
Coherence and Determinacy
in CCS with Priorities

(Synpatick)

M. Mendler� and L. Liquori

Synchron 2023, Kiel

�work begun while on visit at INRIA Sophia/UCA in May 2023, still in progress

Introduction

Our Result: Generalise Milner’s determinacy results for CCS by
strengthening theories of CCS with priorities (e.g., CCSCW [Camilleri &
Winskel 1995], CCSPh [Phillips 2001]):

 Twistit 1: replace “weak enabling” by “constructive enabling”

 Twistit 2: replace “confluence” by “coherence”

 Twistit 3: replace “sort” LpPq by “policy type” πpPq.

Our Objective: ...to ground the semantics (and thus essence) of

 sequentially constructive Esterel [von Hanxleden et. al:, DATE’2013,
PLDI’14, Memocode’15], and more generally

 deterministic shared objects [Aguado et. al: ESOP 2018]

in the setting of Milner’s process algebra CCS.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 1/1

Roadmap

1 CCS (Syntax & Operational Semantics)

2 Milner’s CCS Confluence Class

3 CCS with Priorities (Synpatick)

4 Twistit I: Constructive Enabling

5 Twistit II: Coherence for Constructive Enabling

6 Twistit III: Precedence Policies and Preservation of Coherence

7 Conclusion

CCS (Syntax & Operational Semantics)

Basic CCS Terminology

Identifiers

 channel names a, b, c P A

 process names A P I

Action Labels

 (channel) co-names a, b, c P A

 (rendez-vous) action labels ℓ P L def� AYA (“a input”, “a output”)

 actions α, β P Act � LY tτu where τ R L silent action

Synchronising Actions (ℓ P L, L � L)

 ℓ | ℓ � τ � ℓ | ℓ

 L � tℓ | ℓ P Lu

 ℓ � ℓ

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 2/1

Syntax of CCS

Process Expressions

P,Q,R,S ::� 0 stop (inaction)
| ℓ.P action prefix (ℓ P L)
| P � Q choice
| P |Q parallel composition
| PzL restriction (L � A)
| A identifier (A P I)

Definitional Equations A df� P
Abbreviation We write ℓ instead of ℓ.0.

Free Names FNpPq � AY I (process identifiers remain unbound).

A process P is well-formed if every identifier A P FNpPq X I has a
definitional equation. LpPq � FNpPq X L is the sort of P.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 3/1

Operational Semantics of CCS

ℓ.P
ℓ
ÝÑP

pActq P
α
ÝÑP1 A df� P

A
α
ÝÑP1

pConq

P
α
ÝÑP1

P � Q
α
ÝÑP1

pSum1,2q
P

α
ÝÑP1

P |Q
α
ÝÑP1 |Q

pPar1,2q

P
ℓ
ÝÑP1 Q

ℓ
ÝÑQ1

P |Q
ℓ | ℓ
ÝÝÑP1 |Q1

pPar3q ℓ | ℓ � τ

P
α
ÝÑQ α R L Y L

PzL
α
ÝÑQzL

pRestrq

Rules taken modulo structural congruence P � Q.
M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 4/1

Church-Rosser & Determinacy

We are interested in uniqueness of normal forms under τ -reductions.

 P is normal if there is no P1 such that P
τ
ÝÑP1.

 Write P
ε
ñ Q if P � Q or P

τ
ÝÑP1 and (inductively) P1 ε

ñ Q.

Church-Rosser

 A process P satisfies Church-Rosser (CR) if for every derivative Q of
P and reductions Q

τ
ÝÑQ1 and Q

τ
ÝÑQ2 with Q1 �� Q2 there exist

Q1
1 and Q1

2 with Q1
1 � Q1

2 and Q1
τ
ÝÑQ1

1 and Q2
τ
ÝÑQ1

2.

Determinacy

 If P satisfies CR then P is determinate: If P
ε
ñ P1 and P

ε
ñ P2

where Pi are normal, then P1 � P2.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 5/1

Example
Observation: CR is not preserved under parallel composition.

Write-once Store: S df� w .S1 � r .S and S1 df� r .S2

 r ,w “store-side” read (output) and write (input)

 r ,w “program-side” read (input) and write
(output)

prec

𝜎 tick
𝜎

prec

prec

①

③④⑤⑥⑦

Reader |S |Reader
Church-Rosser

①

③④⑤⑥⑦

Reader |S |Writer
not Church-Rosser

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 6/1

Milner’s CCS Confluence Class

Milner’s Notion of Confluence

The classical theory of CCS defines confluence as a strengthening of CR
and proves preservation of confluence for restricted parallel composition.

Confluence

A process P is (structurally) confluent if for every derivative Q of P and
transitions Q

α1ÝÑQ1 and Q
α2ÝÑQ2 such that

 α1 � α2 or Q1 �� Q2,

 there exist Q1
1 � Q1

2 with Q1
α2ÝÑQ1

1 and Q2
α1ÝÑQ1

2.

Observation: Confluence ñ Church-Rosser

Milner’s Confluence Class

 Confluent composition is given as P |LQ � pP |QqzL

for L � L with LpPq X LpQq � t u and LpPq X LpQq � L Y L.

 If P and Q are confluent, then P |LQ is confluent, too.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 7/1

The Limits of Milner’s Confluence Class

 Memory access S df� w .S1 � r .S is intrinsically not confluent

 Confluent composition P |LQ precludes sharing of labels

But sequentially constructive synchronous programming eploits
non-confluence and sharing of labels for ...

 deterministic shared memory:
rrMem || Write || ReadA || ReadBss � S | pWtpt | tq{0u | t.RA | t.RBqzt

 multi-cast communication:
rremit a || present a then A || present a then Bss � a.a | a.A | a.B

 sequential composition with upstream concurrency:
rrpawait a || await bq; emit oss � pa.t | b.t | t.t.oqzt

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 8/1

CCS with Priorities (Synpatick)

Syntax of Synpatick

Extended Process Expressions

P,Q,R,S ::� 0 stop (inaction)
| ℓ.P action prefix (ℓ P L)
| P � Q choice
| P |Q parallel composition
| PzL restriction (L � A)
| A identifier (A P I)
| P:H precedence guard pH � Lq

Idea: P:H � “P unless the environment offers an alternative in H”.
Abbreviation: Instead of pα.Pq:H write α:H.P and ℓ:H for ℓ:H.0.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 9/1

Strategic SOS Semantics
The Plot: Enrich the “unscheduled” SOS semantics á la CCS

P
α
Ñ P1 by priority annotations P

α
ÝÑ
R

H P1

where the contextual action (c-action) α:HrRs has

 H � Act blocking set of actions that take precedence over α

 R is the concurrent context of threads in P that compete with α.

The Roadmap: Confluence for Strategic Scheduling

 Twistit I: Define a Φ-enabled constraint ΦpR,Hq on c-actions
α:HrRs

 Twistit II: Define Φ-confluence for Φ-enabled c-actions that implies
Church-Rosser.

 Twistit III: Show that Φ-confluence is preserved by composition | ,
under reasonable restrictions but permitting sharing and memory.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 10/1

Extended Operational Semantics

Accumulating Blocking Sets

P
α
ÝÑ
R

H1 P1

P:H
α
ÝÑ
R

H1YH P1
pPrioq

Accumulating Concurrent Context

P
α
ÝÑ
R

H P1

P |Q
α

ÝÝÑ
R |Q

H P1 |Q
pPar1,2q

Evaluating Blocking Conditions

P
ℓ
ÝÑ
R1

H1 P1 Q
ℓ
ÝÑ
R2

H2 Q1 H � tτ | H2 X iApPq � tℓu
or H1X iApQq � tℓuu

P |Q
ℓ | ℓ

ÝÝÝÑ
R1 |R2

H1YH2YH P1 |Q1

pPar3q

Initial Actions: iApPq def� tℓ | DH,R,P1.P
ℓ
ÝÑ
R

H P1u � L

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 11/1

Weak Enabling & Phillips’ CCSPh

Weakly Enabled Transitions

A transition P
α
ÝÑ
R

H P1 is weakly enabled if H X piApRq Y tτuq � t u.

CCSPh Processes

 CCSPh is the fragment of Synpatick such that all blocking occurs in
prefixes pℓ.Rq:H only, with ℓ R H.

 If P P CCSPh , then

P
α
ÝÑ
R

H P1 is weakly enabled

iff P
α
ÝÑH P1 is derivable in the semantics of CCSPh [Phillips 2001].

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 12/1

Examples - Write-before-Read
Write-before-read Store:
S � w .S1 � r :w .S and S1 � r .S2

Concurrent Environment: E � r |w

prec

𝜎 tick
𝜎

prec

prec

 The transition (“read first”)

S |E � pw .S1 � r :w .Sq | r |w
r | r

ÝÝÝÝÑ
0 | 0 |w

twu S | 0 |w

is not weakly enabled, since twu X iAp0 | 0 |wq � twu � t u.

 Problem: Weak enabling does not eliminate data races, instead we
need...

 The transition (“write first”)

S |E � pw .S1 � r :w .Sq | r |w
w |w
ÝÝÝÑ
0 | r | 0

t u S1 | r | 0

is weakly enabled, since t u X piAp0 | r | 0q Y tτuq � t u.
M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 13/1

Twistit I
Constructive Enabling

Constructive Enabling

Constructively Enabled Transitions

 P
α
ÝÑ
R

H P1 is c-enabled if H X piA�
pRq Y tτuq � t u.

Potential Actions

 The set iA�pRq � L of potential actions is the smallest extension
iApRq � iA�pRq such that� if R

α
Ñ R1 then iA�pR1q � iA�pRq.

Note:

 H X piA�
pRq Y tτuq � H reminds of Esterel’s Cannot Analysis.

 Every constructively enabled transition is also weakly enabled.

� α not a clock

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 14/1

Twistit II
Coherence for Constructive Enabling

Coherence
Independence

 Two c-actions α1:H1rE1s and α2:H2rE2s are independent if
tα1, α2u � tτu and both α1 R H2 and α2 R H1.

Coherence

 A process P is (structurally) coherent if for all its derivatives Q and
c-enabled transitions

Q
α1ÝÑ
E1

H1 Q1 and Q
α2ÝÑ
E2

H2 Q2

where the c-actions αi :HirEis are independent or α1 � α2 and
Q1 �� Q2. Then, there exist Q1

1 � Q1
2 and c-enabled transitions

Q1
α2ÝÑ
E 1

2
H1

2
Q1

1 and Q2
α1ÝÑ
E 1

1
H1

1
Q1

2.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 15/1

Coherent Sharing and Memory

The following are not confluent in CCS but coherent in Synpatick:

Esterel Signal (pure temporary, no clock):

𝜎𝜎

S0
df� abs:emit.S0 � emit.S1

S1
df� pres.S1 � emit.S1

Ñ permits multiple programs on co-names emit , abs, pres.

Esterel Programs (H � tpres, absu)

 rrpresent S then P else Qss � pres:H.P � abs:H.Q

 rremit S;Pss � emit:emit.rrPss

 rrpawait A || await Bq;Pss � ppresA:presA.t | presB:presB.t | t.t.Pqzt

Ñ assumes there is a single signal on co-names emit , abs, pres.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 16/1

Twistit III
Policies & Preservation of Coherence

Precedence Policy

Policies replace CCS’ notion of the sort LpPq of a process.

Precedence Policy

 A precedence policy (p-policy) π � pL, ¡ q
is a relation ¡ � L � L on a set of labels L � L.

 P conforms to π if for all its derivatives Q,
if Q

α
ÝÑ
R

H Q1, then α P L and @ℓ P H. ℓ ¡ α.

 The policy type of P is the (set-theoretically) smallest p-policy πpPq
so that P conforms to πpPq.

Policy Type πsig of Esterel Signals and Programs

𝜎𝜎

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 17/1

Pivot Policy

The p-policy πsig has a special property...

Pivot Policy

A p-policy π � pL, ¡ q is a pivot policy if

 it is closed under co-names, L � L

 “rendez-vous synchronisation on distinct channels do not interfere
each other”

Main Theorem (Generalising Milner’s Confluence Class)

 Coherent processes are Church-Rosser for c-enabled reductions.

 If P and Q are coherent and conform to pivot policy π, then
P |Q is coherent� and conforms to π.

�Since we do not need to restrict we permit sharing!

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 18/1

Conclusion

Conclusion

Our Result: Generalise Milner’s determinacy results for CCS in CCS with
priorities (e.g., CCSCW [Camilleri & Winskel 1995], CCSPh [Phillips 2001]):

 “constructive enabling” rather than “weak enabling”

 “coherence” rather than “confluence”

 “policy type” πpPq rather than “sort” LpPq.

Now What? Adding clocks (CSP broadcast action) we can now

 express sequentially constructive Esterel, and more generally

 express deterministic shared objects [Aguado et. al. ESOP 2018]

 explore the algebraic theory of c-enabling in Synpatick.

M. Mendler, Univ. of Bamberg & L. Liquori, INRIA Sophia-Antipolis 19/1

Thank You for Your Attention!

