
Trapping Behavior Trees in Esterel

Alexander Schulz-Rosengarten∗, Michael Mendler†, Joaquin Aguado†, Malte Clement∗ and Reinhard von Hanxleden∗
∗Kiel University and †Bamberg University

Abstract—Behaviour Trees (BTs) are a formalism for specifying
behavior in a modular way. Originally from gaming applications,
they have recently gained attention for industrial automation and
robotics control as well. However, so far there has been little
work in terms of formalization or grounding in other established
programming formalisms. We propose some syntactic sugar for
Esterel to capture directly the basic mechanisms of BTs. This
grounds the essence of BTs in a well-established synchronous
programming language.

I. INTRODUCTION

Behaviour Trees (BTs) originated in the gaming industry but
recently gained popularity for real-world applications, such as
robotics [1]. They use a model-based approach with a simple
and intuitive tree structure and a lean set of flow elements to
control the execution of tasks, as detailed further in Sec. II.
As it turns out, BTs have much in common with synchronous
programming [2]. They both follow a tick-based execution
regime, target reactive systems, favor modularity, and feature
modeling concurrent behavior. Yet, in the literature, BTs are
usually discussed in relation to Finite State Machines (FSMs),
Teleo-reactive Programs, or Decision Trees [1]. Synchronous
language have a lot to offer and can aid in hardening BTs
for the domain of embedded and safety-critical systems. They
provide well-formed semantics with deterministic concurrency
models, facilitate verification, and come with rich ecosys-
tem for programming, causality analyses, compilation, and
modularization. Here, we present a first look at how BTs
and synchronous programming can be brought together, using
Esterel as an example. Future work will investigate the benefits
the synchronous concepts might yield in the BT context.

II. WHAT ARE BEHAVIOR TREES?

?

→ EatPills

AvoidGhost

GhostClose

GhostScared ChaseGhost

?

→

S

F F

S

PacMan

R

R

F
R

Fig. 1. Pac-Man behavior tree (downward solid lines) with its associated
decision graph (upwards dashed lines) routing of FAILURE (F), SUCCESS (S)
and RUNNING (R).

The root of a BT starts by generating ticks (tokens) that
travel along the tree down to the execution nodes (leaves).
Execution nodes include actions (depicted as rectangles) and
conditions (depicted as ovals). For the Pac-Man in Fig. 1
(an example taken from [1]), the actions are ChaseGhost,
AvoidGhost and EatPills, and the conditions are GhostClose
and GhostScared. A node is activated once it gets the tick
from its parent, then it executes and responds back to its
parent. The response of an action can be either RUNNING
(not terminated yet), SUCCESS (goal achieved) or FAILURE
(finished unsuccessfully). The response of a condition can
only be SUCCESS (true) or FAILURE (false). The BT control
flow is encoded using the internal (non-leaves) control flow
nodes: sequence and fallback. There is also a parallel control
flow node for BTs but this is not employed in the present
paper. A sequence node (a box with a right-pointing arrow
→) sends ticks to its children from left to right. If a child
returns SUCCESS, the next child is ticked; if there are no
further children, then the sequence returns SUCCESS as well.
If, however, a child returns another status (RUNNING or
FAILURE), the sequence returns that status as well and no
further child is ticked. For the BT in Fig. 1, a sequence node
allows the Pac-Man to execute action ChaseGhost whenever
the condition GhostScared holds. Note that in Fig. 1, the
SUCCESS (FAILURE, RUNNING) flow is indicated by the
green (red, blue) dotted arrows. A fallback node (a box with
question mark ?) also sends ticks to its children from left to
right. It returns FAILURE when all children return FAILURE.
Otherwise, it returns RUNNING or SUCCESS as soon as one
of its children does so. The BT of Fig. 1 includes a fallback
at the root which tells the Pac-Man to switch between action
EatPills and its left subtree. There is another fallback that
ensures that AvoidGhost executes when GhostClose is true. In
this form, the Pac-Man avoids or chases ghosts (AvoidGhost
or ChaseGhost) depending on whether the ghosts are close or
scared (GhostClose and GhostScared). Thus, the Pac-Man eats
pills (EatPills) when it is not avoiding or chasing ghosts.

III. ESTEREL PROGRAMMING OF BT (BTESTEREL)

As a reactive orchestration language for concurrent memory
actions, BTs bears striking similarities with Esterel [3]. Like
in BTs, Esterel is heavily based on traps. In addition, Esterel
is a fully-fledged programming language that offers many
features not present in core BTs. It provides a rich set control-
flow constructs, statically typed data and thread-local memory
to program complex temporal behaviour and reactive control
algorithms. It permits modules to communicate with each



other through valued signals and still guarantees deterministic
execution, bounded memory and deadlock-freedom, even in
the presence of run-time concurrency. BTs can be seen as a
domain-specific syntactic extension of Esterel. BTs are mapped
to Esterel modules that communicate via signals. Every tick
of the BT corresponds to one macro-step of the module and—
for memory-free BTs—the Esterel code executed at each tick
is always the same. Inside a module, the control flow of BT
nodes is implemented with Esterel’s trap mechanism.

A representation of the Pac-Man example is given in Fig. 2a.
The signals GhostClose and GhostScared implement the BT
condition nodes. The signals ChaseGhost, AvoidGhost and
EatPills are used to implement the BT actions. The completion
status of an input is tested by present c thenP elseQ end. If c
completes by SUCCESS the signal is present and P is executed.
If c completes by FAILURE then its signal status is absent
and Q is executed, instead. For instance, in lines 8–10 of
Fig. 2a the presence of GhostClose leads to the execution of
the Esterel trap exit _btsucc and its absence raises the trap
exit _btfail. The sequence and fallback operators, which are
abbreviated

btfallback t1 btfb t2 btfb end btfallback
btsequence t3 btseq t4 btseq end btsequence

are implemented using Esterel’s generic trap handler [3]
trap t inP doQ end for trap identifier t ∈ {_btsucc, _btfail}.
It names the lexical scope for all exceptions exit t inside a task
P that will trigger the instantaneous preemption and exit from
the trap’s scope with immediate continuation in task Q. When
P never terminates, which we assume, this is the same as
trap t inP end;Q where ; is Esterel’s sequential composition
operator. Hence, the syntactic abbreviations btfallback and
btsequence above get expanded into

trap _btfail in t1 end trap; t2
trap _btsucc in t3 end trap; t4,

respectively, as is seen in Fig. 2b. Here, we assume that BT
actions are triggered by emitting output signals. So, if the
action ChaseGhost completes with RUNNING every time it is
ticked, we have the coding seen in lines 20-21 of Fig. 2a:

emit ChaseGhost; exit _btrun

The _btrun trap is handled by the wrapper construct
behaviortreeP end behaviortree. Here, this outer-most wrapper
makes the BT complete the tick by by emitting an extra output
signal BehaviortreeRunning (line 34), pausing (line 35) and a
loop to repeat the full code for the next tick (lines 6 and 36).

IV. SUMMARY & CONCLUSION

We propose a concept for representing BTs in Esterel using
traps. It illustrates the common ground between BTs and
synchronous languages and acts as a proof of concept showing
that reactive BTs can be directly embedded in the Esterel
programming environment. Yet, this is only a first step toward
a more comprehensive combination of BTs and synchronous
languages. We plan to extend our concept into a more fully
elaborated language extension, including grounding BTs in

1 module PacMan
2 input GhostClose,

GhostScared;
3 output ChaseGhost,

AvoidGhost, EatPills;
4

5 behaviortree
6 btfallback
7 btsequence
8 present GhostClose
9 then exit _btsucc

10 else exit _btfail
11 end;
12 btseq
13 btfallback
14 btsequence
15 present GhostScared
16 then exit _btsucc
17 else exit _btfail
18 end;
19 btseq
20 emit ChaseGhost;
21 exit _btrun
22 end btsequence
23 btfb
24 emit AvoidGhost;
25 exit _btrun
26 end btfallback
27 end btsequence
28 btfb
29 emit EatPills;
30 exit _btrun
31 end btfallback
32 end behaviortree

(a) With BT syntax extensions,
before expansion.

1 module PacMan
2 input GhostClose, GhostScared;
3 output ChaseGhost, AvoidGhost,

EatPills;
4 output BehaviortreeRunning;
5

6 loop
7 trap _btrun in
8

9 // Application logic
10 trap _btfail in
11 trap _btsucc in
12 present GhostClose
13 then exit _btsucc
14 else exit _btfail
15 end;
16 end trap;
17 trap _btfail in
18 trap _btsucc in
19 present GhostScared
20 then exit _btsucc
21 else exit _btfail
22 end;
23 end trap;
24 emit ChaseGhost;
25 exit _btrun
26 end trap;
27 emit AvoidGhost;
28 exit _btrun
29 end trap;
30 emit AvoidGhost;
31 // End of application logic
32

33 end trap;
34 emit BehaviortreeRunning;
35 pause
36 end loop

(b) Plain Esterel, after expanding BT
extensions.

Fig. 2. Pac-Man as an Esterel Module, with and without BT syntax extensions.

the formal semantics of Esterel. We will further refine the
modularity of our solution, enabling instantiating BTs as sub-
trees. Our solution with traps and their exit codes corresponds
k-BTs [4] and is, as far as we are aware, the first proposal for
constructing a full-blown programming language for k-BTs.
Parallel nodes often pose a challenge [5] in the BT semantics.
Synchronous languages have a lot to offer here. Providing
deterministic concurrency is one of their core capabilities,
which would directly benefit programming with BTs.

REFERENCES

[1] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and AI: An
Introduction. CRC Press, 2018.

[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
and R. de Simone, “The Synchronous Languages Twelve Years Later,” in
Proc. IEEE, Special Issue on Embedded Systems, vol. 91. Piscataway,
NJ, USA: IEEE, Jan. 2003, pp. 64–83.

[3] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,” Science of Computer
Programming, vol. 19, no. 2, pp. 87–152, 1992.

[4] O. Biggar, M. Zamani, and I. Shames, “A principled analysis of
Behavior Trees and their generalisations,” CoRR, vol. abs/2008.11906,
2020. [Online]. Available: https://arxiv.org/abs/2008.11906

[5] M. Colledanchise and L. Natale, “Handling concurrency in behavior
trees,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2557–2576,
2022.

https://arxiv.org/abs/2008.11906

	Introduction
	What are Behavior Trees?
	Esterel Programming of BT (BTEsterel)
	Summary & Conclusion
	References

