Control-flow Guided Property Directed Reachability for Imperative Synchronous Programs

Xian Li

Supervisor: Prof. Dr. Klaus Schneider

Embedded Systems Chair
Department of Computer Science
University of Kaiserslautern, Germany

Synchron 2016 at Bamberg, December 5 – 9, 2016
1. Motivation

2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs
Outline

1. Motivation

2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs
Formal Verification of Synchronous Hardware Circuits

- PDR: a very efficient verification method based on induction
Formal Verification of Synchronous Programs

- PDR: a very efficient verification method based on induction

Synchronous Programs
```plaintext
module M(event bool ?a, ?b, o1, o2) {
    loop {
        l1: pause;
        if(o1 & (a | b)) {
            emit(o2);
            l2: await(a);
        }
    }
}
```

Synchronous Circuits

![Synchronous Circuits Diagram]
Imperative Synchronous Programs

Imperative Synchronous Languages: e.g. Quartz

- macro steps: consumption of one logical time unit
- micro steps: no logical time consumption

⇒ synchronous reactive model of computation

Control-flow Information

- not needed for synthesis
- useful for formal verification
Goals

Target: Safety Property Verification of Imperative Synchronous Programs

- PDR: relies on good estimation of the reachable states

Our Heuristic: Improve it by Exploiting Control-flow Information

- modify transition relation to generate less counterexamples to induction (CTIs) by reachable control-flow states computation
 - linear-time static analysis
 - symbolic reachability analysis
- identify CTIs in \mathcal{K}
 simpler unreachability tests in \mathcal{K}^{cf}
- generalize CTIs to narrow the reachable state approximations
 if \mathcal{C} is unreachable, then generalize $\neg C'$ instead of $\neg C$:
 $C' := C|_{\neg cf}$ obtained from omitting the dataflow literals in C
<table>
<thead>
<tr>
<th>Outline</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Motivation</td>
</tr>
<tr>
<td></td>
<td>2. Property Directed Reachability</td>
</tr>
<tr>
<td></td>
<td>3. Control-flow Guided PDR for Imperative Synchronous Programs</td>
</tr>
</tbody>
</table>
Safety Property Verification

Target: Prove Φ is valid w.r.t. \mathcal{K}

- a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- a safety property: Φ
- Φ holds on all reachable states of \mathcal{K}

Φ is inductive w.r.t. \mathcal{K}

- induction base: Φ holds in all initial states
- induction step: Φ-states have no successor violating Φ

module CfSeq(){
 p1: pause;
 p2: pause;
}

\[
\begin{align*}
\mathcal{V} & := \{\text{run}, \text{p1}, \text{p2}\} \\
\mathcal{I} & := \neg(\text{run} \lor \text{p1} \lor \text{p2}) \\
\mathcal{T} & := \text{next}(\text{run}) \leftrightarrow \text{true} \\
& \quad \land (\text{next}(\text{p1}) \leftrightarrow \neg \text{run}) \\
& \quad \land (\text{next}(\text{p2}) \leftrightarrow \text{p1})
\end{align*}
\]

$\Phi := \neg(\text{p1} \land \text{p2})$
Safety Property Verification by Induction

Target: Prove Φ is valid w.r.t. \mathcal{K}

- a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- a safety property: Φ
- Φ holds on all reachable states of \mathcal{K}

Φ is inductive w.r.t. \mathcal{K}

- induction base: Φ holds in all initial states
- induction step: Φ-states have no successor violating Φ
Safety Property Verification by Induction

Target: Prove Φ is valid w.r.t. \mathcal{K}

- a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- a safety property: Φ
- Φ holds on all reachable states of \mathcal{K}

Φ is inductive w.r.t. \mathcal{K}

- induction base: Φ holds in all initial states
- induction step: Φ-states have no successor violating Φ
Motivation

Property Directed Reachability

Control-flow Guided PDR for Imperative Synchronous Programs

Property Directed Reachability

PDR method constructs a sequence of clause sets Ψ_0, \ldots, Ψ_k that overapproximate the states reachable in $0, \ldots, k$ steps.

- incremental induction: extend the sequence Ψ_0, \ldots, Ψ_k
- unreachability checking: CTI identification and generalization

Reachable States

<table>
<thead>
<tr>
<th>State</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>{}</td>
</tr>
<tr>
<td>s_1</td>
<td>{p2}</td>
</tr>
<tr>
<td>s_2</td>
<td>{p1}</td>
</tr>
<tr>
<td>s_3</td>
<td>{p1,p2}</td>
</tr>
<tr>
<td>s_4</td>
<td>{run}</td>
</tr>
<tr>
<td>s_5</td>
<td>{run,p2}</td>
</tr>
<tr>
<td>s_6</td>
<td>{run,p1}</td>
</tr>
<tr>
<td>s_7</td>
<td>{run,p1,p2}</td>
</tr>
</tbody>
</table>

Φ holds \wedge Φ doesn't hold

Reachable States
Property Directed Reachability

PDR method constructs a sequence of clause sets Ψ_0, \ldots, Ψ_k that overapproximate the states reachable in $0, \ldots, k$ steps.

- Incremental induction: extend the sequence Ψ_0, \ldots, Ψ_k
- Unreachability checking: CTI identification and generalization
Property Directed Reachability

PDR method constructs a sequence of clause sets Ψ_0, \ldots, Ψ_k that overapproximate the states reachable in $0, \ldots, k$ steps.

- incremental induction: extend the sequence Ψ_0, \ldots, Ψ_k
- unreachability checking: CTI identification and generalization
Outline

1. Motivation

2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs
Main Idea I: Modify Transition Relation to generate less CTIs

Original Transition Relation:

\[\psi_{k-1} \]

\[\psi_\phi \]

s0: \{\}

s1: \{p2\}

s6: \{run,p1\}

s2: \{p1\}

s5: \{run,p2\}

s7: \{run,p1,p2\}

s4: \{run\}

s3: \{p1,p2\}

Reachable States

\[\phi \text{ holds} \]

\[\phi \text{ doesn't hold} \]

s2 has successor s7 violating \(\phi \)

Enhanced Transition Relation:

\[\psi_{k-1} \]

\[\psi_\phi \]

s0: \{\}

s1: \{p2\}

s6: \{run,p1\}

s2: \{p1\}

s5: \{run,p2\}

s7: \{run,p1,p2\}

s4: \{run\}

s3: \{p1,p2\}

Reachable States

\[\phi \text{ holds} \]

\[\phi \text{ doesn't hold} \]

s2 has no successor

\(\Rightarrow \) remove transitions from unreachable states by control-flow invariants
Control-flow Invariants by **static** Analysis

Control-flow can never be active at both substatements of sequences and conditional statements:

```plaintext
module CfSeq(){
    p1: pause;
    p2: pause;
}
¬(p1 ∧ p2)
```
Control-flow can never be active at both substatements of sequences and conditional statements:

```plaintext
module Ite(){
    mem bool i;
    if (i) {
        p1: pause;
    } else {
        q1: pause;
    }
}

¬(p1 ∧ q1)
```
Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences and conditional statements:

\[\neg(p_1 \land p_2) \land \neg(q_1 \land q_2) \land \neg((p_1 \lor p_2) \land (q_1 \lor q_2)) \]

module CfIte(){
 mem bool i;
 if (i) {
 p1: pause;
 p2: pause;
 } else {
 q1: pause;
 q2: pause;
 }
}
module CfIte() {
 mem bool i;
 if (i) {
 p1: pause;
 p2: pause;
 } else {
 q1: pause;
 q2: pause;
 }
}
module CfIte()
{
 mem bool i;
 if (i) {
 p1: pause;
 p2: pause;
 } else {
 q1: pause;
 q2: pause;
 }
}

Enhanced Transition Relation:

with control-flow invariant by static analysis:
\(\neg(p1 \land p2) \land \neg(q1 \land q2) \land \neg((p1 \lor p2) \land (q1 \lor q2))\)
Control-flow Invariants by **symbolic** Analysis

```java
module CfPar(){
    {
        p1: pause;
        p2: pause;
    } ||
    {
        q1: pause;
        q2: pause;
    }
}
```

Original Transition Relation:
Control-flow Invariants by **symbolic** Analysis

module CfPar()
{
 p1: pause;
 p2: pause;
} ||
{
 q1: pause;
 q2: pause;
}

Enhanced Transition Relation:

\[-(p_1 \land p_2) \land -(q_1 \land q_2)\]
Control-flow Invariants by symbolic Analysis

Symbolic traversal of the state space of the control-flow system:

```plaintext
module CfPar(){
{
    p1: pause;
    p2: pause;
} ||
{
    q1: pause;
    q2: pause;
}
}

¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∧ q2) ∨ (p2 ∧ q1))
```
Control-flow Invariants by **symbolic** Analysis

module CfPar(){
 {
 p1: pause;
p2: pause;
 } ||
 {
 q1: pause;
q2: pause;
 }
}

Enhanced Transition Relation:

\[
\neg (p_1 \land p_2) \land \neg (q_1 \land q_2) \land \neg ((p_1 \land q_2) \lor (p_2 \land q_1))
\]
Main Idea II: CTI Indentification and Generalization by Control-flows

- reachability of CTIs in K
- simpler unreachability tests in K^{cf}

- generalize CTIs to narrow the reachable state approximations
 if C is unreachable, then generalize $\neg C'$ instead of $\neg C$:
 $C' := C\mid_{\forall cf}$ obtained from omitting the dataflow literals in C
Let $\mathcal{V} := \mathcal{V}^{\text{cf}} \cup \mathcal{V}^{\text{df}}$ and $\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$, with

- $\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- $\mathcal{K}^{\text{cf}} = (\mathcal{V}, \mathcal{I}^{\text{cf}}, \mathcal{T}^{\text{cf}})$
- $\mathcal{K}^{\text{df}} = (\mathcal{V}, \mathcal{I}^{\text{df}}, \mathcal{T}^{\text{df}})$
Transition Systems of a Synchronous Program

Let \(V := V^{cf} \cup V^{df} \) and \(\mathcal{K} := \mathcal{K}^{cf} \times \mathcal{K}^{df} \), with

- \(\mathcal{K} = (V, I, \mathcal{T}) \)
- \(\mathcal{K}^{cf} = (V, I^{cf}, \mathcal{T}^{cf}) \)
- \(\mathcal{K}^{df} = (V, I^{df}, \mathcal{T}^{df}) \)

unreachability of CTIs in \(\mathcal{K} \) can be proved by unreachability in \(\mathcal{K}^{cf} \)
CTI Indentification by Control-flows

Let $\mathcal{V} := \mathcal{V}^{\text{cf}} \cup \mathcal{V}^{\text{df}}$ and $\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$, with

$\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$

$\mathcal{K}^{\text{cf}} = (\mathcal{V}, \mathcal{I}^{\text{cf}}, \mathcal{T}^{\text{cf}})$

$\mathcal{K}^{\text{df}} = (\mathcal{V}, \mathcal{I}^{\text{df}}, \mathcal{T}^{\text{df}})$

unreachability of CTIs in \mathcal{K} can be proved by unreachability in \mathcal{K}^{cf}

reachability of CTIs in \mathcal{K}

simpler unreachability tests in \mathcal{K}^{cf}
CTI Generalization by Control-flows

Let $\mathcal{V} := \mathcal{V}^{\text{cf}} \cup \mathcal{V}^{\text{df}}$ and $\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$, with

- $\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- $\mathcal{K}^{\text{cf}} = (\mathcal{V}, \mathcal{I}^{\text{cf}}, \mathcal{T}^{\text{cf}})$
- $\mathcal{K}^{\text{df}} = (\mathcal{V}, \mathcal{I}^{\text{df}}, \mathcal{T}^{\text{df}})$

unreachability in \mathcal{K}^{cf} is independent on the dataflows
CTI Generalization by Control-flows

Let $\mathcal{V} := \mathcal{V}^{\text{cf}} \cup \mathcal{V}^{\text{df}}$ and $\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$, with

- $\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- $\mathcal{K}^{\text{cf}} = (\mathcal{V}, \mathcal{I}^{\text{cf}}, \mathcal{T}^{\text{cf}})$
- $\mathcal{K}^{\text{df}} = (\mathcal{V}, \mathcal{I}^{\text{df}}, \mathcal{T}^{\text{df}})$

unreachability in \mathcal{K}^{cf} is independent on the dataflows

- generalize CTIs to narrow the reachable state approximations
 if C is unreachable, then generalize $\neg C'$ instead of $\neg C$:
 $C' := C|_{\mathcal{V}^{\text{cf}}}$ obtained from omitting the dataflow literals in C
module ITELoop() {
 [N]bool i;
 i[0] = true;
 if (!i[0]) {
 loop{
 p1: pause;
 i[0] = false;
 p2: pause;
 }
 }
}

The set of boolean variables of module ITELoop

\[\mathcal{V}_N := \{i[0], \ldots, i[N-1]\} \cup \{p1, p2, run\} \]

⇒ reduce at most \(2^{N+3}\) to \(2^3\) times relative inductiveness reasoning
Summary

Control-flow Guided PDR for Imperative Synchronous Programs

- modify transition relation to generate less CTIs by reachable control-flow states computation
 - linear-time static analysis
 - symbolic reachability analysis

- identify CTIs in K
 simpler unreachability tests in K^cf

- generalize CTIs to narrow the reachable state approximations
 if C is unreachable, then generalize $\neg C'$ instead of $\neg C$:
 $C' := C|_{\forall \text{ cf}}$ obtained from omitting the dataflow literals in C