
Logic Meets Algebra:
Compositional Timing Analysis for Synchronous

Reactive Multithreading

Michael Mendler1, Joaqúın Aguado1, Bruno Bodin2, Partha Roop3, and
Reinhard von Hanxleden4

1 Faculty of Inform. Syst. and Appl. Comp. Sciences, Bamberg University, Germany
{michael.mendler,joaquin.aguado}@uni-bamberg.de
2 Dept. of Computer Science, Edinburgh University

bbodin@inf.ed.ac.uk
3 Dept. of Elect. and Comp. Engineering, Auckland University, New Zealand

p.roop@auckland.ac.nz
4 Dept. of Computer Science, Christian-Albrechts-Universität zu Kiel, Germany

rvh@informatik.uni-kiel.de

Abstract. The intuitionistic theory of the real interval [0, 1], known as
Skolem-Gödel-Dummet logic (SGD), generates a well-known Heyting al-
gebra intermediate between intuitionistic and classical logic. Originally
of purely mathematical interest, it has recently received attention in
Computer Science, notably for its potential applications in concurrency
theory. In this paper we show how the logical operators of SGD over the
discrete frame Z∞, extended by the additive group structure (Z, 0,+),
provides an expressive and yet surprisingly economic calculus to specify
the quantitative stabilisation behaviour of synchronous programs. This
is both a new application of SGD and a new way of looking at the
constructive semantics of synchronous programming languages. We pro-
vide the first purely algebraic semantics of timed synchronous reactions
which adapts the semantics of Esterel to work on general concurren-
t/sequential control-flow graphs. We illustrate the power of the algebra
for the modular analysis of worst-case reaction time (WCRT) character-
istics for time-predictable reactive processors with hardware-supported
multi-threading.

1 Introduction

Synchronous control-flow programming (SCP) extends standard imperative pro-
gramming by deterministic concurrency. This is achieved by forcing threads to
execute under the control of a logical clock in lock-step synchronisation, thereby
generating a sequence of global macro steps, also called logical instants or clock
ticks. During each tick, threads use signals to communicate with each other. In
contrast to shared variables, signals are accessed using a synchronisation proto-
col which makes all writes to a signal happen before any read and the value read
to be a value uniquely combined from the values written. Programs that cannot

2 M. Mendler et al.

be scheduled in this way, tick by tick, are detected at compile-time and rejected
as non-constructive. Synchronous programs can be compiled into sequential C
code, hardware circuits for parallel execution or multi-threaded assembly code.

The physical time spent by the running threads to compute the tick reaction
is functionally immaterial, because of the clock synchronisation. The functional
semantics of SCP is fully captured by the synchronous composition of Mealy ma-
chines. The physical timing of a module can be ignored until it is compiled and
mapped to an execution architecture. Then it becomes crucial, however, since
the worst-case reaction time (WCRT) determines the correct physical synchro-
nisation of the compiled modules and the environment. This WCRT value gives
the maximal frequency of the clock and the minimal length of a reaction cycle.
Assuming an implementation on clocked instruction set processors, the purpose
of the WCRT analysis is to determine, at compile time, the maximal number of
instruction cycles in any tick.

This paper extends previous work by the authors [23, 22, 24, 29, 1] on the
WCRT analysis of imperative multi-threaded SCP code running on Precision-
timed (PRET) architectures. It discusses the Skolem-Gödel-Dummett intuition-
istic logic SGD[X] of formal power series for the cycle-accurate modelling of
sequential and concurrent program behaviour. Formal power series arise from
adjoining an abstract variable X to build polynomials. This is the first time
that SGD[X] is presented as a component model, exploring its applications for
modular analysis and timing abstractions to trade efficiency and precision. The
power of SGD[X] is shown using the Esterel program in Fig. 1 as case study.

We believe the algebraic approach for WCRT analysis of SCP can be an
elegant and powerful alternative to other more combinatorial techniques, such
as those based on graph traversal [4, 23], state exploration [17, 31], implicit path
enumeration with integer linear programming (ILP) solving and iterative nar-
rowing [15, 16, 30, 25] or timed automata [28]. The advantage of SGD[X] algebra
over combinatorial definitions of WCRT is that it combines timing and func-
tional specifications in a simple equational calculus. It permits us to study the
timed behaviour of SCP employing standard mathematical tools familiar from
linear and non-linear system theory. The logical interpretation of SGD[X] sup-
ports modular reasoning and timing abstractions at a fine-grained level. Existing
WCRT algorithms may be studied as decision procedures for specialised frag-
ments of SGD[X] algebra.

This paper ties up previous work of the authors spread over different publi-
cations which have not all used the same mathematical setting. By presenting
a single case study, covering many aspects studied separately before, this paper
lays out clearly the theoretical background of our approach in a new and uniform
way. Regarding the practical usefulness of the approach we refer to our other
publications, as cited herein. The relationship with the authors’ previous work
is discussed both as we go along and in Sec. 6.

WCRT Analysis for Synchronous Multithreading 3

1 [% thread G
2 present I then
3 emit R
4 end present;
5 present I else
6 emit S;
7 emit T
8 end present;
9 emit U;

10 ||
11 % thread H
12 weak abort
13 loop
14 pause;
15 emit R
16 end loop
17 when immediate I;
18 present E then
19 halt
20 end present;
21 emit S;
22 nothing;
23]

(a) Module M

↑
E

S
T
U

R

I

S
R
↑

↑

S
T
U

E
I

R

I I
E

(b) Execution Trace

(c) CKAG

L01: T0: PAR 1,G0,1
L02: PAR 1,H0,2
L03: PARE A1

L04: G0: PRESENT I,G1
L05: EMIT R
L06: G1: PRESENT I,G3
L07: GOTO G2
L08: G3: EMIT S
L09: EMIT T
L10: G2: EMIT U

L11: H0: WABORT I,H1
L12: H3: PAUSE
L13: EMIT R
L14: GOTO H3
L15: H1: PRESENT E,H2
L16: HALT
L17: H2: EMIT S
L18: NOTHING

L19: A1: JOIN
L20:

(d) KEP assembler

Tick 1:
L01,L02,L03,
L11,L12,
L04,L06,L08,L09,L10,

L19
Tick 2:
L12,L13,L14,L12

Tick 3:
L12,L13,L14,L12,
L15,L17,L18,L19

(e) KEP sample trace

Fig. 1: A simple Esterel module M with its corresponding control-flow graph and
the resulting KEP Assembler (example from [13]).

4 M. Mendler et al.

2 Esterel-style Multi-threading and WCRT Analysis

A representative example of a high-level SCP language is Esterel [3]. Esterel
signals are either present or absent during one tick. Signals are set to present
by the emit statement and signal state is tested with the present test statement.
They are reset to absent at the start of each tick. Esterel statements can be
either combined in sequence (;) or in parallel (‖). The loop statement restarts
its body when it terminates. All Esterel statements complete within a single
tick, called (instantaneous) termination, except for the pause statement, which
pauses for one tick, and derived statements like halt (= loop pause end), which
pauses forever. Esterel supports multiple forms of preemption, e. g., via the abort
statement, which simply terminates its body when some trigger signal is present.
Abortion can be either weak or strong. Weak abortion permits the execution of
its body in the tick the trigger signal becomes active, strong abortion does not.
Both kinds of abortions can be either immediate or delayed. The immediate
version already senses for the trigger signal in the tick its body is entered, while
the delayed version ignores the trigger signal during the first tick in which the
abort body is entered.

Consider the Esterel fragment in Fig. 1a, which consists of two threads. The
first thread G emits signals R, S, T depending on some input signal I. In any case,
it emits signal U and terminates instantaneously. The thread H continuously
emits signal R, until signal I occurs. Thereafter, it either halts, when E is present,
or emits S and terminates otherwise. The time line seen in Fig. 1b illustrates a
sequence of ticks in which the Esterel program module M in Fig. 1a is activated
twice by its execution context, first in tick 1 and then again in tick 4. Below
the horizontal line we list the input stimulus at each tick and above the line the
reaction output. The arrows indicate when the module is activated (below the
time line) and terminated (above the line).

PRET processing architectures have been proposed as a new class of general
purpose processors for real-time, embedded applications [8, 7, 19, 27]. PRETs are
designed not only to make worst-case execution times predictable, but also to
simplify the derivation of this worst case through careful architectural choices.
There have also been a number of reactive processor designs dedicated to SCP
with instruction set architectures that can express concurrency and preemption
and preserve functional determinism [12]. Here we use the Kiel Esterel Processor
(KEP) [18], which allows a direct mapping from the control-oriented language
Esterel.

The KEP assembly code for our example module M is seen in Fig. 1d. KEP
handles abortion by watchers, which are executed in parallel with their body and
simply set the program-counter when the trigger signal becomes present. Syn-
chronous parallelism is executed by multi-threading. The KEP manages multiple
threads, each with their own program counter and a priority. In each instruction
cycle, the processor determines the active instruction from the thread with the
highest priority and executes it. New child threads are initialised by the PAR
instruction. The PARE instruction ends the initialisation of parallel threads and
sets the program counter of the current thread to the corresponding JOIN. By

WCRT Analysis for Synchronous Multithreading 5

changing the priorities of the threads, using PRIO instructions, arbitrary inter-
leavings can be specified; the compiler has to ensure that the priorities respect
all signal dependencies, i. e., all possible emits of a signal are performed before
any testing of the signal. For all parallel threads one join instruction is executed,
which checks whether all threads have terminated in the current tick. If this is
the case, the whole parallel terminates and the join passes the control to the next
instruction. Otherwise the join blocks. On KEP, most instructions, like emit or
entering an abort block, are executed in exactly one instruction cycle (ic). The
pause instruction is executed both in the tick it is entered, and in the tick it is
resumed, to check for weak and strong abortions, respectively. Note that the halt
instruction is executed in one ic. Priority changing instructions may be treated
like the padding statement nothing, which has no effect other than adding a time
delay.

The KEP assembler’s control flow is represented in the concurrent KEP as-
sembler graph (CKAG) depicted in Fig. 1c. The CKAG is an intermediate rep-
resentation compiled from the Esterel source Fig. 1a which, due to the nature
of the KEP architecture, retains much of the original Esterel program structure.
It is important to observe that the CKAG and the KEP assembler have a very
close and timing-predictable relationship. Hence, the timing of the KEP can be
back-annotated in the CKAG by associating WCRT weights to nodes and edges.
We distinguish two kinds of edges, instantaneous and non-instantaneous. Instan-
taneous edges can be taken immediately when the source node is entered, they
reflect control flow starting from instantaneous statements or weak abortions
of pre-empted statements. Non-instantaneous edges can only be taken in an in-
stant where the control started in its source node, like control flow from PAUSE
statements or strong abortions. The CKAG can be derived from the Esterel
program by structural translation. For a given CKAG, the generation of KEP
assembler (see Fig. 1c) is straightforward [4]. Most nodes are translated into one
instruction, only fork nodes are expanded to multiple instructions to initialise
the threads. In our example, the fork v0 is transformed into three instructions
(L01–L03).

3 Max-Plus Algebra and Skolem-Gödel-Dummet Logic

A standard setting for timing analysis is the discrete max-plus structure over
integers (Z∞,⊕,�, 0, 1) where Z∞ =df Z ∪ {−∞,+∞} and ⊕ is the maximum
and � stands for addition. Both binary operators are commutative, associative
with the neutral elements 0 =df −∞ and 1 =df 0, respectively, i.e., x ⊕ 0 = x
and x � 1 = x. The constant 0 is absorbing for �, i.e., x � 0 = 0 � x = 0.
In particular, −∞ � +∞ = −∞. Addition � distributes over ⊕, i.e., x � (y ⊕
z) = x + max(y, z) = max(x + y, x + z) = (x � y) ⊕ (x � z). This induces on
Z∞ a (commutative, idempotent) semi-ring structure. Multiplicative expressions
x � y are often written x y and � is assumed to bind more strongly than ⊕.
Extending Z to Z∞ weakens the ring structure, because the limit values +∞
and −∞ cannot be subtracted. E.g., there is no x such that x � +∞ = 0.

6 M. Mendler et al.

There is, however, a weak form of negation, the adjugate x∗ = −x which is an
involution (x∗)∗ = x and antitonic, i.e., x ≤ y iff x∗ ≥ y∗. The adjugate satisfies
x � x∗ ∈ {0, 1} and x � x∗ = 1 iff x is finite, i.e., x ∈ Z. The set Z∞ is not
only an adjugated semi-ring but also a lattice with the natural ordering ≤. Meet
and join are x ∧ y = min(x, y) and x ∨ y = max(x, y), respectively. In fact, with
its two limits −∞ and +∞ the order structure (Z∞,≤,−∞,+∞) is a complete
lattice. The operators ⊕, � are monotonic and upper continuous. Note that �
is upper continuous, x �

∨
i yi =

∨
i(x � yi), but not lower continuous. Indeed,

+∞�
∧

i∈Z−i = +∞�−∞ = −∞ 6= +∞ =
∧

i∈Z +∞ =
∧

i∈Z(+∞�−i).
Max-plus algebra is well-known and widely exploited for discrete event system

analysis (see, e.g., [2, 10]). What we are going to exploit here, however, is that Z∞
also supports logical reasoning, built around the meet (min) operation and the
top element of the lattice (Z∞,≤). The logical view is natural for our application
where the values in Z∞ represent activation conditions for control flow points, or
measure the presence or absence of a signal during a tick. Logical truth, > = +∞
indicates a signal being statically present without giving a definite bound. All
other stabilisation values d ∈ Z codify timed presence which are forms of truth
stronger than >. On these multi-valued forms of truth (aka “presence”) the meet
∧ acts like logical conjunction while the join ∨ is logical disjunction. The bottom
element ⊥ = −∞ corresponding to falsity indicates that a signal is absent.

The behaviour of ⊥ and >, as the truth values for static signals follows the
classical Boolean truth tables with respect to ∧ and ∨. However, like � has no
inverse for the limit elements +∞ and −∞, there is no classical complementa-
tion for the finite truth values, i.e., those different from +∞ and −∞. For SCP,
however, negation is important to model data-dependent branching, priorities
and preemption. As it happens, there is a natural pseudo-complement, or im-
plication ⊃, turning the lattice Z∞ into an intuitionistic logic, or which is the
same, a Heyting algebra [5]. The implication ⊃ is the residual with respect to
conjunction ∧, i.e, x ⊃ y is the largest element z such that x ∧ z ≤ y. It can be
directly computed as follows: x ⊃ y = y if y < x and x ⊃ y = +∞ if x ≤ y.
Implication internalises the ordering relation in the sense that x ⊃ y = > iff
x ≤ y. Taking x ≡ y as an abbreviation of (x ⊃ y)∧ (y ⊃ x), then two values are
logically equivalent x ≡ y = > iff they are identical x = y. Implication generates
a pseudo-complement as ¬x =df x ⊃ ⊥ with the property that ¬x = > if x = ⊥
and ¬x = ⊥ if x > −∞. There is also a residual operation � of � so that
z� x ≤ y iff z ≤ y� x. This is a weak form of subtraction so that y� x = y− x
if both y and x are finite, y � x = +∞ if y = +∞ or x = −∞ and y � x = −∞
if −∞ = y < x or y < x = +∞. One shows that for all x with x � x∗ = 1 we
have y � x = y � x∗.

The logic (Z∞,>,⊥,∧,∨,⊃) is isomorphic to the Skolem-Gödel-Dummet
logic [6] of the interval [0, 1] ⊂ R, which is decidable and completely axiomatised
by the laws of intuitionistic logic plus the linearity axiom (x ⊃ y)∨ (y ⊃ x). This
logic, which we name5 SGD, has played an important role in the study of logics
intermediate between intuitionistic and classical logic. It has recently received

5 Dummett (1959) calls it LC, yet Skolem (1931) and Gödel (1932) studied LC earlier.

WCRT Analysis for Synchronous Multithreading 7

attention for its applications in Computer Science, notably as a semantics of
fuzzy logic [11], dialogue games [9] and concurrent λ-calculus [14].

For our application of SGD, both its semi-ring (Z∞,⊕,�, 0,1) and intu-
itionistic truth algebra (Z∞,⊥,>,∧,∨,⊃) structure are equally important. The
former to calculate WCRT timing and the latter to express signals and reaction
behaviour. To state that a signal a is present with a worst-case delay of 5 ic we
can write the equation a ⊕ 5 = 5 or the formula a ⊃ 5. That c becomes active
within 5 ticks of both signals a and b being present is stated by the formula
c ⊃ (5� (a∨ b)). Every SGD expression is at the same time the computation of
a WCRT and a logical activation condition.

4 Max-plus Formal Power Series

To capture the behaviour of a program along sequences of macro ticks, we extend
the adjuagated semi-ring Z∞ to formal power series. A (max-plus) formal power
series, fps, is an ω-sequence

A =
⊕
i≥0

aiX
i = a0 ⊕ a1X ⊕ a2X2 ⊕ a3X3 · · · (1)

with ai ∈ Z∞ and where exponentiation is repeated multiplication, i.e., X0 = 1

and Xk+1 = XXk = X � Xk. An fps stores an infinite sequence of numbers
a0, a1, a2, a3, . . . as the scalar coefficients of the base polynomials Xi. An fps A
may model the time cost ai for a thread A to complete each tick i, to reach a
given state A or to activate a given signal A. If ai = 0 = −∞ this means that
thread A is not executed during the tick i, or that a state A is not reachable.
This contrasts with ai = 1 = 0 which means A is executed during tick i with
zero cost, or that the state A is active at the beginning of the tick. If ai > 0
then thread A is executed taking at most ai time to finish tick i, or state A is
reached within ai-time during the selected tick. We evaluate A with X = 1 for
the worst-case time cost A[1] = max {ai | i ≥ 0} across all ticks.

Let Z∞[X] denote the set of fps over Z∞. For a comprehensive discussion of
formal power series in max-plus algebra the reader is referred to [2]. Constants
d ∈ Z∞ are naturally viewed as scalar fps d = d⊕ 0X ⊕ 0X2 ⊕ · · · . If we want
d to be repeated indefinitely, we write an underscore d = d ⊕ dX ⊕ dX2 · · · .
For finite state systems the fps are ultimately periodic. For compactness of no-
tation we write, e.g., A = ⊥:2:1:4 for the ultimately periodic sequence sat-
isfying A = 2X ⊕ 1X2 ⊕ X3B and B = 4 ⊕ XB. The semi-ring and logi-
cal operations ? ∈ {⊕,�,∨,∧,⊃,�} are lifted to Z∞[X] in a tick-wise man-
ner, A ? B =

⊕
i≥0(ai ? bi)X

i and negation is ¬A =
⊕

i≥0 ¬aiXi. For mul-
tiplication � there are two ways to lift. First, the tick-wise lifting A ⊗ B =⊕

i≥0(ai� bi)Xi models multi-threaded parallel composition. It executes A and
B synchronously, adding the tick costs to account for the interleaving of instruc-
tions. The other “lifting” is convolution A � B =

⊕
i≥0
⊕

i=i1+i2
(ai1 � bi2)Xi

modelling a form of sequential composition. A special case is scalar multiplication
d�A =

⊕
i≥0(d� ai)Xi = d⊗A. The structure (Z∞[X],0, 1,⊕,�,⊗,�) forms

8 M. Mendler et al.

a semi-ring for both “multiplications” � and ⊗ and (Z∞[X],⊥,>,∧,∨,⊃,¬) is
a tick-wise Skolem-Gödel-Dummett logic. To stress the logical interpretation we
will denote both as SGD[X] in the sequel.

5 Equational Specification of Synchronous Control-Flow

+ −

H1

v10 emit R

L13

L18

L16

I

v9 pause

v12 present E

v13 halt v11 goto

v8 wabort I

H3L12

H2 L14

H0

L19

v15 nothing

v14 emit S

(a) KEP Assembler Control Flow Graph (CKAG)

1 Esterel Program H:
2 weak abort
3 loop
4 pause;
5 emit R
6 end loop
7 when immediate I;
8 present E then
9 halt

10 end present;
11 emit S;
12 nothing;

(b) Esterel

KEP FRAGMENT H
L11: H0: WABORT I,H1
L12: H3: PAUSE
L13: EMIT R
L14: GOTO H3
L15: H1: PRESENT E,H2
L16: HALT
L17: H2: EMIT S
L18: NOTHING

(c) KEP assembler

Fig. 2: The synchronous thread H.

We now go on to illustrate the application of SGD[X] to specify the se-
quential control flow of our running example in Fig. 1a. We first focus on the
thread H consisting of the fragment of nodes v8–v15, seen in Fig. 2. All edges
are instantaneous except the edge L13 out of v9, see below.

Let us assume that each of the basic instructions take 1 instruction cycle
(ic) regardless of how they are entered or exited. This is a simplification of
the situation in the KEP processor where the delays may be different. We also
generally assume in this paper that the code has been checked for causality and
that the control flow respects the signal dependencies. This means for the timing
of signal communication that input signals may be treated as static booleans,
satisfying the axiom ¬¬a = a, or equivalently a ∨ ¬a = >, for a ∈ {E, I}.

We calculate the time delay to reach a given node A from H0 for each tick.
More specifically, let V the set of control primitive variables and A ∈ V. We
identify A with the fps specifying the instants in which the control flow reaches

WCRT Analysis for Synchronous Multithreading 9

the control point A. The timing value A[i] at tick i then is the maximal waiting
time to reach A in tick i. If A[i] = ⊥ = −∞ then A cannot be reached in this
tick. If we are not interested in the time when A is activated but only whether
it is reached, then we use the double negation ¬¬A. This abstracts from the
absolute costs and reduces A to a purely boolean clock. Sometimes it is useful to
abstract not to a boolean but an arithmetic clock that is 1 when A is present and
⊥ when it is absent. This collapse is done by the operation tick(A) = 1 ∧ ¬¬A.

From Fig. 2 we see that edge L12 is reached instantaneously in each tick in
which control reaches the start edge H0, and this is the only way in which L12
can be activated. This can be expressed by the equation

L12 = 1�H0 = 1⊗H0. (2)

In each tick, the activation time of L12 is 1 instruction cycle (ic) larger than that
of the upstream edge H0. The conditional branching through node v12 depends
on the status of (static) signal E. In forward direction, the node v12 is:

H2 = (1�H1) ∧ ¬E L16 = (1�H1) ∧ E (3)

The left equivalence states that H2 is active in a tick at some ic t iff E is absent
and H1 was active 1 ic earlier. Analogously, L16 is active iff H1 was active one
ic before and E is present. Algebraically, the equalities can be used to compute
H2 and L16 from H1 and E.

Next, consider the pause node v9. It can be entered by two controls, the line
number L12 and the program labelH3 and left via two exits, a non-instantaneous
edge L13 and an instantaneous exit H1 (weak abortion). When a thread enters
v9 then either it terminates the current tick inside the node if I is absent or
leaves through the weak abort H1 if I is present, thereby continuing the current
tick, instantaneously. A thread entering v9 never exits through L13 in the same
tick. On the other hand, if a thread is started (resumed) from inside the pause
node v9 then control can only exit through L13. Algebraically, we specify the
pause node as follows:

H1 = (1� (L12⊕H3)) ∧ I (4)

L13 = 1�X � tick(¬I ∧ ¬¬(L12⊕H3)) (5)

Equation (4) captures that if a set of schedules activates H1 then signal I must
be present and one of L12 or H3 must have been activated 1 ic earlier. Since
we are interested in the worst-case we take the maximum. Equation (5) deals
with the non-instantaneous exit L13 from the pause. The control flow must first
pause inside node v9. This happens in each tick in which one of L12 or H3 is
reached and I is absent. These instants are specified with boolean coefficients
by the sub-expression C = ¬I ∧ ¬¬(L12 ⊕ H3). The operator tick translates
these pausing instances into the neutral element for sequential composition �.
Specifically, tick(C) = 1 ∧ ¬¬C forces a coefficient C = > = +∞ describing
presence to become tick(C) = 0. On the other hand, C = ⊥ = −∞ for absence
remains unchanged, tick(C) = ⊥. Finally, the delay 1�X shifts the whole time

10 M. Mendler et al.

sequence by one instant and adds a unit delay. This unit delay is the cost of
exiting the pause node at the start of the next tick.

The second node with memory behaviour in thread H of Fig. 2 is the halt
node v13. Once control flow reaches v13 it pauses there forever. Using the aux-
iliary controls in(v13) and out(v13) for pausing inside v13 and resuming from it,
respectively, we get

in(v13) = 1� (L16⊕ out(v13)) out(v13) = 1�X � tick(in(v13)). (6)

The left equation specifies the external entry L16 and the fact that exiting the
pause immediately re-enters, with 1 ic delay. The right equation states that if
the pause is entered it is left in the next tick. Finally, here is the remaining part
of H’s sequential control flow:

L14 = 1� L13 H3 = 1� L14 (7)

L16 = 1� (H1 ∧ E) L18 = 1�H2 L19 = 1� L18. (8)

Well, not quite, we are missing the output signals emitted into the environment.
Output responses are generated by thread H in nodes v10 and v14 as implications

R ⊃ 1� L13 S ⊃ 1�H2 (9)

assuming a unit delay between activating the emission statement and the ap-
pearance of the signal. The implications express only upper bounds R ≤ L13+1
and S ≤ H2 + 1 on the emission of signals R and E. This permits other threads
concurrent to H also to emit them, possibly at an earlier time.

The equations (2)–(8) form a recursive equation system with independent
variables H0, I and E. The recursive dependency of variables L13, L14 and
H3 on themselves is guarded by the X operator. Hence, for each fixed choice
of the independents H0, I and E, all the dependents L12–L19 and H1–H3 can
be solved uniquely. Let us go though the motions to see how this works. To
power up the system as in example trace Fig. 1b we activate the start control
H0 in the first and again in the fourth tick, with initial delay of 3 to account
for the upstreaming fork, H0 = 3:⊥:⊥:3:⊥. Signal I is absent initially and then
present every second instant, and E is present every fourth tick, I = ⊥:⊥:(>⊕I)
and E = >:⊥:⊥:⊥:E. Note that ¬I = >:>:(⊥:> ∧ ¬I) = >:>:⊥:>:(⊥:> ∧ ¬I).
First, it follows L12 = 1 �H0 = 4:⊥:⊥:4:⊥. From (7) we get H3 = 1 � L14 =
1� 1� L13 = 2� L13 and so equation (5) becomes

L13 = f(L13) = 1�X � tick (¬I ∧ ¬¬(4:⊥:⊥:4:⊥⊕ (2� L13))). (10)

This is solvable by least fixed point iteration starting with L130 = ⊥ for which
we get L131 = f(L130) = ⊥:1:⊥:⊥:1:⊥. The second iteration through (10)
yields L132 = f(L131) = ⊥:1:1:⊥:1:⊥ which is already the fixed point, L13 =
L132 = f(L132). The solution L13 = ⊥:1:1:⊥:1:⊥ corresponds to the trace in
Fig. 1b with the WCRT value guaranteeing L13 is always reached 1 ic after the
beginning of the tick. The closed solution for L13 generates a closed solution

WCRT Analysis for Synchronous Multithreading 11

for L14 and H3 by simple substitution, viz. L14 = 1 � L13 = ⊥:2:2:⊥:2:⊥
and H3 = 1 � L14 = ⊥:3:3:⊥:3:⊥. Similarly, we obtain H1 from (4), H1 =
1 � (I ∧ (L12 ⊕H3)) = ⊥:⊥:4:⊥:4:⊥. Indeed H1 is activated exactly in ticks 2
and 4 with a delay of 4. Since E is absent in tick 2 but present in tick 4, control
moves to H2 the first time and to L16 the second time: The equations give
H2 = 1 � (H1 ∧ ¬E) = 1 � (⊥:⊥:4:⊥:4:⊥ ∧ ⊥:>:>:>:¬E) = ⊥:⊥:5:⊥. Finally,
for L16 we have L16 = 1� (H1 ∧ E) = ⊥:⊥:⊥:⊥:5:⊥.

To sum up, equations (2)–(8) describe the cycle-accurate semantics of thread
H in Fig. 2. It is timing and causality sensitive and fully parametric in envi-
ronment signals. Note that the algebraic specification method outlined in this
section is completely uniform and generalises to arbitrary CKAG concurrent
control-flow graphs.

5.1 WCRT Component Model

out(σj)

in(σj)

b
d

c

a

T

ξk

ζi

Fig. 3: The four types of thread
paths: through path (a), sink
path (b), source path (c), inter-
nal path (d) (taken from [23]).

The specification technique described above
is fully expressive for Esterel-style syn-
chronous control flow. It is compositional
at the level of the primitive controls of the
flat control flow graph. It is not modular,
however, as it does not permit structural
abstraction. An axiomatic specification lan-
guage that permits behavioural abstraction
for timed synchronous components, called
(first-order, elementary) WCRT-interfaces
has been proposed in [23]. It is based on real-
isability semantics for constructive logic and
was formalised in [22]. These interfaces cap-
ture the purely combinational behaviour CK-
AGs, i.e., single ticks. They do not describe
the sequential dependencies across sequences
of ticks. By translating the model of [23, 22]
into SGD[X] algebra we now extend WCRT interfaces for a full semantics of
synchronous components.

The key for modularity is to move from primitive control variables V to a
description based on (synchronous) reactive blocks. Fig. 3 depicts a program
fragment T abstracted into a reactive block with entry and exit controls. The
paths inside T seen in Fig. 3 illustrate the four ways in which a reactive block
may participate in the execution of a logical tick: Threads may (a) arrive at some
entry control ζi, pass straight through the block and leave at some exit control
ξk; (b) enter through ζi but pause inside in some state control in(σj), waiting
there for the next tick; (c) start the tick inside the block from a state out(σj)
and eventually (instantaneously) leave through some exit control ξk, or (d) start
and pause inside the block, not leaving it during the current tick. These paths
are called through paths (a), sink paths (b), source paths (c) and internal paths
(d), respectively.

12 M. Mendler et al.

Each block T is described by a multi-dimensional WCRT system function in
SGD[X] viewing it as a Mealy automaton over control variables. Let us suppose
for the moment, that the block T has only one entry ζ, one exit ξ and one
state control σ. The system function for such a block is given as a forward
transformation matrix T which connects the logical interface controls in the
{⊕,⊗}-fragment of SGD[X]:(

ξ
in(σ)

)
= T ⊗

(
ζ

out(σ)

)
=

(
T.thr T.src
T.snk T.int

)
⊗
(

ζ
out(σ)

)
(11)

All entries of the matrix are logical time series describing the tick-wise WCRT
behaviour on the four types of control paths: T.thr for the through path, T.snk
for the sink paths, T.src for the source paths and T.int for the internal paths.
Blocks T with more than one entry, exit or state controls have a system matrix
T with more columns and rows, accordingly. Unfolding the matrix multiplica-
tion (11) we get the SGD[X] equations

ξ = (T.thr ⊗ ζ)⊕ (T.src ⊗ out(σ)) (12)

in(σ) = (T.snk ⊗ ζ)⊕ (T.int ⊗ out(σ)) (13)

The equation (12) determines the timing at exit ξ as the tick-wise worst-case
⊕ of two contributions, those activations arriving from entry ζ increased by
the weight of the through path T.thr and those arriving from a state control
out(σ) inside T increased by the weight of the source path T.src. The increase
is achieved by ⊗ in SGD[X] which is the tick-wise addition � in SGD. In an
analogous way, equation (13) captures the activities arriving at the state control
in(σ) which may also come from entry ξ or a state out(σ). It is useful to split (11)
column-wise(

ξ in(σ)
)ᵀ

= (
(
T.thr T.snk

)ᵀ ⊗ ζ) ⊕ (
(
T.src T.int

)ᵀ ⊗ out(σ)). (14)

thereby obtaining what are called the surface and depth behaviours T.srf =(
T.thr T.snk

)ᵀ
and T.dpt =

(
T.src T.int

)ᵀ
, which can be manipulated sepa-

rately.
The equation (11) expresses the purely combinational behaviour of T . The

passage from one tick to the next arises by coupling out(T) and in(T) through
the register equation

out(T) = 1�X � tick(in(T)). (15)

Note the generality of the pseudo-linear system model (11). All matrix entries
T.thr , T.src, T.snk , T.int and the input and output variables ζ, out(σ), ξ and
in(σ) may be arbitrary SGD[X] expressions involving arithmetical and logical
operators. For instance, the main thread T of Fig. 1c has state control such as
¬L11∧ in(v9), capturing ticks in which child H is pausing in node v9 while child
G has already terminated in a previous tick, whence L11 has value ⊥, and a
fortiori, all other nodes v in G satisfy ¬v, too. In this way, the equation (11)
can specify both the temporal and the logical behaviour of block T . This will
become clear in the next section.

WCRT Analysis for Synchronous Multithreading 13

5.2 Module Abstraction

Pseudo-linear specifications like (11) generalise to composite blocks what the
equations (2)–(8) do for primitive controls. The vector formulation can be applied
as a component model at various levels of abstraction.

For instance, take the pause node v9 in Fig. 2 as a primitive block with the
“forward” equations (4) and (5). It has entry controls L12, H3 and exit con-
trols H1 and L13. The auxiliary controls in(v9) and out(v9) express conditions
for pausing inside the node and for exiting it, respectively. As shown below,
equations (4)–(5) induce the surface and depth behaviours v9 =

(
v9.srf v9.dpt

)
with (

H1 L13 in(v9)
)ᵀ

= (v9.srf ⊗
(
L12 H3

)ᵀ
)⊕ (v9.dpt ⊗ out(v9)) (16)

v9.srf =

1 ∧ I 1 ∧ I
⊥ ⊥
¬I ¬I

 v9.dpt =

⊥1
⊥

 . (17)

Notice how the entries combine timing with logical conditions. In particular,
the constant ⊥ indicates where control flows are absent. If we unfold the matrix
multiplications in (16) together with (17) we get the following explicit equations:

H1 = ((1 ∧ I)⊗ L12)⊕ ((1 ∧ I)⊗H3)⊕⊥ out(v9) (18)

L13 = ⊥L12⊕⊥H3⊕ 1 out(v9) (19)

in(v9) = (¬I ⊗ L12)⊕ (¬I ⊗H3)⊕⊥ out(v9). (20)

slightly simplified using the law d⊗ x = d x. The first equation (18) can be seen
as logically equivalent to (4) considering a number of laws, such as ⊥� x = ⊥,
x ⊕ ⊥ = x, (d ⊗ x) ∧ I = (d ∧ I) ⊗ x for static signal I, and that both � and
∧ distribute over ⊕. Also one shows that (19) and (20) in combination with the
register equation out(v9) = 1�X � tick(in(v9)) is the same as (5).

At a higher level of the component hierarchy we can consider thread H in
Fig 2 as a composite block. Its behaviour is given by the global 3x3 matrix L19

in(v9)
in(v13)

 =

5 ∧ I ∧ ¬E 7 ∧ I ∧ ¬E ⊥
2 ∧ ¬I 4 ∧ ¬I ⊥

4 ∧ I ∧ E 6 ∧ I ∧ E 1

⊗
 H0

out(v9)
out(v13)

 (21)

which is the exact behavioural description of H equivalent to the equations (2)–
(8), solely in terms of the external controls and the internal states v9 and v13.

From here we may reduce the complexity and precision in various way. For
instance, we may abstract from the state information, working with a single state
control in(H) = in(v9)⊕ in(v13) and out(H) = out(v9)⊕ out(v13). This collapse
is a “base transformation” achieved by pre- and post-multiplication of H with
suitable matrices. Specifically, the expansions(

L19
in(H)

)
=

(
0 ⊥ ⊥
⊥ 0 0

)
⊗

 L19
in(v9)
in(v13)

 H0
out(v9)
out(v13)

 ≤
0 ⊥
⊥ 0
⊥ 0

⊗ (H0
out(H)

)

14 M. Mendler et al.

permit us to approximate (21) via a 2x2 matrix H1(
L19 in(H)

)ᵀ ≤ H1 ⊗
(
H0 out(H)

)ᵀ
(22)

H1 =

(
5 ∧ I ∧ ¬E 7 ∧ I ∧ ¬E

(2 ∧ ¬I)⊕ (4 ∧ I ∧ E) (4 ∧ ¬I)⊕ (6 ∧ I ∧ E)

)
(23)

56

L5

G2

L7

L6

v1 present I

v2 emit R

v3 present I

v4 goto

v7 emit U

L11

G0

G1

G1

G3

L10

(a) Path Decomposition

v1 present I

v2 emit R

G0

L6 G1

v3 present I

v4 goto

v5 emit S

v6 emit T

G3G2

N1

N2

N3

L11

v7 emit U

(b) Net Decomposition

v5 emit S

v6 emit T

N3’

v1 present I

v2 emit R

N1’

v3 present I

v4 goto

N2’

L6⊕G1

G2⊕G3

G0

L11

v7 emit U

(c) Bundle Decomposition

Fig. 4: Different Structural Decompositions

(a) Path Decomposition

56

L5

G2

L7

L6

v1 present I

v2 emit R

v3 present I

v4 goto

v7 emit U

L11

G0

G1

G1

G3

L10

(a) Path Decomposition

v1 present I

v2 emit R

G0

L6 G1

v3 present I

v4 goto

v5 emit S

v6 emit T

G3G2

N1

N2

N3

L11

v7 emit U

(b) Net Decomposition

v5 emit S

v6 emit T

N3’

v1 present I

v2 emit R

N1’

v3 present I

v4 goto

N2’

L6⊕G1

G2⊕G3

G0

L11

v7 emit U

(c) Bundle Decomposition

Fig. 4: Different Structural Decompositions

(b) Net Decomposition

56

L5

G2

L7

L6

v1 present I

v2 emit R

v3 present I

v4 goto

v7 emit U

L11

G0

G1

G1

G3

L10

(a) Path Decomposition

v1 present I

v2 emit R

G0

L6 G1

v3 present I

v4 goto

v5 emit S

v6 emit T

G3G2

N1

N2

N3

L11

v7 emit U

(b) Net Decomposition

v5 emit S

v6 emit T

N3’

v1 present I

v2 emit R

N1’

v3 present I

v4 goto

N2’

L6⊕G1

G2⊕G3

G0

L11

v7 emit U

(c) Bundle Decomposition

Fig. 4: Different Structural Decompositions

(c) Bundle Decomposition

Fig. 4: Different Structural Decompositions of Thread G

Let us suppose we know that input signals E and I are always opposite values.
The associated invariant I = ¬E and ¬I = E implies x∧I∧¬E = x∧¬E as well
as x⊕ (y∧ I ∧E) = x⊕⊥ = x. In a next step we may decide to give up tracking
signal E, abstracting from its value with the over-approximations x ∧ ¬E ≤ x
and x ∧ E ≤ x. This yields a sequence of approximated behaviours

H ≤ H1 = H2 =df

(
5 ∧ ¬E 7 ∧ ¬E
2 ∧ E 4 ∧ E

)
≤
(

5 7
2 4

)
=df H3. (24)

There are further combinatorial optimisations possible that can be justified al-
gebraically in SGD[X]. For instance, the WCRT algorithm [4] reduces the di-
mensions of the surface and depth behaviours each by one. This exploits the
fact that every schedule reaching in(H) is pausing inside H and thus cannot be

WCRT Analysis for Synchronous Multithreading 15

extended to a longer instantaneous path of H. In other words, all paths that
have length at least 1 � in(H) must be going through L19. Logically, this is
the axiom L19 ⊕ d in(H) = L19 for all d ≥ 1. Under this assumption, the two
systems(

L19
in(H)

)
=

(
5 7
2 4

)
⊗
(

H0
out(H)

)
L19 = (5 7)⊗

(
H0

out(H)

)
are equivalent. This reduces the WCRT specification further from H3 to H4 =(
5 7
)

without loss of precision. The algorithm [4] exploits this interface optimi-
sation aggressively, at all levels. This renders the analysis of parallel composition
particularly efficient, as we shall see in Sec. 5.3.(

L5
G1

)
=

(
1 ∧ I

1 ∧ ¬I

)
⊗G0

L11 =
(
1 1
)
⊗
(
G2
L10

)
(
L7
G3

)
=

(
1 ∧ I 1 ∧ I

1 ∧ ¬I 1 ∧ ¬I

)
⊗
(
L6
G1

)
G2 = 1⊗ L7

L6 = 1⊗ L5

L9 = 1⊗G3

L10 = 1⊗ L9

Fig. 5: Basic blocks v1–v7 of thread G.

In more recent work a different ab-
straction via so-called tick cost au-
tomata (TCA) has been proposed [29].
It abstracts from signal dependen-
cies like [4], but preserves the depen-
dency on state controls. Also, it is
assumed that there are no through
paths Tthr = ⊥ (Moore automaton)
and the unique entry control ζ is
connected to a single state s0 with
zero cost. These restrictions are with-
out loss of generality as they can be
achieved by judicious block decompo-
sition. We can understand TCA in
terms of SGD[X] using abbreviations
in(s) = (in(s0) in(s1) · · · in(sn−1)ᵀ

and out(s) = (out(s0) out(s1) · · · out(sn−1))ᵀ for the state controls vec-
tors. The general system equations then are ξ = Texit ⊗ out(s), and in(s) =
Ttick ⊗ out(s) together with the entry in(s0) = ζ and the register equation
out(s) = X tick(in(s)). These system equations in which Texit and Ttick consist
of scalars Z∞ are solved by numeric fixed point iteration.The work [29] imple-
ments these operations using max-plus algebra and explicit normal form TCAs
representing the ultimately periodic system solutions.

5.3 Module Composition

SGD[X] permits compositional specifications at different abstraction levels using
(max-plus) pseudo-linear transformations. This is the key for dynamic program-
ming techniques and suggests the composition of blocks by matrix multiplication.
Depending on how we apply the algebra we can implement different strategies for
practical WCRT analysis. We illustrate this for our example program in Fig. 1c.
The starting point is the block description of thread G seen in Fig. 5.

16 M. Mendler et al.

Path Decomposition. The naive strategy would be to enumerate all paths
from G0 to L11, sum up the delays on each path and then take the maximum.
Each of these paths defines a sub-graph of G with specific side-inputs and side-
outputs. For instance, path p1 as indicated in Fig. 4a has the side-outputs G1,
G3 and side-inputs G1, L10. Its SGD[X] reaction function

(
G1 G3 L11

)ᵀ
=

D1 ⊗
(
G0 L10 G1

)ᵀ
has the system matrix in Fig. 6.

D1 =

 1 ∧ ¬I ⊥ ⊥
3 ∧ I ∧ ¬I ⊥ 1 ∧ ¬I

5 ∧ I 1 3 ∧ I

Fig. 6: System matrix for path p1.

The entries measure if and how p1
connects the respective controls. For in-
stance, the entry 3 ∧ I ∧ ¬I is the delay
between input G0 and output G3. This
segment (see Fig. 4a) has delay 3 but is
only sensitisable if signal I is simultane-
ously present and absent. This is impossi-
ble since 3∧ I ∧¬I = ⊥. The entries ⊥ in
D1 capture that there is no causal control flow from the corresponding input to
the corresponding output line. D1 can be obtained by successively multiplying
(in fps max-plus algebra) the timing matrices of the individual nodes traversed
by p1.

If we are not interested in all combinations of side-inputs and side-outputs
we can reduce the matrix D1. The side-inputs G1 and L10 are eliminated

by selecting only the first column of D1, i.e., D′1 = D1 ⊗
(
0 ⊥ ⊥

)T
, so that(

G1 G3 L11
)T

= D′1 ⊗G0. Getting rid of the side-outputs G1 and G3 is not so
simple. We cannot simply drop the rows and write L11 = (5 ∧ I) ⊗ G0. This
would be unsound since not every execution of path p1 exiting from L11 must
necessarily originate in G0 and imply that I is present. What is correct, is to
say that L11 is equivalent to (5 ∧ I)⊗G0 if neither side-output G1 or G3 ever
becomes active is the set of control flows determining the WCRT. Formally, this
is (¬G1 ∧ ¬G3) ⊃ (L11 = (5 ∧ I)⊗G0). Calculating all other paths through G
in a similar fashion finally obtains:

p1 : (¬G1 ∧ ¬G3) ⊃ (L11 = D′′1 ⊗G0) D′′1 = (5 ∧ I) (25)

p2 : (¬L5 ∧ ¬G3) ⊃ (L11 = D′′2 ⊗G0) D′′2 = (4 ∧ I ∧ ¬I) (26)

p3 : (¬G1 ∧ ¬L7) ⊃ (L11 = D′′3 ⊗G0) D′′3 = (6 ∧ I ∧ ¬I) (27)

p4 : (¬L5 ∧ ¬L7) ⊃ (L11 = D′′4 ⊗G0) D′′4 = (5 ∧ ¬I). (28)

The path schedules (25)–(28) can now be woven together in SGD[X] algebra to
obtain the final result L11 = D ⊗G0 where D = D′′1 ⊕D′′2 ⊕D′′3 ⊕D′′4 = 5. For
this we exploit, among other laws, that I ∧ ¬I = ⊥, I ⊕ ¬I = > as well as that
xi ⊃ (L11 = yi) implies ⊕ixi ⊃ (L11 = ⊕yi), and the equation

(¬G1 ∧ ¬G3)⊕ (¬L5 ∧ ¬G3)⊕ (¬G1 ∧ ¬L7)⊕ (¬L5 ∧ ¬L7) ≡ >.

The latter is a consequence of the fact that G is single-threaded: Each activation
must make a split decision for either exit L5 or G1 at node v1 and for either L7
or G3 at node v3.

WCRT Analysis for Synchronous Multithreading 17

Weaving Nets. WCRT analysis by path enumeration, though sound, is of
worst-case exponential complexity. A more efficient way of going about is to ex-
ploit dynamic programming. In the following we illustrate this process in SGD[X]
algebra using the net decomposition of G seen in Fig. 4b. The strategy is to prop-
agate WCRT information forward through G, composing sub-nets N1, N2, N3
rather than paths.

We obtain the system matrix of N1 first by combining the matrices of v1 and
v2 from Fig. 5. To compose them we first lift v2 as an equation in L5 and G1 to
get L6 = 1L5 ⊕ ⊥G1 =

(
1 ⊥
)
⊗
(
L5 G1

)ᵀ
. Since G1 =

(
⊥ 0
)
⊗
(
L5 G1

)ᵀ
we

can compose with equation v1:(
L6
G1

)
=

(
1 ⊥
⊥ 0

)
⊗
(
L5
G1

)
=

(
1 ⊥
⊥ 0

)
⊗
(

1 ∧ I
1 ∧ ¬I

)
G0 =

(
2 ∧ I

1 ∧ ¬I

)
G0. (29)

In a similar fashion one obtains the specifications of sub-blocks N2 and N3:(
G2
G3

)
=

(
2 ∧ I 2 ∧ I

1 ∧ ¬I 1 ∧ ¬I

)
⊗
(
L6
G1

)
L11 =

(
1 3
)
⊗
(
G2
G3

)
. (30)

If we compose the three sub-nets N1, N2, N3 in sequence, our schedule of G all
the way from entry point G0 to exit L11 is complete:

L11 =
(
1 3
)
⊗
(

2 ∧ I 2 ∧ I
1 ∧ ¬I 1 ∧ ¬I

)
⊗
(

2 ∧ I
1 ∧ ¬I

)
G0 = 5G0. (31)

This is indeed the weight of the longest path p3 through G.

Bundling Abstractions. There are of course other ways of arriving at the
WCRT, corresponding to different network decompositions of G. It is also pos-
sible to condense the timing information by bundling the inputs and outputs
of N1, N2, N3 before they are composed. For instance, one might decide to
compress the system equation for N1 into a single entry-exit delay N1′ specified
as L6 ⊕ G1 = dG0 which gives the maximal delay d for an execution entering
through G0 to come out at L6 or G1, without distinguishing between paths
exiting on L6 and those exiting on G1. This is applied also to N2 and N3 as
indicated in Fig. 4c.

Algebraically, this compression is justified for N1 by pre-composing with(
0 0
)

which yields L6⊕G1 =
(
0 0
)
⊗
(
L6 G1

)ᵀ
=
(
0 0
)
⊗
(
2 ∧ I 1 ∧ ¬I

)ᵀ⊗G0 =
(2 ∧ I ⊕ 1 ∧ ¬I) ⊗ G0. For N2 and N3 we also need compression on the input
side. For N2 this is possible without losing precision and for N3 we need the
approximation

(
G2 G3

)ᵀ ≤ (0 0
)ᵀ⊗(G2⊕G3). We get approximations N2′ and

N3′ from (29) and (30):

G2⊕G3 =
(
0 0
)
⊗
(

2 ∧ I 2 ∧ I
1 ∧ ¬I 1 ∧ ¬I

)
⊗
(
L6
G1

)
= (2 ∧ I ⊕ 1 ∧ ¬I)(L6⊕G1)

L11 =
(
1 3
)
⊗
(
G2
G3

)
≤
(
1 3
)
⊗
(

0
0

)
(G2⊕G3) = 3 (G2⊕G3).

Composing N1′, N2′, N3′ is more efficient than composing N1, N2, N3 since
it involves only scalars rather than matrices.

18 M. Mendler et al.

Parallel Composition and WCRT Analysis. The main thread T in Fig. 1c
is the parallel composition of threads G and H, synchronised by the fork and join
nodes v0 and v16, respectively. Even without reducing threads G and H to their
externally observable system functions (21) and (31) we can compose them in
parallel. All we need are equations for the fork and join nodes. The fork node v0
activates both G0 and H0, when it is reached, taking 3 ics (2 PAR and 1 PARE,
see Fig. 1d): (

G0 H0
)ᵀ

=
(
3 3
)ᵀ ⊗ T0. (32)

The join node v16 becomes active as soon as one of G or H reaches its termination
control. The join finishes its activity in the tick when both have arrived. It then
passes control and reactivates the parent at L20. At each input L11, L19 the
join behaves like a synchroniser with latching behaviour. We define the operator
sync(C,R), which waits for C to become active at which point it inherits the
cost of C. From the next tick onwards it takes a constant cost6, say 2 ics, until
it is reset by R. This leads to the recursive definitions

sync(C,R) = ¬XR ∧ (C ⊕X(2 ∧ ¬¬sync(C,R))) (33)

L20 = sync(L11, L20)⊗ sync(L19, L20) (34)

where L20 adds up the delays from both threads by ⊗ in line with the multi-
threading model of execution.

The equations (32)–(34) for fork and join are a surprisingly simple and com-
positional way of specifying timed concurrent structures. To illustrate let us
revisit our sample simulation from Sec. 5 (see also Fig. 1b). The threads G and
H arrive at their termination points with L11 = 6:⊥:⊥:6:⊥ and L19 = ⊥:⊥:7:⊥,
respectively. Thread G terminates in tick 1 and 4 while H finishes only in tick
3. The cost arising from synchronising G is sync(L11, L19) = 6:2:⊥:6:2 which is
6 at G’s first termination time, then 2 while waiting for H, again 6 at the next
re-entry in tick 4, when G terminates a second time. But since then H never
terminates, the join stays active, generating cost 2 in each subsequent tick. On
the other side we have sync(L19, L11) = ⊥:⊥:7:⊥, which is the completion time
for H. There are no extra cost as H does not need to wait for G. The output of
the join has cost L20 = ⊥:⊥:9:⊥ which at termination in tick 3 combines the 7
ic cost from H plus 2 ic overhead for the join.

We are now nearly complete with our story. The equations tells us for each
stimulation environment and control v ∈ V if and when v is reachable in any tick.
The equations can be used for formal analysis, compiler verification, program
transformations, timing-accurate simulation or even directly for implementation.

Here we are interested in obtaining the total WCRT of a program. When
concurrency is present, the WCRT of a thread t is not the WCRT of any single
control, but the WCRT of a set of controls. It is the worst case cost, over all ticks,
of any set of controls that are potentially concurrent in t. A set of controls C ⊆ V
6 In the KEP processor the join is executed at each tick until both threads have

terminated, during which time it invokes some constant overhead cost.

WCRT Analysis for Synchronous Multithreading 19

is concurrent, written conc(C), if all its elements belong to different child threads.
For instance, {L11, L14} is concurrent but {L6, L11} is not. Concurrent controls
execute in independent KEP hardware threads which are interleaved, whence
their costs are added. In the search for such C we may restrict to the completion
controls cmpl(t) of a thread t. These are the controls in which t may terminate
or pause. For instance, cmpl(G) = {L11} and cmpl(H) = {in(v9), in(v13), L19}.
For parent threads these must be included, i.e., we have cmpl(T) = cmpl(G) ∪
cmpl(H)∪{L20}. The control L20 describes the situations in which T terminates.
The controls in cmpl(G) are concurrent to those in cmpl(H) and vice versa. None
of them is concurrent with L20 which happens in their parent.

The worst case reaction time wcrt(t) of a synchronous program t the maximal
sum of WCRT of any set of concurrent completion controls in any tick,

wcrt(t) = max {(
⊗
v∈C

v)[1] | C ⊆ cmpl(t), conc(C)}, (35)

where (
⊗

v∈C v)[1] = max {
⊗

v∈C v(i) | i ≥ 0} = max {
∑

v∈C v(i) | i ≥ 0}.
Explicit solutions of (35) are non-trivial as it maximises over an infinite number
of ticks i and choices of sets C whose number may grow exponentially with the
number of threads. We do not know of any algorithm to solve (35) in its general
form, yet solutions exist for special cases.

For normal clock-guarded synchronous programs the fps v are rational and
thus can be represented as finite input-output tick cost automata, called IO-
BTCA [24]. A given sum

⊗
v∈C v of controls can then be obtained by synchronous

composition of automata. This is a well-understood construction, though it re-
quires symbolic reasoning on boolean signals and is subject to the state-space
explosion problem. The period (number of states) in the fps v1 ⊗ v2 may be the
product of the periods of v1 and v2. The automata-theoretic approach has been
explored in [26] for timed concurrent control flow graphs TCCFGs (similar to
CKAGs) using UPPAAL, but it does not scale well.

The situation is simpler for autonomous systems without input signals, which
reduce to ultimately periodic sequences over Z∞. Any IO-BTCAs can be over-
approximated to an autonomous system, called tick cost automaton TCA, by
eliminating signal dependencies, as discussed in Sec. 5.2, replacing each reference
to a signal S or its negation ¬S by >. Such approximations are sound but
ignore inter-thread communication. The advantage is that the autonomous case
of (35) can be translated into an (0/1) ILP. This implicit path enumeration
(IPE) technique for WCRT analysis yields much better results [30] compared to
the automata-theoretic approach.

The IPE approach has been considered the most efficient technique for au-
tonomous approximations until recently, when explicit algebraic solutions for (35)
have been attempted. In [24] it is observed that for the natural class of so-called
patient TCA the computation of the normal form for each v is polynomial. This
reduces the problem of computing the tick-wise additions

⊗
v∈C v for ultimately

periodic sequences v to the tick alignment problem studied in [20, 24] which can
be solved using graph-theoretic algorithms. This has led to significant speed-up

20 M. Mendler et al.

in the original ILP implementation of [30]. Still, even under signal abstraction,
the theoretical complexity of computing the periodic normal form of a control
v ∈ cmpl(T) and solving the tick alignment problem remain open problems.
Rather interestingly, recent experiments implementing the explicit fixed point
construction mentioned in Sec. 5.2 indicate that for autonomous systems both
problems may be polynomial in practice [29], despite the theoretical exponential
blow-up.

The fastest polynomial algorithm to date for solving (35), unsurprisingly,
is also the most over-approximating one. The dynamic programming approach
of [4] not only abstracts from signals but also from state dependencies, as ex-
plained in Sec. 5.2. It bundles all state controls σi of a given program block t
into a single pair out(t) = ⊕iout(σi), in(t) = ⊕iin(σi). The system equation
of t then becomes

(
ξ in(t)

)ᵀ
= Dt ⊗

(
ζ out(t)

)ᵀ
where Dt is a matrix of scalar

constants. With the register equation out(t) = X � tick(in(t)) for the feedback,
the closed solution is attainable in a single fixed point iteration, in O(1) time.
Moreover, the fps for each control v is of the form d0:d1 a delay for the initial
tick and all subsequent ones being identical. Hence the calculation of

⊗
v∈C v is

done in O(1) time, too. Moreover, the fact that each control has only two en-
tries v = v(0):v(1) helps greatly in the maximisation over all C: For each given
i the tick-wise maximum wcrti(t) = max {

⊗
v∈C v(i) | C ⊆ cmpl(t), conc(C)}

can be obtained bottom-up by induction over the thread hierarchy. The rea-
son is that in the maximum wcrti(t) =

⊗
v∈Cmax

v(i) the constituent controls
C′ = Cmax ∩ cmpl(t′) for each child t′ of t are not only concurrent conc(C′), but
necessarily constitute the tick-specific maximum wcrti(t

′) =
⊗

v∈C′ v(i) for the
child, too.

6 Related Work and Conclusions

A rudimentary version of the WCRT interface model has been proposed origi-
nally in [23]. That work focused on the algorithmic aspects of the modular timing
analysis of synchronous programs. It was implemented in the backend of a com-
piler for Esterel, analysing reactive assembly code running on the Kiel Esterel
Processor (KEP). A rigorous mathematical definition of the behavioural seman-
tics of the interface models was presented in [22]. The axiomatic approach of [22]
highlighted the essentially logical nature of the WCRT interfaces. It was shown
how the logical interface language can specify, and relate with each other, stan-
dard analysis problems such as shortest path, task scheduling or max-flow prob-
lems. However, the logical theory developed by [23] and [22] was still restricted to
the modelling of the purely combinational behaviour of a synchronous module,
i.e., its reactive behaviour during a single tick. This yields the worst-case timing
over all states rather than just the reachable ones. In general, this is an over-
approximation of the exact WCRT. The tick dependency of WCRT behaviour,
also called tick alignment, was subsequently studied in [24]. It was observed
that the combinational timing of single ticks can be modelled in max-min-plus
algebra, which is the intuitionistic algebra of SGD. This makes it possible to

WCRT Analysis for Synchronous Multithreading 21

express the timing behaviour of a synchronous module over arbitrary sequences
of clock ticks as formal power series. The composition of synchronous systems
arises from the lifting of SGD algebra to formal power series. The paper [24]
investigates the tick alignment of timing in its pure form, i.e, without signal
communication between concurrent synchronous threads. This induces a form of
data abstraction which reduces the WCRT analysis to the maximum weighted
clique problem on tick aligment graphs. It is shown in [24] how this reduction
permits a considerable speed-up of an existing ILP algorithm that was proposed
earlier. By exploiting the logical expressiveness of SGD algebra, formal power
series can handle not only tick-dependent timing but also signal communication.
This is applied in [29, 1] to obtain the full behavioural semantics of timed and
concurrent synchronous control flow graphs in a structural fashion.

In this paper we revisit this earlier work on WCRT interface algebra and in
doing so combine, for the first time, the algebraic semantics of [24, 29, 1] with the
logical setting of [23, 22]. This is the first timing-enriched and causality-sensitive
semantics of SCP which is modular and covers full tick behaviour. The SGD[X]
equations constitute a cycle-accurate model and can be used for program analysis
and verification. This can also be used to compile Esterel via CKAG control-
flow graphs directly into data flow format. In future work it will be interesting to
explore the possibility of generating hardware circuits and compare with existing
hardware compilation chains for Esterel. On the theoretical side we plan to
study algebraic axiomatisation for SGD[X] and its expressiveness, specifically
its relationship with ILP.

Note that in this paper we apply SGD[X] to intermediate-level control-flow
code which is assumed to be self-synchronised, i.e., free of causality issues. The
code is a scheduled version of a high-level Esterel source program which has
been checked for causality. If this cannot be assumed, a more complex “dual-
rail” algebraic model is needed to capture the constructive semantics of Esterel.
Each signal E = (E+, E−) splits into two SGD[X] series for the positive and
negative signal status separately. Constructive presence of E is E+ > ⊥ while
E− = ⊥ whereas constructive absence is E+ = ⊥ and E− > ⊥. The value
E = (⊥,⊥) expresses that the status of E is unknown. Each logical operation
is an operation on both rails, c.f. the ternary model of [21]). E.g., the negation
¬ in the ternary model is ¬(A+, A−) = (A−, A+) and delay is d � (A+, A−) =
(d � A+, d � A−). For instance, consider an arbitration situation as a classic
example of non-constructiveness: One thread emits signal A on absence of a
signal B and another thread emits B on absence of A. If both emissions are
with delay d > 0, this induces the equations (A+, A−) = (d� B−, d� B+) and
(B+, B−) = (d� A−, d� A+) which imply A+ = 2d� A+ and A− = 2d� A−.
This system has no bounded solution.

Dedication

The first author is indebted to Bernhard Steffen for his long continued guidance
and encouragement both as a friend and mentor. My first training in academic
writing was as a co-author of an article with Bernhard in 1989, when we were

22 M. Mendler et al.

both with the LFCS at Edinburgh University. Some years and many joint rounds
of golf later, I spent a most enjoyable time as a member of the inspiring research
environment which Bernhard had created at Passau University. Bernhard’s sup-
port was not only instrumental for my successful habilitation at Passau. He also
ensured, at the right moment, that I would feel pressured to find a secure per-
manent research job, rather than clinging to yet another limited term position.
Talking research, is was him who suggested me to look to synchronous program-
ming as an application for my work on concurrency theory and constructive
logic. In this way, the work reported here originally started with a far-sighted
vision of Bernhard’s.

Acknowledgements

This work was supported by the German Research Council DFG under grant
ME-1427/6-2 (PRETSY2).

References

1. Aguado, J., Mendler, M., Wang, J.J., Bodin, B., Roop, P.: Compositional timing-
aware semantics for synchronous programming. In: Forum on Specification & De-
sign Languages (FDL 2017). pp. 1–8. IEEE, Verona (September 2017)

2. Baccelli, F.L., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronisation and Lin-
earity. John Wiley & Sons (1992)

3. Berry, G., Cosserat, L.: The ESTEREL Synchronous Programming Language and
its Mathematical Semantics. In: Seminar on Concurrency, Carnegie-Mellon Uni-
versity. pp. 389–448. Springer LNCS 197 (1984)

4. Boldt, M., Traulsen, C., von Hanxleden, R.: Compilation and worst-case reaction
time analysis for multithreaded Esterel processing. EURASIP Journal on Embed-
ded Systems 2008(1) (Apr 2008)

5. van Dalen, D.: Intuitionistic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook
of Philosophical Logic, vol. III, chap. 4, pp. 225–339. Reidel (1986)

6. Dummett, M.: A propositional calculus with a denumerable matrix. Journal of
Symbolic Logic 24, 97–106 (1959)

7. Edwards, S.A., Lee, E.A.: The case for the precision timed (PRET) machine. In:
DAC 2007. San Diego (USA) (June 2007)

8. Edwards, S.A., Kim, S., Lee, E.A., Liu, I., Patel, H.D., Schoeberl, M.: A disruptive
computer design idea: Architectures with repeatable timing. In: Proc. of IEEE
International Conference on Computer Design (ICCD 2009). IEEE (October 2009)

9. Fermüller, C.G.: Parallel dialogue games and hypersequents for intermediate logics.
In: Maier, M.C., Pirri, F. (eds.) TABLEAUX 2003. LNCS 2796, Springer (2003)

10. Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow
networks. In: CODES+ISSS’10. ACM, Scottsdale, Arizona, USA (October 2010)

11. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer (1998)
12. von Hanxleden, R., Li, X., Roop, P., Salcic, Z., Yoong, L.H.: Reactive processing

for reactive systems. ERCIM News 66, 28–29 (Oct 2006)
13. von Hanxleden, R., Mendler, M., Traulsen, C.: WCRT algebra and schedul-

ing interfaces for Esterel-style synchronous multi-threading. Tech. Rep. 0807,
Christian-Albrechts-Univ. Kiel, Dept. of Comp. Sci. (June 2008), http://rtsys.
informatik.uni-kiel.de/~biblio/downloads/papers/report-0807.pdf

WCRT Analysis for Synchronous Multithreading 23

14. Hirai, Y.: A lambda calculus for Gödel-Dummett logic capturing waitfreedom. In:
Schrijvers, T., Thiemann, P. (eds.) Proc. FLOPS 2012. pp. 151–165. LNCS 7294,
Springer (2012)

15. Ju, L., Huynh, B.K., Chakraborty, S., Roychoudhury, A.: Context-sensitive timing
analysis of Esterel programs. In: Proc. 46th Annual Design Automation Conference
(DAC 2009). pp. 870–873. ACM, New York, NY, USA (2009)

16. Ju, L., Huynh, B.K., Roychoudhury, A., Chakraborty, S.: Performance debugging
of Esterel specifications. Real-Time Systems 48(5), 570–600 (2012)

17. Kuo, M., Sinha, R., Roop, P.S.: Efficient WCRT analysis of synchronous programs
using reachability. In: Proc. 48th Design Automation Conference (DAC 2011). pp.
480–485 (2011)

18. Li, X., von Hanxleden, R.: Multi-threaded reactive programming—the Kiel Esterel
Processor. IEEE Transactions on Computers 61(3), 337–349 (Mar 2012)

19. Lickly, B., Liu, I., Kim, S., Patel, H.D., Edwards, S.A., Lee, E.A.: Predictable
programming on a precision timed architecture. In: Proc. Conf. Compilers, Archi-
tectures, and Synthesis of Embedded Systems (CASES’08). pp. 137–146. Atlanta
(USA) (October 2008)

20. Mendler, M., Bodin, B., Roop, P., Wang, J.J.: WCRT for synchronous programs:
Studying the tick alignment problem. Tech. Rep. 95, University of Bamberg, Fac-
ulty for Information Systems and Applied Computer Sciences (August 2014)

21. Mendler, M., Shiple, T., Berry, G.: Constructive boolean circuits and the exactness
of timed ternary simulation. Formal Methods in System Design 40(3), 283–329
(2012)

22. Mendler, M.: An algebra of synchronous scheduling interfaces. In: Legay, A., Cail-
laud, B. (eds.) Proc. Foundations for Interface Technologies (FIT 2010). EPTCS,
vol. 46, pp. 28–48. Paris, France (2010)

23. Mendler, M., von Hanxleden, R., Traulsen, C.: WCRT Algebra and Interfaces for
Esterel-Style Synchronous Processing. In: Proc. Design, Automation and Test in
Europe Conference (DATE 2009). Nice, France (Apr 2009)

24. Mendler, M., Roop, P.S., Bodin, B.: A novel WCET semantics of synchronous
programs. In: In: Formal Modeling and Analysis of Timed Systems (FORMATS
2016). pp. 195–210. Quebec, QC, Canada (August 2016)

25. Raymond, P., Maiza, C., Parent-Vigouroux, C., Carrier, F., Asavoae, M.: Timing
analysis enhancement for synchronous programs. Real-Time Systems 51, 192–220
(2015)

26. Roop, P.S., Andalam, S., von Hanxleden, R., Yuan, S., Traulsen, C.: Tight WCRT
analysis of synchronous C programs. Proc. Compilers, Architecture, and Synthesis
for Embedded Systems (CASES 2009) pp. 205–214 (2009)

27. Schoeberl, M.: Time-predictable computer architecture. EURASIP Journal on Em-
bedded Systems 2009, 2:1–2:17 (2009)

28. Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed automata for the develop-
ment of real-time systems. Computer Science Review 9, 1–26 (2013)

29. Wang, J., Mendler, M., Roop, P., Bodin, B.: Timing analysis of synchronous pro-
grams using WCRT algebra: Scalability through abstraction. ACM TECS 16(5s),
177:1–177:19 (2017)

30. Wang, J.J., Roop, P.S., Andalam, S.: ILPc : A novel approach for scalable tim-
ing analysis of synchronous programs. In: CASES’13. pp. 20:1–20:10. Montreal,
Canada (Sept–Oct 2013)

31. Yip, E., Roop, P.S., Biglari-Abhari, M., Girault, A.: Programming and timing
analysis of parallel programs on multicores. In: Proc. Application of Concurrency
to System Design (ACSD 2013). pp. 160–169. IEEE (2013)

