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Abstract. We develop within higher order logic (HOL) a general and
flexible method of abstraction and refinement, which specifically ad-
dresses the problem of handling constraints. The method is based on
an interpretation of first-order Lax Logic in HOL, which can be seen
as a modal extension of deliverables. It provides a new technique for
automating reasoning about behavioural constraints. We show how the
method can be applied in several different tasks, for example to achieve
a formal separation of the logical and timing aspects of hardware design,
and to generate systematically timing constraints for a simple sequential
device from a formal proof of its abstract behaviour. The method and all
proofs in the paper have been implemented in Isabelle as a definitional
extension of the HOL logic. We assume the reader is familiar with higher
order logic but do not assume detailed knowledge of circuit design.

1 Introduction

In this paper we develop within HOL abstract dimension (functiop)
a general method of abstraction and
refinement, and apply it, by way of
an instructive example, to the prob-
lem of synthesising timing constraints P
in sequential circuit design. Fig. 1 m////\
illustrates our general approach: we o
view the abstraction process as one

of separation of concerns, which in-

volves splitting a concrete model or
theory into two dimensions which we
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mensions. Along the abstract dimen-
sion we deduce abstract consequences Fig. 1. Diagram of our method

of our theory, and this process corre-
sponds to traditional abstraction methods in Artificial Intelligence as presented,
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for example, in [Pla81]. Along the constraint dimension we track the discrepan-
cies between the abstract and concrete models by computing and reducing the
constraints under which the abstraction is valid: our method is of practical use
insofar as this process can be automated for the constraint domain involved. A
key ingredient in our method is an algorithm for recombining the two dimen-
sions at any point, a process strongly related to realizability [Tro98] which we
term refinement. It is this constraint dimension and the associated concept of
refinement that appears to be missing in the AI literature. If we perform an
abstraction on a concrete model, develop an abstract analysis and then refine
the result, we obtain a concrete consequence which could have been obtained by
concrete level reasoning alone; however we argue that the abstraction mechanism
is so powerful and natural that it will often be well worth the effort involved in
applying it. In our main example we apply the method to the generation of tim-
ing constraints for an RS latch, addressing an open problem raised in [HD86)
and by [Her89]: a formal proof of circuit behaviour is produced (deduction) at an
abstract level at which timing details are elided; an interpretation of the proof
as a constraint A-term then yields a concrete proof of correctness incorporating
the necessary timing constraints (reduction). The key difference to the previous
works is that the constraints are systematically synthesised. They do not need
to be introduced at the outset by clairvoyant anticipation of the points at which
a concrete-level proof might get stuck.

Abstraction in Artificial Intelligence. Abstraction techniques have been exten-
sively applied and studied in Artificial Intelligence. See for example [Pla81,
GW92]. In [GW92] Walsh and Guinchiglia present a very general method to
analyse the uses of abstraction in a number of different fields such as theorem
proving, planning, problem solving and approximate reasoning. They give an
informal definition of abstraction as a process which “allows people to consider
what is relevant and forget a lot of irrelevant details which would get in the way
of what they are trying to do”; they go on to note that

the process of abstraction is related to the process of separating,
extracting from a representation an “abstract” representation ...

It is however important to realize that separation does not just involve extrac-
tion; after separating eggs we may wish to use the white as well as the yolk,
perhaps by transforming both and then recombining them. In the context of
formal design or verification it is misleading to think of abstraction as extract-
ing the relevant details and discarding the rest as irrelevant; rather we view the
process as one of separation of concerns: for example, a system can be split into
a deductive part, relating to the broad functionality of the system, and an al-
gorithmic part, representing non-functional aspects such as timing properties.
The algorithmic information represents the offset between the abstract system
model and the concrete one, i.e. it represents the constraints under which the ab-
straction is valid [Men93]. Complementing the abstraction process there should
therefore be a dual process of refinement, in which the areas of concern are re-
combined and constraints are (re-)generated. In the examples we present in this
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paper, the result of refinement is a concrete-level statement that the system has
the required functionality provided the constraints are satisfied.

There are many other common sense techniques that can be applied in machine-
assisted theorem proving, for example: using lemmas to decompose a proof, mak-
ing definitions and abbreviations, solving a special case and then generalising,
generalising to solve a special case, using flexible variables to track dependencies
between separate branches of a proof, goal-directed proof, writing out a paper
proof first, and so on. Our approach is to simplify the problem domain and the
verification goals via sound abstractions, a technique which can also be used in
combination with many of the above methods.

Abstraction and constraints in hardware verification. There is a substantial
amount of work on the use of abstraction techniques in formal hardware ver-
ification. We take [Fou95, FH91] and [Mel93] as representative publications. A
fundamental obstacle to the sound use of abstraction techniques is that the as-
sociated constraints accumulate in the opposite direction to the proof effort,
whether forward or goal-directed proof methods are used. Thus a situation typi-
cally arises where it is not known at the outset what exactly needs to be proved.
A knock-on effect of the presence of constraints is a loss of compositionality
or modularity with respect to refinement. Although pervasive, this problem of
non-compositionality has not often been clearly delineated in the literature. A
notable exception is [Eve89]. In his discussion of hierarchical design methods,
Eveking presents an example which “ ... shows that, in the general case, one
has to make a complete reanalysis of a switch-level network even if the correct-
ness of the fragments was proven”.

In [Mel93] Melham takes two approaches to the problem of handling the con-
straints involved in the abstraction process. The first process he calls “abstrac-
tion within models”, and involves theorems of the form + C D> M mmﬁ S where M

represents the implementation, S the specification and C' the constraints under
which the implementation satisfies the specification. F' is an abstraction func-
tion that serves to relate e.g. concrete information to its abstract counterpart.
Constraints are handled using explicit rules. In our approach, the abstraction is
explicit and the associated constraint rules are implicit, being generated from
the abstraction itself. This may prove to be more convenient and flexible in
applications.

Melham’s second abstraction process is called “abstraction between models”
and involves a formal proof of a relationship between hardware models which
may be seen as saying “provided certain design rules are followed, the abstract
model is a valid description of concrete behaviour”. The relevant constraints are
automatically satisfied for any correct combination of basic components. [Fou95)
takes essentially the same approach. The approach has two limitations: firstly
the concrete model at least must be represented by a deep embedding in the
object logic, and secondly an adequate set of design rules must be discovered
and formalised. While this approach can be highly effective, in general it is not
possible to find such a set of design rules, or they are deliberately broken to
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optimise designs. In contrast, our approach does not require a deep embedding
of the concrete model or a formalised set of design rules.

Our contribution. Our approach involves maintaining a close connection between
abstraction (the deductive dimension) and constraints (the algorithmic dimen-
sion). The algorithmic aspect corresponds to the calculation of constraints, and
in accordance with this principle we record the “irrelevant” information as sets
of constraint A-terms. Let us consider a tiny example to explain our approach.
We define three concrete formulas as follows

Y1 =Vs.(s 25) D (Pras) 2 = Vs,y.(s>9-y) D (P (fy)s)

Y3 =V, y1,y2.(35.(t > s +35) A (Pry1s) A (Peyz25)) D (Q(9(y1,u2))1).

These formulas can be seen as representing three components linked together:
11 represents a component P; which constantly delivers an output a once 5 time
units have elapsed, 12 represents a component P, which non-deterministically
outputs a value f(y) once 9 -y time units have elapsed, and 13 represents their
connection to a component () which takes the outputs from P, and P, and trans-
forms them using function g, producing the result after a delay of 35 time units.
In order to separate the functional and timing aspects, we choose to abstract
parameters s from P; and P, and t from @, treating the formulas s > 5,s > 9-y
and t > s+ 35 as constraints which should also be hidden at the abstract, func-
tional level. We have indicated the fact that certain parameters and formulas are
to be abstracted by underlining them. The results of applying the abstraction
process to these formulas v; are then

V1P =Ass > 5 Ov (P a) v = Ay, 5.8 >9-y: Yy.Ov(P2 (fy))
Vs = Ay1, Y2, 2, t(m12 = Tz At > Tz + 35) :
Yy1,y2-((Pry1) A (Py2)) D Ov(@Q (9(y1,92)))

Each new expression N\:u is of the form ?? : ?F where ?? is a constraint
A-term and ?.zm is an abstract formula. We shall see later that the : constructor
and the modal operator Oy used in these expressions may be defined within HOL
so that 1; is equivalent to Ss.u for 1 < i < 3. Thus, our abstraction method is a
definitional extension of HOL. Informally, the occurrence of the modal operator
Oy in the abstract formula Oy(P; a) can be explained by reading the formula
as: under some constraint C's on the hidden parameter s, Py a s holds, formally
Vs.C's D P; as. In other words, Oy(P; a) indicates that Py a is to be weakened by
some constraint on the implicit constraint parameter s. Later, we shall see that it
is convenient to have a dual modal operator O3(P; a) to express a strengthening
constraint 3s . C's A Py as. The simplest form of abstraction occurs when C's
is an equality constraint s = d for some term d. Then both Vs.s =d D Pias
and ds.s = d A Py as are equivalent to P; ad. In this case we may simply write
d : Py a as an abstraction of P; ad, i.e. the constraint A-term is the parameter
term d itself.

Having performed an abstraction, we will want to use formal reasoning to deduce
abstract properties of the system under consideration. It turns out that the
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higher order nature of the Oy modality allows us in many instances to confine our
reasoning to a first-order (modal) framework. In section 2 we present a set of rules
which are derivable within HOL when extended by abstraction and refinement
equations (Fig. 4 for interpreting formulas of the form p : M. We may use the
rules to deduce abstract consequences of our abstract theory ¥# = s\:u“ quv quv
for example there is a constraint A-term p such that

7 op:J0.0vQ(v). (1)

The crucial point here is that the derivation of (1) may be obtained by proceeding
along two independent and well-separated dimensions of reasoning: some steps
may manipulate the abstract formulas on right-hand side of :, which in this
case pertain to functional aspects; other steps may focus on the constraint A-
terms on the left-hand side of :, which contain constraint information. While
the analysis of constraint terms, which is done by equational reasoning may
in certain domains be decidable and automatic, the abstract formulas require
proper logical deduction, which in general is interactive and undecidable. The
fact that both aspects are clearly separated by the colon : allows us to benefit
from this methodological distinction. At any point, however, the two parts of an
abstract conclusion p : Jv.0OyQ(v) (whether or not it has been obtained in this
structured fashion) may be re-combined to give a concrete-level formula. One
solution for p is

Lo(a,f(a))(lety z <= A\s? inlety w < Gw? ain Qw? a(f(a))(z,w)).

Note that p is playing a dual role: on the one hand it can be seen as a proof
term witnessing how the abstract conclusion Jv.Oy@(v) has been reached; on
the other hand it can be seen as a constraint (realiser) for refining the conclusion
into a concrete level consequence of the theory ¥. This is achieved by applying
the equivalences in section 2 which allow us to calculate that p : Jv.0OyQ(v) is
equivalent to the concrete level formula

Vu.u > (max5(9- f(a))) + 35D (Q (g9(a, f(a))) u).

This states that the value g(a, f(a)) must appear on the output of @) after at
most (max5(9- f(a))) + 35 time units.

2 Higher-order framework: technical details

We take as base logic a polymorphic classical higher order logic such as is im-
plemented in Isabelle. We also assume a suitably closed subset @ of formulas of
higher order logic to act as constraints. In our general implementation, we allow
arbitrary formulas of HOL, while a restricted set of formulas might be used in
more specialised settings. These constraints can appear in A-terms, as we saw
earlier, and indeed it is this feature that gives our approach bite. We use the
notation T Fy M to express the fact that M is a consequence of formulas T in
the base logic and A k5 t :: a to express the fact that the HOL term ¢ has type
« in the context A of typed variables.

M. Fairtlough, M. Mendler, X. Cheng: Abstraction and refinement in higher-order logic.
In R. J. Boulton, P. B. Jackson (eds), Theorem-proving in Higher-order Logic (TPHOLs'2001), pp. 201-216, Springer LNCS 2152, 2001



PRELIMINARY VERSION of a paper under copyright with Springer Verlag

Abstraction and refinement. We introduce the notation p : M as a syntactic
abbreviation in the base logic, where the first component p is a constraint \-
term and M is an abstract formula. Fig. 2 gives the raw (i.e. untyped) syntax of
constraint A-terms p and the syntax of the abstract language to which M must
belong. The formula p : M will only be well-formed under certain conditions on

pu=z | * [ c| (pp) | mp) | m(p) |
case p of [11(21) = p, t2(22) = p] | u(p) | t2(p) |
Az.p | pp | valy(p) | vala(p) | lety z<pinp | lets z <=pinp
(plz) | mp | w(p) | casepof [tz(2) = p]
M:=A| false | true | M AM | MV M | M D M |
OvM _ OsM _ V. M _ dz. M
x ranges over object variables, z, z1, z2 over proof variables, t over well-
formed object-level terms and c over constraint formulas in é. A is a

meta-variable for atomic formulas R ¢: .. .¢,. Negated formulas =M are
defined by M D false.

Fig. 2. Syntax of constraint A-terms and abstract formulas.

p and M. In order to define when a pair p : M is properly formed, we give a
mapping from formulas M of our abstract language into refinement types |M |
of higher order logic according to Fig. 3 and require that kg p:: |M|. We refer
to |M| as the refinement type of M.

Note that the mapping removes any dependency of types on object level terms,
i.e. |M| = |M{c}| for any substitution ¢ of terms for object level variables of
M. Also note that the image of false is the same as that of true, viz. the unit
type 1. We must choose a non-empty type for each formula as empty types
are inconsistent with our base logic. The meaning of a well-formed pair p :

|Pl:=a ifP:a=DB | M1 A Ma| := | M| x | M| |OsM|:=|M|=B
_nv..t\m_ =1 _N’\NH V EM_ = _N’\NH_ =+ _EM_ _O<N§_ = _E_ =B
|false| :=1 |M1 D Ms| := |M;i| = | M| |Vz :: a. M| :=a = |M|

|3z :: . M| :== a x |M]|

Fig. 3. Refinement types of abstract formulas.

M is now given by Fig. 4 by recursion on the structure of M. We can read
these equations in either direction: from left to right they are used to refine
an abstract proof/formula pair into the concrete base logic by zipping p and
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M together to produce (p: M vv“ thereby completely eliminating the colon. We
call this process refinement. From right to left, they can be used to completely
separate a formula M into a constraint term M® and an abstract formula M#2.
The process of generating the pair M* = M* : M* we call abstraction. Let us

(p: true) = tr
(p: false) = f :Nmn
(p:P)=Pp ifP:a=>Bandp:a
(p: M AN) = (m(p): M)A (m2(p) : N)
(p:MVN)=c mo@oﬁ [t1(z) = (z: M), t2(y) = (y: N)]
(p: N&UZVH 2 |M|.(z: M) D (pz:N)
(p:Ve:a.M)=VYu:a (pu: M{u/z})
(p:IznaM)=m A )+ M{m(p)/z}
(p: oién 2 MlpzA(z: M)
(p: OvM) =Vz: [M|.pzD (2: M)

Fig. 4. Equations for abstraction and refinement.

first look at ¢, from the introduction. We can apply the following sequence of
equivalences from Fig. 4 and standard equations of higher order logic to generate
the abstraction ¢1*: Vs. (s > 5) D (Pras) = V¥s. (s > 5) D (s : Pla) =
Vs.(As.s >5)s D (s: Pia) =As.s >5: (Oy(Pra)). The next example
shows that we can pull an arbitrary constraint formula ¢ into a proof term:
c=cAtrue=3z::1.((Az.c) 2z A z : true) = Az.c : Ogtrue. Finally, we can pull
arbitrary terms out of disjunctions as follows: MpV Ng=p: MVq: N = 3z.
|M| + |N|.case z of [t1(z1) = 1 =D, t2(x2) > 22 =¢]ANz: (MVN)=Az.
case z of [t1(z1) = 1 = p, t2(x2) = 22 = ¢] : O3(M V N). In a similar way,
we can abstract out of conjunctions, implications and quantifiers. In essence,
we can abstract out arbitrary sub-terms or formulas out of first-order syntax,
which generalises both parameter abstraction [Pla81] and constraint abstraction
[Men93].

Theorem 1 (Conservativity over HOL). Our definitions and equations for
formulas of the form p: M are a conservative extension of HOL.

In fact, our implementation in Isabelle/HOL provides a purely definitional ex-
tension using a non-recursive encoding of a new set of logical operators, from
which the equations of Fig. 4 are derived.

Abstract reasoning (Deduction). In Fig. 5 we present a set of rules to be used to
progress an abstract analysis along the deduction dimension, driven only by the
right hand side of :. These rules are a variant of QLL [FW97] and derivable in
the base logic from the equations of Fig. 4. They represent a standard first-order,
constructive logic with proof terms extended by two modalities O3 and Oy which
correspond to two independent strong monads, extrapolating the Curry-Howard
correspondence between formulas and types.
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Iz:MI'Fqg:N

I
Lp: M, I"Fg{p/z}: N

Iz:MI'F-z:M Subst  (p =+ |M])

I'tp: M HTQH.\<> HTﬁL§>2> rr:MAN
T't (p,q): MAN ’ TFm(r): M "¢ TFm(r): N

I'r:MVN Ny:MFp: K IN'z:NFq: K

Ne

I'tcaserof [ti(y) = p, t2(2) > ¢]: K Ve
I'tp:M v I'tq:N v
I'tu(p): MVN z I'tu(q): MVN z
z:MbFp: N 5 I'-p:M>DN HTQL&U
I'Xz.p:MDN g I'Fpg:N £
I'tp: M

TFvalg(p): oghf O H@=Vor@=3

I'kFp:0oM INz:MFEq:0qN
I'kletg z<=ping: OgN

T'kp:M

Og fQ=VorQ=3

I'tp:Ve. M

I'-{p|z):Vo.M ¥z (@ not free in I) I't 7w (p): M[t/x] Ve
I'tp: M[t/z]
't w(p): Jz.M Fz 'k % true fruez

r'tr:3z.M I''z:MFp:K
T'Fcaserof 1z(2) > p]: K

Je¢  (z not free in K or I')

Fig. 5. Natural Deduction Rules for abstract logic.

Constraint reasoning (Reduction). Constraint reasoning proceeds by equational
rewriting of the constraint A-terms on the left hand side of :. This involves
both the standard 3, n equations of A-calculus and special constraint reduc-
tions that can be generated from the equations 6. These latter equations in
fact provide a computational semantics for the proof term constructors such as
case p1 of [11(z1) = pa2, t2(22) — p3] or valy(p) which are special to our con-
straint A-calculus. These equations, called y-equations in [FMW97], are justified
by the definition of p : M as an abbreviation in HOL.

(plz)=Ac.p ™ (p) =pt
v(p) = (t,p) case r of [t2(2) = p] = p{mi(r)/z, m2(r)/2}
valp(z) = \yx =y (letg z<=ping) = Az.3z.pz Aqx
c=d (c,d€ P, tgc<d)

Fig. 6. Interpretation of proof terms.
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We sum up our method in Fig. 9 at the end of the paper.

3 Our method in practice

We give three examples of practical applications of our method. The first provides
an extension of constraint logic programming (CLP), the second is an example
of a simple combinational circuit with inductive structure and the third is the
latch case study first verified by Herbert in [Her89].

Returning to the example specification of the introduction, we observe that the
formulas of ¥ are in fact (equivalent to) Horn clauses. As observed in [FMW97],
the standard resolution rules for logic programming can be extended by lax
resolution rules which also handle the modality Oy (and in fact, O3 also). For
example,

[kp:OgM_T'tq:OgN  Tkp:OgM Thr:iMON _
' Ao(p,q) : Og(M AN) O I'F Do(r,p) : OgN O-

The first rule states that a constraint p for M and a constraint ¢ for IV can be
combined to form a constraint Ao (p,q) = A(w,2).pw A qz for M A N, while
the second that a constraint p for M can be propagated through an implication
r : M D N. The resulting constraint D (r,p) is provably equal to Az .3Im .
pm A z = rm. The second rule also has a variant more useful in resolution in
which the second premise has the form I' + r : M D OgN. In [FMWI7] we
have shown that the standard semantics for CLP can be faithfully represented
by a resolution strategy including lax versions of the usual resolution rules.
More precisely, the execution of a CLP program corresponds to a lax resolution
strategy for proofs and the CLP constraint analysis corresponds to the reduction
of proof terms in our framework. We conjecture that our results can be extended
to higher order hereditary Harrop formulas. A sensible proof strategy would
begin by extending the version of Lambda-Prolog distributed with Isabelle to
handle Oy and O3.

The second example is taken from [Men93] where Mendler sets himself the task
of realising the abstract successor function at the concrete level of bit vectors.
He defines Inc, :: B*Y = B* as a cascade of w half-adders which implements
the successor function provided the result can be encoded as a word of at most
w bits. This overflow constraint is constructed by a recursion mirroring the
recursive construction of the incrementor itself. The abstract goal to prove is

Yw,n.Oy((qy o Incy o py)n=n+1)

where a,, :: BY = N and p,, :: N = BY are the abstraction and realisation map-
pings that translate from bit vectors to numbers and conversely. The constraint
generated by the lax proof of the goal is Aw,n . f w n true where f is defined
recursively by fOnec=n=0A-c)and f (k+1)nec=fFfkn+2)(n=1
(mod 2) A ¢). This constraint has computational behaviour, but it can also be
shown to be equivalent to a flattened version n + 1 < 2¥*t1. The key difference
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lies in the fact that in certain contexts the recursive version may evaluate to the
trivial constraint, while the flattened version would have to be proved trivial.
Note that the inductive basis of the constraint f w n true when w = 0, which
is (n = 0 A —true), is not only unsatisfiable, but in fact inconsistent. In other
words, the abstract proof started from an inconsistent base case. Nevertheless,
the lax proof returns a satisfiable constraint.

Finally we apply our method to the RS latch,

which is illustrated in Fig. 7. The latch is the 7y,

simplest of three memory devices verified by Her- Gout
bert in [Her89]. He verifies the device in the HOL

system at a detailed timing level, using a dis-

crete model of time and a transport model of Tout
basic component behaviour. For example, he de- s;,

fines a NOR gate as NOR2(in0, inl, out, del) =

Vt.out(t+del) = -(in0 t V inl t) and the Fig.7. RS latch
latch as NOR2 (7, Gouts d1s Gout) ANOR2(Sin,s Gouts d2, Qous). It is clear that
the proofs he presents are the result of several iterations which were needed to
discover the exact timing constraints necessary to prove them. Similar problems
were reported in the work by Hanna and Daeche [HD86]. The main improvement
yielded by our approach is that we do not need to make repeated attempts to
prove the memory properties, because the timing constraints are synthesised in
the course of the abstract analysis.

Our previous work e.g. [MF96, Men96] in this area was focussed on combina-
tional devices. The analysis of the system represented by ¥ in the introduction
illustrates the basic idea, namely the extraction of a data-dependent timing delay
from an abstract proof of functional behaviour. On the other hand, the functional
behaviour of sequential devices such as latches depends on timing properties in
an essential manner. Thus it is not immediately clear if the same approach will
work. We shall however see that it does. The essential idea is to introduce an
abstract induction axiom Nﬁ&w : P D (P D> OyP) D OyP which captures the
reasoning behind proofs of memory effects. These effects depend on the existence
of at least one self-sustaining feedback loop. Given proof terms p : P representing
an initial impulse and ¢q : P D Oy P representing the propagation of the impulse
through a feedback loop then S&w pq : OyP represents the constraints under
which the loop is self-sustaining, i.e. produces a memory effect.

We verify one of the transitions in fundamental mode, namely the transition that
resets the latch: the input r;, is held high for a period of time and the output
Sin 18 held low for that period and for ever after. Provided that rg, is held high
for long enough and the intertiality of at least one NOR gate is non-zero, then,
after a suitable delay, the output on g,,; is permanently low. Our specification
of the latch and its input excitation, given in Fig. 8, follows Herbert’s fairly
closely. The inputs r,, Si, and outputs ¢out, Gour Of the latch are modelled as
signals, i.e. functions from N to B. We lift the negation operation - :: B = B
to signals r by defining |r to be At :: N. =(r¢). In his proofs Herbert uses a
predicate During of type (N = B) = N x N = B. For a signal r of type N = B
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01 =Vs,t.(rin)(s,t) D (1gout)(s + d1,t + Dy)
O = Vs1,t1,82,t2.((1sin]) (51,81) A (]qout (82, t2))
D (Tow ) ((max s152) + d2, (mintit2) + D2)
03 = Vs, t.(Gour)(s,t) D (1gout)(s + d1,t + D1)
Op1 = (rin)(Sa,ta) and 6Op2 = V&> sq.(15in)(Sa,t)

Fig. 8. Latch theory.

and pair (s,t) of type N x N the meaning of Duringr (s,t) is that r is high (has
value true) on the whole of the interval [s, t]. Thus During |r (s, t) expresses the
fact that r is low (has value false) on the interval [s,t]. To save space in the
presentation of the latch analysis below, we abbreviate Duringr to (r)). Fig. 8
gives three base logic axioms specifying the latch itself and two assumptions on
the inputs to the latch. The axioms 6, > and 3 express the behaviour of the
circuit, while 6, expresses the fact that the input r4, is high in the interval
[Sa,ta] and 6,2 the fact that the input s, is low in the interval [s,,00). In the
formal proof, the parameters s,, to, d1, d2, D1 and D- are universally quantified
and the assumptions 6, and 6,5 incorporated into the statement of the theorem
proved. Currently, the mechanism used is that of Isabelle’s locales, which allow
a formal development that closely matches our informal presentation.

The main difference to Herbert is that we specify both a delay and an inertiality
for each gate. For instance, the clause 6; specifies that if the signal r;, is high
throughout the interval [s, t] then the signal g, is low throughout the interval
[s + di,t + D;]. The value d; represents the maximal delay before the input is
reflected in the output, while D represents the minimal length of time the gate
continues to propagate the input after it is no longer present. One reason for
generalising the system specification in this way is that it is electronically more
realistic than the transport model.

Applying the equations of Fig. 4 in reverse and some simple optimisations, we
obtain the following abstractions of our circuit theory © = {61, 02,6s,0,1,0p2}:

Pn = P? 2 (rin) D (1gout) P? = X(z1,22).(21 +d1,22 + Dy)
02" = 02" ((15in) A (100ut)) D (Touz) 62" = M(211, 212), (221, 222)) -

AABNN NHHNMHV + &wu AE\:E NHwNwwv + Nuwv

05 = 05" (Touz) D (1q0ut) 05" = X(z1,2) . (21 + dy, 22 + Dy)
01" = 0,0% : (rin) 01" = (54,ta)
O,0F = 0,5" - Oy(]5in) Opo™ = A(5,1) .5, < sAs <t

in which the functional and timing aspects have been separated completely from
each other.

Induction principles for latching proof. To prove the latching property for the
reset transition we will use the following interval induction principle for prop-
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erties of intervals I C N: If P holds on an initial interval Iy = [b1, bs] and,
whenever I = [by, 1] extends Iy and P holds on I, then P also holds on an
interval properly overlapping I on the right (i.e. an interval [ss,t2] such that
by < sy <ty <t2), then P holds on all intervals [by, t]. This principle is valid for
any property P that satisfies P(I) A P(J) D P(I U J) for all intervals I and J.
For convenience we will identify closed intervals [by, b2] with pairs of endpoints
(b1,b2). As an abstraction of this induction principle we therefore propose the
following proof-formula pair:

Ind*, = AS&W : E%WV
= AVA@H“GMVVLN\/A%“S% = GH A GH m tA wﬂbmmﬂvawv
: P> (P D>OyP)DOyP),

where P :: NxN = Bis any binary relation on natural numbers and Prog R (b1, b2)
means that R is progressive on (by,bs), i.e. whenever (by,¢1) is an interval ex-
tending (b1, bs) then there is an interval (ss,ts) strictly overlapping (b1,¢;) on
the right such that (b1, 1) and (s2,t2) are related by R:

Wﬁcbmﬁvwngv = A<ww.ww N @m D
Am_m?ww.vu < sy <1t <o >mwﬁvfwuv Aquwwvvv.

N:&u is a sound induction axiom for any property P of the form (@), which can
be seen once we have refined it (using the equations in Fig. 4):

Ind% = Y(by,ba). (b1, bs) : P) D
VR.(Y(z1,22) . (21, 22) : P D V(y1,y2) . R(z1,22)(y1,92) D (y1,92) : P) D
V(s,t).(s =by Aby <t A (Vty.t1 > b
D (Tsa,t2.b1 < 82 <ty <ta AR(bi,t1) (s2,t2)))) D (s,t) : P.

This formula is in fact equivalent to the interval induction property presented
above. To further clarify the meaning of N:&u we say P is invariant under a
binary relation R :: (N x N) = (N x N) = B, written InvP R, when P and R
satisfy Vsq,t1,S2,t2. (P(s1,t1) A R (s1,t1) (S2,t2)) D P(s2,t2). Then Nﬁ&wu may
be directly re-formulated as

<®Hv@m.wﬁ~vf®wv DVR.InvPR D wﬂbmmﬂvawv DVt N GH..NUQVH“SV

i.e. if P holds in some initial interval (b1, b2), and P is invariant under a relation
R that is progressive on (b1, by), then P must hold in the infinite interval (b;, 00).
Now if R (s1,t1) (s2,t2) is chosen to mean that P(s1,t;) D P(s2,ts) then P is
trivially invariant under R and the statement Prog R (bi,bs) amounts to the
condition that whenever I = [by, ¢1] extends [b1, bs] to the right and P holds on
I, then P also holds on an interval properly overlapping I on the right. Thus
we see that the interval induction principle for P is a consequence of 5&&
Sa&u is a mild generalisation which in our implementation we prove in the form

#
Y@ L':&Q@v.
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Verifying the latch. Let us use our abstractions to carry through an abstract
proof and see how the latching constraint comes in. The strategy is to find a
proof-formula pair p; : Ov(]¢out]) Which can then be refined to give the timing
constraint C' under which the output oy is low: Vs, ¢.C(s,t) D (]qout)(s,t). We
want to find a persistent memory property, that is, one that arises from a (single)
self-sustaining feedback loop around the latch. This requirement is satisfied by
choosing a single application of the abstract induction rule to (]qeu:|). The appli-
cation Ind* (Tqout) is then ind : (1gout) O ((1out) D Ov(1gout)) O Ov(ldout))
where ind = A(b1,b2) . AR . A(s,t).s = by Aby <t A Prog R (b1,b2). So we find
proof terms (p1,p2) : (1¢out) and R : (1qout) DO Ov(]¢out)) and then apply the
abstract rule Dg of Fig. 5 twice; we obtain p; : (]gout|) where p; is the compo-
sition ind (p1,p2) R which reduces to A(s,t).s = p1 Ap1 < t A Prog R(p1,p2).
Now for the details: in the following we will compose formulas and proof terms
at the same time in a forward fashion, so that the constraint corresponding
to p; is computed in an incremental manner. In our Isabelle implementation,
in contrast, this is carried out in a goal-oriented fashion. Note, however, in
either case the constructions can be done in a single direction, no mix-up of
forward and backward steps is forced. To find (pi1,p2) we start with axiom
mEu = (Sq,tq) @ (rin]) and compose this with the implication axiom ,% to
obtain (p1,p2) = (Sa + di,ta + D1) : (1¢out]), where we have already performed
the S-normalisation of the proof term. This is our base case. For the step case
we assume (as an hypothesis) we have a proof (si,¢1) : (]qout]). We will need
to lift this to a proof valy(s1,t1) = Az .z = (s1,t1) : Ov(]qout) using rule Oz.
Applying A to the axiom mewz and valy(s1,t1) : Oy(]qout) we derive

p1 = (A((s,1), (u,0)) .8 < s <tAu=s3 Av="=t1):Ov((]5in) A (1q0ut)))-(2)

We may use D¢ to propagate this through the implication 6, to obtain Do (re,p1) :
O<A_Qc5_v where ro = VAAN:TNHMY ANwHuNwwvv . AABNN N:NMHV + &wu Agmﬁ NHwNwwv +
D»), which after 8-normalisation and a little simplication yields:

A(z1,22) . Ima1, maz . Sq <My < May

A z1 = (maxmq181) + da A zo = (minmqaty) + Do : O<A_Qc5_v. (3)

The next step is to feed (3) through the implication 65°, and B-normalise:

VANHVNMV .MSHHVEHM.MQ < mi1 m mi2 Az = AEQNSHHMHV + &w + &H

N Z9 = QH:B Ewmwwv + bw + @H . O/.\A_._Qo:m_v. ANC
We derived this under the assumption (s1,%1) : (]gout|), which we now discharge:

A(s1,t1), (21, 22) - FImir, miz. s <mip < mao
Nz = AEQNSHHMHV +do +di Nzy = AEWBS\:meV + D5y + Dy
: A_._QQEW_V D O/.\A_._Qoﬁw_v. va

We have generated the proof term R for the induction step. Now we can take
the induction base (s, + di,t, + D1) and step function R as arguments of the
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induction rule Ind® (Tqout)) to obtain A(s,t).s = sq+diAsq+di < tAProg R (sq+
dy,te + D1) : Ov(lqout]). Expanding, we obtain

A(s,t).s=s,+di ANsq+di <TA
?@H Ay >ty + D1 D
(Fsa,ta.84 +di < 82 <t1 <taAR(sq+d1,t1) (s2,t2)))
: Ov(1gout]), where (6)
R (sq +di,t1) (52,t2) = Imy,miz.50 <myp <myp
A s2 = (maxmiy18, +di) +do + dy
Aty = (minmqsty) + Do + Dy.

Again, we have S-normalised to keep the expressions as simple as possible. It is
now time again to do some constraint reductions. The two equations for s and
t> allow us to eliminate the dss, t2 quantifiers, a computation that would be part
of simple constraint analysis, i.e. incorporated into constraint reductions.

A(s,t).s =8, +di Asg+di <tA
Ad@H .wH N ws + GH D) AM_S\:TS@HM.%D < mi1 m mio

Sq+d1 < AENNS\:H%DV +di+dy+di <t; < AEWBSHMNHV + Dy + @va

: Ov(|1gout)- (7)

The constraint computation will detect that ¢; < (minmist;) + De + D is
equivalent to Dy + D; > 0; that maxmqs, is the same as mq; and hence
(maxmy1S,) +dy +day +dy <t is equivalent to my; +2-dy +ds < #1; and that
Sq +di < (maxmyys,) + dy + ds + dy is always trivially satisfied. Thus, we end

up with

A(s,t).s=sa+di ANsqa+di <tA
Ad@u >te+ Dy.3myg > s4.m11 +2dy +dy <ty ADy+ Dy > Ov
: Ov(l1qout - (8)

At this point, now, it appears we need one slightly more sophisticated argument,
to deal with the V¢; and 3mq; quantifiers: the condition V¢, > t, + D1 .3dmq; >

Sq-m11 + 2d; + ds <ty is logically equivalent to t, + D1 > s, + 2d; + d2. Given
such reasoning is built into constraint reductions, we are looking at the solution
form:

A(s,t).s =8, +di ANsg+di <tA
to+D1>5,+2dy +do ANDy+ Dy >0 O<A_._Qo5_v. va

When (9) is refined back into the base logic we have the desired result:

Qn + Dy >5,+2dy +ds ANDs + Dy > Ov DVt > s, +d. m_._Qci_v Ams + &va.
The predicate t, + D1 > s, + 2d; + ds is the external hold constraint: Input r;,
must remain high for a period of length at least 2d; + d» — D for the latch fully
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to reset; The second part Dy + D1 > 0 is the internal memory constraint that at
least one of the gates must have non-zero inertia; Finally, the third component
t > s, + dy of the overall constraint states that the propagation delay is d; .

4 Conclusions

We have presented a conservative extension to higher order logic reasoning that
allows for general shallow abstractions and an inverse refinement operation.
The extension uses a computational lambda calculus to represent constraint in-
formation that is factored out by the abstraction. The combination between
these constraint terms and abstract formulas (syntactically separated by the
colon : operator) is a realisability interpretation of constructive logic which for-
mally extends the “deliverables” approach of [McK92], although the motivation
and theory of McKinna’s work is rather different from ours. It is important to
stress that the method does not depend on a constructive (intuitionistic) ver-
sion of higher-order logic. It is equally applicable to classical HOL. However, the
abstraction process applies constructive principles, within HOL.

We believe that this approach provides for an interesting new way of organ-
ising proofs in HOL, which allows for the clean and yet sound separation of
algorithmic (constraint A-calculus) and non-algorithmic reasoning (abstract for-
mulas). Abstraction by realisability separation should also open up new avenues
for developing heuristic techniques for proof search in HOL, borrowing ideas
from AI and constraint programming (CLP). The method yields a natural em-
bedding and generalisation of CLP within HOL. To support our claims we have
applied the technique here to the verification of a memory device and demon-
strated how abstract functional verification can be combined with constraint
synthesis, in one and the same derivation. This solves a methodological prob-
lem in the verification of memory devices as highlighted in the work of Hanna
and Daeche [HD86] or Herbert [Her89]. Our new approach avoids some of the
constraint-related problems found in traditional HOL verifications. It combines
the goal-directed backward proving of abstract properties with the simultane-
ous forward-construction of constraints. We are emphatically not proposing our
approach as a replacement for the many other effective approaches to verify-
ing hardware in HOL, but we do suggest that it could be used alongside these
methods and especially where the handling of differing levels of abstraction is
involved.

We are currently evaluating an implementation of our method in the Isabelle
theorem prover. The reader familiar with Isabelle may have noticed that the
connectives in the abstract formulas of Fig. 4 do not have their expected types.
For example, if P:a =B, Q=B p:aandqg: [then PpAQq= (p,q):
P AQ which forces A to have type (¢ = B) = (8 = B) = (ax ) = B instead of
the usual B = B = B. In our implementation we have defined a new set of logical
connectives LI, M, 1, ... to connect abstract formulas and used this definition to
derive the rules of Fig. 4. This is very straightforward to do, e.g. we define the
abstract version of conjunction by PM@Q := A(p,q).p: PAq: Q, where p: P can
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now be simply defined as P p. We have used our implementation to synthesise
and analyse the timing constraints for the latch and the incrementor example.
We are now applying our method to the other memory devices considered in
[Her89] and have ambitions to explore its application to formal microprocessor

design.
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Fig. 9. Summary of our method
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