Spacetime Programming
Synchron 2016

Pierre Talbot Carlos Agon Philippe Esling
(talbot@ircam.fr)

Institute for Research and Coordination in Acoustics/Music (IRCAM)
University Pierre et Marie Curie (UPMC)

5th December 2016

Menu

» Introduction

Constraint programming

Holy grail of computing

» Declarative paradigm for solving combinatorial problems.
» We state the problem and let the system solve it for us.

Successful paradigm

Applications

It has a lot of different applications ranging from Sudoku solving,
scheduling, packing, musical orchestration...

How to find a solution?

NP-complete nature

Try every combination until we find a solution.
The possible combinations are represented in a tree.

Problem
Holy grail?

Search tree is often too huge to find a solution in a reasonable time.

Search strategies are crucial for describing how to create and prune
the tree and improving efficiency.

Search strategies are often problem-dependent so we need to try and
test (empirical evaluation).

State-of-the-art

Languages (Prolog, MiniZinc,...): Clear and compact description but
limited amount of pre-defined strategies.

Libraries (Choco, GeCode,...): Highly customizable and efficient but
complex software, hard to understand and time-consuming.

Composing strategies is impossible or hard in both cases.

Lack of abstraction for expressing, composing and
extending search strategies.

Proposal

Synchronous languages provide the needed abstraction!

We propose spacetime programming, a language abstraction for
expressing search strategies.

Based on Esterel (without the reaction to absence).
Execution: One node of the tree processed per instant.

Nondeterministic operator for specifying the branches of the tree.

Menu

» Spacetime programming

Spacetime programming

Spacetime programming = Synchronous programming + Search strategy.

Search strategies as synchronous processes.
Composition of strategies with the parallel operator.
par s; ||l s end
Easy experiment: plugging in and out strategies.

Communication between strategies in the deterministic framework of
the synchronous paradigm.

Synchronous programming

In one instant, a synchronous program reacts to inputs and emits
outputs.

It keeps an internal state of variables and program status.

Internal state

Synchronous program

How to link the synchronous model and search tree?

Spacetime execution scheme

The search tree is represented as a queue of nodes.
We feed the program with one node of the tree per instant.
The synchronous program fuels the queue with new nodes.

Internal state

Inputs Outputs

N i‘3’*({3}/’

Synchronous program
dequeue 1{node push)0 to N nodes

Queue of the nodes

Space: Creating the tree

space p || q end for creating two branches where p and g describes
children nodes.

let x — [0..10]; [0..10]
%P i = i ot O
T o Db mid1] 0,51 £6..10]
Ly et Oof O
banse [0,2] [3.5]

© 00 O

Internal state

We can use the internal state for maintaining global information to
the tree.

For example, for maintaining statistics such as the number of nodes
explored.

count_nodes =
nodes < 1;
loop
pause;
nodes < (pre nodes) + 1;
end

Spacetime attribute

Problem

How to differentiate between variables in internal state and onto the
queue?

We use a spacetime attribute to situate a variable in space and time.

Global: Variable in one location, global to the search tree (attribute
single_space).

Local: Variable in one time, local to one instant (attribute
single_time).

Backtrackable: Variable in the queue of nodes (attribute
world_line).

Spacetime attribute

let x in world_line = [0..10];
loop
let mid in single_time = middle_value(x);
space
[x < [Ib(x)..mid—1]
[|x < [mid..ub(x)]
end
pause
end

Q[5.5]
Q2.1 Q8..8]
QI1.1]1 Q4..4]

©0 O

[0..2]

o

[0..10]

00 @

Variables are complete lattices

Every variable is a complete lattice where < is the join operator and
bot the bottom representing the lack of information.

transient re-initializes the value to bottom between instants
(persistent by default).

let transient nodes = bot;
count__nodes =

T
nodes + 1;
loop

O 1 n

pause;

nodes + (pre nodes) + 1;
end
1

Menu

» Implementation

Implementation: Bonsai

Integration into object-oriented language (Java).

Extend the Java syntax with processes and reactive attributes.

) github.com/ptal/bonsai
Compilation
The compiler acts as a preprocessor from Bonsai to Java.

SugarCubes runtime

|

.bonsai.java—— .java — JVM

github.com/ptal/bonsai

SugarCubes (Susini, '01)

SugarCubes is a Java library to program reactive systems with the
synchronous paradigm.

It provides a set of class combinators for each synchronous
instructions.

For example, 1oop { pause; } is compiled to new Loop(new
Pause()).

Method activate() called at each instant on the combinators.

Bonsai syntax

Must inherits from Executable and have a process named execute
(entry point).
Java method call with ~method.

public class ConstraintProblem implements Executable
{
world_line VarStore domains = bot;
world_line ConstraintStore constraints = bot;
proc execute() {
~modelChoco(domains, constraints);
par branching() || propagate() end

private static void modelChoco(VarStore domains,
ConstraintStore constraints)

Compilation

A runtime environment contains all the variables.

Programs are created at runtime.

public Program execute() {
return SC.seq(
new JavaAtom((env) —> {
VarStore domains = (VarStore) env.var("domains");
ConstraintStore constraints = (ConstraintStore) env.var(" constraints ");
modelChoco(domains, constraints);
}),
SC.par(
branching (),
propagate()
)
)i
}

Experiments

We validate this approach by replacing the search module of the
state-of-the-art constraint solver Choco and comparing the efficiency.

We provide a small binding (200 loc) to be able to use Choco inside
the language.
We implemented the same search strategy in Choco and in Bonsai.

Comparison on 3 different constraint problems.

Experiments

Choco SP lec’;co
First solution
Latin square (40) | 3.42s 3.45s 1
Latin square (50) | 8.26s 9.66s 1.17
Latin square (60) | 19.49s 23.20s 1.19
All solutions
N-Queens (12) 144s 3.62s 251
N-Queens (13) 6.35s 16.04s 253
N-Queens (14) | 32.10s 147s 458
Best solution
Golomb ruler (9) | 0.57s 161s 283
Golomb ruler (10) | 1.69s 6.43s 3.81
Golomb ruler (11) | 24.89s 135s 542

Almost no overhead for finding one solution, factor between 2 and 5
for all and best solution.

Menu

» Conclusion

Conclusion

Lack of an abstraction for expressing search strategies.
Synchronous language is an ideal abstraction when extended with:

Partial information (lattice-based variable).
Nondeterminism.

Working implementation available.

Experiments show an acceptable overhead compared to
state-of-the-art solvers.

) github.com/ptal/bonsai

github.com/ptal/bonsai

Future work

Static analysis for avoiding the top value.
Interactive constraint system.

Computer-aided composition with constraints.
Queue of nodes directly accessible in the program.

Enables restart-based search strategies such as iterative deepening,
limited discrepancy, ...

Thank you for your attention.

	Introduction
	Spacetime programming
	Implementation
	Conclusion

