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Abstract—A classic challenge in designing reactive systems is
how to reconcile concurrency with determinacy. Synchronous
languages, such as Esterel, SyncCharts or SCADE, resolve this
by providing a semantics that does not depend on run-time
scheduling decisions. Esterel’s circuit semantics is grounded in
physics: An Esterel program is considered valid (constructive)
iff it corresponds to a delay-insensitive circuit. The circuit
semantics provides on the one hand a mathematically grounded
semantics, based on constructive logic, on the other hand
it gives a direct path to a data-flow style software imple-
mentation. However, Esterel’s constructive semantics entails
a rather restricted regime for handling sequential accesses to
shared data. Thus many programs are rejected as being non-
constructive, even though they have a very natural, determinate
interpretation. We here present a sequentially constructive cir-
cuit semantics (SCC) that lifts this restriction, by distinguishing
sequential and concurrent execution contexts. This permits an
imperative style familiar to programmers versed in C, for
example, without leaving the sound physical foundation of
synchronous programming.

Index Terms—Reactive systems, determinacy, synchronous pro-
gramming, sequential constructiveness, Esterel, circuit seman-
tics

1. Introduction

Synchronous programming languages [1] reconcile con-
currency with determinate behavior with a semantics that
abstracts from execution time. The execution of a program
is divided into (logical) ticks, or instants/reactions. In each
tick, (sensor) inputs are read from an environment and (actu-
ator) outputs are written to the environment. The synchrony
hypothesis states that for each tick, outputs are synchronous
with inputs. This is traditionally reflected in the requirement
that shared variable values are unique throughout a tick.
This is a natural requirement for hardware design, where
each wire must assume a unique value for each clock tick.
However, this seems unduly restrictive from the perspective
of imperative programming, where it is quite natural to read
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Figure 1: The class of programs considered valid under
the Sequentially Constructive Circuit (SCC) semantics, pro-
posed here, in relation to other program classes. “Acyclic
SC” refers to programs that can be scheduled statically.
Most Esterel compilers handle Acyclic BC (Berry Construc-
tive) [3]. Esterel v5 handles all of BC [4]. The SCEst2SCL
compiler handles Acyclic SC [5]. Our work extends compi-
lation to SCC, that is SC (Sequentially Constructive) without
“speculation.”

a variable and subsequently write a different value to it. This
has recently motivated the sequentially constructive model
of computation (SC MoC), which allows shared variables
values to change within a reaction as long as the result is
still determinate and does not depend on run-time scheduling
choices [2]. More specifically, a run is considered SC-
admissible if it adheres to certain restrictions concerning
the access to shared variables, in particular that writes occur
before reads; a program is considered SC if it allows SC-
admissible runs for all possible input sequences, and if all
such runs lead to the same result.

Motivation. There are different approaches to the work
presented here. First, concerning the SC model of com-
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Figure 2: Circuit for XY, which is not constructive

putation, the SC definition based on runs is somewhat
unsatisfactory from Esterel’s constructiveness point of view
in that it may be considered overly generous and does
not correspond to constructive circuits. As noted in the
original SC proposal [2], it accepts programs that in the
traditional synchronous sense are considered “speculative.”
Fig. 1 presents the program classes discussed in this sec-
tion, with examples. Consider the minimalistic XY Esterel
example in the lower-left of Fig. 1. Its output 1 consists of
the signals X and Y, which are present if and only if they
are emitted by an emit statement; otherwise they are absent.
XY consists of two parallel threads, where the first emits
Y if X is present and the second emits X if Y is present.
(For readers not familiar with Esterel, a brief summary of
the language follows in Sec. 2.1.) The software view at XY
is that a scheduler may choose between first testing X or
first testing Y, but in both schedules the end result will
be the same, namely both signals absent at the end of the
tick. Thus XY is SC. However, either schedule requires a
“leap of faith” when doing the first test, of X or of Y, by
assuming that the tested signal will not be emitted by the
other thread later. The hardware view of XY exposes this, as
can be seen in the circuit in Fig. 2 that has been constructed
according to Berry’s circuit semantics for Esterel [6]. Gates
G2 and G5 form a cycle. Thus some wires are known to be
high (labeled 1, corresponding to “present”), but most stay
unknown (⊥) according to ternary fixed point analysis [4],
[7]. Very briefly, constructive logic differs from standard
Boolean logic in that variables/wires may not only be 1 or 0
but also ⊥, and there is no “law of excluded middle.” Thus,
under constructive logic the equation S = S ∨ ¬S yields
S = ⊥, not S = 1. This nicely corresponds to the fact that
a circuit for S = S ∨ ¬S is not guaranteed to stabilize but,
for some gate and wire delays, may oscillate forever. For
the XY circuit, this means that we cannot guarantee unique
stabilization, which is indeed what we mean by speculative
behavior. Here, there are two possible stable states for this
circuit, one with both X and Y considered absent and one
with both considered present. One aim of this paper is to
rule out such cases and to define a notion of SC that has
a firm physical grounding, without speculation.

1. For conciseness, listings omit input/output declarations and end tokens
for module and signal declarations.

Beyond this language-theoretic motivation, which—
relative to the original SC proposal—results in a more
restricted notion of what is considered acceptable, we are
on the other hand concerned with enlarging the class of
SC programs that can be handled in practice. The current
definition of SC achieves the goal of a determinate seman-
tics, but is not a viable basis for compile-time analysis
of whether a program is SC or not. To check whether a
program is SC would require an exhaustive construction of
all SC-admissible runs, for all possible input sequences, for
example using a mechanism based on backtracking; then one
would have to check that for all possible input sequences, all
runs lead to the same result. Thus compilers for languages
based on the SC MoC, such as SCCharts [8] or SC Esterel
(SCEst) [5], [8], so far only accept a subset of the SC
MoC, namely those programs where scheduling constraints
induced by control flow and shared variables are statically
acyclic. One such program is ST shown on the middle-right
in Fig. 1, where S is (re-)emitted if S is present in parallel
to an emission of S if T is absent (S depends on T). Then
T is emitted if S is present (T depends on S). There is a
cyclic signal dependency between S and T, however, under
SC this cycle is broken by the sequential statement order.

The restriction to acyclic dependencies and the require-
ment of static schedulability is common for compilers for
synchronous languages, sometimes this is even built into
the language. This is for example the case for Lustre [9]
or the modeling language employed by the SCADE (Safety
Critical Application Development Environment) tool from
Esterel Technologies, which is, for example, used by Airbus
for developing flight controller software [1]. For most pro-
grams, this seems acceptable, just as it is standard practice in
hardware design to require acyclicity. However, there is also
a large body of work on statically cyclic, yet determinate
hardware circuits and synchronous programs [10], [11]. In
ABBA, seen in the top-right of Fig. 1, B depends on A if input
signal I is present, conversely A depends on B if I is absent.
Thus there is a static dependency cycle between A and B.
However, the program still has a well-defined, determinate
semantics, for each possible status of I the output signal O
will be present. This has been formalized by Berry as the
constructive semantics of Esterel [6]. Most Esterel compilers
are restricted to acyclic programs, such as PingPong shown
on the top-left in Fig. 1; the emission of Y depends on
X and Z on Y, but X does not depend on Y or Z. While
few compilers can handle the full constructive semantics
including statically cyclic programs, the class of cyclic yet
constructive programs is interesting and well-studied. One
attractive feature of that program class is that in some
cases, a cyclic circuit may be smaller than an equivalent,
acyclic circuit [10]. A classic example is a function that
computes y = i ? f(g(x)) : g(f(x)), where, depending
on some input i, f must be computed before g or the
other way around. Another classic example is the token ring
arbiter, where a rotating token dynamically determines the
evaluation schedule [12]. There exist compilers that accept
such programs, notably the Esterel v5 compiler, however,
these are again limited to synchrony in the traditional sense
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that does not take advantage of sequentiality. Existing work
is again limited to classic synchrony that requires unique
values per tick, which we henceforth refer to as Berry
constructiveness (BC). In this paper, we thus aim to leverage
these results on compiling constructive programs and to
make them applicable to the SC MoC; i. e., we want to
provide a practical setting for compiling SC programs
even if they are statically cyclic. This includes programs
such as Dynamic, seen in the bottom-right of Fig. 1. This
is not Acyclic SC, because (as explained further in 2.2) no
static execution schedule exists, and it is not BC, because
S may be tested before it is emitted. Yet it is SC and does
not require “speculation” in the sense of XY, so we consider
it “well-behaved” once we accept the notion of sequentially
evolving signal statuses (as exemplified already with ST) and
wish to be able to compile it. We want to reject programs
that require speculation, such as XY. Of course we also want
to reject programs that are not SC, such as XYelse, seen in
the left of Fig. 1; there, Y is emitted iff X is present, X is
emitted iff Y is absent, thus there is no consistent signal
evaluation.

Contributions/Outline. We explore the “middle
ground” sketched above, which is more permissive than
both BC and acyclic SC but less permissive than full SC,
as illustrated in Fig. 1. Specifically:

• We propose a new, circuit-based semantics for SCEst,
called SCC (SC Circuits), which is grounded in ternary
constructive logic, and which is practically implementable
with standard static circuit structures derived from a
purely structural translation of the program (Sec. 2). SCC
augments Esterel’s circuit semantics (Berry-Constructive
Circuits, BCC) with sequential update of variables. Again,
the reference to “circuits” does not mean that SCC is
applicable solely for hardware synthesis, it applies just
as well to Esterel program synthesized into software, in
which case the circuit netlists merely serve as “low level
specifications” for the tick function to be generated.

• We provide a formal argument that SCC is conservative
with respect to BCC: if some Esterel program p corre-
sponds to a constructive BCC circuit (“p is BC”) 2 , p also
corresponds to a constructive SCC circuit (“p is SCC”),
with the same input/output behavior (Sec. 3).

We discuss related work in Sec. 4 and conclude in Sec. 5.

For further reference, we provide a more detailed tech-
nical report that addresses topics related to the SCC seman-
tics [13]. This includes a source-to-source transformation
that transforms an SCC Esterel program into an equivalent
Berry constructive (BC) Esterel program. This transforma-
tion lifts the circuit-level concepts presented here, to the
Esterel source-level, which allows to reuse compilers based
on BC semantics downstream. It is based on a new variant
of the Static Single Assignment (SSA) form, which han-
dles concurrency and tick boundaries and implements the
concept of SC-visibility (Sec. 2.2) for Esterel. We further

2. One might expect “p is BCC” but since BC is fully equivalent to
BCC, we stick to BC for consistency to previous papers.

nothing Terminates immediately.

pause Pauses execution of current thread until next tick.

p ; q Execute p; when p terminates, instantaneously start q.

p || q Run threads p and q in parallel. Terminate instanta-
neously when both threads have terminated.

loop p end Restart p as soon as it terminates. Loops must be not
instantaneous, each path through p must contain at least
one pause statement.

signal S in p end Declares a local signal S in p.

emit S Make signal S present in the current tick; “write” S.

present S then p
else q end

If signal S is present, immediately run p, otherwise run
q. Both branches are optional. This “reads” S.

suspend p when S Suspend the execution of p when signal S is present.

trap T in p end Declares a trap scope with label T . This allows a variant
of weak abort, see exit.

exit T Exit the trap scope labeled with T . Concurrent threads
are weakly aborted, meaning that they can still execute
until they terminate or reach a pause statement. If mul-
tiple nested traps are exited concurrently, the outermost
trap scope takes precedence.

TABLE 1: Overview of Esterel kernel statements. p, q are
program fragments, S is a pure signal, T is a trap label.

evaluate the implementation of this transformation in an
experiment and discuss the effects on schizophrenic Esterel
programs [6]. The technical report also contains a proof
sketch of the conservativeness claimed in Sec. 3.

2. The Sequentially Constructive Circuit
(SCC) Semantics

We now provide a brief summary of the Esterel language
as far as required for this paper. Readers familiar with the
language may advance to Sec. 2.2, which details how the
SCC semantics builds on the notion of SC-visibility and a
refinement of the original coherence law underlying Esterel.

2.1. Brief Review of Esterel

The most interesting part of Esterel, namely the way it
provides determinate reactive control flow, can be reduced
to the Esterel kernel language, see Table 1. Like most
semantical treatments of Esterel, we thus concentrate the
presentation of our work on that kernel language, as the
extension to full Esterel is straightforward. All kernel state-
ments are instantaneous, meaning that they do not consume
time, except for the pause statement, which effectively sep-
arates one tick from the next. The kernel language includes
only pure signals, which are characterized solely through
the already mentioned presence status: per default, a signal
is absent, unless it is emitted in the current tick, in which
case it is present.

Like with most synchronous languages, Esterel programs
are static in that there are no function calls, only a static
module expansion mechanism, and there is no dynamic
memory allocation. This is one reason why Esterel can be
compiled not only into software but also into hardware. This
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Figure 3: Control and signal wiring overview for
P; (Q || (R1; R2)).

restriction is the basis for being able to decide interesting
questions at compile time, such as whether there may be
conflicting accesses to shared variables. If this is the case,
we say that an Esterel program is “not causal” and the
compiler rejects it. As explained before, one aim of the work
presented here is to enlarge the class of programs that are
considered “causal” and can be compiled into determinate
code or hardware.

2.2. Constructive Coherence Laws (CCLs) and SC-
Visibility

BCC is based on Berry’s constructive coherence law
(BCCL), which states that a signal is present (absent) in a
tick if it must (cannot) be emitted in that tick. This law
does not mention control flow and the ordering of program
statements. Thus, concerning signals, there is no concept of
order.

Fig. 3a presents an abstracted wiring in Berry’s BCC
circuit for a sequential-parallel program structure of the form
P; (Q || (R1; R2)). The sequential control flow is explicitly
represented through the GO activation signals directed hori-
zontally from left to right. For signals, however, this control
flow is ignored. All signal emissions, drawn vertically, are
collected in a global output environment E’, which is a bus
of all visible signals that is fed back and combined with
the global input environment E. Thus all emitters combine
in a global OR, irrespective of the control flow relationship
between the components emitting them. A present test in P
therefore needs to wait for stabilisation of any downstream
emitter in, e. g., R2. But since the downstream emitter
depends on the GO to reach it from P, we may have a
causality loop.

The key idea behind SCC is to exploit sequential-
ity for breaking the loop. For (observation) points p1,
p2, which conceptually correspond to circuit gates/registers
(see Sec. 3), we say that p1 is SC-visible for p2 iff p1
is concurrent to or sequentially before p2. Based on SC-
visibility, we propose to refine the BCCL to the sequentially
constructive coherence law (SCCL): A signal is present
(absent) in a tick at point p2 iff it must (cannot) be emitted
in that tick at some point p1 that is SC-visible for p2.
Thus SCCL differs from BCCL in that it does not consider
emitters that are sequentially later.

As illustrated in Fig. 3b, we split the signal interface
of each component into sequential and concurrent inputs
and outputs (Es, Ec, E′

s, E′
c). We use Es, E′

s to propagate
signal emissions sequentially downstream and Ec, E′

c to wire
up concurrent regions locally, preserving their sequential
control flow relationships. Then, as seen in Fig. 3b, the
upstream process P no longer depends on any emission from
downstream statements. Any local node like R1 sees signals
from two “directions:” Emission upstream from it, in this
case the sequential output of P, and concurrent to it, in this
case Q and any concurrent environment Ec of the composite
program. Es is a locally restricted view on signals, whereas
Ec is a more global view, hence Es is a subset of Ec.

SC-visibility is not necessarily static. E′
s must be blocked

according to actual control flow to avoid unstable loops
in case of static control flow cycles, as seen in Dynamic
(bottom-right of Fig. 1). The propagation of the sequential
environment must be guarded by actual control flow at run
time, as discussed further in Sec. 2.4.

Note that the separation between E′
c and E′

s allows to
receive the effect of an emit even if sequentially succeeding
components do not yet have a stable E′

s output, as illustrated
in Fig. 3b. Thus E′

c is never blocked by inactive control flow,
in contrast to E′

s. PingPong (Fig. 1) requires this separation.
After the emit of X, it must reach the other thread to
allow the evaluation at the condition. However this thread
cannot yet terminate since its execution depends on the
emission of Y. Hence E′

s cannot pass the emitted X to the
second thread, but E′

c can. Note that in PingPong there is a
mutual dependence of the concurrent threads, which would,
e. g., make modular compilation difficult and is therefore
discouraged in SCADE. However, it is still acyclic at the
signal level, and thus would be accepted also by a standard
BC Esterel compiler.

2.3. The ST Example

Consider again the ST example from Fig. 1. The cor-
responding BCC circuit, depicted in Fig. 4a, is not con-
structive. Since the test of T depends on the sequentially
following emission, there is a static cycle through gates
G6, G9/G10, G11, G5 (as well as another cycle involving
S). None of the gates involved in the cycle has a stable
input outside of the cycle that would provide a defined
result under constructive (non-strict) evaluation. Thus the
connecting wires remain at ⊥, and the status of T remains
undefined. This in turn forbids to conclude a status for S.
Thus ST is not BC and is rejected by an Esterel compiler.

However, with the proposed SCC semantics, the causal-
ity loop due to T is eliminated, because the emission of
T is not SC-visible to the upstream presence test of T. As
illustrated in Fig. 4b, the feedback (G6 to G9) is cut and the
test of T (G9–G11) can be fully eliminated since there are no
more visible emitters of T. The SCC circuit is constructive
and yields the output S and T present. Thus ST is SCC,
and hence SC. This corresponds to the fact that there exist
SC-admissible runs for ST which all lead to the same result.
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(b) SCC. Register/gates G1–G8 correspond to BCC. G9–G11 have been removed, G12 replaced by G12s and G12c.

Figure 4: Alternative circuit translations for ST with constructively allocated wires. Wires that are not used in the circuit,
such as SUS for suspension, are omitted. Likewise gates with constant inputs are omitted or replaced by wires.

2.4. The SCC Circuit Rules

Fig. 5 presents the general SCC construction rules for
all Esterel kernel statements. Environments are signal buses
represented by bold lines. Single signal wires can be added
or extracted from these buses, illustrated by vertical bars.
Gates connected to a bus denote multiple gates, one for each
wire in the bus. All unconnected inputs of any component
are implicitly fed by 0.

We assume that the input programs fulfill the same
structural requirements as in BCC [6]. Specifically, we
assume that loops are not instantaneous and that there is no
schizophrenic behavior in the program [6]. Such behavior
occurs when statements are executed multiple times during
a tick. Even in the absence of instantaneous loops, this may
happen when a loop body terminates and is instantaneously
reentered. As in BCC we assume that schizophrenia can be
handled by known techniques [14].

Since SCC differs from BCC only with respect to the
environments, the remaining control logic concerning the
input pins for activation (GO), resumption (RES), suspension
(SUS), preemption (KILL) and the outputs for register selec-
tion (SEL) and Esterel’s completion codes k0 (termination),
k1 (pausing), k2 (innermost trap), k3, . . . (further traps) is
exactly the same in SCC and BCC.

The following descriptions of the SCC rules focus on
the extensions that SCC provides over BCC. For readers not
familiar with the BCC Esterel circuit semantics, we briefly
explain the BCC control logic as well. For a more detailed
description we refer the interested reader to Berry [6].

Global (Fig. 5a) At the top level for a program P, inputs I
feed into Es when P is initially started. The inverted output
of a register, which like all registers is initially 0, activates
P via GO and enables the inputs with an AND gate. Ec is
initialized to 0 since no signals can be emitted concurrently
on this level. The outputs of P are taken from E′

c, which
also includes signals in E′

s.
Nothing (Fig. 5b) As discussed in Sec. 2.2, nothing must
actively forward (i. e., potentially block) Es.
Emit (Fig. 5c) This drives the emitted signal on E′

s and E′
c.

As discussed in Sec. 2.2, E′
s must be potentially blocked,

but not E′
c.

Weak unemit (Fig. 5d) The SC MoC allows to change
variable values throughout a tick. In SCEst, this has mo-
tivated the unemit statement, which is not included in Es-
terel [5]. An unemit reverts the effect of an emit and
resets the signal to absent. However, even if the sequential
signal environment is able to set a signal to absent for its
sequential successors, it is more complicated to do this in a
concurrent context. This would require a refined version of
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Es
Ec

Ec

Es

GO
RES
SUS

Ec'
Es'
SEL

k0
k1

k2

(j) Trap (trap t in P end)

GO k2

(k) Exit (exit t)

GO

PEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

Es
Ec

RES
SUS
KILL

Ec'

SEL

k1
k2

(l) Loop (loop P end)

Es
Ec

 s

PEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

GO

KILL
SUS

RES

k2
k1

k0
SEL
Es'
Ec'

(m) Suspend (suspend P when s)

PEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

 s

 sEs
s 

Ec
s 

 s

s 
GO

RES
SUS
KILL

k2
k1
k0
SEL
Es'

Ec'

(n) Local Signal (signal s in P end)

Figure 5: SCC construction rules
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the concurrent environment, which passes the correct signal
value to concurrent readers when it is no longer modified.
It also has to handle concurrent conflicts between emits and
unemits.
Hence, we only introduce a weak unemit. This removes s
from Es, but does not affect Ec to avoid conflicts with emits.
The weak unemit has only a very local effect. The signal
set to absent by a weak unemit is only visible to sequential
successors in the same thread. The weak unemit has no
effect on readers in other threads, when performing exits in
traps, or on the outputs of the program, since all the related
circuits use the concurrent environment.
Pause (Fig. 5e) If a tick starts in a pause, indicated by
k0, the E′

s environment is initialized with the inputs I. For
conciseness of the circuit rules, we do not hand I down
through all component layers but take I directly from the
global environment.
Sequence (Fig. 5f) Not surprisingly, this is the central rule
to encode sequentiality, by forwarding E′

s of P to Es of Q but
not the other way around, as already illustrated in Fig. 3b.
Conditional (Fig. 5g) According to the SCCL and SC-
visibility, the input signal that selects the branch is taken
from an or between Ec and Es.
Parallel (Fig. 5h) Parallel components communicate via
E′

c/Ec, see again Fig. 3b. The synchronizer, which computes
the maximal completion code, is as in Berry [6].
Trap (Fig. 5j) E′

s is either E′
s of P, if the trap terminated

normally, or E′
c of P, if the trap is triggered, because then

the control flow jumps over the remaining statements in the
trap body and P does not produce an E′

s.
Exit (Fig. 5k) The exit does not produce any E′

s, since in
case of an exit the corresponding trap sequentially forwards
E′

c, not E′
s.

Loop (Fig. 5l) P is restarted (via GO) when it terminates
(k0). In the same manner, E′

s is fed back into Es.
Suspend (Fig. 5m) When suspending P based on a signal
s, the state of s is determined considering both Es and Ec,
just as for the conditional.
Local Signal (Fig. 5n) This creates a new scope for a wire
s. P receives the environments Es and Ec with s initialized to
0. s is removed from both outgoing environments. If another
s exists outside the local declaration, its wire is forwarded
to E′

s.

3. Semantics and Conservativeness

We now formalize the notion of SCC with the goal of
showing conservativeness relative to BC. Our formal seman-
tics follows Berry [6] in representing circuits as networks of
wire definitions in constructive boolean logic. For sequential
constructiveness the wire definitions are stratified according
to their SC-visibility capturing sequential control flow. The
formal semantics relies on the same assumptions as the
SCC circuit definition, i. e. a program does not contain any
instantaneous loops and is free of schizophrenia, specif-
ically that statements from concurrent threads can never
appear in sequential program order. To simplify the formal
treatment, we further assume that the sequential order in

which two statements can appear is statically fixed. Under
this assumption, which excludes programs such as Dynamic
in Fig. 1, a static order, SC-visibility, can be defined on the
statements corresponding to the flow dependency analysis.
Without this assumption a dynamic tick dependent visibility
ordering would be necessary.

A circuit C = (W,D,F ,�) consists of wires W , wire
definitions D, and the SC-visibility ordering (F ,�), which
attaches visibility indices l ∈ F to the gates in the circuit.
Without loss of generality assume the indices F are identical
with the gates. The wires are partitioned into registers R and
combinational wires S , i.e., W = R ∪ S and R ∩ S = ∅.
The combinational wires split into inputs I ⊆ S and outputs
O ⊆ S such that I ∩ O = ∅. A wire definition is either a
register definition of the form w := e for w ∈ R or an
implication w ⇐l e for a combinational wire w ∈ S and
visibility index l ∈ F . In both cases e is a boolean value
expression. There is exactly one definition w := e for each
register. We use the notation C(w) to refer to the unique
expression e of a register w ∈ R. A combinational wire w ∈
S can have several definitions w ⇐l e. Observe that register
definitions are used at the end of a tick to compute the
next sequential state. Therefore, they do not need visibility
indices because they are implicitly the last during a tick.
The combinational wires are typically further partitioned as
W = I ∪L∪O with (primary) inputs I, local wires L and
(primary) outputs O.

The ordering � on visibility indices captures the sequen-
tial control flow in the source program. A wire definition
w1 ⇐l1 e1 is visible from another w2 ⇐l2 e2 iff l1 is
not sequentially downstream from l2, i.e., if l2 �� l1. For
instance, consider the BCC circuit in Fig. 4a implementing
ST from Fig. 1. The gates G2, G6, G10, G12 arise from
wire definitions

S[G2] ⇐G2 GO[G1] ∧ S[G12] (1)

T [G6] ⇐G6 S[G12] ∧ k0[G5] (2)

S[G10] ⇐G10 GO[G1] ∧ ¬T [G6] (3)

S[G12] ⇐G12 S[G10] ∨ S[G2]. (4)

where the notation X[G] identifies the gate G from which
the wire is driven and the name X of the control signal in
the circuit translation (Fig. 5) represented by the wire. The
visibility ordering � is obtained from the control flow of
the source program in Fig. 1. Since G10 comes from present

T else emit S and G6 comes from present S then emit T, G6 is
sequentially downstream from G10, so that G10 � G6. In
contrast, we have X �≺ Y for all X,Y ∈ {G2, G10, G12}.
G2 and G10 are incomparable because they are instantiated
from the concurrent present tests in ST. G12 is the global
disjunction collecting and feeding back all emissions on
S from these two parallel threads. Therefore, G12 is not
sequentially ordered relative to either G2 or G10, but G6 is
downstream from G12, i.e., G12 � G6.

The semantics of a circuit is based on constructive value
propagation

C, I, R � e ↪→ b (5)
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∃w ⇐l e ∈ C. π �� l ∧ e ↪→π⊕l 1 PRES(π, l)
w ↪→π 1

∀w ⇐l e ∈ C. π �� l ⇒ e ↪→π⊕l 0 ABS(π,w)
w ↪→π 0

w ∈ I
IN

w ↪→π I(w)

w ∈ R
REG

w ↪→π R(w)

e1 ↪→π 0 e2 ↪→π 0
OP¬∨

e1 ∨ e2 ↪→π 0

e1 ↪→π 1
OP l∨

e1 ∨ e2 ↪→π 1

e2 ↪→π 1
OPr∨

e1 ∨ e2 ↪→π 1

e ↪→π b
OP¬¬e ↪→π ¬b

b ∈ B
OPc

b ↪→π b

e1 ↪→π 1 e2 ↪→π 1
OP∧

e1 ∧ e2 ↪→π 1

e1 ↪→π 0
OP l∧

e1 ∧ e2 ↪→π 0

e2 ↪→π 0
OPr∧

e1 ∧ e2 ↪→π 0

Figure 6: Visibility-Restricted Constructive Evaluation Rules. The evaluation context C, I, R is implicit.

which evaluates a boolean expression e over W using the
evaluation rules of Kleene ternary algebra [15], in the con-
text of a circuit C and under input event I and register state
R. Input events are assignments of boolean values to all
input wires. A register state is an assignment of boolean
values to all register wires. The constructive macro step
reaction then is a relation

C � I, R ↪→ O,R′ (6)

expressing that in register state R for the input event I the
circuit constructively evaluates to output event O and new
register state R′. The macro step reaction then states that (i)
for all w ∈ O, we have C, I, R � w ↪→ O(w) and (ii) for all
w ∈ R, C, I, R � C(w) ↪→ R(w). Note that we evaluate the
expression C(w) rather than w, because we are interested in
the next state value of the register, not its current value.

To exploit visibility we introduce a labelled version

C, I, R � e ↪→π b (7)

of the standard constructive semantics which obtains the
constructive value b of an expression e visible relative to
a set π ⊂ F of visibility indices. These represent a set of
observation points from concurrent threads that are active
in an evaluation. Each one is sequentially first in its thread.
Hence, the indices in π are sequentially incomparable visi-
bility indices (π is an antichain), so that for all l1, l2 ∈ π if
l1 � l2 then l1 = l2.

The evaluation rules are shown in Fig. 6. For notational
compactness we write e ↪→π b instead of (7). The standard
ternary evaluation of boolean expressions is implemented by
the OP rules, which do not depend on the observation points
π. Rules IN and REG are the evaluation of inputs and
register wires. The visibility information π becomes relevant
in the evaluation of standard wires described by the rules
PRES and ABS . The former stabilises a wire w ∈ S to 1
if there is some visible wire definition w ⇐l e in the circuit
whose expression e evaluates to 1. We say a wire definition
with index l is π-visible, written π �� l, if l does not lie
downstream from any observation point in π, i.e., there is no
m ∈ π with m � l. If this condition is met, PRES evaluates
the expression e under the observation points π ⊕ l, which
adds l to the anti-chain if it is concurrent to π or shifts to
l otherwise. Formally, π ⊕ l = π \ {m ∈ π | l ≺ m} ∪ {l}.
Note that if we would drop π and simply use l to evaluate
e, we might eventually jump back to a wire (gate) that is

downstream from some observation point in π. This is what
we avoid if we preserve π in the premise of the PRES rule.
The ABS rule is dual to PRES . It stabilises a standard wire
w to 0 if the expressions e in all wire definitions for w that
are π-visible evaluate to 0. We add the relevant parameters
π, l, w to the rule names for ease of reference.

The visibility information enters the evaluation rules
PRES (π, l) and ABS (π,w) in line with the sequentially
constructive coherence law (Sec. 2.2). Let PRES (l) and
ABS (w) refer to the same rules but without the side-
conditions “π �� l.” Let us write C, I, R � e ↪→ b for an
evaluation in the system of Fig. 6 with the unconstrained
rules PRES (l) and ABS (w) instead of PRES (π, l) and
ABS (π,w). This is precisely the standard constructive value
propagation of Berry [6].

Equivalently, we obtain Berry’s evaluation semantics if
we assume each wire definition is labelled with a different
visibility index and the flow ordering � makes any two wire
definitions incomparable, e.g., if � is the identity relation
on F . This is the same as saying every wire is concurrent
to every other. Then, the side conditions in PRES (π, l)
and ABS (w) become redundant. In other words, construc-
tiveness of Berry circuits has “maximal visibility.” For a
non-trivial flow ordering, Berry circuits will evaluate in a
different way, depending on whether the PRES (l)/ABS (w)
or the PRES (π, l)/ABS (π,w) rules are used. However,
the effect is conservative in the sense that the visibility
constraints only make more wires stabilise but never change
their value. This is a consequence of the following property
of Berry circuits: If a wire evaluation with PRES (k) de-
pends on the evaluation of another with PRES (m), then
m cannot be sequentially downstream from k, i.e., k �≺ m.
The reason is that all emissions must be activated by GO
wires and these are chained up in program order. Hence, the
GO activation wires hold up downstream emitters until all
control flow has been resolved upstream.

Adding visibility is non-trivial, because the side-
conditions act both co- and contra-variantly. E.g., chang-
ing π1 to π2 with π1 � π2 preserves every application
of PRES (π, l) but may invalidate some application of
ABS (π, l). Since an evaluation � e1 ↪→π1

1 may depend
on another � e2 ↪→π2 0, it is not immediately obvious how
the semantics generated by the two systems are related. In
particular, evaluating a circuit under visibility constraints
does not warrant the conclusion, in general, that we get
more signals being decided absent than without visibility.
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A proof sketch for the following propositions and the
theorem is provided in the technical report [13].

Proposition 1. Let C = BCC (P ) be the Berry circuit of
P . Then, C, I, R � e ↪→ b implies C, I, R � e ↪→π b for
all antichains π ⊂ F from which every wire implication
w ⇐l d in C is visible, i.e., such that π �� l.

The SCC circuit translation produces circuits which are
“flow-oriented,” i.e., wires are never passed against sequen-
tial control flow. Thus, adding visibility restrictions in the
evaluation does not have any effect.

Proposition 2. Let C = SCC (P ) be the circuit of P
obtained under the new SCC circuit translation (Sec. 2.4).
Let π ⊂ F such that π �� l for all wire definitions w ⇐l d
in C. Then, C, I, R � e ↪→ b iff C, I, R � e ↪→π b.

The final Theorem 1 states that if BCC (P ) stabilises an
output signal then SCC (P ) must also stabilise this signal
with the same value.

Theorem 1. Let SCC (P ) and BCC (P ) be the circuits of
a program P under the new sequentially constructive and
standard Berry translation, respectively. Assume

BCC (P ),E ⇐0 I ∨ Ec ∨ E′,E′
c ⇐0 E′, I, R � E′

c.s ↪→π b

for some signal s and observation points π ⊂ F . Then,

SCC (P ),Es ⇐0 I, I, R � E′
c.s ↪→π b.

Theorem 1, in combination with Proposition 2, implies
conservativeness of SCC over BCC .

4. Related Work

The semantics introduced here for Esterel deviates from
the constructive semantics of Berry [6] in that sequential
compositions are executed like ordinary imperative pro-
grams and signal emissions behave like assignments to
boolean variables. As noted earlier, this is inspired by the
SC proposal [2], which however, permits speculation and
does not lend itself to efficient compilation.

Another way to understand our work is as an approach
to relax the traditional, rather rigid, synchronous model of
concurrent programming by a more generous use of shared
communication structure. The communication structure here
are the signals and the relaxation consists in permitting
sequential threads to change signal values more than once
during a synchronous tick. This permits signals to be used
like variables and reduces the gap between synchronous
control flow and standard imperative programming. For data
flow synchronous programming an analogous approach has
been proposed by Cohen et al. [16] on N -synchronous Kahn
networks.

The compilation of Esterel and its potentially quite
intricate reactive control flow structures has sparked the
interest of a number of researchers, as discussed by Potop-
Butucaru et al. [3]. The circuit-based compilation, where
the synthesized code simulates a netlist, produces compact

code, that scales basically linearly with the original Es-
terel program [3]. However, since the code simulates the
whole program irrespective of whether it is “active” in
the current tick, the code tends to become rather slow for
larger programs. A good compromise between speed and
size is achieved by a more software-like approach, where
concurrent threads are statically scheduled and interleaved
at compile time, which is for example implemented in the
Columbia Esterel Compiler [17]. A good overview of this
and other approaches for compiling concurrent programs
(not necessarily Esterel) is presented by Edwards [18]. Any
of these compilation approaches may potentially be used for
further downstream compilation of SCC programs, at least
as far as sequential constructiveness is concerned. Not all
Esterel compilers can handle all programs, in particular if
there are static cycles in the program as in ABBA from Fig. 1.
This, however, is an orthogonal issue to the work presented
here.

As pointed out in the introduction, most EDA tools
require acyclic circuits, as do most synchronous lan-
guage compilers. This has motivated numerous works on
transforming cyclic circuits into equivalent acyclic ones;
Neiroukh et al. provide a good overview and present a
technique of their own [11]. Lukoschus et al. present an
approach to remove cycles at the Esterel level [19]. Schnei-
der et al. have suggested the use of scheduling or atom-
icity constraints for increasing constructiveness of cyclic
circuits [15], [20]. The idea of flow indices to express
evaluation order in ternary analysis, as explored here, seems
to be new.

In this work we stress the role of sequential program
order (“visibility”) in order to permit several write accesses
to Esterel signals within a tick. The sequential order resolves
the potential non-determinacy because every read access
only sees the sequentially last write. There are other ways
to resolve multiple writes, preserving determinacy, namely
if these writes are accessing disjoint parts of signal value.
Following this idea, a powerful technique to generate coher-
ent shared memory structures for functional programs has
recently been proposed by Kuper et. al. [21].

5. Conclusion and Future Work

This work defines the program class SCC, which encom-
passes the programs for which a circuit generated according
to the SCC circuit semantics is constructive. SCC on the one
hand defines a significant subset of SC programs, namely
those that can be executed without “speculation,” and on the
other hand extends compilation technology for synchronous
programs, as illustrated in Fig. 1. SCC programs can be
structurally translated to circuits, according to the SCC rules
set down in Sec. 2, and then be compiled further into hard-
ware or software using standard techniques. Alternatively,
SCC programs can be translated into BC programs on the
source-level [13].

There are numerous directions to proceed from here. To
begin with, while this work is mostly about expanding the
range of compilable programs, a natural question is how the
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size of SCC circuits compares to BCC circuits. Our intuition
is that there should be no significant increase, and often the
circuits should be even smaller due to the increased partial
evaluation done at compile time. One example is ST (Fig. 4),
where SCC has two gates less than BCC.

Conservativeness (Sec. 3) is a combination of the result
that if a Berry circuit of a program P stabilises a signal,
then it stabilises it under visibility (Prop. 1); that this further
implies that the corresponding SCC of P also stabilises
it under visibility (Thm. 1); and finally that if SCC sta-
bilises a signal with visibility restriction, then it stabilises
without them (Prop. 2). This chain gives more information
than just conservativeness. It goes some way to explain
SCC as a flow-sensitive evaluation of Berry circuits. For
an exact characterisation it would be interesting to prove
the converse of Thm. 1 in future work. Also, we plan to
extend the formalisation for dynamic visibility relations to
lift the restrictions on programs mentioned at the beginning
of Sec. 3.

We have developed our results in the setting of pure
Esterel. The extension to remaining Esterel features, such as
valued signals, variables etc., should be mostly straightfor-
ward, but still remains to be done. An interesting statement
is the (strong) unemit provided by SCEst [5], which may
lead to conflicts if performed concurrently with an emit. We
can augment SCC with conflicts by emitting an error signal
whenever such a conflict occurs, and feeding that error into
a circuit that is constructive iff the error cannot occur, e. g.,
a concurrently running signal helper in present error and helper then

emit helper end end. However, there is still the difficulty that
a thread may perform both an emit and an unemit with
dynamic ordering between them, and a concurrent thread
has to decide which of these is (un)emitted last.

Finally, we would also like to apply our results to other
languages building on the SC MoC, such as SCCharts [8]. It
would be interesting to explore how much could be gained
by adopting the SC MoC and SCC in other synchronous
languages as well, such as Lustre or SCADE.
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