
Unified Cloud Application Management

Stefan Kolb
Distributed Systems Group

University of Bamberg
Bamberg, Germany

stefan.kolb@uni-bamberg.de

Cedric Röck
Senacor Technologies AG

Nuremberg, Germany
cedric.roeck@senacor.com

Abstract—From its early stages, cloud computing has evolved
from being a principal source for computing resources to a fully
fledged alternative for rapid application deployment. Especially
the service model Platform as a Service facilitates the hosting
of scalable applications in the cloud by providing managed and
highly automated application environments. Although most offer-
ings are conceptually comparable to each other, the interfaces for
application deployment and management vary greatly between
vendors. Despite providing similar functionalities, technically
different workflows and commands provoke vendor lock-in and
hinder portability as well as interoperability. To that end, we
present a unified interface for application deployment and man-
agement among cloud platforms. We validate our proposal with a
reference implementation targeting four leading cloud platforms.
The results show the feasibility of our approach and promote the
possibility of portable DevOps scenarios in PaaS environments.

Keywords—Cloud Computing, Platform as a Service, Portability,
Interoperability, DevOps, API

I. INTRODUCTION

Even though the cloud and specially Platform as a Service
(PaaS) is said to grow massively over the next years [1], [2],
there are also plenty of concerns acting as market barriers or
preventing further adoption. A major concern is the lack of
standards among cloud providers which hinders compatibility
and fosters the chances of lock-in effects caused by, e.g.,
incompatible technologies or proprietary interfaces. Associated
application migration costs do not only occur when voluntarily
switching the provider but can also arise rather unexpectedly
in case of takeovers or the bankruptcy of a provider, making
the provider change inevitable. Recent events show that the
market is under consolidation which highlights that such
circumstances are likely in the cloud market [3], [4]. To enable
a truly competitive market and unfold the full potential of cloud
services, portability and interoperability between offerings
must be enhanced [5].

Application portability between clouds not only includes
the functional portability of applications but ideally also the
usage of the same service management interfaces among
vendors [6], [7]. Unified management interfaces are said to
be an important component to accomplish this scenario, as
they enable the consistent management of applications across
several providers [3], [5], [8]. Whereas the need for a unified
interface to manage applications in the cloud is often men-
tioned in the literature [7], [9]–[14], we argue that, until now,
the majority of unified interfaces target the infrastructure provi-
sioning model [6], [15]. Due to differing value propositions and
a fundamentally different set of resources and services, cloud

platforms must be assessed separately [6]. In this paper, we put
a special focus on the portability of the management interfaces
while deferring the consideration of the application artifacts
to future work. The vast majority of PaaS providers offer
self-developed proprietary APIs and tooling suites [11], [15].
Hence, a provider change does not only require the application
to be adapted but also urges the developers and operators
from familiarizing with different tooling through to adapting
existing DevOps automation to new management interfaces.
DevOps is a metaphor for the collaboration of the development
and IT operation units inside a company, including high task
automation to streamline the software delivery process. To
mitigate such vendor lock-in effects, this paper presents a
unified interface for application deployment and management
among cloud platforms. The interface gathers and standardizes
core functionalities along the development and application
life cycle supported by cloud platforms. We validate our
proposal with reference to both, a study of related work and
an evaluation of the state of the art. Thereby, we stress that
existing approaches do not adequately model necessities for
application management in cloud platforms. Additionally, we
introduce Nucleus, a reference implementation of the presented
unified interface targeting four leading cloud platforms and
evaluate its utility against typical use cases. The results show
the feasibility of our approach and enhance the possibility of
portable DevOps scenarios in PaaS environments.

The remainder of the paper is structured as follows. In
Section II, we further define our methodology and present
our definition of a unified management interface for cloud
platforms. Section III presents details of our reference im-
plementation based on the introduced interface and evaluates
on the feasibility of the proposed approach. In Section IV,
we discuss how our approach contributes to related work.
Section V discusses existing limitations and future directions.
Finally, Section VI summarizes the contributions of the paper.

II. UNIFIED MANAGEMENT INTERFACE

The aim of the presented interface is to unify core man-
agement functions of cloud platforms. Rather than attempting
to create a complex matchmaking and migration solution, we
focus solely on the creation of a harmonized deployment and
management interface. Therefore, all technical dependencies,
e.g., supported runtimes as well as contract-specific details
such as service-level agreements, are neglected. Those aspects
are already targeted by brokering approaches such as [4],
[9], [16], [17]. Due to the variety of PaaS systems and their
diverging scopes, we argue that an interface covering all
available offerings can hardly be defined. We see that cloud

Develop

DeployMaintain

Fig. 1: Application life cycle

platforms can be classified by their proximity to SaaS and
IaaS boundaries [4]. Some products are more closely related to
SaaS, whereas others have evolved from a more infrastructure-
based approach. The majority of offerings, which we address
here, are systems that supply a classical application platform
that is composed of a set of runtimes, services and other
components an application can be programmed to. Especially
platforms that are designed towards extending SaaS solutions
or visual programming, e.g., Salesforce App Cloud1, will have
requirements for a different set of management interfaces.

Figure 1 shows the management focus of cloud platforms
inside a typical application life cycle. Management operations
of cloud platforms are clearly focused on the operations part
of the life cycle. This includes the creation of the applica-
tion environment, the deployment of the application itself as
well as necessary actions in the maintenance phase. Typical
maintenance tasks are monitoring the application’s status and
initiating reactions to increasing user demand, i.e., scaling
the application at runtime. Agile development methods often
reiterate the depicted life cycle to update existing applications
with new versions. Continuous delivery is a major enabler
for reducing effort of these recurring operation tasks [18].
Cloud platforms provide a high amount of automation for
these actions along the software life cycle and are, therefore,
also well-suited for agile development methods which often
traverse the depicted cycle.

In PaaS, not only the application life cycle operations
are highly automated but also the delivery of the application
environment itself. One of PaaS’ key values is to supply
a managed environment in which application code can be
deployed, freeing the developers and operators from managing
the application’s runtime environment and connected services.
Dependent on the application and its required runtime envi-
ronment, the platform instantly provisions a container with an
operating system and all necessary runtimes installed where
the application package can be hosted. An application is typ-
ically not self-contained but needs additional services to store
information or to outsource tasks for processing. PaaS puts
the application at the very center of its focus and supplies a
wide variety of pre-configured services that can be provisioned
on demand for use by an application. This relieves operators
from tedious tasks like setting up databases and handling
their availability and scalability. Cloud platforms can handle
both, user-faced applications as well as applications acting as
services as part of a bigger application architecture. Due to the
high automation of the environment and the deployment, cloud
platforms are very well suited for microservices architectures
which are composed of an array of many small isolated
services [19].

1See http://www.salesforce.com/platform

Both of the introduced perspectives, the management of
the operations during the application life cycle as well as the
management of the application environment itself are targeted
by the management interfaces of cloud platforms. The intended
interface unification should be viable given that a set of man-
agement operations of PaaS systems share the same semantics
but only use different syntax [11], [20], [21]. Currently, ev-
ery vendor provides its own, nonstandardized interface with
varying sets of supported operations and distinctions in the
overall functionality offered to the users. For this reason, the
collection of operations that should be included in the core set
of the unified interface must be supported by a wide range of
vendors. To define such a set of core management functions,
besides analyzing the existing works (see Section IV), we also
conducted a comprehensive evaluation of 70 vendors in our
PaaS knowledge base2 to be able to homogenize the currently
offered capabilities. The described approach eventually led to
the selection of operations presented in Table I. It depicts
the proposed operations and their references in the existing
literature as well as their support by current vendors. Table I
also shows that a substantial amount of fundamental and well-
supported operations of modern cloud application management
is not adequately considered by existing approaches. Due to
space limitations, we only depict the compatibility of the
vendors that were also implemented in our prototype (see
Section III) to exemplify real-world usage, although the overall
picture can be applied to more vendors.

The operations are divided into two groups: general oper-
ations and application operations. General operations include
all tasks that target the management of the platform environ-
ment, whereas application operations all relate to a specific
application instance created inside the platform environment.
The three resources that are administered within the general
group are the list of user applications, services, and available
deployment regions. The general application operations are
user scoped, i.e., listing all applications will only return
applications that are accessible by a particular user. Also, the
creation of a new application environment is initiated inside
the user’s platform space. The services resource enumerates all
available services that can be bound and used by an applica-
tion. Although the existing literature considers application ser-
vices [9], [10], these are limited to database services. However,
services provisioned in cloud platforms have gone far beyond
only providing database back ends for applications but nearly
offer everything as a service from monitoring over messaging
to payment services. This evolution was accelerated by the
concept of add-on services provided by third party vendors.
Typically, services are accounted separately from the normal
platform fees of an application which is why an interface must
also list their associated payment plans [4]. As native and add-
on services cannot be distinguished at most vendors, these are
managed by a single interface. Another important capability
that must be retrievable are the deployment regions for applica-
tions. Often platforms do not only allow the deployment of ap-
plications to one geographical server location but offer multiple
regions. This is particularly important for customers because
of legal and performance reasons [4]. Table II indicates that
this functionality is only supported by half of the evaluated
vendors directly through their management interface, caused

2A comprehensive knowledge base of the state of the art of cloud platforms
is available at http://PaaSify.it.

TABLE I: Unified interface operations

Functionality Description Clou
d

Fou
nd

ry
v2

Her
ok

u

clo
ud

Con
tro

l
Ope

nS
hif

t v2

Literature
GET Get an app entity 3 3 3 3 [9], [10], [12]
DELETE Delete the app 3 3 3 3 [9], [10], [12]A

pp

UPDATE Update the app 3 3 7 7 [9], [10], [12]
REBUILD Rebuild, e.g. to use updated buildpacks 3 3 3 3
DEPLOY Upload the actual app data 3 3 3 3 [9], [10], [12]
DOWNLOAD Download the current app data 3 3 3 3
START Start the app 3 3 7 3 [9], [10], [12]
STOP Stop the app 3 3 7 3 [9], [10], [12]

L
ife

cy
cl

e

RESTART Restart the app 3 3 7 3 [10], [12]
ADD INSTANCE Add new instance, scale horizontally 3 3 3 3 [10], [12]
REMOVE INSTANCE Remove instance, scale horizontally 3 3 3 3 [10], [12]

Sc
al

in
g

SCALE INSTANCE Set instance power level 3 3 3 7
LIST DOMAINS List all the app’s domains 3 3 3 3
GET Get domain entity 3 3 3 3
ADD DOMAIN Assign domain to the app 3 3 3 3
DELETE Delete and remove the domain 3 3 3 3D

om
ai

ns

UPDATE Update the domain settings 3 3 3 3
LIST VARS List all env. variables of the app 3 3 3 3
CREATE VAR Create a variable with initial value 3 3 3 3
UPDATE VAR Update an existing variable’s value 3 3 3 3
DELETE VAR Remove a variable 3 3 3 3Va

ri
ab

le
s

GET VAR Get an environment variable entity 3 3 3 3
LIST LOGS Collect the app’s logfiles 3 3 3 3 [10]
GET SPECIFIC LOG Get a specific log file 3 3 3 3

L
og

gi
ng

DOWNLOAD LOGS Download all logs as archive 3 3 3 3
ADD SERVICE Install and bind to the app 3 3 3 3 [9], [10]
UPDATE SERVICE Update bound service settings 3 3 3 3
REMOVE SERVICE Remove bound service 3 3 3 3 [9], [10]
GET Get bound service entity 3 3 3 3

A
pp

lic
at

io
n

op
er

at
io

ns

Se
rv

ic
es

LIST List all installed services 3 3 3 3

CREATE Create the app 3 3 3 3 [9], [10], [12]

A
pp

LIST List all applications 3 3 3 3 [9], [10], [12]
GET Get available service entity 3 3 3 3 [10]
LIST List all available services 3 3 3 3 [9], [10]
GET PLAN Get service plan entity 3 3 3 3Se

rv
ic

e

LIST PLANS List all available plans for a services 3 3 3 3
GET Get available region entity 7 3 7 3

G
en

er
al

R
eg

io
n

LIST List all available regions 7 3 7 3

95 % 100 % 84 % 95 %

by a generally missing multi-region support of Cloud Foundry
and cloudControl. However, a compensation for the different
approach taken by the two vendors to realize this functionality
will be provided by our multi-provider concept in the next
paragraphs (see Figure 2). Other capabilities like runtime and
framework support must be targeted by a knowledge base
backed brokering solution as the vendors do not offer this data
through their interfaces. Integrating this information is part of
our future work (see Section V).

Operations that belong to a specific application resource
are the main part of the proposed interface. We agree with
the literature on typical actions of the application’s life cycle.
The life cycle of an application is described by deploying the
actual application data, starting, stopping, and restarting the
application. Also, this includes getting detailed information,
e.g., the status of an application as well as updating its data,
deleting the deployment or the entire application space. This
life cycle is fully supported by all vendors except cloudCon-
trol which directly starts an application at deployment time
and allows no further manual state changes. Additionally,
the interface includes actions for rebuilding an application
that has changed properties which require a redeployment of
the application and the download of the current application
artifacts. As an essential characteristic of cloud systems [22],
elasticity is represented by both horizontal scaling (number of
instances) and vertical scaling (instance power). Referring to
the services category of the general capabilities, a dedicated

group of operations is targeted at the management of services
that are bound to an application. First, it is possible to provision
or remove a service instance on demand from the services
pool of the platform. Furthermore, the array of bound services
or details of a dedicated service can be listed. Additionally,
as mentioned before, existing literature is lacking a wide
range of fundamental operations of cloud platforms. For the
remaining groups logging, variables, and domains, we could
not find appropriate concepts in the presented approaches
in spite of their wide support in current cloud platforms.
Logging plays an important role for debugging applications
and monitoring application health in the maintenance phase of
an application’s life cycle. The variety of third party offerings
in the service category that target more sophisticated logging
and alerting are dependent on the logging functionalities of the
main system. Therefore, the interface provides operations for
listing available log files, retrieving a particular log file or the
whole set of available logs. Using environment variables for
configuring properties that are likely to vary between applica-
tion deployments has become the de facto standard in cloud
platforms3. This includes resource handles and credentials to
services or external add-ons that the application consumes.
Last, the ability to assign and manage domains is crucial to
address applications and provide them to end users. Typically,
cloud platforms manage plenty of customer applications on

3See http://12factor.net

Vendor Provider
0..*1 0..*1

Endpoint

Fig. 2: Multi-provider PaaS support

one physical host and no application retains its own dedicated
public IP. Routing to application instances via domains is a
suitable approach for both, inter-application communication as
well as exposing applications to end users.

Even with extensive evaluation, it is challenging to define
the right array of operations for a unified interface that satisfies
all demands. In that regard, the NIST [6] states that one needs
to define minimal standards and avoid overspecification that
inhibits innovation. Therefore, we made sure that our selected
set of operations is supported by the majority of vendors
(see Table I). Yet, a problem often experienced in unifying
approaches, caused by this rationale, is the attempt to wrap
the smallest common denominator of the competing provider
APIs for thorough operation support. As a consequence, an
application developer is faced with a dilemma, being forced
to either pick a feature-full API created by the chosen cloud
provider and risk getting locked-in or favor a unified interface
limited to a narrow range of functionality [6], [15]. To mitigate
this problem, we decided to include the ability to still gain
access to proprietary capabilities, besides the core capabilities
of interface, if needed. Therefore, our interface supports a
native loop-through functionality, to allow the execution of
arbitrary commands against the endpoint’s API. This allows
the developers to use a combination of unified interactions
and proprietary functionalities if necessary.

As we intend to consolidate application management
among cloud platforms with our interface, besides the unifica-
tion of the operations, the need to create an interface concept
that provides access to different platforms and adds multi-
provider support emerged. Figure 2 illustrates the concept and
the associations between vendors, providers, and endpoints.
For each platform vendor, there can be an arbitrary number of
providers delivering the platform and a provider itself can offer
any number of endpoints. Each provider needs to operate the
vendor’s proprietary API so that all providers and endpoints
can be served by one adapter implementation. As an example,
the vendor Pivotal develops the platform Cloud Foundry (CF).
A provider offers a platform to its customers but must not
necessarily have developed it. In this context, IBM Bluemix
is an example for a CF provider. An endpoint is the API
access point defined by the provider. One provider may offer
multiple endpoints. For instance, IBM Bluemix offers two
API endpoints to its customers, one serving a CF instance
in the United States, the other one providing the European
counterpart. With this approach, IBM accounts for the lacking
multi-region support of CF (see Table I).

To sum up, Figure 3 shows how the defined operations
fit into the resource map of our unified API. The figure
does not show all operations that are available but presents
an overview of the relations between the resources and how
they can be created, resolved or updated. Resource properties
are also neglected, except for the associations with other
API objects. The figure is separated into four dedicated API

groups. The platform group on the top left is responsible
for managing available vendors, providers, and endpoints. All
other resources are nested below the endpoint to which they
belong. The services group is responsible for providing infor-
mation about the available services within a cloud platform.
All subordinated service plans, which belong to exactly one
service are nested below the services resource path. Equally,
the available deployment regions are managed inside the region
group. Both of these resources are read-only and belong to the
currently connected endpoint. At the bottom of the figure, the
application group includes all application operations, i.e., the
list and instance retrieval for all applications, domains, logs,
variables, and installed services. Applications are nested below
the endpoint, whereas the domains, logs, variables and installed
services are sub resources belonging to an application. The
unified interface also introduces properly named and structured
API objects for all of the shown resources. Additionally, a
unified application lifecycle and error schema is defined. Due
to space limitations, we have to omit a detailed presentation
of these finer aspects and therefore refer to the technical
report [23].

Next, the feasibility of the approach will be validated by
providing a reference implementation of the defined interface
and by evaluating the prototype against several use cases.

III. REFERENCE IMPLEMENTATION

In this chapter, the design of our reference implementation
Nucleus4 is discussed. We evaluate the details of the concrete
implementation as well as the challenges that must be targeted
to integrate and map existing offerings to the unified manage-
ment interface presented in Section II.

Vendor,
Provider &
Endpoint

repository

App #nApp #1

API

Platform API

HTTP clients

CLI swagger generated clients

Manage Vendor, Provider and Endpoint entities

Nucleus API

Ruby clients

Application(s)

API Git

Application(s)

API Git

Application(s)

API Git

Authentication

Adapter matching

Adapter fundamentals

Heroku Openshift V2 Cloud Foundry V2 cloudControl

Platform as a Service abstraction layer

Fig. 4: Nucleus architecture

Figure 4 shows the overall architecture of the reference
implementation. At the heart of the implementation, the unified
Nucleus API is served to clients. One of the technical require-
ments for the API is to provide a platform and programming
language independent abstraction layer. Here, we decided
to create a RESTful API with the use of JSON/HTTP. By
using these technologies, the API can be easily extended with

4See https://github.com/stefan-kolb/nucleus

API version:
/v1

Legend :

listable resource

POST
to create a new instance

Modifyable Resource
PATCH to update the instance
DELETE to delete the instance

...

/v1/vendors

linksTo

This map shows how the resources
are in relation amongst each other.
It is not a complete listing of all
resource properties and their
actions.

/v1/vendors/{v}

providers

/v1/vendors/{v}/providers

/v1/providers/{p}

vendor

/v1/providers/{p}/endpoints

/v1/endpoint/{e}/applications/{app}

endpoint

domainslogs

/v1/endpoint/{e}/applications/
{app}/domains/{domain}

application

/v1/endpoint/{e}/
applications/{app}/vars/{var}

application

/v1/endpoint/{e}/
applications/{app}/logs/{log}

application

services

provider

/v1/endpoints/{e}/
applications

endpoints

Resource instance

reference / link

nested instance collection

/v1/endpoints/{e}/services

/v1/endpoint/{e}/services/
{service}

endpoint

/v1/endpoint/{e}/applications/
{app}/services/{service}

application

env. variables

/v1/endpoints/{e}

/v1/endpoints/{e}/services/
{service}/plans

plans

/v1/endpoint/{e}/
applications/{app}/domains

/v1/endpoint/{e}/
applications/{app}/vars

/v1/endpoint/{e}/
applications/{app}/logs

/v1/endpoint/{e}/
applications/{app}/services

/v1/endpoint/{e}/services/
{service}/plans/{plan}

service

Application Group

Platform Group

Service Group

services

/v1/endpoints/{e}/regions

regions

applications

/v1/endpoint/{e}/regions/
{region}

endpoint

Region Group

Fig. 3: Unified interface resource map

command line clients and other tools or can directly be queried
by any client that is able to issue HTTP requests. Nevertheless,
due to the popularity of language-specific wrappers for APIs,
the Nucleus API is also available as a Ruby Gem. Nucleus’
extendability is provided by a modular structure with dedicated
adapters for each supported platform. A set of providers and
endpoints for all adapters is available by default. This set can
also be altered through the API which allows the addition of
providers and endpoints at runtime. If a new provider should
be added or a provider changes its API, only the adapter
implementation must be adjusted. In this way, Nucleus can
maintain long-term stability for tools and automation scripts
and backward compatibility across different API versions
for the available vendors. Consequently, also changes to the
unified API must be versioned appropriately in the future.
Between the API and the adapters, an independent authen-
tication layer capable of different authentication mechanisms,
e.g., OAuth or HTTP Basic, is provided that can be reused
inside the adapter implementations. The entire Nucleus server
implementation may be hosted as local instance as well as a
public instance with multi-user support.

The current implementation includes adapters for four
leading cloud platforms. These are Cloud Foundry, Heroku,
Openshift, and cloudControl5 (see Table II). Including their
providers, Nucleus is able to support more than 12 public cloud
platforms as well as any private deployment. The decision
on possible candidates for the adapter implementations was
assisted by the knowledge base and cloud brokering tool
PaaSify [4]. Besides trying to cover a variety of heterogeneity
with the prototype, in terms of technological implementations
to support new vendors in future releases without the need
for major modifications, the vendor’s impact and popularity
within the market played an important role. In fact, OpenShift,
Heroku, and Cloud Foundry were the top three vendors queried
on PaaSify. All of them are available as public and private
cloud deployments6. Our approach does not require any addi-
tional documents, e.g., application descriptors but can be used
without adaption for already existing applications. Those facts
contribute to making the abstraction layer applicable for a wide

5cloudControl was shutdown due to bankruptcy end of February 2016.
6Heroku Private Spaces offers isolated cloud deployments but no hosting

on private data centers.

TABLE II: Selected vendors for adapter implementations

cloudControl Cloud Foundry Heroku OpenShift

Type Proprietary Open Source Proprietary Open Source
Hosting public, private public, private public, (private) public, private
Providers 4 >5 1 2

variety of offerings, both hybrid and multi-cloud, empowering
its practical utility.

One of our main points of criticism is that most of the
proposed approaches are missing an evaluation through an
existing and published implementation of their specification.
In our opinion a unified interface can only be validated and
improved by a working reference implementation. The impor-
tance of reference implementations cannot be stressed enough
as conceptual problems can only be reasonably discovered
in practical use cases and evaluations. Whereas, our imple-
mentation generally proves that it is possible to implement
the suggested unified interface and make different existing
vendors conform to the defined operations and resources, we
experienced various issues while creating and evaluating the
implementation.

One of the main challenges for achieving the abstraction
to the unified API is the mapping of proprietary operations
and resources to the unified operations and resource schemata.
Although Table I shows broad support for the majority of
the defined operations, these transformations are mostly not
1:1 syntactical mappings but require a series of requests on
native API resources to gather required properties and initiate
all necessary operation steps. Whereas we have to omit a
detailed consideration of the mappings, Table III shows an
aggregated view of the mapping overhead. The table points
out how many HTTP requests have to be sent in order to
achieve the semantically same result on all platforms. We only
counted operations that are supported by the respective vendor
and actually conduct API requests.

TABLE III: Native API requests per unified operation

cloudControl Cloud Foundry Heroku OpenShift

Operations 31 35 36 30
Total API requests 47 63 49 39
Avg. API req/operation 1.52 1.8 1.36 1.3

A main source for evaluating the utility of the prototype
are the designed adapter tests that do not only test all of
the available operations but simulate the complete life cycle
of cloud applications (see Figure 1 and 5). The use cases
directly interact with the vendor APIs and record all HTTP
interactions that are then matched with the expected results
and unified resource structures proving the correct functioning
of the implementation. For every vendor, a complete cycle
is traversed. This includes the creation of an application,
provisioning and configuring routes to required services, de-
ploying the application data, and starting the application.
Moreover, it covers the monitoring of application logs, scaling
and recovering instances caused by load and instance failures
up to an application update (see Figure 5). Furthermore, the
use cases do not alone cover positive paths but also failing
actions during the application life cycle. The feasibility of

Monitor

Scale

Recover

Create

Provision

Configure

Deploy

Load

Failure

Services

Update

Environment

Fig. 5: Application management use cases

the operations defined by the interface are thereby not only
validated in isolation but in relation with each other.

At the beginning, it was claimed that portability among
PaaS can be improved with the creation of a unified interface.
In summary, application portability is fostered by the common
operation and object model of our unified interface that applies
to all supported platforms. Diversities could be successfully
harmonized amongst the four platforms. With its unified
deployment and management capabilities, Nucleus allows to
manage applications on different platforms. Most important,
even though a fully automated vendor change is not yet
viable, the effort that is needed when migrating an application
to another vendor is diminished. In case of switching the
provider, the effort to adapt the application’s surrounding, for
instance to enable continuous delivery and DevOps, can be
minimized. Hybrid and multi-cloud deployments are facilitated
due to the fact that the management operations can be handled
consistently if all vendors support a unified interface.

IV. RELATED WORK

In the past, several drafts for unified cloud interfaces
were published as independent work or as part of a broader
approach. As stated, we argue that a majority of them were fo-
cused on the infrastructure provisioning model, missing out on
cloud platforms [6], [15]. Furthermore, we show that existing
approaches for PaaS do not adequately consider core function-
alities of modern cloud platforms. Often, the approaches are
focused on supporting a unified deployment of applications
but do not apply a more holistic view of the fundamental
management capabilities. The following paragraphs provide an
overview of related work and give distinction of how our work
differs and contributes to the existing approaches.

A. Standards

A number of standards that are often still in the process of
making are proposed by several standardization organizations.
In many respects, the use of standards is counterproductive
to the vendors’ aim to achieve a strong market position.
Therefore, most standard proposals suffer from the lack of
acceptance and participation by industry leaders that prevents
adoption.

Originally initiated to create a remote management API
for cloud infrastructures, the Open Cloud Computing Interface
(OCCI) claims to be a generic protocol and API to serve other
models besides IaaS. However, extending the core specifica-
tion [24], apart from a draft [25], there still only exists a
normative specification for infrastructures [26].

The Cloud Infrastructure Management Interface (CIMI)
specification [27] explicitly states to be solely focused on
infrastructure management. It consists of a model for cloud
infrastructure resources as well as a standardized REST over
HTTP interface to manage the defined resources.

In contrast, Cloud Application Management for Platforms
(CAMP) [28] focuses on providing a management API for
cloud platforms. The recent draft of the standard proposal
describes generic operations and artifacts that a PaaS cloud
should ideally offer. It is currently awaiting the specification
as an official OASIS standard, requiring the evidence of
interoperable implementations which is still missing to date.
CAMP is designed to be language, framework, and platform
neutral with the goal of covering a variety of the PaaS ecosys-
tem. The operations that CAMP specifies include building,
life-cycle management, administration, and monitoring tasks.
Nevertheless, we argue that the current scope and definition of
operations and resources is too generic and it would require
an enormous customization effort to integrate it with today’s
cloud platforms.

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [29] specifies a generic metamodel for
defining cloud applications. This includes both, the structure
of an IT service as well as how to instantiate and manage
it. However, the specification is more focused on defining the
topology and packaging of services than the actual manage-
ment of a hosting platform or the application itself.

B. Abstraction Layers

Abstraction layers are a solution by means of harmonizing
a variety of different systems, which all share a common
principle, behind one interface. In contrast to standards, this
approach often comes in conjunction with adapters for map-
ping the abstraction layer interface to the native APIs without
the need for firsthand vendor support. A variety of projects
are available in the area of cloud computing which follow a
concept that is related or similar to our approach.

A technique applied by some projects is to duplicate
popular APIs from leading vendors and supply a different
implementation. Two examples for such interface clones are
Eucalyptus [30] that is based on Amazon’s EC2 API and
AppScale [31] that mirrors parts of the Google App Engine
API. This concept is typically reasonable for Open Source
clones of proprietary offerings that try to supply the exact same
functionalities as the base vendor. However, it is less feasible
to unify a variety of technically differing offerings.

Apache Deltacloud7 is an abandoned attempt to improve
the interoperability amongst various infrastructure providers.
It provides a set of RESTful APIs that allow to interface
with a multitude of providers. The supported APIs include
a custom Deltacloud API, the standardized CIMI API, and
a clone of Amazon’s EC2 API. Besides Deltacloud, there
are also several language-specific abstraction layers for IaaS,
e.g., jclouds8, Fog9, pkgcloud10 or Libcloud11. Our approach

7See http://deltacloud.apache.org
8See http://jclouds.apache.org
9See http://fog.io
10See https://github.com/pkgcloud/pkgcloud
11See https://libcloud.apache.org

combines both of the described styles, but for PaaS, as it
serves a programming language independent RESTful API and
a Ruby wrapper library.

Cunha et al. [10] propose PaaS Manager, an approach simi-
lar to ours, defining a set of common operations abstracting the
differences of application deployment and life cycle manage-
ment of multiple providers. PaaS manager declares to support
adapters to three platforms, i.e., CloudBees, Cloud Foundry,
and Heroku. However, to our knowledge, a proof-of-concept
implementation has never been publicly released. From what
can be deducted from [10], [32], their API definition is lacking
important environment configuration operations, e.g., domains
and multi-region support.

Similarly, Sellami et al. [12] introduced the Compatible
One Application and Platform Service (COAPS) API. Their
implementation includes connectors for Cloud Foundry, Open-
shift, and Google App Engine [12], [33]. Compared to our find-
ings, COAPS is missing various essential operations of typical
cloud platforms, like scaling, monitoring of applications or the
management of services and deployment regions [12], [34].

Another EU funded project from which a unified man-
aging approach for PaaS evolved was Cloud4SOA [9]. The
functionality of Cloud4SOA was partially transferred in sub-
sequent projects CloudPier and most recently SeaClouds [16].
Cloud4SOA provides four core capabilities, of which one is
the unified management and deployment of applications to
cloud platforms. According to the publications, adapters were
offered for AWS Elastic Beanstalk, Cloud Foundry, Openshift,
and CloudBees [8], [9], later extended with Heroku and
cloudControl. Akin to the previously described approaches, the
presented unified interface does not consider important stan-
dard functionalities. For Cloud4SOA this especially concerns
application management, e.g. domains, logging, scalability,
deployment regions, and also a dedicated ability to manage
application services.

V. LIMITATIONS AND FUTURE WORK

Even though the presented unified interface already copes
with the core aspects of today’s cloud platforms, there are still
open challenges remaining which can be worked on in future
projects.

Conceptually, PaaS is still evolving and so do the manage-
ment interfaces. Whereas we integrated flexibility to cover this
case via the native loop-through functionality, also the unified
interface will need revisions and upgrades over time to provide
an appropriate abstraction of the state of the art. Two examples
of upcoming features are application environments and multi-
application services. Whereas services in general are already
supported, some platforms allow the creation of services
that must not be bound but can be used across application
boundaries. Also, environments to manage different versions of
an application for, e.g., staging and production, could be one of
the major changes in a next revision. With agile development,
multiple environments are becoming a first class feature for
developers that they also want to use in the cloud. As these
features are not supported by a wide range of platforms, we
could not reasonably include them in the current revision of
the interface.

Although our contributions allow for the deployment of
applications through a unified interface, we also have to take
into account that the implementation artifacts needed to deploy
onto the PaaS may be different [11]. Possible solutions for this
have to be investigated independently.

Extending our reference implementation, several starting
points can be identified. Naturally, the range of applicability
of the tool could be enhanced by additional adapters. Further-
more, we could serve multiple APIs in front of our imple-
mentation. Especially, if standard efforts like CAMP mature
further, we could integrate these to into our prototype and
provide a standard-compliant interface to multiple providers
straightaway. Another beneficial project would be to create a
console client for our unified API. This would considerably
enhance the value for end users, as it is the preferred way for
users and developers to interact with cloud platforms.

Moving away from the previously described implementa-
tion tasks to a more general perspective, Nucleus could be
integrated with the PaaS knowledge base [4] to gain additional
semantic insights on cloud platforms and their capabilities.
Nucleus could then prevent semantic errors before they appear,
for instance by warning that a certain runtime is not supported
by the chosen provider or by serving additional information
about available platform capabilities. Combining both projects,
the emerging system would evolve to become a brokering
solution that can not only identify the right platform for the
user’s needs but also enhances usage without having to fear
the effects of vendor lock-in.

VI. CONCLUSION

The inherent need for a unified interface to manage ap-
plications in the cloud is stressed in multiple research pa-
pers [7], [9]–[14]. Whereas standards and approaches for the
infrastructure provisioning model have already gained traction,
proposals for cloud platforms are still premature. The focus on
a high level of DevOps automation in Platform as a Service
further stresses the need for a homogeneous approach among
vendors. Therefore, we presented a unified interface to manage
applications in cloud platforms. The results both build upon
extending former approaches and an extensive evaluation of
the state of the art. We validated our proposal with a reference
implementation mediating to four leading platform vendors
making the abstraction layer applicable for a wide variety of
offerings, both hybrid and multi-cloud. The presented unified
management interface for cloud platforms together with our
reference implementation Nucleus increases the portability and
interoperability of PaaS applications and thus helps to avoid
critical vendor lock-in effects.

REFERENCES

[1] F. Gens, “Worldwide and Regional Public IT Cloud Services 2014–2018
Forecast,” IDC, Tech. Rep., 2014.

[2] F. Biscotti et al., “Market Trends: Platform as a Service, Worldwide,
2013-2018, 2Q14 Update,” Gartner, Tech. Rep., 2014.

[3] S. Marston et al., “Cloud computing – The business perspective,”
Decision Support Systems, vol. 51, no. 1, 2011.

[4] S. Kolb and G. Wirtz, “Towards Application Portability in Platform as
a Service,” in Proc. Symp. Service-Oriented System Engineering, 2014.

[5] K. Oberle and M. Fisher, “ETSI CLOUD – Initial Standardization
Requirements for Cloud Services,” in Economics of Grids, Clouds,
Systems, and Services. Springer, 2010.

[6] M. Hogan et al., “NIST Cloud Computing Standards Roadmap,” NIST
Special Publication 500-291, 2011.

[7] D. Petcu, “Portability and Interoperability between Clouds: Challenges
and Case Study,” in Towards a Service-Based Internet. Springer, 2011.

[8] E. Kamateri et al., “Cloud4SOA: A Semantic-Interoperability PaaS
Solution for Multi-cloud Platform Management and Portability,” in
Service-Oriented and Cloud Computing. Springer, 2013.

[9] F. D’Andria et al., “Cloud4SOA: Multi-cloud Application Management
Across PaaS Offerings,” in Proc. Symp. Symbolic and Numeric Algo-
rithms for Scientific Computing, 2012.

[10] D. Cunha et al., “PaaS Manager: A Platform-as-a-service Aggregation
Framework,” Computer Science and Information Systems, vol. 11, no. 4,
2014.

[11] S. Kolb et al., “Application Migration Effort in the Cloud - The Case
of Cloud Platforms,” in Proc. Conf. Cloud Computing, 2015.

[12] M. Sellami et al., “PaaS-Independent Provisioning and Management of
Applications in the Cloud,” in Proc. Conf. Cloud Computing, 2013.

[13] Cloud Computing Use Case Discussion Group, “Cloud Computing Use
Cases White Paper – Version 4.0,” 2010.

[14] N. Loutas et al., “A Semantic Interoperability Framework for Cloud
Platform as a Service,” in Proc. Conf. Cloud Computing Technology
and Science, 2011.

[15] D. Petcu et al., “Towards a cross platform cloud API,” in Proc. Conf.
Cloud Computing and Services Science, 2011.

[16] A. Brogi et al., “EU Project SeaClouds - Adaptive Management of
Service-based Applications Across Multiple Clouds,” in Proc. Conf.
Cloud Computing and Services Science, 2014.

[17] B. Surajbali and A. Juan-Verdejo, “A Marketplace Broker for Platform-
as-a-Service Portability,” in Advances in Service-Oriented and Cloud
Computing. Springer, 2015.

[18] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Pearson
Education, 2010.

[19] J. Lewis and M. Fowler, “Microservices,” 2014,
http://martinfowler.com/articles/microservices.html.

[20] A. Sheth and A. Ranabahu, “Semantic Modeling for Cloud Computing,
Part 2,” IEEE Internet Computing, vol. 14, no. 4, 2010.

[21] N. Loutas et al., “Towards a Reference Architecture for Semantically
Interoperable Clouds,” in Proc. Conf. Cloud Computing Technology and
Science, 2010.

[22] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
NIST Special Publication 800-145, September 2011.

[23] C. Röck and S. Kolb, “Nucleus – Unified Deployment and Management
for Platform as a Service,” University of Bamberg, Tech. Rep., 2016.

[24] Open Grid Forum, “Open Cloud Computing Interface - Core,” 2011.
[25] ——, “Open Cloud Computing Interface - Platform,” 2016.
[26] ——, “Open Cloud Computing Interface - Infrastructure,” 2011.
[27] DMTF, “Cloud Infrastructure Management Interface (CIMI) Model and

RESTful HTTP-based Protocol – An Interface for Managing Cloud
Infrastructure,” 2012.

[28] OASIS, “Cloud Application Management for Platforms Version 1.1,”
2014.

[29] ——, “Topology and Orchestration Specification for Cloud Applications
Version 1.0,” 2013.

[30] D. Nurmi et al., “The Eucalyptus Open-Source Cloud-Computing
System,” in Proc. Symp. Cluster Computing and the Grid, 2009.

[31] N. Chohan et al., “Appscale: Scalable and Open AppEngine Application
Development and Deployment,” in Cloud Computing. Springer, 2010.

[32] D. Cunha et al., “A Platform-as-a-Service API Aggregator,” in Advances
in Information Systems and Technologies. Springer, 2013.

[33] E. Hossny et al., “A Case Study for Deploying Applications on
Heterogeneous PaaS Platforms,” in Proc. Conf. Cloud Computing and
Big Data, 2013.

[34] Telecom SudParis, Computer Science Department, “The Compatible
One Application and Platform Service (COAPS) API specification –
Version 1.5.3,” 2013.

