Trapping Behavior Trees
in Esterel

Alexander Schulz-Rosengarten*, Michael Mendlert, Joaquin Aguadot,
Malte Clement* and Reinhard von Hanxleden*

*Kiel University and TBamberg University

SYNCHRON 2023, Kiel, Germany
Extension of [DATE’23 WiP]

Praise for Behavior Trees

“I...]. Sure you could build the very same behaviors with a finite state
machine (FSM). But anyone who has worked with this kind of technology in
industry knows how fragile such logic gets as it grows. A finely tuned
hierarchical FSM before a game ships is often a temperamental work of art
not to be messed with!”

Alex J. Champandard
Editor in Chief & Founder AiGameDev.com,
Senior Al Programmer Rockstar Games

This quote and parts of the following material taken from
[Colledanchise Ogren "20]

Michele Colledanchise and Petter Ogren,

Behavior Trees in Robotics and Al - An Introduction, 2020

https://arxiv.org/pdf/1709.00084.pdf

if ghost is close /\
then if ghost is scared

Child 1 Child 2 Child N

then chase ghost

Fig. 1.3: Graphical representation of a Fallback node with N children.

e I se aVO | d g h Ost Algorithm 2: Pseudocode of a Fallback node with N children

1 fori< 1toNdo
else eat piIIS 2 childSratus < Tick (child(i))
3 if childStatus = Running then
4 | return Running
5
6

else if childStarus — Success then
L return Success

? Fallback

7 return Failure
Sequence A Action

Fae s Key Point: -

Condition . /\
CGhOSt At every tick,

Close Child 1 Child 2 Child N
— start at root of BT
Fig. 1.2: Graphical representation of a Sequence node with N children.
Avoid - - - -
Ghost Algorithm 1: Pseudocode of a Sequence node with N children

1 fori+ 1 toN do
/\ childSiatus < Tick (child(i))
if childStarus = Running then
Ghost Chase
Scared Ghost

‘ return Running
else if childStarus = Failure then
L return Failure

oot b L b2

Figs from [Colledanchise Ogren '20] 1 refurn Success

Behavior Tree Building Blocks Pachan

-
-~
-~
N,

. . . /’,3 ? i:\\\\ ‘\
In each reaction cycle (tick) the tree is L N
traversed for activation - > | EatPills

* top-down, post-order :
i . GhostClose> _______, [7 | SR

with child-skipping modulated by e e
return codes S | / ,,,, > [AvoidGhost
* SUCCESS (S) LN
* FAILURE (F) 77 AN

+ RUNNING (R) CGhostscared > | chaseGhost

that propagate upwards.

BT Control-Flow = Decision Graph

4

Behavior Tree Building Blocks

Control Flow nodes: Sequence, Fallback/Selector, Parallel, Decorator
Execution nodes: Action/Task, Condition

Possible return values: Success, Running, Failure

Node type | Symbol Succeeds Fails

Running
Fallback ? If one child succeeds If all children fail If one child returns Running
Sequence — If all children succeed If one child fails If one child returns Running

Parallel — | |If > M children succeed| If > N — M children fail else

Action text Upon completion It impossible to complete During completion
Condition | text If true If false Never
Decorator O Custom Custom Custom

Table from [Colledanchise Ogren '20]

Behavior Trees in Lingua Franca

See SYNCHRON "221
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/synchron22.pdf

Behavior Trees in Esterel

Our Work

Here: Give a simple compositional mapping of BTs into Esterel
* BT conditions and actions =

Esterel signals (asynchronous actions) or

Esterel modules (for hierarchical BTs)
* BT control-flow nodes = Esterel primitive operators (traps!!)

Expected Benefits for BT

e Established modelling & compilation tools for BT programming

* Strong mathematical semantics of Esterel for test & verification

e Constructive semantics gives formal guarantees for determinacy,
predictability, convergence,

Recall (Some) Basic Esterel Operators

sl ; s2 Run sl1, s2 sequentially
sl || s2 Run s1, s2 in parallel
pause Finish tick (terminate with completion code 1)
trap T in s end Declare trap scope
exit T Exit trap (terminate with completion code 2 or higher)
Example:
trap T in
present I then exit T end; // If | holds in first tick: terminate whole program
pause;
emit O // Otherwise: emit O in second tick
end

Mapping BTs to Esterel — 1st Approach

Observation: return values correspond nicely to completion codes in Esterel.

Esterel in turn can be mapped to hierarchical FSMs,
which should also work for LF modal models

0 — (normal) termination — “Succeeds”
2 (and higher) — throw exception — “Fails”
1 — pause operation — “Running”

Node type [Symbol Succeeds Fails Running
Fallback ? If one child succeeds It all children fail If one child returns Running
Sequence — If all children succeed If one child fails If one child returns Running

Parallel = If > M children succeed| If > N — M children fail else
Action text Upon completion If impossible to complete During completion

Condition [text] It true If false Never

Decorator O Custom Custom Custom

[Colledanchise Ogren ’'20]

“Sequence” in Esterel — Not

—

7\

Child 1 Child 2 Child N

Fig. 1.2: Graphical representation of a Sequence node with N children.

Algorithm 1: Pseudocode of a Sequence node with N children

1 fori< 1toN do

childStatus < Tick (child(i))

if childStarus = Running then
| return Running

else if childSrarus = Failure then
L return Failure

oot ke L b2

7 return Success

The problem: this translation implements an “un-
reactive” sequence with memory, where we resume at
running children, instead of re-starting each tick at first
child again

// Children signal failure with “exit Failure”
// If any child fails, this is propagated out
// Otherwise, terminate normally (success)
Sequence(childl, child2, ..., childN):

childl;
child2;
*
childN;
_>*
Pick Move Place
Object Object Object

[Colledanchise Ogren '20]

Behavior Trees in Esterel

The New Thing This Time —and no more beers...

Operators of BT Esterel

P ::= runa action call (a € A)
exit T exception (T € 7 U {0,1})
trap7 inP trap handler (1" € T)
trapT inPdo P trap handler (T' € T)
P;P sequential composition
PP concurrent parallel

T eT trap names ac A action/condition names

* run a encapsulates full BT trees or external actions/conditions (may raise traps)
* Asin BT we assume the side effects are interference-free (Church-Rosser)

19

Coding

Completion Code Esterel BT
S User-defined Trap Exit | Success
R User-defined Trap Exit | Running
F User-defined Trap Exit | Failure
Conjecture

Memory-free BT coincides with the fragment of BT-Esterel restricted to 3
trap names 7 = {S, F, R}. (exploiting “shadowing”)

PacMan

Abbreviations

P >7 Q) =4 trapT in Pdo ()
P?Q:dfp>>|:@
P— Q=4 P>s0Q

PacMan
¥ P
’¢’7 <--~\ \\
',/’—7 ? > \‘\
/7 /7 / N \\ v
7> ‘\}:: """""" > | EatPills
e SN
,"/ Q\ 5
7 N
Si ,// R__.-—-> | AvoidGhost
S F
F .-~7 = | = \\F
/’;/ R,_‘ A
-----S-----> ChaseGhost

PacMan =4 (GhCl >g ((GhSc >g ChGh) > AvGh)) > EatP

23

Semantics (brief)

trap F'in
Trapcontext 7€ 7% trap R in
* The trap context fixes the scoping order of trapSin
free trap names (left-most = inner-most) P [S, R, F]
 The trap context is identified modulo shadowing, e.g., do (Js
IS,R,F| 2 |S,R, S, F] do Qr
Reductionstep L P =, X' FP | T do QF

P —T Q Iff [[P]]T — [[Q]]T
Pl, = {(X.P.T)|SFP=.Y+P T}

24

BT Algebra

Monoid Structure

P>rexitT =, P Neutral Element

exitlT >p P =, P Neutral Element

P>r(Q@>rR)=;, (P>1rQ)>r R Associativity

Negation (,,Decorator”) We can flip (permute) the traps using ...

~P =, ((trapSin P) >F exit$S) ; exitF
NNP = P

25

BT Algebra

Occam-DeMorgan Dualities (1)

Fallback ? If one child succeeds If all children fail If one child returns Running

Sequence | | — | [If all children succeed If one child fails If one child returns Running

Fallback and Sequence are DeMorgan Duals
P?Q=P 3¢ Q= ~(~P>s~Q) = ~(~P = ~Q)
P5Q=P>sQ=;~(~P > ~Q) = ~(~P?7~Q)

BT Algebra

Occam-DeMorgan Dualities (2)

Parallel = If > M children succeed| If > N — M children fail else

N=2,M=2 P =, =;trapRin((trapSin(P || @)) ; exit$S) ; exit R
P =,Q=srA P C

N=2,M=1 P =, Q=;trapRin((trapFin(P | Q));exitF);exitR
P=1Q=Frs P | €

DeMorgan Dualities

P=50Q=r~(~P = ~Q) P=Q = ~(~P=5~0Q)

27

“Sequence” in

Child N

Child 2

‘ Child 1

Fig. 1.2: Graphical representation of a Sequence node with N children.

BT-Esterel

Algorithm 1: Pseudocode of a Sequence node with N children

1 fori« 1toN do
2 childSrarus <— Tick (child(i))
3 if childStatus = Running then
4 ‘ return Running
else if childStarus = Failure then
6 L return Failure

7 return Success

[Colledanchise Ogren '20]

BT-Esterel: Expands to: Observations:
btsequence trap btsuccin * FAILURE and
child, child, RUNNING exceptions
btseq end; are passed to parent
child, trap btsuccin * Fori<n, SUCCESS of
btseq child, child; passes control
end; to child,, ,
btseq e SUCCESS of child,
child, child, passes control to
end [btsequence] parent, with SUCCESS

* Invariant: each child; terminates tick by throwing exception

e € { _btsucc, btfail, btrun},

which encodes SUCCESS / FAILURE / RUNNING
* l.e., each child is instantaneous — only surface, no depth! No pause stmt!
e This implies “reactiveness” in the BT-sense)8

“Fallback” in BT-Esterel

Child N

‘ Child 1

Child 2

Fig. 1.3: Graphical representation of a Fallback node with N children.

Algorithm 2: Pseudocode of a Fallback node with N children

1 fori< 1toN do

2 childStatus < Tick (child(i))

3 if childStatus = Running then

4 ‘ return Running

5 else if childStarus = Success then
6 | return Success

7 return Failure

[Colledanchise Ogren '20]

BT-Esterel:

btfallback
child,

btfb
child,

btfb

btfb
child,,

end [btfallback]

Expands to:

trap btfail in
child,

end;

trap _btfail in
child,

end;

child,

Observations:

SUCCESS and
RUNNING exceptions
are passed to parent
For i < n, FAILURE of
child; passes control
to child,, ;
FAILURE of child,,
passes control to

parent, with FAILURE

29

PacMan in “BT-Esterel”

PacMan
l §-~~~\
,r? :-N\\ \\
,/ ”? ? < \\\ \‘ \‘
/ /, N N
|2 e T > | EatPills
-~ AT

R . > | AvoidGhost

S."”

SUCCESS (S) / :
FAILURE (F) 3 ‘EF
RUNNING (R) 77 AN

GhostScared D--------- > | ChaseGhost

1 module PacMan

2 input GhostClose,
GhostScared;

3 output ChaseGhost,
AvoidGhost, EatPills;

4

5 behaviortree

6 btfallback

7 btsequence

8 present GhostClose
9 then exit _btsucc

10 else exit _btfail

11 end;

12 btseq

13 btfallback

14 btsequence

15 present GhostScared
16 then exit btsucc
17 else exit _btfail

18 end;

19 btseq

20 emit ChaseGhost;
21 exit _btrun

22 end btsequence

23 btfb

24 emit AvoidGhost;

25 exit btrun

26 end btfallback

27 end btsequence

28 btfb

29 emit EatPills;

30 exit _btrun

31 end btfallback 30
32 end behaviortree

dule PacM 1 module PacMan
! !“O ule Faclvian 2 input GhostClose, GhostScared;
2> input GhostClose,

Pa C I\/I a n i n GhostScared:; 3 °“tPUtE2{TFii<:;Gh08t. AvoidGhost,

3 output ChaseGhost,

4 output BehaviortreeRunning;
AvoidGhost, EatPills; 5
BT-Estere : o
5 behaviortree 7 trap _btrunin
6 btfallback 8
7 btsequence o // Application logic
8 present GhostClose A p p roac h . :? t"ti:ngtbft""s':]::r“: -
9 then exit _btsucc -
e Lae GhostClose
10 else exit _btfail 2 present .
PacMan " end: M ad p a/l retu n 13 then exit _thl:ICC
' R btsec; | 14 else exit _btfail
~ 12
- ot 15 end;
K §~\\‘\ 5 bifellbeck values to v endtrap:
iy 4 Y 14 tsequence : | 17 trap _btfail in
| 2| <7773 | Eatpills 15 present GhostScared exce pt IoNs: 18 trap bisucc in
el A‘\f\\‘l 16 then exit btsucc 19 present GhostScared
/ N 17 else exit _btfail 2 then exit bisucc
______ > | » §::::3¢\R 18 end; 21 else exit _btfail
T A T~ 19 btseq 2 end;
S:’ [/ R'____> AvoidGhost 20 emit ChaseGhost; 23 enq trap;
z f(" F 2 exit btrun 24 emit ChaseGhost:
F-7 L2l < F 2 end btsequence » ei’;'ttr—abtvr“"
A7 NN = bifb » emit AvoidGhost

GhostScared J=------ > | ChaseGhost # en?'t AvoidGhost; 28 exit _btrun
25 exit btrun

S 29 end trap;
26 end btfallback 30 emit AvoidGhost;
27 end btsequence 31 // End of application logic
28 btfb 32
SUCCESS (9) 29 emit EatPills; 33 end trap;
FAILURE (F) 3 exit_btrun 34 emit BehaviortreeRunning;
RUNNING (R) 31 end btfallback 3 pause

32 end behaviortree 36 end loop

“Parallel” in BT-Esterel, for M =N

‘ Child 1 ‘ ‘ Child 2 ‘

Fig. 1.4: Graphical representation of a Parallel node with N children.

Algorithm 3: Pseudocode of a Parallel node with N children and success
threshold M

1 fori< 1 toN do
2 | childStaus(i) + Tick (child(i))

3 if Zi:childsratus(i):Succe:s1 > M then

4 | return Success

5 elseif Z:i:child.S'ratm‘(i):I“m‘lmrel >N —M then
6 | return Failure

7 return Running

[Colledanchise Ogren '20]

BT-Esterel:

btparallel
child,

btpar
child,

btpar

btpar
child,,

end [btparallel]

Expands to:

trap btrunin
trap _btsuccin
child,
|
|
child,,
end trap;
exit _btsucc

end trap;
exit _btrun

Observations:

FAILURE of any child;
passes control to
parent, with FAILURE
If all child, succeed,
return SUCCESS
Otherwise, return
RUNNING

32

“Nodes with Memory”

—

/\

? ?

Action 1 Action 2 on 1 on 2

(a) Sequence composition with (b) BT that emulates the execution of the Sequence composi-
memory. tion with memory using nodes without memory.

_)*

Fig. 1.8: Relation between memory and memory-less BT nodes.

“Nodes with memory [Millington and Funge, 2009] have been introduced to enable the designer to avoid the
unwanted re-execution of some nodes. Control flow nodes with memory always remember whether a child
has returned Success or Failure, avoiding the re-execution of the child until the whole Sequence or Fallback
finishes in either Success or Failure. In this book, nodes with memory are graphically represented with the
addition of the symbol “*” (e.g. a Sequence node with memory is graphically represented by a box with a
“*”). The memory is cleared when the parent node returns either Success or Failure, so that at the next
activation all children are considered. Note however that every execution of a control flow node with
memory can be obtained with a non-memory BT using some auxiliary conditions as shown in Figure 1.8.

Hence nodes with memory can be considered to be syntactic sugar.”
[Colledanchise Ogren ’20]

“Nodes with Memory” in BT-Esterel

ﬁ.
BT-Esterel: =
_)*

? ?

btsequencemem L T
Actionl Action 1 Action 2 Action 1 w Action 2

btseq (a) Sequence composition with (b) BT that emulates the execution of the Sequence composi-
Actionz memory. tion with memory using nodes without memory.

end [btsequencemem
[q] Fig. 1.8: Relation between memory and memory-less BT nodes.

[Colledanchise Ogren '20]

Observations:
 If Action, fails, then the whole sequence fails.
Thus in that case we do want to execute Action, in the next tick again.
We only want to memorize a success status of Action,, not a failure status.
Conversely, for fallback, we only want to memorize a failure status.
* According to [Colledanchise Ogren '20], if Action, returns success or failure, the memory
(including ActionDone,) is cleared. Thus, what sense does ActionDone, make?
It appears that this memory is only useful for the siblings before the last child of a sequence.

Expands to:

btsequence
btfallback
ActionDone;
btfb
Action,
end
btseq
btfallback
ActionDone,
btfb
Action,
end
end

34

“Nodes with Memory” in BT-Esterel

ﬁ
BT-Esterel: =
_)*

? ?

btsequencemem L T
Actionl Action 1 Action 2 Action 1 w Action 2

btseq (a) Sequence composition with (b) BT that emulates the execution of the Sequence composi-
Actionz memory. tion with memory using nodes without memory.

end [btsequencemem]) ,
Fig. 1.8: Relation between memory and memory-less BT nodes.

[Colledanchise Ogren '20]

Observations:
 If Action, fails, then the whole sequence fails.
Thus in that case we do want to execute Action, in the next tick again.
We only want to memorize a success status of Action,, not a failure status.
Conversely, for fallback, we only want to memorize a failure status.
* According to [Colledanchise Ogren '20], if Action, returns success or failure, the memory
(including ActionDone,) is cleared. Thus, what sense does ActionDone, make?
It appears that this memory is only useful for the siblings before the last child of a sequence.

Expands to:

btsequence
btfallback
ActionDone;
btfb
Action,
end
btseq
—bttallback
—AetionBone,
—=ds
Action,
—zae
end

35

“Nodes with Memory” in BT-Esterel

ﬁ.
BT-Esterel: =
_)*

? ?

btsequencemem L T
Actionl Action 1 Action 2 Action 1 w Action 2

btseq (a) Sequence composition with (b) BT that emulates the execution of the Sequence composi-
Actionz memory. tion with memory using nodes without memory.

end [btsequencemem
[q] Fig. 1.8: Relation between memory and memory-less BT nodes.

[Colledanchise Ogren '20]

Observations:
 If Action, fails, then the whole sequence fails.
Thus in that case we do want to execute Action, in the next tick again.
We only want to memorize a success status of Action,, not a failure status.
Conversely, for fallback, we only want to memorize a failure status.
* According to [Colledanchise Ogren '20], if Action, returns success or failure, the memory
(including ActionDone,) is cleared. Thus, what sense does ActionDone, make?
It appears that this memory is only useful for the siblings before the last child of a sequence.

Expands to:

btsequence
btfallback
ActionDone;
btfb
Action,
end
btseq
Action,
end

36

“Nodes with Memory” in BT-Esterel

Alternative expansion, with internal bookkeeping:

BT-Esterel:

btsequencemem
Action,

btseq

Action,

end [btsequencemem]

btsequence

static boolean Action1Done = false;

btfallback
if (Action1Done)
then exit _btsucc
else exit _btfail
end
btfb
trap btsuccin
Actionl
end;
Action1Done = true;
exit _btsucc
end btfallback

btseq
trap _btfail in
trap _btsuccin
Action2;
end trap;
Action1Done = false;
exit btsucc
end trap;
Action1Done = false;
exit _btfail;
end

Wrap-Up — BTs in Esterel

* As in Esterel, individual BT nodes do maintain (internal) state

 However, “reactive” BT does not maintain state;
e.g., sequence always starts at first child

* BT return values resemble Esterel completion codes
* Have presented trap-based mapping of BT constructs to plain Esterel

Thanks!

