Control-flow Guided Property Directed Reachability

for Imperative Synchronous Programs

Xian Li
Supervisor: Prof. Dr. Klaus Schneider

Embedded Systems Chair
Department of Computer Science
University of Kaiserslautern,Germany

Synchron 2016 at Bamberg, December 5 — 9, 2016

Table of Contents

1. Motivation
2. Property Directed Reachability

3. Control-flow Guided PDR for Imperative Synchronous Programs

2/22

Motivation

Outline

1. Motivation

3/22

Motivation

Formal Verification of Synchronous Hardware Circuits

» PDR: a very efficient verification method based on induction

4/22

Motivation

Formal Verification of Synchronous Programs

» PDR: a very efficient verification method based on induction

| 1
1

i Synchronous Programs !
! module M(event bool ?a,?b,0l,02) { :
I loop { |
: 11: pause; '
if(ol & (a]b)) { /!

| emit(02); |: 2
| 12: await(a); I
| 1
| 1
| 1
| 1
| 1
| 1

4/22

Motivation

Imperative Synchronous Programs

Imperative Synchronous Languages: e.g. Quartz

» macro steps: consumption of one logical time unit

> micro steps: no logical time consumption

= synchronous reactive model of computation

Control-flow Information
» not needed for synthesis

» useful for formal verification

5/22

Motivation

Goals

Target: Safety Property Verification of Imperative Synchronous Programs
> PDR: relies on good estimation of the reachable states

Our Heuristic: Improve it by Expoiting Control-flow Information
» modify transition relation to generate less counterexamples to
induction (CTls) by reachable control-flow states computation

> linear-time static analysis
» symbolic reachability analysis

> indentify CTls in IC
simpler unreachability tests in Af

» generalize CTls to narrow the reachable state approximations
if C is unreachable, then generalize —C’ instead of —C:
C" := Cjyr obtained from omitting the dataflow literals in C

6/22

Property Directed Reachability

Outline

2. Property Directed Reachability

7/22

Property Directed Reachability
[1e}

Safety Property Verification

Target: Prove ¢ is valid w.r.t.
> a state transition system: K := (V,Z,7)
> a safety property: ¢
» & holds on all reachable states of K

module CfSeq(){
pl: pause;
p2: pause;

}

V = {run,pl,p2}
(55: {run,p2})<_Cs7: {run,pl,pz}j Z = —(runVplVp2)

T =

: next (run) < true
A (next (pl) + —run)
CIiiDe A (next (p2) < p1)
O & holds O & doesn't hold Reachable States o = _\(Pl A p2)

8/22

Property Directed Reachability
[1e}

Safety Property Verification by Induction

Target: Prove ¢ is valid w.r.t.
» a state transition system: K := (V,Z,T)
> a safety property: ¢
» & holds on all reachable states of
® is inductive w.r.t. I
> induction base: ® holds in all initial states
> induction step: ®-states have no successor violating ¢

8/22

Property Directed Reachability
[1e}

Safety Property Verification by Induction

Target: Prove ¢ is valid w.r.t.
» a state transition system: K := (V,Z,T)
> a safety property: ¢
» & holds on all reachable states of
® is inductive w.r.t. I
> induction base: ® holds in all initial states
> induction step: ®-states have no successor violating ¢

(s6: {run.p1}) (2 1) o (6 Arunp1y) (=2 t11) s6: {run,pl} s2: {pl}

CsS: {run,pZD<_Cs7: {run,pl,pZ}) (55: {run,p2} s7: {run,pl,pZ}j (55: {run,p2} s7: {run,pl,pZ}j

(54: {run}D Cs3: {pl,pZ}) (54: {run}D Cs3: {pl,p2}j

8/22

Property Directed Reachability
oce

Property Directed Reachability

PDR method constructs a sequence of clause sets Vg, ..., WV, that
overapproximate the states reachable in O, ..., k steps.

» incremental induction: extend the sequence Wy, ..., WV,

>

s6: {run,pl}) s2: {pl}
55 {run, p2})._._Cs7{runp1 pz}j
CETDeE

O ® holds O (bdoesnt hold Reachable States

9/22

Property Directed Reachability
oce

Property Directed Reachability

PDR method constructs a sequence of clause sets Vg, ..., WV, that
overapproximate the states reachable in O, ..., k steps.

>

» unreachability checking: CTI indentification and generalization

Vi

"’k s6: unpl}) (52001
(55: (run,p2})<_(s7: {run,pl,pz}j
CATI)>
(O ohoas () P doesnt hold Reachable States

9/22

Property Directed Reachability

oe

Property Directed Reachability

PDR method constructs a sequence of clause sets Vg, ..., WV, that
overapproximate the states reachable in O, ..., k steps.

» incremental induction: extend the sequence Wy, ..., WV,

» unreachability checking: CTI indentification and generalization

v,
. @wD Gew
O & holds O & doesn't hold Reachable States

9/22

Control-flow Guided PDR for Imperative Synchronous Programs

Outline

3. Control-flow Guided PDR for Imperative Synchronous Programs

10/22

Control-flow Guided PDR for Imperative Synchronous Programs
°

Main Idea I: Modify Transition Relation to generate less CTls

Original Transition Relation: Enhanced Transition Relation:
Vo i o Ve P — 2
. (55: {run,pZ}Ms% {run,pl.pZ}j CsS: {run,pZ}j Cs7: {run,pl,pZ}j
(54: {run} CS31 (Plvpzl’) C54 {run} 63: {pl,pZD
O & holds O & doesn't hold Reachable States O @ holds O @ doesn't hold Reachable States
s> has successor sy violating ® $2 has no successor

=> remove transitions from unreachable states by control-flow invariants

11/22

Control-flow Guided PDR for Imperative Synchronous Programs
©0000

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of
sequences and conditional statements:

module CfSeq(){
pl: pause;
p2: pause;

—-(p1 Ap2)

12/22

Control-flow Guided PDR for Imperative Synchronous Programs
©0000

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of
sequences and conditional statements:

module Ite(){
mem bool ij;
if (i) {
pl: pause;
} else {
ql: pause;
}
}

—(p1Aql)

12/22

Control-flow Guided PDR for Imperative Synchronous Programs
©0000

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of
sequences and conditional statements:

module CfIte(){
mem bool ij;

if (i) {
pl: pause;
p2: pause;
} else {
ql: pause;
q2: pause;
}

}
(Pt Ap2) A =(al Ag2) A =((pl Vp2) A(ql V g2))

12/22

Control-flow Guided PDR for Imperative Synchronous Programs
0@000

Control-flow Invariants by static Analysis

module ctite 0{ Qriginal Transition Relation:
mem bool i;
if (1) {
pl: pause;
p2: pause;
} else {

(57: (pz,q1,q2}) (55: {p2,92}
ql: pause;

s25: {run,pl,q2} (518: {run,ql} s24: {run,puj s23: {run,p2,q1,g2}
q2: pause;

3} (3:taLazr S19: {run,ql,a2} s17: {run,qz)) (520: {run,pz)}—[szg: {run,p1,p2,q2}

s4: (pu) (514: {pl,pz,ql})

(56: {p2,q1}

}

522: {run,p2,q1}

21 {unp2.a2) S nplzatar)
; v f
(512: {pl,p:)) [szs: (run,p1,q1)j (527: {run,p1,q1,q2}) (530: (run,p1,p2,q1}j
O & holds O & doesn't hold Reachable States

13/22

Control-flow Guided PDR for Imperative Synchronous Programs
0@000

Control-flow Invariants by static Analysis

module ctIte O{ Enhanced Transition Relation:
mem bool ij;
if (1) {
pl: pause; (57 tp2.a1.021) (5:tp2.021)

p2: pause;

} else { GG: (pZ,qlD [525: (mn,pl,qu (515‘ (run,ql}) (524: (run,pl)) (523‘ (run,pZ,ul,qZ)) 510: {p1,q1}
ql: pause;
q2: pause; Csz: (ql,qz)j [519: (run,ql,q2)j (517 (run,qz}) (520: (run,pz)) Cszg (run,pl,pl,qZ}) Csll: (pl,ql,ql))
;
(528: {runpLp2}) (Gaitunp2a2r) (3L {nnplpzaiaz))
Goom) (2 eier) (26 (unpaiy) (527 tunpLaray) (530 (runplpzaly)
O ® holds O & doesn't hold Reachable States

with control-flow invariant by static analysis:
—(p1 Ap2) A (a1 Aq2) A=((p1V P2) A(ql V q2))

13/22

Control-flow Guided PDR for Imperative Synchronous Programs
00800

Control-flow Invariants by symbolic Analysis

module ctrar 04 QOriginal Transition Relation:

pl: pause;
p2: pause;

(s12: tp1p2y) (513: {plp2.02}) Geo) G (st qazy) 5: {p2.a2}

oIl I
{ ng: {pl,q2} 530: {run,p1,p2,q1} (szs: (mn,pl,ql)j‘/(sm: (p1,q1)j G“: (pl,ql,qZ)J (514: (pl,pZ,ql))
ql: pause; : |]
q2: pause; (57; {p2,q1,q2} 527 {run,p1,q1,q2} s21: {run,p2,q2} s31: {run,p1,p2,q1,02} s15: {p1,p2,q1,q2}
} s18: {run.al})

s6: {p2,q1}

s17: {run,q2} $19: {run,ql,2}
s22: {run,p2,ql}
524: {run,p1})

V
(5281 (run,pl,pz}j (525; (run,pl,qz)) [523 {run,pZ,ql,qZ})
O ® holds O @ doesn't hold Reachable States

529: {run,pl,p2,q2}

520: {run,p2}

14 /22

Control-flow Guided PDR for Imperative Synchronous Programs
00800

Control-flow Invariants by symbolic Analysis

module ctParO{ Enhanced Transition Relation:

pl: pause;

b2: pause; EEED EEED (@D

(59: (pl,qZ}) (53']: (run,pl,pl,ql)) (526: (run,pl,ql}) (510‘ (pl,ql)j (511: {pl,ql,qz)) (514: (p1,p2,q1))

ql: pause;

q2: pause; (s7:(pz.q1.q2)j (sU:(run,pl,ql,qu [s:l:{run,pz.qz}) (531:{run,p1,pz,q1,q2)j s15: {p1,p2,qL,q2}

| s18: {runal})
} D) (E)

(sza: (run,pl,pz}) (525: (run,pl,ql}) [523: (mn,pz,ql,qnj
O & holds O & doesn't hold Reachable States

with control-flow invariant by static analysis:
~(p1 Ap2) A (a1 Aq2)

14 /22

Control-flow Guided PDR for Imperative Synchronous Programs
00080

Control-flow Invariants by symbolic Analysis

Symbolic traversal of the state space of the control-flow system:

module

{

pl:
p2:

ool
{

ql:
q2:

}
}

=(p1 A p2) A =(ql A q2)

CfPar () {

pause;
pause;

pause;
pause;

A=((pt Ag2) V(P2 Aql))

15/22

Control-flow Guided PDR for Imperative Synchronous Programs
0000e

Control-flow Invariants by symbolic Analysis

module ctParO{ Enhanced Transition Relation:
{

pl: pause;

p2: pause; e EEeiee) (Gen)
ol
{

[59: (pl,qz}) [ssn: {mn,pl,pz,ql}) (526: (run,pl,ql)) (510: {pl,ql}) (511: (pl,ql,qz)j (514: {pl,pZ,ql))

ql: pause;
q2: pause; (57: (p2,q1,02}j (527: {run,pl,ql,qZ)) (521: (run,p?,qZ)j (531: (run,pl,pZ,ql,qZ)] s15: {p1,p2,q1,q2}

(518: (run,ql))
} s6: {p2,q1} s3: {qL,q2} s2: {ql} 517: {run,q2} 519: {run,q1,q2}
522: {run,p2,1}
$29: {run,pl,p2,q2} $20: {run,p2}

(523: (mn,pl,pz)j (szs: {run,p1,q2}j (szz: (run,pz,ql,qZ))

O ® holds O ® doesn't hold Reachable States

with control-flow invariant by symbolic analysis:
~(p1 Ap2) A—(ql Aq2) A=((p1 A q2) V (P2 A ql))

16 /22

Control-flow Guided PDR for Imperative Synchronous Programs
o

Main Idea Il: CTI Indentification and Generalization by Control-flows

» reachability of CTls in IC
simpler unreachability tests in KCf

» generalize CTls to narrow the reachable state approximations
if C is unreachable, then generalize —C’ instead of —C:
C":= Cjyer obtained from omitting the dataflow literals in C

17/22

Control-flow Guided PDR for Imperative Synchronous Programs

@000

Transition Systems of a Synchronous Program

Let V := VUV and K = £F x £, with
» K= (VaIv T)
> ICCf _ (V,ICf,TCf)
> chf — (V,de,Tdf)

O & holds O & doesn't hold Reachable States

18 /22

Control-flow Guided PDR for Imperative Synchronous Programs

@000

Transition Systems of a Synchronous Program

Let V := VUV and K = £F x £, with
» K= (V’I7 T)
> ICCf _ (V,ICf,TCf)
> chf — (V,de,Tdf)

unreachability of CTls in K can be proved by unreachability in A<f

O & holds O & doesn't hold Reachable States

18 /22

Control-flow Guided PDR for Imperative Synchronous Programs
0®00

CTI Indentification by Control-flows

Let V:= VFU VI and K := KF x K9F, with
» K=0W,Z,7)
> ICCf _ (V,ICf,TCf)
> K = (v, 7 T4

unreachability of CTls in K can be proved by unreachability in A<f

» reachability of CTls in IC
simpler unreachability tests in Af

19/22

Control-flow Guided PDR for Imperative Synchronous Programs
0080

CTI Generalization by Control-flows

Let V := VF U VI and K := K£F x £, with
» K=W,Z,7)
> ICCf — (V,ICf,TCf)
» K4 = (v, 79, 79

unreachability in K is independent on the dataflows

20/22

Control-flow Guided PDR for Imperative Synchronous Programs
0080

CTI Generalization by Control-flows

Let V := VF U VI and K := K£F x £, with
» K=W,Z,7)
> ICCf — (V,ICf,TCf)
» K4 = (v, 79, 79

unreachability in K is independent on the dataflows

» generalize CTls to narrow the reachable state approximations
if C is unreachable, then generalize —C’ instead of —C:
C":= Cjyr obtained from omitting the dataflow literals in C

20/22

Example

Control-flow Guided PDR for Imperative Synchronous Programs
000e

module ITELoop() {

[N]lbool

ij

i[0] = true;
if (rifo0l) {

loop{
pl:
i[o0]
p2:

pause;
= false;
pause;

The set of boolean variables of module ITELoop

1@ = {i[O],n.,i[N_l]} U {P17P27run}
pdf i;}

= reduce at most 2¥13 to 23 times relative
inductiveness reasoning

21/22

Control-flow Guided PDR for Imperative Synchronous Programs
°

Summary

Control-flow Guided PDR for Imperative Synchronous Programs
» modify transition relation to generate less CTls by reachable
control-flow states computation

> linear-time static analysis
» symbolic reachability analysis

> identify CTls in IC
simpler unreachability tests in ACf

» generalize CTls to narrow the reachable state approximations
if C is unreachable, then generalize —C’ instead of —C:
C":= Cjyer obtained from omitting the dataflow literals in C

22/22

	Motivation
	Property Directed Reachability
	Property Directed Reachability

	Control-flow Guided PDR for Imperative Synchronous Programs
	Main Idea i
	Reachable Control-flow States Computation
	Main Idea ii
	Two Improvements
	Summary

