
Describing a Signal Analyzer in the

Process Algebra PMC

� A Case Study�

Henrik Reif Andersen Michael Mendler

Abstract

In this paper we take a look at real�time systems from an implementation�
oriented perspective� We are interested in the formal description of genuinely
distributed systems whose correct functional behaviour depends on real�time
constraints� The question of how to combine real�time with distributed pro�
cessing in a clean and satisfactory way is the object of our investigation�

The approach we wish to advance is based on PMC� an asynchronous pro�
cess algebra with multiple clocks� The keywords here are �asynchrony� as the
essential feature of distributed computation and the notion of a �clock� as an
elementary real�time mechanism� We base the discussion on an actual indus�
trial product� The Br�uel 	 Kj
r ��� Vehicle Signal Analyzer� an instrument
for measuring and analyzing noise generated by cars and other machines with
rotating objects� We present an extension of PMC byML�style value passing
and demonstrate its use on a simpli�ed version of the Br�uel 	 Kj
r Signal
Analyzer�

� Introduction

The initial motivation for the work reported in this paper stems from an industrial
case study pursued by the authors in the context of the CODESIGN project at the
Department of Computer Science of the Technical University of Denmark� Lyngby�
The task of this case study is the formal description and rational reconstruction
of a commercial real�time measurement instrument� the Br�uel � Kj�r �	
� Vehi�
cle Signal Analyzer �	�� Br�uel � Kj�r� an industrial partner associated with the
CODESIGN project� is a big Danish manufacturer for measurement equipment
and the �	
� is one of the most sophisticated of their products� The instrument
� in its portable version � looks roughly as shown in Fig� 	� Its main purpose

�The �rst author has been supported by The Danish Technical Research Council and the se�

cond author by the Human Capital and Mobility Network EuroForm� Address of correspondence�

Technical University of Denmark� Department of Computer Science� Building ���� DK�	
�� Lyng�

by� Denmark� fhra�mvmg�id�dtu�dk

	

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

Figure 	� The Br�uel � Kj�r �	
� Vehicle Signal Analyzer

is to measure and analyze the noise produced by rotating mechanical objects such
as car engines or turbines� It is applied in quality check and trouble shooting� As
indicated in the �gure basically two kinds of data are processed� The �rst is tacho
information relating to the position� velocity� and acceleration of the rotating ob�
ject� The second type of information is the sound produced� which is picked up by a
number of microphones� The input signals are digitized and undergo fairly involved
data processing to extract what is essentially frequency information� but linked up
with the rotational data in one way or another�

When one studies the instrument�s implementation one recognizes two salient fea�
tures that must be accounted for by any attempt on a formal description of the
instrument� The �rst is the fact that one is dealing with a truly distributed system�
distributed both in terms of hardware as well as in terms of software� Depending on
how one counts� one identi�es at least four separate and dedicated hardware proces�
sors which are independently clocked and which communicate asynchronously� One
of these processors runs a real�time operating system which in turn schedules three
basic software functions in a quasi�parallel fashion�

The second insight one arrives at rather quickly is that it would be a hopeless under�
taking to attempt a precise and complete speci�cation of the instrument�s internal
timing behaviour� All one can reasonably expect is to capture a few and essential
real�time aspects� But what are the essential real�time aspects� Of course� there is
the obvious �What�You�See�Is�What�You�Hear� response time constraint that says
that the instrument must be fast enough for the test engineer to be able to relate
the display output directly to the noise she or he is hearing� From the users point
of view this is certainly a relevant real�time requirement� But there are more subtle
and more important real�time constraints relating to the functional correctness of
the measurement� In fact� when one talks to the engineers they insist that the main
problem they are struggling with is to guarantee internal time consistency� to main�
tain the original exact time synchrony of the input data within the system� despite
the fact that the signals are sampled independently and processed in a distributed
fashion� despite the fact that the data split up into di�erent submodules and recon�
verge later in yet another independently clocked subcomponent� and above all the

�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

instrument must be able to measure absolute time with high precision in order to
compute the current rotation speed� and relate it to the various signal data for later
time�domain processing�

From this discussion we derive two central requirements for a prospective language
to describe and program real�time systems such as the Br�uel � Kj�r �	
� Vehicle
Signal Analyzer� Firstly� we are looking for an abstract approach that

� faithfully represents asynchronous and distributed computations�

In other words� our language must not� by illegitimate synchrony assumptions� mask
out actual real�time synchronization problems in the implementation� Secondly� in
order to master the complexity of the instrument the language

� must not mix up function and quantitative timing unnecessarily�

In other words� we must be able to focus on the essential real�time behaviour and
purely functional aspects� and wherever appropriate ignore quantitative timing al�
together�

In this paper we wish to put forward the real�time process language PMC ��� which
has been conceived to comply with the two requirements above� It is in fact an
extreme solution in the sense that in PMC all concurrent computations are asyn�
chronous so that any global synchronization must be speci�ed explicitly by the pro�
grammer� Also� PMC takes an extreme stand as regards the second requirement� it
focuses on the qualitative aspects of real�time programming and does not attempt to
capture quantitative timing� though this could be introduced as a derived concept�

PMC �Processes with Multiple Clocks� is an extension of Robin Milner�s Calculus of
Communicating Systems �CCS� by the notion of multiple clocks� Processes in PMC
are described by their ability to communicate locally in a handshake fashion and
synchronize globally on clocks� Clocks in this context are an elementary mechanism
for achieving real�time constraints� They embody an abstract� qualitative� and local
notion of time which can be interpreted as referring not only to real hardware clocks
as in synchronous circuits� but also to time�out interrupts� global synchronization
signals as in Modula� the ticking of real process time� or the completion signal
of a distributed initialization or termination protocol� PMC has a mathematical
theory along the lines of CCS� the results obtained concern the formal calculus
of PMC� its operational semantics� and complete equational axiomatizations for
bisimulation equivalence and observation congruence �
� ��� In this paper we extend
PMC by value�passing using Standard ML �	�� and illustrate its application as a
programming language on a simpli�ed version of the Br�uel � Kj�r �	
� Vehicle
Signal Analyzer�

As mentioned before PMC is designed for describing truly distributed real�time
systems with few but essential real�time constraints� This goal distinguishes it from

�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

the usual approaches in the area�

On the one side� PMC does not build in any global synchrony assumption as in
the real�time programming languages Esterel ��� and Lustre �	��� Global syn�
chrony is implicit also in timed process algebras with the so�called maximal progress
property� which essentially amounts to a globally synchronous� locally asynchronous
model of computation� Examples are Tpl �	�� and Timed CCS ����� PMC� in con�
trast� can deal not only with globally synchronous� locally asynchronous behaviour
but also with the more general class of globally asynchronous� locally synchronous
behaviour� �A recent proposal for extending Esterel to achieve a similar e�ect
can be found in �����

On the other side� whereas PMC concentrates on qualitative real�time constraints�
the standard pattern of introducing time into process algebras aims at a precise
and complete description of a real�time system�s quantitative timing� Examples are
Atp ����� Timed Csp ����� Bpa��� and many others ���� ��� �	� 	�� 	�� �
�� These
approaches use a global notion of time and describe the global real�time behaviour
of the system quite precisely by inserting explicit delays� This may be necessary in
many safety�critical applications� however� for real�time systems such as the Vehicle
Signal Analyzer� it is overly realistic� for it implies that rather precise knowledge of
the timing behaviour of the implementation is known or assumed� not only for the
time�critical parts� but also for the remaining time�irrelevant aspects� which� so we
believe� constitute the majority in practice� For instance� in a simple process like

P � a� b�� � � � bn� P�

which performs an in�nite sequence of a actions separated by a sequence of bi ac�
tions� we might want to limit the time between any two a�actions without specifying
anything about the intermediate bi�s� The usual formalisms typically require a �xed
delay or an interval of delays �as in �	��� to be assigned to each bi� which means
we are imposing unnecessary restrictions on them� In general� this will not be the
most helpful solution as it might require almost clairvoyant skills� We must foresee
the e�ects of our compiler and code optimization� have precise knowledge about the
properties of our real�time operating system� and �nally also of our hardware on
which the program eventually is going to run�

� PMC

In PMC concurrent systems are described by their ability to perform actions and
synchronize with clocks� This dichotomy leads to a notion of transition system
which distinguishes between pure action and pure clock transitions� One di�erence

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

between action and clock transitions is that actions embody local handshake com�
munication whereas clocks embody global broadcast synchronization� Another is
that action transitions are nondeterministic in general since they arise from paral�
lel and distributed computations� Clock transitions� in contrast� are deterministic
since they model the global passage of time� The idea that time passes determinis�
tically is natural and appears to be common in timed process algebras� where it is
known as the property of time determinism ����� PMC was introduced in ��� and
its mathematical theory was developed in �
� ��� In this section we extend PMC
by value�passing and Ml�style local declarations� and present a simple operational
semantics for late binding �see �����

As in value�passing CCS �	�� we assume a set of process names Proc� channel names
Chan and sets of values V and value variables Var� The semantics we present will
be akin to symbolic transition systems �	
�� We assume the existence of a silent
action � and take the set of actions to be Act �def fc� j c � Chang � fc�v j c �
Chan� v � Vg � f�g� Actions of the form c� are input actions and c�v are output
actions� Note� input actions c� do not carry a concrete value like output actions�
they simply represent a commitment to communicate on channel c� This asymmetry
between input and output captures the late binding semantics� Finally� in addition
to the ordinary actions� PMC assumes a set of clocks Clk the elements of which are
ranged over by ��

The syntax of value expressions is taken from a subset of Standard ML roughly the
subset characterised by removing exceptions and references leaving us with a side�
e�ect�free functional language� We will not describe this in detail� nor do we get
involved with the type system for PMC and the semantics of value expressions� For
the purpose of this paper it will be enough simply to refer to a �partial� evaluation
relation for expressions� The syntax� type system� and evaluation semantics for
expressions may be thought of as being taken over wholesale from Standard ML�

Process terms t are generated by the following grammar�

t �� � stop

j �� t
j if e then t� else t�
j t� ! t�
j t� jj t�
j restrict cseq to t
j timeout t� on � as t�
j t allowing �seq
j p�eseq�
j let d in t end

Roughly� the meaning of the operators� in terms of their ability to perform actions

�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

or to take part in clock ticks� is as follows� The process stop can do nothing� neither
an action nor does it admit any clock to tick� The process �� t performs the pre�x
� and then behaves as t� it prevents all clocks from ticking� whence it is called
�insistent� pre�x� The pre�x � is either an input� an output or a silent pre�x�

� �� � c � x j c � e j ��

The conditional process if e then t� else t� behaves like t� or t� depending on the
value of the �boolean� expression e� The process t� ! t� behaves either as t� or t��
the choice being made by the �rst action �but not by a clock�tick�� The concurrent
composition t� jj t� behaves like t� and t� executing concurrently� with possible
communications� The process restrict cseq to t behaves like t but does not allow
input and output actions on any of the channels in cseq � Chan�� Each one of the
processes t� ! t�� t� jj t�� and restrict cseq to t takes part in a clock tick by having
all of its components t�� t�� t take part in it� Finally� timeout t� on � as t� behaves
like t� if an initial action of t� is performed or a clock tick di�erent from � occurs
in t�� however� if � occurs it behaves like t�� This timeout operator is inspired by
the timeout operator of Nicollin and Sifakis ���� which can be seen as a special case
of ours where there is only one clock� The process t allowing �seq behaves like t
but will take part in any tick from a clock in �seq � Clk� without changing state�
Process constants can be instantiated as p�eseq� by applying the process name p to
a sequence eseq of channel or clock names� or value expressions� The let construct
introduces local declarations like in ML� i�e� let d in t end behaves like t in an
environment with the binding of identi�ers to values� functions and processes as
declared by d� We extend the declarations in ML to allow process declarations

proc p�aseq� � t�

where aseq is any sequence of channel or clock names� or value variables� Like in
Standard ML we use the keyword and to connect mutually recursive declarations�

Two syntactic abbreviations will turn out to be useful�

await �� t �def timeout stop on � as t

� allowing �� t �def let proc X � timeout �� t on � as X
in X
end

The �rst process waits for the clock � to tick� whereupon it continues as t� The
second process is a relaxed pre�x� which admits clock � to tick freely until it performs
action � whereupon it continues as t� The let construct applies a recursive de�nition
with a fresh process name X� which must not occur free in t�

The semantics of PMC is given as a labelled transition relation �� Labels are
taken from the set L � Act � Clk� Like in PMC without value�passing ����

�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

a transition with label l � L is either a pure action transition� if l � Act� or
a pure clock transitions� if l � Clk� The di�erence is that now actions carry
value�passing information� and further that the transitions relates con�gurations
instead of just process terms like in PMC� Con�gurations are introduced essen�
tially to deal with local declarations let d in t end� i�e� with the situation where
the processes of a term have di�erent local environments� A con�guration is ei�
ther a pair hD� ti consisting of a sequence D of declarations and a term t �process
or expression�� or any of the process operators op � fif then else � ! � jj �
restrict �c to � timeout on � as � allowing ��g applied to con�gurations� For
example� hD�� t�i jj hD�� t�i and if hD� ei then hD�� t�i else hD�� t�i are con�gura�
tions� As usual a con�guration will be closed if it contains no free identi�ers� We
denote the set of con�gurations by C and the set of closed con�gurations by Ccl�
A declaration sequence is a sequence of sets of mutually recursive declarations� In
order to handle the late binding of values in input actions we use a special variable
name " as a place holder� Let C� denote the set of con�gurations that has at most
the free identi�er "� Using this notation the transition relation � is a subset of
Ccl � L� C��

We will need to assume that every well�formed syntactic declaration d can be mapped
to a sequence of sets of bindings by the map # as indicated by the following example�
If d is

proc p���x�� � t�
proc p���x�� � t�
and p���x�� � t�

then #d is
fp���x�� � t�� p���x�� � t�gfp���x�� � t�g�

where a sequence is simply constructed by juxtapositioning the elements �using 	
for the empty sequence�� Hence the �rst element of the above sequence contains
the bindings for p� and p�� the second and last element contains the binding for p��
Note� in general a declaration sequence D will also contain ordinary ML declarations
for constants� functions� etc� but since we wish to focus on the PMC�related part�
we shall not be bothered by how # works on pure ML declarations�

For a declaration sequence D we de�ne the partial function of looking up and in�
stantiating the process named p with arguments �v� denoted D�p���v�� by induction
on the length of D� If D � 	� then D�p���v� is unde�ned� otherwise if D � d D�

we distinguish two cases� if d � fp���x�� � t�� � � � � pk��xk� � tkg and p � pi for some
	 � i � k� then D�p���v� � hD� ti��v
�xi�i� otherwise� if p �� pi for all 	 � i � k or if d is
an ML declaration� then D�p���v� � D��p���v�� Hence� D�p���v� gives a con�guration
consisting of the body of p where the arguments have been instantiated to �v and a
declaration sequence in which to execute the process�

�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

Our operational semantics is parameterized in the ML evaluation relation	� where
hD� ei 	 v means that in the environment of declaration sequence D� e evaluates to
v� Since expressions do not depend on processes the evaluation may safely ignore
any process bindings in D� It will be convenient to extend this relation to channel
and clock names by stipulating

hD� ci 	 c hD� �i 	 ��

The transition relation is given by the inductive set of rules shown in Fig� ��

For the examples it will be useful to have some graphical representation of processes�
To this end we introduce some informal terminology� the input �output� sort of a
process is the set of channels on which a process inputs �outputs� values� the clock
sort of a process is the set of clocks that a process is intended to be controlled by�
It is customary to visualise sorts by means of $ow�graphs�

an input channel an output channela process

a clock

� A Signal Analyzer in PMC

We are now going to describe a simpli�ed version of the Br�uel � Kj�r �	
� in PMC
where we focus on some of the essential features of the actual instrument illustrating
the use of clocks for the distributed programming of a real�time measurement prob�
lem� The main simpli�cation consists in picking out only one measurement mode
and trigger condition from the many possibilities available in the Br�uel � Kj�r �	
��

The simpli�ed �	
� measures the noise produced by a large turbine in the run�up
phase and at a certain critical rotation angle� The total result of the measurement
shall be the peak value in three pre�de�ned frequency bands together with the
velocities at which the peaks occurred� To solve our measurement problem we
use the three basic components� Filter� Evaluation� Tacho� shown in Fig� �� All
three modules correspond to hardware components in the Br�uel � Kj�r �	
��s
implementation� and the formal description to follow is a �simpli�ed� abstract view
of the actual components� functionality�

The �lter extracts the average energy of the incoming signal sig in a well�de�ned
frequency band� and delivers the square root of this mean value on output pwr� There
are two clocks associated with the �lter characterizing its real�time behaviour� The
�rst one� �s is the sampling rate which determines the frequency resolution and the
�lter�s maximal cut�o� frequency� In the �	
� this is set at a �xed rate of ��kHz�

�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

hD� c � x� ti
c�
� hD� t�"
x�i

hD� ei 	 v

hD� c � e� ti
c�v
� hD� ti

B 	 true C�
l
� C �

if B then C� else C�
l
� C �

B 	 false C�
l
� C �

if B then C� else C�
l
� C �

C�
�
� C �

C� ! C�
�
� C �

C�
�
� C �

C� ! C�
�
� C �

C�
�
� C �

� C�
�
� C �

�

C� ! C�
�
� C �

� ! C �

�

C�
�
� C �

�

C� jj C�
�
� C �

� jj C�

C�
�
� C �

�

C� jj C�
�
� C� jj C

�

�

C�
�
� C �

� C�
�
� C �

�

C� jj C�
�
� C �

� jj C
�

�

C�
c�
� hD�

�� t
�

�i C�
c�v
� C �

�

C� jj C�
�
� hD�

�� t
�

��v
"�i jj C �

�

C�
c�v
� C �

� C�
c�
� hD�

�� t
�

�i

C� jj C�
�
� C �

� jj hD
�

�� t
�

��v
"�i

C
l
� C �

restrict �c to C
l
� restrict �c to C �

�l � c�� c�v implies c �� �c�

C�
l
� C �

timeout C� on � as C�
l
� C �

�l �� �� timeout C� on � as C�
�
� C�

C
l
� C �

C allowing ��
l
� C � allowing ��

�l �� ��� C allowing ��
�i� C allowing ��

C
l
� C �

hD� p��e�i
l
� C �

�hD� eii 	 vi� D�p���v� � C�

h #dD� ti
l
� C

hD� let d in t endi
l
� C

op�hD� t�i� � � � � hD� tni�
l
� C

hD� op�t�� � � � � tn�i
l
� C

Figure �� Action and Clock Progress Rules� Recall that � ranges over actions� �
over clocks� l over both� and �nally op over fif then else � !� jj� restrict �c to �
timeout on � as � allowing ��g in the last rule�

�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

freq

vel
pwr�

�

pwr�pwr�

max

�t

�p vel

�s

�u

sig

pwr

Figure �� A Filter� Evaluation� and Tacho Component

The second clock� �u� is the update rate on the output side� It is the rate with which
the accumulated averaged signal energy is updated on the output to be picked up
and evaluated by the system� In general� �u may be variable and smaller than the
sampling rate depending on the speed of the successive computations or on how fast
the frequency information of interest changes over time�

A description of the �lter in PMC syntax reads as follows�

proc Filter�freq� sig� pwr� �s� �u� �
restrict r to

let

proc F � await �s� sig � x� r � s� r � �lter�freq� x� s�� F

proc R�s� p� o� � timeout

timeout

r � s� R�s� p� o�
! r � s� R�s� p� o�
! pwr � o� R�s� p� o�

on �s as R�s� s� o�
on �u as R�s� p� p�

in

R�� � � jj F allowing �u
end�

The unspeci�ed function �lter� parametrized by a frequency freq� a sample x� and a
�lter�state s� implements the �ltering algorithm� The �lter consists of two processes
running in parallel and communicating on the internal channel r� The process
R�s� p� o� is a register with three state variables� s� p and o� The �rst component
can be set and read along the channel r� The last component holds the current
value of the output line of the �lter and it can always be read o� by the output
action pwr � o� At every tick of �s the value of s is copied to the second component�

	

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

and at every tick of �u the value of p is copied to the third component becoming
the new output of the �lter� The register is used by the process F for storing the
accumulated mean square of the signal energy� At the beginning of each iteration
the process F waits for the next tick of �s� reads in the new sample x and retrieves
the current value of s from the register� From x and s it computes the new state
�lter�freq� x� s� and updates the register�

The two�phase shifting of states in the register ensures that if a bank of �lters is
connected to the same �s and �u� values read from the output lines of di�erent
�lters between consecutive ticks of �u will be consistent� I�e� they will be the result
of computing the signal energy of the same number of samples� The reader is
encouraged to try out a simpli�ed version where the register only contains the state
variables s and o and at every tick of �u the value of s is copied to o while �s is
given free by allowing� With such �lters unsynchronized values can occur� If some
of the �lters have performed the update of their registers and others not� the values
read o� are inconsistent�

The tacho measurement �the right�hand $ow�graph in Fig� �� computes the cur�
rent rotation speed from the tacho pulse� which we may view as a variable clock
�p� To get the velocity from this tacho clock we need to know the amount of time
that has passed between any two pulses� This real�time information is implemented
by another clock� �t� ticking o� global system time� In the Br�uel � Kj�r �	
� this
is done by a high�precision free�running timer oscillating at 	MHz� yielding a 	�s
time resolution� A description of the tacho as a PMC process is as follows�

proc Tacho�vel� �p� �t� �
let

proc T �c� e� � timeout

timeout

vel � 	
e� T �c� e�
on �p as T �� c�

on �t as T �c! 	� e�
in

T ��
�
end�

The state of the tacho T �c� e� is speci�ed by two parameters� The �rst one� c� counts
the time between pulses� i�e� it is incremented with every �t and reset with every
�p tick� The second parameter� e� holds the result count between two pulses� it is
updated with �p� The current velocity� which is indirectly proportional to the result
count can be read at any time with output action vel � 	
e�

The last module to be speci�ed is the evaluation module� A $ow�graph for this
module is found in Fig� �� The task of the evaluation is to �nd the maximum peak

		

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

energies supplied at its inputs pwri� i � 	� �� � in the run�up phase of the rotation�
The run�up phase is a period of increasing velocity vel� beginning with a start value
start and ending with a pre�de�ned stop value stop� The clock � serves to separate
successive input vectors of synchronous frequency and velocity data� The evalua�
tion module cycles through the states Ewait� Ecomp �m�� and Eready� In state Eready

it is ready to start the next run�up measurement� When the velocity falls below
the start margin it passes to state Ewait where it waits for the velocity to enter the
run�up interval �start� stop�� Then the actual computation state Ecomp �m� is en�
tered� In this state the component reads in consecutive triples of frequency energies
from pwr�� pwr�� pwr� and for each frequency channel memorizes the maximum value
found so far along with the corresponding velocity� This computation is done on the
state parameter m� a triple of pairs of maximal energies and corresponding speeds�
using an appropriateML function max� We use m� for the initial value of the state
parameter� In concrete terms the PMC description of this process can be given as
follows�

proc Eval�pwr�� pwr�� pwr��max� vel� �� �
let

proc Ewait � await ��
pwr� � p�� pwr� � p�� pwr� � p�� vel � x�
if x � start then Ewait

else Ecomp �max �m�� p�� p�� p�� x��

and Ecomp �m� � await ��
pwr� � p�� pwr� � p�� pwr� � p�� vel � x�
if x stop then

max � m allowing ��
Eready

else

Ecomp �max �m� p�� p�� p�� x��

and Eready � await ��
vel � x�
if x � start then Ewait

else Eready

in

Eready

end�

A few explanations are in order here� The fact that the sequence of input pre�xes
pwr��p�� pwr��p�� pwr��p�� vel�x� blocks clocks is essential for it makes sure that no
tick of �u can intercept with the reading of the input lines� so that Eval obtains a

	�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

mean power�

freq� freq� freq�

max

velocity

time
signal

data collect

sample rate

Figure
� Mini��	
 A Simple Version of the �	
� Signal Analyzer

time consistent view of the input� On the other hand� when the velocity has passed
the upper margin� x stop� we may safely allow the environment to run on freely
until the results of the previous measurement have been picked up at output max�
When this happens we prepare ourselves for a new measurement in state Eready�
This explains the relaxed pre�x max�m allowing �� Eready� The �nal observation
made use of in the above formulation is that in state Eready� where we wait for the
velocity to fall below the start margin� we do not need to read in the frequency
information� therefore the input action vel�x su%ces�

With the three components at hand we may now assemble our instrument as shown
in Fig�
� We take a bank of three �lters each one tuned at a speci�c center frequency
and have all �lters sample the incoming sound signal by the same sampling rate�
This ensures that all �lters get a consistent view of the signal�s shape� This is
important as any imprecision in the synchronization of the sampling would result in
a distortion of the measured results� Further� we connect the �lters� output update
rate with the tacho pulse� to obtain a vector of time�synchronous frequency energies
and rotation speed relating to a �xed position of the rotating turbine� The evaluation
module �nally uses the velocity to pick out the frequency spectra corresponding to a
prede�ned speed�interval in the run�up phase of the turbine� The PMC description
of the overall system is now easily given�

	�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

proc Mini��	
�signal�max� sample rate� data collect� time� �
restrict mean power��mean power��mean power�� velocity to

� Filter�freq�� signal�mean power�� sample rate� data collect�
jj Filter�freq�� signal�mean power�� sample rate� data collect�
jj Filter�freq�� signal�mean power�� sample rate� data collect�
� allowing time

jj Tacho�velocity� data collect� time�
allowing sample rate

jj Eval�mean power��mean power��mean power��max� velocity� data collect�
allowing sample rate� time

Although this description contains no explicit timing constraints� it does contain
all the information necessary to ensure proper functional real�time behaviour of the
system� What remains is to decide on the realization and the speed of clocks� The
Mini�	
� features three clearly independent clocks modelling three di�erent real�
time aspects of the Br�uel � Kj�r �	
�� Two of these clocks� the sampling rate and
real time base are �xed rate� while the data collect rate is $exible� The point is
that no matter how the three clocks are implemented all the constraints imposed
on the system can be found in the above description� For instance� selecting the
sampling rate to be a �xed clock running at ��kHz requires the Mini�	
� be ready
to synchronize on sample rate at every 	
�� second� which in turn requires the
three �lter processes to be able to each complete the treatment of one sample within
this limit�

A more involved constraint occurs for the pulse detecting clock data collect� Any
external requirement given in the form of an acceptable range of pulse speeds �e�g�
�	Hz �kHz� will require the Filters� the Tacho and the Eval process all to get
ready to synchronize on data collect when the pulse comes� Since the processes
must communicate on various channels before this happens we are faced with con�
straints not only on the speed of actions internal to the processes but also on the
communications between them�

� Clocks and Real�Time Constraints

Given that the notion of �clock� features prominently in our approach it is appropri�
ate to be rigorous about our use of the term� and for that matter� about our view
of real�time programming�

	

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

In fact� to get the right picture of our approach it is important to realize that the
term �clock� in its strict sense does not refer to the chronometer or an absolute notion
of time but to the bell� i�e� the audible signal by which we tell the hour� The point we
wish to make� of course� is that our use of clocks does not formalize the quantitative
aspect of real time but rather the qualitative aspect of real�time� viz� that of a global
synchronization event� There is indeed some risk of confusion as in the literature on
timed semantics �clocks� sometimes are used as a mechanism for measuring absolute
quantitative time in order to time�stamp observations� Examples of such uses are
the process algebra Cipa �	� and the timed automata of Alur and Dill ����

Although� at �rst glance our approach is somewhat akin to having a discrete time�
domain� viz� using a single clock to tick o� intervals of a global and absolute time�
the intended interpretation here is more abstract� In general� PMC processes would
use a set of unrelated clocks which a priori proceed independently� As mentioned
in the beginning� in any actual implementation these clocks may have a variety of
di�erent realizations� They could be chosen to be real hardware clocks running at
�xed speed� or more relaxed clocks with an allowed range of time�intervals between
successive ticks� The �xed clocks sample rate and time in the Br�uel � Kj�r �	
�
are examples of the �rst kind� whereas as the pulse data collect is an example of
the second kind� However� some clocks may even run entirely independent while
others are derived multiples of a distinguished master clock� But not only may the
hardware interpretation apply� also software realizations are adequate� a clock may
represent a time�out interrupt� a global synchronization signal� or the completion
signal of a distributed initialization or termination protocol�

When we say that clocks are a primitive real�time mechanism then we do suggest
that they capture certain properties of real time� There is� however� one crucial
property not captured by clocks� and this is the ceaseless progress of time� Real
time� as it is usually perceived� is an independent physical parameter that cannot
be prevented from continuously proceeding towards in�nity� This progress of time
cannot be modelled by clocks� A clock in PMC is an internal signal which all
components of a system are free to block or synchronize on� In other words� a
process may produce a time�lock preventing a particular clock from ticking ever
again� In PMC time�locks indicate the violation of a real�time constraint� If for
example the Mini�	
� is put in parallel with a process that occassionally gets into
a state where it stops sending new samples on the channel signal� the �lters will
stop the clocks sample rate and data collect inde�nitely� Another example occurs in
synchronous circuits where a time�lock is produced by feed�back loops that do not
contain a clocked register �
��

	�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

� Conclusion and Future Work

The ideas put forward in this paper aim at a qualitative approach to real�time pro�
gramming that focuses on functional correctness and factors out issues like response
time� measurement resolution� and calibration� The approach� which is based on
PMC and emphasizes the importance of clocks� was illustrated on the Br�uel �
Kj�r �	
� Vehicle Signal Analyzer�

It is worth to be stressed that we do not propose to ignore quantitative timing
altogether� As a matter of fact� in our example analyzer we do have� implicitly�
constraints on the implementation of clocks� For instance� the time base clock
must be a high�precision �xed�frequency oscillator� for otherwise� the actual rotation
speed cannot be computed correctly� Also� the sampling rate must be higher than
the update rate� etc� Clearly� nothing prevents us from specifying timing properties
initially as requirements on the clocks and actions of a design but so is our thesis
ultimately their satisfaction cannot be determined until the �nal implementation is
developed� For instance� determining the actual frequency of the Mini�	
��s time�
base clock and its precision is an issue of calibration not of programming�

Thus� the approach we follow with PMC is to provide a powerful� high�level op�
erational description language for which satisfaction of timing constraints will be
determined from the �nal machine�executable code� It is our hope that by being
very careful in the way the compilation is carried out� we shall be able to lift this
information to a higher�level to guide the design by providing analysis information�
For instance� by compiling parts of the description and estimating the execution
time of this partial code information on clocks may be obtained� Hence� the em�
phasis is on providing information to the programmer and not to require him to
perform detailed calculations on timing requirements� Of course� timed automata
��� and temporal logics such as the Duration Calculus �		� are good candidates for
expressing timing requirements but we do not want this information to enter the
process description�

The timing of code ultimately depends on the choice of the target machine�s�� any
attempt to estimate the execution times early in the design must rely on a very
carefully designed compilation strategy� We believe that any such strategy should
be based on a clear operational semantics of the language that reveals in detail the
steps that have to be performed and where choices must be made�

For expressing dynamic behaviour PMC uses the basic constructions of Milner�s
CCS and for computations on values fragments of Standard ML� Of course� there is
a tension between having a rich language and being able to derive real�time faithful
implementations� We handle this by allowing a rich language that can be useful for
initial high�level descriptions and to run simulations� and only give time�respecting

	�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

implementations for some reasonable subsets of the language any future advances
in compilation technology could then extend these subsets� The design goal in such
a framework is to re�ne a high�level description into one within one of the executable
subsets� All this takes place within the same language� which makes possible the
co�existence and debugging of descriptions containing both low�level and high�level
components�

Currently� a prototype implementation for PMC is under development� using the
ML Kit of Birkedal et�al� ���� A simulator and prototype compilers for mono�pro�
cessor and multi�processor architectures are planned� The Br�uel � Kj�r �	
� will
be the major test example�

References

��� L� Aceto and D� Murphy� On the ill�timed but well�caused� In E� Best� editor� Proc�
Concur���� pages ������� Springer LNCS ���� �����

��� R� Alur and D� Dill� The theory of timed automata� In de Bakker et al� ����� pages
�����

��� H� R� Andersen and M� Mendler� A complete axiomatization of observation congru�
ence in PMC� Technical Report ID�TR���������� Department of Computer Science�
Technical University of Denmark� December �����

�� H� R� Andersen and M� Mendler� A process algebra with multiple clocks� Technical
Report ID�TR���������� Department of Computer Science� Technical University of
Denmark� August �����

��� H� R� Andersen and M� Mendler� An asynchronous process algebra with multiple
clocks� In D� Sannella� editor� Programming Languages and Systems � ESOP����
pages ������ Springer� LNCS ���� ����

��� J�C�M� Baeten and J�W� Klop� editors� Proceedings of CONCUR ���� volume �� of
LNCS� Springer�Verlag� �����

��� G� Berry and L� Cosserat� The esterel synchronous programming language and its
mathematical semantics� In S� D� Brookes� A� W� Roscoe� and G� Winskel� editors�
Seminar on Concurrency� pages ������ Springer LNCS ���� ����

��� G� Berry� S� Ramesh� and R�K� Shyamasundar� Communicating reactive processes�
In Principles of Programming Languages POPL���� pages ������ ACM� �����

��� L� Birkedal� N� Rothwell� M� Tofte� and D� N� Turner� The ML Kit� Version ��
Technical Report� DIKU� March �����

���� Br�uel 	 Kj
r� Vehicle Signal Analyzer Type 	
��� User Manual Vol�
� April ����

	�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

���� Zhou Chaochen� C� A� R� Hoare� and A� P� Ravn� A calculus of durations� Information

Processing Letters� ������������� �����

���� J� W� de Bakker� C� Huizing� W� P� de Roever� and G� Rozenberg� editors� RealTime�

Theory in Practice� volume ��� of LNCS� Springer�Verlag� �����

���� N� Halbwachs� D� Pilaud� F� Ouabdesselam� and A��C� Glory� Specifying� pro�
gramming and verifying real�time systems using a synchronous declarative language�
In Workshop on automatic veri�cation methods for �nite state systems� Grenoble�
France� June ���� ����� Springer LNCS ���

��� M� Hennessy and H� Lin� Symbolic bisimulations� Technical Report ����� University
of Sussex� April �����

���� M� Hennessy and T� Regan� A process algebra for timed systems� Computer Science
Technical Report ������ Department of Computer Science� University of Sussex� April
����� To appear in Information and Computation�

���� Jozef Hooman� Speci�cation and Compositional Veri�cation of RealTime Systems�
Number ��� in Lecture Notes in Computer Science� Springer�Verlag� �����

���� Chen Liang� An interleaving model for real�time systems� Technical Report ECS�
LFCS������� Laboratory for Foundations of Computer Science� University of Edin�
burgh� November �����

���� R� Milner� M� Tofte� and R� Harper� The De�nition of Standard ML� MIT press�
�����

���� Robin Milner� Communication and Concurrency� Prentice Hall� �����

���� Robin Milner� Joachim Parrow� and David Walker� Modal logics for mobile processes�
Technical Report SICS�R�������SE� Swedish Institute of Computer Science� �����

���� Faron Moller and Chris Tofts� A temporal calculus of communicating systems� In
Baeten and Klop ���� pages ������

���� X� Nicollin and J� Sifakis� The algebra of timed processes ATP� theory and applica�
tion� Technical Report RT�C��� LGI�IMAG� Grenoble� France� December �����

���� X� Nicollin and J� Sifakis� An overview and synthesis on timed process algebras� In
de Bakker et al� ����� pages �������

��� G� Reed and A� Roscoe� A timed model for communicating sequential processes�
In Laurent Kott� editor� Proceedings of the
��th ICALP� pages ������� Springer�
LNCS ���� �����

���� S� Schneider� J� Davies� D�M� Jackson� G�M� Reed� J�N� Reed� and A�W� Roscoe�
Timed CSP� Theory and practice� In de Bakker et al� ����� pages �������

���� Yi Wang� Real�time behaviour of asynchronous agents� In Baeten and Klop ����

	�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

H. R. Andersen, M. Mendler: Describing a signal analyzer in the process algebra PMC -- A case study.
In P. D. Mosses, M. Nielsen, M. Schwartzbach (eds.), Theory and Practice of Software Development (TAPSOFT'95),
pp.620-635, Springer 1995 (LNCS 915).

