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Abstract

We prove the equivalence between the ternary circuit model and a notion of intuitionistic stabilization
bounds. This formalizes in a mathematically precise way the intuitive understanding of the ternary
model as a level intermediate between the static Boolean model and the (discrete) real-time behaviour
of circuits. We show that if one takes an intensional view of the ternary model then the delays that have
been abstracted away can be completely recovered. Our intensional soundness and completeness theorems
imply that the extracted delays are both correct and exact; thus we have developed a framework which
unifies ternary simulation and functional timing analysis. Our focus is on the combinational behaviour
of gate-level circuits with feedback.
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2 Motivation

When a binary digital circuit, say a network composed of and, or, inv gates etc, does not contain feedback
loops its static behaviour can be dealt with completely and adequately by standard Boolean two-valued
analysis. However, when one is interested in delay-related phenomena such as e.g. hazards, races, glitches,
or when feedback loops cannot be avoided, as e.g. in asynchronous circuits, the two-valued Boolean model
is no longer adequate. The ternary model has been introduced as a natural extension of the two-valued
model to analyse circuits in the presence of propagation delays and oscillations. A third value is added to
give a minimum extra capacity for accommodating time-related features of real circuits, without entering
the descriptive and algorithmic complexity of a full real-time analysis.

Viewed as an extension of classical propositional logic the ternary model occurs already in Kleene’s work on
partial recursive functions [8]. As a three-valued signal algebra the ternary model was introduced by Yoeli
and Rinon [15] to analyse static hazards. Eichelberger [6] extended the method to handle general hazards
in combinational circuits, and races and oscillations in sequential circuits. Later the theory and application
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of ternary simulation has been developed further by numerous authors, e.g. at the gate level by Brzozowski
and Yoeli in [14, 5], and Malik in [10], or at the transistor level by Bryant [4].

While the relationship between the static two-valued model and the physical real-time behaviour of a binary
circuit is rather straightforward and well understood, the corresponding relationship for the ternary model
is not so obvious. Surely, given it is used in the right way it will recover certain time-related features of real
circuits. But just what kind of extra timing information is it that is captured and how can it be formalized?
In ternary simulation the three-valued model usually is introduced as a refinement of the abstract Boolean
view rather than as an abstraction of real-time behaviour. As long as the concern is more with algorithms
and data structures this is the most convenient approach. However, when it comes to correctness and
completeness issues this is not sufficient. We are forced to cross the t’s and dot the i’s and nail down the
exact relationship the abstract model has to the real-time behaviour. We must make precise the intuitive
reading of the new third value, be it one of “oscillation”, “transient”, “undefined binary value”, “don’t care”
or all of them.

In this paper we take a new look at the ternary circuit model. We present it as a result of reducing real-
time information, rather than as a result of enriching an abstract two-valued model. Concretely, we obtain
a formal link between ternary simulation and an intuitionistic axiomatics of real-time behaviour. In this
approach the third value represents the absence of definite information about the bounded stabilization of a
signal.

We interpret the standard ternary function tables of binary gates and binary gate networks both as programs
and as logic specifications. A formal language of ternary function tables is introduced with associated
operational and axiomatic semantics. The operational semantics corresponds to a simple form of ternary
simulation, while the axiomatic semantics explains the function tables as specifications of bounded real-time
stabilization. We prove that the operational semantics is sound and complete with respect to the axiomatic
one, thus establishing a formal link between ternary simulation and real-time behaviour. Moreover, we
can show that this correspondence does not only hold in the extensional, i.e. ternary sense, but also in an
intensional sense. This means that we can maintain and manipulate exact real-time delay information in
the process of ternary simulation, and thus naturally combine, in the ternary model, both functional and
timing analysis of binary gate networks. Both aspects are traditionally treated as separate tasks.

3 Introduction

We are interested in gate-level circuits, i.e. networks built from components like Inv, And, Or, Nand gates, etc.
A signal a is a timed Boolean-valued function a € N — B, time being represented by the natural numbers. For
convenience we will fix a countably infinite number of signal names S = {a,b,¢,c1,¢2,. .., 2,y, z} throughout.
A waveform is a mapping V' € S - N — B which assigns to every signal name a concrete signal. When V is
understood we may confuse a signal name a € S with its associated signal V' (a) € N — B. Finally, a circuit
is conceived as a subset C C S — N — B of waveforms which constrains the behaviour on (a finite number
of) signals. The elements V' € C' might be called observable behaviours, or executions of C'. This nails down
our low-level real-time model of behaviours. Compared to the kind of models used in dynamic system theory
the model is rather abstract in the sense that it builds on discrete data values and discrete time. On the
other hand it does not constrain the behaviour of gates in a lot of ways. For instance, we may model the
behaviour of a physical gate as a deterministic function or a nondeterministic relation, we may use transport
or inertial delay assumptions and we may have data and input dependent delays or fixed delays. In the
sequel we will be concerned with ways of abstracting this fine-grained model into a three-valued domain.

Let K = {0, %, 1} be the three-valued domain extending the Booleans B by an additional value %, which
depending on the context, may have different intuitive readings. In typical interpretations % would stand

for some or all of “oscillation”, “instability”, “undefined”, “don’t care”. The exact meaning usually is left
unspecified, only implicitly present in the way % is used. Following [5], for instance, the ternary function
table for the nand gate is obtained as a canonical refinement of the standard Boolean function table, as
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seen in Fig. 1. Our goal is to understand this ternary behaviour not only as a refinement of the two-valued
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Figure 1: Ternary Refinement of the nand Gate.

model, but conversely as an abstraction of the real-time behaviour of nand. We expect that this ternary
abstraction be compatible with the standard Boolean abstraction, which applies to the final stable state of
a circuit. Thus, it would appear natural also to try to take the ternary function table as a statement about
the final stationary state of the circuit. Such a connection is suggested by the fact that in the stationary
case there are exactly three possible behaviours for every binary signal: it can stabilize to 1, stabilize to 0,
or oscillate. Formally, given a waveform V' € S — N — B the stationary state assumed by V may be defined
as the mapping V*° € § = K, so that for all a € S,

0 if3t.Vs.s>t=V(a)(s) =0
it . Vs.s >t =V(a)(s) =1
otherwise.

V¥(a) =

N[ =

In this reading the value V*°(a) € K records the stabilization behaviour of signal a in V in such a way
that % denotes oscillation. If all signals stabilize in V' then V> captures the static binary behaviour in the
usual sense. Now it is easy to interpret the ternary function table as a specification of the nand’s real-time
behaviour: V is an execution of the nand iff

V>®(z) = nand(V*>(z),V>(y)).

Though this is compatible with the static Boolean semantics, this is not the most useful way of explaining
the meaning of the ternary function table. For it would imply that oscillating inputs necessarily produce an
oscillation at the output of the nand. This is rather too strict an account of the nand’s real-time behaviour
as we may well have oscillating inputs but constant output, provided the inputs are interlaced in the right
way:

. [ ] [ ]
y [ ] [ ]

Moreover, in some hardware structures such as dynamic memories the oscillation of a refresh signal is in fact a
prerequisite for the memory signal to remain stable. Finally, the presence or absence of oscillation in general
depends (among other things) on the relative differences between the propagation delays in different parts
of a circuit. So, the attempt to use the ternary function tables to predict and to reason about oscillation
algebraically would be quite unnatural. Even for loop-free circuits, or when oscillation is no issue, there
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does not seem to be a satisfactory real-time interpretation of % See, e.g. the paper by Breuer [3] for a
discussion of some of the problems. In some sense the difficulties seem to stem from the wish to interpret K
as representing concrete signal values, signals, or properties of individual signals.

A rather different way of interpreting K is not as a set of concrete signal behaviours but as a domain of
information, in which % stands for “unknown”. The third value is given a special status and is no longer
on a par with 0 and 1. This is the original reading of Kleene [8], which in fact is implicit in most ternary
simulation approaches such as [5, 10, 4]. In this view the ternary table specifies a continuous function in the
complete partial ordering (K, <). The ternary simulation of a binary network, then, corresponds to a least
fixed-point computation. This domain-theoretic interpretation of the ternary function table, however, does
not answer our question. It does not assign any concrete real-time meaning to the ternary nand gate. What
does the abstract fixed-point computation have to do with the real-time executions of the circuit? In this
paper we offer one possible connection using a real-time interpretation of ternary function tables, based on
a notion of bounded stabilization.

4 The Ternary Model

To begin with, let us recall the basic elements of the standard ternary extension of binary gate modelling.
Building on Kleene’s three valued logic it was used originally by Yoeli, Rinon, Eichelberger, and Brzozowski
[15, 6, 5] in order to analyse transient circuit behaviour. We follow the notation of these papers closely in
this section.

As mentioned, the ternary extension of Boolean functions rests on viewing K = {0, 1, %} as a domain of
information for specifying the elements of B as “certainly 0,” “certainly 1”7 and “unknown.” Measuring
information by subsets the element v € K represents v(v) C B such that v(1) := {1}, v(0) := {0} and
V(%) := {0,1}. The inverse of this representation function v € K — 2B is the partial “averaging” function
p € 28 — K. The representation function is naturally extended to ternary vectors as v € K* — 2% by

v(ug, ... up) = {(v1,...,0,) | vi €v(u;)}.

Any Boolean function f € B* — B may then (for n > 0) be given a ternary extension f* € K* — K by
precomposing with v and postcomposing with pu:

fr@a) = p(f(v(@)),
where f is lifted to subsets in the standard way.

Example The ternary function table of the nand gate in Fig. 1 is the graph of the ternary extension f* €
K2 — K of the Boolean function f € B> — B with f = \(u,v). @ v. ]

Now any network G of gates (a binary gate network in Yoeli and Brzozowski’s terminology) with n primary
inputs and s > 1 gates G; has an associated Boolean transition function F € B""* — B*. F(d,0) is
the total gate state which arises from simultaneously replacing each gate output y; with the appropriate
Boolean function of its inputs. If F(@,7) = ¢ then the configuration (i, v) is called stable, and intuitively
represents a possible steady state of the circuit, given that the inputs remain unchanged. Then the extension
F* ¢ K™ — K® provides a ternary model of the behaviour of G. It can be used to analyse the combinational
(as in [15, 10]) and the sequential behaviour of G (as in [6, 5]). In this paper we are mainly interested in the
combinational behaviour of circuits. We may paraphrase [10] in making a definition of “combinational” in
terms of the ternary model F*: a network GG with associated transition function F' is combinational for an
input state @ € K" if

w. (M. F*(@,W)) € B,
where p (from now on) denotes the operation of taking the least fixed point, in this case of the continuous

function Aw. F*(d,w) € K& — K®, over the complete partial ordering (K, <). This least fixed point semantics
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is applied, implicitly, by Malik [10] and also by Bryant [4] at the transistor level. In the rest of this paper,
therefore, we will consider the ternary combinational behaviour of a circuit G to be defined by the function
uF* € K* — K® given by

pF (@) = p. (M. F*(@,)).

Intuitively, uF* (@) represents the steady state response of the circuit for input state @. It is this behaviour
that we are going to tabulate in ternary function tables.

Example Consider the RS-flipflop illustrated in Fig. 2. It has primary inputs r,s and outputs p,q. The
associated Boolean function of this gate network is F € B* — B? with F = A(r,s,p,q). (F-¢,p-5). The
ternary combinational behaviour pF* € K? — K2 is given by the ternary table in Fig. 2. From the table,
three stable binary states may be read off, namely r = 0As =0Ap=1Aq=1,r=0As=1Ap=1Aq=0
andr=1As=0Ap=0Agq=1. The circuit is combinational (i.e, the outputs are Boolean and uniquely
determined by the inputs) for the input statesr =0As=0,r=0As=1landr=1As=0. 1

— R R RN, O O O S

[N R o e S S T U T = S e B T R S BV

=N O e O =N O ®
Wi NI= O NN N = = e e (RS

Figure 2: RS-flipflop.

5 A Language of Ternary Function Tables

To represent ternary function tables we wish introduce a simple and flexible formal language. There are
several possible ways of concocting such a language, the basic choice being a programming language or a
specification language. In our case both views actually coincide, but for reasons to become clear later, we
have chosen to stress the logical aspect. The grammar of the language, which delineates a fragment of a
propositional modal logic, is given by

= a=1]a=0]|o0A0o
6 = 0D00 | ONG,

where a ranges over the set of signal names S. When a is a signal name we will take a to stand for one

of the atomic sentences, or atoms, a = 1 and a = 0. Elements of the syntactic class o are called (ternary)

states, those of form 6 (ternary) function tables. States specify (ternary) information about the state of some

signals. a = 0 Ab =1 means “signal a is surely 0 and b is surely 1”7, those signals not mentioned in a state
1

are given the ternary value 5. They might be represented by atoms ¢ = %, but since “no information” is
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logically equivalent to true these are redundant and thus systematically eliminated. The state a =1Aa =0
is an inconsistent state and equivalent to false. It will be convenient to identify a state 0 = a; A--- A ay,
with the set {a; | j < m}, since the ordering of atoms and the existence of duplications is not important.
As can be seen the general structure of a function table is

0 = A,oid0n = AL (A al) > O(AL, bb)

where n > 1 and for all ¢ < n, both m; > 1 and I; > 1. The components o; D Or; we call the transitions
of . When n = 1 then @ is a single transition. Such a transition ¢ D Ot represents the logical statement
that state o necessarily leads to state 7, provided this is consistent (with 7 and the context in which the
transition takes place). The modal symbol O is to indicate this constraint “provided it is consistent”, but
this will come up again later.

We can represent every binary gate network by a function table in a canonical way. A binary gate G is given
by a triple G = (I,b,g) where I ={ay,...,a,,} C S is the set of input signals, b € S the output signal, and
g € B™ — B a Boolean function. Let g* € K™ — K be the ternary extension of g. It is convenient, though
not, essential, to assume that g is not constant, whence we must have g*(%, ceny %) = % Then, the function
table for G is formed as

w@ = A (N w=w)d00b=g®)

TEK™ & g*(V)€EB i<m & v;: EB

Note that the actual ordering and bracketing of the conjuncts will be of no importance. If G = G4,...,G,
is a network of binary gates the associated function table is

f6(G) = f6(G1) A~ AF(G).

Our idea is that ft(G) is a syntactic representation of the ternary behaviour of the network G. We will show
in the next sections that this behaviour is determined by ft(G) both in an operational and in an axiomatic
sense. In other words, we may view ft(G) both as a program and as a logic specification of real-time
stabilization behaviour.

Example Let us illustrate the syntactic presentation with our running example. Consider first the nand
gate N = ({z,y}, 2, A(u,v). u-v) of Fig. 1. The function table ft(/N), up to permutations, is the formula
nand(z, y, z) defined

nand(z,y,z) =
((z=0Ay=0)D0(z=1)) A
(y=0D0(2=1)) A
((x=1Ay=0)D0(z=1)) A

(x=0D0(2z=1)) A ((z=0Ay=1)D0(z=1))A
(x=1Ay=1)D0O(2=0)).

Observe how this formula closely corresponds with the ternary function table of the nand in Fig. 1. The rule
is that every entry in the table yields one conjunct, but entries % and inputs % are systematically dropped.
This is because in the logic @ = % represents the formula true which is redundant. With ft(N) at hand we

form the function table for the RS-flipflop in Fig. 2 as

rs(r,s,q,p) := mnand(r,q,p) Anand(p,s,q).

6 Bounded Stabilization: A Real-Time Semantics for Ternary Function
Tables

We will view the ternary simulation of a gate network GG as an abstract computation manipulating the ternary
transition table ft(G). In practice, however, simulation algorithms represent the ternary values concretely,
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say by double rail binary encoding, and perform the simulation by algebraic operations. Yet, even though
the simulation may handle concrete numbers, or sets of concrete numbers, rather than formal syntax, we are
still lacking a precise connection to the real circuit. What is the real-time information we are handling in
the ternary world? We will now conquer new land and establish such a connection. We will show how the
ternary calculus arises in a very natural way by abstracting from bounded propagation delays.

Leto=a; =v1 A Aay, = v, be astateand V € S — N — B a waveform. We say that V' assumes o in a
given time interval [s,t], written Vs, t] = o, if the signal a; has the stable value v; throughout the interval
[s,t]. Formally,

Vis,t|] o iff Vi.Vr.s<r<t= V(a)(r)=uv;.

We allow the interval to be empty, i.e. s > ¢, in which case the condition becomes trivially true. In other
words: in the empty interval V' assumes every state. This pathological case could be eliminated artificially
but it makes matters more uniform if we include it. We observe that the interpretation of o means the
syntactic construct A is construed as logical conjunction: V[s,t] = a; Aay iff Vs, t] |= a; and Vs, t] = az.

Example Consider the timing diagram seen in Fig. 3, specifying a particular set of waveforms V' operating
the RS-flipflop, where the shaded areas indicate unconstrained behaviour. The diagram states that such a
V partitions into 8 adjacent subintervals [t;,t;41], ¢ = 0,...,7, in which it assumes specified states. For
instance,

Viti,ta] Er=0As=1 Vits,ta] Er=0As=1Ap=1Aqg=0.

S L< 5%

S
/
s
LA
q

to t1 to ts tg ts te t7 ts

Figure 3: Some Waveforms Operating the RS-flipflop.

Next let us interpret a single transition as a bounded response constraint on a waveform V. We say that
V' satisfies the transition o D O7 with stabilization bound 6 € N, written V |5 0 D Or, if whenever V
assumes state o then it also will assume 7 with a maximum delay §. Formally,

VEsoDOr iff Vs,teN Vs, tlEo=V[s+itlET

We can read this in an operational way. It says that whenever V enters ¢ at some point in time s and
remains in this state long enough, then eventually, but no later that time s + §, state 7 is entered too; and
furthermore V' remains in state 7 as long as ¢ remains stable. Note the implicit constraint: in order to
conclude that V' necessarily enters the state 7 we must have that the interval [s,t] with state o has at least
the length §. This amounts to a conservative view of the I/O behaviour of a combinational circuit. If the
input stimulus does not persist for long enough nothing can be concluded about the output reaction.
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Example With transition formulas we can specify the upper bounds indicated in the timing diagram of Fig. 3.
The statement that a falling transition on r is followed by a rising transition on p with a maximal delay of
81, and that p must hold 1 at least as long as r remains 0, can be expressed as

VEsr=020(p=1).

Similarly, the property that when both signals s and p become stable 1, signal ¢ must fall to 0 with a maximal
delay of d5, and thereafter keep its value as long as s and p do so, is expressed as

Vs, (s=1Ap=1)DO(¢q=0).

We say that V satisfies 0 D Or, written V' = o D Or, if there exists a § such that V |5 0 D Or. With the
existential quantification the concrete stabilization, or propagation delay, is abstracted away completely, so
that ¢ D O7 becomes a purely qualitative specification. Though the quantitative aspect of the delay is lost
for the time being, we will see that it can be recovered in an exact way. This is possible if we take validity
not only in the extensional sense, viz. the mere fact that a waveform V satisfies a transition ¢ D O7, but
also in an intensional sense, viz. just how V satisfies ¢ O Or. This “how” is measured by the smallest §
such that V |=5 0 D O7.

Finally, let

n
0 = /\O’iDOTi

i=1
be a function table. Then, V satisfies 6, written V =6, iff foralli=1,...,n,V E0; D Or.

Example Consider again the waveforms of Fig. 3, where the ¢; now are assumed to be specific points in time
with ¢ = 0. We also assume that ts represents oo, i.e. that the last interval is [t7,00). Then, 6 > t3 — t;
iff for all waveforms in the specified set we have V |E5 r = 0 D O(¢ = 0). Or, for any particular V,
V':(STZIDO(SZO) iff&ZmaX{tl—tO,t5—t4}. 1

. N

<o
q . q q \Sdl
P N p S~ p AN
r=0D>0O(p=1) g=0D0(p=1) r=1Ag=1>0(p=0)

Figure 4: Stabilization Behaviour of nand(r, ¢, p).

Example Consider the upper nand gate in Fig. 2 specified by the formula
nand(r,q,p) = r=0D0p=1Ag=0D0p=1A(r=1Agq=1)DOp=0.

V |= nand(r,q,p) means that there exist delay parameters d;,67,8; € N such that the timing diagrams
shown in Fig. 4 are satisfied by V. A similar interpretation applies to the lower nand(p, s,q) of Fig. 2, say
with corresponding abstracted delays 0., 5,02 € N. If we combine both to the function table rs(r, s, p,q) =
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nand(r, ¢, p) A nand(p, s,q) of the RS-flipflop we obtain a real time specification that contains the timing
diagram of Fig. 3.

It is important to realize that rs(r,s,p,q) by itself only covers the combinational behaviour of the RS-
flipflop. The sequential behaviour, viz. the fact that state can be stored, depends on assuming lower bounds
on delays, and in particular nonzero inertiality. Suppose the interval [t3, 4] in Fig. 3 is long enough for the
state s = 1 Ap = 1 Aq = 0 to propagate through both nand gates. Then, under nonzero inertiality this state
stabilizes itself and remains stable throughout the interval [t4,t5], even though the “reset” signal r returns
back to the idle state r = 1 at time t4. This memory effect is not visible in rs(r, s, p, ¢) which explains the
shaded areas in [t4,t5]. The combinational view allows for arbitrary behaviour on the output p as soon as
input r returns to 1 and gives up functional control of p. In order to get this memory effect we would also
need to allow lower bounds, or negative delays.

As shown by Eichelberger [6] and Brzozowski and Yoeli [14], the sequential behaviour can be recovered,
to a certain extent, from the (ternary) combinational behaviour. One introduces the notion of stable state
and simulates the combinational response from one stable state to the next. The situation is somewhat
analogous to the modelling of sequential circuits, which also can be described completely in terms of their
combinational state transition function, assuming no state variables are hidden. 1

When o refers to the input state and 7 to the output state of a circuit then ¢ D O7 would capture a
particular aspect of the combinational input-output behaviour of the circuit. When feedback is present,
however, o and 7 might refer to the same signals, and then ¢ D O7 specifies a slightly more general form of
stabilization behaviour, viz. transients. The simplest example is the transition a = 1 D O(a = 0). Unrolling
the semantic definition we find that V' |=5 a =1 D O(a = 0) iff V only ever assumes a = 1 for at most ¢
time steps, i.e. iff the 1 phases of a are transient with upper bound ¢. Thus,

VEa=120(a=0) A a=0D0(a=1)

is expressing that V' exhibits bounded oscillation as seen in Fig. 5, for some upper bounds 41, ds.

az§52 .

a=1D20(a=0) A a=0D0(a=1)

Figure 5: Bounded Oscillation.

If G =Gy,...,G, is a binary network of gates and ft(G) = ft(G1) A - - - ft(G},) the associated function table,
then

[ft(@)] = {VeS—>N-B|VE{ftG)}

is our real-time semantics for G. It specifies the set of waveforms that we consider valid executions, or
observations, of the network. It is a real-time model essentially for the combinational behaviour of arbitrary
binary networks.

There are many other options to assign a real-time semantics to binary networks, more optimistic as well as
more conservative ones. The main choice lies in the delay model. A more conservative approach, for instance,
might allow for unbounded propagation delays. Take the nand gate seen in Fig. 1 again. Considering an
input state = 0, our definition of V =z =0 D O(z = 1) yields the statement

30.Vs,t. Vis,t] =0 = Vis+0,t]Fz=1
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A weaker way of abstracting from the delay would be the condition
Vs. 0.Vt Vis,t] Ex=0 = Vis+4,t]Ez=1,

where we have swapped the quantifiers 30 and Vs. In this case the delay ¢ is unbounded and may depend
on the time s when the input changes. In normal circumstances this is not what we want since we want
the delay to be a property of the nand gate not of a particular use of it. In other words, the nand gate’s
input x may change arbitrarily many times within a waveform, but the maximum propagation delay is fixed
throughout the whole execution. However, if the ambition or need was to be faithful to subtle physical
phenomena such as the metastable operation of circuits [11, 13] this weaker delay model might be more
appropriate. Another direction for being more conservative would have been to ignore the data and input
dependency of delays and to assume only a single delay for every gate. Also, we could have enforced the
stability of non-controlling inputs. In the weakest version the nand gate then might look like

Vs. 0. Vt. Vo,w. Vis,t| Frx=vAy=w = V[s+itlEFz=1w.

In this case the delay is unbounded, does not depend on input data, and in every observation interval all
inputs are required to be stable, regardless whether they functionally determine the output value or not.

In the other direction one could also strengthen the delay model to arrive at more powerful descriptions that,
for instance, also capture the sequential behaviour of circuits. This could be achieved by introducing inertial
delays, which specify how long an output is guaranteed to hold its value after the input has changed, or for
how long an input must at least persist in order for the output to respond. Lower bounds can be obtained
with negative propagation delays. For instance,

30.Vs,t. Vis,t] =0 = Vis—d,t]=Fz=1

implies that whenever (e.g. output) x goes to 0 then (e.g. input) z must have been stable at 1 for at least
a period 4. This is a lower bound on z and an inertiality for the reaction of z to z. Real-time gate models
with inertiality can be found in the work of [2] for instance. An example of a rather strong real-time model
is the inertial delay model of Brzozowski and Yoeli [14]. In their model a gate has unbounded propagation
delay but infinite inertial delay. This means that if a gate is excited through an input transition the output
will follow eventually (unboundedly), but does not change at all if the input returns to the stable position
before.

Each of these choices for a delay model yields a different real-time interpretation, and in each case the
question arises of how it might relate to the abstract ternary model.

7 Ternary Simulation As a Formal Calculus

The essence of traditional ternary simulation methods can be captured by proofs or derivations in a formal
calculus on ternary function tables. We define a derivation relation #; F 6> between function tables to
formalise an abstract understanding of ternary simulation. The calculus can be seen not only as a logical
calculus but also as an operational semantics. From the logic point of view it constitutes a fragment of the
sequent calculus for Propositional Lax Logic [7]. The relation I is the smallest relation closed under the
rules shown in Fig. 6. In the rules DOL and Oid it is to be understood that one or both of the left and
right side contexts oy, 02 may not be present, and similarly in the rule DOL the side contexts 61, 6> may
be missing.

Strictly speaking, the system consists of two derivation relations. One is 6; F 65 where both 8; and 6,
are function tables. It represents the statement that function table # simulates table 6;. In the calculus
this relation is reduced to another relation #; 0 F O7 where 6 is a function table and o, 7 are states. This
second relation is the actual simulation relation, expressing that simulating the function table € starting
from initial state o leads to the response 7. The rules OAR and DOL are familiar from Prolog. In fact,
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oid f;0 F Oa; -+ B;0F Oay,

f;01 ANaAoy F Oa f;0FO(ay A---ANay,) ONR

01 AN (1 DO0(c1 AbAd2)) A B350 F Ot

01 A (1 DO0(c1 AbAa2)) A 250+ Ob _OL

f;0F-O(a=1Aa=0)
f;0 FO(b =)

@01 F O™y @;,0n, F OTp
Ao DO A -+ AN g, D Omy

Ocontr v € {0,1}

DOR

Figure 6: A Sequent Calculus for Ternary Simulation.

they are essentially the rules known as the decomposition and backchaining rule, respectively, of the Prolog
SLD-resolution mechanism [9]. The rule Oid is a special case of backchaining for atomic clauses. These
three rules intuitively serve to follow the propagation of signal values through the circuit. Signal values
are introduced as input with rule Oid, propagated through a gate by activating a particular transition with
DOL, and bundled together by OAR. Pushing this analogy, the simulation relation ;0 F Ot could be seen
as a Propositional Lax Logic version of the SLD-resolution relation with program ;¢ and answer goal .
The analogy breaks down, however, with rule Ocontr, which is special to our calculus. It formalizes a notion
of inconsistency, saying that if a function table 8 ( starting from state o) is shown to lead to an inconsistent
response a = 1 A a = 0, then we can derive any response b = v for it. Thus, the state a = 1 A a = 0 has the
same role as the formula false in logic. This means that our notion of simulation also involves keeping track
of inconsistencies. As a consequence the relation ;0 - O7 must be read as the constrained assertion that 0
starting from initial state o leads to the response 7, provided o can be maintained for long enough without
producing an inconsistency. This relativization is crucial to cope with oscillations.

The relationship between the two relations 6, - 8> and 6;0 - O7 is given by Prop. 7.1 below.

Proposition 7.1 Let 6; and 6> be function tables. Then, 8, - 8 iff, for all states o and 7, 65;0 - Or implies
01,0 OT.

Proposition 7.1 can be rephrased as saying that 6; F 65 iff #; can be used to simulate 65, i.e. every input-
output response of 0, is also a response of #;. In this case we say that #; simulates #>. When both 6; - 65
and 6, F 6; then 6; and , are said to be (simulation) equivalent.

Example The nand-gate’s function table is equivalent to the simpler table
nand'(z,y,2) = (x=0D20(z=1) A (y=0D20(z=1)) A (z=1Ay=1)DO(z =0)).
Using the rules of the calculus one derives the relations
nand’(z,y, z) F nand(z, y, 2) nand(z,y, z) F nand'(z, y, 2).

The derivations verify essentially that the transition z = 0 D O(z = 1) is logically equivalent to the
conjunction ((zx =0Ay =0)DO0(z=1)A(z=0D20(z=1))A((z=0Ay=1) D O(z =1)) and that
y=0D0O(z=1)isequivalent to ((z =0Ay=0)D0(z=1))A(y=0D0(:z=1)A((z=1Ay=0)D
O(z =1)). ]

It will be useful to have some shorthand for derivations in our simulation calculus. Derivation terms are just

linear notations for derivation trees with multiple conclusions. They are generated by the following simple
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grammar:

Deduction :: = Rule - Deduction | (Deduction, Deduction)
Rule := 1id(i) | OAR | DOR | DOL(i,j) | Ocontr,

where i in id(7) is a natural number recording the index of the atomic sentence a picked out by an application
of the rule Oid. In DOL(3, j), ¢ is the index of the table entry 7 D O(o; AbAo2) and j the index of b within
the state oy Ab A ogs. If D is a derivation of 6, F 0> we will denote this by D : 8, F 5. Similarly, we write
D:0;0tF Or.

Example Consider the RS-flipflop of Fig. 2 with function table rs’(r, s, q,p) = nand’(r,q,p) A nand’(p, s, q).
The output response p = 1 A ¢ = 0 for the input state o(01) := 7 = 0 A s = 1 is exhibited by a derivation
D :rs'(r,s,p,q);0(01) F O(p=1Aq =0) with D = OAR - (D1, D2), where the subproofs D; and D are
constructed as follows:
rs'(r,s,p,q);0(01) - O(r = 0) oid I i
Dy 1 (r,5,0,0 00D FOp =1 "~ W55 0000 FOG=1) orp
rs'(r,8,p,q);0(01) FO(p=1As=1)
Dy :18'(r,s,p,q); 0(01) F O(¢ = 0)

DOL

We read off the proof terms
D, = DOL(1,1) - Oid(1)
and
Dy = DOL(6,1) - OAR - (DOL(1,1) - Oid(1),0id(2)).

Before we elaborate on the connection with the algebraic approach to ternary simulation let us mention two
fundamental properties of the simulation calculus.

Proposition 7.2 The relation F is transitive, i.e. if 8;0; F Ooy and 6; 05 F Oog, then 6;0; F Oos. Further-
more, if o0 C ¢’ as sets of atoms, then 0;c F O7 implies ;0 - O7.

Proof: By case analysis and induction on the structure of derivations. The first part of the proposition
corresponds to cut-elimination in logic, and the second part to the rules of weakening, permutation, and
contraction. [

Proposition 7.3 Let § = 6; A --- A6, and for each i <n, 6; =7, D O(b} A---b™). Further let o and 7 be
states such that ;0 F O7. Then, there exists a derivation D : 8;0 F Ot such for every i < n and j < m;,
D does not contain more than one application of DOL(%, j) in every branch. That is, there are no nested
applications of DOL with the same indices.

Proposition 7.3 identifies a very useful normalization property, which relates to the fact that in ternary
simulation a single traversal through all paths is sufficient to compute the (combinational) response for a
single input stimulus. As an immediate consequence we can weaken the rule DOL (cf. Fig. 6) by dropping
the atom b in the premiss, i.e. replace DOL by the rule

61 A (1 D O(61 Ao2)) A ba;0F Or

01 N (TDO(O’l /\b/\O’Q)) A 02;U|_Ob DOL

to obtain an equivalent calculus. This new calculus has the property that for every end sequent there are
only a finite number of finite derivations, if there are any at all. Thus, we could mechanize the calculus
directly in Prolog to obtain an executable, albeit naive, implementation. The direct implementation of the
calculus is not our primary concern, however. The purpose of the calculus is to act as a reference system for
reasoning about about correctness and completeness of real-time semantics, and as an interface between the
logic and algebraic viewpoints.
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7.1 Ternary Simulation

Let us see how our calculus provides an operational semantics of the ternary behaviour of binary gate
networks. We first consider a single gate G = (I,b,g) with I = {ay,...,a,} and b ¢ I, and the associated
function table ft(G). How do we simulate G, on the basis of its description ft(G), say for a given ternary

input pattern ¥ = (vy,...,vm) € K™ (in which not all entries are £)? We form the ternary state
o(0) = /\ a; = v;
i<m & v; €B

and compute the output value by looking at what we can derive in the calculus about the output signal b.
In other words, we are interested in the set

R(G,¥) = {b | {t(G);0(¥)F Ob},
which we will abbreviate temporarily by R(%). There are three possibilities:
e R(¥) = {b=1}. This is the case if the resulting output value for b is 1, i.e. g*(¥) = 1.
e R(¥) = {b = 0}. This is the dual case indicating that the output value for b is 0, i.e. g*(¥) = 0.

e R(¥) = (). This means that nothing definite can be inferred about the output value, corresponding to
HOES?
One can show that the case R(7) = {b = 1,b = 0} is excluded because b ¢ I and the fact that ft(G) does
not contain conflicting transitions for b. We can sum up the situation as follows:

Proposition 7.4 Let G = (I,b,g) be a single gate with I = {a1,...,an}, b € I, and g not constant. Then
for all ¥ € K™ and e € B, ¢*(¥) = e iff b =e € R(G, 7).

Hence, the ternary extension g* of g is determined completely by our ternary calculus. Note, that the value

% is represented indirectly: it stands for the absence of information. Formally, we have

1
g (0) = 3 iff ft(G);0(?) f O(b = 1) and ft(G); o (V) I O(b = 0).

The relationship between ft(G) and ¢g* as in Prop. 7.4 generalizes to arbitrary binary networks without
feedback. Here ft(G) is the conjunction of the gates’ function tables and g the functional composition of
the gates’ Boolean functions. In this way we find included the ternary combinational analysis of Yoeli and
Rinon [15] and Eichelberger [6] in a non-algebraic setting.

The situation becomes more complicated when feedback is allowed. Consider again a single gate G = (I, b, g),
but this time we allow b € I, say I = {ai,...,am,b}. If the goal is to capture the behaviour of G as a
combinational device, then we view G as a function from the primary inputs {a,...,an} to output signal
b, i.e. as a function G* € K™ — K. As mentioned before this function is obtained by taking

pG* (@) = p. (Aw. g"(7,w)),

by fixed point construction. Again, we may recover uG* in our calculus from R(G,?) defined exactly as
above.

Proposition 7.5 Let G = (I,b, g) be a single gate with I = {ay,...,am,b}, and g not constant. Then for all
7€ K™ and e € B, uG*(¥) = e iff b =e € R(G, 7).

The proposition generalizes to any binary network G = Gy, ...,G,, where {ay,...,a,,} is the set of all its
primary inputs and b one of its gate outputs. In this manner we have included the essence of Malik’s ternary
combinational analysis in a logical framework. For instance, we can give a characterization of Malik’s notion
of “combinational” circuits as follows:
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Proposition 7.6 A binary gate network G = G, ...,G, with primary inputs {ai,...,an} is combinational
for a given output b, in the sense of Malik [10], iff for all binary input states ¢ € B™, either b= 1 € R(G, 7)
orb=0¢€ R(G,7).

In other words, GG is combinational for output b if for every Boolean assignment to its primary inputs our
simulation calculus allows us to derive a definite Boolean response for b.

The definition of R is based on derivability, and because of the finiteness of our calculus (with rule DOL*) it
can be computed effectively in a finite number of steps. Obviously, there are many ways of actually performing
this computation. For instance, we could simply enumerate all derivations in a systematic way. A more
sophisticated solution is given by an iterative process as follows: suppose that ft(G) = Aj_, ( /\;n:1 al) D Ob;
is the function table of the circuit and ay,...,a; the primary inputs. An input bit-pattern assigning the
value v; € B to input a;, i <1 is represented by the set of atoms o(¥) = {a; = v; | i <1}. The stationary
response R(G,¥) of the circuit for input stimulus o (%) can be computed iteratively by following Lloyd [9] in
constructing the least Herbrand model of ft(G) together with o(7):
R() = 0’(’17)

Ry 1 = {bi | i<n & V]Smlaf ERk}.

We define R(G, ¥) = |J,, Ri. Obviously, the sequence R, must become stationary, so that R can be computed
in a finite number of steps. Note however that the delay information that we will find embedded in the full
calculus is not recorded in this bottom-up construction of R, although it would not be difficult to amend
the construction to record this information.

An even more sophisticated method would be not to construct R(G, ¥) point-wise for every ¢ but to compute
the function R(G) : ¥ — R(G,¥) as a whole. This can be done by symbolic means, using BDDs and in
a dual-rail coding of the ternary information involved. This solution is applied by the ternary simulation
approaches of Malik [10] or Bryant [4].

8 Soundness and Completeness, Intensionally

As in ordinary logic we can define a semantical consequence relation between function tables, 8; | 6o,
abbreviating the condition VV. V' |= 0, = V |= 6, i.e. the condition that every model of 6 is a model also of
0>. In this section we will make explicit the intensional contents of the operational and axiomatic semantics
of ternary function tables, and prove the equivalence

01 |:02 & 0 -0,

in the strong sense, showing that the underlying quantitative delay information is preserved in both directions
as well. But before we can state the theorems we need to uncover the intensional contents of |= and F.

Let us assume, throughout this section, that 6; = A~, of D O7{ and §, = \]_, 0§ D Oti. We re-introduce
the stabilization information into 6; and 6». For 51 € N™ we form the “timed” statement 51 : 0 that
relativizes 6, to d;. We define V = 67 : 6, iff V |:g1 f:. The same convention we introduce for #,. Of

course, this is no more than a syntactic convention reflecting a shift of stress: we consider § not as part of
the validity of 8 but as part of the formula. In this spirit, we define

51 160 |: 52 160, iff VV.V ':5*1 0, =V |:6*2 0.

Now, on the other side, what is the quantitative delay information hidden in a derivation 6, F -7 It turns
out that, quite naturally, we can translate every derivation D : 8; F 65 into a delay function [D] € N™ — N*
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as follows:
[DOR - (Dy,..., D)) = ([D1](3),- -, [Dnl())
[id(i)](3) 0
[DOL(i, 5) - D](3) [D](5) + 6
[OAR - (Dy,...,D)](0) = max{[D:](),...,[Dn]()}
[Ocontr - D](5) = [D](5).

At the heart of [] is a local translation of the derivation rules into arithmetical operations on delays, viz.
Oid — 0 OAR +— max DOL — +,

which means that the bounds are terms in the max-plus delay algebra (N, 0, max, +), see [1]. This observation
has been worked out in more detail in [12], on the timing extraction from constructive proofs. It uses the
general setting of Propositional Lax Logic [7], but with a simpler real-time semantics.

Based on this extracted delay function we can enrich the syntactic simulation calculus by explicit delay
information:

-

51 :0Fdy:0, = 3D.D:6+6y A[D]() <,
where < is defined component-wise.

Our soundness and completeness theorems now state that the delay-enriched versions of - and |= are equiv-
alent. More precisely, if Ny = N\ {0} is the set of positive numbers, then for all §; € Nj* and 0, € Ny,

51291|252292 = 51291"52202.

These intensional versions are of great importance from a practical point of view. They can be seen as quan-
titative soundness and quantitative completeness of the ternary calculus. Let 6, describe the implementation
of a circuit in terms of a set of primitive components, and 6 a specification for the composite circuit. Then
the soundness direction < implies that from every D verifying that the circuit 8; simulates specification 6
we can extract a delay function [D] that translates the delay bounds 51 of the primitive components of 6
into delay bounds [D](3;) for the composite circuit 6. Formally, for all 8y, oy : 6; E [D](51) : 2. The
completeness direction = in turn implies that, if we consider all possible derivations, then we can actually
get the optlmal delzzys for the composite circuit. Formally, for every 61, for Wthh there exists at all a 6
satisfying 61 01 [ 6> : 62 we actually can find a derivation D such that [[D]](él) is the minimal 62 with this
property. So, in order to get the minimal delay we can compute all proofs and take the minimum of the
extracted delays. This is always possible since there are only a finite number of different derivations!.

We should remark that completeness, in general, need not hold for delays 51 in which some components take
the value 0. For instance, if f; =a =12 0(a=0) A a =0 O(a = 1) and & = (0,0), then & : 6;
amounts to an inconsistent specification. There is no waveform V' such that V' |=; #;. This means that

1:01 E 52 : 05 trivially holds for all 52 and 6. But there is no sound extension of the calculus in which
there would be a derivation D : 6; F 65 for arbitrary 5. In other words: with zero delays in 51, 51 : 61 may
be a delay-dependent inconsistency, which cannot be detected by the calculus, as it is supposed to handle
only delay-independent functional information.

Let us observe first that the standard extensional soundness and completeness theorems follow from the
intensional ones.

Theorem 8.1 (Extensional Soundness and Completeness) 6; b 65 iff 6, |= 5.

n the equivalent system with rule DOL*.
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As an application of Theorem 8.1 in combination with Proposition 7.6 we obtain a semantical characterization
of combinational circuits in the sense of Malik [10]. It establishes a rigorous correspondence between this
abstract ternary property and the intuitive understanding of combinational behaviour, according to which
a circuit is combinational if its behaviour can be represented by a Boolean function.

Theorem 8.2 Let G be a binary gate network with primary inputs I = {ay,...,a,} and (remaining) gate
output signals by,...,bs. Let ft(G) be the associated ternary function table. Then, G is combinational in
the sense of Malik [10] iff for every i < s there exists a Boolean function g; € B” — B such that for all
waveforms V with V' = {t(G) we have V' = £t(I, b;, g;).

Theorem 8.3 (Intensional Soundness) For all 51 € NJ* and 52 €Ny, 51 160 F 52 : 65 implies 51 10, E 52 : 65,

Example Consider the RS-flipflop of Fig. 2. In the example on page 12 we verified that if the input is held
in state r = 0 A s = 1 long enough, then the output must stabilize in state p = 1 A ¢ = 0. As a proof of the
sequent

rs'(r,5,0,q) ; Tr=0As=1 F O(p=1Aqg=0)
we obtained the derivation

D = OAR-(DOL(1,1) - Oid(1) , DOL(6,1) - OAR - (DOL(1,1) - Oid(1), 0id(2))).
This yields a simulation of function tables

DOR-D : r1s'(r,s,p,q) F(r=0As=1)DO0(p=1Aq=0).

The function table rs’ consists of six transitions, namely three for each nand gate. Accordingly, the delay
parameter of rs’ is a six-tuple 6 = (61, 62,81,83,02,02). Each component of § characterizes the stabilization
bound for a particular transition in a particular nand gate. In order to get the stabilization bound for the
verified transition (r = 0As=1) D O(p =1Aq = 0) of the composite RS-flipflop, all we need to do is to
extract the delay information from DOR - D:
[>OR - DI = [D]()
[OAR - (DOL(1,1) - ---, DOL(6,1) - ---

-

)
max{[>OL(1,1) - Cid(1)](%) , [DOL(6, 1

-

1)
) - OAR - 1(9))

= max{[Oid(1)](8) + (91 , [OAR - ---]() + (36}

= max{0+ 4!, max{[DOL(1,1) - Oid(1)](8) , [0id(2)](8)} + &}
= max{0+ 6}, max{0+ 4], 0} + o}

= 0] + 8.

By the Soundness Theorem 8.3, it follows that if V' [=4 rs', then V' [=5115, (r =0As=1) D O(p =1Aq =0).
Note that 6} + d2 is a data-dependent stabilization bound that picks out precisely those delays from the

nand-gates’ transitions that are actually relevant to produce the input-output response (r = 0As =1) D
O(p=1A¢q=0) for the RS-flipflop. 1

Theorem 8.3 ensures that ternary simulation provides safe timing information. But does it also provide
complete, i.e. exact, information about real-time delays? The answer is yes, by the following intensional
completeness theorem. Thus, the ternary calculus is “tight” with respect to delay bounds, which applies not
only to the derivation of proper combinational behaviour but also to the derivation of bounds for oscillations.

Theorem 8.4 (Intensional Completeness) For all 51 € NJ* and 5; € Ng, 51 10 = 52 : 05 implies 51 10, F 5; :
5.
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9 Conclusion and Future Work

We have introduced a natural real-time semantics for binary gate networks, which is equivalent to the
standard ternary gate model. This interpretation gives one way of closing an open abstraction gap that
remains, in order to view the ternary model as a level intermediate between the static Boolean model and
the (discrete) real-time behaviour of circuits. Our real-time semantics captures the combinational behaviour,
in the sense of Malik [10], of arbitrary circuits.

On the syntactic side our results imply that ternary function tables can be seen as a fragment of a specific
intuitionistic modal logic, Propositional Lax Logic. The operational semantics of function tables in this
setting comes down to a formal logical calculus. The intuitionistic nature of the calculus makes it possible to
extract data-dependent stabilization delays from derivations in the calculus. The intensional versions of our
soundness and completeness theorems then guarantee that the extracted delays are both correct and exact,
relative to the chosen real-time semantics. This shows that ternary simulation and functional timing analysis,
which so far have been treated as unrelated methods (see e.g. [10]) can be unified in a single framework.

The more general importance of this work lies in capturing a low level real-time model by a simple formal
calculus that may be used as a convenient reference system to substitute the real-time model. We can
develop circuit simulation and synthesis techniques, and reason about their correctness and completeness,
relative to this calculus, without every time having to go through the details of quantifier reasoning and
temporal inequations again. A particular advantage of our logical setting, as opposed to e.g. an algebraic
approach, is that it obtains a quite natural separation of the intensional aspect of timing from the extensional
aspect of function in a mathematically very precise sense: The timing is part of the derivations or proofs,
and the function is part of the formulas. We can deal with the intensional structure by standard proof-
theoretic methods, and with the extensional structure by standard model-theoretic means. We believe that
the correspondence

| Calculus Real-Time Semantics
Extensional Aspect | Formula < Function
Intensional Aspect Proof < Timing

brought up in this work is a useful concept that can be used in many other situations as well.

We aim to extend our results to more powerful logical calculi and to richer real-time semantics. As a
first step we will consider full Propositional Lax Logic with special focus on higher-order function tables,
i.e. formulas with arbitrary nesting of implications. In another direction it would appear natural to introduce
Boolean expressions to arrive at a (restricted) first-order logical system, in which symbolic simulation can
be represented. Concerning the semantics we will investigate more sophisticated delay models, involving
upper as well as lower bounds. Our hope is that this would lead to a general framework for the extraction of
timing constraints, such as set-up and hold times, for asynchronous sequential circuits in fundamental mode
operation.

This paper in the first place aims at a logical and semantical investigation of ternary simulation, not at making
a contribution to the algorithmic side of the matter. Though our simulation calculus can be implemented
it operates at too low a level to be efficient. The main disadvantage is that it manipulates concrete bits
of binary information rather than a compact symbolic representation of ternary states, as done by other
published simulation algorithms (like Bryant’s). However, as our calculus is a calculus of logic, it can be
made arbitrarily symbolic, simply by enriching the logical formalism. In this way it should be possible to
extend our results to full ternary symbolic simulation, and in fact further to cover large amounts of first-order
and higher-order intuitionistic theorem proving.
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