Coherence and Determinacy in CCS with Priorities (Synpa^{tick})

M. Mendler* and L. Liquori

Synchron 2023, Kiel

*work begun while on visit at INRIA Sophia/UCA in May 2023, still in progress

Introduction

Our Result: Generalise Milner's determinacy results for CCS by strengthening theories of CCS with priorities (e.g., CCS^{cw} [Camilleri & Winskel 1995], CCS^{Ph} [Phillips 2001]):

- Twistit 1: replace "weak enabling" by "constructive enabling"
- Twistit 2: replace "confluence" by "coherence"
- Twistit 3: replace "sort" $\mathcal{L}(P)$ by "policy type" $\pi(P)$.

Our Objective: ...to ground the semantics (and thus essence) of

- sequentially constructive Esterel [von Hanxleden et. al:, DATE'2013, PLDI'14, Memocode'15], and more generally
- deterministic shared objects [Aguado et. al: ESOP 2018]

in the setting of Milner's process algebra CCS.

Roadmap

- 1 CCS (Syntax & Operational Semantics)
- 2 Milner's CCS Confluence Class
- 3 CCS with Priorities (Synpa^{tick})
- 4 Twistit I: Constructive Enabling
- 5 Twistit II: Coherence for Constructive Enabling
- 6 Twistit III: Precedence Policies and Preservation of Coherence
- Conclusion

CCS (Syntax & Operational Semantics)

Basic CCS Terminology

Identifiers

- channel names $a, b, c \in \mathcal{A}$
- process names $A \in \mathcal{I}$

Action Labels

- (channel) co-names $\overline{a}, \overline{b}, \overline{c} \in \overline{\mathcal{A}}$
- (rendez-vous) action labels $\ell \in \mathcal{L} \stackrel{\text{\tiny def}}{=} \mathcal{A} \cup \overline{\mathcal{A}}$ ("a input", " \overline{a} output")
- actions $\alpha, \beta \in \mathit{Act} = \mathcal{L} \cup \{\tau\}$ where $\tau \notin \mathcal{L}$ silent action

Synchronising Actions ($\ell \in \mathcal{L}, L \subseteq \mathcal{L}$)

- $\ell | \overline{\ell} = \tau = \overline{\ell} | \ell$
- $\overline{L} = \{\overline{\ell} \mid \ell \in L\}$
- $\overline{\overline{\ell}} = \ell$

Syntax of CCS

Process Expressions

$$\begin{array}{cccc}
P, Q, R, S & ::= & 0 & \text{stop (inaction)} \\
& & \ell.P & \text{action prefix } (\ell \in \mathcal{L}) \\
& & P + Q & \text{choice} \\
& & P \mid Q & \text{parallel composition} \\
& & P \setminus L & \text{restriction } (L \subseteq \mathcal{A}) \\
& & A & \text{identifier } (A \in \mathcal{I})
\end{array}$$

Definitional Equations $A \stackrel{\text{df}}{=} P$ Abbreviation We write ℓ instead of ℓ .0.

Free Names $FN(P) \subseteq A \cup I$ (process identifiers remain unbound).

A process *P* is well-formed if every identifier $A \in FN(P) \cap \mathcal{I}$ has a definitional equation. $\mathcal{L}(P) = FN(P) \cap \mathcal{L}$ is the sort of *P*.

Operational Semantics of CCS

$$\frac{}{\ell . P \xrightarrow{\ell} P} (Act) \qquad \frac{P \xrightarrow{\alpha} P' \quad A \stackrel{df}{=} P}{A \xrightarrow{\alpha} P'} (Con)$$

$$\frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} (Sum_{1,2}) \qquad \frac{P \xrightarrow{\alpha} P'}{P \mid Q \xrightarrow{\alpha} P' \mid Q} (Par_{1,2})$$

$$\frac{P \xrightarrow{\ell} P' \quad Q \xrightarrow{\overline{\ell}} Q'}{P \mid Q \xrightarrow{\ell \mid \overline{\ell}} P' \mid Q'} (Par_3) \quad \ell \mid \overline{\ell} = \tau$$

$$\frac{P \xrightarrow{\alpha} Q \quad \alpha \notin L \cup \overline{L}}{P \backslash L \xrightarrow{\alpha} Q \backslash L} (Restr)$$

Rules taken modulo structural congruence $P \equiv Q$.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis

Church-Rosser & Determinacy

We are interested in uniqueness of normal forms under τ -reductions.

- *P* is normal if there is no *P'* such that $P \xrightarrow{\tau} P'$.
- Write $P \stackrel{\varepsilon}{\Rightarrow} Q$ if $P \equiv Q$ or $P \stackrel{\tau}{\rightarrow} P'$ and (inductively) $P' \stackrel{\varepsilon}{\Rightarrow} Q$.

Church-Rosser

• A process *P* satisfies Church-Rosser (CR) if for every derivative *Q* of *P* and reductions $Q \xrightarrow{\tau} Q_1$ and $Q \xrightarrow{\tau} Q_2$ with $Q_1 \equiv Q_2$ there exist Q'_1 and Q'_2 with $Q'_1 \equiv Q'_2$ and $Q_1 \xrightarrow{\tau} Q'_1$ and $Q_2 \xrightarrow{\tau} Q'_2$.

Determinacy

• If *P* satisfies CR then *P* is determinate: If $P \stackrel{\varepsilon}{\Rightarrow} P_1$ and $P \stackrel{\varepsilon}{\Rightarrow} P_2$ where P_i are normal, then $P_1 \equiv P_2$.

Example

Observation: CR is not preserved under parallel composition.

Write-once Store: $S \stackrel{\text{\tiny df}}{=} w.S' + \overline{r}.S$ and $S' \stackrel{\text{\tiny df}}{=} \overline{r}.S''$

- \overline{r} , w "store-side" read (output) and write (input)
- *r*, *w* "program-side" read (input) and write (output)

Milner's CCS Confluence Class

Milner's Notion of Confluence

The classical theory of CCS defines confluence as a strengthening of CR and proves preservation of confluence for restricted parallel composition.

Confluence

A process *P* is (structurally) confluent if for every derivative *Q* of *P* and transitions $Q \xrightarrow{\alpha_1} Q_1$ and $Q \xrightarrow{\alpha_2} Q_2$ such that

- $\alpha_1 \neq \alpha_2$ or $Q_1 \equiv Q_2$,
- there exist $Q'_1 \equiv Q'_2$ with $Q_1 \xrightarrow{\alpha_2} Q'_1$ and $Q_2 \xrightarrow{\alpha_1} Q'_2$.

Observation: Confluence \Rightarrow Church-Rosser

Milner's Confluence Class

- Confluent composition is given as $P \mid_L Q = (P \mid Q) \setminus L$ for $L \subseteq \mathcal{L}$ with $\mathcal{L}(P) \cap \mathcal{L}(Q) = \{\}$ and $\overline{\mathcal{L}(P)} \cap \mathcal{L}(Q) = L \cup \overline{L}$.
- If P and Q are confluent, then $P|_L Q$ is confluent, too.

The Limits of Milner's Confluence Class

- Memory access $S \stackrel{\text{\tiny df}}{=} w.S' + r.S$ is intrinsically not confluent
- Confluent composition $P|_{I}Q$ precludes sharing of labels

But sequentially constructive synchronous programming eploits non-confluence and sharing of labels for ...

- deterministic shared memory: [[Mem || Write || ReadA || ReadB]] $\approx S | (W\{(\bar{t} | \bar{t})/0\} | t.R_A | t.R_B) \setminus t$
- multi-cast communication:

 $[\![emit \ a \ || \ present \ a \ then \ A \ || \ present \ a \ then \ B]\!] \approx \overline{a}.\overline{a} \ | \ a.A \ | \ a.B$

• sequential composition with upstream concurrency: $[(await a || await b); emit o]] \approx (a.\overline{t} | b.\overline{t} | t.t.\overline{o}) \setminus t$

CCS with Priorities (Synpatick)

Syntax of Synpatick

Extended Process Expressions

Idea: $P:H \approx$ "*P* unless the environment offers an alternative in *H*". Abbreviation: Instead of $(\alpha.P):H$ write $\alpha:H.P$ and $\ell:H$ for $\ell:H.0$.

Strategic SOS Semantics

The Plot: Enrich the "unscheduled" SOS semantics á la CCS

$$P \xrightarrow{\alpha} P'$$
 by priority annotations $P \xrightarrow{\alpha}_{R} P'$

where the contextual action (c-action) α :H[R] has

- $H \subseteq Act$ blocking set of actions that take precedence over α
- *R* is the concurrent context of threads in *P* that compete with α .

The Roadmap: Confluence for Strategic Scheduling

- Twistit I: Define a Φ-enabled constraint Φ(R, H) on c-actions α:H[R]
- Twistit II: Define Φ-confluence for Φ-enabled c-actions that implies Church-Rosser.
- Twistit III: Show that Φ-confluence is preserved by composition |, under reasonable restrictions but permitting sharing and memory.

Extended Operational Semantics

Accumulating Blocking Sets

Accumulating Concurrent Context

$$\frac{P \stackrel{\alpha}{\underset{R}{\longrightarrow}}_{H'} P'}{P:H \stackrel{\alpha}{\underset{R}{\longrightarrow}}_{H' \cup H} P'} (Prio)$$

$$\frac{P \xrightarrow{\alpha}_{R} P'}{P \mid Q \xrightarrow{\alpha}_{R \mid Q} H P' \mid Q} (Par_{1,2})$$

Evaluating Blocking Conditions

$$\frac{P \xrightarrow{\ell}_{R_1} P' \quad Q \xrightarrow{\overline{\ell}}_{R_2} Q' \quad H = \{\tau \mid H_2 \cap \overline{iA}(P) \notin \{\overline{\ell}\} }{\text{or } H_1 \cap \overline{iA}(Q) \notin \{\ell\}\}} (Par_3)$$
$$\frac{P \mid Q \xrightarrow{\ell \mid \overline{\ell}}_{R_1 \mid R_2} H_1 \cup H_2 \cup H P' \mid Q'}{P \mid Q \xrightarrow{\ell \mid \overline{\ell}}_{R_1 \mid R_2} H_1 \cup H_2 \cup H P' \mid Q'}$$

Initial Actions:
$$iA(P) \stackrel{\text{\tiny def}}{=} \{\ell \mid \exists H, R, P'. P \stackrel{\ell}{\longrightarrow}_{R} P'\} \subseteq \mathcal{L}$$

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis

Weak Enabling & Phillips' CCSPh

Weakly Enabled Transitions

A transition $P \xrightarrow{\alpha}_{R} P'$ is weakly enabled if $H \cap (\overline{iA}(R) \cup \{\tau\}) = \{\}$.

CCS^{Ph} Processes

- CCS^{Ph} is the fragment of Synpa^{tick} such that all blocking occurs in prefixes (ℓ.R):H only, with ℓ ∉ H.
- If *P* ∈ CCS^{Ph}, then

$$P \xrightarrow[R]{\alpha}_{H} P'$$
 is weakly enabled

iff $P \xrightarrow{\alpha}_{H} P'$ is derivable in the semantics of CCS^{Ph} [Phillips 2001].

Examples - Write-before-Read

Write-before-read Store: S = w.S' + r:w.S and S' = r.S''Concurrent Environment: $E = \overline{r} | \overline{w}$

The transition ("read first")

$$S \mid E \equiv (w.S' + r:w.S) \mid \overline{r} \mid \overline{w} \xrightarrow{r \mid \overline{r}}_{0 \mid 0 \mid \overline{w}} S \mid 0 \mid \overline{w}$$

is not weakly enabled, since $\{w\} \cap \overline{iA}(0 | 0 | \overline{w}) = \{w\} \neq \{\}$.

- Problem: Weak enabling does not eliminate data races, instead we need...
- The transition ("write first")

$$S \mid E \equiv (w.S' + r:w.S) \mid \overline{r} \mid \overline{w} \xrightarrow[0]{\overline{r} \mid 0}^{w \mid \overline{w}} S' \mid \overline{r} \mid 0$$

is weakly enabled, since $\{ \} \cap (\overline{iA}(0 | \overline{r} | 0) \cup \{\tau\}) = \{ \}$. M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophar-Antipolis

Twistit I Constructive Enabling

Constructive Enabling

Constructively Enabled Transitions

•
$$P \xrightarrow{\alpha}_{R} H P'$$
 is c-enabled if $H \cap (i\overline{A}^*(R) \cup \{\tau\}) = \{\}.$

Potential Actions

• The set $iA^*(R) \subseteq \mathcal{L}$ of potential actions is the smallest extension $iA(R) \subseteq iA^*(R)$ such that^{*} if $R \xrightarrow{\alpha} R'$ then $iA^*(R') \subseteq iA^*(R)$.

Note:

- $H \cap (\overline{iA}^*(R) \cup \{\tau\}) = \emptyset$ reminds of Esterel's Cannot Analysis.
- Every constructively enabled transition is also weakly enabled.

* α not a clock

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis

Twistit II Coherence for Constructive Enabling

Coherence

Independence

• Two c-actions $\alpha_1: H_1[E_1]$ and $\alpha_2: H_2[E_2]$ are independent if $\{\alpha_1, \alpha_2\} \neq \{\tau\}$ and both $\alpha_1 \notin H_2$ and $\alpha_2 \notin H_1$.

Coherence

• A process *P* is (structurally) coherent if for all its derivatives *Q* and c-enabled transitions

$$Q \xrightarrow[E_1]{\alpha_1} H_1 Q_1 \text{ and } Q \xrightarrow[E_2]{\alpha_2} H_2 Q_2$$

where the c-actions $\alpha_i: H_i[E_i]$ are independent or $\alpha_1 = \alpha_2$ and $Q_1 \equiv Q_2$. Then, there exist $Q'_1 \equiv Q'_2$ and c-enabled transitions

$$Q_1 \xrightarrow[E_2']{\alpha_2} H_2' Q_1' \text{ and } Q_2 \xrightarrow[E_1']{\alpha_1} H_1' Q_2'.$$

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis

Coherent Sharing and Memory

The following are not confluent in CCS but coherent in Synpa^{tick}:

Esterel Signal (pure temporary, no clock):

 \rightarrow permits multiple programs on co-names \overline{emit} , abs, pres.

Esterel Programs ($H = \{pres, abs\}$)

- [[present S then P else Q]] ≈ pres:H.P + abs:H.Q
- $[[emit S; P]] \approx \overline{emit} \cdot \overline{emit} \cdot [[P]]$
- [[(await A || await B); P]] $\approx (\overline{\textit{pres}}_A:\overline{\textit{pres}}_A.\overline{t} | \overline{\textit{pres}}_B:\overline{\textit{pres}}_B.\overline{t} | t.t.P) \setminus t$
- \rightarrow assumes there is a single signal on co-names *emit*, \overline{abs} , \overline{pres} .

Twistit III Policies & Preservation of Coherence

Precedence Policy

Policies replace CCS' notion of the sort $\mathcal{L}(P)$ of a process.

Precedence Policy

- A precedence policy (p-policy) π = (L, --->) is a relation ---> ⊆ L × L on a set of labels L ⊆ L.
- *P* conforms to π if for all its derivatives *Q*, if $Q \xrightarrow{\alpha}_{R} H Q'$, then $\alpha \in L$ and $\forall \ell \in H. \ell \dashrightarrow \alpha$.
- The policy type of *P* is the (set-theoretically) smallest p-policy π(*P*) so that *P* conforms to π(*P*).

Policy Type π_{sig} of Esterel Signals and Programs

Pivot Policy

The p-policy π_{sig} has a special property...

Pivot Policy

A p-policy $\pi = (L, \cdots)$ is a pivot policy if

- it is closed under co-names, $\overline{L} \subseteq L$
- "rendez-vous synchronisation on distinct channels do not interfere each other"

Main Theorem (Generalising Milner's Confluence Class)

- Coherent processes are Church-Rosser for c-enabled reductions.
- If *P* and *Q* are coherent and conform to pivot policy π , then $P \mid Q$ is coherent^{*} and conforms to π .

*Since we do not need to restrict we permit sharing!

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis

Conclusion

Conclusion

Our Result: Generalise Milner's determinacy results for CCS in CCS with priorities (e.g., CCS^{cw} [Camilleri & Winskel 1995], CCS^{Ph} [Phillips 2001]):

- "constructive enabling" rather than "weak enabling"
- "coherence" rather than "confluence"
- "policy type" $\pi(P)$ rather than "sort" $\mathcal{L}(P)$.

Now What? Adding clocks (CSP broadcast action) we can now

- express sequentially constructive Esterel, and more generally
- express deterministic shared objects [Aguado et. al. ESOP 2018]
- explore the algebraic theory of c-enabling in Synpa^{tick}.

Thank You for Your Attention!