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Abstract. This paper introduces a novel algebra for reasoning about
step reactions in synchronous languages, such as macro steps in Harel,
Pnueli and Shalev’s Statecharts and instantaneous reactions in Berry’s
Esterel. The algebra describes step reactions in terms of configurations
which can both be read in a standard operational as well as in a model-
theoretic fashion. The latter arises by viewing configurations as propo-
sitional formulas, interpreted intuitionistically over finite linear Kripke
structures. Previous work by the authors showed the adequacy of this ap-
proach by establishing compositionality and full-abstraction results for
Statecharts and Esterel. The present paper generalizes this work in an
algebraic setting and, as its main result, provides a sound and complete
equational axiomatization of step reactions. This yields, for the first time
in the literature, a complete axiomatization of Statecharts macro steps,
which can also be applied, modulo encoding, to Esterel reactions.

1 Introduction

Synchronous languages provide a popular framework for designing and program-
ming event—based reactive systems. Prominent examples of such languages in-
clude Harel’s Statecharts [5], which is a graphical language that extends finite—
state machines by concepts of state hierarchy, concurrency, and event priority,
and Berry’s Esterel [2,3], which is a textual language having similar features to
Statecharts. Today, both languages are supported by commercial tools, including
Statemate [7] and Esterel Studio [4], which mainly focus on generating running
code. The development of semantic—based verification tools is still in its infancy,
partly due to the lack of sufficiently simple compositional semantics.

The semantics of Statecharts, as conceived by Pnueli and Shalev [20], and
of Esterel are based on the idea of cycle—based reaction, where first the input
events, as defined by a system’s environment, are sampled at the beginning of
each cycle, then the system’s reaction in form of the emission of further events
is determined, and finally the generated events are output to the environment.
Statecharts and Esterel differ in the details of what exactly constitutes a cycle,
which is also called a macro step in Statecharts and an instantaneous reaction
in Esterel. Moreover, Esterel refers to events as signals. Both languages have in
common that they obey the semantic principles of synchrony and causality. The
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synchrony requirement reflects the mechanism behind cycle-based reaction and
is mathematically modeled via the synchrony hypothesis. This hypothesis ensures
that reactions and the propagations of events are instantaneous, which is an
idealized system behavior, practically justified by the observation that reactive
systems usually perform much faster than their environments. Causality refers to
the requirement that the reason for an event to be generated in a system reaction
must be traced back to the input events provided by the environment. Esterel
differs from Statecharts in that it further adopts the principles of reactivity and
determinism. Reactivity implies that, in each cycle, a system response in the
form of generated events can be constructed, for any inputs an environment
may provide. Determinism requires for this response to be unique.

This brief discussion highlights the variety of possible choices when defin-
ing a semantics for step reactions, with different choices implying subtly dif-
ferent semantics. Recent research by the authors, aiming at a unifying semantic
framework for synchronous languages, has concentrated on employing ideas from
intuitionistic logic for describing step reactions [12-15]. Intuitionistic logic, in
contrast to classical logic, is constructive and thus truly reflects the operational
character of step reactions in the light of causality: it rejects the classical princi-
ple of the excluded middle, i.e., events are either always present or always absent
throughout a reaction, which cannot be maintained for a compositional seman-
tics that allows the system environment to inject events during a step reaction.
Indeed, our intuitionistic setting has lead to compositional and fully—abstract
characterizations of Statecharts macro steps and Esterel reactions [12, 14].

This paper introduces a simple yet expressive algebra for describing and
reasoning about step reactions in terms of so—called configurations and presents
an equational axiomatization for it. In particular, this gives for the first time
in the literature a sound and complete axiomatization for Statecharts macro
steps, which can also be applied, modulo encoding, to Esterel reactions. The
step algebra’s semantics is inspired by the authors’ previous work and reads
configurations as propositional formulas, interpreted intuitionistically over finite
linear Kripke structures, to which we refer as sequence structures (cf. Sec. 2).
Our axiomatization is then built on top of this algebra (cf. Sec. 3), and its proof
of completeness combines techniques used in process algebras [1] and logics (cf.
Sec. 4); it employs a process—algebraic notion of normal form that in turn is
defined by model-theoretic means. Our axioms have an appealing operational
intuition that shades light on the semantics of step reactions. They also provide
groundwork for an axiomatic comparison of popular synchronous languages.

2 Step Algebra

This section introduces our step algebra for reasoning about those step reactions
that may be specified within event—based synchronous languages. Usually, syn-
chronous languages, such as Statecharts [5, 20] or Esterel [2,3] (with its graphical
front—end SyncCharts), enrich the notation of finite state machines by mecha-
nisms for expressing hierarchy, concurrency, and priority. This allows one to
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refine a single state by a state machine, to run several state machines in paral-
lel which may coordinate each other by broadcasting events, and to give some
transitions precedence over others, respectively.

In event—based synchronous languages, each transition t is labeled by two
sets of events, which are referred to as trigger and action. The trigger is a set
of positive events P and negative events N, taken from a countable universe of
events Ev and their negated counterparts in Ev =4¢ {€ : e € Ev}, respectively.
For convenience, we define @ =4¢ e. Intuitively, ¢ is enabled and forced to fire
if the transition’s environment signals all events in P but none in N. The ef-
fect of firing t is the generation of all events in the transition’s action A C FEw.
These events might in turn trigger transitions in different parallel components,
thus enabling a causal chain reaction whose length is bounded by the number of
parallel components within the program under consideration. A step reaction is
then the set of all events that are already valid at the beginning of the step or
generated during the step. When constructing steps in the suggested operational
manner, it is possible to experience inconsistencies, namely when a firing tran-
sitions generates some event e, whose absence, i.e., its negation e, was assumed
when firing a previous transition in the step. Since an event cannot be both
present and absent within the same step reaction, due to the principle of global
consistency [20], the choice sequence leading to the inconsistency is rejected, and
a different sequence must then be chosen. If no consistent sequence is possible,
the step construction fails altogether. Alternatively, one could also say that the
step construction remains unfinished: it waits for the environment to provide
additional events to disable the transitions that produced the inconsistency.

The semantic subtlety of step reactions arises precisely from the capability of
defining transitions whose enabledness disables other transitions, as well as from
the interpretation of negated trigger events. Thus, the difficulties in defining a
clean semantic account of a synchronous language lie not in the semantics of se-
quences of step reactions but in the semantics of single step reactions, which are
thus the focus of study in this paper. In the light of the above discussion, the key
operators for combining transitions in synchronous languages are parallel com-
position and event negation. State hierarchy is merely a notationally convenient
rather than a semantically relevant operator. Observe that parallel composition
and event negation also allow one to express nondeterministic choice [13]. For ex-
ample, a choice between two transitions P, E/Al and P, E/Ag might be writ-
ten as the parallel composition P;, Ny, /A1, ey || Ps, No,&1/A2, €, where g, es
are distinguished events not occurring in the triggers or actions of the two original
transitions and where the comma notation stands for union, i.e., X, Y =4 XUY
and X,z =g¢ X U {z}.

Syntax. For the purposes of this paper, it is convenient to work with a quite
general syntax for step reactions, which allows us to encode several dialects of
synchronous languages, including Statecharts and Esterel. The terms describing
step reactions, to which we also refer as configurations, are defined inductively

as follows:
c == 0] A|I/C]|C|C,
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where A C FEv and I C EvU Ev. Intuitively, 0 stands for the configuration
with the empty behavior, A C FEv denotes the signaling of all events in A,
configuration I/C' encodes that configuration C' is triggered by the presence
of the positive events in I and the absence of the negative events in I, and
C1]|C> describes the parallel composition of configurations C; and Cs. Observe
that the semantics of configuration 0 coincides with the semantics of A = §;
nevertheless, it seems natural to include 0. For notational convenience, we let
the transition slash / to have higher binding power than parallel composition ||
and interpret a nesting of transition slashes in a right—associative manner. Note
that our syntax does not contain a special failure configuration for expressing
global inconsistency. This could easily be included but can also be encoded as
N/N, if N # 0 is the set of events causing the inconsistency to occur. Finally,
for notational convenience, we often write = for the singleton set {x}.

Fig. 1. Example Statechart

We illustrate our syntax by means of an example. Consider the Statechart
depicted in Fig. 1 and assume that all components are in their initial states
marked by small unlabeled arrows. Then the first Statechart step determining
the initial Statechart reaction, may be encoded in our syntax as the configuration

Cez —df a/b || b,E,%,a/a,@ || 07676_4/0/763 || 576_27%/07 €4 .

Although the main body of this paper focuses on Statecharts, it is worth men-
tioning here that reactions of Esterel programs can be encoded in our syntax
as well. The key idea is to let events encode signal statuses, i.e., to define
Fv =4 {s = 1,s = 0 : s is a signal}, where s = 1 stands for signal s is
present, ‘high’ and s = 0 for s is present ‘low’. The adaptation of the techniques
and results of this paper to Esterel will be discussed in Sec. 5.

Semantics. In order for a semantics on configurations to be useful for the pur-
poses of this paper, it must meet several requirements. First, it must be com-
positional to be axiomatizable, i.e., it must give rise to a semantic equivalence
on configurations that is a congruence. Second, it should be compatible with
existing semantics of the synchronous languages of interest, in particular with
Statecharts and Esterel. Unfortunately, many semantics for synchronous lan-
guages, including the one of Statecharts as originally conceived by Harel, Pnueli
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and Shalev [5,20], are not compositional. Indeed, Huizing and Gerth proved
more than a decade ago that synchrony, causality, and compositionality can-
not be combined in a simple mathematical framework that models reactions as
input—output—functions over event sets [9]. Research by the authors in this field
over the past few years has revealed an appealing model-theoretic framework for
studying Statecharts and Esterel semantics, which is based on reading config-
urations as simple propositional formulas that are intuitionistically interpreted
over finite linear Kripke structures [12-15]. Our model-theoretic approach allows
not only for a compositional semantics but also for establishing full-abstraction
results. This paper generalizes this work in an algebraic setting.

The key idea is to consider a step reaction not as an arbitrary computation
but as a stabilization process, where the synchronous environment is only con-
cerned with the final response, while the system takes care of the actual sequence
of events that leads to the stationary state. The main feature that distinguishes
a stabilization process from an arbitrary computation is that it is a monotoni-
cally increasing approximation of the final step reaction. This means that once
an event from the final step reaction has become present or asserted by the firing
of a transition generating it, the event will remain present until the stationary
state is reached. However, a compositional semantics of synchronous reactions
must also cater for any potential interaction with the environment during the
stabilization. Hence, for event—based languages, a suitable model is given by
monotonically increasing sequences of sets of events M;, for 1 <¢ <n € N,

My, M My M3 Ms Mg M,

¢ B O0---BO0-——P-O-— BP0 — P O——P-O———P-O—— B0 —P-O—— P """ - -

in which external input (solid arrows) alternates with internal reactions (dashed
arrows). In each “external step” M; C M/, the environment injects new events
into the system, making it unstable. In the ensuing “internal steps” M C M;41,
the system responds to the external stimulus along a number of intermediate
stabilization steps (shaded areas) until it reaches the next stationary state M;1.
The synchrony hypothesis abstracts all internal steps into a single instantaneous
step reaction. Thus, when we specify a synchronous system from the external
point of view, we only specify the sequence

My M, Ms M,

e —» ... —

along stationary states. Each global state M; then records not only the input
from the environment but at the same time also all causal reactions of the system
within the same step reaction.

We are now able to formally equip configurations with this intuitive seman-
tics, which can naturally be presented in a model-theoretic fashion. As illustrated
above, we interpret configurations over finite, nonempty, strictly increasing se-
quences M = (M, Ms,...,M,), for n € N and M; C Ev, called sequence struc-
tures. ‘Strictly increasing’ means M; C My, for all 1 < i < n. We say that
M satisfies C, or that M is a sequence model of C, in signs M |= C, if M; EC
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for all 1 < ¢ < n, where

M; =0 always

M, EA if AC M;

M, EI/C if (INEvC M; and (I N Ev)N M, =0) implies M; = C
Mi ': 01”02 Zf Mz ': Cl and Mz ': 02

This definition is a shaved version of the standard semantics obtained when
reading a configuration as a formula in propositional intuitionistic logic [22],
i.e., when taking events to be atomic propositions and replacing € by the nega-
tion —e, concatenation of events in sets and ‘||’ by conjunction ‘A’, and the
transition slash ¢/’ by implication ‘D’. An empty trigger and the configuration 0
are identified with true. Then we have M |= C if and only if C is valid in the in-
tuitionistic Kripke structure M. Note that, for sequence structures M = (M) of
length one, the notions of sequence model and classical model coincide; hence,
intuitionistic logic is a refinement of classical logic and we simply write M,
for (Mj). The utility of intuitionistic logic comes into play when ensuring global
consistency within step reactions. This is because intuitionistic logic interprets
negation globally for a sequence M, and not locally for single states M;. In par-
ticular, M; |= I in intuitionistic logic if I N Ev C M; and I N EvN M, = 0, i.e.,
the final state M, in M determines the absence of events.

Our semantics suggests the following equivalence on configurations. Config-
urations C4,Cy are step congruent, in signs C; ~ C2, if M = Cy & M | Cy
holds for all sequence structures M. From the definition above we can immedi-
ately derive the following proposition.

Proposition 1 (Congruence). The equivalence ~ is indeed a congruence, i.e.,
Cy ~ Cy implies C1||D ~ Cs||D and_I/C'1 ~ I/Cs, for all configurations
C1,C5, D and for all triggers I C EvU Fu.

It was proved in [14] that the step congruence =~ is compositional and fully—
abstract with respect to Statecharts macro—step semantics. In particular, the
macro steps for a configuration C' correspond to those classical models N, for
which no refinement N’ C N satisfying (N',N) |= C exists. Moreover, it is
sufficient to consider sequence structures of length one and two only. If 25M (C)
denotes the sequence models of configuration C' of length at most two, then
Cy ~ Cs if and only if 2SM(Cy) = 25SM(C5) [14]. Finally, our compositional
semantics can be carried over to Esterel, as was shown in [15].

Returning to our example and taking Ev = {a,b,c, ez, e3,e4}, we obtain
({c,eq}), ({a,b,e2}), ({},{a,b,ea}) € 25SM(C.z). The first sequence model of
length one corresponds to the valid Statecharts macro step in which only tran-
sition ¢4 fires. This is witnessed by the fact that (M',{c,es}) ¢ 2SM(C.,), for
any proper subset M’ C {c,es}. However, the second sequence model {a, b, e>}
corresponds to a step reaction where both transitions ¢; and ¢, fire. This is not
a valid Statecharts macro steps since it violates causality; observe that a/b and
b/a “bite in each others tails.” Our semantic framework witnesses this situation
by the fact that ({}, {a, b, e2}) is a sequence model of length two that refines the
one-sequence model, or classical model, {a,b,es}.
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3 Axiomatization

The remainder of this paper presents an axiomatic characterization of our step
congruence. This section first presents our axioms and shows them to be correct.
The next section then proves the axiom set complete.

(A1) h=0 (A2) A|B=AUB

(A3) 0/C =C (A4) I/0=0

(A5) I,,I,/C = I, /(I,/C) (A6)  I/(Ci||Co) = I/Ci||I/Cs
(Bl) Ci||C: = C2||Ch (B2) (C1]|C2)||Cs = C1 ]| (C2]| Cs)
B3) C|c=cC (B4) cllo=c

(C1) P,I/P =0

(C2) c=cl|I/C

(C3) A|lAI/C = A|I/C

(C4) P N/C =0 if PON #£0
(D1) P,N/A = PN/A,B fNNA#D
(D2) P,N/A = P,e,N/A| P,N,g/A fNNA#D
(D3) N/C||P,N/A = |{N,g/C : e€ P}||P,N/A ifNNA#Dand P#0

Table 1. Axioms for the step congruence

Our axioms system is displayed in Table 1, where A, BN, P C Ev, I, I;, I, C
EvUEv, and e € Ev, and where C, C,, Cs, C5 are configurations. We write - C; =
Cs to state that Cy = Cy can be derived from the axioms by standard equational
reasoning. Axioms (A1)—(A6) and (B1)—(B4) are fairly natural and do not need
much operational justification. When taking them together, it is easy to see that
every configuration is equivalent to a flat parallel composition of transitions,
without nested triggers and where ordering and duplication is immaterial. Note
that Axioms (B3) and (B4) can actually be deduced from Axioms (A1)—(A6),
(B1), and (B2), by induction on the structure of C. Because of their fundamental
nature, however, we have included them as first—class axioms.

We concentrate on explaining the remaining, more interesting axioms. Ax-
iom (C1) describes that, if the firing of a transition merely reproduces in its
action some of the events required by its trigger, then we might just as well not
fire the transition at all. Hence, it is equivalent to configuration 0. Axiom (C2)
states that by adding in parallel to a configuration C' a guarded version I/C of
it, the behavior remains unchanged. This is intuitively clear since the extra I/C
component, when and if it fires at all, only produces the behavior encoded by C',
which is already present anyway. Logically speaking, guarding is a weakening
operation. Axiom (C3) is perhaps the most important equation, as it emulates
the firing of transitions. The left-hand side A || A, I/C represents a situation in
which some events A have become present while at the same time there is a
pending transition A, I/C that is waiting, among other preconditions I, for the
events in A. Hence, it is safe to cancel out all dependencies of C' on A and to
replace A, I/C by I/C. Logically, Axiom (C3) is a version of the cut rule. Ax-
iom (C4) deals with inconsistencies in triggers. If a configuration C' is guarded
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by a trigger P, N in which some event is required to be both present and absent,
i.e., PNN # (b, then this guarded configuration will never become active. In this
case, P, N/C is equivalent to the inactive configuration 0.

The remaining Axioms (D1)-(D3) are concerned with conflicts between the
trigger and action parts of a transition. They axiomatize the effect of transitions
that produce a failure under certain trigger conditions. More precisely, these
axioms involve a transition P, N/A with N N A # §, whose firing leads to a
global inconsistency. Such a transition rejects the completion of all macro steps
in which its trigger P, N is true. Thus, since P, N /A can never fire in a consistent,
way, the step construction cannot terminate in a situation in which trigger P, N is
true. In other words, whenever all P have become present, the step construction
must continue until at least one event in NV is present, in order to inactivate the
transition. If this does not happen, the step construction fails. Axioms (D1)—(D3)
formalize three different consequences of this. Axiom (D1) reflects the fact that,
since P, N /A can never contribute to a completed step, if NN A # §, we may add
arbitrary other events B to its action, without changing its behavior. Logically,
this axiom corresponds to the laws e A —e = false and false D B, for any B.
Axiom (D2) offers a second way of reading the inconsistency between triggers
and actions. Since at completion time any event e is either present or absent, the
same rejection that P, N /A produces can be achieved by P,N,e/A|| P, N,e/A.
This is because if e is present at completion time, then P,N,e/A raises the
failure; if e is absent, then P, N,€/A does the job. This is the law ——=(z V —z)
in intuitionistic logic. Finally, consider Axiom (D3) that encodes the following
intuition. Instead of saying that P, N /A generates a failure, if all events in P are
present and all events in N are absent, we might say that, if all events in N are
absent, then at least one of the events in P must be absent, provided the step
under consideration is to be completed without failure. But then any parallel
component of the form N/C, which becomes active on the absence of all events
in IV, can be replaced by the parallel composition [|[{N,&/C : e € P}. The reason
is that, if N'/C fires at all in the presence of transition P, N/A, then at least one
of the weaker transitions N,&/C will be able to fire at some point, depending on
which of the events in P it is that will be absent to avoid failure. Again there is
a logic equivalent for this, namely the intuitionistic law —(p1 A p2) = —p1 V —1ps
that holds for linear Kripke models.

Last, but not least, it is important to note that configuration P, N /A, for
NN A # ), behaves not the same as configuration 0, since the former inevitably
produces a failure if its trigger is true, while 0 does not respond at all, not even
by failure. As expected, all of our axioms can be proved correct.

Theorem 1 (Correctness). Let Cy,Cy be configurations such that b Cy = Cs.
Then, Cy ~ C,.

Proof. The correctness of each of our axioms can be established directly along
our notion of sequence models. However, since this is exactly the standard inter-
pretation of propositional intuitionistic formulas over finite linear Kripke struc-
tures, one may simply employ the wealth of knowledge on intuitionistic logic for
the proof [22].
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Here we only present the proof of Axiom (D2) as an example. First observe
that Axiom (D2) is interderivable with the equivalence N/A = e, N/A| N,e/A
by Axioms (A5) and (A6), whence it suffices to prove the latter. Let M =
(My, Ms,...,M,) be a sequence structure and assume M; = N /A, for all 1 <
i < n. It is trivial to show that, for any choice of e € Ev, we have M; |=e, N/A
and M; |= N,&/A. We thus concentrate on proving the other direction. Suppose
we know that M; |= e,N/A and that M; | N,€/A, for all 1 < i < n and
NN A#{. We claim that M, NN # ), from which M; = N /A follows trivially.
Assume otherwise, i.e., M,, N N = (). Then, since in the final world M,, either
e € M, or e ¢ M, the assumptions M,, = e, N/A and M, = N,e/A would
imply A C M,,. Because of N N A # 0, this contradicts M,, "N =§. O

4 Completeness

This section proves our axiomatization to be complete with respect to the step
congruence ~, i.e., whenever C; ~ C we can transform C; into Cs by equational
reasoning based on our axioms. The proof of completeness employs a notion of
normal form: we first show that every configuration can be rewritten into one
in normal form using our axioms and then establish the desired completeness
result for configurations in normal form. Our notion of normal form is inspired
by our previous studies of the sequence—model semantics of Statecharts and, in
particular, by a characterization of this semantics in terms of semi—lattice struc-
tures [14]. The intuition behind normal forms, however, can also be understood
in isolation.

The purpose of the normal form is to lay out explicitly, in a canonical syn-
tactic form, the behavior offered by a configuration relative to a fixed and finite
set of relevant events. Typically, these are all the events that occur in the con-
figurations we wish to normalize. For simplicity, let us take Ev to be this finite
set; the complement A® = Ev\ A of any set A C Fu is then also finite. A normal
form relative to Ev is a parallel composition of simple transitions

(lier Py Ni/Ai) || (jes E;, B/ Bv) -

The transitions are grouped into two categories, indexed by I and .J, respec-
tively. The former category encodes individual, partial or complete, step reac-
tions, whereas the latter category records the conditions under which the step
construction fails (to complete). A transition P;, N;/A; of the first kind specifies
that, if the events in P; are known to be present and those in NV; are absent, then
A; is one possible reaction of the configuration to P;. A transition Ej,E_J‘?/ Ev of
the second kind enforces that the step construction cannot consistently complete
with just the events in F; present. In order to complete the reaction, at least one
event outside E; must become available as well. In the light of this discussion,
a normal form may thus be seen as a “response table,” where, given a set of
environment, events, one may look up the associated partial or complete step
reaction or learn about immanent failure. This response-table interpretation is
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reflected in a number of structural properties on normal-form configurations,
which are made precise in the following definition.

Definition 1 (Normal form). A configuration C is in normal form, if it has
the shape

(lierPi, Ni/A:) || (ljes E;, E5/ Bv),
where I, J are disjoint finite index sets, E; C Ev, for all j € J; and if it satisfies
the following conditions:

PlgAz andPiﬁNi:Q),foralliEI;

BEC iffVje JB+#E;;

BE=Ciff3ie.B=N¢;

B = C and P C B implies 3i € I.P; = P and B = Nf;
(P, NO)* = Ay, for alli € T with N;NA; =0; and
N:NA; =0, forallieI.

where (P,N)* =4 ({E : (E,N)=C, PCEC N} and B C Ev arbitrary.

S T Lo do N

Conds. (2)—(5) encode structural properties that refer to our model-theoretic
semantics. It is through these that the normal form obtains its essential semantic
nature. The other conditions, Conds. (1) and (6), are simple local consistency
requirements. Note that the side condition N;NA; = 0 of Cond. (5) is redundant
due to Cond. (6); however, its presence will simplify matters later.

Proposition 2 (Normalization). For every configuration C there ezists a
configuration C' in normal form such that - C = C'.

Proof. Let C be an arbitrary configuration. Because of Axioms (A3)-(A6) we
may assume without loss of generality that C' is given as a flat parallel compo-
sition of simple transitions P, N¢/A. We will rewrite C' using our axioms in six
steps, obtaining configurations C}, for 1 < i < 6, such that C; satisfies normal—
form Conds. (1) through (¢). We say that C; is in 4—normal form, or i—nf for short.
At each stage we define the J—part of C; to be the collection of all transitions of
the form B, B¢/Ev, where B C Ev. All other transitions make up the I-part. In
this way each C; naturally splits into the form (||;cr P, Ni/A;) || (||j€JEj,E_]?/EU)
such that E; C Ev, for all j € J.

We will employ the associativity and commutativity Axioms (B1) and (B2)
for parallel composition without explicit mentioning, whenever convenient. Fur-
thermore, observe that, since all C; have the same semantics, it does not matter
whether we read validity = in Conds. (2)—(5) relative to C or C;.

1. Assume Cond. (1) is violated by a transition P, N/A in C, i.e., P ¢ A or
PN N # (. In the second case we can simply drop the transition because
of Axioms (C4) and (B4). In the former case, we can transform P, N/A so
that Cond. (1) is satisfied:

- P,N/A=P,N/A|0 (B4)
= P,N/A||PN/P  (Cl)
= P,N/(A||P) (A6)
=P, N/A,P (A2)

G. Luettgen, M. Mendler: Axiomatizing an Algebra of Step Reactions for Synchronous Languages.
In L. Brim, P. Jancar, M. Ketinsky, A. Kucera (eds.), Int'l Conference on Concurrency Theory (CONCUR'02),
Springer LNCS 2421, 2002, pp. 386-401.



PRELIMINARY VERSION of a paper under copyright with Springer Verlag

Making these first adjustments yields C;, with - C' = C4, where C} is in
1-nf. All successive transformations to C; either introduce new transitions
that satisfy Cond. (1) or, if not, we can repeat this step to clean out or
transform the transitions such that Cond. (1) does hold.

2. Next we consider Cond. (2), starting off with direction (=). Let B [ (4,

i.e., B is a classical model, and further B = FE; for some j € J. Then B C Ev
and also Ev C B, since B |= B, B¢/Ev. This is an obvious contradiction,
whence this direction of Cond. (2) is automatically fulfilled for C;.
For the other direction (<=) we show that, for any B [~ C}, the equivalence
F Cy = Cy || B, B°/Ev is derivable. If we apply this for every such B we get
our desired 2-nf Cy, subsuming the new transitions B, B°/Ev in the J-part
of the 2-nf. Note that always Ev |= C, which means B C Ew in such a case.
The transformation + C, = C} || B, B¢/ Ev is obtained in the following fash-
ion. Since by assumption B [£ C1, there must be some transition P, N /A
in Cy such that B £ P, N/A. Hence, - C; = C} || P, N/A, where C| stands
for Cy without the transition P, N/A. Now observe that B [£ P, N /A implies
PCBand NNB =0, but A Z B. We then reason as follows, abbreviating
P,N/A|B,B¢/B by D

- P,N/A

— P.N/A|B,5/B (B4,C1)

— D||B,P,B,N/A|B,P,B°, N/B (C2, A5, twice)

— D| B,B°/A| B,B°/B (PCB,NNB=0,iec., NC B
— DIl BB/(AIB) (A6)

— D||BB/A B (A2

=D|| B,B¢/Ev (D1, A Z B,ie, ANB° #0)

— P,N/A| B,B°/B| B, B/ Ev

_ P,N/A| B,B/Ev (A6, A2)

This shows - C; = C} || P,N/A=C}||P,N/A| B,B¢/Ev= C, || B, B¢/ Ew.
3. The direction (=) of Cond. (3) can be trivially satisfied by inserting parallel
transitions B, B¢/ B for those B C Ev that satisfy B |= C3, via Axioms (B4)
and (C1). This preserves Conds. (1) and (2). Note that we accommodate
B, B¢/B in the I-part.
Suppose direction (<=) is violated by B £ Cs, for which there exists a
transition P;, N;/A; with B = Nf in the I-part of C5. We must have N; =
B¢ # (), for otherwise B = Nf = Ew, contradicting B [~ C>. By Cond. (2)
there exists a transition B, B¢/Ev in the J-part of Cy. Hence,

- Cy = CL|| P, B°/A; | B, B°/Ev.

We distinguish several cases. If A; = (), then P;, B¢/A; is the same as P;, B¢/)
which can be eliminated from C5 right away by Axioms (A1), (A4), and (B4).
If P;NB¢ # () we can drop P;, B°/A; by way of Axioms (B4) and (C4). Hence,
assume that A; # ) and P,NB°¢ = (. Now, if B = (), then B° = Evand P; = ().
Thus, we use Axioms (A2) and (A6) to derive - P;, B¢/A;|| B, B¢/Ev =
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Ev/A; || Ev/ Ev = Ev/ Ev= B, B¢/ Ev, which gets rid of the culprit P;, B¢/A;.
It remains to tackle the situation in which B # ). But then, since also B¢ # 0,
we can use the equational rewriting

= B°/(P;/4;) || B, B¢/ Ev . (A5)
= |{B%,¢/(Pi/A:) : € B}||B,B°/Ev  (D3)
= ||{P;,B°,¢/A; : ec BY| B,B/Ev (A5)

to replace in Cs, effectively, the offending P;, B°/A; by the parallel compo-
sition of transitions P;, B¢,€/A;, for e € B, each of which has a negative
trigger strictly larger than the one in P;, B¢/A; we started off with.

By iterating these transformations over all B’s and i’s such that B [£ Cs
and B = Nf, Cond. (3) («<=) can be achieved. The normalization must
terminate since the sets B to consider become smaller and smaller in the
process. Note that the resulting configuration Cj also satisfies Conds. (1)
and (2), whence it is in 3-nf.

4. Cond. (4) may be achieved by inserting into C3 the transitions P, B¢/ P, for
all P, B such that P C B |= C3. The insertions may be done via Axioms (B4)
and (C1). Note that the resulting configuration Cy still satisfies Conds. (1)-
(3), since P C B is equivalent to P N B¢ = (); whence it is in 4-nf.

5. Consider an arbitrary transition P;, N;/A;, satisfying N; N A4; = 0, in the
I-part of Cy. We will show how to enforce Cond. (5) for this transition.
Under the assumptions, we know P; C A; C Nf and Nf |= C4 by Conds. (1)
and (3). In order to show (P;, Nf)* = A;, it is sufficient to establish the
following two properties:

(b) (X,Nf) E Cyand P; C X C Nf implies 4; C X, for any X C Ew.
Assume that Property (5a) is not yet satisfied, i.e., (4;, Nf) & C4. Then,
there must be a transition P, N/A in Cy such that (4;, Nf) & P, N/A. This
transition could be of the form Py, Ny /Ay, for some k € I, or of the form
Ej, ES | Ev, for some j € .J.

Because of Nf | Cy, we have Nf = P, N/A. But then, (4;, Nf) £ P,N/A
means that (4;, Nf) = P, N and (4;, Nf) & A. Hence, in particular, 4; D P,
A; 2 A and N°NN =0, ie, NCN;,.

We now show that P;, N;/A;||P,N/A = P;,N;/A;, A|| P,N/A by the fol-
lowing calculations, where Ny =q¢ N; \ N and Ay =q4¢ A; \ P:

= P,N,,N/A,,P||P,N/A
=P;,N;,N/A,||P;,N;,N/P||P,N/A (A2, A6)

= P;, Ni,N/A | N/(P;, N1/ P|| P/A) (45, 46)

= P;, N1, N/A, || N/(P;, N1/ P || P;, N, /(P/A) || P/A) (C2)

= P;, N1, N/A || N/(P;, Ni/(P|| P/A) || P/A) (46)

= Py, N1, N/AL[|N/(P;, N:/(P|| A)[| P/A) (C3)
:PiaNlaN/AlapaAHPaN/A (A27A57A6)
= P;,Ni/A;, A||P,N/A
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This allows us to replace transition P;, N;/A; for which (A;, Nf) £ Cy by the
transition P;, N;/A;, A. If now N; N (4; U A) =0, i.e., 4;UA C Nf, then we
find (A; UA, Nf) = P,N/A and A;UA D A; since A; 2 A. Thus, using this
technique, one can saturate the A; until, for all transitions P, N/A, there
exists no i € I such that N; N A; = § and (4;, Nf) £ P,N/A. This will
ensure Property (5a), for all ¢ € I.
It remains to establish Property (5b). Let (X, Nf) &= Cy for some X C Ev
such that P, C X C Nf. Hence, (X,Nf) = P;,N;/A;. Since (X,Nf) =
P;, N; we consequently know that (X, Nf) = A;, i.e., A; C X as desired.
Let C5 denote the 5-nf configuration resulting from this normalization step.
6. Let us assume that some transition P, N/A in Cj violates Cond. (6). Then,
using Axiom (D1) we rewrite - P,N/A = P, N/Ev first, and then by re-
peated applications of Axiom (D2) we obtain - P,N/Ev = ||[{E,E°/Ev :
P C E C N¢}. In this way, the offending original transition P, N/A in Cj
can be eliminated completely in terms of transitions indexed by J. This es-
tablishes Cond. (6) and does not destroy any of the conditions previously
established. The result is a 6-nf Cg with - C = Cj.

Configuration Cg is now the desired normal form of C'. O

Having Prop. 2 in hand, the completeness proof for our axiomatization is now a
simple exercise.

Theorem 2 (Completeness). Let Cy and Cy be arbitrary configurations such
that 01 ~ CQ. Then, F 01 = C’Q.

Proof. Let C,Cs be given such that C; ~ Cy. We may assume by Prop. 2 that
(1, Cs are both in normal form. It suffices to show that every parallel component,
i.e., transition, of C; also occurs in Cy; by symmetry also the reverse will hold.
Then the completeness statement follows by suitably employing Axioms (B1)-
(B4) for parallel composition.

Consider a transition of the form P;, N;/A; occurring in Cy. Since C; is in
normal form we know by Cond. (3) that Nf = Cy. Hence, by premise C; ~ Cs,
we have Nf = Cy. We may now apply Cond. (4), since P; C Nf by Cond. (1), to
obtain some index i’ € I such that Py, N; /A; is a transition in Cy with N; = N;
and Py = P;. By Cond. (5) of normal forms Ay = (Py,N§)* = (P;, Nf)* = 4,
as desired. Note that the definitions of (P;, N§)* in C> and (P, Nf)* in Cy
coincide, because of C; ~ Cs.

Consider a transition of the form Ej,E_;/Ev in 4. Since C is in normal form
we know by Cond. (2) that E; [~ C:. Hence, E; [~ C5 by the premise Cy ~ C,.
Further, by Cond. (2) applied to normal form Cy we conclude the existence of
some j' € J such that Ej, Ef /Evis a transition in Cp with Ey = E;. O

5 Discussion and Related Work

There exists a wealth of related work on the semantics of synchronous languages,
especially Statecharts [23]. Our paper focused on the most popular original se-
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mantics of Harel’s Statecharts, as defined by Pnueli and Shalev in their sem-
inal paper [20]. Since this semantics combines the synchrony hypothesis and
the causality principle, it cannot be compositional if step reactions are mod-
eled by input—output—functions on event sets, according to a result by Huizing
and Gerth [9]. Within the traditional style of labeled transition systems, re-
searchers have then concentrated on providing compositionality for Pnueli and
Shalev’s semantics either by taking transition labels to be partial orders encoding
causality [11,17,21] or by explicitly including micro—step transitions [16]. Our
step algebra is related to the former kind of semantics, where causality is en-
coded via intuitionistically interpreted sequence structures. However, in contrast
to the other mentioned work, our logical approach lends itself to establishing
full-abstraction results [12, 14] and the equational axiomatization of Statecharts
macro steps presented here.

A different approach to axiomatizing Statecharts was suggested by de Roever
et al. for an early and lateron rejected Statecharts semantics that does not obey
global consistency [6]. In their setting, it is admissible for a firing transition to
generate an event, whose absence was assumed earlier in the construction of the
macro step under consideration. This leads to a very different semantics than the
one of Pnueli and Shalev [20], for which Huizing, Gerth, and de Roever gave a
denotational account in [10]. This denotational semantics provided the ground-
work for an axiomatization by Hooman, Ramesh, and de Roever [8]. However,
in contrast to our work which equationally axiomatized the step congruence un-
derlying Pnueli and Shalev’s semantics, Hooman et al. supplied a Hoare—style
axiomatization for both liveness and safety properties of Statecharts, which was
proved to be sound and complete with respect to the denotational semantics of
Huizing et al. [10]. A similar approach was taken by Levi regarding a process—
algebraic variant of Pnueli and Shalev’s Statecharts and a real-time temporal
logic [11]. It should be noted that the settings of de Rover et al. and of Levi deal
with sequences of macro steps and not just single macro steps, as our step algebra
does. However, extending the step algebra and its axiomatization to sequences of
macro steps should not be difficult. In such a more general development, the step
algebra introduced here would play the role of a synchronization algebra [24],
around which a macro—step process language is built.

The results of this paper are not restricted to Statecharts but can also be
applied to other languages, in particular to Berry’s Esterel [2,3]. The authors
have shown in [15], using the same model-theoretic framework of intuitionistic
sequence structures as for Statecharts, how the instantaneous core of Esterel
can be faithfully and compositionally encoded in terms of propositional formu-
las. This is done in such a way that the operational execution of the encoding
produces the same responses as the execution of the original program under the
semantics of Esterel [2]. It is not difficult to see that the propositional formulas
corresponding to Esterel configurations build a sublanguage in our step algebra,
when taking Ev =q¢ {s=1, s=0 : s is a signal }, where s=1 stands for signal s is
present ‘high’ and s=0 for s is present ‘low’. This sublanguage, however, requires
the full syntax of our step algebra, which allows for nested transition triggers.
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For example, the instantaneous Esterel program
present a then present b else emit ¢ end end

would be translated into the configuration a=1/(b=0/c=1); see [15] for details.
Because of the existence of this encoding of Esterel reactions into our step alge-
bra, which preserves Esterel’s semantics, the axiomatization presented here can
directly be used to reason about Esterel reactions. For the sake of completeness,
it needs to be mentioned that some initial work on axiomatizing Esterel has been
carried out within an encoding of Esterel programs in a variant of the duration
calculus [19]. However, this work aims at an axiomatic semantics for Esterel
rather than an equational axiomatization of the underlying step congruence.

The step algebra presented in this paper focused on the most essential opera-
tors in synchronous languages. In the future we would like to enrich our algebra
and its axiomatization to accommodate an operator for event scoping, or sig-
nal hiding, which is used in Esterel [2] and Argos [18]. Moreover, instead of
encoding the external-choice operator + (as found in the hierarchy operator of
Statecharts) via parallel composition and negated events, it is possible to in-
clude + as a primitive operator in our step algebra. To do so, one only needs to
add a silent, non—synchronizing event in the action of every transition; see [14].
We might mention here that, when axiomatizing external choice, one key axiom
will be the “tie-break axiom” a/b||b/a = al|b + b||a.

6 Conclusions and Future Work

This paper presented a uniform algebra, to which we referred to as step alge-
bra, for reasoning about step reactions in synchronous languages, such as those
originating from Statecharts and Esterel. The algebra’s semantics was inspired
by previous work of the authors, which adapted ideas from intuitionistic logics
for defining a compositional semantics for these languages. Our main result is a
sound and complete axiomatization of the resulting step congruence in our step
algebra, whose completeness proof mixes techniques from process algebra and
logic. This yields, for the first time in the literature, a complete axiomatization
of Statecharts macro steps, in the sense of Pnueli and Shalev. Modulo a sim-
ple syntactic translation, this axiomatization can be adapted to instantaneous
reactions in Esterel as well. We believe that our approach provides important
groundwork for comparing popular synchronous languages by means of axioms,
an approach which already proved successful in process algebra, and also for
developing compositional verification methods highly needed in this area.

Regarding future work, we plan to extend our step algebra by other operators
employed in some synchronous languages, in particular by operators for event
scoping. While this will probably lead to slight changes in our semantics, we
expect to carry over the style of axiomatization and the techniques for proving
the resulting axiom set complete.
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