
An Algebraic Theory of Multiple Clocks

Rance Cleaveland���� Gerald L�uttgen����� and Michael Mendler��� � �

� Department of Computer Science� North Carolina State University� Raleigh�
NC ������	�
�� USA� e�mail� rance�eosncsuedu

� Fakult�at f�ur Mathematik und Informatik� Universit�at Passau� D���
�
 Passau�
Germany� e�mail� fluettgen�mendlerg�fmiuni�passaude

Abstract� This paper develops a temporal process algebra� CSA� for
reasoning about distributed systems that involve qualitative timing con�
straints It is a conservative extension of Milner�s CCS that combines
the idea of multiple clocks from the algebra PMC with the assumption
of maximal progress familiar from timed process algebras such as TPL
Using a typical class of examples drawn from hardware design� we moti�
vate why these features are useful and in some cases necessary for mod�
eling and verifying distributed systems We also present fully�abstract
behavioral congruences based on the notion of strong bisimulation and
observational equivalence� respectively For temporal strong bisimulation
we give sound and complete axiomatizations for several classes of pro�
cesses

� Introduction

Process algebras ������� provide a well	studied framework for modeling and ver	
ifying concurrent systems �
���� These theories typically consist of a simple lan	
guage with a rigorously dened semantics mapping terms to labeled transition
systems� They also usually support equational reasoning as a basis for system
verication� an equivalence on processes is dened that equates systems on the
basis of their observable behavior� and this relation is used to relate specica	
tions� which describe desired system behavior� and implementations� In order
to support compositional reasoning� researchers have typically concentrated on
equivalences that are also congruences for the given languages�
Traditionally� process algebras have been developed with a view toward mod	

eling the nondeterministic behavior of concurrent and distributed systems� More
recent work has incorporated other aspects of system behavior� including real
time ������������
�� Most of this later work� however� has been devoted to model	
ing centralized� as opposed to distributed systems� the real	time work� in partic	
ular� has �implicitly or explicitly� focused on systems with a single clock� In this

� Research supported by NSF�DARPA grant CCR��
������ NSF grant CCR����
����
ONR Young Investigator Award N

������J���	�� NSF Young Investigator Award
CCR��������� NSF grant CCR���
�	
�� and AFOSR grant F����
������
�
	

�� Research support partly provided by the German Academic Exchange Service under
grant D����
�
�� �Doktorandenstipendium HSP II � AUFE�

� � � Author supported by the Deutsche Forschungsgemeinschaft

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

paper we present a temporal process algebra� called CSA �Calculus for Synchrony
and Asynchrony�� which is aimed at modeling distributed� timed systems that
contain a number of independent clocks� Technically� CSA extends Hennessy and
Regan�s TPL ��� with constructs from PMC ��� that enable the management of
multiple clocks� In doing so we replace the global notion of maximal progress

found in TPL with a local one that is more appropriate for distributed systems�
This combination of features yields a convenient formalism for modeling dis	
tributed timed systems� it also introduces semantic subtleties the solutions to
which constitute the body of this paper�
It should be noted that clocks in CSA are intended to capture qualitative

timing constraints� in which it is not the absolute occurrence time or duration
of actions that is constrained but their relative ordering and sequencing with
respect to clocks� This contrasts with other theories of real	time� which typically
focus on precisely measuring the time that elapses between di�erent system
events� In this respect CSA follows the philosophy advocated by Nicollin and
Sifakis ���� and others� as well as synchronous languages such as ESTEREL ����

� Motivation

One standard hardware architecture consists of a number of cooperating syn	
chronous systems which are distributed over di�erent modules� e�g� chips or
boards� Typically� each module possesses its own central clock to update all
of its registers in a synchronous fashion� The clocks of di�erent modules are
independent� so that the modules change their states asynchronously with re	
spect to each other� Such architectures are also called globally�asynchronous�
locally�synchronous ���� They not only arise through physical distribution� e�g�
in computer networks where di�erent sites cannot be synchronized by the same
clock� but are also typical for heterogeneous real	time applications� A concrete
example is the Br�uel � Kj�r ���� Vehicle Signal Analyzer reported in ����

2
σ

1σ

E

d

S

R

R
b

2

1

e

R

g
F TR

h

i
3

4

fin
Ebusy

B

c

busy

out

a

Module2Module1

Fig� �� A globally�asynchronous� locally�synchronous system

A generic example for a globally	asynchronous� locally	synchronous system
is depicted in Fig� �� where solid lines represent communication channels and
dashed lines symbolize channels of clocks� Both modules� Module� and Module��

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

have their own local clocks �� and ��� respectively� and their own function blocks�
registers� and bu�ers� In every clock cycle� the function block E computes a new
value from the current values of the state registers R� and R�� obtained through
channels a and b� and outputs it on channel c to be propagated further through
S to register R� via channel d and to the environment via channel e� External
input enters the computation through channel in� Register R� stores the most
recent input value from the environment and� thus� ensures that E never has to
wait for the environment� Component S and busy bu�er B are explained later�
Module� operates in a similar fashion� with its external input being fed by the
output of Module��
The example clearly suggests how we can benet from a concept of multiple

clocks to model real	world distributed systems� The question of what is an ade	
quate notion of clock leads us to the second characteristic of our process algebra�
the maximal progress assumption� The fundamental feature of the clock �� is
that it must tick only after the previous clock cycle has been completed� i�e� after
the function block E has nished its internal computations and the new value
has arrived at register R�� Otherwise� the value stored into R� upon the tick of ��
is undened� If Module� has more than one register reading d they may all take
di�erent values� and an inconsistent state may arise� The maximal progress as	
sumption guarantees that a clock tick is delayed until all internal computations
or communications have come to an end�
To take account of distribution� the maximal progress property must be �lo	

calized� and imposed on every module independently� For instance� the clock ��
of Module� must be able to tick as soon as the previous cycle of �� has been
completed� regardless of the state of Module�� which operates asynchronously
with respect to Module�� In contrast� the traditional global version of maxi	
mal progress would imply that all clocks have to wait for all computations to
complete� whence the system would be globally synchronous�
The combined concept of multiple clocks and local maximal progress is quite

powerful� It supports horizontal and vertical forms of synchronous decomposition
that correspond to temporal abstractions with synchronized and nested scales
of time� The horizontal form has already been made explicit above� The vertical
form arises when we implement� say� the function E of Module� as a whole
synchronous system in itself� with its own local clock �see Sect� ���

� Syntax and Semantics

In this section we dene the syntax and semantics of our language CSA� which
is inspired by the process algebras TPL ��� and PMC ���� which both descend
from ATP ����� The syntax of CSA is essentially the same as in PMC� it ex	
tends Milner�s CCS ���� with a timeout operator and a clock ignore operator�
The timeout operator occurs in other real	time process algebras ����� and was
originally introduced in ATP� where it is called unit�delay� The ignore operator
originates with PMC� though here it is a primitive operation� not derivable as
in PMC�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

The semantical framework of CSA is based on a notion of transition system
that involves two kinds of transitions� action transitions and clock transitions�
modeling two di�erent mechanisms of synchronization and communication in
distributed systems� Action transitions� like in CCS� are local handshake com	
munications in which two processes synchronize to take a joint state change
together� A clock represents the progress of time� which manifests itself in a
recurrent global synchronization event� the clock transition� in which all process
components that are in the regime� or in the scope� of this clock are forced to
take part�

In CSA action and clock transitions are not orthogonal concepts that can
be specied independently from each other� but are connected in line with the
following intuitions� ��� A clock records the progress of time� with two successive
clock events marking an interval of time� ��� The passage of time is determined
by internal computations that are within the regime of the clock� This yields
the very specic semantic connection between actions and clocks� known as the
maximal progress assumption ����
�� Maximal progress usually is read as the
condition that �communications must occur whenever they are possible�� i�e� a
process cannot be intercepted by a clock as long as it is able to perform internal
computations�

The last feature of CSA is clock scoping� Since we are dealing with distributed
systems and multiple clocks� it is natural to localize the maximal progress as	
sumption with respect to clocks and to limit the scope of clocks� A commu	
nication that reaches outside the scope is an external computation that must
be considered asynchronous with respect to the clock� Di�erent clocks� which
represent di�erent local views of time� may have disjoint� overlapping� or nested
scopes� and amount to di�erent abstractions of time�

Note that clocks in our setting are abstract in the sense that we do not prej	
udice any particular way to interpret them� We are free to think of a clock as the
ticking of a global real	time watch measuring o� absolute process time in con	
stant or non	constant intervals� as the system clock of a synchronous processor�
as a recurrent external interrupt� or as the completion signal of a distributed syn	
chronization protocol� Thus� clocks can be used as a general and �exible means
for bundling asynchronous behavior into sequenced intervals� and to give local
meaning to the notions of �before�� �after�� and �state��

��� Syntax of CSA

Formally� let � be a countable set of action labels� not including the so	called
silent or internal action � � With every a � � we associate a complementary

action a� We dene �
df
�fa j a � �g and take A to denote the set of all actions

� � � � f�g� where � �� � � �� Complementation is lifted to � � � by dening
a � a� As in CCS ���� an action a communicates with its complement a to
produce the internal action � � We let a� b� � � � range over ��� and �� �� � � � over
A� Besides the set A of actions� CSA is parameterized in a set T � f�� ��� 	� � � � g

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

of clocks� The syntax of our language is dened by the following BNF

P ��� � j x j ��P j P � P j P jP j P �f � j P n L j P �� j bP c��P � j
x�P

where x is a variable taken from a countably innite set of variables V � f � A � A
is a �nite relabeling� and L � A n f�g is a restriction set� For convenience�

we dene L
df
�fa j a � Lg� A nite relabeling satises the properties f��� � � �

f�a� � f�a�� and jf� j f��� �� �g j � �� Moreover� � is called the �static� ig�
nore operator and b�c���� the timeout operator� Further� we use the standard
denitions for the sort of a term P � sort�P � � � � �� static and dynamic oper	
ators� free and bound variables� open and closed terms� and contexts� A process
variable is called guarded in a process term if each occurrence of the variable
is in the scope of a prex or of the second argument of a timeout �see below��
We refer to closed and guarded terms as processes� Let P be the set of all pro	
cesses� ranged over by P�Q�R� and denote syntactic equality on P by 	� We

extend the timeout operator to sequences of clocks by dening bP c
df
�P and

bP c���Q�� � � � �n�Qn�
df
� bbP c���Q�� � � � �n���Qn���c�n�Qn�� We often further

abbreviate sequences �� � � � �n of clocks by � and sequences Q� � � �Qn of pro	
cesses by Q� In this vein� bP c��Q� is a shorthand for bP c���Q�� � � � �n�Qn��

Table �� Clock scoping

I����P �
df
�f�g I���x�P �

df
�I��P ��x�P�x��

I��P �Q�
df
�I��P � � I��Q� I��P jQ�

df
�I��P � � I��Q� � f� j I��P � � I��Q� �� �g

I��P �f ��
df
�ff��� j� � I��P �g I��P n L�

df
�I��P � n �L � L�

I��bP c�
��Q��

df
�I��P � I��P ����

df
�I��P � if � �� ��

��� Semantics of CSA

The operational semantics of a CSA process P � P is given by a labeled transition
system hP �A� T �
�� P i where P is the set of states� A� T the alphabet�
�
the transition relation� and P the start state� We refer to transitions with labels
in A as action transitions� and to those with labels in T as clock transitions� The
transition relation
�� P � �A � T � � P for CSA is dened in Table � using
operational rules� For the sake of simplicity� let us use � for a representative of

A�T � and write P
�
� P � instead of hP� �� P �i �
� and P

�
� for �P � � P� P

�
�

P ��
To ensure maximal progress the operational rules involve side conditions on

initial action sets� Beside the usual denition of I�P � for the initial action set
of a process P � where I�P ��� and I�bP c��Q�� are given by I�P � � we dene
the set I��P � � I�P � of all initial actions of P within the scope of the clock �

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

as the smallest set satisfying the equations in Table �� Note that the sets I�P �
and I��P � are well	dened since all processes are closed and guarded� Moreover�
I��P � � I�P � whenever P does not contain any ignore operator� Finally� we

dene initial visible action sets by II�P �
df
�I�P � n f�g and II��P �

df
�I��P � n f�g�

Table �� Operational semantics for CSA

Act
��

��P
�
	 P

tAct
��

a�P
�
	 a�P

� � T

Sum�
P

�
	 P �

P �Q
�
	 P �

tNil
��

�
�
	 �

� � T

Sum�
Q

�
	 Q�

P �Q
�
	 Q�

tSum
P

�
	 P � Q

�
	 Q�

P �Q
�
	 P � �Q�

Rel
P

�
	 P �

P �f �
f���
	 P ��f �

tRel
P

�
	 P �

P �f �
�
	 P ��f �

Res
P

�
	 P �

P n L
�
	 P � n L

� �� L � L tRes
P

�
	 P �

P n L
�
	 P � n L

Com�
P

�
	 P �

P jQ
�
	 P �jQ

tCom
P

�
	 P � Q

�
	 Q�

P jQ
�
	 P �jQ�

� �� I��P jQ�

Com�
Q

�
	 Q�

P jQ
�
	 P jQ�

tIgn�
��

P ��
�
	 P ��

Com�
P

a
	 P � Q

a
	 Q�

P jQ
�
	 P �jQ�

tIgn�
P

��

	 P �

P ��
��

	 P � ��
� �� ��

Ign
P

�
	 P �

P ��
�
	 P � ��

tTO�
��

bP c��Q�
�
	 Q

� �� I��P �

TO
P

�
	 P �

bP c��Q�
�
	 P �

tTO�
P

��

	 P �

bP c��Q�
��

	 P �

� �� ��

Rec
P ��x�P�x�

�
	 P �

�x�P
�
	 P �

tRec
P ��x�P�x�

�
	 P �

�x�P
�
	 P �

The operational semantics for action transitions extends the one of CCS
by rules dealing with the ignore and the timeout operator� More precisely� the
process ��P may engage in action � and then behave like P � The summation

operator � denotes nondeterministic choice� i�e� the process P � Q may either
behave like P orQ� The restriction operator nL prohibits the execution of actions
in L�L and thus permits the scoping of actions� P �f � behaves exactly as P where
ordinary actions are renamed by the relabeling f � The process P jQ stands for
the parallel composition of P and Q according to an interleaving semantics with
synchronized communication on complementary actions resulting in the internal
action � � The processes P �� and bP c��Q� behave like P for action transitions�
The timeout operator disappears as soon as P engages in an action transition�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

thereby observably changing its state� Finally�
x� P denotes recursion� i�e�
x� P
is a process which behaves as a distinguished solution of the equation x � P �

With respect to clock transitions the operational semantics is set up such
that if � � I��P � then the clock � is inhibited� We refer to this kind of pre	
emption as local maximal progress� Its local nature lies in the facts that� in
general� I��P � �� I�P � and that the sets I��P � may be di�erent for di�erent
clocks� Accordingly� the process ��P may idle for each clock � whenever � �� � �
Time has to proceed equally on both sides of summation� i�e� P�Q can engage in
a clock transition and� thus� delay the nondeterministic choice if and only if both
P and Q can engage in the clock tick� Also both argument processes of a parallel
composition have to synchronize on clock transitions according to Rule tCom�
Its side condition implements local maximal progress and can alternatively be
written as II��P � II��Q� � �� i�e� there is no pending communication between
P and Q on an action that lies in the scope of �� Regarding the ignore operator�
the process P �� is capable of performing a �	loop� i�e� P ignores �� regardless

if � � I��P � or not� This is consistent with our denition I��P ���
df
� �� which

means that none of the initial actions of P is in the scope of clock �� Thus� � is
actually not a scoping but a co�scoping operator� i�e� all processes are assumed
to be within the scope of all clocks unless explicitly excluded using an ignore�
Using co	scoping instead of scoping simplies the operational rules when dealing
with multiple local clocks� since the traditional rules for summation and parallel
composition with respect to timed transitions need not be changed� Moreover�
the process bP c��Q� can perform a �	transition to Q provided P cannot engage
in an internal action which is in the scope of clock �� Since a clock transition
too represents an observable change of state� the timeout operator disappears
as soon as P engages in such a transition� This intuition is the same as for the
corresponding unit	delay operator in ATP ����� For multiple clocks this leads to
rule tTO� in which the timeout for � is dropped when a di�erent �� ticks� The
idea is that the ordering of the � and �� ticks is observable and the rst one
determines the state change� Note� however� that by using recursion to insert
explicit clock idling persistent versions of the timeout can be obtained�

The operational semantics for CSA possesses several important properties�
First� the summation and the parallel operator of CSA are associative and com	
mutative� Second� a process can always engage in a clock transition provided
it cannot perform an internal action which is in the scope of this clock� For	
mally� � �� I��P � implies P

�
�� Third� the semantics satises the local maximal

progress and the local time determinacy property� Both are generalizations of
the well	known maximal progress and time determinacy properties� for global
time� to a local notion of time in terms of multiple local clocks� Local maxi	
mal progress states that P

�
� implies � �� I��P �� Time determinacy� which is a

common feature of all real	time process algebras� states that processes react in
a deterministic way to clock ticks� re�ecting the intuition that mere progress of
time does not resolve choices� Formally� P

�
� P � and P

�
� P �� implies P � 	 P ���

It is not di cult to see that CSA is a conservative extension of TPL if we
drop TPL�s unde�ned process� which has been introduced to dene a semantics

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

based on testing �!�� Restricting T to a single clock� say T � f�g� and dropping
the ignore operator� gives us precisely the syntax and operational semantics of
TPL� Note that in this single	clock version of CSA the timed prexing of TPL

can be derived as ��P
df
�b�c��P �� Moreover� CCS ���� can be identied as the

subcalculus of CSA which is obtained by dening T � ��
Finally� it is worth mentioning that CSA allows us to express clock constraints

by processes� For example� if we want to relate the speeds of clocks we can
do so by composing the system under consideration in parallel with a process
expressing the corresponding constraint� As this issue is not central to this paper�
however� we do not address it further�

� Example �revisited�

Now we formally describe the example presented in Sect� � in our algebra CSA�

E

H

R

c

b

j k

l

G

ρ

busy

5

U

m

a

E

Fig� �� Component E �rened�

We refer to Fig� � and assume that we re	
ne the function module E by a complete
synchronous subsystem with its own lo	

cal clock 	 � T
df
�f��� ��� 	g� as depicted

in Fig� �� At top level the structure of
the overall system System is �Module� �
�� j Module���� �	� n feg� This captures
the asynchronous parallel composition of
Module� and Module�� The ignore oper	
ators � �� and � �� are introduced so as
to make both modules ignore each other�s
clocks� The clock 	 is internal to Module��
whence Module� ignores it with � 	� The
channel e connecting both modules is in	
ternal to System� and thus restricted by
nfeg�
At the next structural level we break

up the two asynchronous modules� each of which is a synchronous subsys	
tem� Let us look at the internals of Module�� which is �E j�R� j R� j S jB� �
	� n fa� b� c� d� busy

E
g� It is a parallel composition of a function block E� state

registers R� and R�� a busy bu�er B� and a special fork component S� These com	
ponents communicate via the channels fa� b� c� d� busy

E
g which are internal to

Module� and hence are restricted away� The parallel subsystem �R� j R� j S jB��	
ignores the clock 	� making 	 local to the function block E� This function block

nally is decomposed to the synchronous system E
df
��H j G jR� jU� n fj� k� l�mg�

Now let us turn our attention to the synchronous subsystem E �cf� Fig� ���
Block E should read its inputs from channels a and b� take an arbitrary number of
cycles of clock 	 to compute a result that is then passed over to the environment
on output channel c� The algorithm for this computation is contained in function
block G� The register R� stores the intermediate values� i�e� represents the local
state on which the algorithm works� The function block Hmay be a preprocessing

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

stage� and the component U is assumed to be a fork process that distributes the

data on its input k to outputs c and l� i�e� U
df
�
x�� k�l��
x�� c�x� � ��x��� The

� 	loop indicates waiting for external output through channel c� which will inhibit
the local clock 	 as long as the output has not been delivered�

In CSA the register might be specied as R�
df
�
x� bl�xc	�
y�m�x� l�y�� It

continuously accepts an updating input on channel l� and when the clock 	
ticks it changes its state to
y�m�R� � l�y� In this state the output action m
starts the next computation cycle� while the l	loop makes sure that the register
is always input enabled� If our channels would carry real data then the new
value injected into the next cycle with m would be the last value read in from
input l before the clock tick� This means that the l	loop after the clock must
not change the registered value� From the value supplied by m after each clock
tick� the function blocks compute a next state value that eventually ends up
being latched into R� again through l� Then the cycle is completed and 	 may
tick again� To indicate the simplest case of a function block let H be the trivial

iteration H
df
�
x� a���j�x� Accordingly� H rst reads an external input from a�

then performs an internal computation represented by � � and nally outputs on
j� whereupon it returns to the initial state� For a function block with more than
one input more complicated input	output pattern are possible� For instance� we
want G to implement an algorithm that reads its inputs b and j and initial state
m and then computes its function in a number of steps� storing intermediate
results in register R�� The following CSA process species such a behavior�

G
df
�
x��m�j�b�G� G�

df
�
x�� ���k�x� � k�G�� G�

df
�
x��m�x� � busy

E
�x� �

G consumes the register value on m and the result of function H on j� reads an
input from the environment through channel b� and then passes to G�� which
is the actual computation state� After a nite amount of internal computation�
indicated by the leading � � a result is computed that may be output with action
k� Now two possibilities arise� either the algorithm is completed� in which case
we pass back to the initial state G �variable x��� or we carry on with another
clock cycle� in which case we move to state G�� This decision� of course� depends
on the data� but since we do not consider values� we model this as a nondeter	
ministic choice� In G� we have reached a nal state of a single 	 clock cycle� but
only an intermediate state of the algorithm implemented by E� The busy

E
	loop

signals this to the environment of E in order to inhibit the outer clock ��� In the
intermediate state G� of the algorithm we do not need to read new input data�
but only get the next state by m and continue with G��

The above specication example shows how the ignore operator can be used
to localize clocks� and the timeout operator to model the synchronized updating
of registers� Maximal progress controls when a clock tick is possible and when
it is delayed� The only way to stop a clock is by internal divergence� e�g� arising
from a feed	back loop that does not contain any clocked register� In this case
of a violated design rule� the functional blocks produce divergence and the local
clock of that module is never able to tick� This relationship between design error�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

internal divergence� and conceptual time stop is very natural for synchronous
hardware� which stresses the adequacy of the maximal progress model�

� Temporal Strong Bisimulation

The transition systems produced by the operational semantics are a rather ne	
grained semantic view of processes� Therefore� we develop a semantic theory
based on bisimulation ����� Our aim in this section is to characterize the largest
congruence contained in the �naive� strong bisimulation ���� where we treat
clocks as actions�

De�nition �� A symmetric relation R � P � P is called naive strong bisimu�

lation if for every hP�Qi � R� � � A�T � the following condition holds� P
�
� P �

implies �Q�� Q
�
� Q� and hP �� Q�i � R� We write P �nQ if there exists a naive

strong bisimulation R such that hP�Qi � R�

It is straightforward to establish that �n is the largest naive strong bisimulation
and that �n is an equivalence relation� Unfortunately� �n is not a congruence�
The reason is that the transition system of a process P does not contain the clock
scoping information I��P � needed to determine the transition system of C�P � for
all contexts C�X �� For instance� a���n a���� but a�� j a�� ��n �a����� j a�� since
the right	hand process can do a �	transition while the corresponding �	transition
of the left	hand process is pre	empted due to maximal progress� In this example
a�� and a�� � � have identical transition systems but di�erent clock scoping�
e�ecting di�erent pre	emption of clock transitions in parallel contexts� In order
to nd the largest congruence contained in �n we have to take into account the
scope of clocks�

De�nition �� A symmetric relationR � P�P is a temporal strong bisimulation

if for every hP�Qi � R� � � A� and � � T the following conditions hold�

�� P
�
� P � implies �Q�� Q

�
� Q� and hP �� Q�i � R �

�� P
�
� P � implies II��Q� � II��P � and �Q�� Q

�
� Q� and hP �� Q�i � R �

We write P �Q if hP�Qi � R for some temporal strong bisimulation R�

The denition of P �Q requires not only that all clock transitions in P and
Q must match each other� but also that with respect to all these clocks � the
pre	emption potential of both P and Q must be identical� i�e� II��P � � II��Q��

Theorem �� The relation � is the largest congruence contained in �n�

Axiomatic Characterization

In this section� we provide an axiomatization of � for regular processes� i�e�
a class of nite	state processes that do not contain static operators inside re	
cursion� In order to develop the axiomatization� it is convenient to add a new

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

ignore operator � to CSA� called dynamic ignore� which is compositional with
respect to temporal strong bisimulation� Its semantics is dened by the following
operational rules�

DIgn
P

�
	 P �

P
�
�
	 P �

tDIgn�
��

P
�
�
	 P
�

tDIgn�
P

��

	 P �

P
�
��

	 P �
�
� �� ��

Moreover� we extend the denition of I���� by I��P �	�
df
�I��P �	��

A process P � P is called regular if it is built from nil� prex� summation�
timeout� dynamic ignore� variables� and recursion� We say that P is rs�free� where
rs abbreviates recursion through static operators� if every subterm
x�Q of P is
regular� Finally� a process P is �nite if it does not contain the recursion operator�

Table �� Axiomatization of � �Part I�

�A�� t� u�u� t �B�� bbtc��u�c��v�� btc��v�
�A�� t� �u� v�� �t� u� � v �B�� bbtc��u�c���v�� bbtc���v�c��u� � �� ��

�A�� t� t� t �B�� btc��u� � bvc��w�� bt� vc��u� w�
�A�� t� �� t

�D�� ��f � �� �C�� � n L��

�D�� ���t��f � � f�����t�f �� �C�� ���t� n L�� � � L � L

�D�� �t� u��f � � t�f � � u�f � �C�� ���t� n L����t n L� � �� L � L
�D�� �btc��u���f � � bt�f �c��u�f �� �C�� �t� u� n L� t n L� u n L

�C�� �btc��u�� n L� bt n Lc��u n L�

Now� we turn to the axioms for temporal strong bisimulation� We write � P �
Q if P can be rewritten to Q by using the axioms in the Tables �� �� and � which
are sound for arbitrary CSA processes� Many axioms are identical to the ones
presented in ��� for PMC� Axioms �L����L�� and �I�� deal with the new dynamic
ignore operator� where Axiom �I�� captures the relationship between the static
and the dynamic ignore operator� Moreover� the expansion axiom� Axiom �E��
has been adapted for our algebra� The new semantic extension compared to PMC
is re�ected by Axioms �P��� �P��� �S��� and �S��� Equations �P�� and �P�� deal
with the �local� pre	emptive power of � � and Equations �S�� and �S�� make the
implicit idling of clocks explicit�
Axioms �L�� and �L
� allow us to introduce P �T � where T � f��� � � � �ng is

a nite set of clocks� as a shorthand for P � �� � � � � �n� The same is true if we
replace the dynamic ignore operator by the static one �cf� Axioms �I�� and �I
���
Thus� the simplifying notation in Axioms �L��� �P��� �P��� and �E� is justied�
In order to prove the completeness of our axiomatization with respect to

temporal strong bisimulation we introduce a notion of normal form that is based
on the following denition� A term t is called in summation form if it is of the
shape t 	 b

P
i�I�
P

j�Ji
�i�xij��Tic��y�� where

P
is the indexed version of ��

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

Table �� Axiomatization of � �Part II�

�I�� ����� �I�� �t������ t��
�I�� �t� u���� t�� � u�� �I�� �t�������t�����
�I�� �t n L�����t��� n L �I�� �btc��u����� bt��c��u������btc��u�����
�I�� �t�f ������t����f � �I	� ���t��������t����
�

�L�� �
��� �L�� �t
��
�� t
�
�L�� �t� u�
�� t
� � u
� �L�� �t
��
���t
��
�
�L�� �t n L�
���t
�� n L �L�� �btc��u��
�� bt
�c��u
�����btc��u��
��
�L�� �t�f ��
���t
���f � �L	� ���t�
T � ���u�
T �����t � ��u�
 �T � T ��

�S�� �� b�c���� �P�� ���t�
T � u
�����t�
T � u � �� T
�S�� ��t� b��tc����t� �P�� b���t�
T � uc��v�� ���t�
T � u � �� T

the xij and y � y�� y�� � � � � yn are process variables� � � ��� ��� � � � � �n clocks�
and �i � A� The index sets I and Ji� i � I � are assumed to be nite� possibly
empty� initial intervals of the natural numbers� By denition�

P
i�� ti 	 � is in

summation form�

Table �� Axiomatization of � �Part III�

�E� Let t � b
P

i�I
�
P

j�Ji
�i�tij�
Tic��v� � u � b

P
i�I

�
P

k�Ki

�i�uik�
Uic��w�

and � � ��� � � � � �n �Then t ju � brc���v� jw�� � � � �n�vn jwn� where
r �
P

i�I
��
P

j�Ji
�i��tij ju��
Ti � �

P
k�Ki

�i��t juik��
Ui� �P
i�i��I

f
P

j�Ji

P
k�Ki

����tij jui�k��
 �Ti � Ui� � j �i � �i�g

�R
� �x�t � �y��t�y�x�� y does not occur in t
�R�� �x�t � t��x�t�x�
�R�� u � t�u�x� implies u � �x�t x guarded in t

The Expansion Axiom �E� in Table � shows how we can eliminate the parallel
composition operator� The timeout part of tju is dened componentwise for each
clock� The summation part r splits up into two summands� The summand in the
rst line considers action transitions performed by one side alone� while the sum	
mand in the second line deals with the communication case� The dynamic ignore
operators are determined naturally by our clock	scoping semantics� Specically�
the dynamic ignore set � Ti � Ui� leaves the internal action � in the scope of a
clock � if and only if � �� Ti and � �� Ui� � i�e� � is connected to each of the
communicating actions �i and �i� �

De�nition �� The term t 	 b
P

i�I�
P

j�Ji
�i�xij��Tic��y� in summation form

is in normal form if it satises the following� ��� �i � I� �i � � i� i � ��

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

��� �i� i� � I� i �� i� implies �i �� �i� � and ��� �� � T � J� �� � � � ��
T� implies � �� � � �i � I� � �� Ti�

The completeness proof adapts Milner�s technique ���� in characterizing recur	
sive processes uniquely by systems of equations in normal form� A normal form

equation system� into which every regular process can be unrolled� is a sequence
hyi � ti j i � ni �n � �� of equations such that all ti are in normal form and the
free variables of all ti are among y�

Theorem �� For regular processes P and Q we have� � P � Q i� P �Q�

The completeness result can be extended to the class of rs	free processes by elim	
inating the static operators� using the Expansion Axiom �E� to get rid of par	
allel composition� eliminating restriction by Axioms �C����C��� �L��� and �I���
and renaming by Axioms �D����D��� �L��� and �I��� Finally� leaving out Ax	
ioms �R����R�� for recursion� we obtain a complete axiomatization for �nite

processes� The corresponding completeness proof follows the standard lines �cf�
������ It is based on a notion of normal form for terms� which corresponds to the
one in Denition � where we substitute the variables xij and yk by terms that
are again in normal form�

� Temporal Observational Congruence

The semantic congruence developed in the previous section is too ne for verify	
ing systems in practice since it requires that two equivalent systems must match
each other�s internal transitions exactly� Consequently� we want to abstract from
internal actions and develop a semantic congruence from the point of view of an
external observer�
Observational equivalence is a notion of bisimulation in which any sequence

of internal � �s may be skipped� For � � A�T we dene "�
df
� � if � � � and "�

df
� ��

otherwise� Further� let
�
�

df
�

�
�

�
and P

�
� Q i� there exist processes R and S

such that P
�
� R

�
� S

�
� Q� Carrying over Milner�s weak bisimulation ���� to

CSA naively would suggest the following denition�

De�nition 	� A symmetric relation R � P�P is a naive temporal weak bisim�

ulation if for every hP�Qi � R� � � A�T � the following condition holds� P
�
� P �

implies �Q�� Q
��
� Q� and hP �� Q�i � R� We write P �nQ if there exists a naive

temporal weak bisimulation R such that hP�Qi � R�

It is not surprising that �n is not a congruence� for the same reason that weak
bisimulation equivalence is not a congruence for CCS� In contrast to CCS� how	
ever� �n is not even a congruence for parallel composition� The problem is that�
again� the relation fails to account for clock scoping� The following renement
of the above denition is needed for the static contexts�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

De�nition
� A symmetric relation R � P�P is a temporal weak bisimulation

if for every hP�Qi � R� � � A� and � � T the following conditions hold�

�� P
�
� P � implies �Q�� Q

��
� Q� and hP �� Q�i � R �

�� P
�
� P � implies

�Q�� Q��� Q���� Q
�
� Q�� �

� Q��� �
� Q� � II��Q

��� � II��P �� and hP �� Q�i � R �

We write P �Q if hP�Qi � R for some temporal weak bisimulation R�

Proposition �� The relation � is a congruence with respect to pre�xing and

the static CSA operators� It is characterized as the largest congruence contained

in �n� in the subalgebra of CSA induced by these operators�

In order to identify the largest equivalence contained in �n that is also a congru	
ence for the other dynamic operators� the summation x of CCS is not su cient
due to the special nature of clock transitions�

De�nition �� A symmetric relation R � P � P is a temporal observational

congruence if for every hP�Qi � R� � � A� and � � T the following conditions
hold�

�� P
�
� P � implies �Q�� Q

�
� Q� and P ��Q� �

�� P
�
� P � implies II��Q� � II��P � and �Q�� Q

�
� Q� and hP �� Q�i � R �

We write P �Q if hP�Qi � R for some temporal observational congruence R�

Theorem ��� The relation � is the largest congruence contained in �n�

For details as well as the proofs of our results we refer the reader to ����

	 Conclusions

We have presented the temporal process algebra CSA with multiple clocks and a
local maximal progress assumption� CSA is closely related to the process algebras
TPL and PMC which both are inspired by ATP� Whereas TPL does not deal with
multiple clocks� and the semantics of PMC does not ensure maximal progress�
CSA combines both features under the special consideration of the distribution of
systems� By means of a generic example we have demonstrated the utility of CSA
as a semantic framework for dealing with synchrony and asynchrony in which
we can express various levels of time and synchronization� We have developed a
fully	abstract semantic theory based on the notion of bisimulation� Alternative
characterizations of our behavioral relations �see ���� allow us to adapt standard
partition renement algorithms ���� for their computation�
Moreover� our results show that CSA is a conservative extension of TPL not

only in terms of operational semantics but also in terms of strong and weak
bisimulation� This means that our main theorems also apply to TPL� In partic	
ular� specializing Theorem �� to the TPL fragment yields a characterization of
observational congruence for TPL�

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

Future work will especially focus on two aspects� On the one hand� CSA
should be implemented in the Concurrency Workbench of North Carolina �
�� an
automatic verication tool� On the other hand� an axiomatic characterization of
temporal observational congruence may be interesting since it would support a
better understanding of the underlying semantic theory and simplify a compar	
ison with other temporal process algebras�

References

� HR Andersen and M Mendler An asynchronous process algebra with multiple
clocks In D Sannella� editor� European Symposium on Programming� volume �		
of Lecture Notes in Computer Science� pages �	��� Springer�Verlag� ����

� HR Andersen and M Mendler Describing a signal analyzer in the process algebra
PMC � A case study In P D Mosses� M Nielsen� and M I Schwartzbach�
editors� Theory and Practice of Software Development� TAPSOFT���� volume ���
of Lecture Notes in Computer Science� pages ��
���� Springer�Verlag� ����

� G Berry and G Gonthier The ESTEREL synchronous programming language�
Design� semantics� implementation Science of Computer Programming� ���	������
����

� DM Chapiro Reliable high�speed arbitration and synchronization IEEE Trans�
action on Computers� C�����
������������ October ��	�

� R Cleaveland� G L�uttgen� and M Mendler An algebraic theory of multiple clocks
Technical report� North Carolina State University� Raleigh� NC� USA� ���� To
appear

� R Cleaveland and S Sims The NCSU Concurrency Workbench In R Alur and
T Henzinger� editors� Computer Aided Veri�cation �CAV ��	
� volume ��
� of
Lecture Notes in Computer Science� pages �������� New Brunswick� New Jersey�
July ���� Springer�Verlag

� R De Nicola and MCB Hennessy Testing equivalences for processes Theoretical
Computer Science� ���	������ ��	�

	 W Elseaidy� J Baugh� and R Cleaveland Veri�cation of an active control system
using temporal process algebra Engineering with Computers� ��������� ����

� M Hennessy and T Regan A process algebra for timed systems Information and
Computation� ������������ ����

�
 CAR Hoare Communicating Sequential Processes Prentice�Hall� London� ��	�
�� R Milner A complete inference system for a class of regular behaviours Journal

of Computer and System Sciences� �	��������� ��	�
�� R Milner Communication and Concurrency Prentice�Hall� London� ��	�
�� F Moller and C Tofts A temporal calculus of communicating systems In JCM

Baeten and JW Klop� editors� CONCUR ���� volume ��	 of Lecture Notes in
Computer Science� pages �
������ Amsterdam� August ���
 Springer�Verlag

�� X Nicollin and J Sifakis The algebra of timed processes� ATP� Theory and
application Information and Computation� ����������	� ����

�� R Paige and RE Tarjan Three partition re�nement algorithms SIAM Journal
of Computing� �����������	�� December ��	�

�� W Yi CCS � time � an interleaving model for real time systems In J Leach
Albert� B Monien� and M Rodr�iguez Artalejo� editors� Automata� Languages and
Programming �ICALP ���
� volume ��
 of Lecture Notes in Computer Science�
pages ������	� Madrid� July ���� Springer�Verlag

PRELIMINARY VERSION of a paper under copyright with Springer Verlag

R. Cleaveland, G. Luettgen, M. Mendler: An algebraic theory of multiple clocks.
In Proc. of the International Conference on Concurrency Theory (CONCUR'97), pp. 166-180, Springer 1997 (LNCS 1243).

