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to formulas unadorned with proof objects. As discussed earlier, it can also be cast in terms
of covering systems. The relationship between our Kripke semantics for O and Goldblatt’s
neighbourhood models [Gol81] is discussed further in [FM97].

Let M = (W,C,V,T) be a finite intensional Kripke model. The extensional abstraction
Ext(M) is M restricted to the T-stable worlds of M, where a world w is T-stable if for all
v e W, if T(w,v) < oo then v = w, i.e. there are no new worlds accessible from w in bounded
effort. More formally, Ext(M) = (J,C',V',T") where J is the set of T-stable worlds of W,
C’ is the restriction of C to J x J i.e. T = CNJ x J, V' is the restriction of V to J and
T’ is the restriction of T' to C'. Fig. 2 gives an example of the abstraction process as applied
to the intensional model L of Fig. 1. The abstraction M — Ext(M) can be captured by

Figure 2: Abstracted intensional model Ext(L) of Fig. 1

formal theory, too. Let ( be a O-free proposition. Let K ({) be the result of replacing every
subformula ¢; D (2 in ¢ by the Kleisli implication ¢; D Oy and let Kleisli(¢) be OK(().
For example if { = a & (8 D v D §) then Kleisli(¢) = O(a & (8 D O(y D Od))). We use the
term “Kleisli” by analogy with the Kleisli category of a monad—see for example [Lan88].

Theorem 3.4 Let M be a finite intensional model. Then Ext(M) |= ¢ < M = Kleisli(¢).

Proof: Let M = (W,C,V,T) be a finite intensional model. For any w € W let wC denote
{u | w C u}, the set of worlds accessible from w. Let J C W denote the T-stable elements of W
and consider the set J,, = (wE)NJ. Now let e(w) ={v € Jy |Vu.u Cv & u € Jy, = u = v}.
That is to say, e(w) is the set of all minimal T-stable elements on C-paths in W beginning
at w. Because W is finite, every C-path from w is finite and therefore contains a member
of Jy, so contains a least such member. Thus e(w) contains at least one element. e(w) is
constructed in such a way that if w C v C v and v € e(w) then all three efforts T'(w,u),
T (u,v) and T(w,v) are finite. It is easy to show by induction on O-free formulas { that
Ext(M),e(w) | ¢ & M,e(w) = K(¢). Now we use the observation that for any finite model
M and formula ¢, M,e(w) = ¢ iff M,w | Og to deduce that for arbitrary w € W
Ext(M),e(w) = ¢ & M,w = OK(¢) = Kleisli(¢) and hence, since the set J of worlds of
Ext(M) is of the form [J,, ey €(w), we have Ext(M) = ¢ & M = Kleisli(). ]

We have fulfilled our promise to show that O provides an abstraction mechanism, for we
can recover the standard intuitionistic theory of an extensional model from the Kleisli theory
of any of its intensional refinements. In this sense, we can see that adding O and intensional
structure gives a conservative extension of intuitionistic logic. We can however do more, and
this is the main message of this paper: The intensional information can also be recovered from
an intensional theory, if we take proof objects into account. The next step in this direction
is thus to find an axiomatisation for O. It is easy to see that the axioms OI : ¢ D Op and
OM : OOp D O¢ and the rule OF : from ¢ D 9 infer O D Oy are sound with respect
to the plain semantics for intensional models, and the axiom false, : Ofalse D false follows
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from the fact that the intensional models of this paper have no fallible worlds. These are the
characteristic properties of a closure operator. A further axiom OS : (Op& Oy) D O(p& 1))
ensures that O is strongly extensional, i.e. = (¢ =) D (Op = O¢).

If we add a complete set of axioms and rules for IPC we obtain a calculus SLL = IPC +
OI + OM + OF + false, + OS that we call Strong Lax Logic, where the term “strong”
indicates the presence of the axiom false,. The fact that this calculus is complete for finite
intensional Kripke models is essentially the content of Theorem 4.5 of [FM97]:

Theorem 3.5 SLL - ¢ iff for all finite intensional models M, M = .

However, SLL is not intensionally adequate, because the SLL-theory Th(M) ={¢ | M E ¢}
of M = (W,C,V,T) characterises (W,C,V) up to a surjective p-morphism (bisimulation
equivalence) and also tells us if T'(u,v) < 0o or T'(u,v) = oo but it does not tell us anything
about the absolute value of T'(u,v). We are missing the quantitative information on effort
measures which will be accounted for in the next section, in which we provide a precise
computational interpretation for the terms OI, OM, OS, OF and false,.

4 Intensional semantics for linear models

The remainder of this paper focuses on a simple class of intensional models L = (W, C, V, T)
where W and V are finite, (W,C) is a linear ordering and V' is strictly increasing: w C v
implies V(w) C V(v) (i.e. the model L is finite, linear and irredundant). We call these
enriched sequence models (esms). Fig. 1 showed a typical example. Note that disjunction
V is redundant over linear models [Dum59] since it can be defined by the construction @ =g
(DY) D& (¢ D) Do for which L = @ @4 iff L |= ¢ or L |= 1. We therefore restrict
our logical language to V-free formulas from now on. Theorem 3.5 provides a motivation for
our focus on finite models, and we shall see that these are also sufficient in the linear case.

Plain formulas ¢ will be interpreted as domains [¢] of hereditarily monotone effort bounds.
Given a refined formula p : ¢, p will be interpreted as an element of [¢] and the formulap : ¢
as a statement about the role played by p in an intensional model. More precisely, [¢] will
correspond to a hereditarily monotone subdomain of a type [p] within FT, where FT is the
set of finite type functionals generated from the singleton type 1 = {0} and N using the
operations of Cartesian product x and full function space —.

Definition 4.1 FEach type t C FT carries a partial order <; which is lifted pointwise from the
natural order < on N. It also has a minimum element 0; and binary functions max;, min.
We may define these objects by recursion on the structure of t:

1. %l =df {(0,0)}, Ol =df 0 and maa:l(0,0) = minl(0,0) =df 0

2. SN =a¢f <, On =g 0 and maan, miny are the standard mazimum and minimum func-
tions on N

3. <Lsxt =df 1((P1,q1), (P2,92)) | 1 s P2 & 1 <t @2}, 05t =ar (05, 04),
maxsxt((plaQI)a (anQ2)) =df (mams(phm), mawt(QhQQ)) and minsxt((p1,Q1), (anQ2)) =df
(ming(p1,p2), ming(q1,q2))
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4o st =dr {(p,q) |Vr € s.pr < g1}, 0555 =gr Az.0¢, mazs_i(p, q) =5 A\z. mazy(p z,q )
and mins_4(p,q) =ar Ax. ming(p =, q )

The absence of a sum type to represent disjunction means that each type ¢ C FT carries
a lattice structure (¢, <y, maz, ming, 0;) which has greatest lower bound min; S for each in-
habited subset S of ¢, so that 0, = min, t is the least element under <; and every subset S
bounded above by p has least upper bound maz; S <; p. We use <;, maz;, min; and 0; as
polymorphic constants by suppressing the suffix ¢t wherever we can—for example we may write
(0,0) = 0 instead of (0g,0;) = O5x¢. We will use the ordering < to compare effort bounds. If
p <X ¢ then p is a better or tighter bound than ¢, so that ¢ will inherit the properties of p,
ie. LwlEp:p & pxqg=LwkEq:ep.

It is technically convenient to restrict our attention to what we term the hereditarily
monotone functionals of FT. If p € ¢ — s then p is by definition monotone if Vr,q.q < r =
pq < pr. Then maz and min turn out to be not only monotone but hereditarily monotone
as defined by the following constructions.

Definition 4.2 For every ¢ the sets [p] C FT of potential effort bounds and [¢] C [p] of
proper effort bounds for ¢ are given as follows: [true], [true], [false], [false], [a] and [a] are
all defined to be 1. [p & ] =g [p] x [¢] and [p & ] =ar [0] X [¥]. [0 D ¢] =4r @] = [¥] and
[ DY) =ar {f €[] = [¥] | f is monotone & Vp € [¢]. f p € [¢]}. Finally [Op] =4 Nx [¢]
and [Op] =4 N x [¢].

We write p < q : ¢ when {p,q} C [¢] and p Xy ¢- We may now define the hereditarily
monotone functionals of FT as those functionals in [¢] for some .

Lemma 4.3 We omit the proof of the following two facts. Firstly, if ¢ is O-free then
[¢] = {0}, that is, O-free formulas carry no intensional information. We call such a (
a unit formula. In this case, Lyw = 0 : ( precisely when ( is true at w in L in the
standard sense as a formula of LC on linear models. Secondly, for every ¢ the structure
(Iels < g1 Opps mamy, ming,y) is a lattice with greatest lower bound min S for any inhabited
S C [l

We now define the intensional semantics for pairs p : .

Definition 4.4 (Intensional semantics) ¢ is validated at world w € W of the enriched
sequence model L = (W,C,V,T) with bound p € [¢], written L,w |=p : ¢, according to the

clauses
Liw [ 0:true
Lw E 0:a if acV(w)
Liw E (p,p2):o1&pes iff LwkEp o1 & LywlkEps: @
Liw E p:eDv¢ iff Yee[p]YVuIlw. LyulEq: o= LulEpq:y
Liw E (0,p):0p dff YoJdw.JuJv.T(v,u) <0 & Liul=p: e

L validates ¢ with bound p, written L |=p : ¢, iff Yw € W.L,w = p : ¢ and ¢ is valid
with bound p, written =p: p iff VL.L =p: . In this case we call p a uniform bound for
©.

M. Fairtlough, M. Mendler: Intensional completeness in an extension of Goedel-Dummett Logic.
Studia Logica, Vol.73, January, 2003, pp. 51-80.



PRELIMINARY VERSION of a paper under copyright with Springer Verlag

This gives us set-theoretic realisability interpretation in the style of Kolmogoroff and Medvedev
[Kol32, Med66], though with some significant differences which we discuss further in section
8. Note that this semantics refines the plain semantics of Definition 3.3 in a strong sense:

Lemma 4.5 L=y < JIpefp].LEDp: ¢

Note also that, due to the linearity of L, we may simplify the clause for O to L,w = (4,p) :
Op iff uIdw.T(wu)<d§ & LiukEp:p.

Lemma 4.6 The following properties of intensional validity can be established by induction
on formulas . (1) validity is hereditary along C: (Lyw Ep:p & wCu) = Liul=p: @
(2) validity with bounds is preserved along <: (LywEp:@ & p<q:p)=LwlkEq:p.
(3) if L extensional, then L = A(0,p).p: Op D .

5 Intensional expressiveness

Enriched sequence models can be characterised already in a simple propositional fragment
with restricted use of O. To illustrate the key points of the construction we give a simple
example. Our aim is to specify the following model L

2 Ly

«« ‘.‘\ ‘Ae 5\» o , 6 ’y
in atoms {«, 3,7,n}. Thisis achieved by the following intensional specification IS = { Py, ..., Ps}
where we write e.g. 21 : @« D O~ instead of the more accurate Az.(21,0) : @ D O~.

P =g 0:-(a&p&y&-n) the final valuation has o, B,y and not n
P, =y 0:(BDa)&((aDpB)DB) « comes strictly before 5
Py =g 0:(vDB)&((BDy)Dy) B comes strictly before y

P, =g 21:aaD>08 there are at most 21 effort units from « to B
Ps =g 45:a D0y there are at most 45 effort units from « to vy
Ps =g 27:8D0y there are at most 27 effort units from B to y

The first three components Py, P», P3 specify the linear structure of L as a finite linear Kripke
model (flm) (W,C, V), and given this structure, the last three components Py, P5, Ps specify
the effort measure on C. These intensional facts specify all there is to know about L, as any
other model satisfying IS is a faster suffix of L, in a sense we define below.

Theorem 5.1 (Intensional expressiveness)
For every esm L let iTh(L) =qs {p:¢ | LEp:¢}. Then Ly = Ly < iTh(Ly) = iTh(Ls).

Proof: We sketch a proof of this result because it illustrates the key features of our proof
of intensional completeness. First we summarise what are essentially the main constructions
in Dummett’s completeness proof for LC [Dumb9.

Let A be a finite set of atoms and set At = A U {true, false}. We call any proposi-
tion of the form o D B and (a D B) D B where o, € AT an ordering proposition in
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A. These are useful to specify the relative ordering in which the atoms A are “switched
on” in a linear model, interpreting true and false as the fictive beginning and end of the
model, respectively. Up to provable equivalence (in IPC) ordering propositions are the
forms true, false, «, -, -—a, (a D ), (a D B) D B, where o, € A. Now
let L = (W,C,V) be an flm. We say that L has valuation in A, or signature A if V(w) C A
for all w € W. If L is irredundant we may identify a world w with the finite set V' (w) C A and
the conjunction A V(w) =4 Anev(w) @ and call it a (proper) state of L. Sometimes we also
consider true and false as generalised states, viz. the beginning and end of the model. Another
fim L' = (W' ,C', V') is called a suffiz of L, written L' X L, if there exists a p-morphism from
L’ to L, i.e. a monotone mapping of worlds p : W’ — W such that for all Vo' € W'. V'(w') =
V(p(w')) and Vw' € W v e W.p(w')Co= W e W.w' C' v & pl)=v. UL 3L,
then because of irredundancy, L' is (up to a trivial isomorphism) simply a final sub-model
of L. Now the set of all ordering propositions that hold true of L completely capture the
structure of L up to 3. If L is a flm in signature A, we define its characteristic proposition
to be xa(L) =4 A{ & | k ordering proposition in At & L |=k}. Note that x4 (L) is a unit
formula, so can be satisfied by at most one proof object. One then shows that for any two
fims L and L' in signature A, L' = xa(L) iff L' 2 L. So if two irredundant esms L and L’
of signature A have the same intensional theory then in particular each satisfies the other’s
characteristic proposition and thus they have the same underlying fim.

To also deal with the effort measure of a esm L of signature A we define its characteristic
proposition x3 (L) to be A{0: xa(L)}U{p:0 D07 | 06 C 7 & v(p) =T(0,7) < 00}, where
p corresponds to T'(o, 7) under the isomorphism v : (I x -+ x1 =+ Nx1x---x1) 2N and
MNMpi e, sPm t om} =g 01, 3Pm) @1 & - & o We extend the definition of suffix
model to esms; if L= (W,C,V,T) and L' = (W',C", V', T") then L' 3 L iff (W', C",V')is a
suffix of (W,C, V) such that T'(w',v") < T(w',v") whenever w' C' v'. If L' X L we say that
L’ is a faster suffix of L. Again we can show that for any two esms L and L' in signature
A, L' = x3(L) iff ' 3 L, so that if esms L and L' have the same intensional theory then
L 2 L' and L' 3 L, which means that L = L'. 1

We call a formula 6 elementary if O does not occur on the left of any D or inside any other
O. Elementary propositions include all O-free propositions, and they always have [0] = N
for some k > 0, where s 22 ¢ represents a <-preserving isomorphism between s and ¢t. Note
that any characteristic proposition x°(L) of an esm L is elementary, so we have shown that
an enriched sequence model is actually characterised by its elementary theory.

6 The intensional calculus iLC-h

We now present a Hilbert-style calculus iLC-h which we shall eventually show to be intension-
ally sound and complete for esms over elementary formulas. For the axiomatisation of iLC-h
we take the intensional axiomatisation of IPC (essentially just the simply-typed A-calculus)
given in Fig. 3 plus the intensional axioms and rules of Fig. 4. This gives an intensional
presentation of the calculus SLL. To this we add the following scheme

WLC =4 X(p, q)- maz(p0, ¢0): (((1 D) D& ((2D¢)Dp) Dy
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K =¢ Mp,q¢p:¢D (Do)
S =4 A, q,r(pr)(gr) : (kDWW Dx)D(@D¥)D(pDx)
C =4 2, q{@q :¢D9PD(p&kip)
T =g Ap,@).p: (p&P) Dy
™ =g Ap,@).q: (p&) DY
N =g 0 : falseD ¢

Fp:pDy Fqg:op

Fpq:y MP

Figure 3: Intensional axiomatisation of IPC

OI =4 Mp-(0,p) : ¢ D Op
OM =4 A(d1, (d2, p)). (01 + d2, p) : OOp D Oy
OS =g M1, p), (s ). (maz (51, 82), (p. 4)) = (Op & O) > O & )
false, =g 0 : Ofalse D false

Fp:pD9Y
FX(d,z). (0,pz) : Op D O OF

Figure 4: Intensional axioms and rules for iLC-h

11
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for which ¢ may be arbitrary and ( is restricted to O-free propositions. Note that for exten-
sional models (Ogp = ¢) iLC collapses to LC, which is complete for linear models [Dumb9].
Proof theoretically, it can also be shown that iLC-h is a conservative extension of LC. The
“W” in WLC stands for “weak”, reflecting the restriction on . This restriction is necessary,
as we shall see below.

The following Deduction Theorem is crucial in that it allows us to use the more explicit and
convenient A\-notation to denote proof objects in iLC-h rather than the unwieldy combinator
language.

Theorem 6.1 (Deduction Theorem) For every derivation Z : ®,y : o1 F p: @2 in iLC-h
there exists a derivation : ® F Ay.p: o1 D pa.

Proof: The Deduction Theorem holds for the Hilbert system of IPC. Any axioms that we add
to it, such as OI, OM, OS, and false, preserve this property. The only potential stumbling
block for “A-abstraction” is the new rule OF. But this can be dealt with, too. The trick is
to replace every application Ay. OF(p) : p1 D Opo1 D Owag for Z: @,y : o1 Fp a1 D oo
of the Deduction Theorem by curry (OF(Az. (Ay. p (w2 2)) (w1 2)) 0 OS o (OI x Id)), where
Z P & ©a1, oS : (O(pl & O(p21) D) O((pl & (p21), oI 1 D O, Id - Opa1 D Opoy, and
where curry is the well-known currying combinator of type ((¢1 & Opa1) D Opar) D o1 D
Opa1 D Owas, which can be constructed in IPC already. 1

7 Soundness and completeness of iLC-h

Since decorated formulas p : ¢ are first-class objects in our logic, it makes sense to define a
semantic consequence relation by

PLIQLD2 Q2. Pnion E DY (1)

if for all esm L, Vi. L = p; : ¢; implies L = p : 1), or equivalently, if for all esm L and worlds
w, Vi. Lyw = p; @ @; implies L,w = p : 4. This definition works whenever the p; (p) are
closed terms denoting elements of [¢;] ([¢]). On the formal side the Hilbert calculus iLC-h
derives judgements of the form

T1IQ1,T2: 02Tyt op B oqiy (2)

meaning that ¢ is a proof of ¢ from the assumptions z; : @;, where the z; represent arbitrary
effort bounds z; € [p;]. It is important to keep in mind that derivations are always parametric
in the effort bounds of the assumptions. After all the calculus is driven entirely by the
extensional information as expressed in the propositions (= right-hand side of :). If the
calculus is to be sound then a formal consequence such as (2) allows us to infer all instances
of the form (1) where g{p1/z1,...,pn/zn} < p. This suggests a definition of formal entailment

PLi@LDP2 P2 Pnion IF Dy (3)

to mean that there exists a derivation (2) in iLC-h such that ¢{pi/z1,...,pn/2zn} < p : 9.
In this section we will show that semantical (1) and formal entailment (3) coincide for the
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fragment of elementary propositions. The soundness direction holds for arbitrary propositions,
not just elementary ones. Let us observe up front that the calculus is sound in the sense that
whenever I ¢ : ¢ then the A-term ¢ denotes an element in [¢]. In particular, it is hereditarily
monotone. After all, ¢ can only be built from the basic monotone operations maz, 4+, and 0
introduced with the axioms.

Theorem 7.1 (Intensional Soundness) Let ¢1,...,¢, and 1 be arbitrary propositions,
and p; € [pi] and p € [¢] such that p': Gl-p:1p. Then, p: FE=p: .

At this point the restriction on axiom WLC demands an explanation. Our realisation works
for [¢1] = [¢2] = {0} since then [((¢1 D ¢2) D ¢ & (2D 1) D ¢) D p] = [(p& ) D ¢] is
essentially the set of binary monotone functions on [¢]. As we have seen WLC may be taken
as the (polymorphic) maximum function. Now, one might wonder whether there does not in
fact exist a more complex family of higher-order functions to interpret WLC that make the
unrestricted scheme WLC : ((p1 D ¢2) D ¢ & (w2 D ¢1) D ¢) D ¢ valid. Unfortunately,
this is not the case. Consider the instantiation ¢; =4 o D OB, @2 =4 (@ D Of) D Of,
and ¢ =4 Oy for propositional atoms «,3,7. If there existed a uniform bound for this
instantiation of WLC then in particular there would exist a uniform bound p such that

F p:(((@D20B)D0B) DOy & (@D OB) DOy) D Oy. (4)

We show, by contradiction, that such a p cannot exist. Validity of (4) means that for every
pair of functionals F' € [((a« D Of) D Of) D Ov] and G € [(a D Of) D Oy] there exists
a value p(F,G) € [Oy] = N x 1 such that for all esm M = (W,C,V,T) and w € W,
with Mw = F : ((a D Of) D Of) D Oy and M,w | G : (o D OF) D Oy, we have
M,w = p(F,G) : Oy. As a counter example take the functionals F' =4 Af.(0,0), G =4
Az.z 0, and the family of models M, = ({0,1,...,2m + 1},<,V,,,T),), m > 0, in which
aeVy,(i)ei>m+1l, eV, ei=2m+1,ve V(i) & i>m,and Tp,(i,j) =75 — ¢
ifi<j<morm+1<i<j, and T),(7,7) = oo otherwise. In pictures the models look like
this:

Tm (i, j) =j —i Tm (i, j) =j —i
0 1 m .., m+1 2m — 1
Mm Py > o,_‘. I > e —>0e 2 |1
E =a =6

We claim that for all models, M, = F : ((a D Of) D Of) D Oy. For let u € {0,...,2m} be
a world in M, and f € [(a D Of) D Of] such that My, u = f: (¢ D OB) D Of. By the
structure of M, this implies that v > m + 1, regardless of f, whence M,,,u = (0,0) : Oy.
Thus, M,,,u = F f : Oy as desired. Also, one can easily show that M,, E G : (a D Of) D
Oy. For let g € [a D Of] =1 — N x 1 with M,,u |=g: a D OF. We distinguish two cases:
If 71 (90) < m we must have u > m + 1. So M,,,u |= 0 : v, and thus M,,,u E Gg : Oy
whatever G g is. If w1 (90) > m, then m (G g) > m. Since M,,,0 = (m,0) : Oy, this means
in particular M,,u = G g : Oy. So we have shown that M,, = F : ((« D Of) D Of) D Oy
and M, = G : (e« D Of) D O for all m. But on the other hand there cannot be any fized
p(F,G) € N x 1 (that only depends on F,G) such that M, |= p(F,G) : Oy for all m > 0.
For if p (F,G) were the pair (n,0), say, then M1 [~ p(F,G) : Oy. So, whatever the fixed
value of p (F, G) there is always a model M,,, to outwit it. This shows that there is no uniform
stabilisation bound for (4), and hence not for the unrestricted scheme WLC.
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Theorem 7.2 (Elementary Intensional Completeness) Let 61,...,0, and 0 be elemen-
tary propositions, and p; € [0;] and p € [0] such that 5 : 6 =p : 0. Then, p: 0 I p: 6.

We shall prove the elementary completeness Theorem in two stages. We first show complete-
ness for situations of a special normal form and then show how every elementary situation
can be reduced to normal form. To this end let us call any non-empty list 1,...,@n, ¢ of
arbitrary propositions a (general) problem. If every proposition in the list ©1,..., @, ¢
is elementary, then we shall call the problem an elementary problem. We think of the
©; as behavioural descriptions of the components of a system, and of ¢ as the specification
of the composite system’s behaviour. The semantic entailment p; : @1,...,pp o ED: @
then states that the composite system satisfies ¢ with effort bound p assuming that all com-
ponents meet their specifications ¢; with effort bounds p;. In particular, p might describe
the exact bounds of the composite system. We say the calculus iLC-h is ezact for the gen-
eral problem ¢1,...,¢n, @ if for all choices p; € [p;] (: = 1,...,n) and p € [¢] such that
P11y Pn F D@ we have p1 : @1,...,0n ¢ on IF p: . The Intensional Complete-
ness Theorem 7.2 can then be restated as the claim that iLC-h is exact for all elementary
problems.

7.1 Exactness for Normal Problems

We call an elementary problem normal if it is of the form x, (L), p1 D Oc1,...,pn D Oocy, 0
where xa (L) is the characteristic proposition in atoms A of an irredundant fim L, p;,0;
families of states of L, and 6 a unit ¢ or a modalised unit O(. We also assume that that L
has signature A and that all atoms occurring in p;, 0;, 6 are contained in A. In the following
we abuse notation and denote an elementary problem @, by & I 1.

Let xa(L),p1 D Ooc1,...,pn DO Ooy, IF 6 be a normal problem with irredundant fim
L = (W,C,V) in signature A. Then, there are worlds r;,s; € W such that p; = A V(r;) and
;i = ANV (s;). Now suppose we are given effort bounds p; € [p; D Oo;] =1 — (N x 1). Since
1 — (N x 1) =N we are free to consider the bounds p; as natural numbers, although strictly
speaking, they are functions. We will apply the same confusion more generally to bounds
de[AV(z) DOAV(y)] 2N, for arbitrary z,y € W. We may view the intensional theory

P:0 =g 0:xa(L),p1:p1 DO01,...,Pp:pp D Ooy

as the canonical specification of a particular intensional enrichment of L in the following way.
First we observe that every transition p; D Oc; amounts to a boundedness constraint for the
effort between state r; and s;. If we want to know the tightest upper bound for the transition
from some state w € W to some other state v € W, w C v, then we need to find the minimal
element in the set C(w,v) =4 {d | p: O Fd: AV(w) D OAV(v)}. Each d € C(w,v) is
a provable upper bound on the effort expended in the interval [w,v) in theory p': ©. Let us
call the minimal element 6(w,v) =4 min C(w,v) in this set the formal effort of v from w
in theory p': ©. Note that if C'(w,v) = () then the step from w to v is unconstrained by p': ©,
in which case we may put d(w,v) = oco. The definition implies that if 6(w,v) < oo then there
must exist a proof p’: © F §(w,v) : AV (w) D OAV(v). Now, let L° =4 (W,C,V,d) be the
linear model L given formal effort measure §. One can show that L’ is the canonical model
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for the intensional theory p': © in the sense that for any irredundant esm M, M |=p': © iff
M = L%, i.e. M is a faster suffix of L. The following Lemma shows that L/ is well defined
and the proof of Theorem 5.1 indicates the procedure to follow in order to show M =< L°.

Lemma 7.3 Let p; : © be the intensional theory and L° the esm as above. Then (1) L° is
an intensional Kripke model and (2) L° |= p; : ©.

Proof: Assume L° =4 (W,C,V,0) and p; : © =0: xa(L),p1:p1 D O01,...,pn : pn D Oop
as given above.

e For (1) we must verify the effort Laws for §. First, for any w € W there is a trivial
proof p: O F O : AV(w) D OAV(w). But O = Az.(0,2) = Az.(0,0) = 0, whence
by construction §(w,w) = 0. Next suppose u C v T w are three states in W. If one of
d(u,v) or d(v,w) is oo then the Triangle Inequality (u,w) < 0(u,v) + 0(v,w) is trivially
satisfied, whatever 0(u,w) may be. So, assume that both d(u,v) < oo and d(v,w) < oo.
Then, by definition there must exist iLC-h proofs p': © F d(u,v) : AV(u) D OAV(v) and
PO F §v,w): AV(v) D OAV(w). Using the axioms OF and OM these generate an
iLC-h proof p: ® F ¢ : AV(u) D OAV(w) where ¢ = OM o ((OFd(v,w)) o 6(u,v)) =
d(u,v)+0(v, w). By construction of § we must have §(u,w) < g = d(u,v) + (v, w) as desired.
Finally, consider the Entropy Law maz (6(u,v),d0(v,w)) < 6(u,w). Again this is trivial in
case 0(u,w) = oco. If §(u,w) < oo then there is a proof 7: O F §(u,w) : AV(u) D OAV(w).
Since V(v) C V(w) there is a simple projection proof F 0 : AV(w) D AV(v). From
this we construct the iLC-h proof 7 : © F (OF0) o §(u,w) : AV(u) D OAV(v). Then,
d(u,v) < (OF0) o d(u,w) = 6(u,w). Analogously, from V(u) C V(v) we get the projection
FO: AV(v) D AV(u), which generates the proof p: © F d(u,w) o 0: AV(v) D OAV(w),
which shows that 6(v,w) < §(u,w) o0 = §(u, w). This proves the other half of the Entropy
Law maz (6(u,v),d(v,w)) < §(u, w).

e Next we consider (2). Firstly, the validity L’ |= ya (L) follows directly from the fact that
xa (L) is the characteristic proposition of model L. Secondly, we show that L° |= p; : p; D Oo;
for all 2 < m. So, let some 7 < n and w € W be given such that L5,w = 0 : p;. This means
r; C w, for r; is the state in L0 at which p; = A V(r;) becomes valid for the first time. We
must show that there exists a v € W, w C v such that

S(w,w) <p; & L°vk=0:o0;. (5)

The requirement L°, v = 0 : 0; is equivalent to s; C v observing that s; is the first state in
L’ at which o; = A V(s;) becomes valid. Thus, the second part of (5) is trivially satisfied
if s; C w, i.e. V(s;) € V(w). In this case we can choose v = w since V(s;) C V(w)
implies L, w = 0 : 0y, and 6(w,v) = §(w,w) = 0 < p;. The other possible case is that
si Z w, i.e. we have r; C w C s; in our linear model. In this situation the condition (5)
is equivalent to d(w,s;) < p;. Now, this follows from the fact that there is a trivial proof
POk p;:p; D Oo;, which implies d(r;, s;) < p; by construction of the formal effort 4. Since
the Entropy Law holds for §, we get 0(w,s;) < 0(ri, 8;) < p; as desired. 1

We can now prove the main theorem of this section.

Theorem 7.4 iLC-h is intensionally complete for all normal problems.
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Proof: Consider a normal problem x4 (L), p1 D Ooy,...,pn D Ooy, IF 0 with L = (W,C, V).
All p;, o; are (proper) states of L, and 0 is either a unit ¢ or a modalised unit O¢. Suppose
we are given effort bounds p; € [p; D Oc;] 2 N, and p € [] such that

p:0 = p:0 (6)

where p': O is the intensional theory 0 : xa(L),p1: p1 D O01,...,Pn i pn D Ooyp. We must
show that there exists a proof

£:0 F q:0 (7)
such that ¢{p/z} < p. We distinguish two main cases.

e If 0 is a unit proposition then [#] = {0} and p = 0. In this case we can reduce
intensional completeness to standard extensional completeness for the unit fragment of iLC,
which follows directly from completeness of Dummett’s LC. The argument runs as follows:
Consider an arbitrary flm L' = (W',C', V') such that L' | xa(L), i.e. L' is a suffix of L,
and let M = (W',C",V',T) with T'(u,w) =g 0 be its “minimum effort” extension as an
enriched linear model. Then, since all p; and o; are states of L and M suffix of L, we must
have M = p; : p; D Oo; for all i < n, for trivial reasons. This is simply because in M, by
construction, every state can be reached from every other in zero time. So, in particular,
state o; may be accessed from p; in p; time. Also, M =0 : xa(L), which means M = p': ©.
But then assumption (6) gives M |= p : 0, which in turn implies L' |= 6 since 6 is modal-free.
Thus, we have shown that the semantic entailment x, (L) = € holds over arbitrary linear
Kripke models. But since LC is complete for linear models and iLC-h an extension of LC,
there must be a proof xa (L) - #. This in particular means there must be a derivation for (7).

e The other case is when 6 is a modalised unit O¢. Since by Lemma 7.3 (1) L’ |= 7; : ©,
assumption (6) implies L = p : O(. Hence there must exist a state w; € W such that
L, wy = 0 : ¢ and §(wg,w;) < p < oo where wy is the initial state of L. Because of
the Entropy Law for 6 we may assume that w; is the first state at which ¢ becomes valid.
Since ¢ is a unit this implies in particular L,w = ¢ iff w; T w. From the properties
of characteristic propositions, then, we get proofs (already in IPC) xa(L) = AV (wp) and
xa(L) F AV(wy) =¢, i.e. iniLC-h we have Z: O F g : xa(L) as wellas Z: © - q; : A V(wp)
and F g2 (xa(L) & AV (wr)) D ¢, with qo{p/Z} =0, i {p/Z} = 0, and g2 = 0. On the other
hand, by definition of §(wg,w;) as the formal effort of wy from wyq in theory p': © there must
exist a proof Z: O F qs : (AV(wp)) D OAV (wr) with qu{p/Z} = 6(wp,wr). Taking all four
proofs together yields Z: © I ¢ : O(, where ¢ =4 ((OF q2) 0 OS)(OI qo,q4 q1). We have

{p/7} = ((OFgq2) 0 OS)(OI qo,q4 1) {p/Z} = qu{p/Z}0 = d(wo,w1)0 < p

as desired for (7). ]

7.2 Reduction to Normal Form Problems

We are now going to develop some tools for reducing exactness for arbitrary elementary
problems to that for normal problems. These simplifications, called reduction proofs and re-
duction rules are derived in iLC-h and are refinements of the extensional concepts of provable
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equivalences and invertible rules. Reduction proofs and reduction rules are meant to nor-
malise a problem, which means they must preserve not only extensional but also intensional
information.

A reduction proof, or reduction for short, is a pair of proofs F F: o D¢pand FG: 79 D ¢
such that for all p € [¢], G (Fp) < p: p. We denote thisas F (F,G):p >, or F o>
where we do not want to mention the proof objects. Such a reduction not only establishes the
semantic equivalence of ¢ and 1) but at the same time provides a method of translating effort
bounds from ¢ to 1 and vice versa. The inequation G (F'p) < p : ¢ means that if we want
to catch any p € [¢] by some proof ¢ < p it is enough to catch F'p € [¢/] with some r < F p.
For then, g =¢r Gr < G (F p) < p does the job. In other words, ¢ is intensionally at least as
informative as ¢. The purpose of reductions is highlighted by the following lemma.

Lemma 7.5

1. Suppose F @i > N (i = 1,...n) and + ¢ > . Then, if iLC-h is ezact for
the elementary problem (p{v,...,go,]y,wN it is also exact for the elementary problem
(pla"w(pnaq:b'

2. Reduction 1is reflexive and transitive: We have F o > ¢, and if F o1 > @9 and
F o > w3, then F 1 > 3.

3. Reduction is extensional: If F @1 > @9 and @[-] an arbitrary formula context, then
= olpr] > plpa].

We shall apply the congruence properties of reductions as an “equational” rewriting strategy
at the level of propositions. An important application of rewriting by reductions is the
following, which we shall need in the proof of Theorem 7.8.

Lemma 7.6 (Model Evaluation) Let A be a finite set of atoms, 0 be an elementary propo-
sition in A, and L an irredundant finite linear Kripke model. Then, there exist finite families
of (proper) states p;, o; (i € I) of L together with a reduction xa(L) & 0 > false, in the case
where 6 is never true in L, or = xa(L) & 0 > xa(L) & N\;cr pi D Oy, in the case where 0 is
true at some state of L.

Reductions allow us to simplify individual propositions ¢;,% in an elementary problem ¢, 1.
Of course, this is not sufficient to solve general elementary problems. We will also need to
break up and combine the propositions ¢; and 1 and trade them against each other. This
will be achieved by a calculus of reduction rules that preserve intensional information. One
such rule we have already met in Lemma 7.5:

oY, N IF N

Foi> N & Fyp >l
QOI,---,QOnn_w ( ()01 QOZ 'l/) 'l/) )

(8)

which allows us to reduce the elementary problem @, to the elementary problem ¢V, 4", so
that exactness of iLC-h for the latter implies exactness for the former. More constructively,
the rule (8) can be used as an invertible derivation rule in a search for proofs and exact effort
bounds, as it comes with a (implicit) translation of proof objects. For instance, suppose we
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have p: ¢ | p : ¢ and we are looking for a proof Z : @ F ¢ : 1 such that ¢{p/Z} < p. If
F(F;,Gy) i > o) and F (F,G) : 4 > 9" are reductions justifying the application of rule
(8), then, by the properties of the reduction proofs, we must have Fp: N | Fp:yN. Now,
if iLC-h is exact for ¢V, 4" then there is a proof 7 : g~ F r : 4" such that r{ﬁﬁ/é’} < Fp.
So, we can take ¢ =g Gr{F #/7} and get ¢{p/@} = G(r{F§/Z}) < G (Fp) < p. This not
only proves Lemma 7.5 as promised, but also that (8) is admissible for iLC-h. In this spirit,
we call a rule a (sound) reduction rule (for elementary problems) if it is admissible and if
exactness of iLC-h for all premisses implies exactness of iLC-h for the conclusion.

We will see that the rules given in Fig. 5 are sufficient to provide for a complete reduction
strategy. There are probably other, more efficient systems but the one shown is good enough
for our purposes. In Fig. 5 the context ® stands for an arbitrary list of propositions, 7 is an
arbitrary permutation of indices, and (, (1, (s are unit propositions.

% red? (- o1 > o]') % redr (F 4 > ¢N)
STk T
Q)(Iizpflé;p;2u|_|—¢¢ &lt @q;:p él%wiill—'_z/jp Lt

Figure 5: Reduction Rules

Lemma 7.7 All the rules in Fig. 5 are (sound) reduction rules for elementary problems.

Note that if we lift the restriction on rule DIr and permit ¢ to be instantiated arbitrarily, we
lose exactness of the rule. For instance, semantically, we have = p : (Oa & Oa) D Oa, where
P ((2,0), (y,0)) =g (min(z,y),0). If DIr were exact for { =4 Oa & Ocr and ¢ =4 Ocr then
there should exist a derivation x : Oa & O« t- ¢ : O« such that Az. ¢ < p. However, the only
proofs constructible for ¢ are essentially ¢ = 7w £ or ¢ = 75 z, but neither 71 < p nor m < p.
If we wished to make DIr preserve exactness we would have to include the minimum function
among our proof terms. We will come back to this point again in Sec.8. The restriction on
rule @& ¢ that both (; be units is necessary for the same reason as for the restriction on axiom
WLC. In fact, admissibility of @I¢ for arbitrary (; implies derivability of WLC for arbitrary
(i, which is intensionally unsound, as we now show.

Theorem 7.8 (Normal Form Reduction) FEvery elementary problem can be provably re-
duced to a finite number of normal problems.

Proof: First, observe that any provable equivalence (; = (o between unit propositions is a
reduction in both directions for the trivial reason that the domains of stabilisation bounds
for (1, (s are singleton sets. We shall use this heavily later on.
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Let 041, ...,01, IF 02 be an elementary problem. We proceed by induction on the structure
of 92.
e If 63 = (¢} D 6} we use rule DIr to reduce the elementary problem 61, ..., 601, I 6 to

the elementary problem 611,...,01,,¢} |- 6, and then appeal to the induction hypothesis.

o If Oy = 091 & 099 we use rule &Ir to reduce to the problems 6q1,...,601, IF 62 and
011, ...,01, IF B22. Then, use the induction hypothesis to finish off both branches.

e In the remaining cases > is a unit ¢ or a modalised unit O(. Then, we do not need to
break down any further the goal proposition 6. It suffices to normalise the context. First,
by applying the rule & E/ sufficiently often we can reduce 611, ..., 601, IF 62 to the elementary
problem 6, I 03, where 6; = A, 61;. Let A be the collection of atoms occurring in 6; or 5.

Now it is implicit in [Dumb59] that every unit proposition ¢ captures essentially a finite set
of finite linear Kripke models L; that may be specified in terms of characteristic propositions
X(L;). The proposition ¢, then, is provably equivalent to @, x(L;). We can therefore use the
reduction = 6, > (true& 1) > @, xa(L;i) & 01 in combination with rules red? and &IV to
reduce our timing problem to the form @, xa(L;), 61 IF 2. Now we employ rule @1/ to split
up into a finite number of elementary problems x4 (L;), 61 IF 6. These elementary problems
can be further reduced by way of Lemma 7.6 together with applications of & FE/, &I/, so that
we finally obtain normal problems

xa(Li), pit D O0its. -y pin O Ooip IE 6

where all p;; and o;; are states of L;. [

From Theorem 7.8 it follows that if iLC-h is exact for all normal problems then it is exact for
all elementary problems, and this completes the proof of Theorem 7.2.

8 Discussion

To finish off this paper we address some general points relating to the technical setting pre-
sented here, which will help to highlight the main characteristics and limitations of our results.

Relationship with Medvedev’s Logic The realisability semantics introduced here adds
another variant to the many notions of realisability discussed for intuitionistic logic [Tro98].
The notion that comes closest to ours is the set-theoretic realisability introduced by Medvedev
[Med66] as an attempt to formalise Kolmogoroff’s original explanation [Kol32] of the intu-
itionistic connectives. However, there are some differences. Firstly, Medvedev’s interpretation
quantifies over all interpretations that associate arbitrary finite sets [«] of realisers to propo-
sitional atoms. Our semantics is more specific in that it uses a fixed choice of singleton sets
[a] = 1 for the propositional atoms. Secondly, Medvedev’s as well as many other notions
of realisability force false to be the empty set, [false] = (. In our framework [false] = 1,
i.e. false has a (single) realiser. A simple technical reason for this is that in some theories
we may have axioms of the form ¢ D false, which could not easily be realised if [false] were
empty. Thirdly, the models L in Medvedev’s theory are classical valuations while here the
L are enriched sequence models. This amounts to an intuitionistic reading of realisability
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on linear Kripke models, a generalisation of Medvedev’s semantics. Fourthly, in our setting,
non-trivial computational information is generated by the modality O while in standard re-
alisability semantics such as Medvedev’s it is to do with (informative) disjunction V, which
is missing in the theory of linear Kripke models.

To sum up, our semantics may be thought of as an intuitionistic version of a Medvedev
style realisability semantics of singleton problems on linear Kripke models. For a systematic
study of Medvedev’s logic of singleton problems the reader is referred to [MMO™89], where
also an intuitionistic reading of Medvedev’s semantics based on arbitrary Kripke models rather
than linear models has been suggested.

Limitations On the down-side, so it seems, our proof semantics is too rich (hence too
expressive) for the intensional completeness results to extend much beyond the elementary
fragment of iLC. We conjecture, however, that iLC-h is intensionally complete for the fragment
of all propositions ¢ such that [] = N¥ for some k& > 0. These propositions are all elementary
in the sense that their associated stabilisation bounds are essentially vectors of natural num-
bers, i.e. first-order objects. This excludes higher-order uses of O like in (Oa & Oa) D Oa,
where the underlying domain contains all monotone functions N x N — N over natural num-
bers. In order to extend the results beyond the elementary fragment one would need to relax
the definition of intensional completeness as discussed below.
Intensional soundness of iLC-h implies extensional soundness of iLC-h. For if ¢, i.e.
q : ¢ for some proof term ¢, then by intensional soundness = ¢q : . Thus, for all models
M, M = q: ¢, whence for all M, M = ¢ by the Abstraction Lemma 4.5. This shows = ¢.
Extensional completeness, on the other hand, does not follow from intensional completeness.
In fact the former does not hold for iLC-h. It is not difficult to show that the proposition
o =g (@ DOB) DOP) DOy & (a D OB) D Oy) D Oy is valid. However, as we have seen
there does not exist a uniform stabilisation bound p such that M = p : ¢ for all M, whence by
soundness I ¢. It is possible to characterise a stronger semantics =* ¢ < Ip. VM. M Ep: ¢
in terms of intensional Kripke models, if we move from single esms to (suitably restricted)
sets of esms. A second possibility to close the gap between intensional and extensional
completeness is to extend each domain [¢] by a maximal element * carrying least information,
so that x : ¢ expresses merely extensional validity of ¢ and does not assert the existence of
a uniform stabilisation bound. Then, one could have an (hereditarily uninformative) proof
Fx: (((aDOB) DOB) DOy & (D OB) D Oy) D Oy without requiring a uniform
(informative) bound. Both these approaches require further investigation.

Different Notions of Intensional Completeness The definition of intensional complete-
ness adopted in this paper is not the only one possible. There are both stronger and weaker
notions conceivable. Our formulation of the completeness theorem states

Frie = Jeasp& Fq:e (9)
Observing that ([¢], <) is a complete lower semi-lattice, this is the same as saying that the
least uniform stabilisation bound inf .{p |=p: ¢} is constructible as a proof of ¢. This is
only true if ¢ is elementary. In general, we will only have the inequation
nfifalFa:e} < info{plEp:el (10)
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which says that if we accumulate all the information available from all the proofs of ¢ we
have enough information to infer the minimal uniform stabilisation bound. This allows for the
possibility that inf {p |[=p: ¢} is not constructible but is covered by all the proofs of .
Consider the theorem ¢ =4 (Oa & Oa) D Oa, for which [¢] is the set of monotone functions
N x N — N. The tightest uniform stabilisation bound realising ¢ is the minimum function
= min : ¢ with min ((1,0), (62,0)) =4 (min (61,02),0). Surely, min is not expressible in
+, maz, and 0, so there cannot be a derivation F min : ¢. This means that (9) does not
hold for this choice of ¢. However, there are two “approximating” derivations F ¢; : ¢
(i = 1,2), viz. the obvious projections ¢;(((d1,0),(d2,0))) =4 (0;,0). For these we have
inf <{q1,q2} = min, in line with (10). We conjecture that iLC-h is intensionally complete in
the sense of (10) for implications between elementary propositions.

For iLC-h there are two strategies open to us to strengthen (10) to (9). We could restrict
the proofs/stabilisation bounds p considered in the semantic statement = p : ¢, or increase
the number of proofs available in the formal calculus F ¢ : ¢. Instead of considering all
elements p € [¢] we could confine ourselves to those that can be expressed in terms of +,
maz, and 0, or some other suitably limited class of elements of the domain [¢]. On the other
side we could include new proofs in the formal system such as min to make it complete in
the stronger sense of (9) for more ¢ than just the elementary propositions.

Remarks on the modality Although O is unusual as a logical modality, as it only appears
to have been treated as such in a very few papers prior to [Men93] ([Cur52, Cur57] and [Gol81]
are the ones we are aware of ), O has been well studied in other contexts. Viewed algebraically,
it is a nucleus on a Heyting algebra [Mac81, Joh82|. Viewed categorically, it corresponds to a
topology on an (elementary) topos [Law72] and takes centre stage as a strong computational
monad in Moggi’s approach to programming language semantics [Mog91]. O is also used as
a generic programming construct in functional programming [Wad90].

Conclusions Although the general programme underlying this work is still rather tentative
and supported only by way of the illustrative example laid out here, we believe that it gives
a first cut at a model theory which aims to establish a tight correspondence between proofs
and model structure. There are a few lessons to be learnt from this case study. Firstly,
the modal operator O in connection with the notion of intensional Kripke models proves to
be a versatile tool to theorise model-abstractions, permitting semantical refinements through
proof interpretation. We have shown that intensional model structure can be completely
recovered from modal proofs. This means that proof search in iLC-h can be used as an
exact intensional analysis algorithm for functional specifications expressible in the elementary
fragment. The practical application of this idea, for different intuitionistic semantics and
more restricted systems, has been proposed in [MF96, Men00] framework for timing analysis
of combinational systems. Secondly, our work shows that constructiveness (in propositional
logics) is not necessarily a property of disjunction V. It is well known that the theory of linear
Kripke models LC does not satisfy the disjunction property, whence, under traditional terms
and conditions it does not count as a “constructive” intermediate logic. However, our results
show that LC, nevertheless, can be turned into an intensional calculus iLC in which proofs
have (model-relevant) computational meaning induced by an abstraction modality O.
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The main problems that remain open are how to extend our completeness result for LC to
a larger fragment of the logic, and how to extend our intensional programme to more general
models of intuitionistic logic.
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