
Index Theory
and Structural Analysis

for multi-mode DAE Systems

Albert Benveniste Benoît Caillaud Khalil Ghorbal (Inria, Rennes)
Marc Pouzet (ENS, Paris)

Hilding Elmqvist (Mogram, Lund) Martin Otter (DRL, Munich)

December 6, 2016

1 / 34

Motivations

An unexpected simulation example

The clutch example
Separate analysis of each mode
The mode transitions

The clutch example: a comprehensive approach
Overview of our approach
Nonstandard structural analysis
Back-Standardization

Structural analysis of mDAE: the general case
The constructive semantics: details
The constructive semantics: sketch
Results and code for the clutch

Conclusions

2 / 34

Compositionality and reuse: Simulink→ Modelica
From Block Diagram to Component Diagram

3 / 34

Compositionality and reuse: ODE→ DAE

from Simulink (ODE):
HS in state space form{

x ′ = f (x , u)
y = g(x , u)

the state space form
depends on the context

reuse is difficult


−→



to Modelica (DAE):
HS as physical balance equations{

0 = f (x ′, x , u)
0 = g(x , u)

Ohm & Kirchhoff laws, bond graphs,
multi-body mechanical systems

reuse is much easier

4 / 34

Compositionality and reuse: ODE→ DAE

I Modeling tools supporting DAE

I Most modeling tools provide a library of predefined models
ready for assembly (Mathworks/Simscape,
Siemens-LMS/AmeSim, Mathematica/NDSolve)

I Modelica comes with a full programming language that is a
public standard https://www.modelica.org/ ;

I Simscape and NDSolve use Matlab extended with “==”

I Also Spice dedicated to EDA

5 / 34

https://www.modelica.org/

A sketch of Modelica and its semantics [Fritzson]

17

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 34

Model of Resistor
p.i n.i

p.v n.v

model Resistor
package SIunits = Modelica.SIunits;
package Interfaces = Modelica.Electrical.Analog.Interfaces;
parameter SIunits.Resistance R = 1 "Resistance";
SIunits.Voltage v "Spannungsabfall über Element";
Interfaces.PositivePin p;
Interfaces.NegativePin n;

equation
0 = p.i + n.i;
v = p.v - n.v;
v = R*p.i;

end Resistor;

Sunday, October 12,
2003

Multi-domain Modeling and Simulation with Modelica 35

Summary
model SimpleDrive

..Rotational.Inertia Inertia1 (J=0.002);

..Rotational.IdealGear IdealGear1(ratio=100)

..Basic.Resistor Resistor1 (R=0.2)
...

equation
connect(Inertia1.flange_b, IdealGear1.flange_a);
connect(Resistor1.n, Inductor1.p);

...
end SimpleDrive;

model Resistor
package SIunits = Modelica.SIunits;
parameter SIunits.Resistance R = 1;
SIunits.Voltage v;
..Interfaces.PositivePin p;
..Interfaces.NegativePin n;

equation
0 = p.i + n.i;
v = p.v - n.v;
v = R*p.i;

end Resistor;

connector PositivePin
package SIunits = Modelica.SIunits;
SIunits.Voltage v;
flow SIunits.Current i;

end PositivePin;

type Voltage =
Real(quantity="Voltage",

unit ="V");

6 / 34

A sketch of Modelica and its semantics [Fritzson]

I Modelica Reference v3.3:

“The semantics of the Modelica language is specified by means of
a set of rules for translating any class described in the Modelica
language to a flat Modelica structure”

I the good:

I Semantics of continuous-time 1-mode Modelica models: Cauchy
problem on the DAE resulting from the inlining of all components

I Modelica supports multi-mode systems
x*x + y*y = 1;
der(x) + x + y = 0;
when x <= 0 do reinit(x,1); end;
when y <= 0 do reinit(y,x); end;

I the bad: What about the semantics of multi-mode systems?

I and . . . : Questionable simulations (examples later)

6 / 34

Examples of multi-mode systems

Cup-and-Ball game
(a two-mode
extension of

the pendulum)

A Clutch

A Circuit Breaker

7 / 34

Motivations

An unexpected simulation example

The clutch example
Separate analysis of each mode
The mode transitions

The clutch example: a comprehensive approach
Overview of our approach
Nonstandard structural analysis
Back-Standardization

Structural analysis of mDAE: the general case
The constructive semantics: details
The constructive semantics: sketch
Results and code for the clutch

Conclusions

8 / 34

Examples of unexpected results: causal loops

A case in Modelica

model scheduling
Real x(start=0);
Real y(start=0);

equation
der(x)=1;
der(y)=x;
when x>=2 then
reinit(x,-3*pre(y));

end when;
when x>=2 then
reinit(y,-4*pre(x));

end when;
end scheduling

At the instant of reset, x and y each have a
value defined in terms of their values just prior
to the reset.

9 / 34

Examples of unexpected results: causal loops

A case in Modelica

model scheduling
Real x(start=0);
Real y(start=0);

equation
der(x)=1;
der(y)=x;
when x>=2 then
reinit(x,-3*y);

end when;
when x>=2 then
reinit(y,-4*x);

end when;
end scheduling

Take the pre away: At the time of reset, x and y
are in cyclic dependency chain. The simulation
runtime (of both OpenModelica and Dymola),
chooses to reinitialize x first, with the value −6
as before, and then to reinitialize y with 24.

9 / 34

Examples of unexpected results: causal loops

A case in Modelica

model scheduling
Real x(start=0);
Real y(start=0);

equation
der(x)=1;
der(y)=x;
when x>=2 then
reinit(y,-4*x);

end when;
when x>=2 then
reinit(x,-3*y);

end when;
end scheduling

What happens, if we reverse the order of the
two reinit? The simulation result changes, as
shown on the bottom diagram. The same phe-
nomenon occurs if the reinit are each placed
in their own when clause.

9 / 34

Examples of unexpected results: causal loops

A case in Modelica

I The causal version (with the pre) is scheduled properly and simulates as
expected.

I The non-causal programs are accepted as well, but the result is not
satisfactory.

I Algebraic loops cannot be rejected, even in resets, since they are just
another kind of equation. They should be accepted, but the semantics of a
model must not depend on its layout!

I Studying causality can help to understand the detail of interactions between
discrete and continuous code.

More strange examples later.

9 / 34

Motivations

An unexpected simulation example

The clutch example
Separate analysis of each mode
The mode transitions

The clutch example: a comprehensive approach
Overview of our approach
Nonstandard structural analysis
Back-Standardization

Structural analysis of mDAE: the general case
The constructive semantics: details
The constructive semantics: sketch
Results and code for the clutch

Conclusions

10 / 34

Examples of multi-mode systems

Cup-and-Ball game
(a two-mode
extension of

the pendulum)

⇒ A Clutch

A Circuit Breaker

11 / 34

Invoking the heritage of synchronous languages

I The constructive semantics tells how a time step should be executed
for multi-mode DAE systems

I by scheduling atomic actions

I evaluating expressions, forwarding control

I according to causality constraints

I an expression can be evaluated only if
its arguments were already evaluated

Executable code follows directly

12 / 34

Invoking the heritage of synchronous languages

I The constructive semantics tells how a time step should be executed
for multi-mode DAE systems

I by scheduling atomic actions

I evaluating expressions, forwarding control
I solving algebraic systems of equations

I according to causality constraints

I an expression can be evaluated only if
its arguments were already evaluated

I resulting from the structural analysis

Executable code follows with some more work

12 / 34

The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

13 / 34

The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = F: it is just an ODE system, nothing fancy
ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
τ1 = 0 (e5)
τ2 = 0 (e6)

13 / 34

The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a DAE system
ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
ω1 − ω2 = 0 (e3)
ω•1 = ω•2 (e•3)
τ1 + τ2 = 0 (e4)

Looking for an execution scheme? Try a 1st-order Euler scheme

13 / 34

The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a dAE system
ω•1 = ω1 + δ.f1(ω1, τ1) (eδ1)
ω•2 = ω2 + δ.f2(ω2, τ2) (eδ2)
ω1 − ω2 = 0 (e3)
ω•1 = ω•2 (e•3)
τ1 + τ2 = 0 (e4)

(1)

Regard (1) as a transition system: for a given (ω1, ω2) satisfying (e3),
find (ω•1 , ω

•
2 , τ1, τ2) using eqns (eδ1 , e

δ
2 , e4).

We have 4 unknowns but only 3 eqns: it does not work!

13 / 34

The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a dAE system
ω•1 = ω1 + δ.f1(ω1, τ1) (eδ1)
ω•2 = ω2 + δ.f2(ω2, τ2) (eδ2)
ω1 − ω2 = 0 (e3)
ω•1 = ω•2 (e•3)
τ1 + τ2 = 0 (e4)

(2)

Regard (2) as a transition system: for a given (ω1, ω2) satisfying (e3),
find (ω•1 , ω

•
2 , τ1, τ2) using eqns (eδ1 , e

δ
2 , e
•
3 , e4): structurally nonsingular.

Yields a deterministic transition system;
executing it only requires an algebraic equation solver.

13 / 34

The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a DAE system
ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
ω1 − ω2 = 0 (e3)
ω′1 = ω′2 (e′3)
τ1 + τ2 = 0 (e4)

(3)

Regard (3) as a system with dummy derivatives: for a given (ω1, ω2) satisfying
(e3), find (ω′1, ω

′
2, τ1, τ2) using eqns (e1, e2, e′3, e4): structurally nonsingular.

Yields a generalized ODE system;
executing it only requires an algebraic equation solver.

13 / 34

The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a DAE system
ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
ω1 − ω2 = 0 (e3)
ω′1 = ω′2 (e′3)
τ1 + τ2 = 0 (e4)

(4)

I Adding (e′3) is called index reduction.

I It consists in finding latent equations.

I The dummy derivative approach is due to [Mattsson Söderlind 1993]

13 / 34

The clutch example: separate analysis of each mode

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3) clutch engaged
and τ1 + τ2 = 0 (e4) · · ·

when not γ do τ1 = 0 (e5) clutch released
and τ2 = 0 (e6) · · ·

Mode γ = T: it is now a DAE system
ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
ω1 − ω2 = 0 (e3)
ω′1 = ω′2 (e′3)
τ1 + τ2 = 0 (e4)

(5)

I The structural analyses we performed

I in continuous time, and
I in discrete time using Euler schemes

mirror each other (this is a general fact)
13 / 34

The clutch example: mode transitions



ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3)
and ω′1 − ω′2 = 0 (e′3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

I Intuition: structural analysis in each mode is enough

I Problems:

I reset 6= initialization
(initialization has 1 degree of freedom in mode γ = T)

I transition released→ engaged has impulsive torques
(to adjust the rotation speeds in zero time)

The results obtained by Modelica and Mathematica are interesting

14 / 34

The clutch example: mode transitions



ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3)
and ω′1 − ω′2 = 0 (e′3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

I Intuition: structural analysis in each mode is enough

I Problems:

I reset 6= initialization
(initialization has 1 degree of freedom in mode γ = T)

I transition released→ engaged has impulsive torques
(to adjust the rotation speeds in zero time)

The results obtained by Modelica and Mathematica are interesting

14 / 34

The clutch example: mode transitions



ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3)
and ω′1 − ω′2 = 0 (e′3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

I Intuition: structural analysis in each mode is enough

I Problems:

I reset 6= initialization
(initialization has 1 degree of freedom in mode γ = T)

I transition released→ engaged has impulsive torques
(to adjust the rotation speeds in zero time)

The results obtained by Modelica and Mathematica are interesting

14 / 34

The clutch example: mode transitions



ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)

when γ do ω1 − ω2 = 0 (e3)
and ω′1 − ω′2 = 0 (e′3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

I Intuition: structural analysis in each mode is enough

I Problems:

I reset 6= initialization
(initialization has 1 degree of freedom in mode γ = T)

I transition released→ engaged has impulsive torques
(to adjust the rotation speeds in zero time)

The results obtained by Modelica and Mathematica are interesting

14 / 34

The clutch in Modelica and Mathematica

Clutch



ω′1 = f1(ω1, τ1)
ω′2 = f2(ω2, τ2)

when γ do ω1 − ω2 = 0
and τ1 + τ2 = 0

when not γ do τ1 = 0
and τ2 = 0

Changes γ : F → T → F at t = 5, 10

When the clutch gets engaged, an impulsive
torque occurs if the two rotation speeds dif-
fered before the engagement. The common
speed after engagement should sit between
the two speeds before it.

15 / 34

The clutch in Modelica and Mathematica

Clutch in Modelica



ω′1 = f1(ω1, τ1)
ω′2 = f2(ω2, τ2)

when γ do ω1 − ω2 = 0
and τ1 + τ2 = 0

when not γ do τ1 = 0
and τ2 = 0

Changes γ : F → T → F at t = 5, 10

The following error was detected at time:
5.002
Error: Singular inconsistent scalar system
for f1 = ((if g then w1-w2 else 0.0))/(-(if
g then 0.0 else 1.0)) = -0.502621/-0
Integration terminated before reaching
"StopTime" at T = 5

model ClutchBasic
parameter Real w01=1;
parameter Real w02=1.5;
parameter Real j1=1;
parameter Real j2=2;
parameter Real k1=0.01;
parameter Real k2=0.0125;
parameter Real t1=5;
parameter Real t2=7;
Real t(start=0, fixed=true);
Boolean g(start=false);
Real w1(start = w01, fixed=true);
Real w2(start = w02, fixed=true);
Real f1;
Real f2;

equation
der(t) = 1;
g = (t >= t1) and (t <= t2);
j1*der(w1) = -k1*w1 + f1;
j2*der(w2) = -k2*w2 + f2;
0 = if g then w1-w2 else f1;
f1 + f2 = 0;

end ClutchBasic;

15 / 34

The clutch in Modelica and Mathematica

Clutch in Modelica



ω′1 = f1(ω1, τ1)
ω′2 = f2(ω2, τ2)

when γ do ω1 − ω2 = 0
and τ1 + τ2 = 0

when not γ do τ1 = 0
and τ2 = 0

Changes γ : F → T → F at t = 5, 10

The reason is that Dymola has symbolically
pivoted the system of equations, regardless
of the mode.
By doing so, it has produced an equation
defining f1 that is singular in mode g.

model ClutchBasic
parameter Real w01=1;
parameter Real w02=1.5;
parameter Real j1=1;
parameter Real j2=2;
parameter Real k1=0.01;
parameter Real k2=0.0125;
parameter Real t1=5;
parameter Real t2=7;
Real t(start=0, fixed=true);
Boolean g(start=false);
Real w1(start = w01, fixed=true);
Real w2(start = w02, fixed=true);
Real f1;
Real f2;

equation
der(t) = 1;
g = (t >= t1) and (t <= t2);
j1*der(w1) = -k1*w1 + f1;
j2*der(w2) = -k2*w2 + f2;
0 = if g then w1-w2 else f1;
f1 + f2 = 0;

end ClutchBasic;

15 / 34

The clutch in Modelica and Mathematica

Clutch in Mathematica



ω′1 = f1(ω1, τ1)
ω′2 = f2(ω2, τ2)

when γ do ω1 − ω2 = 0
and τ1 + τ2 = 0

when not γ do τ1 = 0
and τ2 = 0

Changes γ : F → T → F at t = 5, 10

The simulation does not crash but yields
meaningless results highly sensitive to little
variations of some parameters.
Suggests that a cold restart, not a reset, is
performed.

NDSolve[{
w1’[t] == -0.01 w1[t] + t1[t],
2 w2’[t] == -0.0125 w2[t] + t2[t],
t1[t] + t2[t] == 0,
s[t] (w1[t] - w2[t]) + (1 - s[t]) t1[t] == 0,
w1[0] == 1.0, w2[0] == 1.5, s[0] == 0,
WhenEvent[t == 5,

s[t] -> 1
] },

w1, w2, t1, t2,s,
t, 0, 7, DiscreteVariables -> s]

15 / 34

Motivations

An unexpected simulation example

The clutch example
Separate analysis of each mode
The mode transitions

The clutch example: a comprehensive approach
Overview of our approach
Nonstandard structural analysis
Back-Standardization

Structural analysis of mDAE: the general case
The constructive semantics: details
The constructive semantics: sketch
Results and code for the clutch

Conclusions

16 / 34

Overview of our approach

mdAEmDAE
domain

nonstandard
mapping to

causality analysis
latent equations

DAE model
continuous modes

reset equations
at events

standardization
impulse analysis
standardization

17 / 34

Nonstandard structural analysis

mDAE

DAE model
continuous modes

reset equations
at events

standardization
impulse analysis
standardization

causality analysis
latent equations

mdAE

mapping to
nonstandard

domain

18 / 34

Nonstandard structural analysis
∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1)
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2)

when γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

19 / 34

Nonstandard structural analysis
∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1)
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2)

when γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

I If γ = F then we have an ODE system: easy

I If γ = T, two cases occur, depending on whether

(e3) is satisfied or not, by the states ω1, ω2

19 / 34

Nonstandard structural analysis
∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1)
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2)

when γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

Case (e3) is satisfied by the states ω1, ω2

I block {(e∂1), (e∂2), (e4)} has 4 unknowns ω•i , τi

I need to find latent equations: add

when γ do ω•1 − ω•2 = 0 (e•3)

and we conclude as for the engaged mode: use block
{(e∂1), (e∂2), (e•3), (e4)} to evaluated the 4 unknowns ω•i , τi

19 / 34

Nonstandard structural analysis
∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1)
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2)

when γ do ω1 − ω2 = 0 (e3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

Case (e3) is not satisfied by the states ω1, ω2

I (e3) is an overconstrained system

I Causality Principle:
A guard must be evaluated before the equation it controls

I Applying the causality principle leads to
Shifting forward the body of (e3)

19 / 34

Nonstandard structural analysis
∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1)
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2)

when γ do ω•1 − ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

Case (e3) is not satisfied by the states ω1, ω2

I (e3) is an overconstrained system

I Causality Principle:
A guard must be evaluated before the equation it controls

I Applying the causality principle leads to
Shifting forward the body of (e3)

I We conclude as before

19 / 34

Nonstandard structural analysis
∂ infinitesimal; ?T =def {n.∂ | n ∈ ?N}; nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1)
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2)

when γ do ω•1 − ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

Execution Scheme 6 for Nonstandard model: ensures ω1 = ω2.
Require: ω1 and ω2.

1: if γ then
2: (τ1, τ2, ω

•
1 , ω

•
2)← Solve {e∂1 , e∂2 , e•3, e4}

3: else
4: (τ1, τ2, ω

•
1 , ω

•
2)← Solve {e∂1 , e∂2 , e5, e6}

5: end if
6: Tick . Move to next step

19 / 34

Back-Standardization

time:?R; both x•, x ′

mdAEmDAE
domain

nonstandard
mapping to

causality analysis
latent equations

impulse analysis
standardizationstandardization

DAE model reset equations
at eventscontinuous modes

time: R; derivatives x ′ time: discrete; shift x•

20 / 34

Back-Standardization
We start from the nonstandard clutch model:

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1)
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2)

when γ do (ω1 − ω2 = 0) ((e3))
and ω•1 − ω•2 = 0 (e•3)
and τ1 + τ2 = 0 (e4)

when not γ do τ1 = 0 (e5)
and τ2 = 0 (e6)

21 / 34

Back-Standardization
Within continuous modes:

I time is R
I nonstandard derivatives→ standard derivatives: e∂i → ei , i = 1, 2 (easy)

I what about e•3 : ω•1 = ω•2 ?

ω•1 = ω•2 expands as: ω1 + ∂.ω′1 = ω2 + ∂.ω′2
from previous step: ω1 = ω2

which implies, by subtracting: ω′1 = ω′2

I we thus recover the dynamics for the engaged mode, as obtained by the
dummy derivatives method:

ω′1 = f1(ω1, τ1) (e1)
ω′2 = f2(ω2, τ2) (e2)
ω1 − ω2 = 0 (e3)
ω′1 = ω′2 (e′3)
τ1 + τ2 = 0 (e4)

21 / 34

Back-Standardization
At events:

I Time is discrete: t , t•, t•2, . . . ; all the t•k occur at time t

I Equation e•3 : ω•1 = ω•2 makes no trouble

I This time the problem is with the (e∂1 , e
∂
2), due to the ∂ in space{

ω•1 = ω1 + ∂.f1(ω1, τ1) (e∂1)
ω•2 = ω2 + ∂.f2(ω2, τ2) (e∂2)

(6)

We must eliminate ∂ from (6).

I We have developed a systematic approach using Taylor expansions for the
fi . For the simple case where fi(ωi , τi) = aiωi + biτi , we get

ω•i =
b2ω1 + b1ω2

b1 + b2
+ ∂.

a1b2ω1 + a2b1ω2

b1 + b2

st(ω•i) =
b2ω1 + b1ω2

b1 + b2

and the torques are impulsive, of order 0(∂−1)
21 / 34

Our simulation results

mode changes γ : F → T → F at t = 5, 10

22 / 34

Motivations

An unexpected simulation example

The clutch example
Separate analysis of each mode
The mode transitions

The clutch example: a comprehensive approach
Overview of our approach
Nonstandard structural analysis
Back-Standardization

Structural analysis of mDAE: the general case
The constructive semantics: details
The constructive semantics: sketch
Results and code for the clutch

Conclusions

23 / 34

mDAE, mdAE: nonstandard denotational semantics

X (Σ) =def

⋃
m∈Σ

X (m), e.g., for x ∈ X : x (••′•′′)

{X} =def X ({•,′}∗) , where m ∈ {•,′ }∗

Definition mDAE:

s ::= e | s1, s2 where e ::= if γ do f=0, X finite set of variables, and

I f is a scalar smooth function over {X};
I γ is a predicate over {X};
I s1, s2 denotes the conjunction of s1 and s2.

A mode, in an mDAE, is a valuation of its guards.

For a guarded equation e, f=0 (resp. γ) is denoted by ef (resp. eγ).

nonstandard mdAE =def mDAE
[
x ′ 7→ x• − x

∂

]
.

Since an mdAE is a transition system, we know what its denotational semantics is
24 / 34

mdAE: nonstandard constructive semantics

The constructive semantics tells how a time step should be effectively performed
by scheduling atomic actions according to causality constraints.

Abstract Scott domain: D = {⊥, F, T} with ⊥ < F, T , where:

I for variables: ⊥ ≡“not evaluated”, T ≡“evaluated”

I for guards: ⊥ ≡“not evaluated”, T/F ≡“evaluated”

I for g_eqns: ⊥ ≡“not evaluated”, T ≡“solved”, F ≡“dead” (because γ = F)

Atomic actions consist of:

I evaluating guards

⇒ solving blocks of equations

⇒ massaging equations (shifting, finding latent equations in dAE systems)

I performing a tick

25 / 34

mdAE: nonstandard constructive semantics

The constructive semantics tells how a time step should be effectively performed
by scheduling atomic actions according to causality constraints.

Abstract Scott domain: D = {⊥, F, T} with ⊥ < F, T , where:

I for variables: ⊥ ≡“not evaluated”, T ≡“evaluated”

I for guards: ⊥ ≡“not evaluated”, T/F ≡“evaluated”

I for g_eqns: ⊥ ≡“not evaluated”, T ≡“solved”, F ≡“dead” (because γ = F)

Atomic actions consist of:

I evaluating guards

⇒ solving blocks of equations

⇒ massaging equations (shifting, finding latent equations in dAE systems)

I performing a tick

25 / 34

mdAE: nonstandard constructive semantics

The constructive semantics tells how a time step should be effectively performed
by scheduling atomic actions according to causality constraints.

Abstract Scott domain: D = {⊥, F, T} with ⊥ < F, T , where:

I for variables: ⊥ ≡“not evaluated”, T ≡“evaluated”

I for guards: ⊥ ≡“not evaluated”, T/F ≡“evaluated”

I for g_eqns: ⊥ ≡“not evaluated”, T ≡“solved”, F ≡“dead” (because γ = F)

Atomic actions consist of:

I evaluating guards

⇒ solving blocks of equations

⇒ massaging equations (shifting, finding latent equations in dAE systems)

I performing a tick

25 / 34

mdAE: nonstandard constructive semantics
I Status: σ : x/γ/e 7→ D satisfying coherence conditions (causality):

σ(γ(x1, . . . , xn)) = ⊥ if ∃i, σ(xi) = ⊥

σ(if γ do f=0)

 = ⊥ if σ(γ) = ⊥
= F if σ(γ) = F

∈ {⊥, σ(f=0)} if σ(γ) = T

where σ(f=0) is a shorthand for{
⊥ if ∃i.σ(xi) = ⊥
T otherwise

,

and the xi are the arguments of f .

I Constructive semantics: σ0 < σ1 < · · · < σk < σk+1 < · · · < σK

I Success:

I no g_eqn remains ⊥ in σK ⇒ the mode is known
⇒ we know what the leading variables are;

I no leading variable remains ⊥ in σK

26 / 34

mdAE: nonstandard constructive semantics
I Status: σ : x/γ/e 7→ D satisfying coherence conditions (causality):

σ(γ(x1, . . . , xn)) = ⊥ if ∃i, σ(xi) = ⊥

σ(if γ do f=0)

 = ⊥ if σ(γ) = ⊥
= F if σ(γ) = F

∈ {⊥, σ(f=0)} if σ(γ) = T

where σ(f=0) is a shorthand for{
⊥ if ∃i.σ(xi) = ⊥
T otherwise

,

and the xi are the arguments of f .

I Constructive semantics: σ0 < σ1 < · · · < σk < σk+1 < · · · < σK

I Success:

I no g_eqn remains ⊥ in σK ⇒ the mode is known
⇒ we know what the leading variables are;

I no leading variable remains ⊥ in σK

26 / 34

mdAE: nonstandard constructive semantics
I Status: σ : x/γ/e 7→ D satisfying coherence conditions (causality):

σ(γ(x1, . . . , xn)) = ⊥ if ∃i, σ(xi) = ⊥

σ(if γ do f=0)

 = ⊥ if σ(γ) = ⊥
= F if σ(γ) = F

∈ {⊥, σ(f=0)} if σ(γ) = T

where σ(f=0) is a shorthand for{
⊥ if ∃i.σ(xi) = ⊥
T otherwise

,

and the xi are the arguments of f .

I Constructive semantics: σ0 < σ1 < · · · < σk < σk+1 < · · · < σK

I Success:

I no g_eqn remains ⊥ in σK ⇒ the mode is known
⇒ we know what the leading variables are;

I no leading variable remains ⊥ in σK

26 / 34

mdAE: nonstandard constructive semantics

Algorithm 7 Building Constructive Semantics

Require: mdAE S and an initial status σ and context ∆
1: V ← ScottVars[S]
2: V⊥ ← {v ∈ V | σ(v) = ⊥} . Scott vars. for eval.
3: while V⊥ 6= ∅ do
4: ∀γ∈V⊥. s.t.σ(γ)=⊥,Eval[γ, σ] . nondet. eval
5: if ∀γ∈V⊥.σ(γ) 6=⊥ then . mode known
6: V⊥ ← V⊥ \ (Ld[σ])c . discard irrelevant vars.
7: end if
8: σ ← π∆(σ) . project over ∆
9: F ← {ef | σ(e)=⊥ ∧ σ(eγ)=T} . select active eqns.

10: {Be,Bo,Bu} ← BLT[F , σ] . BLT decomposition
11: if ∃b ∈ Be then . solving blocks
12: ∀y ∈ Vars[b], σ(y)← T . update σ
13: ∀e ∈ Eq[b], σ(e)← T . update σ
14: V⊥ ← V⊥ \ (Vars[b] ∪ Eq[b]) . update V⊥
15: else if ∃b ∈ Bo then . overdet. subsystems
16: (F ,V⊥)← (F ,V⊥)[eb 7→ e•b]∀b∈Bo . fward. shift
17: else if ∃b ∈ Bu then . underdet. subsystems
18: F ← F ∪ LatentEq[b] . add latent eq.
19: end if
20: end while
21: Tick

27 / 34

The constructive semantics: sketch
For S a multi-mode DAE system

I map S 7→ S∂ through the substitution x ′ 7→ 1
∂ (x
• − x)

I build the constructive semantics:

1. for each possible initial status (value for every state) and
context (equations that were proved satisfied at previous steps)

2. evaluate enabled guards (∈ {F, T}) and
keep/discard active/dead equations and clean the context

3. when all guards evaluated, the mode is known

4. perform Block Triangular Form (BTF) structural analysis

5. if exists a regular block, solve it and return to 2.

6. if exists an overconstrained block shift equations and return to 4.

7. if exists an underconstrained block look for latent equations,
add them and return to 4.

8. Tick: update next initial status and context

I perform back-standardization (not easy)

28 / 34

Theoretical results (to be done)

1. Soundness w.r.t. nonstandard semantics: future work.

I Proving that our algorithm actually executes
the nonstandard denotational semantics

I There are subtleties, due to the shifting of
overconstrained equations

2. Soundness w.r.t. standard semantics: preliminary results

I No reference denotational semantics exists for mDAE systems
I Hence there is nothing to compare with
I So far the best we can expect is to prove that

we actually execute the right dynamics in each continuous mode.
There is nothing we can say about events and resets.

29 / 34

Clutch: nonstandard constructive semantics

ω1, ω2start

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3,

e4, e5, e6

γ, ω1, ω2,
e5, e6,

e•3 replaces e3

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e
•
3 ,

e4, e5, e6,
e•3 replaces e3

ω1, ω2,]e3

γ, ω1, ω2,
e3, e4

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3,

e4, e5, e6

γ, ω1, ω2,
e3, e5, e6,
latent e•3

γ, ω1, ω2,
τ1, τ2, ω

•
1 , ω

•
2 ,

e∂1 , e
∂
2 , e3, e•3 ,

e4, e5, e6,
latent e•3

γ; e3; e4

γ; e5; e6;FS(e3)

e5; e6;
e∂1 ; e

∂
2

Tick

e∂1 + e∂2 + e•3 + e4

Tick
γ; e3; e4

γ; e5; e6;PR(e3); LE(e3)

e5; e6; e∂1 ; e
∂
2

Tick

e∂1 + e∂2+
e•3 + e4

Tick

30 / 34

Clutch: (standard) executable code

mode ¬γ : index 0
τ1 = 0; τ2 = 0;
ω′1 = a1ω1 + b1τ1;
ω′2 = a2ω2 + b2τ2

start

mode γ : index 1
τ1 = (a2ω2 − a1ω1)/(b1 + b2); τ2 = −τ1;
ω′1 = a1ω1 + b1τ1; ω

′
2 = a2ω2 + b2τ2;

constraint ω1 − ω2 = 0

when γ do
τ1 = NaN; τ2 = NaN;

ω1 =
b2ω
−
1 +b1ω

−
2

b1+b2
;

ω2 = ω1

done

when ¬γ do
τ1 = 0; τ2 = 0;
ω1 = ω−1 ;
ω2 = ω−2

done

31 / 34

Clutch: (standard) executable code

31 / 34

Motivations

An unexpected simulation example

The clutch example
Separate analysis of each mode
The mode transitions

The clutch example: a comprehensive approach
Overview of our approach
Nonstandard structural analysis
Back-Standardization

Structural analysis of mDAE: the general case
The constructive semantics: details
The constructive semantics: sketch
Results and code for the clutch

Conclusions

32 / 34

Conclusions (about the “Modelica” family)

I Modelica is much more powerful than classical (Simulink-like) modeling:

I models for simulation by assembling sub-models from libraries
I DAEs, multi-mode

I The compilation of Modelica with its multi-mode extension is difficult

I problems in Modelica tools
I we proposed a systematic approach (more to be done)

I Other uses of Modelica

I Requirements: expressing abstract properties of systems as an early
phase of system design. Requires supporting under-determined
multi-mode DAE systems (less equations than variables)

I Fault detection and diagnosis: generating parity models
F (X and derivatives,Y ,U) where some of the Y ’s and U ’s are
observed; check if F = 0 holds when feeding with measurements.

Requires extensions of Modelica compilation techniques.

33 / 34

Conclusions (about the “Modelica” family)

I Modelica is much more powerful than classical (Simulink-like) modeling:

I models for simulation by assembling sub-models from libraries
I DAEs, multi-mode

I The compilation of Modelica with its multi-mode extension is difficult

I problems in Modelica tools
I we proposed a systematic approach (more to be done)

I Other uses of Modelica

I Requirements: expressing abstract properties of systems as an early
phase of system design. Requires supporting under-determined
multi-mode DAE systems (less equations than variables)

I Fault detection and diagnosis: generating parity models
F (X and derivatives,Y ,U) where some of the Y ’s and U ’s are
observed; check if F = 0 holds when feeding with measurements.

Requires extensions of Modelica compilation techniques.

33 / 34

Conclusions (about the “Modelica” family)

I Modelica is much more powerful than classical (Simulink-like) modeling:

I models for simulation by assembling sub-models from libraries
I DAEs, multi-mode

I The compilation of Modelica with its multi-mode extension is difficult

I problems in Modelica tools
I we proposed a systematic approach (more to be done)

I Other uses of Modelica

I Requirements: expressing abstract properties of systems as an early
phase of system design. Requires supporting under-determined
multi-mode DAE systems (less equations than variables)

I Fault detection and diagnosis: generating parity models
F (X and derivatives,Y ,U) where some of the Y ’s and U ’s are
observed; check if F = 0 holds when feeding with measurements.

Requires extensions of Modelica compilation techniques.

33 / 34

Conclusions (about the “Modelica” family)

I Modelica is much more powerful than classical (Simulink-like) modeling:

I models for simulation by assembling sub-models from libraries
I DAEs, multi-mode

I The compilation of Modelica with its multi-mode extension is difficult

I problems in Modelica tools
I we proposed a systematic approach (more to be done)

I Other uses of Modelica

I Requirements: expressing abstract properties of systems as an early
phase of system design. Requires supporting under-determined
multi-mode DAE systems (less equations than variables)

I Fault detection and diagnosis: generating parity models
F (X and derivatives,Y ,U) where some of the Y ’s and U ’s are
observed; check if F = 0 holds when feeding with measurements.

Requires extensions of Modelica compilation techniques.

33 / 34

Conclusions (about the “Modelica” family)

I Modelica is much more powerful than classical (Simulink-like) modeling:

I models for simulation by assembling sub-models from libraries
I DAEs, multi-mode

I The compilation of Modelica with its multi-mode extension is difficult

I problems in Modelica tools
I we proposed a systematic approach (more to be done)

I Other uses of Modelica

I Requirements: expressing abstract properties of systems as an early
phase of system design. Requires supporting under-determined
multi-mode DAE systems (less equations than variables)

I Fault detection and diagnosis: generating parity models
F (X and derivatives,Y ,U) where some of the Y ’s and U ’s are
observed; check if F = 0 holds when feeding with measurements.

Requires extensions of Modelica compilation techniques.

33 / 34

Ite Missa Est

Deo Gratias

34 / 34

Ite Missa Est

Deo Gratias

34 / 34

	Motivations
	An unexpected simulation example
	The clutch example
	Separate analysis of each mode
	The mode transitions

	The clutch example: a comprehensive approach
	Overview of our approach
	Nonstandard structural analysis
	Back-Standardization

	Structural analysis of mDAE: the general case
	The constructive semantics: details
	The constructive semantics: sketch
	Results and code for the clutch

	Conclusions

