
Symbolic Computation of Latency for Dataflow Graphs

Adnan Bouakaz Pascal Fradet Alain Girault

SYNCHRON International Workshop, Bamberg

December 7th, 2016

Introduction

Outline

1 Introduction
Application model
Scheduling policy
Symbolic analysis

2 Preliminary results

3 Graph A p q−−→B

4 Generalization to chains and acyclic graphs

5 Experiments

6 Conclusion
1 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Application model

Data-flow models of computation

Stream-processing applications are found in many embedded systems
video codecs, software defined radio, ...
computationally intensive
strict quality-of-service requirements
low energy consumption
more and more these applications run on many-core platforms

Data-flow models of computation are good at:
Expressing task-level parallelism
Achieving efficient implementation
Guaranteeing performances at compile time:

throughput: stream oriented applications
latency: automatic control oriented applications
buffer sizes: all embedded applications

2 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Application model

Acyclic Synchronous Data-FLow (SDF) graphs
[Lee and Messerschmitt, Proc. 1987]

A B C3 2 1 3

actor edgerate

execution time

tA =15 tB =8 tC =17

zA · 3 = zB · 2 zB · 1 = zC · 3

System of Balance Equations

Consistent SDF graph G: this system has a non-null solution
Repetition vector of G: ~z = [A2, B3, C1]
Iteration = firing sequence that returns G to its initial state

[
0
0

] [
6
0

] [
0
3

] [
0
0

]
A2 B3 C1

3 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Application model

Acyclic Synchronous Data-FLow (SDF) graphs
[Lee and Messerschmitt, Proc. 1987]

A B C3 2 1 3

actor edgerate

execution time

tA =15 tB =8 tC =17

zA · 3 = zB · 2 zB · 1 = zC · 3

System of Balance Equations

Consistent SDF graph G: this system has a non-null solution
Repetition vector of G: ~z = [A2, B3, C1]
Iteration = firing sequence that returns G to its initial state[

0
0

] [
6
0

] [
0
3

] [
0
0

]
A2 B3 C1

3 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Scheduling policy

Scheduling policy

As Soon As Possible (ASAP) [Sriram and Bhattacharyya 2000]

No auto-concurrency

Modeling Techniques

A B A B

tA =15 tB =8

3 2

3 2

3 28

buffer sizeauto-concurrency

~z = [2, 3]

15

23

30

38

45

46 54

60

68

75

76 84

90

98 106

A

B

transient phase steady state

4 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Scheduling policy

Scheduling policy

As Soon As Possible (ASAP) [Sriram and Bhattacharyya 2000]

No auto-concurrency

Modeling Techniques

A B A B

tA =15 tB =8

3 2

3 2

3 28

buffer sizeauto-concurrency

~z = [2, 3]

15

23

30

38

45

46 54

60

68

75

76 84

90

98 106

A

B

transient phase steady state

4 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Scheduling policy

Scheduling policy

Definition: Multi-iteration latency of graph G:
LG(n) = the finish time of the nth iteration.

A

B

LG(1)

LG(2)

`G(1)

`G(2)

PG

PG

5 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Scheduling policy

Scheduling policy

Definition: Input-output latency of graph G:
`G(n) = the duration between the start and ending of the nth iteration.

A

B

LG(1)

LG(2)

`G(1)

`G(2)

PG

PG

5 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Scheduling policy

Scheduling policy

Definition: Period of graph G:

PG = the average length of an iteration = lim
n→∞

LG(n)
n

Definition: Throughput of graph G:

TG = 1
PG

A

B

LG(1)

LG(2)

`G(1)

`G(2)

PG

PG
5 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Symbolic analysis

Symbolic analysis

parametric
dataflow
graph

partially specified
SDF graph SDF graph

instantiation

numerical
analysis

SDF graph

results

numerical

NP-complete
for HSDF

symbolic
analysis

symbolic
evaluation

numerical
evaluation

symbolic
formulas

symbolic

6 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Introduction Symbolic analysis

Symbolic analysis

parametric
dataflow
graph

partially specified
SDF graph SDF graph

instantiation

numerical
analysis

SDF graph

results

numerical

NP-complete
for HSDF

symbolic
analysis

symbolic
evaluation

numerical
evaluation

symbolic
formulas

symbolic

6 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Preliminary results

Outline

1 Introduction

2 Preliminary results
Duality theorem

3 Graph A p q−−→B

4 Generalization to chains and acyclic graphs

5 Experiments

6 Conclusion

7 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Preliminary results Duality theorem

Duality theorem

Definition: The dual of an SDF graph G:
G−1 is obtained by reversing all edges of G.

Duality theorem:
Let G be any (cyclic or not) live graph and G−1 be its dual, then TG = TG−1 and
∀i. LG(i) = LG−1(i).

A B

tA=10 tB=122 3

2 37
A

B

30

42

60

72

LG(n)=LG−1 (n)

G

G−1

B

A

24

42

48

72

8 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Preliminary results Duality theorem

Duality theorem

Definition: The dual of an SDF graph G:
G−1 is obtained by reversing all edges of G.

Duality theorem:
Let G be any (cyclic or not) live graph and G−1 be its dual, then TG = TG−1 and
∀i. LG(i) = LG−1(i).

Proof: Using SDF-to-HSDF transformation + unfolding:

A1

A2

A3

B1

B2

HSDF(G)

A1

A2

A3

B1

B2

HSDF(G−1)

8 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B

Outline

1 Introduction

2 Preliminary results

3 Graph A p q−−→B
Enabling patterns
Minimum latency

4 Generalization to chains and acyclic graphs

5 Experiments

6 Conclusion

9 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B

Preliminaries about graph A
p q−−→B

Four parameters: p, q ∈ N+ and tA, tB ∈ R+.

Repetition vector: [
zA= q

gcd(p, q) , zB= p

gcd(p, q)

]

ASAP period: PG = max(zAtA, zBtB).

Problem statement
What is θA,B the min. size of channel A−−→B s.t. the ASAP execution
achieves the max. throughput?

Solution
p+ q − gcd(p, q) < θA,B ≤ 2(p+ q − gcd(p, q))
Proof: 18 cases in total: p, q → 6 cases; tA, tB → 3 cases

10 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B Enabling patterns

Enabling patterns

A time-independent analytic and parametric characterization of the
data-dependency A→ B that covers one iteration.

Example:
Graph A 8 5−−→B with tA = 20 and tB = 7

A1

B1

A2

B2 B3

A3

B4

A4

B5 B6

A5

B7 B8

0 8

A B

11

A B2

9

A B

12

A B2

10

A B2

0

enabling point

Ai Bj ⇔ i firings of A enables j firings of B.

Unfolded pattern:

A B ;A B2;A B ;A B2;A B2

11 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B Enabling patterns

Enabling patterns

Unfolded pattern:

A B ;A B2;︸ ︷︷ ︸
block

A B ;A B2;A B2︸ ︷︷ ︸
block

Factorized pattern:[
A B ; [A B2]fi

]i=1··2
with f1 = 1, f2 = 2

General case: [
A Bk;

[
A Bk+1

]αj]j=1·· q−r
gcd(p,q)

with p = kq + r and αj =
⌊
jr
q−r

⌋
−
⌊

(j−1)r
q−r

⌋

12 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B Enabling patterns

Enabling patterns

Unfolded pattern:

A B ;A B2;︸ ︷︷ ︸
block

A B ;A B2;A B2︸ ︷︷ ︸
block

Factorized pattern:[
A B ; [A B2]fi

]i=1··2
with f1 = 1, f2 = 2

General case: [
A Bk;

[
A Bk+1

]αj]j=1·· q−r
gcd(p,q)

with p = kq + r and αj =
⌊
jr
q−r

⌋
−
⌊

(j−1)r
q−r

⌋

12 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B Enabling patterns

Enabling patterns

Unfolded pattern:

A B ;A B2;︸ ︷︷ ︸
block

A B ;A B2;A B2︸ ︷︷ ︸
block

Factorized pattern:[
A B ; [A B2]fi

]i=1··2
with f1 = 1, f2 = 2

General case: [
A Bk;

[
A Bk+1

]αj]j=1·· q−r
gcd(p,q)

with p = kq + r and αj =
⌊
jr
q−r

⌋
−
⌊

(j−1)r
q−r

⌋
12 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B Enabling patterns

Enabling patterns

Case A. p ≥ q
Let p = kq + r with 0 ≤ r < q

Case A.1. r = 0

A Bk

Case A.2. q ≤ 2r[
A Bk;

[
A Bk+1]αj

]j=1·· q−r
gcd(p,q)

Case A.3. q > 2r[[
A Bk

]βj ; A Bk+1
]j=1·· r

gcd(p,q)

αj =
⌊
jr
q−r

⌋
−
⌊ (j−1)r

q−r

⌋
βj =

⌈
jq
r

⌉
−
⌈ (j−1)q

r

⌉
− 1

Case B. p < q

Let q = kp + r with 0 ≤ r < p

Case B.1. r = 0

Ak B

Case B.2. p ≥ 2r[
Ak+1 B ;

[
Ak B

]γj
]j=1·· r

gcd(p,q)

Case B.3. p < 2r[[
Ak+1 B

]λj ; Ak B
]j=1·· p−r

gcd(p,q)

γj =
⌊
jp
r

⌋
−
⌊ (j−1)p

r

⌋
− 1

λj =
⌈
jr
p−r

⌉
−
⌈ (j−1)r

p−r

⌉
13 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B Minimum latency

Multi-iteration latency: Case zAtA ≥ zBtB

A imposes a higher load than B
A never gets idle =⇒ PG = zAtA

LG(n) = nPG + ∆A,B ⇐⇒ LG(n)
n = nPG+∆A,B

n = PG + ∆A,B
n ≥ PG

∆A,B is the remaining execution time for actor B after actor A has
finished its firings of the nth iteration

∆A,B is constant over all iterations so limn→+∞
∆A,B
n = 0

(graph A 5 3−−→B with TA = 14 and tB = 8)

14 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B Minimum latency

Multi-iteration latency: Case zAtA ≥ zBtB

Case I.
∆A,B =

⌈
p

q

⌉
tB

Case II.1.
∆A,B = tA +

⌈
r

q − r

⌉ (
(k + 1) tB − tA

)
Case II.2.

∆A,B = tB +
⌈
p− r
r

⌉
(tB − ktA)

Case III.

...

15 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B Minimum latency

Multi-iteration latency: Case zAtA < zBtB

B imposes a higher load than A
B never gets idle in the steady state (untrue in transient)
∆A,B may not constant over all iterations and diverges to infinity if
the buffer is unbounded
Better solution: compute ∆A,B with the duality theorem
LG(n) = LG−1(n) = nPG−1 + ∆B,A

(graph A 5 3−−→B with TA = 14 and tB = 12)

16 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Graph A
p q
−−−→B Minimum latency

Input-output latency

Case zAtA ≥ zBtB
A imposes the highest load =⇒ PG = zAtA

`G(n) is equal to the finish time of the nth iteration minus the start
time of the first firing of A in the nth iteration
`G(n) = LG(n)− (n− 1)zAtA = LG(n)− (n− 1)PG = PG + ∆A,B

Hence `G = PG + ∆A,B = LG(1)

Case zAtA < zBtB

B imposes the highest load
Unbounded buffer: `G(n) = LG(n)− (n− 1)zAtA
It diverges with n!
Bounded buffer: We compute an over-approximation with a (backward)
linearization technique

17 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Generalization to chains and acyclic graphs

Outline

1 Introduction

2 Preliminary results

3 Graph A p q−−→B

4 Generalization to chains and acyclic graphs

5 Experiments

6 Conclusion

18 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Generalization to chains and acyclic graphs

Multi-iteration latency of chain A
p q−−→B

p′ q′−−−→C

Forward linearization B
First analyse the graph A p q−−→B

If B does not fire continuously, then build a fictive actor Bu s.t.:

∀i. fB(i) ≤ fBu(i) ∧ ∃i. fB(i) = fBu(i)

Then analyse the graph Bu p′ q′−−−→C

Finally combine the two schedules

19 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Generalization to chains and acyclic graphs

Multi-iteration latency of acyclic graphs

Acyclic graph G seen as a set of maximal chains G(G)
(chains from a source actor to a sink actor)

Property: ∀i. LG(i) = max
g∈G(G)

{Lg(i)}

Proof: transform G into HSDF then unfold i times

Compute the multi-iteration latency of each maximal chain

20 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Generalization to chains and acyclic graphs

Input-output latency for the chain for A
p q−−→B

p′ q′−−−→C

Linearized schedule: (backward linearization)

Conclusion: `G = 83 and ˆ̀
G = 89.8 so we over-approximate by 8.2%

21 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Experiments

Outline

1 Introduction

2 Preliminary results

3 Graph A p q−−→B

4 Generalization to chains and acyclic graphs

5 Experiments

6 Conclusion

22 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Experiments

Multi-iteration latency computation for real benchmarks

graph PG LG(1) L̂G(1)/LG(1) L̂G(2)/LG(2)
modem 32 62 1 1

sample rate 960 1000 1.022 1.011
converter

H.263 decoder 332046 369508 1 1
FFT 78844 94229 1 1
TDE 17740800 19314069 1 1

23 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Experiments

Multi-iteration latency for randomly generated chains

Randomly generated chains of 10 actors
p, q ∈ [1, 10] and tX ∈ [1, 100]
Total number of firings per iteration < 2× 103

We report L̂A1→A10

LG(1) = approximate
exact

24 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Experiments

Input-output latency for randomly generated chains

Randomly generated chains of 9 actors
p, q ∈ [1, 10] and tX ∈ [1, 100]
Total number of firings per iteration < 2× 103

A9 imposes the highest load
Each channel size Ai

p q−−→Ai+1 is equal to 2(p+ q − gcd(p, q))

We report
ˆ̀
G

`G
= approximate

exact

25 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Conclusion

Outline

1 Introduction

2 Preliminary results

3 Graph A p q−−→B

4 Generalization to chains and acyclic graphs

5 Experiments

6 Conclusion

26 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Conclusion

Related work

[Geilen 2011] and [Skelin et al. 2014]: (max,+) algebra to
compute the token timestamp vector with the eigenvalue of the
transition matrix
=⇒ Requires the ceiling operator to be simplified

[Ghamarian et al. 2008]: parametric throughput analysis for SDF
graphs with bounded parametric execution times of actors but
constant rates
=⇒ Parameter space divided into a set of convex polyhedra
(throughput regions), each with a throughput expression

[Damavandpeyma et al. 2012]: Extension to scenario-aware
dataflow (SADF)

[Bodin et al. 2013]: lower bounds of the maximum throughput to
compute strictly periodic schedules instead of ASAP schedules
=⇒ Can handle some cyclic graphs, but usually our linearization
methods provide better results

27 Bouakaz, Fradet and Girault Symbolic Computation of Latency

Conclusion

Conclusion

We presented:
An exact analytic solution for the A p q−−→B SDF graph using enabling
patterns

A safe generalization to acyclic graphs using forward and backward
linearization

Still to solve:
Symbolic analysis of cyclic dataflow graphs

28 Bouakaz, Fradet and Girault Symbolic Computation of Latency

	Introduction
	Application model
	Scheduling policy
	Symbolic analysis

	Preliminary results
	Duality theorem

	Graph Ap qB
	Enabling patterns
	Minimum latency

	Generalization to chains and acyclic graphs
	Experiments
	Conclusion

