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Abstract. This note describes possible world semantics for a constructive modal
logic CK. The systentCK is weaker than other constructive modal logicss

it doesnot satisfy distribution of possibility over disjunctions, neither binary
(¢(AV B) — ©AV OB) nor nullary ©L — 1). We are interested in this
version of constructivé for its application to contexts in Al [dP03]. However,

our previous work orCK described only a categorical semantics [BAPR01] for
the system, while most logicians interested in contexts prefer their semantics pos-
sible worlds style. This note fills the gap by providing the possible worlds model
theory for the constructive modal systéK, showing soundness and complete-
ness of the proposed semantics, as well as the finite model property and (hence)
decidability of the system. Wijesekera [Wij90] investigated possible worlds se-
mantics of a system similar ©K, without the binary distribution, but satisfying

the nullary one. The semantics presented hereCidris new and considerably
simpler than the one of Wijesekera.

1 Introduction

There are many varieties of constructive modal logics in the literature. Several of these
were arrived at as solutions to the problem of deciding which is the most elegant way of
combining the accessibility relations usually associated with the modal operators (ne-
cessityd and possibility) to the accessibility relation usually associated with (propo-
sitional)intuitionistic implication.

This note describes the possible world semantics for one constructive modal logic,
the systenCK, which is unusual in that it first had a proof-theory and a categorical
semantics[BdPRO1], before we decided to investigate its possible-worlds semantics.

One reason why we are interested in this, rather weak version of constridciive
its possible application to the notion of contexts in AI[dP03]. This we discuss briefly in
the next section. Moreover, the syst€K can also be seen as a natural generalization
of our previous work on a constructive version of the modal logic(S34, described
in [AMdPRO01,BdP00].
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2 Contexts as Constructive Modalities

In this section we discuss our motivation to study the Id@i¢. The main reason is
the suggestion that this constructive logic may be an adequate basis for dealing with
notions of context in logic-based knowledge representation.

Notions of context abound in artificial intelligence and computational linguistics, to
mention only two of the several fields that use more or less formalized notions of con-
text. The number of existing logical systems dedicated to formally modeling contexts,
in several disciplines, is quite staggering.

In previous work ([dP03]) we surveyed several of the logical systems that arose
out of McCarthy’s original intuitions [McC93] that context ought to be a first-class
object in a logical system devised to reason using common sense. Using purely proof-
theoretical criteria we concluded in [dP03] that it would be worth investigating a con-
structive multi-modal version df, which is the essential core of several context logics.
The previous work did not discuss semantics much, simply citatggorical seman-
tics for the unimodal case in the companion paper [BAPRO1]. This note fills part of the
gap between motivation and application by providing possible worlds semantics for the
unimodal systenCK. An adequate Kripke semantics for the multi-modal system (as-
suming the modalities to be independent) should be easy to design as a generalization
of the structures presented here.

To set the scene, in the long term, our research project is to devise a system of logic,
which is appropriate to produce logical representations of sentences in natural language.
There is very little need to explain how ubiquitous natural language documents are and
how useful it would be to automatically produce logical representations from simple
text. Clearly if representations that are faithful to what humans mean can be constructed
automatically, they can be used in several applications, such as information retrieval,
information extraction, dialogue systems, question answering, etc.

It also seems clear that when creating logical formulae from sentences, a notion of
context would be very convenient. For example, when confronted with a paragraph like

“Gulf ImpEx imported five shipments of medical goods in 1999. Their shipping
records claim that none of the shipments contained any dual use materials. We
have learned that at least one shipment contained two tons of fissile material.
Most of this was of such low radioactivity as to prevent its dual use. We do not
know whether the remainder of the fissile material could have been dual use.”

one’s first reaction is to try to separate the information into classes or contexts: what is
claimed, what is learned, what is known, what is declared, what is prevented, etc.. It is
clear that on an individual basis these classes are easy to deal with: if some Xource
claimed some assertidn, it is not necessarily the case thais true, while if a reliable
source tells us that it has learned thatat least as far as that source is concernéd,

is true. But when so many different kinds of context interact, in nested ways, things
become less clear and help from a formal system might start to pay for its up-keeping.

A logic where contexts are first-class objects, as suggested by McCarthy, might be
able to help when reasoning with representations that model these kinds of concepts.
Some discussion, from a systems building perspective, of how these notions of context
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could and would be useful can be found in [CGR,CCS 03]. Some discussion on

how we are already implementing some version of contexts using a rewriting system
can be found in [Cro05]. A preliminary logical discussion of what kinds of inferences
this desired system of contexts needs to perform is presented in{B&JCBut the
mathematical connection betwe€K and the ideas and implementations on the papers
just mentioned is not direct. Rather, the mathematics explained in this paper provides
a safety net for the other work, in the sense that it gives a precise logical fmdise

work discussed in the systems’ papers.

A common denominator of several logics of context is the notion of a modality, writ-
ten adstrue(c, p). The idea of using syntactic modalities to model contexts is appealing
as modalities allow some control over the way in which expressions are evaluated in
the logic. In other words, modalities act as syntactic “boxes” that contain the reason-
ing/evaluation process. Another point in favor of modalities (as opposed to first-order
predicates) is that modalities avoid problems with self-referential paradoxes. But most
modal logics are not very well-behaved proof-theoretically: providing natural deduction
and/or sequent calculus formalizations for most modal logics is hard, which implies
complicated implementations and a hard time translating between systems. Summing
up we want to design ourselves a system that is as well-behaved proof-theoretically as
we can get it, given that it has simple modalities. By ‘simple’ we mean that we do not
prejudge the interpretation of these modalities and leave the question of which prop-
erties they satisfy as open as possible. Lastly we insist on a constructive logic, as a
constructive system can be easily adapted to yield a classical one by adding the ex-
cluded middle or a double negation axiom, while the converse process of extracting the
constructive fragment of a classical system is much more complicated. It seems to us
that for most of the applications we have in mind a constructive setting is more appropri-
ate. For example, if one thinks about contexts as (a collection of) alternative knowledge
bases then the reasoning we do ought to be constructive by definition, since this rea-
soning is about the information already present in the individual knowledge bases, not
about some platonic world of non-decidable truths. If the collection of knowledge bases
provides us with a logical disjunctioA v B we expect that for some context it is true
that A holds or for some context it is true th&t holds, a version of the disjunction
property, which is true constructively, but not classically. Thus some form of the dis-
junction property is an intuitive requirement of the system that is easily met by having
a constructive basis of the logic. Working on these principles we arrived at the system
CK.

Wijesekera [Wij90] investigated a constructive system similaCkoand provided
possible-worlds semantics for it. We hoped that a direct adaptation of Wisejekera’s re-
sults would work for us. The adaptation chosen meant that the proof of completeness
could be streamlined and made similar to our previous work ([AMdPRO1]) on a con-
structive and categorical version of modal S4, knowrC&s, which is just a special
axiomatic theory ofZK. The work onCS4 has had many applications within computer
science (for examples see [DP01,SDP01,dPGMO04]), which thus are also applications

1 Other kinds of logical foundations are reasonable too and are also being investi-
gated [BdP03,5SG02].
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of CK. SinceCK is a more general system th&%4 it should support an even wider
range of concrete interpretations.

3 CKand its Model Theory

The logical system we callK is given by the Hilbert system of intuitionistic proposi-
tional logiclPL extended by the following axioms and rule

OK :0(A— B) — (DA — 0OB) OK :0(A— B) — (©A— ©B)
Nec : If Ais atheorem thefl A is a theorem.

Fig. 1. Hilbert-style system fo€K

This system could be called the ‘non-normal’ version of Wijesekera’s system[Wij90],
because it is the system we obtain if we consider only the propositional fragment of Wi-
jesekera’s system and drop from it the axierx L. But care must be taken as different
authors use “normal” for different properties of modal systems.

The symbol-cx denotes deduction in th€K Hilbert system. For instance, the
formulaDA A OB — (A A B) is derivable by the following deduction:

1.A— (B—(AAB)) axiom ofIPL
2.0(A— (B— (AAB))) from 1. by Nec
3.04 - 0(B— (AAB)) from 2.0 K by MP
4.0(B — (AAB)) — (OB — O(ANB)) by OK

5. (04 - O0(B— (AAB))) - (0A — (OB — O(A A B))) from 4. byIPL
6.04 — (OB — O(AAB)) from 3.,5. by MP
7.(OAANOB) — O(AAB) from 6. byIPL

In a very similar way one can derive the formy@A A ¢(A — B)) — OB
which is listed by Wijesekera [Wij90] as an axiom. Generally, the above derivation
shows that iflA A B) — C'is a theorem oK (in particular, a theorem dPL), then
(O0A A OB) — ©C'is a theorem o€K, too.

Wijesekera seems to be one of the first authors to point out that, unlike distribu-
tion of necessity over conjunctions, which seems accepted by all intuitionistic modal
logicians, the distribution of possibility over disjunctions, both binaby4 v B) —
GAVOB)and nullary 6O 1L or &1L — 1) is much more debatable. If the operator
models a constructive notion of possibility or satisfiability-in-context then it is natural
to expect that, in general, these distributions fail. The fact that a disjundtienB is
satisfiable in a context does not warrant the conclusion that one of the disjuncts is sat-
isfiable, e.qg., if satisfiability-in-context involves a non-deterministic process. Similarly,
in a constructive reading of possibility) we do not expect that possibly false ()
implies false (L). Thus we need to allow some contexts to be inconsistent and we drop
the distribution axioms.
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We introduce the notion of a Kripke-style model for CK, simply cal@d-model
in the sequel:

Definition 1. A Kripke model ofCK is a structureM = (W, <, R, =), whereW is
a non-empty sek is a reflexive and transitive binary relation i, R is any binary
relation onW, and|= a relation between elemenise W and propositions4, written
w | A (" Ais satisfied atw in M”) such that:

— < is hereditary with respect to propositional variables, that is, for every varigble
and worldsw, v/, if w < w’ andw = p, thenw' |= p.
— The relation= has the following properties:
wET;
wEAANBIiffwlE Aandw | B;
wEAVBIifwlE Aorw = B;
wEA— Biff V' (w <w = (v EFA=w E B))
w E OAIff V' (w < w' = Vu(w'Ru = u E A))
w | CAIff V' (w < w' = Fu(w'Ru Au = A))
Notice that we do not have the clausel= L, i.e. we allow inconsistent worlds.
Instead, we have
—ifwE L andw < w' orwRw', thenw’ = L and
— ifw = L, then for every propositional variabje w = p (to make sure that — A
is valid).

We sometimes writd/, w |= A instead of justv = A when we want to make the
model explicit. As usual, a formuld is true in a modelM, written M | A, if for
everyw € W, M,w = A. Aformula A is valid (&= A) if it is true in all models. All
notions are extended to sets of formulae as usual in the universal way.

The fact that our models do not satisfy> | or more intuitively thatC L — L
is not provable comes from the possibility that fallible worlds, i.e. those satisfying
could be reached via aRi-step from non-fallible worlds.

In [AMdPRO1] is was shown that the syst&d$4 coincides with the theory d€S4
models, which are like th€K models but wherd? is a preordering relation. Here we
want to verify thatCK coincides with the theory a€K models.

Local and Global Assumptionghe purpose of Hilbert deduction is to derive necessary
truths, hence the Necessitation Rule. Semantically, a deduftieax B of B from
assumptiond” says that if allA € I" are true in some modél/, then B, too, is true

in M. It does not claim that if alld € I" are true in some modeit a given world
then at that world3 must be true. Indeed, if this local, world-wise notion of semantic
consequence were valid, Hilbert deductiegx would enjoy the Deduction Theorem.
But it does not. For we havd Fcx OA by Nec, while from soundness ofck it will
follow thatt/ck A — OA.

As pointed out by Fitting [Fit94] and Simmons [Pop94] it is useful in modal logics
to distinguish between local and global notions of validity, and local and global assump-
tions. We use the following terminology to make this precise: Leand I be sets of
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formulae. A formulaB is asemantic consequenoé global assumptiond™; andlocal
assumptiongy, writtenI'y; I'> = B, if for every modelM such thatM (= I'; and each
world w in M with M, w |= Iz, we haveM, w |= B. A formula B is adeductive con-
sequencef global assumptiong’ and local assumptionk,, written I'y; I's ek B, if
there exists a finite sét; C I, such thatly Fcx A I'5 — A, where/ I for a finite set
I'={A;, As, ..., A,} abbreviatesA; A A3 A--- A A,,. The degenerate cagel) = T
is included.

We can now state our main theorem.

Theorem 1. The systen€K is sound and strongly complete with respect to the class of
models defined above, that is, for all sets of formulaels and formulaA, we have
Fl;FQ ):Alff[‘l,]—‘g }_CK A.

Observe that soundness is equivalent to the condition kh@t -cx A implies
I'; 0 = A, orin standard terminology that e A impliesI” = A. This is not difficult
to prove by induction on derivatiorfsAll axioms are necessary truths @K-models,
and the rules of Modus Ponens and Necessitation preserve necessary truths.

Completeness can be reduced to the special case of empty global assumptions,
viz,that(); I' = A implies®; I" ck A. The key is the following lemma:

Lemma 1. For any set of formulaé” let 0* " be the setJ,,~, O™ I", whereO° T’ “r

andonti def

={0¢ | gl

(l) If I 1% l:A,then(D,D*FlLJFQ }:A
(ll) If @;D*Fl Ul ek Athenly;Ih e A

Proof. (i) Assume thatl;; I = A. Given a modelM and a worldw in M with
M,w = U, 0" as well asM,w |= I';, we must show thad/, w = A. To this
end construct thgenerated sub-mode&l/,, of M with rootw, i.ethe least sub-model

of M that containsw and is closed under the condition thatife M, andx < y

or zRy, theny € M, too. One can show that all worlds in this sub-model have the
same truths as in the original larger model. Hence, in particularM,,,w = I%.
Moreover, we havé\l,,,u = I for all worldsu € M,,. This follows from the fact
that M, w = ,,~, 0" I} and that each world in M, is reachable by finite sequence
of < or R steps from the rootw. Thus, overall,M,, = . But then the assumption
I; Iy = Aimplies A, henceM,, = A.

(i) Supposel; O*I'y U I ek A. Then, there are finite subsefy C O0* 7} and
I’} C Iy such that-cx A(I7 A AIY) — A. Since eachy € I7 is of the form
0oO- .- O for somey € I'7 we havel; Fcx ¢ by repeated applications of Necessi-
tation. But this means, using Modus Ponens Bid that 7, Fcx A I — A, which
impliesFl; I5 ek A.

2 Wijesekera [Wij90] derives soundness oK plus the axiom~<_L (for infallible models) by
reducing the Hilbert system to a sequent calculus. However, the relevant equivalence in his
Lemma 1.5.1 assumes the Deduction Theorem for the Hilbert system, which is wrong. As a
consequence Wijesekera’'s proof remains inconclusive in establishing sound@d&s of
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With Lemma 1 the completeness direction of Theorem 1 reduces to the following
Model Existence Theorem:

Theorem 2. If 0; I" Fck A is not true then there exists a model = (W, <,R. )
and a worldwg such thatM, wy = I" but it is not the case that/, wy = A.

The counter-model construction establishing Theorem 2 employs a suitable gener-
alization of the Lindenbaum construction, in which worlds are trigleésA, ©) of sets
of formulae, calledheories The intuition is that at a worldy = (I, A, ©) the formu-
lae inI" are validated atv, the formulae inA are falsified atv and the formulae i®
are falsified at every worlé&k-reachable fromw. This representation of worlds has been
introduced originally for propositional lax logRLL [FM97].2

Definition 2. Atheory(I, A, ©) is consistenif for every choice of formulad’;, No, ..., N,
in Aand K4, K, ... K, in © such thatn + k£ > 1itis notthe case that

0; ek N1V INy...V N, VO(K V...V Ky).

A theory ismaximally consistent if it is consistent and for every formul& either
MelorMeA.

We have the following central “Saturation” lemma whose proof is standard and is
hence omitted.

Lemma 2. Every consistenttheofy’, A, ©) has a maximally consistent extens{dr', A*, ©).
Furthermore, every maximally consistent theory satisfies:

— I'* is deductively closed, i.e.(f I'* cx AthenA € I'*;
— If Av Bisin '™ then eitherAisin ™ or BisinI*.

Note, if §; I" ¢k L, then by consistency dff’, A, ©) we must haved = 6 = (),
in which case the above construction will produce the maximally consistent extension
(U,0,0), whereU stands for the set of all formulae.

We now proceed to define the gene@K-Kripke modelM = (W, <, R, =) that
falsifies the formulaA.

Definition 3. Our canonical model consists of maximally consistent thedfies\, ©).
The accessibility relations are
(IA0) < (I, Ae)iff T C 1 (1)
(IA,O) R (I, A, @) iff o7'rCcr’ & e c A, (2)

whereO~1I'={¢ |O¢ € I'}. We say(I,A,0) = Aiff AeT.

Note that the relatiore is a preordering and not antisymmetric in general, while
can be arbitrary.

% The setsA are actually redundant in the world structure but technically convenient for phrasing
the saturation conditions in a simple form.
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Lemma 3. The canonical structure is a Kripke model©K.

Proof. Clearly, < is hereditary. For every pair of worldd", A,0) < (I'V, A", 0") we
havel" C I'" and thus for all formulael, if (I, A, 0) = Athen(I, A, 0) | A.

Let us consider inconsistent, i.e., fallible worlds.(If, A,©) & L,ie.,L € I
then by deductive closutE is the set of all formulae (and = © = () by consistency).
Thus, the first componerit’ of every accessible worldl", A, ©) < (I'', A’,6) or
(IA,0) R (I, A',0) must be the set ddll formulae, too. In other words, once a
theory is fallible it remains fallible along aft and R steps. Needless to point out, in a
fallible (I, A, ©) all formulae are true.

Also, obviously,(I', A,©) = T. The other clauses of Definition 1 are proved by
induction of the structure of formulae. The following conditions follow easily from
Lemma 2:

(IA,0) = AABIiff (I, A,0) = Aand(I, A, 0) = B;
(IA,0) = AV Biff (I,A,0) = Aor (I, A,0) = B;

SupposeI,A,0) = A — Band(I,A,0) < (I",A",0") = A. Then, both
A— Bel' CI"andA € I, so that by deductive closure 6f we haveB € I".
Conversely, supposé — B ¢ I'. Then consider the theoty" U{ A}, { B}, 0). It must
be consistent, for otherwise, we would hdlid”, A ~cx B which implies(); I" Fck
A — B by definition of~-ck and the properties of IPL. We can thus pick any maximally
consistent extensiofi *, A*, ©*) of (I"'U{A}, { B}, 0). For such a theory it holds that
(IA,0) < (I'*, A*,0%) and(I™*, A*,0%) = Aas well ag ™, A*, ©%) |~ B.

It remains to tackle the two clauses of Definition 1 concerning the modal operators.
AssumeOA € I'. Then in all situationg!’, A, 0) < (I',A',©") R (I, A”,0") it
holds thatd € O~'[" C O~ C I'”. By induction hypothesig,[", A”,0") = A.

To take the other direction, let us suppose that ¢ I, i.e.,0A € A. Obvi-
ously, (I, A, ) is maximally consistent an@”, A, ©) < (I, A, ). Consider the the-
ory (011, {A},0) which is trivially consistent. For if there exidt’y, M,, ..., M,, €
O~'I" such that); My, M, ..., M,, Fck A, then the rules oEK yield

@, D]\417 DMQ, ceey DM,n }_CK \:‘A

from which it follows that); I" ~cx OA in contradiction to our assumption (deductive
closure ofl"). Take any maximally consistent extensidrr, A*, ©*) of (1", { A}, 0).

It satisfiesA ¢ I'*, sinceA € A*, aswell a1, A, Q) R (I'*, A*,©*). Our induction
hypothesis gives ud ™, A*, ©*) £ Atogetherwith(I', A, 0) < (I, A,0) R (I, A*, ©*).

AssumeCA € I'. Then, for all(I”, A’,0") such that(I, A,0) < (I, A’,0")
we haveCA € I''. We claim that(O—11" U {4}, ©',()) must be consistent. For oth-
erwise, if there exist/,, My, ..., M,, € O-'T"" andNy, N-, ..., N,, € @ such that
0; My, Ms, ... ,M,,,Atck N1V N3V ---V N, then by the rules o€EK we could
derive); OM,,OM,, ..., 0OM,,, OAFck O(N1 V N2 V ---V N,,), and consequently
0; I Fok O(N1 V N2 vV --- VvV N,) contradicting consistency of theofy”, A", ©').
Since(O~ 1" U{A},©',0) is consistent we can l¢f™*, A*, ©*) be a maximally con-
sistent extension ofd—11" U {A},©’,0). We have(I”, A’,©") R (I'*, A*,0*) and
A € I'*. By induction hypothesig,[™*, A*, ©*) = A which proveq I, A, 0) = CA.
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Assume<®A ¢ I'. Then,(I,0,{A}) is consistent, sinc@; I ck ©A under
deductive closure of" would imply A € I" contradicting the assumption. So, by
Lemma 2 there is a maximally consistent extengibh, A*, ©*) of (I',0, {A}), with
I' C I'* andA € ©*. Moreover,(I', A,0) < (I'*, A*,©*). Now let anyR-successor
(I, A,0) of (I'*, A*,©*) be given. By definition ofR we haved € ©* C A/,
which impliesA ¢ I'". Hence, by induction hypothesig’, A’, ©’) |~ A as desired.

It is worthwhile to point out that our proof in fact simplifiesonsiderably Wijesek-
era’s model representation 6K. Wijesekera’s models use sets of sets (second order),
calledsegmentswhere we have simple sets

Finally we complete the story, proving our main theorem:

Proof (Theorem1)Supposd; I ek A. Then, by (ii) of Lemma 1 we havie O* 11U
I t/ck A. The Model Existence Theorem 2 yields a counter maddednd a worldwy
for which M, wo = O*I'y U T but M, wg & A. Thus,0*I'y U Ty = A, which finally
impliesIy; I'x = A by (i) of Lemma 1.

4  Finite Model Property and Decidability

We now show tha€K has the finite model property, which implies decidability. Both re-

sults can be obtained also from general work on many-dimensional modal logics [GKWZ03]
by encodingCK into a classical bi-modal (S4,K) system, thus making the underlying
intuitionistic accessibility explicit. We find it instructive, nevertheless, to give a direct
proof in order to shed more light on the structure of the canonical models. Also, from

our concrete construction it can be shown that if we reqdite be antisymmetric, then

the finite model property is lost.

Theorem 3 (Finite Model Property). = A iff M = A for all finite CK-models)M .

Proof. (Sketch) LetM = (W, <, R, =) be a fixed but arbitrarfCK-model andA a
proposition. To preserve the forcing df on M two flavors of local information are
relevant at any given world. Firstly, there is the séf(w) of all sub-formulae that are
validated atw, i.ethe set

T(w) ¥ {N | N eSf(A) & wk N},

whereSf(A) refers to the set of sub-formulae df including L, T, which we consider
sub-formulae of every formula. Secondly, we need to preserve the set of sub-formulae
of A that are refuted on alR-reachable successorsofi.e.

Fo(w) & {N | N € Sf(A) & Yo. wRv = v j£ N}.

Note that ifw < v then bothT'(w) C T'(v) and ifw Rv thenO~1T(w) C T(v) as
well asF,, (w) N T(v) = 0.

4 This is not a consequence of our dropping of axietL but seems applicable also for Wije-
sekera’s (normal) system.
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The two set{T'(w), F,,,(w)) characterize the behavior af inside modelM with
respect to the sub-formula#(A).> These pairs are finite theories, calldetheories.
More generally, am-theoryin M is a pair(X, Z) of subsetsX, Z C Sf(A) such that
there exists a worley in M with X = T'(w) andZ C F,,,(w). Let the (finite!) set of all
A-theories inM be denoted b{’h ), (A). Note that for any worldv in any CK-model
M, the pairw= = (T(w), F,(w)) is an A-theory, whencel'hy,(A) is non-empty
whatever thed and M.

The filtration model now is
M|a = (Thp(A),<|a,R|a,[=|a)

such that
(X,2)<|a (X, Z)iff X CX'
(X,Z)R|a (X", ZIff OTIXCX' & ZNX' =0

and forcing such thatX, 7) = |4K if K € X or L € X, for both propositional
constants = p and falsity X' = L. For all other propositiond” we define(X, 7) |=
|aN according to the inductive conditions stated in Def. 1. Note that v implies
w= < |av= andwRv impliesw=R |sv=. It is easy to verify that\/| 4 indeed is a
well-defined finiteCK-model.

Finally, we show that for allV € Sf(A) andZ C F,,,(w),

w E Niff (T(w), Z) E|aN. 3)

by induction on the structure @¥, which completes the proof of Theorem 3.

We can now prove the completeness direction of Theorem 3. Sugposefor
some formulad. Then there exists a counter model and a worldw in M such that
w £~ A. Construct the finite filtration modél/ | 4 as above relative td. Since trivially
A € Sf(A), (3) gives usw= [~ |4 A. Thus, we have found a finite counter model for

As a corollary to the soundness and completeness (Thm 1) and finite model property
(Thm 3) we obtain decidability oEK:

Theorem 4. The theoryCK is decidable.

5 Conclusions

This fairly technical note shows th@K can be given a sensible possible worlds seman-
tics, under which the system is sound and complete, has the finite model property and
hence is decidable. The proof considerably simplifies the canonical model construction
of Wijesekera'’s in the propositional case and it also accommodates fallible worlds. We
hope to extend this semantics to the first-order case in the future.

The existence of these proofs vindicates our belief that “whenever we can get a cat-
egorical semantics, we can get a possible worlds one”. The work here is inspired by
the need to provide formal proof theory and semantics for the system that we started

® The standard filtration would only consid&fw), so we are somewhat finer here.
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describing in [BCC 05]. Further research will have to substantiate the claims that the
system is adequate for the application at hand, contexts in Al. Observe that the sys-
tem CK does satisfy our requirement of imposing only minimal constraints on abstract
modalities. Thus it provides a convenient playground to investigate various special con-
text modalities in the way of correspondence theory, linking different proof-theoretic
extensions with particular classes of Kripke models. While it is clear that many trade-
offs between expressivity and simplicity/efficiency of use will have to be adressed to
adequately model contexts in Al, the discussion of these trade-offs needs a solid math-
ematical basis to build on. It is the mathematical basis that we have addressed in this
note.
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