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Constraint programming

Holy grail of computing

I Declarative paradigm for solving combinatorial problems.
I We state the problem and let the system solve it for us.



Successful paradigm

Applications
It has a lot of different applications ranging from Sudoku solving,
scheduling, packing, musical orchestration...



How to find a solution?

NP-complete nature

I Try every combination until we find a solution.
I The possible combinations are represented in a tree.

...M11=1 M11=2
M11=9

M12=1 M12=2 M12=9...



Problem

Holy grail?

I Search tree is often too huge to find a solution in a reasonable time.
I Search strategies are crucial for describing how to create and prune

the tree and improving efficiency.
I Search strategies are often problem-dependent so we need to try and

test (empirical evaluation).



State-of-the-art

1. Languages (Prolog, MiniZinc,...): Clear and compact description but
limited amount of pre-defined strategies.

2. Libraries (Choco, GeCode,...): Highly customizable and efficient but
complex software, hard to understand and time-consuming.

I Composing strategies is impossible or hard in both cases.

Lack of abstraction for expressing, composing and
extending search strategies.



Proposal

Synchronous languages provide the needed abstraction!

I We propose spacetime programming, a language abstraction for
expressing search strategies.

I Based on Esterel (without the reaction to absence).
I Execution: One node of the tree processed per instant.
I Nondeterministic operator for specifying the branches of the tree.
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Spacetime programming

Spacetime programming = Synchronous programming + Search strategy.

I Search strategies as synchronous processes.
I Composition of strategies with the parallel operator.

I par s1 || s2 end
I Easy experiment: plugging in and out strategies.

I Communication between strategies in the deterministic framework of
the synchronous paradigm.



Synchronous programming

I In one instant, a synchronous program reacts to inputs and emits
outputs.

I It keeps an internal state of variables and program status.

Inputs Outputs

Synchronous program

Internal state

How to link the synchronous model and search tree?



Spacetime execution scheme

I The search tree is represented as a queue of nodes.
I We feed the program with one node of the tree per instant.
I The synchronous program fuels the queue with new nodes.

Inputs Outputs

Synchronous program

Queue of the nodes

dequeue 1 node push 0 to N nodes

Internal state



Space: Creating the tree

I space p || q end for creating two branches where p and q describes
children nodes.

let x = [0..10];
loop

let mid = middle_value(x);
space
|| x ← [lb(x)..mid−1]
|| x ← [mid..ub(x)]
end
pause

end

[0..10]

[0..5] [6..10]

[0..2] [3..5]



Internal state

I We can use the internal state for maintaining global information to
the tree.

I For example, for maintaining statistics such as the number of nodes
explored.

count_nodes ≡
nodes ← 1;
loop

pause;
nodes ← (pre nodes) + 1;

end



Spacetime attribute

Problem
How to differentiate between variables in internal state and onto the
queue?

We use a spacetime attribute to situate a variable in space and time.
I Global: Variable in one location, global to the search tree (attribute

single_space).
I Local: Variable in one time, local to one instant (attribute

single_time).
I Backtrackable: Variable in the queue of nodes (attribute

world_line).



Spacetime attribute

let x in world_line = [0..10];
loop

let mid in single_time = middle_value(x);
space
|| x ← [lb(x)..mid−1]
|| x ← [mid..ub(x)]
end
pause

end

1

2 5

3 4

[5..5]

[2..2] [8..8]

[1..1] [4..4]

[0..10]

[0..5] [6..10]

[0..2] [3..5]



Variables are complete lattices

I Every variable is a complete lattice where ← is the join operator and
bot the bottom representing the lack of information.

I transient re-initializes the value to bottom between instants
(persistent by default).

let transient nodes = bot;

count_nodes ≡
nodes ← 1;
loop

pause;
nodes ← (pre nodes) + 1;

end

⊥

0 1 ... n

>
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Implementation: Bonsai

I Integration into object-oriented language (Java).
I Extend the Java syntax with processes and reactive attributes.
I github.com/ptal/bonsai

Compilation
The compiler acts as a preprocessor from Bonsai to Java.

SugarCubes runtime

.bonsai.java .java JVM

github.com/ptal/bonsai


SugarCubes (Susini, ’01)

SugarCubes is a Java library to program reactive systems with the
synchronous paradigm.

I It provides a set of class combinators for each synchronous
instructions.

I For example, loop { pause; } is compiled to new Loop(new
Pause()).

I Method activate() called at each instant on the combinators.



Bonsai syntax

I Must inherits from Executable and have a process named execute
(entry point).

I Java method call with ~method.

public class ConstraintProblem implements Executable
{

world_line VarStore domains = bot;
world_line ConstraintStore constraints = bot;
proc execute() {

~modelChoco(domains, constraints);
par branching() || propagate() end

}
private static void modelChoco(VarStore domains,

ConstraintStore constraints )
{ ... }

}



Compilation

I A runtime environment contains all the variables.
I Programs are created at runtime.

public Program execute() {
return SC.seq(

new JavaAtom((env) −> {
VarStore domains = (VarStore) env.var("domains");
ConstraintStore constraints = (ConstraintStore) env.var(" constraints " );
modelChoco(domains, constraints);

}),
SC.par(

branching (),
propagate()

)
);

}



Experiments

We validate this approach by replacing the search module of the
state-of-the-art constraint solver Choco and comparing the efficiency.

I We provide a small binding (200 loc) to be able to use Choco inside
the language.

I We implemented the same search strategy in Choco and in Bonsai.
I Comparison on 3 different constraint problems.



Experiments

Choco SP SP
Choco

First solution
Latin square (40) 3.42 s 3.45 s 1
Latin square (50) 8.26 s 9.66 s 1.17
Latin square (60) 19.49 s 23.20 s 1.19

All solutions
N-Queens (12) 1.44 s 3.62 s 2.51
N-Queens (13) 6.35 s 16.04 s 2.53
N-Queens (14) 32.10 s 147 s 4.58

Best solution
Golomb ruler (9) 0.57 s 1.61 s 2.83
Golomb ruler (10) 1.69 s 6.43 s 3.81
Golomb ruler (11) 24.89 s 135 s 5.42

I Almost no overhead for finding one solution, factor between 2 and 5
for all and best solution.
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Conclusion

I Lack of an abstraction for expressing search strategies.
I Synchronous language is an ideal abstraction when extended with:

I Partial information (lattice-based variable).
I Nondeterminism.

I Working implementation available.
I Experiments show an acceptable overhead compared to

state-of-the-art solvers.

github.com/ptal/bonsai

github.com/ptal/bonsai


Future work

I Static analysis for avoiding the top value.
I Interactive constraint system.

I Computer-aided composition with constraints.
I Queue of nodes directly accessible in the program.

I Enables restart-based search strategies such as iterative deepening,
limited discrepancy, ...



Thank you for your attention.
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